]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid5-cache.c
raid5-cache: check stripe finish out of order
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5-cache.c
CommitLineData
f6bed0ef
SL
1/*
2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 */
14#include <linux/kernel.h>
15#include <linux/wait.h>
16#include <linux/blkdev.h>
17#include <linux/slab.h>
18#include <linux/raid/md_p.h>
5cb2fbd6 19#include <linux/crc32c.h>
f6bed0ef
SL
20#include <linux/random.h>
21#include "md.h"
22#include "raid5.h"
23
24/*
25 * metadata/data stored in disk with 4k size unit (a block) regardless
26 * underneath hardware sector size. only works with PAGE_SIZE == 4096
27 */
28#define BLOCK_SECTORS (8)
29
0576b1c6
SL
30/*
31 * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
32 * recovery scans a very long log
33 */
34#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
35#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
36
f6bed0ef
SL
37struct r5l_log {
38 struct md_rdev *rdev;
39
40 u32 uuid_checksum;
41
42 sector_t device_size; /* log device size, round to
43 * BLOCK_SECTORS */
0576b1c6
SL
44 sector_t max_free_space; /* reclaim run if free space is at
45 * this size */
f6bed0ef
SL
46
47 sector_t last_checkpoint; /* log tail. where recovery scan
48 * starts from */
49 u64 last_cp_seq; /* log tail sequence */
50
51 sector_t log_start; /* log head. where new data appends */
52 u64 seq; /* log head sequence */
53
54 struct mutex io_mutex;
55 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
56
57 spinlock_t io_list_lock;
58 struct list_head running_ios; /* io_units which are still running,
59 * and have not yet been completely
60 * written to the log */
61 struct list_head io_end_ios; /* io_units which have been completely
62 * written to the log but not yet written
63 * to the RAID */
a8c34f91
SL
64 struct list_head flushing_ios; /* io_units which are waiting for log
65 * cache flush */
66 struct list_head flushed_ios; /* io_units which settle down in log disk */
67 struct bio flush_bio;
0576b1c6
SL
68 struct list_head stripe_end_ios;/* io_units which have been completely
69 * written to the RAID but have not yet
70 * been considered for updating super */
f6bed0ef
SL
71
72 struct kmem_cache *io_kc;
73
0576b1c6
SL
74 struct md_thread *reclaim_thread;
75 unsigned long reclaim_target; /* number of space that need to be
76 * reclaimed. if it's 0, reclaim spaces
77 * used by io_units which are in
78 * IO_UNIT_STRIPE_END state (eg, reclaim
79 * dones't wait for specific io_unit
80 * switching to IO_UNIT_STRIPE_END
81 * state) */
0fd22b45 82 wait_queue_head_t iounit_wait;
0576b1c6 83
f6bed0ef
SL
84 struct list_head no_space_stripes; /* pending stripes, log has no space */
85 spinlock_t no_space_stripes_lock;
86};
87
88/*
89 * an IO range starts from a meta data block and end at the next meta data
90 * block. The io unit's the meta data block tracks data/parity followed it. io
91 * unit is written to log disk with normal write, as we always flush log disk
92 * first and then start move data to raid disks, there is no requirement to
93 * write io unit with FLUSH/FUA
94 */
95struct r5l_io_unit {
96 struct r5l_log *log;
97
98 struct page *meta_page; /* store meta block */
99 int meta_offset; /* current offset in meta_page */
100
101 struct bio_list bios;
102 atomic_t pending_io; /* pending bios not written to log yet */
103 struct bio *current_bio;/* current_bio accepting new data */
104
105 atomic_t pending_stripe;/* how many stripes not flushed to raid */
106 u64 seq; /* seq number of the metablock */
107 sector_t log_start; /* where the io_unit starts */
108 sector_t log_end; /* where the io_unit ends */
109 struct list_head log_sibling; /* log->running_ios */
110 struct list_head stripe_list; /* stripes added to the io_unit */
111
112 int state;
f6bed0ef
SL
113};
114
115/* r5l_io_unit state */
116enum r5l_io_unit_state {
117 IO_UNIT_RUNNING = 0, /* accepting new IO */
118 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
119 * don't accepting new bio */
120 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
a8c34f91 121 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
f6bed0ef
SL
122};
123
124static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
125{
126 start += inc;
127 if (start >= log->device_size)
128 start = start - log->device_size;
129 return start;
130}
131
132static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
133 sector_t end)
134{
135 if (end >= start)
136 return end - start;
137 else
138 return end + log->device_size - start;
139}
140
141static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
142{
143 sector_t used_size;
144
145 used_size = r5l_ring_distance(log, log->last_checkpoint,
146 log->log_start);
147
148 return log->device_size > used_size + size;
149}
150
151static struct r5l_io_unit *r5l_alloc_io_unit(struct r5l_log *log)
152{
153 struct r5l_io_unit *io;
154 /* We can't handle memory allocate failure so far */
155 gfp_t gfp = GFP_NOIO | __GFP_NOFAIL;
156
157 io = kmem_cache_zalloc(log->io_kc, gfp);
158 io->log = log;
159 io->meta_page = alloc_page(gfp | __GFP_ZERO);
160
161 bio_list_init(&io->bios);
162 INIT_LIST_HEAD(&io->log_sibling);
163 INIT_LIST_HEAD(&io->stripe_list);
164 io->state = IO_UNIT_RUNNING;
f6bed0ef
SL
165 return io;
166}
167
168static void r5l_free_io_unit(struct r5l_log *log, struct r5l_io_unit *io)
169{
170 __free_page(io->meta_page);
171 kmem_cache_free(log->io_kc, io);
172}
173
174static void r5l_move_io_unit_list(struct list_head *from, struct list_head *to,
175 enum r5l_io_unit_state state)
176{
177 struct r5l_io_unit *io;
178
179 while (!list_empty(from)) {
180 io = list_first_entry(from, struct r5l_io_unit, log_sibling);
181 /* don't change list order */
182 if (io->state >= state)
183 list_move_tail(&io->log_sibling, to);
184 else
185 break;
186 }
187}
188
0576b1c6
SL
189/*
190 * We don't want too many io_units reside in stripe_end_ios list, which will
191 * waste a lot of memory. So we try to remove some. But we must keep at least 2
192 * io_units. The superblock must point to a valid meta, if it's the last meta,
193 * recovery can scan less
194 */
195static void r5l_compress_stripe_end_list(struct r5l_log *log)
196{
197 struct r5l_io_unit *first, *last, *io;
198
199 first = list_first_entry(&log->stripe_end_ios,
200 struct r5l_io_unit, log_sibling);
201 last = list_last_entry(&log->stripe_end_ios,
202 struct r5l_io_unit, log_sibling);
203 if (first == last)
204 return;
205 list_del(&first->log_sibling);
206 list_del(&last->log_sibling);
207 while (!list_empty(&log->stripe_end_ios)) {
208 io = list_first_entry(&log->stripe_end_ios,
209 struct r5l_io_unit, log_sibling);
210 list_del(&io->log_sibling);
211 first->log_end = io->log_end;
212 r5l_free_io_unit(log, io);
213 }
214 list_add_tail(&first->log_sibling, &log->stripe_end_ios);
215 list_add_tail(&last->log_sibling, &log->stripe_end_ios);
216}
217
f6bed0ef
SL
218static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
219 enum r5l_io_unit_state state)
220{
f6bed0ef
SL
221 if (WARN_ON(io->state >= state))
222 return;
223 io->state = state;
f6bed0ef
SL
224}
225
226/* XXX: totally ignores I/O errors */
227static void r5l_log_endio(struct bio *bio)
228{
229 struct r5l_io_unit *io = bio->bi_private;
230 struct r5l_log *log = io->log;
509ffec7 231 unsigned long flags;
f6bed0ef
SL
232
233 bio_put(bio);
234
235 if (!atomic_dec_and_test(&io->pending_io))
236 return;
237
509ffec7
CH
238 spin_lock_irqsave(&log->io_list_lock, flags);
239 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
240 r5l_move_io_unit_list(&log->running_ios, &log->io_end_ios,
241 IO_UNIT_IO_END);
242 spin_unlock_irqrestore(&log->io_list_lock, flags);
243
f6bed0ef
SL
244 md_wakeup_thread(log->rdev->mddev->thread);
245}
246
247static void r5l_submit_current_io(struct r5l_log *log)
248{
249 struct r5l_io_unit *io = log->current_io;
250 struct r5l_meta_block *block;
251 struct bio *bio;
509ffec7 252 unsigned long flags;
f6bed0ef
SL
253 u32 crc;
254
255 if (!io)
256 return;
257
258 block = page_address(io->meta_page);
259 block->meta_size = cpu_to_le32(io->meta_offset);
5cb2fbd6 260 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
f6bed0ef
SL
261 block->checksum = cpu_to_le32(crc);
262
263 log->current_io = NULL;
509ffec7
CH
264 spin_lock_irqsave(&log->io_list_lock, flags);
265 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
266 spin_unlock_irqrestore(&log->io_list_lock, flags);
f6bed0ef
SL
267
268 while ((bio = bio_list_pop(&io->bios))) {
269 /* all IO must start from rdev->data_offset */
270 bio->bi_iter.bi_sector += log->rdev->data_offset;
271 submit_bio(WRITE, bio);
272 }
273}
274
275static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
276{
277 struct r5l_io_unit *io;
278 struct r5l_meta_block *block;
279 struct bio *bio;
280
281 io = r5l_alloc_io_unit(log);
282
283 block = page_address(io->meta_page);
284 block->magic = cpu_to_le32(R5LOG_MAGIC);
285 block->version = R5LOG_VERSION;
286 block->seq = cpu_to_le64(log->seq);
287 block->position = cpu_to_le64(log->log_start);
288
289 io->log_start = log->log_start;
290 io->meta_offset = sizeof(struct r5l_meta_block);
291 io->seq = log->seq;
292
293 bio = bio_kmalloc(GFP_NOIO | __GFP_NOFAIL, BIO_MAX_PAGES);
294 io->current_bio = bio;
295 bio->bi_rw = WRITE;
296 bio->bi_bdev = log->rdev->bdev;
297 bio->bi_iter.bi_sector = log->log_start;
298 bio_add_page(bio, io->meta_page, PAGE_SIZE, 0);
299 bio->bi_end_io = r5l_log_endio;
300 bio->bi_private = io;
301
302 bio_list_add(&io->bios, bio);
303 atomic_inc(&io->pending_io);
304
305 log->seq++;
306 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
307 io->log_end = log->log_start;
308 /* current bio hit disk end */
309 if (log->log_start == 0)
310 io->current_bio = NULL;
311
312 spin_lock_irq(&log->io_list_lock);
313 list_add_tail(&io->log_sibling, &log->running_ios);
314 spin_unlock_irq(&log->io_list_lock);
315
316 return io;
317}
318
319static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
320{
321 struct r5l_io_unit *io;
322
323 io = log->current_io;
324 if (io && io->meta_offset + payload_size > PAGE_SIZE)
325 r5l_submit_current_io(log);
326 io = log->current_io;
327 if (io)
328 return 0;
329
330 log->current_io = r5l_new_meta(log);
331 return 0;
332}
333
334static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
335 sector_t location,
336 u32 checksum1, u32 checksum2,
337 bool checksum2_valid)
338{
339 struct r5l_io_unit *io = log->current_io;
340 struct r5l_payload_data_parity *payload;
341
342 payload = page_address(io->meta_page) + io->meta_offset;
343 payload->header.type = cpu_to_le16(type);
344 payload->header.flags = cpu_to_le16(0);
345 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
346 (PAGE_SHIFT - 9));
347 payload->location = cpu_to_le64(location);
348 payload->checksum[0] = cpu_to_le32(checksum1);
349 if (checksum2_valid)
350 payload->checksum[1] = cpu_to_le32(checksum2);
351
352 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
353 sizeof(__le32) * (1 + !!checksum2_valid);
354}
355
356static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
357{
358 struct r5l_io_unit *io = log->current_io;
359
360alloc_bio:
361 if (!io->current_bio) {
362 struct bio *bio;
363
364 bio = bio_kmalloc(GFP_NOIO | __GFP_NOFAIL, BIO_MAX_PAGES);
365 bio->bi_rw = WRITE;
366 bio->bi_bdev = log->rdev->bdev;
367 bio->bi_iter.bi_sector = log->log_start;
368 bio->bi_end_io = r5l_log_endio;
369 bio->bi_private = io;
370 bio_list_add(&io->bios, bio);
371 atomic_inc(&io->pending_io);
372 io->current_bio = bio;
373 }
374 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) {
375 io->current_bio = NULL;
376 goto alloc_bio;
377 }
378 log->log_start = r5l_ring_add(log, log->log_start,
379 BLOCK_SECTORS);
380 /* current bio hit disk end */
381 if (log->log_start == 0)
382 io->current_bio = NULL;
383
384 io->log_end = log->log_start;
385}
386
387static void r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
388 int data_pages, int parity_pages)
389{
390 int i;
391 int meta_size;
392 struct r5l_io_unit *io;
393
394 meta_size =
395 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
396 * data_pages) +
397 sizeof(struct r5l_payload_data_parity) +
398 sizeof(__le32) * parity_pages;
399
400 r5l_get_meta(log, meta_size);
401 io = log->current_io;
402
403 for (i = 0; i < sh->disks; i++) {
404 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
405 continue;
406 if (i == sh->pd_idx || i == sh->qd_idx)
407 continue;
408 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
409 raid5_compute_blocknr(sh, i, 0),
410 sh->dev[i].log_checksum, 0, false);
411 r5l_append_payload_page(log, sh->dev[i].page);
412 }
413
414 if (sh->qd_idx >= 0) {
415 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
416 sh->sector, sh->dev[sh->pd_idx].log_checksum,
417 sh->dev[sh->qd_idx].log_checksum, true);
418 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
419 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
420 } else {
421 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
422 sh->sector, sh->dev[sh->pd_idx].log_checksum,
423 0, false);
424 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
425 }
426
427 list_add_tail(&sh->log_list, &io->stripe_list);
428 atomic_inc(&io->pending_stripe);
429 sh->log_io = io;
430}
431
509ffec7 432static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
f6bed0ef
SL
433/*
434 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
435 * data from log to raid disks), so we shouldn't wait for reclaim here
436 */
437int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
438{
439 int write_disks = 0;
440 int data_pages, parity_pages;
441 int meta_size;
442 int reserve;
443 int i;
444
445 if (!log)
446 return -EAGAIN;
447 /* Don't support stripe batch */
448 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
449 test_bit(STRIPE_SYNCING, &sh->state)) {
450 /* the stripe is written to log, we start writing it to raid */
451 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
452 return -EAGAIN;
453 }
454
455 for (i = 0; i < sh->disks; i++) {
456 void *addr;
457
458 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
459 continue;
460 write_disks++;
461 /* checksum is already calculated in last run */
462 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
463 continue;
464 addr = kmap_atomic(sh->dev[i].page);
5cb2fbd6
SL
465 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
466 addr, PAGE_SIZE);
f6bed0ef
SL
467 kunmap_atomic(addr);
468 }
469 parity_pages = 1 + !!(sh->qd_idx >= 0);
470 data_pages = write_disks - parity_pages;
471
472 meta_size =
473 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
474 * data_pages) +
475 sizeof(struct r5l_payload_data_parity) +
476 sizeof(__le32) * parity_pages;
477 /* Doesn't work with very big raid array */
478 if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
479 return -EINVAL;
480
481 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
482 atomic_inc(&sh->count);
483
484 mutex_lock(&log->io_mutex);
485 /* meta + data */
486 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
487 if (r5l_has_free_space(log, reserve))
488 r5l_log_stripe(log, sh, data_pages, parity_pages);
489 else {
490 spin_lock(&log->no_space_stripes_lock);
491 list_add_tail(&sh->log_list, &log->no_space_stripes);
492 spin_unlock(&log->no_space_stripes_lock);
493
494 r5l_wake_reclaim(log, reserve);
495 }
496 mutex_unlock(&log->io_mutex);
497
498 return 0;
499}
500
501void r5l_write_stripe_run(struct r5l_log *log)
502{
503 if (!log)
504 return;
505 mutex_lock(&log->io_mutex);
506 r5l_submit_current_io(log);
507 mutex_unlock(&log->io_mutex);
508}
509
828cbe98
SL
510int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
511{
512 if (!log)
513 return -ENODEV;
514 /*
515 * we flush log disk cache first, then write stripe data to raid disks.
516 * So if bio is finished, the log disk cache is flushed already. The
517 * recovery guarantees we can recovery the bio from log disk, so we
518 * don't need to flush again
519 */
520 if (bio->bi_iter.bi_size == 0) {
521 bio_endio(bio);
522 return 0;
523 }
524 bio->bi_rw &= ~REQ_FLUSH;
525 return -EAGAIN;
526}
527
f6bed0ef
SL
528/* This will run after log space is reclaimed */
529static void r5l_run_no_space_stripes(struct r5l_log *log)
530{
531 struct stripe_head *sh;
532
533 spin_lock(&log->no_space_stripes_lock);
534 while (!list_empty(&log->no_space_stripes)) {
535 sh = list_first_entry(&log->no_space_stripes,
536 struct stripe_head, log_list);
537 list_del_init(&sh->log_list);
538 set_bit(STRIPE_HANDLE, &sh->state);
539 raid5_release_stripe(sh);
540 }
541 spin_unlock(&log->no_space_stripes_lock);
542}
543
509ffec7
CH
544static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
545{
546 struct r5l_log *log = io->log;
547 struct r5l_io_unit *last;
548 sector_t reclaimable_space;
549 unsigned long flags;
550
551 spin_lock_irqsave(&log->io_list_lock, flags);
552 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
85f2f9a4 553 /* might move 0 entry */
509ffec7
CH
554 r5l_move_io_unit_list(&log->flushed_ios, &log->stripe_end_ios,
555 IO_UNIT_STRIPE_END);
85f2f9a4
SL
556 if (list_empty(&log->stripe_end_ios)) {
557 spin_unlock_irqrestore(&log->io_list_lock, flags);
558 return;
559 }
509ffec7
CH
560
561 last = list_last_entry(&log->stripe_end_ios,
562 struct r5l_io_unit, log_sibling);
563 reclaimable_space = r5l_ring_distance(log, log->last_checkpoint,
564 last->log_end);
565 if (reclaimable_space >= log->max_free_space)
566 r5l_wake_reclaim(log, 0);
567
568 r5l_compress_stripe_end_list(log);
569 spin_unlock_irqrestore(&log->io_list_lock, flags);
570 wake_up(&log->iounit_wait);
571}
572
0576b1c6
SL
573void r5l_stripe_write_finished(struct stripe_head *sh)
574{
575 struct r5l_io_unit *io;
576
0576b1c6 577 io = sh->log_io;
0576b1c6
SL
578 sh->log_io = NULL;
579
509ffec7
CH
580 if (io && atomic_dec_and_test(&io->pending_stripe))
581 __r5l_stripe_write_finished(io);
0576b1c6
SL
582}
583
a8c34f91
SL
584static void r5l_log_flush_endio(struct bio *bio)
585{
586 struct r5l_log *log = container_of(bio, struct r5l_log,
587 flush_bio);
588 unsigned long flags;
589 struct r5l_io_unit *io;
590 struct stripe_head *sh;
591
592 spin_lock_irqsave(&log->io_list_lock, flags);
593 list_for_each_entry(io, &log->flushing_ios, log_sibling) {
594 while (!list_empty(&io->stripe_list)) {
595 sh = list_first_entry(&io->stripe_list,
596 struct stripe_head, log_list);
597 list_del_init(&sh->log_list);
598 set_bit(STRIPE_HANDLE, &sh->state);
599 raid5_release_stripe(sh);
600 }
601 }
602 list_splice_tail_init(&log->flushing_ios, &log->flushed_ios);
603 spin_unlock_irqrestore(&log->io_list_lock, flags);
604}
605
0576b1c6
SL
606/*
607 * Starting dispatch IO to raid.
608 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
609 * broken meta in the middle of a log causes recovery can't find meta at the
610 * head of log. If operations require meta at the head persistent in log, we
611 * must make sure meta before it persistent in log too. A case is:
612 *
613 * stripe data/parity is in log, we start write stripe to raid disks. stripe
614 * data/parity must be persistent in log before we do the write to raid disks.
615 *
616 * The solution is we restrictly maintain io_unit list order. In this case, we
617 * only write stripes of an io_unit to raid disks till the io_unit is the first
618 * one whose data/parity is in log.
619 */
620void r5l_flush_stripe_to_raid(struct r5l_log *log)
621{
a8c34f91 622 bool do_flush;
0576b1c6
SL
623 if (!log)
624 return;
0576b1c6
SL
625
626 spin_lock_irq(&log->io_list_lock);
a8c34f91
SL
627 /* flush bio is running */
628 if (!list_empty(&log->flushing_ios)) {
629 spin_unlock_irq(&log->io_list_lock);
630 return;
0576b1c6 631 }
a8c34f91
SL
632 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
633 do_flush = !list_empty(&log->flushing_ios);
0576b1c6 634 spin_unlock_irq(&log->io_list_lock);
a8c34f91
SL
635
636 if (!do_flush)
637 return;
638 bio_reset(&log->flush_bio);
639 log->flush_bio.bi_bdev = log->rdev->bdev;
640 log->flush_bio.bi_end_io = r5l_log_flush_endio;
641 submit_bio(WRITE_FLUSH, &log->flush_bio);
0576b1c6
SL
642}
643
0fd22b45 644static void r5l_kick_io_unit(struct r5l_log *log)
0576b1c6 645{
a8c34f91 646 md_wakeup_thread(log->rdev->mddev->thread);
0fd22b45
SL
647 wait_event_lock_irq(log->iounit_wait, !list_empty(&log->stripe_end_ios),
648 log->io_list_lock);
0576b1c6
SL
649}
650
651static void r5l_write_super(struct r5l_log *log, sector_t cp);
652static void r5l_do_reclaim(struct r5l_log *log)
653{
654 struct r5l_io_unit *io, *last;
655 LIST_HEAD(list);
656 sector_t free = 0;
657 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
658
659 spin_lock_irq(&log->io_list_lock);
660 /*
661 * move proper io_unit to reclaim list. We should not change the order.
662 * reclaimable/unreclaimable io_unit can be mixed in the list, we
663 * shouldn't reuse space of an unreclaimable io_unit
664 */
665 while (1) {
a8c34f91
SL
666 struct list_head *target_list = NULL;
667
0576b1c6
SL
668 while (!list_empty(&log->stripe_end_ios)) {
669 io = list_first_entry(&log->stripe_end_ios,
670 struct r5l_io_unit, log_sibling);
671 list_move_tail(&io->log_sibling, &list);
672 free += r5l_ring_distance(log, io->log_start,
673 io->log_end);
674 }
675
676 if (free >= reclaim_target ||
677 (list_empty(&log->running_ios) &&
678 list_empty(&log->io_end_ios) &&
a8c34f91
SL
679 list_empty(&log->flushing_ios) &&
680 list_empty(&log->flushed_ios)))
0576b1c6
SL
681 break;
682
683 /* Below waiting mostly happens when we shutdown the raid */
a8c34f91
SL
684 if (!list_empty(&log->flushed_ios))
685 target_list = &log->flushed_ios;
686 else if (!list_empty(&log->flushing_ios))
687 target_list = &log->flushing_ios;
688 else if (!list_empty(&log->io_end_ios))
689 target_list = &log->io_end_ios;
690 else if (!list_empty(&log->running_ios))
691 target_list = &log->running_ios;
692
0fd22b45 693 r5l_kick_io_unit(log);
0576b1c6
SL
694 }
695 spin_unlock_irq(&log->io_list_lock);
696
697 if (list_empty(&list))
698 return;
699
700 /* super always point to last valid meta */
701 last = list_last_entry(&list, struct r5l_io_unit, log_sibling);
702 /*
703 * write_super will flush cache of each raid disk. We must write super
704 * here, because the log area might be reused soon and we don't want to
705 * confuse recovery
706 */
707 r5l_write_super(log, last->log_start);
708
709 mutex_lock(&log->io_mutex);
710 log->last_checkpoint = last->log_start;
711 log->last_cp_seq = last->seq;
712 mutex_unlock(&log->io_mutex);
713 r5l_run_no_space_stripes(log);
714
715 while (!list_empty(&list)) {
716 io = list_first_entry(&list, struct r5l_io_unit, log_sibling);
717 list_del(&io->log_sibling);
718 r5l_free_io_unit(log, io);
719 }
720}
721
722static void r5l_reclaim_thread(struct md_thread *thread)
723{
724 struct mddev *mddev = thread->mddev;
725 struct r5conf *conf = mddev->private;
726 struct r5l_log *log = conf->log;
727
728 if (!log)
729 return;
730 r5l_do_reclaim(log);
731}
732
f6bed0ef
SL
733static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
734{
0576b1c6
SL
735 unsigned long target;
736 unsigned long new = (unsigned long)space; /* overflow in theory */
737
738 do {
739 target = log->reclaim_target;
740 if (new < target)
741 return;
742 } while (cmpxchg(&log->reclaim_target, target, new) != target);
743 md_wakeup_thread(log->reclaim_thread);
f6bed0ef
SL
744}
745
355810d1
SL
746struct r5l_recovery_ctx {
747 struct page *meta_page; /* current meta */
748 sector_t meta_total_blocks; /* total size of current meta and data */
749 sector_t pos; /* recovery position */
750 u64 seq; /* recovery position seq */
751};
752
753static int r5l_read_meta_block(struct r5l_log *log,
754 struct r5l_recovery_ctx *ctx)
755{
756 struct page *page = ctx->meta_page;
757 struct r5l_meta_block *mb;
758 u32 crc, stored_crc;
759
760 if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, READ, false))
761 return -EIO;
762
763 mb = page_address(page);
764 stored_crc = le32_to_cpu(mb->checksum);
765 mb->checksum = 0;
766
767 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
768 le64_to_cpu(mb->seq) != ctx->seq ||
769 mb->version != R5LOG_VERSION ||
770 le64_to_cpu(mb->position) != ctx->pos)
771 return -EINVAL;
772
5cb2fbd6 773 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
355810d1
SL
774 if (stored_crc != crc)
775 return -EINVAL;
776
777 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
778 return -EINVAL;
779
780 ctx->meta_total_blocks = BLOCK_SECTORS;
781
782 return 0;
783}
784
785static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
786 struct r5l_recovery_ctx *ctx,
787 sector_t stripe_sect,
788 int *offset, sector_t *log_offset)
789{
790 struct r5conf *conf = log->rdev->mddev->private;
791 struct stripe_head *sh;
792 struct r5l_payload_data_parity *payload;
793 int disk_index;
794
795 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
796 while (1) {
797 payload = page_address(ctx->meta_page) + *offset;
798
799 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
800 raid5_compute_sector(conf,
801 le64_to_cpu(payload->location), 0,
802 &disk_index, sh);
803
804 sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
805 sh->dev[disk_index].page, READ, false);
806 sh->dev[disk_index].log_checksum =
807 le32_to_cpu(payload->checksum[0]);
808 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
809 ctx->meta_total_blocks += BLOCK_SECTORS;
810 } else {
811 disk_index = sh->pd_idx;
812 sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
813 sh->dev[disk_index].page, READ, false);
814 sh->dev[disk_index].log_checksum =
815 le32_to_cpu(payload->checksum[0]);
816 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
817
818 if (sh->qd_idx >= 0) {
819 disk_index = sh->qd_idx;
820 sync_page_io(log->rdev,
821 r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
822 PAGE_SIZE, sh->dev[disk_index].page,
823 READ, false);
824 sh->dev[disk_index].log_checksum =
825 le32_to_cpu(payload->checksum[1]);
826 set_bit(R5_Wantwrite,
827 &sh->dev[disk_index].flags);
828 }
829 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
830 }
831
832 *log_offset = r5l_ring_add(log, *log_offset,
833 le32_to_cpu(payload->size));
834 *offset += sizeof(struct r5l_payload_data_parity) +
835 sizeof(__le32) *
836 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
837 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
838 break;
839 }
840
841 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
842 void *addr;
843 u32 checksum;
844
845 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
846 continue;
847 addr = kmap_atomic(sh->dev[disk_index].page);
5cb2fbd6 848 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
355810d1
SL
849 kunmap_atomic(addr);
850 if (checksum != sh->dev[disk_index].log_checksum)
851 goto error;
852 }
853
854 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
855 struct md_rdev *rdev, *rrdev;
856
857 if (!test_and_clear_bit(R5_Wantwrite,
858 &sh->dev[disk_index].flags))
859 continue;
860
861 /* in case device is broken */
862 rdev = rcu_dereference(conf->disks[disk_index].rdev);
863 if (rdev)
864 sync_page_io(rdev, stripe_sect, PAGE_SIZE,
865 sh->dev[disk_index].page, WRITE, false);
866 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
867 if (rrdev)
868 sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
869 sh->dev[disk_index].page, WRITE, false);
870 }
871 raid5_release_stripe(sh);
872 return 0;
873
874error:
875 for (disk_index = 0; disk_index < sh->disks; disk_index++)
876 sh->dev[disk_index].flags = 0;
877 raid5_release_stripe(sh);
878 return -EINVAL;
879}
880
881static int r5l_recovery_flush_one_meta(struct r5l_log *log,
882 struct r5l_recovery_ctx *ctx)
883{
884 struct r5conf *conf = log->rdev->mddev->private;
885 struct r5l_payload_data_parity *payload;
886 struct r5l_meta_block *mb;
887 int offset;
888 sector_t log_offset;
889 sector_t stripe_sector;
890
891 mb = page_address(ctx->meta_page);
892 offset = sizeof(struct r5l_meta_block);
893 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
894
895 while (offset < le32_to_cpu(mb->meta_size)) {
896 int dd;
897
898 payload = (void *)mb + offset;
899 stripe_sector = raid5_compute_sector(conf,
900 le64_to_cpu(payload->location), 0, &dd, NULL);
901 if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
902 &offset, &log_offset))
903 return -EINVAL;
904 }
905 return 0;
906}
907
908/* copy data/parity from log to raid disks */
909static void r5l_recovery_flush_log(struct r5l_log *log,
910 struct r5l_recovery_ctx *ctx)
911{
912 while (1) {
913 if (r5l_read_meta_block(log, ctx))
914 return;
915 if (r5l_recovery_flush_one_meta(log, ctx))
916 return;
917 ctx->seq++;
918 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
919 }
920}
921
922static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
923 u64 seq)
924{
925 struct page *page;
926 struct r5l_meta_block *mb;
927 u32 crc;
928
929 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
930 if (!page)
931 return -ENOMEM;
932 mb = page_address(page);
933 mb->magic = cpu_to_le32(R5LOG_MAGIC);
934 mb->version = R5LOG_VERSION;
935 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
936 mb->seq = cpu_to_le64(seq);
937 mb->position = cpu_to_le64(pos);
5cb2fbd6 938 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
355810d1
SL
939 mb->checksum = cpu_to_le32(crc);
940
941 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, WRITE_FUA, false)) {
942 __free_page(page);
943 return -EIO;
944 }
945 __free_page(page);
946 return 0;
947}
948
f6bed0ef
SL
949static int r5l_recovery_log(struct r5l_log *log)
950{
355810d1
SL
951 struct r5l_recovery_ctx ctx;
952
953 ctx.pos = log->last_checkpoint;
954 ctx.seq = log->last_cp_seq;
955 ctx.meta_page = alloc_page(GFP_KERNEL);
956 if (!ctx.meta_page)
957 return -ENOMEM;
958
959 r5l_recovery_flush_log(log, &ctx);
960 __free_page(ctx.meta_page);
961
962 /*
963 * we did a recovery. Now ctx.pos points to an invalid meta block. New
964 * log will start here. but we can't let superblock point to last valid
965 * meta block. The log might looks like:
966 * | meta 1| meta 2| meta 3|
967 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
968 * superblock points to meta 1, we write a new valid meta 2n. if crash
969 * happens again, new recovery will start from meta 1. Since meta 2n is
970 * valid now, recovery will think meta 3 is valid, which is wrong.
971 * The solution is we create a new meta in meta2 with its seq == meta
972 * 1's seq + 10 and let superblock points to meta2. The same recovery will
973 * not think meta 3 is a valid meta, because its seq doesn't match
974 */
975 if (ctx.seq > log->last_cp_seq + 1) {
976 int ret;
977
978 ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
979 if (ret)
980 return ret;
981 log->seq = ctx.seq + 11;
982 log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
983 r5l_write_super(log, ctx.pos);
984 } else {
985 log->log_start = ctx.pos;
986 log->seq = ctx.seq;
987 }
f6bed0ef
SL
988 return 0;
989}
990
991static void r5l_write_super(struct r5l_log *log, sector_t cp)
992{
993 struct mddev *mddev = log->rdev->mddev;
994
995 log->rdev->journal_tail = cp;
996 set_bit(MD_CHANGE_DEVS, &mddev->flags);
997}
998
999static int r5l_load_log(struct r5l_log *log)
1000{
1001 struct md_rdev *rdev = log->rdev;
1002 struct page *page;
1003 struct r5l_meta_block *mb;
1004 sector_t cp = log->rdev->journal_tail;
1005 u32 stored_crc, expected_crc;
1006 bool create_super = false;
1007 int ret;
1008
1009 /* Make sure it's valid */
1010 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
1011 cp = 0;
1012 page = alloc_page(GFP_KERNEL);
1013 if (!page)
1014 return -ENOMEM;
1015
1016 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, READ, false)) {
1017 ret = -EIO;
1018 goto ioerr;
1019 }
1020 mb = page_address(page);
1021
1022 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1023 mb->version != R5LOG_VERSION) {
1024 create_super = true;
1025 goto create;
1026 }
1027 stored_crc = le32_to_cpu(mb->checksum);
1028 mb->checksum = 0;
5cb2fbd6 1029 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
f6bed0ef
SL
1030 if (stored_crc != expected_crc) {
1031 create_super = true;
1032 goto create;
1033 }
1034 if (le64_to_cpu(mb->position) != cp) {
1035 create_super = true;
1036 goto create;
1037 }
1038create:
1039 if (create_super) {
1040 log->last_cp_seq = prandom_u32();
1041 cp = 0;
1042 /*
1043 * Make sure super points to correct address. Log might have
1044 * data very soon. If super hasn't correct log tail address,
1045 * recovery can't find the log
1046 */
1047 r5l_write_super(log, cp);
1048 } else
1049 log->last_cp_seq = le64_to_cpu(mb->seq);
1050
1051 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
0576b1c6
SL
1052 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
1053 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
1054 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
f6bed0ef
SL
1055 log->last_checkpoint = cp;
1056
1057 __free_page(page);
1058
1059 return r5l_recovery_log(log);
1060ioerr:
1061 __free_page(page);
1062 return ret;
1063}
1064
1065int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
1066{
1067 struct r5l_log *log;
1068
1069 if (PAGE_SIZE != 4096)
1070 return -EINVAL;
1071 log = kzalloc(sizeof(*log), GFP_KERNEL);
1072 if (!log)
1073 return -ENOMEM;
1074 log->rdev = rdev;
1075
5cb2fbd6
SL
1076 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
1077 sizeof(rdev->mddev->uuid));
f6bed0ef
SL
1078
1079 mutex_init(&log->io_mutex);
1080
1081 spin_lock_init(&log->io_list_lock);
1082 INIT_LIST_HEAD(&log->running_ios);
0576b1c6
SL
1083 INIT_LIST_HEAD(&log->io_end_ios);
1084 INIT_LIST_HEAD(&log->stripe_end_ios);
a8c34f91
SL
1085 INIT_LIST_HEAD(&log->flushing_ios);
1086 INIT_LIST_HEAD(&log->flushed_ios);
1087 bio_init(&log->flush_bio);
f6bed0ef
SL
1088
1089 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
1090 if (!log->io_kc)
1091 goto io_kc;
1092
0576b1c6
SL
1093 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1094 log->rdev->mddev, "reclaim");
1095 if (!log->reclaim_thread)
1096 goto reclaim_thread;
0fd22b45 1097 init_waitqueue_head(&log->iounit_wait);
0576b1c6 1098
f6bed0ef
SL
1099 INIT_LIST_HEAD(&log->no_space_stripes);
1100 spin_lock_init(&log->no_space_stripes_lock);
1101
1102 if (r5l_load_log(log))
1103 goto error;
1104
1105 conf->log = log;
1106 return 0;
1107error:
0576b1c6
SL
1108 md_unregister_thread(&log->reclaim_thread);
1109reclaim_thread:
f6bed0ef
SL
1110 kmem_cache_destroy(log->io_kc);
1111io_kc:
1112 kfree(log);
1113 return -EINVAL;
1114}
1115
1116void r5l_exit_log(struct r5l_log *log)
1117{
0576b1c6
SL
1118 /*
1119 * at this point all stripes are finished, so io_unit is at least in
1120 * STRIPE_END state
1121 */
1122 r5l_wake_reclaim(log, -1L);
1123 md_unregister_thread(&log->reclaim_thread);
1124 r5l_do_reclaim(log);
1125 /*
1126 * force a super update, r5l_do_reclaim might updated the super.
1127 * mddev->thread is already stopped
1128 */
1129 md_update_sb(log->rdev->mddev, 1);
1130
f6bed0ef
SL
1131 kmem_cache_destroy(log->io_kc);
1132 kfree(log);
1133}