]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid5-cache.c
md/raid5: call bio_endio() directly rather than queueing for later.
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5-cache.c
CommitLineData
f6bed0ef
SL
1/*
2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
b4c625c6 3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
f6bed0ef
SL
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 */
15#include <linux/kernel.h>
16#include <linux/wait.h>
17#include <linux/blkdev.h>
18#include <linux/slab.h>
19#include <linux/raid/md_p.h>
5cb2fbd6 20#include <linux/crc32c.h>
f6bed0ef 21#include <linux/random.h>
ce1ccd07 22#include <linux/kthread.h>
03b047f4 23#include <linux/types.h>
f6bed0ef
SL
24#include "md.h"
25#include "raid5.h"
1e6d690b 26#include "bitmap.h"
f6bed0ef
SL
27
28/*
29 * metadata/data stored in disk with 4k size unit (a block) regardless
30 * underneath hardware sector size. only works with PAGE_SIZE == 4096
31 */
32#define BLOCK_SECTORS (8)
effe6ee7 33#define BLOCK_SECTOR_SHIFT (3)
f6bed0ef 34
0576b1c6 35/*
a39f7afd
SL
36 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
37 *
38 * In write through mode, the reclaim runs every log->max_free_space.
39 * This can prevent the recovery scans for too long
0576b1c6
SL
40 */
41#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
42#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
43
a39f7afd
SL
44/* wake up reclaim thread periodically */
45#define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
46/* start flush with these full stripes */
84890c03 47#define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
a39f7afd
SL
48/* reclaim stripes in groups */
49#define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
50
c38d29b3
CH
51/*
52 * We only need 2 bios per I/O unit to make progress, but ensure we
53 * have a few more available to not get too tight.
54 */
55#define R5L_POOL_SIZE 4
56
2ded3703
SL
57/*
58 * r5c journal modes of the array: write-back or write-through.
59 * write-through mode has identical behavior as existing log only
60 * implementation.
61 */
62enum r5c_journal_mode {
63 R5C_JOURNAL_MODE_WRITE_THROUGH = 0,
64 R5C_JOURNAL_MODE_WRITE_BACK = 1,
65};
66
2c7da14b
SL
67static char *r5c_journal_mode_str[] = {"write-through",
68 "write-back"};
2ded3703
SL
69/*
70 * raid5 cache state machine
71 *
9b69173e 72 * With the RAID cache, each stripe works in two phases:
2ded3703
SL
73 * - caching phase
74 * - writing-out phase
75 *
76 * These two phases are controlled by bit STRIPE_R5C_CACHING:
77 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
78 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
79 *
80 * When there is no journal, or the journal is in write-through mode,
81 * the stripe is always in writing-out phase.
82 *
83 * For write-back journal, the stripe is sent to caching phase on write
84 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
85 * the write-out phase by clearing STRIPE_R5C_CACHING.
86 *
87 * Stripes in caching phase do not write the raid disks. Instead, all
88 * writes are committed from the log device. Therefore, a stripe in
89 * caching phase handles writes as:
90 * - write to log device
91 * - return IO
92 *
93 * Stripes in writing-out phase handle writes as:
94 * - calculate parity
95 * - write pending data and parity to journal
96 * - write data and parity to raid disks
97 * - return IO for pending writes
98 */
99
f6bed0ef
SL
100struct r5l_log {
101 struct md_rdev *rdev;
102
103 u32 uuid_checksum;
104
105 sector_t device_size; /* log device size, round to
106 * BLOCK_SECTORS */
0576b1c6
SL
107 sector_t max_free_space; /* reclaim run if free space is at
108 * this size */
f6bed0ef
SL
109
110 sector_t last_checkpoint; /* log tail. where recovery scan
111 * starts from */
112 u64 last_cp_seq; /* log tail sequence */
113
114 sector_t log_start; /* log head. where new data appends */
115 u64 seq; /* log head sequence */
116
17036461 117 sector_t next_checkpoint;
17036461 118
f6bed0ef
SL
119 struct mutex io_mutex;
120 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
121
122 spinlock_t io_list_lock;
123 struct list_head running_ios; /* io_units which are still running,
124 * and have not yet been completely
125 * written to the log */
126 struct list_head io_end_ios; /* io_units which have been completely
127 * written to the log but not yet written
128 * to the RAID */
a8c34f91
SL
129 struct list_head flushing_ios; /* io_units which are waiting for log
130 * cache flush */
04732f74 131 struct list_head finished_ios; /* io_units which settle down in log disk */
a8c34f91 132 struct bio flush_bio;
f6bed0ef 133
5036c390
CH
134 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
135
f6bed0ef 136 struct kmem_cache *io_kc;
5036c390 137 mempool_t *io_pool;
c38d29b3 138 struct bio_set *bs;
e8deb638 139 mempool_t *meta_pool;
f6bed0ef 140
0576b1c6
SL
141 struct md_thread *reclaim_thread;
142 unsigned long reclaim_target; /* number of space that need to be
143 * reclaimed. if it's 0, reclaim spaces
144 * used by io_units which are in
145 * IO_UNIT_STRIPE_END state (eg, reclaim
146 * dones't wait for specific io_unit
147 * switching to IO_UNIT_STRIPE_END
148 * state) */
0fd22b45 149 wait_queue_head_t iounit_wait;
0576b1c6 150
f6bed0ef
SL
151 struct list_head no_space_stripes; /* pending stripes, log has no space */
152 spinlock_t no_space_stripes_lock;
56fef7c6
CH
153
154 bool need_cache_flush;
2ded3703
SL
155
156 /* for r5c_cache */
157 enum r5c_journal_mode r5c_journal_mode;
a39f7afd
SL
158
159 /* all stripes in r5cache, in the order of seq at sh->log_start */
160 struct list_head stripe_in_journal_list;
161
162 spinlock_t stripe_in_journal_lock;
163 atomic_t stripe_in_journal_count;
3bddb7f8
SL
164
165 /* to submit async io_units, to fulfill ordering of flush */
166 struct work_struct deferred_io_work;
2e38a37f
SL
167 /* to disable write back during in degraded mode */
168 struct work_struct disable_writeback_work;
03b047f4
SL
169
170 /* to for chunk_aligned_read in writeback mode, details below */
171 spinlock_t tree_lock;
172 struct radix_tree_root big_stripe_tree;
f6bed0ef
SL
173};
174
03b047f4
SL
175/*
176 * Enable chunk_aligned_read() with write back cache.
177 *
178 * Each chunk may contain more than one stripe (for example, a 256kB
179 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
180 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
181 * For each big_stripe, we count how many stripes of this big_stripe
182 * are in the write back cache. These data are tracked in a radix tree
183 * (big_stripe_tree). We use radix_tree item pointer as the counter.
184 * r5c_tree_index() is used to calculate keys for the radix tree.
185 *
186 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
187 * big_stripe of each chunk in the tree. If this big_stripe is in the
188 * tree, chunk_aligned_read() aborts. This look up is protected by
189 * rcu_read_lock().
190 *
191 * It is necessary to remember whether a stripe is counted in
192 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
193 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
194 * two flags are set, the stripe is counted in big_stripe_tree. This
195 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
196 * r5c_try_caching_write(); and moving clear_bit of
197 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
198 * r5c_finish_stripe_write_out().
199 */
200
201/*
202 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
203 * So it is necessary to left shift the counter by 2 bits before using it
204 * as data pointer of the tree.
205 */
206#define R5C_RADIX_COUNT_SHIFT 2
207
208/*
209 * calculate key for big_stripe_tree
210 *
211 * sect: align_bi->bi_iter.bi_sector or sh->sector
212 */
213static inline sector_t r5c_tree_index(struct r5conf *conf,
214 sector_t sect)
215{
216 sector_t offset;
217
218 offset = sector_div(sect, conf->chunk_sectors);
219 return sect;
220}
221
f6bed0ef
SL
222/*
223 * an IO range starts from a meta data block and end at the next meta data
224 * block. The io unit's the meta data block tracks data/parity followed it. io
225 * unit is written to log disk with normal write, as we always flush log disk
226 * first and then start move data to raid disks, there is no requirement to
227 * write io unit with FLUSH/FUA
228 */
229struct r5l_io_unit {
230 struct r5l_log *log;
231
232 struct page *meta_page; /* store meta block */
233 int meta_offset; /* current offset in meta_page */
234
f6bed0ef
SL
235 struct bio *current_bio;/* current_bio accepting new data */
236
237 atomic_t pending_stripe;/* how many stripes not flushed to raid */
238 u64 seq; /* seq number of the metablock */
239 sector_t log_start; /* where the io_unit starts */
240 sector_t log_end; /* where the io_unit ends */
241 struct list_head log_sibling; /* log->running_ios */
242 struct list_head stripe_list; /* stripes added to the io_unit */
243
244 int state;
6143e2ce 245 bool need_split_bio;
3bddb7f8
SL
246 struct bio *split_bio;
247
248 unsigned int has_flush:1; /* include flush request */
249 unsigned int has_fua:1; /* include fua request */
250 unsigned int has_null_flush:1; /* include empty flush request */
251 /*
252 * io isn't sent yet, flush/fua request can only be submitted till it's
253 * the first IO in running_ios list
254 */
255 unsigned int io_deferred:1;
256
257 struct bio_list flush_barriers; /* size == 0 flush bios */
f6bed0ef
SL
258};
259
260/* r5l_io_unit state */
261enum r5l_io_unit_state {
262 IO_UNIT_RUNNING = 0, /* accepting new IO */
263 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
264 * don't accepting new bio */
265 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
a8c34f91 266 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
f6bed0ef
SL
267};
268
2ded3703
SL
269bool r5c_is_writeback(struct r5l_log *log)
270{
271 return (log != NULL &&
272 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
273}
274
f6bed0ef
SL
275static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
276{
277 start += inc;
278 if (start >= log->device_size)
279 start = start - log->device_size;
280 return start;
281}
282
283static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
284 sector_t end)
285{
286 if (end >= start)
287 return end - start;
288 else
289 return end + log->device_size - start;
290}
291
292static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
293{
294 sector_t used_size;
295
296 used_size = r5l_ring_distance(log, log->last_checkpoint,
297 log->log_start);
298
299 return log->device_size > used_size + size;
300}
301
f6bed0ef
SL
302static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
303 enum r5l_io_unit_state state)
304{
f6bed0ef
SL
305 if (WARN_ON(io->state >= state))
306 return;
307 io->state = state;
f6bed0ef
SL
308}
309
1e6d690b 310static void
bd83d0a2 311r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
1e6d690b
SL
312{
313 struct bio *wbi, *wbi2;
314
315 wbi = dev->written;
316 dev->written = NULL;
317 while (wbi && wbi->bi_iter.bi_sector <
318 dev->sector + STRIPE_SECTORS) {
319 wbi2 = r5_next_bio(wbi, dev->sector);
49728050 320 md_write_end(conf->mddev);
bd83d0a2
N
321 if (!raid5_dec_bi_active_stripes(wbi))
322 bio_endio(wbi);
1e6d690b
SL
323 wbi = wbi2;
324 }
325}
326
327void r5c_handle_cached_data_endio(struct r5conf *conf,
bd83d0a2 328 struct stripe_head *sh, int disks)
1e6d690b
SL
329{
330 int i;
331
332 for (i = sh->disks; i--; ) {
333 if (sh->dev[i].written) {
334 set_bit(R5_UPTODATE, &sh->dev[i].flags);
bd83d0a2 335 r5c_return_dev_pending_writes(conf, &sh->dev[i]);
1e6d690b
SL
336 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
337 STRIPE_SECTORS,
338 !test_bit(STRIPE_DEGRADED, &sh->state),
339 0);
340 }
341 }
342}
343
ff875738
AP
344void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
345
a39f7afd
SL
346/* Check whether we should flush some stripes to free up stripe cache */
347void r5c_check_stripe_cache_usage(struct r5conf *conf)
348{
349 int total_cached;
350
351 if (!r5c_is_writeback(conf->log))
352 return;
353
354 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
355 atomic_read(&conf->r5c_cached_full_stripes);
356
357 /*
358 * The following condition is true for either of the following:
359 * - stripe cache pressure high:
360 * total_cached > 3/4 min_nr_stripes ||
361 * empty_inactive_list_nr > 0
362 * - stripe cache pressure moderate:
363 * total_cached > 1/2 min_nr_stripes
364 */
365 if (total_cached > conf->min_nr_stripes * 1 / 2 ||
366 atomic_read(&conf->empty_inactive_list_nr) > 0)
367 r5l_wake_reclaim(conf->log, 0);
368}
369
370/*
371 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
372 * stripes in the cache
373 */
374void r5c_check_cached_full_stripe(struct r5conf *conf)
375{
376 if (!r5c_is_writeback(conf->log))
377 return;
378
379 /*
380 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
381 * or a full stripe (chunk size / 4k stripes).
382 */
383 if (atomic_read(&conf->r5c_cached_full_stripes) >=
84890c03 384 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
a39f7afd
SL
385 conf->chunk_sectors >> STRIPE_SHIFT))
386 r5l_wake_reclaim(conf->log, 0);
387}
388
389/*
390 * Total log space (in sectors) needed to flush all data in cache
391 *
39b99586
SL
392 * To avoid deadlock due to log space, it is necessary to reserve log
393 * space to flush critical stripes (stripes that occupying log space near
394 * last_checkpoint). This function helps check how much log space is
395 * required to flush all cached stripes.
a39f7afd 396 *
39b99586
SL
397 * To reduce log space requirements, two mechanisms are used to give cache
398 * flush higher priorities:
399 * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
400 * stripes ALREADY in journal can be flushed w/o pending writes;
401 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
402 * can be delayed (r5l_add_no_space_stripe).
a39f7afd 403 *
39b99586
SL
404 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
405 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
406 * pages of journal space. For stripes that has not passed 1, flushing it
407 * requires (conf->raid_disks + 1) pages of journal space. There are at
408 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
409 * required to flush all cached stripes (in pages) is:
410 *
411 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
412 * (group_cnt + 1) * (raid_disks + 1)
413 * or
414 * (stripe_in_journal_count) * (max_degraded + 1) +
415 * (group_cnt + 1) * (raid_disks - max_degraded)
a39f7afd
SL
416 */
417static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
418{
419 struct r5l_log *log = conf->log;
420
421 if (!r5c_is_writeback(log))
422 return 0;
423
39b99586
SL
424 return BLOCK_SECTORS *
425 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
426 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
a39f7afd
SL
427}
428
429/*
430 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
431 *
432 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
433 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
434 * device is less than 2x of reclaim_required_space.
435 */
436static inline void r5c_update_log_state(struct r5l_log *log)
437{
438 struct r5conf *conf = log->rdev->mddev->private;
439 sector_t free_space;
440 sector_t reclaim_space;
f687a33e 441 bool wake_reclaim = false;
a39f7afd
SL
442
443 if (!r5c_is_writeback(log))
444 return;
445
446 free_space = r5l_ring_distance(log, log->log_start,
447 log->last_checkpoint);
448 reclaim_space = r5c_log_required_to_flush_cache(conf);
449 if (free_space < 2 * reclaim_space)
450 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
f687a33e
SL
451 else {
452 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
453 wake_reclaim = true;
a39f7afd 454 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
f687a33e 455 }
a39f7afd
SL
456 if (free_space < 3 * reclaim_space)
457 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
458 else
459 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
f687a33e
SL
460
461 if (wake_reclaim)
462 r5l_wake_reclaim(log, 0);
a39f7afd
SL
463}
464
2ded3703
SL
465/*
466 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
467 * This function should only be called in write-back mode.
468 */
a39f7afd 469void r5c_make_stripe_write_out(struct stripe_head *sh)
2ded3703
SL
470{
471 struct r5conf *conf = sh->raid_conf;
472 struct r5l_log *log = conf->log;
473
474 BUG_ON(!r5c_is_writeback(log));
475
476 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
477 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1e6d690b
SL
478
479 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
480 atomic_inc(&conf->preread_active_stripes);
1e6d690b
SL
481}
482
483static void r5c_handle_data_cached(struct stripe_head *sh)
484{
485 int i;
486
487 for (i = sh->disks; i--; )
488 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
489 set_bit(R5_InJournal, &sh->dev[i].flags);
490 clear_bit(R5_LOCKED, &sh->dev[i].flags);
491 }
492 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
493}
494
495/*
496 * this journal write must contain full parity,
497 * it may also contain some data pages
498 */
499static void r5c_handle_parity_cached(struct stripe_head *sh)
500{
501 int i;
502
503 for (i = sh->disks; i--; )
504 if (test_bit(R5_InJournal, &sh->dev[i].flags))
505 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2ded3703
SL
506}
507
508/*
509 * Setting proper flags after writing (or flushing) data and/or parity to the
510 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
511 */
512static void r5c_finish_cache_stripe(struct stripe_head *sh)
513{
514 struct r5l_log *log = sh->raid_conf->log;
515
516 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
517 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
518 /*
519 * Set R5_InJournal for parity dev[pd_idx]. This means
520 * all data AND parity in the journal. For RAID 6, it is
521 * NOT necessary to set the flag for dev[qd_idx], as the
522 * two parities are written out together.
523 */
524 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
1e6d690b
SL
525 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
526 r5c_handle_data_cached(sh);
527 } else {
528 r5c_handle_parity_cached(sh);
529 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
530 }
2ded3703
SL
531}
532
d8858f43
CH
533static void r5l_io_run_stripes(struct r5l_io_unit *io)
534{
535 struct stripe_head *sh, *next;
536
537 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
538 list_del_init(&sh->log_list);
2ded3703
SL
539
540 r5c_finish_cache_stripe(sh);
541
d8858f43
CH
542 set_bit(STRIPE_HANDLE, &sh->state);
543 raid5_release_stripe(sh);
544 }
545}
546
56fef7c6
CH
547static void r5l_log_run_stripes(struct r5l_log *log)
548{
549 struct r5l_io_unit *io, *next;
550
551 assert_spin_locked(&log->io_list_lock);
552
553 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
554 /* don't change list order */
555 if (io->state < IO_UNIT_IO_END)
556 break;
557
558 list_move_tail(&io->log_sibling, &log->finished_ios);
559 r5l_io_run_stripes(io);
560 }
561}
562
3848c0bc
CH
563static void r5l_move_to_end_ios(struct r5l_log *log)
564{
565 struct r5l_io_unit *io, *next;
566
567 assert_spin_locked(&log->io_list_lock);
568
569 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
570 /* don't change list order */
571 if (io->state < IO_UNIT_IO_END)
572 break;
573 list_move_tail(&io->log_sibling, &log->io_end_ios);
574 }
575}
576
3bddb7f8 577static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
f6bed0ef
SL
578static void r5l_log_endio(struct bio *bio)
579{
580 struct r5l_io_unit *io = bio->bi_private;
3bddb7f8 581 struct r5l_io_unit *io_deferred;
f6bed0ef 582 struct r5l_log *log = io->log;
509ffec7 583 unsigned long flags;
f6bed0ef 584
6e74a9cf
SL
585 if (bio->bi_error)
586 md_error(log->rdev->mddev, log->rdev);
587
f6bed0ef 588 bio_put(bio);
e8deb638 589 mempool_free(io->meta_page, log->meta_pool);
f6bed0ef 590
509ffec7
CH
591 spin_lock_irqsave(&log->io_list_lock, flags);
592 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
ea17481f 593 if (log->need_cache_flush && !list_empty(&io->stripe_list))
3848c0bc 594 r5l_move_to_end_ios(log);
56fef7c6
CH
595 else
596 r5l_log_run_stripes(log);
3bddb7f8
SL
597 if (!list_empty(&log->running_ios)) {
598 /*
599 * FLUSH/FUA io_unit is deferred because of ordering, now we
600 * can dispatch it
601 */
602 io_deferred = list_first_entry(&log->running_ios,
603 struct r5l_io_unit, log_sibling);
604 if (io_deferred->io_deferred)
605 schedule_work(&log->deferred_io_work);
606 }
607
509ffec7
CH
608 spin_unlock_irqrestore(&log->io_list_lock, flags);
609
56fef7c6
CH
610 if (log->need_cache_flush)
611 md_wakeup_thread(log->rdev->mddev->thread);
3bddb7f8
SL
612
613 if (io->has_null_flush) {
614 struct bio *bi;
615
616 WARN_ON(bio_list_empty(&io->flush_barriers));
617 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
618 bio_endio(bi);
619 atomic_dec(&io->pending_stripe);
620 }
3bddb7f8 621 }
ea17481f
SL
622
623 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
624 if (atomic_read(&io->pending_stripe) == 0)
625 __r5l_stripe_write_finished(io);
3bddb7f8
SL
626}
627
628static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
629{
630 unsigned long flags;
631
632 spin_lock_irqsave(&log->io_list_lock, flags);
633 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
634 spin_unlock_irqrestore(&log->io_list_lock, flags);
635
636 if (io->has_flush)
20737738 637 io->current_bio->bi_opf |= REQ_PREFLUSH;
3bddb7f8 638 if (io->has_fua)
20737738 639 io->current_bio->bi_opf |= REQ_FUA;
3bddb7f8
SL
640 submit_bio(io->current_bio);
641
642 if (!io->split_bio)
643 return;
644
645 if (io->has_flush)
20737738 646 io->split_bio->bi_opf |= REQ_PREFLUSH;
3bddb7f8 647 if (io->has_fua)
20737738 648 io->split_bio->bi_opf |= REQ_FUA;
3bddb7f8
SL
649 submit_bio(io->split_bio);
650}
651
652/* deferred io_unit will be dispatched here */
653static void r5l_submit_io_async(struct work_struct *work)
654{
655 struct r5l_log *log = container_of(work, struct r5l_log,
656 deferred_io_work);
657 struct r5l_io_unit *io = NULL;
658 unsigned long flags;
659
660 spin_lock_irqsave(&log->io_list_lock, flags);
661 if (!list_empty(&log->running_ios)) {
662 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
663 log_sibling);
664 if (!io->io_deferred)
665 io = NULL;
666 else
667 io->io_deferred = 0;
668 }
669 spin_unlock_irqrestore(&log->io_list_lock, flags);
670 if (io)
671 r5l_do_submit_io(log, io);
f6bed0ef
SL
672}
673
2e38a37f
SL
674static void r5c_disable_writeback_async(struct work_struct *work)
675{
676 struct r5l_log *log = container_of(work, struct r5l_log,
677 disable_writeback_work);
678 struct mddev *mddev = log->rdev->mddev;
679
680 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
681 return;
682 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
683 mdname(mddev));
684 mddev_suspend(mddev);
685 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
686 mddev_resume(mddev);
687}
688
f6bed0ef
SL
689static void r5l_submit_current_io(struct r5l_log *log)
690{
691 struct r5l_io_unit *io = log->current_io;
3bddb7f8 692 struct bio *bio;
f6bed0ef 693 struct r5l_meta_block *block;
509ffec7 694 unsigned long flags;
f6bed0ef 695 u32 crc;
3bddb7f8 696 bool do_submit = true;
f6bed0ef
SL
697
698 if (!io)
699 return;
700
701 block = page_address(io->meta_page);
702 block->meta_size = cpu_to_le32(io->meta_offset);
5cb2fbd6 703 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
f6bed0ef 704 block->checksum = cpu_to_le32(crc);
3bddb7f8 705 bio = io->current_bio;
f6bed0ef
SL
706
707 log->current_io = NULL;
509ffec7 708 spin_lock_irqsave(&log->io_list_lock, flags);
3bddb7f8
SL
709 if (io->has_flush || io->has_fua) {
710 if (io != list_first_entry(&log->running_ios,
711 struct r5l_io_unit, log_sibling)) {
712 io->io_deferred = 1;
713 do_submit = false;
714 }
715 }
509ffec7 716 spin_unlock_irqrestore(&log->io_list_lock, flags);
3bddb7f8
SL
717 if (do_submit)
718 r5l_do_submit_io(log, io);
f6bed0ef
SL
719}
720
6143e2ce 721static struct bio *r5l_bio_alloc(struct r5l_log *log)
b349feb3 722{
c38d29b3 723 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
b349feb3 724
796a5cf0 725 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
b349feb3 726 bio->bi_bdev = log->rdev->bdev;
1e932a37 727 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
b349feb3 728
b349feb3
CH
729 return bio;
730}
731
c1b99198
CH
732static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
733{
734 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
735
a39f7afd 736 r5c_update_log_state(log);
c1b99198
CH
737 /*
738 * If we filled up the log device start from the beginning again,
739 * which will require a new bio.
740 *
741 * Note: for this to work properly the log size needs to me a multiple
742 * of BLOCK_SECTORS.
743 */
744 if (log->log_start == 0)
6143e2ce 745 io->need_split_bio = true;
c1b99198
CH
746
747 io->log_end = log->log_start;
748}
749
f6bed0ef
SL
750static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
751{
752 struct r5l_io_unit *io;
753 struct r5l_meta_block *block;
f6bed0ef 754
5036c390
CH
755 io = mempool_alloc(log->io_pool, GFP_ATOMIC);
756 if (!io)
757 return NULL;
758 memset(io, 0, sizeof(*io));
759
51039cd0 760 io->log = log;
51039cd0
CH
761 INIT_LIST_HEAD(&io->log_sibling);
762 INIT_LIST_HEAD(&io->stripe_list);
3bddb7f8 763 bio_list_init(&io->flush_barriers);
51039cd0 764 io->state = IO_UNIT_RUNNING;
f6bed0ef 765
e8deb638 766 io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
f6bed0ef 767 block = page_address(io->meta_page);
e8deb638 768 clear_page(block);
f6bed0ef
SL
769 block->magic = cpu_to_le32(R5LOG_MAGIC);
770 block->version = R5LOG_VERSION;
771 block->seq = cpu_to_le64(log->seq);
772 block->position = cpu_to_le64(log->log_start);
773
774 io->log_start = log->log_start;
775 io->meta_offset = sizeof(struct r5l_meta_block);
2b8ef16e 776 io->seq = log->seq++;
f6bed0ef 777
6143e2ce
CH
778 io->current_bio = r5l_bio_alloc(log);
779 io->current_bio->bi_end_io = r5l_log_endio;
780 io->current_bio->bi_private = io;
b349feb3 781 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
f6bed0ef 782
c1b99198 783 r5_reserve_log_entry(log, io);
f6bed0ef
SL
784
785 spin_lock_irq(&log->io_list_lock);
786 list_add_tail(&io->log_sibling, &log->running_ios);
787 spin_unlock_irq(&log->io_list_lock);
788
789 return io;
790}
791
792static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
793{
22581f58
CH
794 if (log->current_io &&
795 log->current_io->meta_offset + payload_size > PAGE_SIZE)
f6bed0ef 796 r5l_submit_current_io(log);
f6bed0ef 797
5036c390 798 if (!log->current_io) {
22581f58 799 log->current_io = r5l_new_meta(log);
5036c390
CH
800 if (!log->current_io)
801 return -ENOMEM;
802 }
803
f6bed0ef
SL
804 return 0;
805}
806
807static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
808 sector_t location,
809 u32 checksum1, u32 checksum2,
810 bool checksum2_valid)
811{
812 struct r5l_io_unit *io = log->current_io;
813 struct r5l_payload_data_parity *payload;
814
815 payload = page_address(io->meta_page) + io->meta_offset;
816 payload->header.type = cpu_to_le16(type);
817 payload->header.flags = cpu_to_le16(0);
818 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
819 (PAGE_SHIFT - 9));
820 payload->location = cpu_to_le64(location);
821 payload->checksum[0] = cpu_to_le32(checksum1);
822 if (checksum2_valid)
823 payload->checksum[1] = cpu_to_le32(checksum2);
824
825 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
826 sizeof(__le32) * (1 + !!checksum2_valid);
827}
828
829static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
830{
831 struct r5l_io_unit *io = log->current_io;
832
6143e2ce 833 if (io->need_split_bio) {
3bddb7f8
SL
834 BUG_ON(io->split_bio);
835 io->split_bio = io->current_bio;
6143e2ce 836 io->current_bio = r5l_bio_alloc(log);
3bddb7f8
SL
837 bio_chain(io->current_bio, io->split_bio);
838 io->need_split_bio = false;
f6bed0ef 839 }
f6bed0ef 840
6143e2ce
CH
841 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
842 BUG();
843
c1b99198 844 r5_reserve_log_entry(log, io);
f6bed0ef
SL
845}
846
ea17481f
SL
847static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
848{
849 struct mddev *mddev = log->rdev->mddev;
850 struct r5conf *conf = mddev->private;
851 struct r5l_io_unit *io;
852 struct r5l_payload_flush *payload;
853 int meta_size;
854
855 /*
856 * payload_flush requires extra writes to the journal.
857 * To avoid handling the extra IO in quiesce, just skip
858 * flush_payload
859 */
860 if (conf->quiesce)
861 return;
862
863 mutex_lock(&log->io_mutex);
864 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
865
866 if (r5l_get_meta(log, meta_size)) {
867 mutex_unlock(&log->io_mutex);
868 return;
869 }
870
871 /* current implementation is one stripe per flush payload */
872 io = log->current_io;
873 payload = page_address(io->meta_page) + io->meta_offset;
874 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
875 payload->header.flags = cpu_to_le16(0);
876 payload->size = cpu_to_le32(sizeof(__le64));
877 payload->flush_stripes[0] = cpu_to_le64(sect);
878 io->meta_offset += meta_size;
879 mutex_unlock(&log->io_mutex);
880}
881
5036c390 882static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
f6bed0ef
SL
883 int data_pages, int parity_pages)
884{
885 int i;
886 int meta_size;
5036c390 887 int ret;
f6bed0ef
SL
888 struct r5l_io_unit *io;
889
890 meta_size =
891 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
892 * data_pages) +
893 sizeof(struct r5l_payload_data_parity) +
894 sizeof(__le32) * parity_pages;
895
5036c390
CH
896 ret = r5l_get_meta(log, meta_size);
897 if (ret)
898 return ret;
899
f6bed0ef
SL
900 io = log->current_io;
901
3bddb7f8
SL
902 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
903 io->has_flush = 1;
904
f6bed0ef 905 for (i = 0; i < sh->disks; i++) {
1e6d690b
SL
906 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
907 test_bit(R5_InJournal, &sh->dev[i].flags))
f6bed0ef
SL
908 continue;
909 if (i == sh->pd_idx || i == sh->qd_idx)
910 continue;
3bddb7f8
SL
911 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
912 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
913 io->has_fua = 1;
914 /*
915 * we need to flush journal to make sure recovery can
916 * reach the data with fua flag
917 */
918 io->has_flush = 1;
919 }
f6bed0ef
SL
920 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
921 raid5_compute_blocknr(sh, i, 0),
922 sh->dev[i].log_checksum, 0, false);
923 r5l_append_payload_page(log, sh->dev[i].page);
924 }
925
2ded3703 926 if (parity_pages == 2) {
f6bed0ef
SL
927 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
928 sh->sector, sh->dev[sh->pd_idx].log_checksum,
929 sh->dev[sh->qd_idx].log_checksum, true);
930 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
931 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
2ded3703 932 } else if (parity_pages == 1) {
f6bed0ef
SL
933 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
934 sh->sector, sh->dev[sh->pd_idx].log_checksum,
935 0, false);
936 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
2ded3703
SL
937 } else /* Just writing data, not parity, in caching phase */
938 BUG_ON(parity_pages != 0);
f6bed0ef
SL
939
940 list_add_tail(&sh->log_list, &io->stripe_list);
941 atomic_inc(&io->pending_stripe);
942 sh->log_io = io;
5036c390 943
a39f7afd
SL
944 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
945 return 0;
946
947 if (sh->log_start == MaxSector) {
948 BUG_ON(!list_empty(&sh->r5c));
949 sh->log_start = io->log_start;
950 spin_lock_irq(&log->stripe_in_journal_lock);
951 list_add_tail(&sh->r5c,
952 &log->stripe_in_journal_list);
953 spin_unlock_irq(&log->stripe_in_journal_lock);
954 atomic_inc(&log->stripe_in_journal_count);
955 }
5036c390 956 return 0;
f6bed0ef
SL
957}
958
a39f7afd
SL
959/* add stripe to no_space_stripes, and then wake up reclaim */
960static inline void r5l_add_no_space_stripe(struct r5l_log *log,
961 struct stripe_head *sh)
962{
963 spin_lock(&log->no_space_stripes_lock);
964 list_add_tail(&sh->log_list, &log->no_space_stripes);
965 spin_unlock(&log->no_space_stripes_lock);
966}
967
f6bed0ef
SL
968/*
969 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
970 * data from log to raid disks), so we shouldn't wait for reclaim here
971 */
972int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
973{
a39f7afd 974 struct r5conf *conf = sh->raid_conf;
f6bed0ef
SL
975 int write_disks = 0;
976 int data_pages, parity_pages;
f6bed0ef
SL
977 int reserve;
978 int i;
5036c390 979 int ret = 0;
a39f7afd 980 bool wake_reclaim = false;
f6bed0ef
SL
981
982 if (!log)
983 return -EAGAIN;
984 /* Don't support stripe batch */
985 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
986 test_bit(STRIPE_SYNCING, &sh->state)) {
987 /* the stripe is written to log, we start writing it to raid */
988 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
989 return -EAGAIN;
990 }
991
2ded3703
SL
992 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
993
f6bed0ef
SL
994 for (i = 0; i < sh->disks; i++) {
995 void *addr;
996
1e6d690b
SL
997 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
998 test_bit(R5_InJournal, &sh->dev[i].flags))
f6bed0ef 999 continue;
1e6d690b 1000
f6bed0ef
SL
1001 write_disks++;
1002 /* checksum is already calculated in last run */
1003 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1004 continue;
1005 addr = kmap_atomic(sh->dev[i].page);
5cb2fbd6
SL
1006 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1007 addr, PAGE_SIZE);
f6bed0ef
SL
1008 kunmap_atomic(addr);
1009 }
1010 parity_pages = 1 + !!(sh->qd_idx >= 0);
1011 data_pages = write_disks - parity_pages;
1012
f6bed0ef 1013 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
253f9fd4
SL
1014 /*
1015 * The stripe must enter state machine again to finish the write, so
1016 * don't delay.
1017 */
1018 clear_bit(STRIPE_DELAYED, &sh->state);
f6bed0ef
SL
1019 atomic_inc(&sh->count);
1020
1021 mutex_lock(&log->io_mutex);
1022 /* meta + data */
1023 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
f6bed0ef 1024
a39f7afd
SL
1025 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1026 if (!r5l_has_free_space(log, reserve)) {
1027 r5l_add_no_space_stripe(log, sh);
1028 wake_reclaim = true;
1029 } else {
1030 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1031 if (ret) {
1032 spin_lock_irq(&log->io_list_lock);
1033 list_add_tail(&sh->log_list,
1034 &log->no_mem_stripes);
1035 spin_unlock_irq(&log->io_list_lock);
1036 }
1037 }
1038 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
1039 /*
1040 * log space critical, do not process stripes that are
1041 * not in cache yet (sh->log_start == MaxSector).
1042 */
1043 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1044 sh->log_start == MaxSector) {
1045 r5l_add_no_space_stripe(log, sh);
1046 wake_reclaim = true;
1047 reserve = 0;
1048 } else if (!r5l_has_free_space(log, reserve)) {
1049 if (sh->log_start == log->last_checkpoint)
1050 BUG();
1051 else
1052 r5l_add_no_space_stripe(log, sh);
1053 } else {
1054 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1055 if (ret) {
1056 spin_lock_irq(&log->io_list_lock);
1057 list_add_tail(&sh->log_list,
1058 &log->no_mem_stripes);
1059 spin_unlock_irq(&log->io_list_lock);
1060 }
5036c390 1061 }
f6bed0ef 1062 }
f6bed0ef 1063
5036c390 1064 mutex_unlock(&log->io_mutex);
a39f7afd
SL
1065 if (wake_reclaim)
1066 r5l_wake_reclaim(log, reserve);
f6bed0ef
SL
1067 return 0;
1068}
1069
1070void r5l_write_stripe_run(struct r5l_log *log)
1071{
1072 if (!log)
1073 return;
1074 mutex_lock(&log->io_mutex);
1075 r5l_submit_current_io(log);
1076 mutex_unlock(&log->io_mutex);
1077}
1078
828cbe98
SL
1079int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1080{
1081 if (!log)
1082 return -ENODEV;
3bddb7f8
SL
1083
1084 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1085 /*
1086 * in write through (journal only)
1087 * we flush log disk cache first, then write stripe data to
1088 * raid disks. So if bio is finished, the log disk cache is
1089 * flushed already. The recovery guarantees we can recovery
1090 * the bio from log disk, so we don't need to flush again
1091 */
1092 if (bio->bi_iter.bi_size == 0) {
1093 bio_endio(bio);
1094 return 0;
1095 }
1096 bio->bi_opf &= ~REQ_PREFLUSH;
1097 } else {
1098 /* write back (with cache) */
1099 if (bio->bi_iter.bi_size == 0) {
1100 mutex_lock(&log->io_mutex);
1101 r5l_get_meta(log, 0);
1102 bio_list_add(&log->current_io->flush_barriers, bio);
1103 log->current_io->has_flush = 1;
1104 log->current_io->has_null_flush = 1;
1105 atomic_inc(&log->current_io->pending_stripe);
1106 r5l_submit_current_io(log);
1107 mutex_unlock(&log->io_mutex);
1108 return 0;
1109 }
828cbe98 1110 }
828cbe98
SL
1111 return -EAGAIN;
1112}
1113
f6bed0ef
SL
1114/* This will run after log space is reclaimed */
1115static void r5l_run_no_space_stripes(struct r5l_log *log)
1116{
1117 struct stripe_head *sh;
1118
1119 spin_lock(&log->no_space_stripes_lock);
1120 while (!list_empty(&log->no_space_stripes)) {
1121 sh = list_first_entry(&log->no_space_stripes,
1122 struct stripe_head, log_list);
1123 list_del_init(&sh->log_list);
1124 set_bit(STRIPE_HANDLE, &sh->state);
1125 raid5_release_stripe(sh);
1126 }
1127 spin_unlock(&log->no_space_stripes_lock);
1128}
1129
a39f7afd
SL
1130/*
1131 * calculate new last_checkpoint
1132 * for write through mode, returns log->next_checkpoint
1133 * for write back, returns log_start of first sh in stripe_in_journal_list
1134 */
1135static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1136{
1137 struct stripe_head *sh;
1138 struct r5l_log *log = conf->log;
1139 sector_t new_cp;
1140 unsigned long flags;
1141
1142 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1143 return log->next_checkpoint;
1144
1145 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1146 if (list_empty(&conf->log->stripe_in_journal_list)) {
1147 /* all stripes flushed */
d3014e21 1148 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
a39f7afd
SL
1149 return log->next_checkpoint;
1150 }
1151 sh = list_first_entry(&conf->log->stripe_in_journal_list,
1152 struct stripe_head, r5c);
1153 new_cp = sh->log_start;
1154 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1155 return new_cp;
1156}
1157
17036461
CH
1158static sector_t r5l_reclaimable_space(struct r5l_log *log)
1159{
a39f7afd
SL
1160 struct r5conf *conf = log->rdev->mddev->private;
1161
17036461 1162 return r5l_ring_distance(log, log->last_checkpoint,
a39f7afd 1163 r5c_calculate_new_cp(conf));
17036461
CH
1164}
1165
5036c390
CH
1166static void r5l_run_no_mem_stripe(struct r5l_log *log)
1167{
1168 struct stripe_head *sh;
1169
1170 assert_spin_locked(&log->io_list_lock);
1171
1172 if (!list_empty(&log->no_mem_stripes)) {
1173 sh = list_first_entry(&log->no_mem_stripes,
1174 struct stripe_head, log_list);
1175 list_del_init(&sh->log_list);
1176 set_bit(STRIPE_HANDLE, &sh->state);
1177 raid5_release_stripe(sh);
1178 }
1179}
1180
04732f74 1181static bool r5l_complete_finished_ios(struct r5l_log *log)
17036461
CH
1182{
1183 struct r5l_io_unit *io, *next;
1184 bool found = false;
1185
1186 assert_spin_locked(&log->io_list_lock);
1187
04732f74 1188 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
17036461
CH
1189 /* don't change list order */
1190 if (io->state < IO_UNIT_STRIPE_END)
1191 break;
1192
1193 log->next_checkpoint = io->log_start;
17036461
CH
1194
1195 list_del(&io->log_sibling);
5036c390
CH
1196 mempool_free(io, log->io_pool);
1197 r5l_run_no_mem_stripe(log);
17036461
CH
1198
1199 found = true;
1200 }
1201
1202 return found;
1203}
1204
509ffec7
CH
1205static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1206{
1207 struct r5l_log *log = io->log;
a39f7afd 1208 struct r5conf *conf = log->rdev->mddev->private;
509ffec7
CH
1209 unsigned long flags;
1210
1211 spin_lock_irqsave(&log->io_list_lock, flags);
1212 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
17036461 1213
04732f74 1214 if (!r5l_complete_finished_ios(log)) {
85f2f9a4
SL
1215 spin_unlock_irqrestore(&log->io_list_lock, flags);
1216 return;
1217 }
509ffec7 1218
a39f7afd
SL
1219 if (r5l_reclaimable_space(log) > log->max_free_space ||
1220 test_bit(R5C_LOG_TIGHT, &conf->cache_state))
509ffec7
CH
1221 r5l_wake_reclaim(log, 0);
1222
509ffec7
CH
1223 spin_unlock_irqrestore(&log->io_list_lock, flags);
1224 wake_up(&log->iounit_wait);
1225}
1226
0576b1c6
SL
1227void r5l_stripe_write_finished(struct stripe_head *sh)
1228{
1229 struct r5l_io_unit *io;
1230
0576b1c6 1231 io = sh->log_io;
0576b1c6
SL
1232 sh->log_io = NULL;
1233
509ffec7
CH
1234 if (io && atomic_dec_and_test(&io->pending_stripe))
1235 __r5l_stripe_write_finished(io);
0576b1c6
SL
1236}
1237
a8c34f91
SL
1238static void r5l_log_flush_endio(struct bio *bio)
1239{
1240 struct r5l_log *log = container_of(bio, struct r5l_log,
1241 flush_bio);
1242 unsigned long flags;
1243 struct r5l_io_unit *io;
a8c34f91 1244
6e74a9cf
SL
1245 if (bio->bi_error)
1246 md_error(log->rdev->mddev, log->rdev);
1247
a8c34f91 1248 spin_lock_irqsave(&log->io_list_lock, flags);
d8858f43
CH
1249 list_for_each_entry(io, &log->flushing_ios, log_sibling)
1250 r5l_io_run_stripes(io);
04732f74 1251 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
a8c34f91
SL
1252 spin_unlock_irqrestore(&log->io_list_lock, flags);
1253}
1254
0576b1c6
SL
1255/*
1256 * Starting dispatch IO to raid.
1257 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1258 * broken meta in the middle of a log causes recovery can't find meta at the
1259 * head of log. If operations require meta at the head persistent in log, we
1260 * must make sure meta before it persistent in log too. A case is:
1261 *
1262 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1263 * data/parity must be persistent in log before we do the write to raid disks.
1264 *
1265 * The solution is we restrictly maintain io_unit list order. In this case, we
1266 * only write stripes of an io_unit to raid disks till the io_unit is the first
1267 * one whose data/parity is in log.
1268 */
1269void r5l_flush_stripe_to_raid(struct r5l_log *log)
1270{
a8c34f91 1271 bool do_flush;
56fef7c6
CH
1272
1273 if (!log || !log->need_cache_flush)
0576b1c6 1274 return;
0576b1c6
SL
1275
1276 spin_lock_irq(&log->io_list_lock);
a8c34f91
SL
1277 /* flush bio is running */
1278 if (!list_empty(&log->flushing_ios)) {
1279 spin_unlock_irq(&log->io_list_lock);
1280 return;
0576b1c6 1281 }
a8c34f91
SL
1282 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1283 do_flush = !list_empty(&log->flushing_ios);
0576b1c6 1284 spin_unlock_irq(&log->io_list_lock);
a8c34f91
SL
1285
1286 if (!do_flush)
1287 return;
1288 bio_reset(&log->flush_bio);
1289 log->flush_bio.bi_bdev = log->rdev->bdev;
1290 log->flush_bio.bi_end_io = r5l_log_flush_endio;
70fd7614 1291 log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
4e49ea4a 1292 submit_bio(&log->flush_bio);
0576b1c6
SL
1293}
1294
0576b1c6 1295static void r5l_write_super(struct r5l_log *log, sector_t cp);
4b482044
SL
1296static void r5l_write_super_and_discard_space(struct r5l_log *log,
1297 sector_t end)
1298{
1299 struct block_device *bdev = log->rdev->bdev;
1300 struct mddev *mddev;
1301
1302 r5l_write_super(log, end);
1303
1304 if (!blk_queue_discard(bdev_get_queue(bdev)))
1305 return;
1306
1307 mddev = log->rdev->mddev;
1308 /*
8e018c21
SL
1309 * Discard could zero data, so before discard we must make sure
1310 * superblock is updated to new log tail. Updating superblock (either
1311 * directly call md_update_sb() or depend on md thread) must hold
1312 * reconfig mutex. On the other hand, raid5_quiesce is called with
1313 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1314 * for all IO finish, hence waitting for reclaim thread, while reclaim
1315 * thread is calling this function and waitting for reconfig mutex. So
1316 * there is a deadlock. We workaround this issue with a trylock.
1317 * FIXME: we could miss discard if we can't take reconfig mutex
4b482044 1318 */
2953079c
SL
1319 set_mask_bits(&mddev->sb_flags, 0,
1320 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
8e018c21
SL
1321 if (!mddev_trylock(mddev))
1322 return;
1323 md_update_sb(mddev, 1);
1324 mddev_unlock(mddev);
4b482044 1325
6e74a9cf 1326 /* discard IO error really doesn't matter, ignore it */
4b482044
SL
1327 if (log->last_checkpoint < end) {
1328 blkdev_issue_discard(bdev,
1329 log->last_checkpoint + log->rdev->data_offset,
1330 end - log->last_checkpoint, GFP_NOIO, 0);
1331 } else {
1332 blkdev_issue_discard(bdev,
1333 log->last_checkpoint + log->rdev->data_offset,
1334 log->device_size - log->last_checkpoint,
1335 GFP_NOIO, 0);
1336 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1337 GFP_NOIO, 0);
1338 }
1339}
1340
a39f7afd
SL
1341/*
1342 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1343 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1344 *
1345 * must hold conf->device_lock
1346 */
1347static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
0576b1c6 1348{
a39f7afd
SL
1349 BUG_ON(list_empty(&sh->lru));
1350 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1351 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
0576b1c6 1352
0576b1c6 1353 /*
a39f7afd
SL
1354 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1355 * raid5_release_stripe() while holding conf->device_lock
0576b1c6 1356 */
a39f7afd
SL
1357 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1358 assert_spin_locked(&conf->device_lock);
0576b1c6 1359
a39f7afd
SL
1360 list_del_init(&sh->lru);
1361 atomic_inc(&sh->count);
17036461 1362
a39f7afd
SL
1363 set_bit(STRIPE_HANDLE, &sh->state);
1364 atomic_inc(&conf->active_stripes);
1365 r5c_make_stripe_write_out(sh);
0576b1c6 1366
e33fbb9c
SL
1367 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1368 atomic_inc(&conf->r5c_flushing_partial_stripes);
1369 else
1370 atomic_inc(&conf->r5c_flushing_full_stripes);
a39f7afd
SL
1371 raid5_release_stripe(sh);
1372}
1373
1374/*
1375 * if num == 0, flush all full stripes
1376 * if num > 0, flush all full stripes. If less than num full stripes are
1377 * flushed, flush some partial stripes until totally num stripes are
1378 * flushed or there is no more cached stripes.
1379 */
1380void r5c_flush_cache(struct r5conf *conf, int num)
1381{
1382 int count;
1383 struct stripe_head *sh, *next;
1384
1385 assert_spin_locked(&conf->device_lock);
1386 if (!conf->log)
0576b1c6
SL
1387 return;
1388
a39f7afd
SL
1389 count = 0;
1390 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1391 r5c_flush_stripe(conf, sh);
1392 count++;
1393 }
1394
1395 if (count >= num)
1396 return;
1397 list_for_each_entry_safe(sh, next,
1398 &conf->r5c_partial_stripe_list, lru) {
1399 r5c_flush_stripe(conf, sh);
1400 if (++count >= num)
1401 break;
1402 }
1403}
1404
1405static void r5c_do_reclaim(struct r5conf *conf)
1406{
1407 struct r5l_log *log = conf->log;
1408 struct stripe_head *sh;
1409 int count = 0;
1410 unsigned long flags;
1411 int total_cached;
1412 int stripes_to_flush;
e33fbb9c 1413 int flushing_partial, flushing_full;
a39f7afd
SL
1414
1415 if (!r5c_is_writeback(log))
1416 return;
1417
e33fbb9c
SL
1418 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1419 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
a39f7afd 1420 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
e33fbb9c
SL
1421 atomic_read(&conf->r5c_cached_full_stripes) -
1422 flushing_full - flushing_partial;
a39f7afd
SL
1423
1424 if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1425 atomic_read(&conf->empty_inactive_list_nr) > 0)
1426 /*
1427 * if stripe cache pressure high, flush all full stripes and
1428 * some partial stripes
1429 */
1430 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1431 else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
e33fbb9c 1432 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
84890c03 1433 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
a39f7afd
SL
1434 /*
1435 * if stripe cache pressure moderate, or if there is many full
1436 * stripes,flush all full stripes
1437 */
1438 stripes_to_flush = 0;
1439 else
1440 /* no need to flush */
1441 stripes_to_flush = -1;
1442
1443 if (stripes_to_flush >= 0) {
1444 spin_lock_irqsave(&conf->device_lock, flags);
1445 r5c_flush_cache(conf, stripes_to_flush);
1446 spin_unlock_irqrestore(&conf->device_lock, flags);
1447 }
1448
1449 /* if log space is tight, flush stripes on stripe_in_journal_list */
1450 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1451 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1452 spin_lock(&conf->device_lock);
1453 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1454 /*
1455 * stripes on stripe_in_journal_list could be in any
1456 * state of the stripe_cache state machine. In this
1457 * case, we only want to flush stripe on
1458 * r5c_cached_full/partial_stripes. The following
1459 * condition makes sure the stripe is on one of the
1460 * two lists.
1461 */
1462 if (!list_empty(&sh->lru) &&
1463 !test_bit(STRIPE_HANDLE, &sh->state) &&
1464 atomic_read(&sh->count) == 0) {
1465 r5c_flush_stripe(conf, sh);
e8fd52ee
SL
1466 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1467 break;
a39f7afd 1468 }
a39f7afd
SL
1469 }
1470 spin_unlock(&conf->device_lock);
1471 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1472 }
f687a33e
SL
1473
1474 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1475 r5l_run_no_space_stripes(log);
1476
a39f7afd
SL
1477 md_wakeup_thread(conf->mddev->thread);
1478}
1479
0576b1c6
SL
1480static void r5l_do_reclaim(struct r5l_log *log)
1481{
a39f7afd 1482 struct r5conf *conf = log->rdev->mddev->private;
0576b1c6 1483 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
17036461
CH
1484 sector_t reclaimable;
1485 sector_t next_checkpoint;
a39f7afd 1486 bool write_super;
0576b1c6
SL
1487
1488 spin_lock_irq(&log->io_list_lock);
a39f7afd
SL
1489 write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1490 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
0576b1c6
SL
1491 /*
1492 * move proper io_unit to reclaim list. We should not change the order.
1493 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1494 * shouldn't reuse space of an unreclaimable io_unit
1495 */
1496 while (1) {
17036461
CH
1497 reclaimable = r5l_reclaimable_space(log);
1498 if (reclaimable >= reclaim_target ||
0576b1c6
SL
1499 (list_empty(&log->running_ios) &&
1500 list_empty(&log->io_end_ios) &&
a8c34f91 1501 list_empty(&log->flushing_ios) &&
04732f74 1502 list_empty(&log->finished_ios)))
0576b1c6
SL
1503 break;
1504
17036461
CH
1505 md_wakeup_thread(log->rdev->mddev->thread);
1506 wait_event_lock_irq(log->iounit_wait,
1507 r5l_reclaimable_space(log) > reclaimable,
1508 log->io_list_lock);
0576b1c6 1509 }
17036461 1510
a39f7afd 1511 next_checkpoint = r5c_calculate_new_cp(conf);
0576b1c6
SL
1512 spin_unlock_irq(&log->io_list_lock);
1513
a39f7afd 1514 if (reclaimable == 0 || !write_super)
0576b1c6
SL
1515 return;
1516
0576b1c6
SL
1517 /*
1518 * write_super will flush cache of each raid disk. We must write super
1519 * here, because the log area might be reused soon and we don't want to
1520 * confuse recovery
1521 */
4b482044 1522 r5l_write_super_and_discard_space(log, next_checkpoint);
0576b1c6
SL
1523
1524 mutex_lock(&log->io_mutex);
17036461 1525 log->last_checkpoint = next_checkpoint;
a39f7afd 1526 r5c_update_log_state(log);
0576b1c6 1527 mutex_unlock(&log->io_mutex);
0576b1c6 1528
17036461 1529 r5l_run_no_space_stripes(log);
0576b1c6
SL
1530}
1531
1532static void r5l_reclaim_thread(struct md_thread *thread)
1533{
1534 struct mddev *mddev = thread->mddev;
1535 struct r5conf *conf = mddev->private;
1536 struct r5l_log *log = conf->log;
1537
1538 if (!log)
1539 return;
a39f7afd 1540 r5c_do_reclaim(conf);
0576b1c6
SL
1541 r5l_do_reclaim(log);
1542}
1543
a39f7afd 1544void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
f6bed0ef 1545{
0576b1c6
SL
1546 unsigned long target;
1547 unsigned long new = (unsigned long)space; /* overflow in theory */
1548
a39f7afd
SL
1549 if (!log)
1550 return;
0576b1c6
SL
1551 do {
1552 target = log->reclaim_target;
1553 if (new < target)
1554 return;
1555 } while (cmpxchg(&log->reclaim_target, target, new) != target);
1556 md_wakeup_thread(log->reclaim_thread);
f6bed0ef
SL
1557}
1558
e6c033f7
SL
1559void r5l_quiesce(struct r5l_log *log, int state)
1560{
4b482044 1561 struct mddev *mddev;
e6c033f7
SL
1562 if (!log || state == 2)
1563 return;
ce1ccd07
SL
1564 if (state == 0)
1565 kthread_unpark(log->reclaim_thread->tsk);
1566 else if (state == 1) {
4b482044
SL
1567 /* make sure r5l_write_super_and_discard_space exits */
1568 mddev = log->rdev->mddev;
1569 wake_up(&mddev->sb_wait);
ce1ccd07 1570 kthread_park(log->reclaim_thread->tsk);
a39f7afd 1571 r5l_wake_reclaim(log, MaxSector);
e6c033f7
SL
1572 r5l_do_reclaim(log);
1573 }
1574}
1575
6e74a9cf
SL
1576bool r5l_log_disk_error(struct r5conf *conf)
1577{
f6b6ec5c
SL
1578 struct r5l_log *log;
1579 bool ret;
7dde2ad3 1580 /* don't allow write if journal disk is missing */
f6b6ec5c
SL
1581 rcu_read_lock();
1582 log = rcu_dereference(conf->log);
1583
1584 if (!log)
1585 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1586 else
1587 ret = test_bit(Faulty, &log->rdev->flags);
1588 rcu_read_unlock();
1589 return ret;
6e74a9cf
SL
1590}
1591
effe6ee7
SL
1592#define R5L_RECOVERY_PAGE_POOL_SIZE 256
1593
355810d1
SL
1594struct r5l_recovery_ctx {
1595 struct page *meta_page; /* current meta */
1596 sector_t meta_total_blocks; /* total size of current meta and data */
1597 sector_t pos; /* recovery position */
1598 u64 seq; /* recovery position seq */
b4c625c6
SL
1599 int data_parity_stripes; /* number of data_parity stripes */
1600 int data_only_stripes; /* number of data_only stripes */
1601 struct list_head cached_list;
effe6ee7
SL
1602
1603 /*
1604 * read ahead page pool (ra_pool)
1605 * in recovery, log is read sequentially. It is not efficient to
1606 * read every page with sync_page_io(). The read ahead page pool
1607 * reads multiple pages with one IO, so further log read can
1608 * just copy data from the pool.
1609 */
1610 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1611 sector_t pool_offset; /* offset of first page in the pool */
1612 int total_pages; /* total allocated pages */
1613 int valid_pages; /* pages with valid data */
1614 struct bio *ra_bio; /* bio to do the read ahead */
355810d1
SL
1615};
1616
effe6ee7
SL
1617static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1618 struct r5l_recovery_ctx *ctx)
1619{
1620 struct page *page;
1621
1622 ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, log->bs);
1623 if (!ctx->ra_bio)
1624 return -ENOMEM;
1625
1626 ctx->valid_pages = 0;
1627 ctx->total_pages = 0;
1628 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1629 page = alloc_page(GFP_KERNEL);
1630
1631 if (!page)
1632 break;
1633 ctx->ra_pool[ctx->total_pages] = page;
1634 ctx->total_pages += 1;
1635 }
1636
1637 if (ctx->total_pages == 0) {
1638 bio_put(ctx->ra_bio);
1639 return -ENOMEM;
1640 }
1641
1642 ctx->pool_offset = 0;
1643 return 0;
1644}
1645
1646static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1647 struct r5l_recovery_ctx *ctx)
1648{
1649 int i;
1650
1651 for (i = 0; i < ctx->total_pages; ++i)
1652 put_page(ctx->ra_pool[i]);
1653 bio_put(ctx->ra_bio);
1654}
1655
1656/*
1657 * fetch ctx->valid_pages pages from offset
1658 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1659 * However, if the offset is close to the end of the journal device,
1660 * ctx->valid_pages could be smaller than ctx->total_pages
1661 */
1662static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1663 struct r5l_recovery_ctx *ctx,
1664 sector_t offset)
1665{
1666 bio_reset(ctx->ra_bio);
1667 ctx->ra_bio->bi_bdev = log->rdev->bdev;
1668 bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1669 ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1670
1671 ctx->valid_pages = 0;
1672 ctx->pool_offset = offset;
1673
1674 while (ctx->valid_pages < ctx->total_pages) {
1675 bio_add_page(ctx->ra_bio,
1676 ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1677 ctx->valid_pages += 1;
1678
1679 offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1680
1681 if (offset == 0) /* reached end of the device */
1682 break;
1683 }
1684
1685 return submit_bio_wait(ctx->ra_bio);
1686}
1687
1688/*
1689 * try read a page from the read ahead page pool, if the page is not in the
1690 * pool, call r5l_recovery_fetch_ra_pool
1691 */
1692static int r5l_recovery_read_page(struct r5l_log *log,
1693 struct r5l_recovery_ctx *ctx,
1694 struct page *page,
1695 sector_t offset)
1696{
1697 int ret;
1698
1699 if (offset < ctx->pool_offset ||
1700 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1701 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1702 if (ret)
1703 return ret;
1704 }
1705
1706 BUG_ON(offset < ctx->pool_offset ||
1707 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1708
1709 memcpy(page_address(page),
1710 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1711 BLOCK_SECTOR_SHIFT]),
1712 PAGE_SIZE);
1713 return 0;
1714}
1715
9ed988f5
SL
1716static int r5l_recovery_read_meta_block(struct r5l_log *log,
1717 struct r5l_recovery_ctx *ctx)
355810d1
SL
1718{
1719 struct page *page = ctx->meta_page;
1720 struct r5l_meta_block *mb;
1721 u32 crc, stored_crc;
effe6ee7 1722 int ret;
355810d1 1723
effe6ee7
SL
1724 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1725 if (ret != 0)
1726 return ret;
355810d1
SL
1727
1728 mb = page_address(page);
1729 stored_crc = le32_to_cpu(mb->checksum);
1730 mb->checksum = 0;
1731
1732 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1733 le64_to_cpu(mb->seq) != ctx->seq ||
1734 mb->version != R5LOG_VERSION ||
1735 le64_to_cpu(mb->position) != ctx->pos)
1736 return -EINVAL;
1737
5cb2fbd6 1738 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
355810d1
SL
1739 if (stored_crc != crc)
1740 return -EINVAL;
1741
1742 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1743 return -EINVAL;
1744
1745 ctx->meta_total_blocks = BLOCK_SECTORS;
1746
1747 return 0;
1748}
1749
9ed988f5
SL
1750static void
1751r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1752 struct page *page,
1753 sector_t pos, u64 seq)
355810d1 1754{
355810d1 1755 struct r5l_meta_block *mb;
355810d1 1756
355810d1 1757 mb = page_address(page);
9ed988f5 1758 clear_page(mb);
355810d1
SL
1759 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1760 mb->version = R5LOG_VERSION;
1761 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1762 mb->seq = cpu_to_le64(seq);
1763 mb->position = cpu_to_le64(pos);
9ed988f5 1764}
355810d1 1765
9ed988f5
SL
1766static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1767 u64 seq)
1768{
1769 struct page *page;
5c88f403 1770 struct r5l_meta_block *mb;
355810d1 1771
9ed988f5
SL
1772 page = alloc_page(GFP_KERNEL);
1773 if (!page)
1774 return -ENOMEM;
1775 r5l_recovery_create_empty_meta_block(log, page, pos, seq);
5c88f403
SL
1776 mb = page_address(page);
1777 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1778 mb, PAGE_SIZE));
796a5cf0 1779 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
20737738 1780 REQ_FUA, false)) {
355810d1
SL
1781 __free_page(page);
1782 return -EIO;
1783 }
1784 __free_page(page);
1785 return 0;
1786}
355810d1 1787
b4c625c6
SL
1788/*
1789 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1790 * to mark valid (potentially not flushed) data in the journal.
1791 *
1792 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1793 * so there should not be any mismatch here.
1794 */
1795static void r5l_recovery_load_data(struct r5l_log *log,
1796 struct stripe_head *sh,
1797 struct r5l_recovery_ctx *ctx,
1798 struct r5l_payload_data_parity *payload,
1799 sector_t log_offset)
1800{
1801 struct mddev *mddev = log->rdev->mddev;
1802 struct r5conf *conf = mddev->private;
1803 int dd_idx;
1804
1805 raid5_compute_sector(conf,
1806 le64_to_cpu(payload->location), 0,
1807 &dd_idx, sh);
effe6ee7 1808 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
b4c625c6
SL
1809 sh->dev[dd_idx].log_checksum =
1810 le32_to_cpu(payload->checksum[0]);
1811 ctx->meta_total_blocks += BLOCK_SECTORS;
1812
1813 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1814 set_bit(STRIPE_R5C_CACHING, &sh->state);
1815}
1816
1817static void r5l_recovery_load_parity(struct r5l_log *log,
1818 struct stripe_head *sh,
1819 struct r5l_recovery_ctx *ctx,
1820 struct r5l_payload_data_parity *payload,
1821 sector_t log_offset)
1822{
1823 struct mddev *mddev = log->rdev->mddev;
1824 struct r5conf *conf = mddev->private;
1825
1826 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
effe6ee7 1827 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
b4c625c6
SL
1828 sh->dev[sh->pd_idx].log_checksum =
1829 le32_to_cpu(payload->checksum[0]);
1830 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1831
1832 if (sh->qd_idx >= 0) {
effe6ee7
SL
1833 r5l_recovery_read_page(
1834 log, ctx, sh->dev[sh->qd_idx].page,
1835 r5l_ring_add(log, log_offset, BLOCK_SECTORS));
b4c625c6
SL
1836 sh->dev[sh->qd_idx].log_checksum =
1837 le32_to_cpu(payload->checksum[1]);
1838 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
355810d1 1839 }
b4c625c6
SL
1840 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1841}
355810d1 1842
b4c625c6
SL
1843static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1844{
1845 int i;
1846
1847 sh->state = 0;
1848 sh->log_start = MaxSector;
1849 for (i = sh->disks; i--; )
1850 sh->dev[i].flags = 0;
1851}
1852
1853static void
1854r5l_recovery_replay_one_stripe(struct r5conf *conf,
1855 struct stripe_head *sh,
1856 struct r5l_recovery_ctx *ctx)
1857{
1858 struct md_rdev *rdev, *rrdev;
1859 int disk_index;
1860 int data_count = 0;
355810d1 1861
b4c625c6 1862 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
355810d1
SL
1863 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1864 continue;
b4c625c6
SL
1865 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1866 continue;
1867 data_count++;
355810d1
SL
1868 }
1869
b4c625c6
SL
1870 /*
1871 * stripes that only have parity must have been flushed
1872 * before the crash that we are now recovering from, so
1873 * there is nothing more to recovery.
1874 */
1875 if (data_count == 0)
1876 goto out;
355810d1 1877
b4c625c6
SL
1878 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1879 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
355810d1
SL
1880 continue;
1881
1882 /* in case device is broken */
b4c625c6 1883 rcu_read_lock();
355810d1 1884 rdev = rcu_dereference(conf->disks[disk_index].rdev);
b4c625c6
SL
1885 if (rdev) {
1886 atomic_inc(&rdev->nr_pending);
1887 rcu_read_unlock();
1888 sync_page_io(rdev, sh->sector, PAGE_SIZE,
796a5cf0
MC
1889 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1890 false);
b4c625c6
SL
1891 rdev_dec_pending(rdev, rdev->mddev);
1892 rcu_read_lock();
1893 }
355810d1 1894 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
b4c625c6
SL
1895 if (rrdev) {
1896 atomic_inc(&rrdev->nr_pending);
1897 rcu_read_unlock();
1898 sync_page_io(rrdev, sh->sector, PAGE_SIZE,
796a5cf0
MC
1899 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1900 false);
b4c625c6
SL
1901 rdev_dec_pending(rrdev, rrdev->mddev);
1902 rcu_read_lock();
1903 }
1904 rcu_read_unlock();
355810d1 1905 }
b4c625c6
SL
1906 ctx->data_parity_stripes++;
1907out:
1908 r5l_recovery_reset_stripe(sh);
1909}
1910
1911static struct stripe_head *
1912r5c_recovery_alloc_stripe(struct r5conf *conf,
3c66abba 1913 sector_t stripe_sect)
b4c625c6
SL
1914{
1915 struct stripe_head *sh;
1916
1917 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1918 if (!sh)
1919 return NULL; /* no more stripe available */
1920
1921 r5l_recovery_reset_stripe(sh);
b4c625c6
SL
1922
1923 return sh;
1924}
1925
1926static struct stripe_head *
1927r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1928{
1929 struct stripe_head *sh;
1930
1931 list_for_each_entry(sh, list, lru)
1932 if (sh->sector == sect)
1933 return sh;
1934 return NULL;
1935}
1936
1937static void
1938r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1939 struct r5l_recovery_ctx *ctx)
1940{
1941 struct stripe_head *sh, *next;
1942
1943 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1944 r5l_recovery_reset_stripe(sh);
1945 list_del_init(&sh->lru);
1946 raid5_release_stripe(sh);
1947 }
1948}
1949
1950static void
1951r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1952 struct r5l_recovery_ctx *ctx)
1953{
1954 struct stripe_head *sh, *next;
1955
1956 list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1957 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1958 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1959 list_del_init(&sh->lru);
1960 raid5_release_stripe(sh);
1961 }
1962}
1963
1964/* if matches return 0; otherwise return -EINVAL */
1965static int
effe6ee7
SL
1966r5l_recovery_verify_data_checksum(struct r5l_log *log,
1967 struct r5l_recovery_ctx *ctx,
1968 struct page *page,
b4c625c6
SL
1969 sector_t log_offset, __le32 log_checksum)
1970{
1971 void *addr;
1972 u32 checksum;
1973
effe6ee7 1974 r5l_recovery_read_page(log, ctx, page, log_offset);
b4c625c6
SL
1975 addr = kmap_atomic(page);
1976 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1977 kunmap_atomic(addr);
1978 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1979}
1980
1981/*
1982 * before loading data to stripe cache, we need verify checksum for all data,
1983 * if there is mismatch for any data page, we drop all data in the mata block
1984 */
1985static int
1986r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1987 struct r5l_recovery_ctx *ctx)
1988{
1989 struct mddev *mddev = log->rdev->mddev;
1990 struct r5conf *conf = mddev->private;
1991 struct r5l_meta_block *mb = page_address(ctx->meta_page);
1992 sector_t mb_offset = sizeof(struct r5l_meta_block);
1993 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1994 struct page *page;
1995 struct r5l_payload_data_parity *payload;
2d4f4687 1996 struct r5l_payload_flush *payload_flush;
b4c625c6
SL
1997
1998 page = alloc_page(GFP_KERNEL);
1999 if (!page)
2000 return -ENOMEM;
2001
2002 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2003 payload = (void *)mb + mb_offset;
2d4f4687 2004 payload_flush = (void *)mb + mb_offset;
b4c625c6
SL
2005
2006 if (payload->header.type == R5LOG_PAYLOAD_DATA) {
2007 if (r5l_recovery_verify_data_checksum(
effe6ee7 2008 log, ctx, page, log_offset,
b4c625c6
SL
2009 payload->checksum[0]) < 0)
2010 goto mismatch;
2011 } else if (payload->header.type == R5LOG_PAYLOAD_PARITY) {
2012 if (r5l_recovery_verify_data_checksum(
effe6ee7 2013 log, ctx, page, log_offset,
b4c625c6
SL
2014 payload->checksum[0]) < 0)
2015 goto mismatch;
2016 if (conf->max_degraded == 2 && /* q for RAID 6 */
2017 r5l_recovery_verify_data_checksum(
effe6ee7 2018 log, ctx, page,
b4c625c6
SL
2019 r5l_ring_add(log, log_offset,
2020 BLOCK_SECTORS),
2021 payload->checksum[1]) < 0)
2022 goto mismatch;
2d4f4687
SL
2023 } else if (payload->header.type == R5LOG_PAYLOAD_FLUSH) {
2024 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2025 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
b4c625c6
SL
2026 goto mismatch;
2027
2d4f4687
SL
2028 if (payload->header.type == R5LOG_PAYLOAD_FLUSH) {
2029 mb_offset += sizeof(struct r5l_payload_flush) +
2030 le32_to_cpu(payload_flush->size);
2031 } else {
2032 /* DATA or PARITY payload */
2033 log_offset = r5l_ring_add(log, log_offset,
2034 le32_to_cpu(payload->size));
2035 mb_offset += sizeof(struct r5l_payload_data_parity) +
2036 sizeof(__le32) *
2037 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2038 }
b4c625c6 2039
b4c625c6
SL
2040 }
2041
2042 put_page(page);
355810d1
SL
2043 return 0;
2044
b4c625c6
SL
2045mismatch:
2046 put_page(page);
355810d1
SL
2047 return -EINVAL;
2048}
2049
b4c625c6
SL
2050/*
2051 * Analyze all data/parity pages in one meta block
2052 * Returns:
2053 * 0 for success
2054 * -EINVAL for unknown playload type
2055 * -EAGAIN for checksum mismatch of data page
2056 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2057 */
2058static int
2059r5c_recovery_analyze_meta_block(struct r5l_log *log,
2060 struct r5l_recovery_ctx *ctx,
2061 struct list_head *cached_stripe_list)
355810d1 2062{
b4c625c6
SL
2063 struct mddev *mddev = log->rdev->mddev;
2064 struct r5conf *conf = mddev->private;
355810d1 2065 struct r5l_meta_block *mb;
b4c625c6 2066 struct r5l_payload_data_parity *payload;
2d4f4687 2067 struct r5l_payload_flush *payload_flush;
b4c625c6 2068 int mb_offset;
355810d1 2069 sector_t log_offset;
b4c625c6
SL
2070 sector_t stripe_sect;
2071 struct stripe_head *sh;
2072 int ret;
2073
2074 /*
2075 * for mismatch in data blocks, we will drop all data in this mb, but
2076 * we will still read next mb for other data with FLUSH flag, as
2077 * io_unit could finish out of order.
2078 */
2079 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2080 if (ret == -EINVAL)
2081 return -EAGAIN;
2082 else if (ret)
2083 return ret; /* -ENOMEM duo to alloc_page() failed */
355810d1
SL
2084
2085 mb = page_address(ctx->meta_page);
b4c625c6 2086 mb_offset = sizeof(struct r5l_meta_block);
355810d1
SL
2087 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2088
b4c625c6 2089 while (mb_offset < le32_to_cpu(mb->meta_size)) {
355810d1
SL
2090 int dd;
2091
b4c625c6 2092 payload = (void *)mb + mb_offset;
2d4f4687
SL
2093 payload_flush = (void *)mb + mb_offset;
2094
2095 if (payload->header.type == R5LOG_PAYLOAD_FLUSH) {
2096 int i, count;
2097
2098 count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2099 for (i = 0; i < count; ++i) {
2100 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2101 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2102 stripe_sect);
2103 if (sh) {
2104 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2105 r5l_recovery_reset_stripe(sh);
2106 list_del_init(&sh->lru);
2107 raid5_release_stripe(sh);
2108 }
2109 }
2110
2111 mb_offset += sizeof(struct r5l_payload_flush) +
2112 le32_to_cpu(payload_flush->size);
2113 continue;
2114 }
2115
2116 /* DATA or PARITY payload */
b4c625c6
SL
2117 stripe_sect = (payload->header.type == R5LOG_PAYLOAD_DATA) ?
2118 raid5_compute_sector(
2119 conf, le64_to_cpu(payload->location), 0, &dd,
2120 NULL)
2121 : le64_to_cpu(payload->location);
2122
2123 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2124 stripe_sect);
2125
2126 if (!sh) {
3c66abba 2127 sh = r5c_recovery_alloc_stripe(conf, stripe_sect);
b4c625c6
SL
2128 /*
2129 * cannot get stripe from raid5_get_active_stripe
2130 * try replay some stripes
2131 */
2132 if (!sh) {
2133 r5c_recovery_replay_stripes(
2134 cached_stripe_list, ctx);
2135 sh = r5c_recovery_alloc_stripe(
3c66abba 2136 conf, stripe_sect);
b4c625c6
SL
2137 }
2138 if (!sh) {
2139 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2140 mdname(mddev),
2141 conf->min_nr_stripes * 2);
2142 raid5_set_cache_size(mddev,
2143 conf->min_nr_stripes * 2);
3c66abba
SL
2144 sh = r5c_recovery_alloc_stripe(conf,
2145 stripe_sect);
b4c625c6
SL
2146 }
2147 if (!sh) {
2148 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2149 mdname(mddev));
2150 return -ENOMEM;
2151 }
2152 list_add_tail(&sh->lru, cached_stripe_list);
2153 }
2154
2155 if (payload->header.type == R5LOG_PAYLOAD_DATA) {
f7b7bee7
ZL
2156 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2157 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
b4c625c6 2158 r5l_recovery_replay_one_stripe(conf, sh, ctx);
b4c625c6
SL
2159 list_move_tail(&sh->lru, cached_stripe_list);
2160 }
2161 r5l_recovery_load_data(log, sh, ctx, payload,
2162 log_offset);
2163 } else if (payload->header.type == R5LOG_PAYLOAD_PARITY)
2164 r5l_recovery_load_parity(log, sh, ctx, payload,
2165 log_offset);
2166 else
355810d1 2167 return -EINVAL;
b4c625c6
SL
2168
2169 log_offset = r5l_ring_add(log, log_offset,
2170 le32_to_cpu(payload->size));
2171
2172 mb_offset += sizeof(struct r5l_payload_data_parity) +
2173 sizeof(__le32) *
2174 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
355810d1 2175 }
b4c625c6 2176
355810d1
SL
2177 return 0;
2178}
2179
b4c625c6
SL
2180/*
2181 * Load the stripe into cache. The stripe will be written out later by
2182 * the stripe cache state machine.
2183 */
2184static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2185 struct stripe_head *sh)
355810d1 2186{
b4c625c6
SL
2187 struct r5dev *dev;
2188 int i;
2189
2190 for (i = sh->disks; i--; ) {
2191 dev = sh->dev + i;
2192 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2193 set_bit(R5_InJournal, &dev->flags);
2194 set_bit(R5_UPTODATE, &dev->flags);
2195 }
2196 }
b4c625c6
SL
2197}
2198
2199/*
2200 * Scan through the log for all to-be-flushed data
2201 *
2202 * For stripes with data and parity, namely Data-Parity stripe
2203 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2204 *
2205 * For stripes with only data, namely Data-Only stripe
2206 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2207 *
2208 * For a stripe, if we see data after parity, we should discard all previous
2209 * data and parity for this stripe, as these data are already flushed to
2210 * the array.
2211 *
2212 * At the end of the scan, we return the new journal_tail, which points to
2213 * first data-only stripe on the journal device, or next invalid meta block.
2214 */
2215static int r5c_recovery_flush_log(struct r5l_log *log,
2216 struct r5l_recovery_ctx *ctx)
2217{
bc8f167f 2218 struct stripe_head *sh;
b4c625c6
SL
2219 int ret = 0;
2220
2221 /* scan through the log */
355810d1 2222 while (1) {
b4c625c6
SL
2223 if (r5l_recovery_read_meta_block(log, ctx))
2224 break;
2225
2226 ret = r5c_recovery_analyze_meta_block(log, ctx,
2227 &ctx->cached_list);
2228 /*
2229 * -EAGAIN means mismatch in data block, in this case, we still
2230 * try scan the next metablock
2231 */
2232 if (ret && ret != -EAGAIN)
2233 break; /* ret == -EINVAL or -ENOMEM */
355810d1
SL
2234 ctx->seq++;
2235 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2236 }
b4c625c6
SL
2237
2238 if (ret == -ENOMEM) {
2239 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2240 return ret;
2241 }
2242
2243 /* replay data-parity stripes */
2244 r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2245
2246 /* load data-only stripes to stripe cache */
bc8f167f 2247 list_for_each_entry(sh, &ctx->cached_list, lru) {
b4c625c6
SL
2248 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2249 r5c_recovery_load_one_stripe(log, sh);
b4c625c6
SL
2250 ctx->data_only_stripes++;
2251 }
2252
2253 return 0;
355810d1
SL
2254}
2255
b4c625c6
SL
2256/*
2257 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2258 * log will start here. but we can't let superblock point to last valid
2259 * meta block. The log might looks like:
2260 * | meta 1| meta 2| meta 3|
2261 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2262 * superblock points to meta 1, we write a new valid meta 2n. if crash
2263 * happens again, new recovery will start from meta 1. Since meta 2n is
2264 * valid now, recovery will think meta 3 is valid, which is wrong.
2265 * The solution is we create a new meta in meta2 with its seq == meta
3c6edc66
SL
2266 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2267 * will not think meta 3 is a valid meta, because its seq doesn't match
b4c625c6
SL
2268 */
2269
2270/*
2271 * Before recovery, the log looks like the following
2272 *
2273 * ---------------------------------------------
2274 * | valid log | invalid log |
2275 * ---------------------------------------------
2276 * ^
2277 * |- log->last_checkpoint
2278 * |- log->last_cp_seq
2279 *
2280 * Now we scan through the log until we see invalid entry
2281 *
2282 * ---------------------------------------------
2283 * | valid log | invalid log |
2284 * ---------------------------------------------
2285 * ^ ^
2286 * |- log->last_checkpoint |- ctx->pos
2287 * |- log->last_cp_seq |- ctx->seq
2288 *
2289 * From this point, we need to increase seq number by 10 to avoid
2290 * confusing next recovery.
2291 *
2292 * ---------------------------------------------
2293 * | valid log | invalid log |
2294 * ---------------------------------------------
2295 * ^ ^
2296 * |- log->last_checkpoint |- ctx->pos+1
3c6edc66 2297 * |- log->last_cp_seq |- ctx->seq+10001
b4c625c6
SL
2298 *
2299 * However, it is not safe to start the state machine yet, because data only
2300 * parities are not yet secured in RAID. To save these data only parities, we
2301 * rewrite them from seq+11.
2302 *
2303 * -----------------------------------------------------------------
2304 * | valid log | data only stripes | invalid log |
2305 * -----------------------------------------------------------------
2306 * ^ ^
2307 * |- log->last_checkpoint |- ctx->pos+n
3c6edc66 2308 * |- log->last_cp_seq |- ctx->seq+10000+n
b4c625c6
SL
2309 *
2310 * If failure happens again during this process, the recovery can safe start
2311 * again from log->last_checkpoint.
2312 *
2313 * Once data only stripes are rewritten to journal, we move log_tail
2314 *
2315 * -----------------------------------------------------------------
2316 * | old log | data only stripes | invalid log |
2317 * -----------------------------------------------------------------
2318 * ^ ^
2319 * |- log->last_checkpoint |- ctx->pos+n
3c6edc66 2320 * |- log->last_cp_seq |- ctx->seq+10000+n
b4c625c6
SL
2321 *
2322 * Then we can safely start the state machine. If failure happens from this
2323 * point on, the recovery will start from new log->last_checkpoint.
2324 */
2325static int
2326r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2327 struct r5l_recovery_ctx *ctx)
355810d1 2328{
a85dd7b8 2329 struct stripe_head *sh;
b4c625c6 2330 struct mddev *mddev = log->rdev->mddev;
355810d1 2331 struct page *page;
3c66abba 2332 sector_t next_checkpoint = MaxSector;
355810d1 2333
b4c625c6
SL
2334 page = alloc_page(GFP_KERNEL);
2335 if (!page) {
2336 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2337 mdname(mddev));
355810d1 2338 return -ENOMEM;
b4c625c6 2339 }
355810d1 2340
3c66abba
SL
2341 WARN_ON(list_empty(&ctx->cached_list));
2342
a85dd7b8 2343 list_for_each_entry(sh, &ctx->cached_list, lru) {
b4c625c6
SL
2344 struct r5l_meta_block *mb;
2345 int i;
2346 int offset;
2347 sector_t write_pos;
2348
2349 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2350 r5l_recovery_create_empty_meta_block(log, page,
2351 ctx->pos, ctx->seq);
2352 mb = page_address(page);
2353 offset = le32_to_cpu(mb->meta_size);
fc833c2a 2354 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
b4c625c6
SL
2355
2356 for (i = sh->disks; i--; ) {
2357 struct r5dev *dev = &sh->dev[i];
2358 struct r5l_payload_data_parity *payload;
2359 void *addr;
2360
2361 if (test_bit(R5_InJournal, &dev->flags)) {
2362 payload = (void *)mb + offset;
2363 payload->header.type = cpu_to_le16(
2364 R5LOG_PAYLOAD_DATA);
2365 payload->size = BLOCK_SECTORS;
2366 payload->location = cpu_to_le64(
2367 raid5_compute_blocknr(sh, i, 0));
2368 addr = kmap_atomic(dev->page);
2369 payload->checksum[0] = cpu_to_le32(
2370 crc32c_le(log->uuid_checksum, addr,
2371 PAGE_SIZE));
2372 kunmap_atomic(addr);
2373 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2374 dev->page, REQ_OP_WRITE, 0, false);
2375 write_pos = r5l_ring_add(log, write_pos,
2376 BLOCK_SECTORS);
2377 offset += sizeof(__le32) +
2378 sizeof(struct r5l_payload_data_parity);
2379
2380 }
2381 }
2382 mb->meta_size = cpu_to_le32(offset);
5c88f403
SL
2383 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2384 mb, PAGE_SIZE));
b4c625c6 2385 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
20737738 2386 REQ_OP_WRITE, REQ_FUA, false);
b4c625c6 2387 sh->log_start = ctx->pos;
3c66abba
SL
2388 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2389 atomic_inc(&log->stripe_in_journal_count);
b4c625c6
SL
2390 ctx->pos = write_pos;
2391 ctx->seq += 1;
3c66abba 2392 next_checkpoint = sh->log_start;
355810d1 2393 }
3c66abba 2394 log->next_checkpoint = next_checkpoint;
355810d1
SL
2395 __free_page(page);
2396 return 0;
2397}
2398
a85dd7b8
SL
2399static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2400 struct r5l_recovery_ctx *ctx)
2401{
2402 struct mddev *mddev = log->rdev->mddev;
2403 struct r5conf *conf = mddev->private;
2404 struct stripe_head *sh, *next;
2405
2406 if (ctx->data_only_stripes == 0)
2407 return;
2408
2409 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2410
2411 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2412 r5c_make_stripe_write_out(sh);
2413 set_bit(STRIPE_HANDLE, &sh->state);
2414 list_del_init(&sh->lru);
2415 raid5_release_stripe(sh);
2416 }
2417
2418 md_wakeup_thread(conf->mddev->thread);
2419 /* reuse conf->wait_for_quiescent in recovery */
2420 wait_event(conf->wait_for_quiescent,
2421 atomic_read(&conf->active_stripes) == 0);
2422
2423 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2424}
2425
f6bed0ef
SL
2426static int r5l_recovery_log(struct r5l_log *log)
2427{
5aabf7c4 2428 struct mddev *mddev = log->rdev->mddev;
effe6ee7 2429 struct r5l_recovery_ctx *ctx;
5aabf7c4 2430 int ret;
43b96748 2431 sector_t pos;
355810d1 2432
effe6ee7
SL
2433 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2434 if (!ctx)
355810d1
SL
2435 return -ENOMEM;
2436
effe6ee7
SL
2437 ctx->pos = log->last_checkpoint;
2438 ctx->seq = log->last_cp_seq;
2439 INIT_LIST_HEAD(&ctx->cached_list);
2440 ctx->meta_page = alloc_page(GFP_KERNEL);
355810d1 2441
effe6ee7
SL
2442 if (!ctx->meta_page) {
2443 ret = -ENOMEM;
2444 goto meta_page;
2445 }
b4c625c6 2446
effe6ee7
SL
2447 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2448 ret = -ENOMEM;
2449 goto ra_pool;
2450 }
2451
2452 ret = r5c_recovery_flush_log(log, ctx);
2453
2454 if (ret)
2455 goto error;
43b96748 2456
effe6ee7
SL
2457 pos = ctx->pos;
2458 ctx->seq += 10000;
43b96748 2459
effe6ee7 2460 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
5aabf7c4
SL
2461 pr_debug("md/raid:%s: starting from clean shutdown\n",
2462 mdname(mddev));
a85dd7b8 2463 else
99f17890 2464 pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
effe6ee7
SL
2465 mdname(mddev), ctx->data_only_stripes,
2466 ctx->data_parity_stripes);
2467
2468 if (ctx->data_only_stripes == 0) {
2469 log->next_checkpoint = ctx->pos;
2470 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2471 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2472 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
a85dd7b8
SL
2473 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2474 mdname(mddev));
effe6ee7
SL
2475 ret = -EIO;
2476 goto error;
b4c625c6
SL
2477 }
2478
effe6ee7
SL
2479 log->log_start = ctx->pos;
2480 log->seq = ctx->seq;
43b96748
J
2481 log->last_checkpoint = pos;
2482 r5l_write_super(log, pos);
a85dd7b8 2483
effe6ee7
SL
2484 r5c_recovery_flush_data_only_stripes(log, ctx);
2485 ret = 0;
2486error:
2487 r5l_recovery_free_ra_pool(log, ctx);
2488ra_pool:
2489 __free_page(ctx->meta_page);
2490meta_page:
2491 kfree(ctx);
2492 return ret;
f6bed0ef
SL
2493}
2494
2495static void r5l_write_super(struct r5l_log *log, sector_t cp)
2496{
2497 struct mddev *mddev = log->rdev->mddev;
2498
2499 log->rdev->journal_tail = cp;
2953079c 2500 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
f6bed0ef
SL
2501}
2502
2c7da14b
SL
2503static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2504{
2505 struct r5conf *conf = mddev->private;
2506 int ret;
2507
2508 if (!conf->log)
2509 return 0;
2510
2511 switch (conf->log->r5c_journal_mode) {
2512 case R5C_JOURNAL_MODE_WRITE_THROUGH:
2513 ret = snprintf(
2514 page, PAGE_SIZE, "[%s] %s\n",
2515 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2516 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2517 break;
2518 case R5C_JOURNAL_MODE_WRITE_BACK:
2519 ret = snprintf(
2520 page, PAGE_SIZE, "%s [%s]\n",
2521 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2522 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2523 break;
2524 default:
2525 ret = 0;
2526 }
2527 return ret;
2528}
2529
2530static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2531 const char *page, size_t length)
2532{
2533 struct r5conf *conf = mddev->private;
2534 struct r5l_log *log = conf->log;
2535 int val = -1, i;
2536 int len = length;
2537
2538 if (!log)
2539 return -ENODEV;
2540
2541 if (len && page[len - 1] == '\n')
2542 len -= 1;
2543 for (i = 0; i < ARRAY_SIZE(r5c_journal_mode_str); i++)
2544 if (strlen(r5c_journal_mode_str[i]) == len &&
2545 strncmp(page, r5c_journal_mode_str[i], len) == 0) {
2546 val = i;
2547 break;
2548 }
2549 if (val < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2550 val > R5C_JOURNAL_MODE_WRITE_BACK)
2551 return -EINVAL;
2552
2e38a37f
SL
2553 if (raid5_calc_degraded(conf) > 0 &&
2554 val == R5C_JOURNAL_MODE_WRITE_BACK)
2555 return -EINVAL;
2556
2c7da14b
SL
2557 mddev_suspend(mddev);
2558 conf->log->r5c_journal_mode = val;
2559 mddev_resume(mddev);
2560
2561 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2562 mdname(mddev), val, r5c_journal_mode_str[val]);
2563 return length;
2564}
2565
2566struct md_sysfs_entry
2567r5c_journal_mode = __ATTR(journal_mode, 0644,
2568 r5c_journal_mode_show, r5c_journal_mode_store);
2569
2ded3703
SL
2570/*
2571 * Try handle write operation in caching phase. This function should only
2572 * be called in write-back mode.
2573 *
2574 * If all outstanding writes can be handled in caching phase, returns 0
2575 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2576 * and returns -EAGAIN
2577 */
2578int r5c_try_caching_write(struct r5conf *conf,
2579 struct stripe_head *sh,
2580 struct stripe_head_state *s,
2581 int disks)
2582{
2583 struct r5l_log *log = conf->log;
1e6d690b
SL
2584 int i;
2585 struct r5dev *dev;
2586 int to_cache = 0;
03b047f4
SL
2587 void **pslot;
2588 sector_t tree_index;
2589 int ret;
2590 uintptr_t refcount;
2ded3703
SL
2591
2592 BUG_ON(!r5c_is_writeback(log));
2593
1e6d690b
SL
2594 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2595 /*
2596 * There are two different scenarios here:
2597 * 1. The stripe has some data cached, and it is sent to
2598 * write-out phase for reclaim
2599 * 2. The stripe is clean, and this is the first write
2600 *
2601 * For 1, return -EAGAIN, so we continue with
2602 * handle_stripe_dirtying().
2603 *
2604 * For 2, set STRIPE_R5C_CACHING and continue with caching
2605 * write.
2606 */
2607
2608 /* case 1: anything injournal or anything in written */
2609 if (s->injournal > 0 || s->written > 0)
2610 return -EAGAIN;
2611 /* case 2 */
2612 set_bit(STRIPE_R5C_CACHING, &sh->state);
2613 }
2614
2e38a37f
SL
2615 /*
2616 * When run in degraded mode, array is set to write-through mode.
2617 * This check helps drain pending write safely in the transition to
2618 * write-through mode.
2619 */
2620 if (s->failed) {
2621 r5c_make_stripe_write_out(sh);
2622 return -EAGAIN;
2623 }
2624
1e6d690b
SL
2625 for (i = disks; i--; ) {
2626 dev = &sh->dev[i];
2627 /* if non-overwrite, use writing-out phase */
2628 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2629 !test_bit(R5_InJournal, &dev->flags)) {
2630 r5c_make_stripe_write_out(sh);
2631 return -EAGAIN;
2632 }
2633 }
2634
03b047f4
SL
2635 /* if the stripe is not counted in big_stripe_tree, add it now */
2636 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2637 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2638 tree_index = r5c_tree_index(conf, sh->sector);
2639 spin_lock(&log->tree_lock);
2640 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2641 tree_index);
2642 if (pslot) {
2643 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2644 pslot, &log->tree_lock) >>
2645 R5C_RADIX_COUNT_SHIFT;
2646 radix_tree_replace_slot(
2647 &log->big_stripe_tree, pslot,
2648 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2649 } else {
2650 /*
2651 * this radix_tree_insert can fail safely, so no
2652 * need to call radix_tree_preload()
2653 */
2654 ret = radix_tree_insert(
2655 &log->big_stripe_tree, tree_index,
2656 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2657 if (ret) {
2658 spin_unlock(&log->tree_lock);
2659 r5c_make_stripe_write_out(sh);
2660 return -EAGAIN;
2661 }
2662 }
2663 spin_unlock(&log->tree_lock);
2664
2665 /*
2666 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2667 * counted in the radix tree
2668 */
2669 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2670 atomic_inc(&conf->r5c_cached_partial_stripes);
2671 }
2672
1e6d690b
SL
2673 for (i = disks; i--; ) {
2674 dev = &sh->dev[i];
2675 if (dev->towrite) {
2676 set_bit(R5_Wantwrite, &dev->flags);
2677 set_bit(R5_Wantdrain, &dev->flags);
2678 set_bit(R5_LOCKED, &dev->flags);
2679 to_cache++;
2680 }
2681 }
2682
2683 if (to_cache) {
2684 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2685 /*
2686 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2687 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2688 * r5c_handle_data_cached()
2689 */
2690 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2691 }
2692
2693 return 0;
2694}
2695
2696/*
2697 * free extra pages (orig_page) we allocated for prexor
2698 */
2699void r5c_release_extra_page(struct stripe_head *sh)
2700{
d7bd398e 2701 struct r5conf *conf = sh->raid_conf;
1e6d690b 2702 int i;
d7bd398e
SL
2703 bool using_disk_info_extra_page;
2704
2705 using_disk_info_extra_page =
2706 sh->dev[0].orig_page == conf->disks[0].extra_page;
1e6d690b
SL
2707
2708 for (i = sh->disks; i--; )
2709 if (sh->dev[i].page != sh->dev[i].orig_page) {
2710 struct page *p = sh->dev[i].orig_page;
2711
2712 sh->dev[i].orig_page = sh->dev[i].page;
86aa1397
SL
2713 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2714
d7bd398e
SL
2715 if (!using_disk_info_extra_page)
2716 put_page(p);
1e6d690b 2717 }
d7bd398e
SL
2718
2719 if (using_disk_info_extra_page) {
2720 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2721 md_wakeup_thread(conf->mddev->thread);
2722 }
2723}
2724
2725void r5c_use_extra_page(struct stripe_head *sh)
2726{
2727 struct r5conf *conf = sh->raid_conf;
2728 int i;
2729 struct r5dev *dev;
2730
2731 for (i = sh->disks; i--; ) {
2732 dev = &sh->dev[i];
2733 if (dev->orig_page != dev->page)
2734 put_page(dev->orig_page);
2735 dev->orig_page = conf->disks[i].extra_page;
2736 }
2ded3703
SL
2737}
2738
2739/*
2740 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2741 * stripe is committed to RAID disks.
2742 */
2743void r5c_finish_stripe_write_out(struct r5conf *conf,
2744 struct stripe_head *sh,
2745 struct stripe_head_state *s)
2746{
03b047f4 2747 struct r5l_log *log = conf->log;
1e6d690b
SL
2748 int i;
2749 int do_wakeup = 0;
03b047f4
SL
2750 sector_t tree_index;
2751 void **pslot;
2752 uintptr_t refcount;
1e6d690b 2753
03b047f4 2754 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2ded3703
SL
2755 return;
2756
2757 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2758 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2759
03b047f4 2760 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2ded3703 2761 return;
1e6d690b
SL
2762
2763 for (i = sh->disks; i--; ) {
2764 clear_bit(R5_InJournal, &sh->dev[i].flags);
2765 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2766 do_wakeup = 1;
2767 }
2768
2769 /*
2770 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2771 * We updated R5_InJournal, so we also update s->injournal.
2772 */
2773 s->injournal = 0;
2774
2775 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2776 if (atomic_dec_and_test(&conf->pending_full_writes))
2777 md_wakeup_thread(conf->mddev->thread);
2778
2779 if (do_wakeup)
2780 wake_up(&conf->wait_for_overlap);
a39f7afd 2781
03b047f4 2782 spin_lock_irq(&log->stripe_in_journal_lock);
a39f7afd 2783 list_del_init(&sh->r5c);
03b047f4 2784 spin_unlock_irq(&log->stripe_in_journal_lock);
a39f7afd 2785 sh->log_start = MaxSector;
03b047f4
SL
2786
2787 atomic_dec(&log->stripe_in_journal_count);
2788 r5c_update_log_state(log);
2789
2790 /* stop counting this stripe in big_stripe_tree */
2791 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2792 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2793 tree_index = r5c_tree_index(conf, sh->sector);
2794 spin_lock(&log->tree_lock);
2795 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2796 tree_index);
2797 BUG_ON(pslot == NULL);
2798 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2799 pslot, &log->tree_lock) >>
2800 R5C_RADIX_COUNT_SHIFT;
2801 if (refcount == 1)
2802 radix_tree_delete(&log->big_stripe_tree, tree_index);
2803 else
2804 radix_tree_replace_slot(
2805 &log->big_stripe_tree, pslot,
2806 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2807 spin_unlock(&log->tree_lock);
2808 }
2809
2810 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2811 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
e33fbb9c 2812 atomic_dec(&conf->r5c_flushing_partial_stripes);
03b047f4
SL
2813 atomic_dec(&conf->r5c_cached_partial_stripes);
2814 }
2815
2816 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2817 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
e33fbb9c 2818 atomic_dec(&conf->r5c_flushing_full_stripes);
03b047f4
SL
2819 atomic_dec(&conf->r5c_cached_full_stripes);
2820 }
ea17481f
SL
2821
2822 r5l_append_flush_payload(log, sh->sector);
1e6d690b
SL
2823}
2824
ff875738 2825int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
1e6d690b 2826{
a39f7afd 2827 struct r5conf *conf = sh->raid_conf;
1e6d690b
SL
2828 int pages = 0;
2829 int reserve;
2830 int i;
2831 int ret = 0;
2832
2833 BUG_ON(!log);
2834
2835 for (i = 0; i < sh->disks; i++) {
2836 void *addr;
2837
2838 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2839 continue;
2840 addr = kmap_atomic(sh->dev[i].page);
2841 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2842 addr, PAGE_SIZE);
2843 kunmap_atomic(addr);
2844 pages++;
2845 }
2846 WARN_ON(pages == 0);
2847
2848 /*
2849 * The stripe must enter state machine again to call endio, so
2850 * don't delay.
2851 */
2852 clear_bit(STRIPE_DELAYED, &sh->state);
2853 atomic_inc(&sh->count);
2854
2855 mutex_lock(&log->io_mutex);
2856 /* meta + data */
2857 reserve = (1 + pages) << (PAGE_SHIFT - 9);
1e6d690b 2858
a39f7afd
SL
2859 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2860 sh->log_start == MaxSector)
2861 r5l_add_no_space_stripe(log, sh);
2862 else if (!r5l_has_free_space(log, reserve)) {
2863 if (sh->log_start == log->last_checkpoint)
2864 BUG();
2865 else
2866 r5l_add_no_space_stripe(log, sh);
1e6d690b
SL
2867 } else {
2868 ret = r5l_log_stripe(log, sh, pages, 0);
2869 if (ret) {
2870 spin_lock_irq(&log->io_list_lock);
2871 list_add_tail(&sh->log_list, &log->no_mem_stripes);
2872 spin_unlock_irq(&log->io_list_lock);
2873 }
2874 }
2875
2876 mutex_unlock(&log->io_mutex);
2877 return 0;
f6bed0ef
SL
2878}
2879
03b047f4
SL
2880/* check whether this big stripe is in write back cache. */
2881bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2882{
2883 struct r5l_log *log = conf->log;
2884 sector_t tree_index;
2885 void *slot;
2886
2887 if (!log)
2888 return false;
2889
2890 WARN_ON_ONCE(!rcu_read_lock_held());
2891 tree_index = r5c_tree_index(conf, sect);
2892 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2893 return slot != NULL;
2894}
2895
f6bed0ef
SL
2896static int r5l_load_log(struct r5l_log *log)
2897{
2898 struct md_rdev *rdev = log->rdev;
2899 struct page *page;
2900 struct r5l_meta_block *mb;
2901 sector_t cp = log->rdev->journal_tail;
2902 u32 stored_crc, expected_crc;
2903 bool create_super = false;
d30dfeb9 2904 int ret = 0;
f6bed0ef
SL
2905
2906 /* Make sure it's valid */
2907 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2908 cp = 0;
2909 page = alloc_page(GFP_KERNEL);
2910 if (!page)
2911 return -ENOMEM;
2912
796a5cf0 2913 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
f6bed0ef
SL
2914 ret = -EIO;
2915 goto ioerr;
2916 }
2917 mb = page_address(page);
2918
2919 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2920 mb->version != R5LOG_VERSION) {
2921 create_super = true;
2922 goto create;
2923 }
2924 stored_crc = le32_to_cpu(mb->checksum);
2925 mb->checksum = 0;
5cb2fbd6 2926 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
f6bed0ef
SL
2927 if (stored_crc != expected_crc) {
2928 create_super = true;
2929 goto create;
2930 }
2931 if (le64_to_cpu(mb->position) != cp) {
2932 create_super = true;
2933 goto create;
2934 }
2935create:
2936 if (create_super) {
2937 log->last_cp_seq = prandom_u32();
2938 cp = 0;
56056c2e 2939 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
f6bed0ef
SL
2940 /*
2941 * Make sure super points to correct address. Log might have
2942 * data very soon. If super hasn't correct log tail address,
2943 * recovery can't find the log
2944 */
2945 r5l_write_super(log, cp);
2946 } else
2947 log->last_cp_seq = le64_to_cpu(mb->seq);
2948
2949 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
0576b1c6
SL
2950 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2951 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2952 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
f6bed0ef
SL
2953 log->last_checkpoint = cp;
2954
2955 __free_page(page);
2956
d30dfeb9
J
2957 if (create_super) {
2958 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
2959 log->seq = log->last_cp_seq + 1;
2960 log->next_checkpoint = cp;
2961 } else
2962 ret = r5l_recovery_log(log);
2963
3d7e7e1d
ZL
2964 r5c_update_log_state(log);
2965 return ret;
f6bed0ef
SL
2966ioerr:
2967 __free_page(page);
2968 return ret;
2969}
2970
2e38a37f
SL
2971void r5c_update_on_rdev_error(struct mddev *mddev)
2972{
2973 struct r5conf *conf = mddev->private;
2974 struct r5l_log *log = conf->log;
2975
2976 if (!log)
2977 return;
2978
2979 if (raid5_calc_degraded(conf) > 0 &&
2980 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
2981 schedule_work(&log->disable_writeback_work);
2982}
2983
f6bed0ef
SL
2984int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
2985{
c888a8f9 2986 struct request_queue *q = bdev_get_queue(rdev->bdev);
f6bed0ef 2987 struct r5l_log *log;
ff875738
AP
2988 char b[BDEVNAME_SIZE];
2989
2990 pr_debug("md/raid:%s: using device %s as journal\n",
2991 mdname(conf->mddev), bdevname(rdev->bdev, b));
f6bed0ef
SL
2992
2993 if (PAGE_SIZE != 4096)
2994 return -EINVAL;
c757ec95
SL
2995
2996 /*
2997 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
2998 * raid_disks r5l_payload_data_parity.
2999 *
3000 * Write journal and cache does not work for very big array
3001 * (raid_disks > 203)
3002 */
3003 if (sizeof(struct r5l_meta_block) +
3004 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3005 conf->raid_disks) > PAGE_SIZE) {
3006 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3007 mdname(conf->mddev), conf->raid_disks);
3008 return -EINVAL;
3009 }
3010
f6bed0ef
SL
3011 log = kzalloc(sizeof(*log), GFP_KERNEL);
3012 if (!log)
3013 return -ENOMEM;
3014 log->rdev = rdev;
3015
c888a8f9 3016 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
56fef7c6 3017
5cb2fbd6
SL
3018 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3019 sizeof(rdev->mddev->uuid));
f6bed0ef
SL
3020
3021 mutex_init(&log->io_mutex);
3022
3023 spin_lock_init(&log->io_list_lock);
3024 INIT_LIST_HEAD(&log->running_ios);
0576b1c6 3025 INIT_LIST_HEAD(&log->io_end_ios);
a8c34f91 3026 INIT_LIST_HEAD(&log->flushing_ios);
04732f74 3027 INIT_LIST_HEAD(&log->finished_ios);
3a83f467 3028 bio_init(&log->flush_bio, NULL, 0);
f6bed0ef
SL
3029
3030 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3031 if (!log->io_kc)
3032 goto io_kc;
3033
5036c390
CH
3034 log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
3035 if (!log->io_pool)
3036 goto io_pool;
3037
c38d29b3
CH
3038 log->bs = bioset_create(R5L_POOL_SIZE, 0);
3039 if (!log->bs)
3040 goto io_bs;
3041
e8deb638
CH
3042 log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
3043 if (!log->meta_pool)
3044 goto out_mempool;
3045
03b047f4
SL
3046 spin_lock_init(&log->tree_lock);
3047 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3048
0576b1c6
SL
3049 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3050 log->rdev->mddev, "reclaim");
3051 if (!log->reclaim_thread)
3052 goto reclaim_thread;
a39f7afd
SL
3053 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3054
0fd22b45 3055 init_waitqueue_head(&log->iounit_wait);
0576b1c6 3056
5036c390
CH
3057 INIT_LIST_HEAD(&log->no_mem_stripes);
3058
f6bed0ef
SL
3059 INIT_LIST_HEAD(&log->no_space_stripes);
3060 spin_lock_init(&log->no_space_stripes_lock);
3061
3bddb7f8 3062 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
2e38a37f 3063 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3bddb7f8 3064
2ded3703 3065 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
a39f7afd
SL
3066 INIT_LIST_HEAD(&log->stripe_in_journal_list);
3067 spin_lock_init(&log->stripe_in_journal_lock);
3068 atomic_set(&log->stripe_in_journal_count, 0);
2ded3703 3069
d2250f10
SL
3070 rcu_assign_pointer(conf->log, log);
3071
f6bed0ef
SL
3072 if (r5l_load_log(log))
3073 goto error;
3074
a62ab49e 3075 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
f6bed0ef 3076 return 0;
e8deb638 3077
f6bed0ef 3078error:
d2250f10 3079 rcu_assign_pointer(conf->log, NULL);
0576b1c6
SL
3080 md_unregister_thread(&log->reclaim_thread);
3081reclaim_thread:
e8deb638
CH
3082 mempool_destroy(log->meta_pool);
3083out_mempool:
c38d29b3
CH
3084 bioset_free(log->bs);
3085io_bs:
5036c390
CH
3086 mempool_destroy(log->io_pool);
3087io_pool:
f6bed0ef
SL
3088 kmem_cache_destroy(log->io_kc);
3089io_kc:
3090 kfree(log);
3091 return -EINVAL;
3092}
3093
ff875738 3094void r5l_exit_log(struct r5conf *conf)
f6bed0ef 3095{
ff875738
AP
3096 struct r5l_log *log = conf->log;
3097
3098 conf->log = NULL;
3099 synchronize_rcu();
3100
2e38a37f 3101 flush_work(&log->disable_writeback_work);
0576b1c6 3102 md_unregister_thread(&log->reclaim_thread);
e8deb638 3103 mempool_destroy(log->meta_pool);
c38d29b3 3104 bioset_free(log->bs);
5036c390 3105 mempool_destroy(log->io_pool);
f6bed0ef
SL
3106 kmem_cache_destroy(log->io_kc);
3107 kfree(log);
3108}