]>
Commit | Line | Data |
---|---|---|
f6bed0ef SL |
1 | /* |
2 | * Copyright (C) 2015 Shaohua Li <shli@fb.com> | |
3 | * | |
4 | * This program is free software; you can redistribute it and/or modify it | |
5 | * under the terms and conditions of the GNU General Public License, | |
6 | * version 2, as published by the Free Software Foundation. | |
7 | * | |
8 | * This program is distributed in the hope it will be useful, but WITHOUT | |
9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
11 | * more details. | |
12 | * | |
13 | */ | |
14 | #include <linux/kernel.h> | |
15 | #include <linux/wait.h> | |
16 | #include <linux/blkdev.h> | |
17 | #include <linux/slab.h> | |
18 | #include <linux/raid/md_p.h> | |
5cb2fbd6 | 19 | #include <linux/crc32c.h> |
f6bed0ef SL |
20 | #include <linux/random.h> |
21 | #include "md.h" | |
22 | #include "raid5.h" | |
23 | ||
24 | /* | |
25 | * metadata/data stored in disk with 4k size unit (a block) regardless | |
26 | * underneath hardware sector size. only works with PAGE_SIZE == 4096 | |
27 | */ | |
28 | #define BLOCK_SECTORS (8) | |
29 | ||
0576b1c6 SL |
30 | /* |
31 | * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent | |
32 | * recovery scans a very long log | |
33 | */ | |
34 | #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */ | |
35 | #define RECLAIM_MAX_FREE_SPACE_SHIFT (2) | |
36 | ||
c38d29b3 CH |
37 | /* |
38 | * We only need 2 bios per I/O unit to make progress, but ensure we | |
39 | * have a few more available to not get too tight. | |
40 | */ | |
41 | #define R5L_POOL_SIZE 4 | |
42 | ||
f6bed0ef SL |
43 | struct r5l_log { |
44 | struct md_rdev *rdev; | |
45 | ||
46 | u32 uuid_checksum; | |
47 | ||
48 | sector_t device_size; /* log device size, round to | |
49 | * BLOCK_SECTORS */ | |
0576b1c6 SL |
50 | sector_t max_free_space; /* reclaim run if free space is at |
51 | * this size */ | |
f6bed0ef SL |
52 | |
53 | sector_t last_checkpoint; /* log tail. where recovery scan | |
54 | * starts from */ | |
55 | u64 last_cp_seq; /* log tail sequence */ | |
56 | ||
57 | sector_t log_start; /* log head. where new data appends */ | |
58 | u64 seq; /* log head sequence */ | |
59 | ||
17036461 CH |
60 | sector_t next_checkpoint; |
61 | u64 next_cp_seq; | |
62 | ||
f6bed0ef SL |
63 | struct mutex io_mutex; |
64 | struct r5l_io_unit *current_io; /* current io_unit accepting new data */ | |
65 | ||
66 | spinlock_t io_list_lock; | |
67 | struct list_head running_ios; /* io_units which are still running, | |
68 | * and have not yet been completely | |
69 | * written to the log */ | |
70 | struct list_head io_end_ios; /* io_units which have been completely | |
71 | * written to the log but not yet written | |
72 | * to the RAID */ | |
a8c34f91 SL |
73 | struct list_head flushing_ios; /* io_units which are waiting for log |
74 | * cache flush */ | |
04732f74 | 75 | struct list_head finished_ios; /* io_units which settle down in log disk */ |
a8c34f91 | 76 | struct bio flush_bio; |
f6bed0ef SL |
77 | |
78 | struct kmem_cache *io_kc; | |
c38d29b3 | 79 | struct bio_set *bs; |
f6bed0ef | 80 | |
0576b1c6 SL |
81 | struct md_thread *reclaim_thread; |
82 | unsigned long reclaim_target; /* number of space that need to be | |
83 | * reclaimed. if it's 0, reclaim spaces | |
84 | * used by io_units which are in | |
85 | * IO_UNIT_STRIPE_END state (eg, reclaim | |
86 | * dones't wait for specific io_unit | |
87 | * switching to IO_UNIT_STRIPE_END | |
88 | * state) */ | |
0fd22b45 | 89 | wait_queue_head_t iounit_wait; |
0576b1c6 | 90 | |
f6bed0ef SL |
91 | struct list_head no_space_stripes; /* pending stripes, log has no space */ |
92 | spinlock_t no_space_stripes_lock; | |
56fef7c6 CH |
93 | |
94 | bool need_cache_flush; | |
4b482044 | 95 | bool in_teardown; |
f6bed0ef SL |
96 | }; |
97 | ||
98 | /* | |
99 | * an IO range starts from a meta data block and end at the next meta data | |
100 | * block. The io unit's the meta data block tracks data/parity followed it. io | |
101 | * unit is written to log disk with normal write, as we always flush log disk | |
102 | * first and then start move data to raid disks, there is no requirement to | |
103 | * write io unit with FLUSH/FUA | |
104 | */ | |
105 | struct r5l_io_unit { | |
106 | struct r5l_log *log; | |
107 | ||
108 | struct page *meta_page; /* store meta block */ | |
109 | int meta_offset; /* current offset in meta_page */ | |
110 | ||
f6bed0ef SL |
111 | struct bio *current_bio;/* current_bio accepting new data */ |
112 | ||
113 | atomic_t pending_stripe;/* how many stripes not flushed to raid */ | |
114 | u64 seq; /* seq number of the metablock */ | |
115 | sector_t log_start; /* where the io_unit starts */ | |
116 | sector_t log_end; /* where the io_unit ends */ | |
117 | struct list_head log_sibling; /* log->running_ios */ | |
118 | struct list_head stripe_list; /* stripes added to the io_unit */ | |
119 | ||
120 | int state; | |
6143e2ce | 121 | bool need_split_bio; |
f6bed0ef SL |
122 | }; |
123 | ||
124 | /* r5l_io_unit state */ | |
125 | enum r5l_io_unit_state { | |
126 | IO_UNIT_RUNNING = 0, /* accepting new IO */ | |
127 | IO_UNIT_IO_START = 1, /* io_unit bio start writing to log, | |
128 | * don't accepting new bio */ | |
129 | IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */ | |
a8c34f91 | 130 | IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */ |
f6bed0ef SL |
131 | }; |
132 | ||
133 | static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc) | |
134 | { | |
135 | start += inc; | |
136 | if (start >= log->device_size) | |
137 | start = start - log->device_size; | |
138 | return start; | |
139 | } | |
140 | ||
141 | static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start, | |
142 | sector_t end) | |
143 | { | |
144 | if (end >= start) | |
145 | return end - start; | |
146 | else | |
147 | return end + log->device_size - start; | |
148 | } | |
149 | ||
150 | static bool r5l_has_free_space(struct r5l_log *log, sector_t size) | |
151 | { | |
152 | sector_t used_size; | |
153 | ||
154 | used_size = r5l_ring_distance(log, log->last_checkpoint, | |
155 | log->log_start); | |
156 | ||
157 | return log->device_size > used_size + size; | |
158 | } | |
159 | ||
f6bed0ef SL |
160 | static void __r5l_set_io_unit_state(struct r5l_io_unit *io, |
161 | enum r5l_io_unit_state state) | |
162 | { | |
f6bed0ef SL |
163 | if (WARN_ON(io->state >= state)) |
164 | return; | |
165 | io->state = state; | |
f6bed0ef SL |
166 | } |
167 | ||
d8858f43 CH |
168 | static void r5l_io_run_stripes(struct r5l_io_unit *io) |
169 | { | |
170 | struct stripe_head *sh, *next; | |
171 | ||
172 | list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { | |
173 | list_del_init(&sh->log_list); | |
174 | set_bit(STRIPE_HANDLE, &sh->state); | |
175 | raid5_release_stripe(sh); | |
176 | } | |
177 | } | |
178 | ||
56fef7c6 CH |
179 | static void r5l_log_run_stripes(struct r5l_log *log) |
180 | { | |
181 | struct r5l_io_unit *io, *next; | |
182 | ||
183 | assert_spin_locked(&log->io_list_lock); | |
184 | ||
185 | list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { | |
186 | /* don't change list order */ | |
187 | if (io->state < IO_UNIT_IO_END) | |
188 | break; | |
189 | ||
190 | list_move_tail(&io->log_sibling, &log->finished_ios); | |
191 | r5l_io_run_stripes(io); | |
192 | } | |
193 | } | |
194 | ||
3848c0bc CH |
195 | static void r5l_move_to_end_ios(struct r5l_log *log) |
196 | { | |
197 | struct r5l_io_unit *io, *next; | |
198 | ||
199 | assert_spin_locked(&log->io_list_lock); | |
200 | ||
201 | list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { | |
202 | /* don't change list order */ | |
203 | if (io->state < IO_UNIT_IO_END) | |
204 | break; | |
205 | list_move_tail(&io->log_sibling, &log->io_end_ios); | |
206 | } | |
207 | } | |
208 | ||
f6bed0ef SL |
209 | static void r5l_log_endio(struct bio *bio) |
210 | { | |
211 | struct r5l_io_unit *io = bio->bi_private; | |
212 | struct r5l_log *log = io->log; | |
509ffec7 | 213 | unsigned long flags; |
f6bed0ef | 214 | |
6e74a9cf SL |
215 | if (bio->bi_error) |
216 | md_error(log->rdev->mddev, log->rdev); | |
217 | ||
f6bed0ef | 218 | bio_put(bio); |
ad66d445 | 219 | __free_page(io->meta_page); |
f6bed0ef | 220 | |
509ffec7 CH |
221 | spin_lock_irqsave(&log->io_list_lock, flags); |
222 | __r5l_set_io_unit_state(io, IO_UNIT_IO_END); | |
56fef7c6 | 223 | if (log->need_cache_flush) |
3848c0bc | 224 | r5l_move_to_end_ios(log); |
56fef7c6 CH |
225 | else |
226 | r5l_log_run_stripes(log); | |
509ffec7 CH |
227 | spin_unlock_irqrestore(&log->io_list_lock, flags); |
228 | ||
56fef7c6 CH |
229 | if (log->need_cache_flush) |
230 | md_wakeup_thread(log->rdev->mddev->thread); | |
f6bed0ef SL |
231 | } |
232 | ||
233 | static void r5l_submit_current_io(struct r5l_log *log) | |
234 | { | |
235 | struct r5l_io_unit *io = log->current_io; | |
236 | struct r5l_meta_block *block; | |
509ffec7 | 237 | unsigned long flags; |
f6bed0ef SL |
238 | u32 crc; |
239 | ||
240 | if (!io) | |
241 | return; | |
242 | ||
243 | block = page_address(io->meta_page); | |
244 | block->meta_size = cpu_to_le32(io->meta_offset); | |
5cb2fbd6 | 245 | crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE); |
f6bed0ef SL |
246 | block->checksum = cpu_to_le32(crc); |
247 | ||
248 | log->current_io = NULL; | |
509ffec7 CH |
249 | spin_lock_irqsave(&log->io_list_lock, flags); |
250 | __r5l_set_io_unit_state(io, IO_UNIT_IO_START); | |
251 | spin_unlock_irqrestore(&log->io_list_lock, flags); | |
f6bed0ef | 252 | |
6143e2ce | 253 | submit_bio(WRITE, io->current_bio); |
f6bed0ef SL |
254 | } |
255 | ||
6143e2ce | 256 | static struct bio *r5l_bio_alloc(struct r5l_log *log) |
b349feb3 | 257 | { |
c38d29b3 | 258 | struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs); |
b349feb3 CH |
259 | |
260 | bio->bi_rw = WRITE; | |
261 | bio->bi_bdev = log->rdev->bdev; | |
1e932a37 | 262 | bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start; |
b349feb3 | 263 | |
b349feb3 CH |
264 | return bio; |
265 | } | |
266 | ||
c1b99198 CH |
267 | static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io) |
268 | { | |
269 | log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS); | |
270 | ||
271 | /* | |
272 | * If we filled up the log device start from the beginning again, | |
273 | * which will require a new bio. | |
274 | * | |
275 | * Note: for this to work properly the log size needs to me a multiple | |
276 | * of BLOCK_SECTORS. | |
277 | */ | |
278 | if (log->log_start == 0) | |
6143e2ce | 279 | io->need_split_bio = true; |
c1b99198 CH |
280 | |
281 | io->log_end = log->log_start; | |
282 | } | |
283 | ||
f6bed0ef SL |
284 | static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log) |
285 | { | |
286 | struct r5l_io_unit *io; | |
287 | struct r5l_meta_block *block; | |
f6bed0ef | 288 | |
51039cd0 CH |
289 | /* We can't handle memory allocate failure so far */ |
290 | io = kmem_cache_zalloc(log->io_kc, GFP_NOIO | __GFP_NOFAIL); | |
291 | io->log = log; | |
51039cd0 CH |
292 | INIT_LIST_HEAD(&io->log_sibling); |
293 | INIT_LIST_HEAD(&io->stripe_list); | |
294 | io->state = IO_UNIT_RUNNING; | |
f6bed0ef | 295 | |
51039cd0 | 296 | io->meta_page = alloc_page(GFP_NOIO | __GFP_NOFAIL | __GFP_ZERO); |
f6bed0ef SL |
297 | block = page_address(io->meta_page); |
298 | block->magic = cpu_to_le32(R5LOG_MAGIC); | |
299 | block->version = R5LOG_VERSION; | |
300 | block->seq = cpu_to_le64(log->seq); | |
301 | block->position = cpu_to_le64(log->log_start); | |
302 | ||
303 | io->log_start = log->log_start; | |
304 | io->meta_offset = sizeof(struct r5l_meta_block); | |
2b8ef16e | 305 | io->seq = log->seq++; |
f6bed0ef | 306 | |
6143e2ce CH |
307 | io->current_bio = r5l_bio_alloc(log); |
308 | io->current_bio->bi_end_io = r5l_log_endio; | |
309 | io->current_bio->bi_private = io; | |
b349feb3 | 310 | bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0); |
f6bed0ef | 311 | |
c1b99198 | 312 | r5_reserve_log_entry(log, io); |
f6bed0ef SL |
313 | |
314 | spin_lock_irq(&log->io_list_lock); | |
315 | list_add_tail(&io->log_sibling, &log->running_ios); | |
316 | spin_unlock_irq(&log->io_list_lock); | |
317 | ||
318 | return io; | |
319 | } | |
320 | ||
321 | static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size) | |
322 | { | |
22581f58 CH |
323 | if (log->current_io && |
324 | log->current_io->meta_offset + payload_size > PAGE_SIZE) | |
f6bed0ef | 325 | r5l_submit_current_io(log); |
f6bed0ef | 326 | |
22581f58 CH |
327 | if (!log->current_io) |
328 | log->current_io = r5l_new_meta(log); | |
f6bed0ef SL |
329 | return 0; |
330 | } | |
331 | ||
332 | static void r5l_append_payload_meta(struct r5l_log *log, u16 type, | |
333 | sector_t location, | |
334 | u32 checksum1, u32 checksum2, | |
335 | bool checksum2_valid) | |
336 | { | |
337 | struct r5l_io_unit *io = log->current_io; | |
338 | struct r5l_payload_data_parity *payload; | |
339 | ||
340 | payload = page_address(io->meta_page) + io->meta_offset; | |
341 | payload->header.type = cpu_to_le16(type); | |
342 | payload->header.flags = cpu_to_le16(0); | |
343 | payload->size = cpu_to_le32((1 + !!checksum2_valid) << | |
344 | (PAGE_SHIFT - 9)); | |
345 | payload->location = cpu_to_le64(location); | |
346 | payload->checksum[0] = cpu_to_le32(checksum1); | |
347 | if (checksum2_valid) | |
348 | payload->checksum[1] = cpu_to_le32(checksum2); | |
349 | ||
350 | io->meta_offset += sizeof(struct r5l_payload_data_parity) + | |
351 | sizeof(__le32) * (1 + !!checksum2_valid); | |
352 | } | |
353 | ||
354 | static void r5l_append_payload_page(struct r5l_log *log, struct page *page) | |
355 | { | |
356 | struct r5l_io_unit *io = log->current_io; | |
357 | ||
6143e2ce CH |
358 | if (io->need_split_bio) { |
359 | struct bio *prev = io->current_bio; | |
b349feb3 | 360 | |
6143e2ce CH |
361 | io->current_bio = r5l_bio_alloc(log); |
362 | bio_chain(io->current_bio, prev); | |
363 | ||
364 | submit_bio(WRITE, prev); | |
f6bed0ef | 365 | } |
f6bed0ef | 366 | |
6143e2ce CH |
367 | if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) |
368 | BUG(); | |
369 | ||
c1b99198 | 370 | r5_reserve_log_entry(log, io); |
f6bed0ef SL |
371 | } |
372 | ||
373 | static void r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh, | |
374 | int data_pages, int parity_pages) | |
375 | { | |
376 | int i; | |
377 | int meta_size; | |
378 | struct r5l_io_unit *io; | |
379 | ||
380 | meta_size = | |
381 | ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) | |
382 | * data_pages) + | |
383 | sizeof(struct r5l_payload_data_parity) + | |
384 | sizeof(__le32) * parity_pages; | |
385 | ||
386 | r5l_get_meta(log, meta_size); | |
387 | io = log->current_io; | |
388 | ||
389 | for (i = 0; i < sh->disks; i++) { | |
390 | if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) | |
391 | continue; | |
392 | if (i == sh->pd_idx || i == sh->qd_idx) | |
393 | continue; | |
394 | r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA, | |
395 | raid5_compute_blocknr(sh, i, 0), | |
396 | sh->dev[i].log_checksum, 0, false); | |
397 | r5l_append_payload_page(log, sh->dev[i].page); | |
398 | } | |
399 | ||
400 | if (sh->qd_idx >= 0) { | |
401 | r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, | |
402 | sh->sector, sh->dev[sh->pd_idx].log_checksum, | |
403 | sh->dev[sh->qd_idx].log_checksum, true); | |
404 | r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); | |
405 | r5l_append_payload_page(log, sh->dev[sh->qd_idx].page); | |
406 | } else { | |
407 | r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, | |
408 | sh->sector, sh->dev[sh->pd_idx].log_checksum, | |
409 | 0, false); | |
410 | r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); | |
411 | } | |
412 | ||
413 | list_add_tail(&sh->log_list, &io->stripe_list); | |
414 | atomic_inc(&io->pending_stripe); | |
415 | sh->log_io = io; | |
416 | } | |
417 | ||
509ffec7 | 418 | static void r5l_wake_reclaim(struct r5l_log *log, sector_t space); |
f6bed0ef SL |
419 | /* |
420 | * running in raid5d, where reclaim could wait for raid5d too (when it flushes | |
421 | * data from log to raid disks), so we shouldn't wait for reclaim here | |
422 | */ | |
423 | int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh) | |
424 | { | |
425 | int write_disks = 0; | |
426 | int data_pages, parity_pages; | |
427 | int meta_size; | |
428 | int reserve; | |
429 | int i; | |
430 | ||
431 | if (!log) | |
432 | return -EAGAIN; | |
433 | /* Don't support stripe batch */ | |
434 | if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || | |
435 | test_bit(STRIPE_SYNCING, &sh->state)) { | |
436 | /* the stripe is written to log, we start writing it to raid */ | |
437 | clear_bit(STRIPE_LOG_TRAPPED, &sh->state); | |
438 | return -EAGAIN; | |
439 | } | |
440 | ||
441 | for (i = 0; i < sh->disks; i++) { | |
442 | void *addr; | |
443 | ||
444 | if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) | |
445 | continue; | |
446 | write_disks++; | |
447 | /* checksum is already calculated in last run */ | |
448 | if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) | |
449 | continue; | |
450 | addr = kmap_atomic(sh->dev[i].page); | |
5cb2fbd6 SL |
451 | sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, |
452 | addr, PAGE_SIZE); | |
f6bed0ef SL |
453 | kunmap_atomic(addr); |
454 | } | |
455 | parity_pages = 1 + !!(sh->qd_idx >= 0); | |
456 | data_pages = write_disks - parity_pages; | |
457 | ||
458 | meta_size = | |
459 | ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) | |
460 | * data_pages) + | |
461 | sizeof(struct r5l_payload_data_parity) + | |
462 | sizeof(__le32) * parity_pages; | |
463 | /* Doesn't work with very big raid array */ | |
464 | if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE) | |
465 | return -EINVAL; | |
466 | ||
467 | set_bit(STRIPE_LOG_TRAPPED, &sh->state); | |
253f9fd4 SL |
468 | /* |
469 | * The stripe must enter state machine again to finish the write, so | |
470 | * don't delay. | |
471 | */ | |
472 | clear_bit(STRIPE_DELAYED, &sh->state); | |
f6bed0ef SL |
473 | atomic_inc(&sh->count); |
474 | ||
475 | mutex_lock(&log->io_mutex); | |
476 | /* meta + data */ | |
477 | reserve = (1 + write_disks) << (PAGE_SHIFT - 9); | |
478 | if (r5l_has_free_space(log, reserve)) | |
479 | r5l_log_stripe(log, sh, data_pages, parity_pages); | |
480 | else { | |
481 | spin_lock(&log->no_space_stripes_lock); | |
482 | list_add_tail(&sh->log_list, &log->no_space_stripes); | |
483 | spin_unlock(&log->no_space_stripes_lock); | |
484 | ||
485 | r5l_wake_reclaim(log, reserve); | |
486 | } | |
487 | mutex_unlock(&log->io_mutex); | |
488 | ||
489 | return 0; | |
490 | } | |
491 | ||
492 | void r5l_write_stripe_run(struct r5l_log *log) | |
493 | { | |
494 | if (!log) | |
495 | return; | |
496 | mutex_lock(&log->io_mutex); | |
497 | r5l_submit_current_io(log); | |
498 | mutex_unlock(&log->io_mutex); | |
499 | } | |
500 | ||
828cbe98 SL |
501 | int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio) |
502 | { | |
503 | if (!log) | |
504 | return -ENODEV; | |
505 | /* | |
506 | * we flush log disk cache first, then write stripe data to raid disks. | |
507 | * So if bio is finished, the log disk cache is flushed already. The | |
508 | * recovery guarantees we can recovery the bio from log disk, so we | |
509 | * don't need to flush again | |
510 | */ | |
511 | if (bio->bi_iter.bi_size == 0) { | |
512 | bio_endio(bio); | |
513 | return 0; | |
514 | } | |
515 | bio->bi_rw &= ~REQ_FLUSH; | |
516 | return -EAGAIN; | |
517 | } | |
518 | ||
f6bed0ef SL |
519 | /* This will run after log space is reclaimed */ |
520 | static void r5l_run_no_space_stripes(struct r5l_log *log) | |
521 | { | |
522 | struct stripe_head *sh; | |
523 | ||
524 | spin_lock(&log->no_space_stripes_lock); | |
525 | while (!list_empty(&log->no_space_stripes)) { | |
526 | sh = list_first_entry(&log->no_space_stripes, | |
527 | struct stripe_head, log_list); | |
528 | list_del_init(&sh->log_list); | |
529 | set_bit(STRIPE_HANDLE, &sh->state); | |
530 | raid5_release_stripe(sh); | |
531 | } | |
532 | spin_unlock(&log->no_space_stripes_lock); | |
533 | } | |
534 | ||
17036461 CH |
535 | static sector_t r5l_reclaimable_space(struct r5l_log *log) |
536 | { | |
537 | return r5l_ring_distance(log, log->last_checkpoint, | |
538 | log->next_checkpoint); | |
539 | } | |
540 | ||
04732f74 | 541 | static bool r5l_complete_finished_ios(struct r5l_log *log) |
17036461 CH |
542 | { |
543 | struct r5l_io_unit *io, *next; | |
544 | bool found = false; | |
545 | ||
546 | assert_spin_locked(&log->io_list_lock); | |
547 | ||
04732f74 | 548 | list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) { |
17036461 CH |
549 | /* don't change list order */ |
550 | if (io->state < IO_UNIT_STRIPE_END) | |
551 | break; | |
552 | ||
553 | log->next_checkpoint = io->log_start; | |
554 | log->next_cp_seq = io->seq; | |
555 | ||
556 | list_del(&io->log_sibling); | |
ad66d445 | 557 | kmem_cache_free(log->io_kc, io); |
17036461 CH |
558 | |
559 | found = true; | |
560 | } | |
561 | ||
562 | return found; | |
563 | } | |
564 | ||
509ffec7 CH |
565 | static void __r5l_stripe_write_finished(struct r5l_io_unit *io) |
566 | { | |
567 | struct r5l_log *log = io->log; | |
509ffec7 CH |
568 | unsigned long flags; |
569 | ||
570 | spin_lock_irqsave(&log->io_list_lock, flags); | |
571 | __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END); | |
17036461 | 572 | |
04732f74 | 573 | if (!r5l_complete_finished_ios(log)) { |
85f2f9a4 SL |
574 | spin_unlock_irqrestore(&log->io_list_lock, flags); |
575 | return; | |
576 | } | |
509ffec7 | 577 | |
17036461 | 578 | if (r5l_reclaimable_space(log) > log->max_free_space) |
509ffec7 CH |
579 | r5l_wake_reclaim(log, 0); |
580 | ||
509ffec7 CH |
581 | spin_unlock_irqrestore(&log->io_list_lock, flags); |
582 | wake_up(&log->iounit_wait); | |
583 | } | |
584 | ||
0576b1c6 SL |
585 | void r5l_stripe_write_finished(struct stripe_head *sh) |
586 | { | |
587 | struct r5l_io_unit *io; | |
588 | ||
0576b1c6 | 589 | io = sh->log_io; |
0576b1c6 SL |
590 | sh->log_io = NULL; |
591 | ||
509ffec7 CH |
592 | if (io && atomic_dec_and_test(&io->pending_stripe)) |
593 | __r5l_stripe_write_finished(io); | |
0576b1c6 SL |
594 | } |
595 | ||
a8c34f91 SL |
596 | static void r5l_log_flush_endio(struct bio *bio) |
597 | { | |
598 | struct r5l_log *log = container_of(bio, struct r5l_log, | |
599 | flush_bio); | |
600 | unsigned long flags; | |
601 | struct r5l_io_unit *io; | |
a8c34f91 | 602 | |
6e74a9cf SL |
603 | if (bio->bi_error) |
604 | md_error(log->rdev->mddev, log->rdev); | |
605 | ||
a8c34f91 | 606 | spin_lock_irqsave(&log->io_list_lock, flags); |
d8858f43 CH |
607 | list_for_each_entry(io, &log->flushing_ios, log_sibling) |
608 | r5l_io_run_stripes(io); | |
04732f74 | 609 | list_splice_tail_init(&log->flushing_ios, &log->finished_ios); |
a8c34f91 SL |
610 | spin_unlock_irqrestore(&log->io_list_lock, flags); |
611 | } | |
612 | ||
0576b1c6 SL |
613 | /* |
614 | * Starting dispatch IO to raid. | |
615 | * io_unit(meta) consists of a log. There is one situation we want to avoid. A | |
616 | * broken meta in the middle of a log causes recovery can't find meta at the | |
617 | * head of log. If operations require meta at the head persistent in log, we | |
618 | * must make sure meta before it persistent in log too. A case is: | |
619 | * | |
620 | * stripe data/parity is in log, we start write stripe to raid disks. stripe | |
621 | * data/parity must be persistent in log before we do the write to raid disks. | |
622 | * | |
623 | * The solution is we restrictly maintain io_unit list order. In this case, we | |
624 | * only write stripes of an io_unit to raid disks till the io_unit is the first | |
625 | * one whose data/parity is in log. | |
626 | */ | |
627 | void r5l_flush_stripe_to_raid(struct r5l_log *log) | |
628 | { | |
a8c34f91 | 629 | bool do_flush; |
56fef7c6 CH |
630 | |
631 | if (!log || !log->need_cache_flush) | |
0576b1c6 | 632 | return; |
0576b1c6 SL |
633 | |
634 | spin_lock_irq(&log->io_list_lock); | |
a8c34f91 SL |
635 | /* flush bio is running */ |
636 | if (!list_empty(&log->flushing_ios)) { | |
637 | spin_unlock_irq(&log->io_list_lock); | |
638 | return; | |
0576b1c6 | 639 | } |
a8c34f91 SL |
640 | list_splice_tail_init(&log->io_end_ios, &log->flushing_ios); |
641 | do_flush = !list_empty(&log->flushing_ios); | |
0576b1c6 | 642 | spin_unlock_irq(&log->io_list_lock); |
a8c34f91 SL |
643 | |
644 | if (!do_flush) | |
645 | return; | |
646 | bio_reset(&log->flush_bio); | |
647 | log->flush_bio.bi_bdev = log->rdev->bdev; | |
648 | log->flush_bio.bi_end_io = r5l_log_flush_endio; | |
649 | submit_bio(WRITE_FLUSH, &log->flush_bio); | |
0576b1c6 SL |
650 | } |
651 | ||
0576b1c6 | 652 | static void r5l_write_super(struct r5l_log *log, sector_t cp); |
4b482044 SL |
653 | static void r5l_write_super_and_discard_space(struct r5l_log *log, |
654 | sector_t end) | |
655 | { | |
656 | struct block_device *bdev = log->rdev->bdev; | |
657 | struct mddev *mddev; | |
658 | ||
659 | r5l_write_super(log, end); | |
660 | ||
661 | if (!blk_queue_discard(bdev_get_queue(bdev))) | |
662 | return; | |
663 | ||
664 | mddev = log->rdev->mddev; | |
665 | /* | |
666 | * This is to avoid a deadlock. r5l_quiesce holds reconfig_mutex and | |
667 | * wait for this thread to finish. This thread waits for | |
668 | * MD_CHANGE_PENDING clear, which is supposed to be done in | |
669 | * md_check_recovery(). md_check_recovery() tries to get | |
670 | * reconfig_mutex. Since r5l_quiesce already holds the mutex, | |
671 | * md_check_recovery() fails, so the PENDING never get cleared. The | |
672 | * in_teardown check workaround this issue. | |
673 | */ | |
674 | if (!log->in_teardown) { | |
675 | set_bit(MD_CHANGE_DEVS, &mddev->flags); | |
676 | set_bit(MD_CHANGE_PENDING, &mddev->flags); | |
677 | md_wakeup_thread(mddev->thread); | |
678 | wait_event(mddev->sb_wait, | |
679 | !test_bit(MD_CHANGE_PENDING, &mddev->flags) || | |
680 | log->in_teardown); | |
681 | /* | |
682 | * r5l_quiesce could run after in_teardown check and hold | |
683 | * mutex first. Superblock might get updated twice. | |
684 | */ | |
685 | if (log->in_teardown) | |
686 | md_update_sb(mddev, 1); | |
687 | } else { | |
688 | WARN_ON(!mddev_is_locked(mddev)); | |
689 | md_update_sb(mddev, 1); | |
690 | } | |
691 | ||
6e74a9cf | 692 | /* discard IO error really doesn't matter, ignore it */ |
4b482044 SL |
693 | if (log->last_checkpoint < end) { |
694 | blkdev_issue_discard(bdev, | |
695 | log->last_checkpoint + log->rdev->data_offset, | |
696 | end - log->last_checkpoint, GFP_NOIO, 0); | |
697 | } else { | |
698 | blkdev_issue_discard(bdev, | |
699 | log->last_checkpoint + log->rdev->data_offset, | |
700 | log->device_size - log->last_checkpoint, | |
701 | GFP_NOIO, 0); | |
702 | blkdev_issue_discard(bdev, log->rdev->data_offset, end, | |
703 | GFP_NOIO, 0); | |
704 | } | |
705 | } | |
706 | ||
707 | ||
0576b1c6 SL |
708 | static void r5l_do_reclaim(struct r5l_log *log) |
709 | { | |
0576b1c6 | 710 | sector_t reclaim_target = xchg(&log->reclaim_target, 0); |
17036461 CH |
711 | sector_t reclaimable; |
712 | sector_t next_checkpoint; | |
713 | u64 next_cp_seq; | |
0576b1c6 SL |
714 | |
715 | spin_lock_irq(&log->io_list_lock); | |
716 | /* | |
717 | * move proper io_unit to reclaim list. We should not change the order. | |
718 | * reclaimable/unreclaimable io_unit can be mixed in the list, we | |
719 | * shouldn't reuse space of an unreclaimable io_unit | |
720 | */ | |
721 | while (1) { | |
17036461 CH |
722 | reclaimable = r5l_reclaimable_space(log); |
723 | if (reclaimable >= reclaim_target || | |
0576b1c6 SL |
724 | (list_empty(&log->running_ios) && |
725 | list_empty(&log->io_end_ios) && | |
a8c34f91 | 726 | list_empty(&log->flushing_ios) && |
04732f74 | 727 | list_empty(&log->finished_ios))) |
0576b1c6 SL |
728 | break; |
729 | ||
17036461 CH |
730 | md_wakeup_thread(log->rdev->mddev->thread); |
731 | wait_event_lock_irq(log->iounit_wait, | |
732 | r5l_reclaimable_space(log) > reclaimable, | |
733 | log->io_list_lock); | |
0576b1c6 | 734 | } |
17036461 CH |
735 | |
736 | next_checkpoint = log->next_checkpoint; | |
737 | next_cp_seq = log->next_cp_seq; | |
0576b1c6 SL |
738 | spin_unlock_irq(&log->io_list_lock); |
739 | ||
17036461 CH |
740 | BUG_ON(reclaimable < 0); |
741 | if (reclaimable == 0) | |
0576b1c6 SL |
742 | return; |
743 | ||
0576b1c6 SL |
744 | /* |
745 | * write_super will flush cache of each raid disk. We must write super | |
746 | * here, because the log area might be reused soon and we don't want to | |
747 | * confuse recovery | |
748 | */ | |
4b482044 | 749 | r5l_write_super_and_discard_space(log, next_checkpoint); |
0576b1c6 SL |
750 | |
751 | mutex_lock(&log->io_mutex); | |
17036461 CH |
752 | log->last_checkpoint = next_checkpoint; |
753 | log->last_cp_seq = next_cp_seq; | |
0576b1c6 | 754 | mutex_unlock(&log->io_mutex); |
0576b1c6 | 755 | |
17036461 | 756 | r5l_run_no_space_stripes(log); |
0576b1c6 SL |
757 | } |
758 | ||
759 | static void r5l_reclaim_thread(struct md_thread *thread) | |
760 | { | |
761 | struct mddev *mddev = thread->mddev; | |
762 | struct r5conf *conf = mddev->private; | |
763 | struct r5l_log *log = conf->log; | |
764 | ||
765 | if (!log) | |
766 | return; | |
767 | r5l_do_reclaim(log); | |
768 | } | |
769 | ||
f6bed0ef SL |
770 | static void r5l_wake_reclaim(struct r5l_log *log, sector_t space) |
771 | { | |
0576b1c6 SL |
772 | unsigned long target; |
773 | unsigned long new = (unsigned long)space; /* overflow in theory */ | |
774 | ||
775 | do { | |
776 | target = log->reclaim_target; | |
777 | if (new < target) | |
778 | return; | |
779 | } while (cmpxchg(&log->reclaim_target, target, new) != target); | |
780 | md_wakeup_thread(log->reclaim_thread); | |
f6bed0ef SL |
781 | } |
782 | ||
e6c033f7 SL |
783 | void r5l_quiesce(struct r5l_log *log, int state) |
784 | { | |
4b482044 | 785 | struct mddev *mddev; |
e6c033f7 SL |
786 | if (!log || state == 2) |
787 | return; | |
788 | if (state == 0) { | |
4b482044 | 789 | log->in_teardown = 0; |
e6c033f7 SL |
790 | log->reclaim_thread = md_register_thread(r5l_reclaim_thread, |
791 | log->rdev->mddev, "reclaim"); | |
792 | } else if (state == 1) { | |
793 | /* | |
794 | * at this point all stripes are finished, so io_unit is at | |
795 | * least in STRIPE_END state | |
796 | */ | |
4b482044 SL |
797 | log->in_teardown = 1; |
798 | /* make sure r5l_write_super_and_discard_space exits */ | |
799 | mddev = log->rdev->mddev; | |
800 | wake_up(&mddev->sb_wait); | |
e6c033f7 SL |
801 | r5l_wake_reclaim(log, -1L); |
802 | md_unregister_thread(&log->reclaim_thread); | |
803 | r5l_do_reclaim(log); | |
804 | } | |
805 | } | |
806 | ||
6e74a9cf SL |
807 | bool r5l_log_disk_error(struct r5conf *conf) |
808 | { | |
f6b6ec5c SL |
809 | struct r5l_log *log; |
810 | bool ret; | |
7dde2ad3 | 811 | /* don't allow write if journal disk is missing */ |
f6b6ec5c SL |
812 | rcu_read_lock(); |
813 | log = rcu_dereference(conf->log); | |
814 | ||
815 | if (!log) | |
816 | ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags); | |
817 | else | |
818 | ret = test_bit(Faulty, &log->rdev->flags); | |
819 | rcu_read_unlock(); | |
820 | return ret; | |
6e74a9cf SL |
821 | } |
822 | ||
355810d1 SL |
823 | struct r5l_recovery_ctx { |
824 | struct page *meta_page; /* current meta */ | |
825 | sector_t meta_total_blocks; /* total size of current meta and data */ | |
826 | sector_t pos; /* recovery position */ | |
827 | u64 seq; /* recovery position seq */ | |
828 | }; | |
829 | ||
830 | static int r5l_read_meta_block(struct r5l_log *log, | |
831 | struct r5l_recovery_ctx *ctx) | |
832 | { | |
833 | struct page *page = ctx->meta_page; | |
834 | struct r5l_meta_block *mb; | |
835 | u32 crc, stored_crc; | |
836 | ||
837 | if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, READ, false)) | |
838 | return -EIO; | |
839 | ||
840 | mb = page_address(page); | |
841 | stored_crc = le32_to_cpu(mb->checksum); | |
842 | mb->checksum = 0; | |
843 | ||
844 | if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || | |
845 | le64_to_cpu(mb->seq) != ctx->seq || | |
846 | mb->version != R5LOG_VERSION || | |
847 | le64_to_cpu(mb->position) != ctx->pos) | |
848 | return -EINVAL; | |
849 | ||
5cb2fbd6 | 850 | crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); |
355810d1 SL |
851 | if (stored_crc != crc) |
852 | return -EINVAL; | |
853 | ||
854 | if (le32_to_cpu(mb->meta_size) > PAGE_SIZE) | |
855 | return -EINVAL; | |
856 | ||
857 | ctx->meta_total_blocks = BLOCK_SECTORS; | |
858 | ||
859 | return 0; | |
860 | } | |
861 | ||
862 | static int r5l_recovery_flush_one_stripe(struct r5l_log *log, | |
863 | struct r5l_recovery_ctx *ctx, | |
864 | sector_t stripe_sect, | |
865 | int *offset, sector_t *log_offset) | |
866 | { | |
867 | struct r5conf *conf = log->rdev->mddev->private; | |
868 | struct stripe_head *sh; | |
869 | struct r5l_payload_data_parity *payload; | |
870 | int disk_index; | |
871 | ||
872 | sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0); | |
873 | while (1) { | |
874 | payload = page_address(ctx->meta_page) + *offset; | |
875 | ||
876 | if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { | |
877 | raid5_compute_sector(conf, | |
878 | le64_to_cpu(payload->location), 0, | |
879 | &disk_index, sh); | |
880 | ||
881 | sync_page_io(log->rdev, *log_offset, PAGE_SIZE, | |
882 | sh->dev[disk_index].page, READ, false); | |
883 | sh->dev[disk_index].log_checksum = | |
884 | le32_to_cpu(payload->checksum[0]); | |
885 | set_bit(R5_Wantwrite, &sh->dev[disk_index].flags); | |
886 | ctx->meta_total_blocks += BLOCK_SECTORS; | |
887 | } else { | |
888 | disk_index = sh->pd_idx; | |
889 | sync_page_io(log->rdev, *log_offset, PAGE_SIZE, | |
890 | sh->dev[disk_index].page, READ, false); | |
891 | sh->dev[disk_index].log_checksum = | |
892 | le32_to_cpu(payload->checksum[0]); | |
893 | set_bit(R5_Wantwrite, &sh->dev[disk_index].flags); | |
894 | ||
895 | if (sh->qd_idx >= 0) { | |
896 | disk_index = sh->qd_idx; | |
897 | sync_page_io(log->rdev, | |
898 | r5l_ring_add(log, *log_offset, BLOCK_SECTORS), | |
899 | PAGE_SIZE, sh->dev[disk_index].page, | |
900 | READ, false); | |
901 | sh->dev[disk_index].log_checksum = | |
902 | le32_to_cpu(payload->checksum[1]); | |
903 | set_bit(R5_Wantwrite, | |
904 | &sh->dev[disk_index].flags); | |
905 | } | |
906 | ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded; | |
907 | } | |
908 | ||
909 | *log_offset = r5l_ring_add(log, *log_offset, | |
910 | le32_to_cpu(payload->size)); | |
911 | *offset += sizeof(struct r5l_payload_data_parity) + | |
912 | sizeof(__le32) * | |
913 | (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); | |
914 | if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) | |
915 | break; | |
916 | } | |
917 | ||
918 | for (disk_index = 0; disk_index < sh->disks; disk_index++) { | |
919 | void *addr; | |
920 | u32 checksum; | |
921 | ||
922 | if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) | |
923 | continue; | |
924 | addr = kmap_atomic(sh->dev[disk_index].page); | |
5cb2fbd6 | 925 | checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE); |
355810d1 SL |
926 | kunmap_atomic(addr); |
927 | if (checksum != sh->dev[disk_index].log_checksum) | |
928 | goto error; | |
929 | } | |
930 | ||
931 | for (disk_index = 0; disk_index < sh->disks; disk_index++) { | |
932 | struct md_rdev *rdev, *rrdev; | |
933 | ||
934 | if (!test_and_clear_bit(R5_Wantwrite, | |
935 | &sh->dev[disk_index].flags)) | |
936 | continue; | |
937 | ||
938 | /* in case device is broken */ | |
939 | rdev = rcu_dereference(conf->disks[disk_index].rdev); | |
940 | if (rdev) | |
941 | sync_page_io(rdev, stripe_sect, PAGE_SIZE, | |
942 | sh->dev[disk_index].page, WRITE, false); | |
943 | rrdev = rcu_dereference(conf->disks[disk_index].replacement); | |
944 | if (rrdev) | |
945 | sync_page_io(rrdev, stripe_sect, PAGE_SIZE, | |
946 | sh->dev[disk_index].page, WRITE, false); | |
947 | } | |
948 | raid5_release_stripe(sh); | |
949 | return 0; | |
950 | ||
951 | error: | |
952 | for (disk_index = 0; disk_index < sh->disks; disk_index++) | |
953 | sh->dev[disk_index].flags = 0; | |
954 | raid5_release_stripe(sh); | |
955 | return -EINVAL; | |
956 | } | |
957 | ||
958 | static int r5l_recovery_flush_one_meta(struct r5l_log *log, | |
959 | struct r5l_recovery_ctx *ctx) | |
960 | { | |
961 | struct r5conf *conf = log->rdev->mddev->private; | |
962 | struct r5l_payload_data_parity *payload; | |
963 | struct r5l_meta_block *mb; | |
964 | int offset; | |
965 | sector_t log_offset; | |
966 | sector_t stripe_sector; | |
967 | ||
968 | mb = page_address(ctx->meta_page); | |
969 | offset = sizeof(struct r5l_meta_block); | |
970 | log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); | |
971 | ||
972 | while (offset < le32_to_cpu(mb->meta_size)) { | |
973 | int dd; | |
974 | ||
975 | payload = (void *)mb + offset; | |
976 | stripe_sector = raid5_compute_sector(conf, | |
977 | le64_to_cpu(payload->location), 0, &dd, NULL); | |
978 | if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector, | |
979 | &offset, &log_offset)) | |
980 | return -EINVAL; | |
981 | } | |
982 | return 0; | |
983 | } | |
984 | ||
985 | /* copy data/parity from log to raid disks */ | |
986 | static void r5l_recovery_flush_log(struct r5l_log *log, | |
987 | struct r5l_recovery_ctx *ctx) | |
988 | { | |
989 | while (1) { | |
990 | if (r5l_read_meta_block(log, ctx)) | |
991 | return; | |
992 | if (r5l_recovery_flush_one_meta(log, ctx)) | |
993 | return; | |
994 | ctx->seq++; | |
995 | ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks); | |
996 | } | |
997 | } | |
998 | ||
999 | static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos, | |
1000 | u64 seq) | |
1001 | { | |
1002 | struct page *page; | |
1003 | struct r5l_meta_block *mb; | |
1004 | u32 crc; | |
1005 | ||
1006 | page = alloc_page(GFP_KERNEL | __GFP_ZERO); | |
1007 | if (!page) | |
1008 | return -ENOMEM; | |
1009 | mb = page_address(page); | |
1010 | mb->magic = cpu_to_le32(R5LOG_MAGIC); | |
1011 | mb->version = R5LOG_VERSION; | |
1012 | mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block)); | |
1013 | mb->seq = cpu_to_le64(seq); | |
1014 | mb->position = cpu_to_le64(pos); | |
5cb2fbd6 | 1015 | crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); |
355810d1 SL |
1016 | mb->checksum = cpu_to_le32(crc); |
1017 | ||
1018 | if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, WRITE_FUA, false)) { | |
1019 | __free_page(page); | |
1020 | return -EIO; | |
1021 | } | |
1022 | __free_page(page); | |
1023 | return 0; | |
1024 | } | |
1025 | ||
f6bed0ef SL |
1026 | static int r5l_recovery_log(struct r5l_log *log) |
1027 | { | |
355810d1 SL |
1028 | struct r5l_recovery_ctx ctx; |
1029 | ||
1030 | ctx.pos = log->last_checkpoint; | |
1031 | ctx.seq = log->last_cp_seq; | |
1032 | ctx.meta_page = alloc_page(GFP_KERNEL); | |
1033 | if (!ctx.meta_page) | |
1034 | return -ENOMEM; | |
1035 | ||
1036 | r5l_recovery_flush_log(log, &ctx); | |
1037 | __free_page(ctx.meta_page); | |
1038 | ||
1039 | /* | |
1040 | * we did a recovery. Now ctx.pos points to an invalid meta block. New | |
1041 | * log will start here. but we can't let superblock point to last valid | |
1042 | * meta block. The log might looks like: | |
1043 | * | meta 1| meta 2| meta 3| | |
1044 | * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If | |
1045 | * superblock points to meta 1, we write a new valid meta 2n. if crash | |
1046 | * happens again, new recovery will start from meta 1. Since meta 2n is | |
1047 | * valid now, recovery will think meta 3 is valid, which is wrong. | |
1048 | * The solution is we create a new meta in meta2 with its seq == meta | |
1049 | * 1's seq + 10 and let superblock points to meta2. The same recovery will | |
1050 | * not think meta 3 is a valid meta, because its seq doesn't match | |
1051 | */ | |
1052 | if (ctx.seq > log->last_cp_seq + 1) { | |
1053 | int ret; | |
1054 | ||
1055 | ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10); | |
1056 | if (ret) | |
1057 | return ret; | |
1058 | log->seq = ctx.seq + 11; | |
1059 | log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS); | |
1060 | r5l_write_super(log, ctx.pos); | |
1061 | } else { | |
1062 | log->log_start = ctx.pos; | |
1063 | log->seq = ctx.seq; | |
1064 | } | |
f6bed0ef SL |
1065 | return 0; |
1066 | } | |
1067 | ||
1068 | static void r5l_write_super(struct r5l_log *log, sector_t cp) | |
1069 | { | |
1070 | struct mddev *mddev = log->rdev->mddev; | |
1071 | ||
1072 | log->rdev->journal_tail = cp; | |
1073 | set_bit(MD_CHANGE_DEVS, &mddev->flags); | |
1074 | } | |
1075 | ||
1076 | static int r5l_load_log(struct r5l_log *log) | |
1077 | { | |
1078 | struct md_rdev *rdev = log->rdev; | |
1079 | struct page *page; | |
1080 | struct r5l_meta_block *mb; | |
1081 | sector_t cp = log->rdev->journal_tail; | |
1082 | u32 stored_crc, expected_crc; | |
1083 | bool create_super = false; | |
1084 | int ret; | |
1085 | ||
1086 | /* Make sure it's valid */ | |
1087 | if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp) | |
1088 | cp = 0; | |
1089 | page = alloc_page(GFP_KERNEL); | |
1090 | if (!page) | |
1091 | return -ENOMEM; | |
1092 | ||
1093 | if (!sync_page_io(rdev, cp, PAGE_SIZE, page, READ, false)) { | |
1094 | ret = -EIO; | |
1095 | goto ioerr; | |
1096 | } | |
1097 | mb = page_address(page); | |
1098 | ||
1099 | if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || | |
1100 | mb->version != R5LOG_VERSION) { | |
1101 | create_super = true; | |
1102 | goto create; | |
1103 | } | |
1104 | stored_crc = le32_to_cpu(mb->checksum); | |
1105 | mb->checksum = 0; | |
5cb2fbd6 | 1106 | expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); |
f6bed0ef SL |
1107 | if (stored_crc != expected_crc) { |
1108 | create_super = true; | |
1109 | goto create; | |
1110 | } | |
1111 | if (le64_to_cpu(mb->position) != cp) { | |
1112 | create_super = true; | |
1113 | goto create; | |
1114 | } | |
1115 | create: | |
1116 | if (create_super) { | |
1117 | log->last_cp_seq = prandom_u32(); | |
1118 | cp = 0; | |
1119 | /* | |
1120 | * Make sure super points to correct address. Log might have | |
1121 | * data very soon. If super hasn't correct log tail address, | |
1122 | * recovery can't find the log | |
1123 | */ | |
1124 | r5l_write_super(log, cp); | |
1125 | } else | |
1126 | log->last_cp_seq = le64_to_cpu(mb->seq); | |
1127 | ||
1128 | log->device_size = round_down(rdev->sectors, BLOCK_SECTORS); | |
0576b1c6 SL |
1129 | log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT; |
1130 | if (log->max_free_space > RECLAIM_MAX_FREE_SPACE) | |
1131 | log->max_free_space = RECLAIM_MAX_FREE_SPACE; | |
f6bed0ef SL |
1132 | log->last_checkpoint = cp; |
1133 | ||
1134 | __free_page(page); | |
1135 | ||
1136 | return r5l_recovery_log(log); | |
1137 | ioerr: | |
1138 | __free_page(page); | |
1139 | return ret; | |
1140 | } | |
1141 | ||
1142 | int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev) | |
1143 | { | |
1144 | struct r5l_log *log; | |
1145 | ||
1146 | if (PAGE_SIZE != 4096) | |
1147 | return -EINVAL; | |
1148 | log = kzalloc(sizeof(*log), GFP_KERNEL); | |
1149 | if (!log) | |
1150 | return -ENOMEM; | |
1151 | log->rdev = rdev; | |
1152 | ||
56fef7c6 CH |
1153 | log->need_cache_flush = (rdev->bdev->bd_disk->queue->flush_flags != 0); |
1154 | ||
5cb2fbd6 SL |
1155 | log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid, |
1156 | sizeof(rdev->mddev->uuid)); | |
f6bed0ef SL |
1157 | |
1158 | mutex_init(&log->io_mutex); | |
1159 | ||
1160 | spin_lock_init(&log->io_list_lock); | |
1161 | INIT_LIST_HEAD(&log->running_ios); | |
0576b1c6 | 1162 | INIT_LIST_HEAD(&log->io_end_ios); |
a8c34f91 | 1163 | INIT_LIST_HEAD(&log->flushing_ios); |
04732f74 | 1164 | INIT_LIST_HEAD(&log->finished_ios); |
a8c34f91 | 1165 | bio_init(&log->flush_bio); |
f6bed0ef SL |
1166 | |
1167 | log->io_kc = KMEM_CACHE(r5l_io_unit, 0); | |
1168 | if (!log->io_kc) | |
1169 | goto io_kc; | |
1170 | ||
c38d29b3 CH |
1171 | log->bs = bioset_create(R5L_POOL_SIZE, 0); |
1172 | if (!log->bs) | |
1173 | goto io_bs; | |
1174 | ||
0576b1c6 SL |
1175 | log->reclaim_thread = md_register_thread(r5l_reclaim_thread, |
1176 | log->rdev->mddev, "reclaim"); | |
1177 | if (!log->reclaim_thread) | |
1178 | goto reclaim_thread; | |
0fd22b45 | 1179 | init_waitqueue_head(&log->iounit_wait); |
0576b1c6 | 1180 | |
f6bed0ef SL |
1181 | INIT_LIST_HEAD(&log->no_space_stripes); |
1182 | spin_lock_init(&log->no_space_stripes_lock); | |
1183 | ||
1184 | if (r5l_load_log(log)) | |
1185 | goto error; | |
1186 | ||
f6b6ec5c | 1187 | rcu_assign_pointer(conf->log, log); |
f6bed0ef SL |
1188 | return 0; |
1189 | error: | |
0576b1c6 SL |
1190 | md_unregister_thread(&log->reclaim_thread); |
1191 | reclaim_thread: | |
c38d29b3 CH |
1192 | bioset_free(log->bs); |
1193 | io_bs: | |
f6bed0ef SL |
1194 | kmem_cache_destroy(log->io_kc); |
1195 | io_kc: | |
1196 | kfree(log); | |
1197 | return -EINVAL; | |
1198 | } | |
1199 | ||
1200 | void r5l_exit_log(struct r5l_log *log) | |
1201 | { | |
0576b1c6 | 1202 | md_unregister_thread(&log->reclaim_thread); |
c38d29b3 | 1203 | bioset_free(log->bs); |
f6bed0ef SL |
1204 | kmem_cache_destroy(log->io_kc); |
1205 | kfree(log); | |
1206 | } |