]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/md/raid5-cache.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid5-cache.c
CommitLineData
f6bed0ef
SL
1/*
2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
b4c625c6 3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
f6bed0ef
SL
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 */
15#include <linux/kernel.h>
16#include <linux/wait.h>
17#include <linux/blkdev.h>
18#include <linux/slab.h>
19#include <linux/raid/md_p.h>
5cb2fbd6 20#include <linux/crc32c.h>
f6bed0ef 21#include <linux/random.h>
ce1ccd07 22#include <linux/kthread.h>
03b047f4 23#include <linux/types.h>
f6bed0ef
SL
24#include "md.h"
25#include "raid5.h"
1e6d690b 26#include "bitmap.h"
70d466f7 27#include "raid5-log.h"
f6bed0ef
SL
28
29/*
30 * metadata/data stored in disk with 4k size unit (a block) regardless
31 * underneath hardware sector size. only works with PAGE_SIZE == 4096
32 */
33#define BLOCK_SECTORS (8)
effe6ee7 34#define BLOCK_SECTOR_SHIFT (3)
f6bed0ef 35
0576b1c6 36/*
a39f7afd
SL
37 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
38 *
39 * In write through mode, the reclaim runs every log->max_free_space.
40 * This can prevent the recovery scans for too long
0576b1c6
SL
41 */
42#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
43#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
44
a39f7afd
SL
45/* wake up reclaim thread periodically */
46#define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
47/* start flush with these full stripes */
84890c03 48#define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
a39f7afd
SL
49/* reclaim stripes in groups */
50#define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
51
c38d29b3
CH
52/*
53 * We only need 2 bios per I/O unit to make progress, but ensure we
54 * have a few more available to not get too tight.
55 */
56#define R5L_POOL_SIZE 4
57
2c7da14b
SL
58static char *r5c_journal_mode_str[] = {"write-through",
59 "write-back"};
2ded3703
SL
60/*
61 * raid5 cache state machine
62 *
9b69173e 63 * With the RAID cache, each stripe works in two phases:
2ded3703
SL
64 * - caching phase
65 * - writing-out phase
66 *
67 * These two phases are controlled by bit STRIPE_R5C_CACHING:
68 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
69 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
70 *
71 * When there is no journal, or the journal is in write-through mode,
72 * the stripe is always in writing-out phase.
73 *
74 * For write-back journal, the stripe is sent to caching phase on write
75 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
76 * the write-out phase by clearing STRIPE_R5C_CACHING.
77 *
78 * Stripes in caching phase do not write the raid disks. Instead, all
79 * writes are committed from the log device. Therefore, a stripe in
80 * caching phase handles writes as:
81 * - write to log device
82 * - return IO
83 *
84 * Stripes in writing-out phase handle writes as:
85 * - calculate parity
86 * - write pending data and parity to journal
87 * - write data and parity to raid disks
88 * - return IO for pending writes
89 */
90
f6bed0ef
SL
91struct r5l_log {
92 struct md_rdev *rdev;
93
94 u32 uuid_checksum;
95
96 sector_t device_size; /* log device size, round to
97 * BLOCK_SECTORS */
0576b1c6
SL
98 sector_t max_free_space; /* reclaim run if free space is at
99 * this size */
f6bed0ef
SL
100
101 sector_t last_checkpoint; /* log tail. where recovery scan
102 * starts from */
103 u64 last_cp_seq; /* log tail sequence */
104
105 sector_t log_start; /* log head. where new data appends */
106 u64 seq; /* log head sequence */
107
17036461 108 sector_t next_checkpoint;
17036461 109
f6bed0ef
SL
110 struct mutex io_mutex;
111 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
112
113 spinlock_t io_list_lock;
114 struct list_head running_ios; /* io_units which are still running,
115 * and have not yet been completely
116 * written to the log */
117 struct list_head io_end_ios; /* io_units which have been completely
118 * written to the log but not yet written
119 * to the RAID */
a8c34f91
SL
120 struct list_head flushing_ios; /* io_units which are waiting for log
121 * cache flush */
04732f74 122 struct list_head finished_ios; /* io_units which settle down in log disk */
a8c34f91 123 struct bio flush_bio;
f6bed0ef 124
5036c390
CH
125 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
126
f6bed0ef 127 struct kmem_cache *io_kc;
5036c390 128 mempool_t *io_pool;
c38d29b3 129 struct bio_set *bs;
e8deb638 130 mempool_t *meta_pool;
f6bed0ef 131
0576b1c6
SL
132 struct md_thread *reclaim_thread;
133 unsigned long reclaim_target; /* number of space that need to be
134 * reclaimed. if it's 0, reclaim spaces
135 * used by io_units which are in
136 * IO_UNIT_STRIPE_END state (eg, reclaim
137 * dones't wait for specific io_unit
138 * switching to IO_UNIT_STRIPE_END
139 * state) */
0fd22b45 140 wait_queue_head_t iounit_wait;
0576b1c6 141
f6bed0ef
SL
142 struct list_head no_space_stripes; /* pending stripes, log has no space */
143 spinlock_t no_space_stripes_lock;
56fef7c6
CH
144
145 bool need_cache_flush;
2ded3703
SL
146
147 /* for r5c_cache */
148 enum r5c_journal_mode r5c_journal_mode;
a39f7afd
SL
149
150 /* all stripes in r5cache, in the order of seq at sh->log_start */
151 struct list_head stripe_in_journal_list;
152
153 spinlock_t stripe_in_journal_lock;
154 atomic_t stripe_in_journal_count;
3bddb7f8
SL
155
156 /* to submit async io_units, to fulfill ordering of flush */
157 struct work_struct deferred_io_work;
2e38a37f
SL
158 /* to disable write back during in degraded mode */
159 struct work_struct disable_writeback_work;
03b047f4
SL
160
161 /* to for chunk_aligned_read in writeback mode, details below */
162 spinlock_t tree_lock;
163 struct radix_tree_root big_stripe_tree;
f6bed0ef
SL
164};
165
03b047f4
SL
166/*
167 * Enable chunk_aligned_read() with write back cache.
168 *
169 * Each chunk may contain more than one stripe (for example, a 256kB
170 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
171 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
172 * For each big_stripe, we count how many stripes of this big_stripe
173 * are in the write back cache. These data are tracked in a radix tree
174 * (big_stripe_tree). We use radix_tree item pointer as the counter.
175 * r5c_tree_index() is used to calculate keys for the radix tree.
176 *
177 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
178 * big_stripe of each chunk in the tree. If this big_stripe is in the
179 * tree, chunk_aligned_read() aborts. This look up is protected by
180 * rcu_read_lock().
181 *
182 * It is necessary to remember whether a stripe is counted in
183 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
184 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
185 * two flags are set, the stripe is counted in big_stripe_tree. This
186 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
187 * r5c_try_caching_write(); and moving clear_bit of
188 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
189 * r5c_finish_stripe_write_out().
190 */
191
192/*
193 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
194 * So it is necessary to left shift the counter by 2 bits before using it
195 * as data pointer of the tree.
196 */
197#define R5C_RADIX_COUNT_SHIFT 2
198
199/*
200 * calculate key for big_stripe_tree
201 *
202 * sect: align_bi->bi_iter.bi_sector or sh->sector
203 */
204static inline sector_t r5c_tree_index(struct r5conf *conf,
205 sector_t sect)
206{
207 sector_t offset;
208
209 offset = sector_div(sect, conf->chunk_sectors);
210 return sect;
211}
212
f6bed0ef
SL
213/*
214 * an IO range starts from a meta data block and end at the next meta data
215 * block. The io unit's the meta data block tracks data/parity followed it. io
216 * unit is written to log disk with normal write, as we always flush log disk
217 * first and then start move data to raid disks, there is no requirement to
218 * write io unit with FLUSH/FUA
219 */
220struct r5l_io_unit {
221 struct r5l_log *log;
222
223 struct page *meta_page; /* store meta block */
224 int meta_offset; /* current offset in meta_page */
225
f6bed0ef
SL
226 struct bio *current_bio;/* current_bio accepting new data */
227
228 atomic_t pending_stripe;/* how many stripes not flushed to raid */
229 u64 seq; /* seq number of the metablock */
230 sector_t log_start; /* where the io_unit starts */
231 sector_t log_end; /* where the io_unit ends */
232 struct list_head log_sibling; /* log->running_ios */
233 struct list_head stripe_list; /* stripes added to the io_unit */
234
235 int state;
6143e2ce 236 bool need_split_bio;
3bddb7f8
SL
237 struct bio *split_bio;
238
a9501d74
SL
239 unsigned int has_flush:1; /* include flush request */
240 unsigned int has_fua:1; /* include fua request */
241 unsigned int has_null_flush:1; /* include null flush request */
242 unsigned int has_flush_payload:1; /* include flush payload */
3bddb7f8
SL
243 /*
244 * io isn't sent yet, flush/fua request can only be submitted till it's
245 * the first IO in running_ios list
246 */
247 unsigned int io_deferred:1;
248
249 struct bio_list flush_barriers; /* size == 0 flush bios */
f6bed0ef
SL
250};
251
252/* r5l_io_unit state */
253enum r5l_io_unit_state {
254 IO_UNIT_RUNNING = 0, /* accepting new IO */
255 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
256 * don't accepting new bio */
257 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
a8c34f91 258 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
f6bed0ef
SL
259};
260
2ded3703
SL
261bool r5c_is_writeback(struct r5l_log *log)
262{
263 return (log != NULL &&
264 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
265}
266
f6bed0ef
SL
267static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
268{
269 start += inc;
270 if (start >= log->device_size)
271 start = start - log->device_size;
272 return start;
273}
274
275static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
276 sector_t end)
277{
278 if (end >= start)
279 return end - start;
280 else
281 return end + log->device_size - start;
282}
283
284static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
285{
286 sector_t used_size;
287
288 used_size = r5l_ring_distance(log, log->last_checkpoint,
289 log->log_start);
290
291 return log->device_size > used_size + size;
292}
293
f6bed0ef
SL
294static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
295 enum r5l_io_unit_state state)
296{
f6bed0ef
SL
297 if (WARN_ON(io->state >= state))
298 return;
299 io->state = state;
f6bed0ef
SL
300}
301
1e6d690b 302static void
bd83d0a2 303r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
1e6d690b
SL
304{
305 struct bio *wbi, *wbi2;
306
307 wbi = dev->written;
308 dev->written = NULL;
309 while (wbi && wbi->bi_iter.bi_sector <
310 dev->sector + STRIPE_SECTORS) {
311 wbi2 = r5_next_bio(wbi, dev->sector);
49728050 312 md_write_end(conf->mddev);
016c76ac 313 bio_endio(wbi);
1e6d690b
SL
314 wbi = wbi2;
315 }
316}
317
318void r5c_handle_cached_data_endio(struct r5conf *conf,
bd83d0a2 319 struct stripe_head *sh, int disks)
1e6d690b
SL
320{
321 int i;
322
323 for (i = sh->disks; i--; ) {
324 if (sh->dev[i].written) {
325 set_bit(R5_UPTODATE, &sh->dev[i].flags);
bd83d0a2 326 r5c_return_dev_pending_writes(conf, &sh->dev[i]);
1e6d690b
SL
327 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
328 STRIPE_SECTORS,
329 !test_bit(STRIPE_DEGRADED, &sh->state),
330 0);
331 }
332 }
333}
334
ff875738
AP
335void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
336
a39f7afd
SL
337/* Check whether we should flush some stripes to free up stripe cache */
338void r5c_check_stripe_cache_usage(struct r5conf *conf)
339{
340 int total_cached;
341
342 if (!r5c_is_writeback(conf->log))
343 return;
344
345 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
346 atomic_read(&conf->r5c_cached_full_stripes);
347
348 /*
349 * The following condition is true for either of the following:
350 * - stripe cache pressure high:
351 * total_cached > 3/4 min_nr_stripes ||
352 * empty_inactive_list_nr > 0
353 * - stripe cache pressure moderate:
354 * total_cached > 1/2 min_nr_stripes
355 */
356 if (total_cached > conf->min_nr_stripes * 1 / 2 ||
357 atomic_read(&conf->empty_inactive_list_nr) > 0)
358 r5l_wake_reclaim(conf->log, 0);
359}
360
361/*
362 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
363 * stripes in the cache
364 */
365void r5c_check_cached_full_stripe(struct r5conf *conf)
366{
367 if (!r5c_is_writeback(conf->log))
368 return;
369
370 /*
371 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
372 * or a full stripe (chunk size / 4k stripes).
373 */
374 if (atomic_read(&conf->r5c_cached_full_stripes) >=
84890c03 375 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
a39f7afd
SL
376 conf->chunk_sectors >> STRIPE_SHIFT))
377 r5l_wake_reclaim(conf->log, 0);
378}
379
380/*
381 * Total log space (in sectors) needed to flush all data in cache
382 *
39b99586
SL
383 * To avoid deadlock due to log space, it is necessary to reserve log
384 * space to flush critical stripes (stripes that occupying log space near
385 * last_checkpoint). This function helps check how much log space is
386 * required to flush all cached stripes.
a39f7afd 387 *
39b99586
SL
388 * To reduce log space requirements, two mechanisms are used to give cache
389 * flush higher priorities:
390 * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
391 * stripes ALREADY in journal can be flushed w/o pending writes;
392 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
393 * can be delayed (r5l_add_no_space_stripe).
a39f7afd 394 *
39b99586
SL
395 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
396 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
397 * pages of journal space. For stripes that has not passed 1, flushing it
398 * requires (conf->raid_disks + 1) pages of journal space. There are at
399 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
400 * required to flush all cached stripes (in pages) is:
401 *
402 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
403 * (group_cnt + 1) * (raid_disks + 1)
404 * or
405 * (stripe_in_journal_count) * (max_degraded + 1) +
406 * (group_cnt + 1) * (raid_disks - max_degraded)
a39f7afd
SL
407 */
408static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
409{
410 struct r5l_log *log = conf->log;
411
412 if (!r5c_is_writeback(log))
413 return 0;
414
39b99586
SL
415 return BLOCK_SECTORS *
416 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
417 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
a39f7afd
SL
418}
419
420/*
421 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
422 *
423 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
424 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
425 * device is less than 2x of reclaim_required_space.
426 */
427static inline void r5c_update_log_state(struct r5l_log *log)
428{
429 struct r5conf *conf = log->rdev->mddev->private;
430 sector_t free_space;
431 sector_t reclaim_space;
f687a33e 432 bool wake_reclaim = false;
a39f7afd
SL
433
434 if (!r5c_is_writeback(log))
435 return;
436
437 free_space = r5l_ring_distance(log, log->log_start,
438 log->last_checkpoint);
439 reclaim_space = r5c_log_required_to_flush_cache(conf);
440 if (free_space < 2 * reclaim_space)
441 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
f687a33e
SL
442 else {
443 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
444 wake_reclaim = true;
a39f7afd 445 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
f687a33e 446 }
a39f7afd
SL
447 if (free_space < 3 * reclaim_space)
448 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
449 else
450 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
f687a33e
SL
451
452 if (wake_reclaim)
453 r5l_wake_reclaim(log, 0);
a39f7afd
SL
454}
455
2ded3703
SL
456/*
457 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
458 * This function should only be called in write-back mode.
459 */
a39f7afd 460void r5c_make_stripe_write_out(struct stripe_head *sh)
2ded3703
SL
461{
462 struct r5conf *conf = sh->raid_conf;
463 struct r5l_log *log = conf->log;
464
465 BUG_ON(!r5c_is_writeback(log));
466
467 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
468 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1e6d690b
SL
469
470 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
471 atomic_inc(&conf->preread_active_stripes);
1e6d690b
SL
472}
473
474static void r5c_handle_data_cached(struct stripe_head *sh)
475{
476 int i;
477
478 for (i = sh->disks; i--; )
479 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
480 set_bit(R5_InJournal, &sh->dev[i].flags);
481 clear_bit(R5_LOCKED, &sh->dev[i].flags);
482 }
483 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
484}
485
486/*
487 * this journal write must contain full parity,
488 * it may also contain some data pages
489 */
490static void r5c_handle_parity_cached(struct stripe_head *sh)
491{
492 int i;
493
494 for (i = sh->disks; i--; )
495 if (test_bit(R5_InJournal, &sh->dev[i].flags))
496 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2ded3703
SL
497}
498
499/*
500 * Setting proper flags after writing (or flushing) data and/or parity to the
501 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
502 */
503static void r5c_finish_cache_stripe(struct stripe_head *sh)
504{
505 struct r5l_log *log = sh->raid_conf->log;
506
507 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
508 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
509 /*
510 * Set R5_InJournal for parity dev[pd_idx]. This means
511 * all data AND parity in the journal. For RAID 6, it is
512 * NOT necessary to set the flag for dev[qd_idx], as the
513 * two parities are written out together.
514 */
515 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
1e6d690b
SL
516 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
517 r5c_handle_data_cached(sh);
518 } else {
519 r5c_handle_parity_cached(sh);
520 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
521 }
2ded3703
SL
522}
523
d8858f43
CH
524static void r5l_io_run_stripes(struct r5l_io_unit *io)
525{
526 struct stripe_head *sh, *next;
527
528 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
529 list_del_init(&sh->log_list);
2ded3703
SL
530
531 r5c_finish_cache_stripe(sh);
532
d8858f43
CH
533 set_bit(STRIPE_HANDLE, &sh->state);
534 raid5_release_stripe(sh);
535 }
536}
537
56fef7c6
CH
538static void r5l_log_run_stripes(struct r5l_log *log)
539{
540 struct r5l_io_unit *io, *next;
541
542 assert_spin_locked(&log->io_list_lock);
543
544 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
545 /* don't change list order */
546 if (io->state < IO_UNIT_IO_END)
547 break;
548
549 list_move_tail(&io->log_sibling, &log->finished_ios);
550 r5l_io_run_stripes(io);
551 }
552}
553
3848c0bc
CH
554static void r5l_move_to_end_ios(struct r5l_log *log)
555{
556 struct r5l_io_unit *io, *next;
557
558 assert_spin_locked(&log->io_list_lock);
559
560 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
561 /* don't change list order */
562 if (io->state < IO_UNIT_IO_END)
563 break;
564 list_move_tail(&io->log_sibling, &log->io_end_ios);
565 }
566}
567
3bddb7f8 568static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
f6bed0ef
SL
569static void r5l_log_endio(struct bio *bio)
570{
571 struct r5l_io_unit *io = bio->bi_private;
3bddb7f8 572 struct r5l_io_unit *io_deferred;
f6bed0ef 573 struct r5l_log *log = io->log;
509ffec7 574 unsigned long flags;
a9501d74
SL
575 bool has_null_flush;
576 bool has_flush_payload;
f6bed0ef 577
4e4cbee9 578 if (bio->bi_status)
6e74a9cf
SL
579 md_error(log->rdev->mddev, log->rdev);
580
f6bed0ef 581 bio_put(bio);
e8deb638 582 mempool_free(io->meta_page, log->meta_pool);
f6bed0ef 583
509ffec7
CH
584 spin_lock_irqsave(&log->io_list_lock, flags);
585 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
a9501d74
SL
586
587 /*
588 * if the io doesn't not have null_flush or flush payload,
589 * it is not safe to access it after releasing io_list_lock.
590 * Therefore, it is necessary to check the condition with
591 * the lock held.
592 */
593 has_null_flush = io->has_null_flush;
594 has_flush_payload = io->has_flush_payload;
595
ea17481f 596 if (log->need_cache_flush && !list_empty(&io->stripe_list))
3848c0bc 597 r5l_move_to_end_ios(log);
56fef7c6
CH
598 else
599 r5l_log_run_stripes(log);
3bddb7f8
SL
600 if (!list_empty(&log->running_ios)) {
601 /*
602 * FLUSH/FUA io_unit is deferred because of ordering, now we
603 * can dispatch it
604 */
605 io_deferred = list_first_entry(&log->running_ios,
606 struct r5l_io_unit, log_sibling);
607 if (io_deferred->io_deferred)
608 schedule_work(&log->deferred_io_work);
609 }
610
509ffec7
CH
611 spin_unlock_irqrestore(&log->io_list_lock, flags);
612
56fef7c6
CH
613 if (log->need_cache_flush)
614 md_wakeup_thread(log->rdev->mddev->thread);
3bddb7f8 615
a9501d74
SL
616 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
617 if (has_null_flush) {
3bddb7f8
SL
618 struct bio *bi;
619
620 WARN_ON(bio_list_empty(&io->flush_barriers));
621 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
622 bio_endio(bi);
a9501d74
SL
623 if (atomic_dec_and_test(&io->pending_stripe)) {
624 __r5l_stripe_write_finished(io);
625 return;
626 }
3bddb7f8 627 }
3bddb7f8 628 }
a9501d74
SL
629 /* decrease pending_stripe for flush payload */
630 if (has_flush_payload)
631 if (atomic_dec_and_test(&io->pending_stripe))
632 __r5l_stripe_write_finished(io);
3bddb7f8
SL
633}
634
635static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
636{
637 unsigned long flags;
638
639 spin_lock_irqsave(&log->io_list_lock, flags);
640 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
641 spin_unlock_irqrestore(&log->io_list_lock, flags);
642
bb3338d3
SL
643 /*
644 * In case of journal device failures, submit_bio will get error
645 * and calls endio, then active stripes will continue write
646 * process. Therefore, it is not necessary to check Faulty bit
647 * of journal device here.
648 *
649 * We can't check split_bio after current_bio is submitted. If
650 * io->split_bio is null, after current_bio is submitted, current_bio
651 * might already be completed and the io_unit is freed. We submit
652 * split_bio first to avoid the issue.
653 */
654 if (io->split_bio) {
655 if (io->has_flush)
656 io->split_bio->bi_opf |= REQ_PREFLUSH;
657 if (io->has_fua)
658 io->split_bio->bi_opf |= REQ_FUA;
659 submit_bio(io->split_bio);
660 }
661
3bddb7f8 662 if (io->has_flush)
20737738 663 io->current_bio->bi_opf |= REQ_PREFLUSH;
3bddb7f8 664 if (io->has_fua)
20737738 665 io->current_bio->bi_opf |= REQ_FUA;
3bddb7f8 666 submit_bio(io->current_bio);
3bddb7f8
SL
667}
668
669/* deferred io_unit will be dispatched here */
670static void r5l_submit_io_async(struct work_struct *work)
671{
672 struct r5l_log *log = container_of(work, struct r5l_log,
673 deferred_io_work);
674 struct r5l_io_unit *io = NULL;
675 unsigned long flags;
676
677 spin_lock_irqsave(&log->io_list_lock, flags);
678 if (!list_empty(&log->running_ios)) {
679 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
680 log_sibling);
681 if (!io->io_deferred)
682 io = NULL;
683 else
684 io->io_deferred = 0;
685 }
686 spin_unlock_irqrestore(&log->io_list_lock, flags);
687 if (io)
688 r5l_do_submit_io(log, io);
f6bed0ef
SL
689}
690
2e38a37f
SL
691static void r5c_disable_writeback_async(struct work_struct *work)
692{
693 struct r5l_log *log = container_of(work, struct r5l_log,
694 disable_writeback_work);
695 struct mddev *mddev = log->rdev->mddev;
696
697 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
698 return;
699 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
700 mdname(mddev));
70d466f7
SL
701
702 /* wait superblock change before suspend */
703 wait_event(mddev->sb_wait,
704 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
705
2e38a37f
SL
706 mddev_suspend(mddev);
707 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
708 mddev_resume(mddev);
709}
710
f6bed0ef
SL
711static void r5l_submit_current_io(struct r5l_log *log)
712{
713 struct r5l_io_unit *io = log->current_io;
3bddb7f8 714 struct bio *bio;
f6bed0ef 715 struct r5l_meta_block *block;
509ffec7 716 unsigned long flags;
f6bed0ef 717 u32 crc;
3bddb7f8 718 bool do_submit = true;
f6bed0ef
SL
719
720 if (!io)
721 return;
722
723 block = page_address(io->meta_page);
724 block->meta_size = cpu_to_le32(io->meta_offset);
5cb2fbd6 725 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
f6bed0ef 726 block->checksum = cpu_to_le32(crc);
3bddb7f8 727 bio = io->current_bio;
f6bed0ef
SL
728
729 log->current_io = NULL;
509ffec7 730 spin_lock_irqsave(&log->io_list_lock, flags);
3bddb7f8
SL
731 if (io->has_flush || io->has_fua) {
732 if (io != list_first_entry(&log->running_ios,
733 struct r5l_io_unit, log_sibling)) {
734 io->io_deferred = 1;
735 do_submit = false;
736 }
737 }
509ffec7 738 spin_unlock_irqrestore(&log->io_list_lock, flags);
3bddb7f8
SL
739 if (do_submit)
740 r5l_do_submit_io(log, io);
f6bed0ef
SL
741}
742
6143e2ce 743static struct bio *r5l_bio_alloc(struct r5l_log *log)
b349feb3 744{
c38d29b3 745 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
b349feb3 746
796a5cf0 747 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
b349feb3 748 bio->bi_bdev = log->rdev->bdev;
1e932a37 749 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
b349feb3 750
b349feb3
CH
751 return bio;
752}
753
c1b99198
CH
754static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
755{
756 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
757
a39f7afd 758 r5c_update_log_state(log);
c1b99198
CH
759 /*
760 * If we filled up the log device start from the beginning again,
761 * which will require a new bio.
762 *
763 * Note: for this to work properly the log size needs to me a multiple
764 * of BLOCK_SECTORS.
765 */
766 if (log->log_start == 0)
6143e2ce 767 io->need_split_bio = true;
c1b99198
CH
768
769 io->log_end = log->log_start;
770}
771
f6bed0ef
SL
772static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
773{
774 struct r5l_io_unit *io;
775 struct r5l_meta_block *block;
f6bed0ef 776
5036c390
CH
777 io = mempool_alloc(log->io_pool, GFP_ATOMIC);
778 if (!io)
779 return NULL;
780 memset(io, 0, sizeof(*io));
781
51039cd0 782 io->log = log;
51039cd0
CH
783 INIT_LIST_HEAD(&io->log_sibling);
784 INIT_LIST_HEAD(&io->stripe_list);
3bddb7f8 785 bio_list_init(&io->flush_barriers);
51039cd0 786 io->state = IO_UNIT_RUNNING;
f6bed0ef 787
e8deb638 788 io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
f6bed0ef 789 block = page_address(io->meta_page);
e8deb638 790 clear_page(block);
f6bed0ef
SL
791 block->magic = cpu_to_le32(R5LOG_MAGIC);
792 block->version = R5LOG_VERSION;
793 block->seq = cpu_to_le64(log->seq);
794 block->position = cpu_to_le64(log->log_start);
795
796 io->log_start = log->log_start;
797 io->meta_offset = sizeof(struct r5l_meta_block);
2b8ef16e 798 io->seq = log->seq++;
f6bed0ef 799
6143e2ce
CH
800 io->current_bio = r5l_bio_alloc(log);
801 io->current_bio->bi_end_io = r5l_log_endio;
802 io->current_bio->bi_private = io;
b349feb3 803 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
f6bed0ef 804
c1b99198 805 r5_reserve_log_entry(log, io);
f6bed0ef
SL
806
807 spin_lock_irq(&log->io_list_lock);
808 list_add_tail(&io->log_sibling, &log->running_ios);
809 spin_unlock_irq(&log->io_list_lock);
810
811 return io;
812}
813
814static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
815{
22581f58
CH
816 if (log->current_io &&
817 log->current_io->meta_offset + payload_size > PAGE_SIZE)
f6bed0ef 818 r5l_submit_current_io(log);
f6bed0ef 819
5036c390 820 if (!log->current_io) {
22581f58 821 log->current_io = r5l_new_meta(log);
5036c390
CH
822 if (!log->current_io)
823 return -ENOMEM;
824 }
825
f6bed0ef
SL
826 return 0;
827}
828
829static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
830 sector_t location,
831 u32 checksum1, u32 checksum2,
832 bool checksum2_valid)
833{
834 struct r5l_io_unit *io = log->current_io;
835 struct r5l_payload_data_parity *payload;
836
837 payload = page_address(io->meta_page) + io->meta_offset;
838 payload->header.type = cpu_to_le16(type);
839 payload->header.flags = cpu_to_le16(0);
840 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
841 (PAGE_SHIFT - 9));
842 payload->location = cpu_to_le64(location);
843 payload->checksum[0] = cpu_to_le32(checksum1);
844 if (checksum2_valid)
845 payload->checksum[1] = cpu_to_le32(checksum2);
846
847 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
848 sizeof(__le32) * (1 + !!checksum2_valid);
849}
850
851static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
852{
853 struct r5l_io_unit *io = log->current_io;
854
6143e2ce 855 if (io->need_split_bio) {
3bddb7f8
SL
856 BUG_ON(io->split_bio);
857 io->split_bio = io->current_bio;
6143e2ce 858 io->current_bio = r5l_bio_alloc(log);
3bddb7f8
SL
859 bio_chain(io->current_bio, io->split_bio);
860 io->need_split_bio = false;
f6bed0ef 861 }
f6bed0ef 862
6143e2ce
CH
863 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
864 BUG();
865
c1b99198 866 r5_reserve_log_entry(log, io);
f6bed0ef
SL
867}
868
ea17481f
SL
869static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
870{
871 struct mddev *mddev = log->rdev->mddev;
872 struct r5conf *conf = mddev->private;
873 struct r5l_io_unit *io;
874 struct r5l_payload_flush *payload;
875 int meta_size;
876
877 /*
878 * payload_flush requires extra writes to the journal.
879 * To avoid handling the extra IO in quiesce, just skip
880 * flush_payload
881 */
882 if (conf->quiesce)
883 return;
884
885 mutex_lock(&log->io_mutex);
886 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
887
888 if (r5l_get_meta(log, meta_size)) {
889 mutex_unlock(&log->io_mutex);
890 return;
891 }
892
893 /* current implementation is one stripe per flush payload */
894 io = log->current_io;
895 payload = page_address(io->meta_page) + io->meta_offset;
896 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
897 payload->header.flags = cpu_to_le16(0);
898 payload->size = cpu_to_le32(sizeof(__le64));
899 payload->flush_stripes[0] = cpu_to_le64(sect);
900 io->meta_offset += meta_size;
a9501d74
SL
901 /* multiple flush payloads count as one pending_stripe */
902 if (!io->has_flush_payload) {
903 io->has_flush_payload = 1;
904 atomic_inc(&io->pending_stripe);
905 }
ea17481f
SL
906 mutex_unlock(&log->io_mutex);
907}
908
5036c390 909static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
f6bed0ef
SL
910 int data_pages, int parity_pages)
911{
912 int i;
913 int meta_size;
5036c390 914 int ret;
f6bed0ef
SL
915 struct r5l_io_unit *io;
916
917 meta_size =
918 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
919 * data_pages) +
920 sizeof(struct r5l_payload_data_parity) +
921 sizeof(__le32) * parity_pages;
922
5036c390
CH
923 ret = r5l_get_meta(log, meta_size);
924 if (ret)
925 return ret;
926
f6bed0ef
SL
927 io = log->current_io;
928
3bddb7f8
SL
929 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
930 io->has_flush = 1;
931
f6bed0ef 932 for (i = 0; i < sh->disks; i++) {
1e6d690b
SL
933 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
934 test_bit(R5_InJournal, &sh->dev[i].flags))
f6bed0ef
SL
935 continue;
936 if (i == sh->pd_idx || i == sh->qd_idx)
937 continue;
3bddb7f8
SL
938 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
939 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
940 io->has_fua = 1;
941 /*
942 * we need to flush journal to make sure recovery can
943 * reach the data with fua flag
944 */
945 io->has_flush = 1;
946 }
f6bed0ef
SL
947 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
948 raid5_compute_blocknr(sh, i, 0),
949 sh->dev[i].log_checksum, 0, false);
950 r5l_append_payload_page(log, sh->dev[i].page);
951 }
952
2ded3703 953 if (parity_pages == 2) {
f6bed0ef
SL
954 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
955 sh->sector, sh->dev[sh->pd_idx].log_checksum,
956 sh->dev[sh->qd_idx].log_checksum, true);
957 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
958 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
2ded3703 959 } else if (parity_pages == 1) {
f6bed0ef
SL
960 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
961 sh->sector, sh->dev[sh->pd_idx].log_checksum,
962 0, false);
963 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
2ded3703
SL
964 } else /* Just writing data, not parity, in caching phase */
965 BUG_ON(parity_pages != 0);
f6bed0ef
SL
966
967 list_add_tail(&sh->log_list, &io->stripe_list);
968 atomic_inc(&io->pending_stripe);
969 sh->log_io = io;
5036c390 970
a39f7afd
SL
971 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
972 return 0;
973
974 if (sh->log_start == MaxSector) {
975 BUG_ON(!list_empty(&sh->r5c));
976 sh->log_start = io->log_start;
977 spin_lock_irq(&log->stripe_in_journal_lock);
978 list_add_tail(&sh->r5c,
979 &log->stripe_in_journal_list);
980 spin_unlock_irq(&log->stripe_in_journal_lock);
981 atomic_inc(&log->stripe_in_journal_count);
982 }
5036c390 983 return 0;
f6bed0ef
SL
984}
985
a39f7afd
SL
986/* add stripe to no_space_stripes, and then wake up reclaim */
987static inline void r5l_add_no_space_stripe(struct r5l_log *log,
988 struct stripe_head *sh)
989{
990 spin_lock(&log->no_space_stripes_lock);
991 list_add_tail(&sh->log_list, &log->no_space_stripes);
992 spin_unlock(&log->no_space_stripes_lock);
993}
994
f6bed0ef
SL
995/*
996 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
997 * data from log to raid disks), so we shouldn't wait for reclaim here
998 */
999int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
1000{
a39f7afd 1001 struct r5conf *conf = sh->raid_conf;
f6bed0ef
SL
1002 int write_disks = 0;
1003 int data_pages, parity_pages;
f6bed0ef
SL
1004 int reserve;
1005 int i;
5036c390 1006 int ret = 0;
a39f7afd 1007 bool wake_reclaim = false;
f6bed0ef
SL
1008
1009 if (!log)
1010 return -EAGAIN;
1011 /* Don't support stripe batch */
1012 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1013 test_bit(STRIPE_SYNCING, &sh->state)) {
1014 /* the stripe is written to log, we start writing it to raid */
1015 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1016 return -EAGAIN;
1017 }
1018
2ded3703
SL
1019 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1020
f6bed0ef
SL
1021 for (i = 0; i < sh->disks; i++) {
1022 void *addr;
1023
1e6d690b
SL
1024 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1025 test_bit(R5_InJournal, &sh->dev[i].flags))
f6bed0ef 1026 continue;
1e6d690b 1027
f6bed0ef
SL
1028 write_disks++;
1029 /* checksum is already calculated in last run */
1030 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1031 continue;
1032 addr = kmap_atomic(sh->dev[i].page);
5cb2fbd6
SL
1033 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1034 addr, PAGE_SIZE);
f6bed0ef
SL
1035 kunmap_atomic(addr);
1036 }
1037 parity_pages = 1 + !!(sh->qd_idx >= 0);
1038 data_pages = write_disks - parity_pages;
1039
f6bed0ef 1040 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
253f9fd4
SL
1041 /*
1042 * The stripe must enter state machine again to finish the write, so
1043 * don't delay.
1044 */
1045 clear_bit(STRIPE_DELAYED, &sh->state);
f6bed0ef
SL
1046 atomic_inc(&sh->count);
1047
1048 mutex_lock(&log->io_mutex);
1049 /* meta + data */
1050 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
f6bed0ef 1051
a39f7afd
SL
1052 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1053 if (!r5l_has_free_space(log, reserve)) {
1054 r5l_add_no_space_stripe(log, sh);
1055 wake_reclaim = true;
1056 } else {
1057 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1058 if (ret) {
1059 spin_lock_irq(&log->io_list_lock);
1060 list_add_tail(&sh->log_list,
1061 &log->no_mem_stripes);
1062 spin_unlock_irq(&log->io_list_lock);
1063 }
1064 }
1065 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
1066 /*
1067 * log space critical, do not process stripes that are
1068 * not in cache yet (sh->log_start == MaxSector).
1069 */
1070 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1071 sh->log_start == MaxSector) {
1072 r5l_add_no_space_stripe(log, sh);
1073 wake_reclaim = true;
1074 reserve = 0;
1075 } else if (!r5l_has_free_space(log, reserve)) {
1076 if (sh->log_start == log->last_checkpoint)
1077 BUG();
1078 else
1079 r5l_add_no_space_stripe(log, sh);
1080 } else {
1081 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1082 if (ret) {
1083 spin_lock_irq(&log->io_list_lock);
1084 list_add_tail(&sh->log_list,
1085 &log->no_mem_stripes);
1086 spin_unlock_irq(&log->io_list_lock);
1087 }
5036c390 1088 }
f6bed0ef 1089 }
f6bed0ef 1090
5036c390 1091 mutex_unlock(&log->io_mutex);
a39f7afd
SL
1092 if (wake_reclaim)
1093 r5l_wake_reclaim(log, reserve);
f6bed0ef
SL
1094 return 0;
1095}
1096
1097void r5l_write_stripe_run(struct r5l_log *log)
1098{
1099 if (!log)
1100 return;
1101 mutex_lock(&log->io_mutex);
1102 r5l_submit_current_io(log);
1103 mutex_unlock(&log->io_mutex);
1104}
1105
828cbe98
SL
1106int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1107{
1108 if (!log)
1109 return -ENODEV;
3bddb7f8
SL
1110
1111 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1112 /*
1113 * in write through (journal only)
1114 * we flush log disk cache first, then write stripe data to
1115 * raid disks. So if bio is finished, the log disk cache is
1116 * flushed already. The recovery guarantees we can recovery
1117 * the bio from log disk, so we don't need to flush again
1118 */
1119 if (bio->bi_iter.bi_size == 0) {
1120 bio_endio(bio);
1121 return 0;
1122 }
1123 bio->bi_opf &= ~REQ_PREFLUSH;
1124 } else {
1125 /* write back (with cache) */
1126 if (bio->bi_iter.bi_size == 0) {
1127 mutex_lock(&log->io_mutex);
1128 r5l_get_meta(log, 0);
1129 bio_list_add(&log->current_io->flush_barriers, bio);
1130 log->current_io->has_flush = 1;
1131 log->current_io->has_null_flush = 1;
1132 atomic_inc(&log->current_io->pending_stripe);
1133 r5l_submit_current_io(log);
1134 mutex_unlock(&log->io_mutex);
1135 return 0;
1136 }
828cbe98 1137 }
828cbe98
SL
1138 return -EAGAIN;
1139}
1140
f6bed0ef
SL
1141/* This will run after log space is reclaimed */
1142static void r5l_run_no_space_stripes(struct r5l_log *log)
1143{
1144 struct stripe_head *sh;
1145
1146 spin_lock(&log->no_space_stripes_lock);
1147 while (!list_empty(&log->no_space_stripes)) {
1148 sh = list_first_entry(&log->no_space_stripes,
1149 struct stripe_head, log_list);
1150 list_del_init(&sh->log_list);
1151 set_bit(STRIPE_HANDLE, &sh->state);
1152 raid5_release_stripe(sh);
1153 }
1154 spin_unlock(&log->no_space_stripes_lock);
1155}
1156
a39f7afd
SL
1157/*
1158 * calculate new last_checkpoint
1159 * for write through mode, returns log->next_checkpoint
1160 * for write back, returns log_start of first sh in stripe_in_journal_list
1161 */
1162static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1163{
1164 struct stripe_head *sh;
1165 struct r5l_log *log = conf->log;
1166 sector_t new_cp;
1167 unsigned long flags;
1168
1169 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1170 return log->next_checkpoint;
1171
1172 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1173 if (list_empty(&conf->log->stripe_in_journal_list)) {
1174 /* all stripes flushed */
d3014e21 1175 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
a39f7afd
SL
1176 return log->next_checkpoint;
1177 }
1178 sh = list_first_entry(&conf->log->stripe_in_journal_list,
1179 struct stripe_head, r5c);
1180 new_cp = sh->log_start;
1181 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1182 return new_cp;
1183}
1184
17036461
CH
1185static sector_t r5l_reclaimable_space(struct r5l_log *log)
1186{
a39f7afd
SL
1187 struct r5conf *conf = log->rdev->mddev->private;
1188
17036461 1189 return r5l_ring_distance(log, log->last_checkpoint,
a39f7afd 1190 r5c_calculate_new_cp(conf));
17036461
CH
1191}
1192
5036c390
CH
1193static void r5l_run_no_mem_stripe(struct r5l_log *log)
1194{
1195 struct stripe_head *sh;
1196
1197 assert_spin_locked(&log->io_list_lock);
1198
1199 if (!list_empty(&log->no_mem_stripes)) {
1200 sh = list_first_entry(&log->no_mem_stripes,
1201 struct stripe_head, log_list);
1202 list_del_init(&sh->log_list);
1203 set_bit(STRIPE_HANDLE, &sh->state);
1204 raid5_release_stripe(sh);
1205 }
1206}
1207
04732f74 1208static bool r5l_complete_finished_ios(struct r5l_log *log)
17036461
CH
1209{
1210 struct r5l_io_unit *io, *next;
1211 bool found = false;
1212
1213 assert_spin_locked(&log->io_list_lock);
1214
04732f74 1215 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
17036461
CH
1216 /* don't change list order */
1217 if (io->state < IO_UNIT_STRIPE_END)
1218 break;
1219
1220 log->next_checkpoint = io->log_start;
17036461
CH
1221
1222 list_del(&io->log_sibling);
5036c390
CH
1223 mempool_free(io, log->io_pool);
1224 r5l_run_no_mem_stripe(log);
17036461
CH
1225
1226 found = true;
1227 }
1228
1229 return found;
1230}
1231
509ffec7
CH
1232static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1233{
1234 struct r5l_log *log = io->log;
a39f7afd 1235 struct r5conf *conf = log->rdev->mddev->private;
509ffec7
CH
1236 unsigned long flags;
1237
1238 spin_lock_irqsave(&log->io_list_lock, flags);
1239 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
17036461 1240
04732f74 1241 if (!r5l_complete_finished_ios(log)) {
85f2f9a4
SL
1242 spin_unlock_irqrestore(&log->io_list_lock, flags);
1243 return;
1244 }
509ffec7 1245
a39f7afd
SL
1246 if (r5l_reclaimable_space(log) > log->max_free_space ||
1247 test_bit(R5C_LOG_TIGHT, &conf->cache_state))
509ffec7
CH
1248 r5l_wake_reclaim(log, 0);
1249
509ffec7
CH
1250 spin_unlock_irqrestore(&log->io_list_lock, flags);
1251 wake_up(&log->iounit_wait);
1252}
1253
0576b1c6
SL
1254void r5l_stripe_write_finished(struct stripe_head *sh)
1255{
1256 struct r5l_io_unit *io;
1257
0576b1c6 1258 io = sh->log_io;
0576b1c6
SL
1259 sh->log_io = NULL;
1260
509ffec7
CH
1261 if (io && atomic_dec_and_test(&io->pending_stripe))
1262 __r5l_stripe_write_finished(io);
0576b1c6
SL
1263}
1264
a8c34f91
SL
1265static void r5l_log_flush_endio(struct bio *bio)
1266{
1267 struct r5l_log *log = container_of(bio, struct r5l_log,
1268 flush_bio);
1269 unsigned long flags;
1270 struct r5l_io_unit *io;
a8c34f91 1271
4e4cbee9 1272 if (bio->bi_status)
6e74a9cf
SL
1273 md_error(log->rdev->mddev, log->rdev);
1274
a8c34f91 1275 spin_lock_irqsave(&log->io_list_lock, flags);
d8858f43
CH
1276 list_for_each_entry(io, &log->flushing_ios, log_sibling)
1277 r5l_io_run_stripes(io);
04732f74 1278 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
a8c34f91
SL
1279 spin_unlock_irqrestore(&log->io_list_lock, flags);
1280}
1281
0576b1c6
SL
1282/*
1283 * Starting dispatch IO to raid.
1284 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1285 * broken meta in the middle of a log causes recovery can't find meta at the
1286 * head of log. If operations require meta at the head persistent in log, we
1287 * must make sure meta before it persistent in log too. A case is:
1288 *
1289 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1290 * data/parity must be persistent in log before we do the write to raid disks.
1291 *
1292 * The solution is we restrictly maintain io_unit list order. In this case, we
1293 * only write stripes of an io_unit to raid disks till the io_unit is the first
1294 * one whose data/parity is in log.
1295 */
1296void r5l_flush_stripe_to_raid(struct r5l_log *log)
1297{
a8c34f91 1298 bool do_flush;
56fef7c6
CH
1299
1300 if (!log || !log->need_cache_flush)
0576b1c6 1301 return;
0576b1c6
SL
1302
1303 spin_lock_irq(&log->io_list_lock);
a8c34f91
SL
1304 /* flush bio is running */
1305 if (!list_empty(&log->flushing_ios)) {
1306 spin_unlock_irq(&log->io_list_lock);
1307 return;
0576b1c6 1308 }
a8c34f91
SL
1309 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1310 do_flush = !list_empty(&log->flushing_ios);
0576b1c6 1311 spin_unlock_irq(&log->io_list_lock);
a8c34f91
SL
1312
1313 if (!do_flush)
1314 return;
1315 bio_reset(&log->flush_bio);
1316 log->flush_bio.bi_bdev = log->rdev->bdev;
1317 log->flush_bio.bi_end_io = r5l_log_flush_endio;
70fd7614 1318 log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
4e49ea4a 1319 submit_bio(&log->flush_bio);
0576b1c6
SL
1320}
1321
0576b1c6 1322static void r5l_write_super(struct r5l_log *log, sector_t cp);
4b482044
SL
1323static void r5l_write_super_and_discard_space(struct r5l_log *log,
1324 sector_t end)
1325{
1326 struct block_device *bdev = log->rdev->bdev;
1327 struct mddev *mddev;
1328
1329 r5l_write_super(log, end);
1330
1331 if (!blk_queue_discard(bdev_get_queue(bdev)))
1332 return;
1333
1334 mddev = log->rdev->mddev;
1335 /*
8e018c21
SL
1336 * Discard could zero data, so before discard we must make sure
1337 * superblock is updated to new log tail. Updating superblock (either
1338 * directly call md_update_sb() or depend on md thread) must hold
1339 * reconfig mutex. On the other hand, raid5_quiesce is called with
1340 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1341 * for all IO finish, hence waitting for reclaim thread, while reclaim
1342 * thread is calling this function and waitting for reconfig mutex. So
1343 * there is a deadlock. We workaround this issue with a trylock.
1344 * FIXME: we could miss discard if we can't take reconfig mutex
4b482044 1345 */
2953079c
SL
1346 set_mask_bits(&mddev->sb_flags, 0,
1347 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
8e018c21
SL
1348 if (!mddev_trylock(mddev))
1349 return;
1350 md_update_sb(mddev, 1);
1351 mddev_unlock(mddev);
4b482044 1352
6e74a9cf 1353 /* discard IO error really doesn't matter, ignore it */
4b482044
SL
1354 if (log->last_checkpoint < end) {
1355 blkdev_issue_discard(bdev,
1356 log->last_checkpoint + log->rdev->data_offset,
1357 end - log->last_checkpoint, GFP_NOIO, 0);
1358 } else {
1359 blkdev_issue_discard(bdev,
1360 log->last_checkpoint + log->rdev->data_offset,
1361 log->device_size - log->last_checkpoint,
1362 GFP_NOIO, 0);
1363 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1364 GFP_NOIO, 0);
1365 }
1366}
1367
a39f7afd
SL
1368/*
1369 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1370 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1371 *
1372 * must hold conf->device_lock
1373 */
1374static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
0576b1c6 1375{
a39f7afd
SL
1376 BUG_ON(list_empty(&sh->lru));
1377 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1378 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
0576b1c6 1379
0576b1c6 1380 /*
a39f7afd
SL
1381 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1382 * raid5_release_stripe() while holding conf->device_lock
0576b1c6 1383 */
a39f7afd
SL
1384 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1385 assert_spin_locked(&conf->device_lock);
0576b1c6 1386
a39f7afd
SL
1387 list_del_init(&sh->lru);
1388 atomic_inc(&sh->count);
17036461 1389
a39f7afd
SL
1390 set_bit(STRIPE_HANDLE, &sh->state);
1391 atomic_inc(&conf->active_stripes);
1392 r5c_make_stripe_write_out(sh);
0576b1c6 1393
e33fbb9c
SL
1394 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1395 atomic_inc(&conf->r5c_flushing_partial_stripes);
1396 else
1397 atomic_inc(&conf->r5c_flushing_full_stripes);
a39f7afd
SL
1398 raid5_release_stripe(sh);
1399}
1400
1401/*
1402 * if num == 0, flush all full stripes
1403 * if num > 0, flush all full stripes. If less than num full stripes are
1404 * flushed, flush some partial stripes until totally num stripes are
1405 * flushed or there is no more cached stripes.
1406 */
1407void r5c_flush_cache(struct r5conf *conf, int num)
1408{
1409 int count;
1410 struct stripe_head *sh, *next;
1411
1412 assert_spin_locked(&conf->device_lock);
1413 if (!conf->log)
0576b1c6
SL
1414 return;
1415
a39f7afd
SL
1416 count = 0;
1417 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1418 r5c_flush_stripe(conf, sh);
1419 count++;
1420 }
1421
1422 if (count >= num)
1423 return;
1424 list_for_each_entry_safe(sh, next,
1425 &conf->r5c_partial_stripe_list, lru) {
1426 r5c_flush_stripe(conf, sh);
1427 if (++count >= num)
1428 break;
1429 }
1430}
1431
1432static void r5c_do_reclaim(struct r5conf *conf)
1433{
1434 struct r5l_log *log = conf->log;
1435 struct stripe_head *sh;
1436 int count = 0;
1437 unsigned long flags;
1438 int total_cached;
1439 int stripes_to_flush;
e33fbb9c 1440 int flushing_partial, flushing_full;
a39f7afd
SL
1441
1442 if (!r5c_is_writeback(log))
1443 return;
1444
e33fbb9c
SL
1445 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1446 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
a39f7afd 1447 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
e33fbb9c
SL
1448 atomic_read(&conf->r5c_cached_full_stripes) -
1449 flushing_full - flushing_partial;
a39f7afd
SL
1450
1451 if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1452 atomic_read(&conf->empty_inactive_list_nr) > 0)
1453 /*
1454 * if stripe cache pressure high, flush all full stripes and
1455 * some partial stripes
1456 */
1457 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1458 else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
e33fbb9c 1459 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
84890c03 1460 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
a39f7afd
SL
1461 /*
1462 * if stripe cache pressure moderate, or if there is many full
1463 * stripes,flush all full stripes
1464 */
1465 stripes_to_flush = 0;
1466 else
1467 /* no need to flush */
1468 stripes_to_flush = -1;
1469
1470 if (stripes_to_flush >= 0) {
1471 spin_lock_irqsave(&conf->device_lock, flags);
1472 r5c_flush_cache(conf, stripes_to_flush);
1473 spin_unlock_irqrestore(&conf->device_lock, flags);
1474 }
1475
1476 /* if log space is tight, flush stripes on stripe_in_journal_list */
1477 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1478 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1479 spin_lock(&conf->device_lock);
1480 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1481 /*
1482 * stripes on stripe_in_journal_list could be in any
1483 * state of the stripe_cache state machine. In this
1484 * case, we only want to flush stripe on
1485 * r5c_cached_full/partial_stripes. The following
1486 * condition makes sure the stripe is on one of the
1487 * two lists.
1488 */
1489 if (!list_empty(&sh->lru) &&
1490 !test_bit(STRIPE_HANDLE, &sh->state) &&
1491 atomic_read(&sh->count) == 0) {
1492 r5c_flush_stripe(conf, sh);
e8fd52ee
SL
1493 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1494 break;
a39f7afd 1495 }
a39f7afd
SL
1496 }
1497 spin_unlock(&conf->device_lock);
1498 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1499 }
f687a33e
SL
1500
1501 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1502 r5l_run_no_space_stripes(log);
1503
a39f7afd
SL
1504 md_wakeup_thread(conf->mddev->thread);
1505}
1506
0576b1c6
SL
1507static void r5l_do_reclaim(struct r5l_log *log)
1508{
a39f7afd 1509 struct r5conf *conf = log->rdev->mddev->private;
0576b1c6 1510 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
17036461
CH
1511 sector_t reclaimable;
1512 sector_t next_checkpoint;
a39f7afd 1513 bool write_super;
0576b1c6
SL
1514
1515 spin_lock_irq(&log->io_list_lock);
a39f7afd
SL
1516 write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1517 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
0576b1c6
SL
1518 /*
1519 * move proper io_unit to reclaim list. We should not change the order.
1520 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1521 * shouldn't reuse space of an unreclaimable io_unit
1522 */
1523 while (1) {
17036461
CH
1524 reclaimable = r5l_reclaimable_space(log);
1525 if (reclaimable >= reclaim_target ||
0576b1c6
SL
1526 (list_empty(&log->running_ios) &&
1527 list_empty(&log->io_end_ios) &&
a8c34f91 1528 list_empty(&log->flushing_ios) &&
04732f74 1529 list_empty(&log->finished_ios)))
0576b1c6
SL
1530 break;
1531
17036461
CH
1532 md_wakeup_thread(log->rdev->mddev->thread);
1533 wait_event_lock_irq(log->iounit_wait,
1534 r5l_reclaimable_space(log) > reclaimable,
1535 log->io_list_lock);
0576b1c6 1536 }
17036461 1537
a39f7afd 1538 next_checkpoint = r5c_calculate_new_cp(conf);
0576b1c6
SL
1539 spin_unlock_irq(&log->io_list_lock);
1540
a39f7afd 1541 if (reclaimable == 0 || !write_super)
0576b1c6
SL
1542 return;
1543
0576b1c6
SL
1544 /*
1545 * write_super will flush cache of each raid disk. We must write super
1546 * here, because the log area might be reused soon and we don't want to
1547 * confuse recovery
1548 */
4b482044 1549 r5l_write_super_and_discard_space(log, next_checkpoint);
0576b1c6
SL
1550
1551 mutex_lock(&log->io_mutex);
17036461 1552 log->last_checkpoint = next_checkpoint;
a39f7afd 1553 r5c_update_log_state(log);
0576b1c6 1554 mutex_unlock(&log->io_mutex);
0576b1c6 1555
17036461 1556 r5l_run_no_space_stripes(log);
0576b1c6
SL
1557}
1558
1559static void r5l_reclaim_thread(struct md_thread *thread)
1560{
1561 struct mddev *mddev = thread->mddev;
1562 struct r5conf *conf = mddev->private;
1563 struct r5l_log *log = conf->log;
1564
1565 if (!log)
1566 return;
a39f7afd 1567 r5c_do_reclaim(conf);
0576b1c6
SL
1568 r5l_do_reclaim(log);
1569}
1570
a39f7afd 1571void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
f6bed0ef 1572{
0576b1c6
SL
1573 unsigned long target;
1574 unsigned long new = (unsigned long)space; /* overflow in theory */
1575
a39f7afd
SL
1576 if (!log)
1577 return;
0576b1c6
SL
1578 do {
1579 target = log->reclaim_target;
1580 if (new < target)
1581 return;
1582 } while (cmpxchg(&log->reclaim_target, target, new) != target);
1583 md_wakeup_thread(log->reclaim_thread);
f6bed0ef
SL
1584}
1585
e6c033f7
SL
1586void r5l_quiesce(struct r5l_log *log, int state)
1587{
4b482044 1588 struct mddev *mddev;
e6c033f7
SL
1589 if (!log || state == 2)
1590 return;
ce1ccd07
SL
1591 if (state == 0)
1592 kthread_unpark(log->reclaim_thread->tsk);
1593 else if (state == 1) {
4b482044
SL
1594 /* make sure r5l_write_super_and_discard_space exits */
1595 mddev = log->rdev->mddev;
1596 wake_up(&mddev->sb_wait);
ce1ccd07 1597 kthread_park(log->reclaim_thread->tsk);
a39f7afd 1598 r5l_wake_reclaim(log, MaxSector);
e6c033f7
SL
1599 r5l_do_reclaim(log);
1600 }
1601}
1602
6e74a9cf
SL
1603bool r5l_log_disk_error(struct r5conf *conf)
1604{
f6b6ec5c
SL
1605 struct r5l_log *log;
1606 bool ret;
7dde2ad3 1607 /* don't allow write if journal disk is missing */
f6b6ec5c
SL
1608 rcu_read_lock();
1609 log = rcu_dereference(conf->log);
1610
1611 if (!log)
1612 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1613 else
1614 ret = test_bit(Faulty, &log->rdev->flags);
1615 rcu_read_unlock();
1616 return ret;
6e74a9cf
SL
1617}
1618
effe6ee7
SL
1619#define R5L_RECOVERY_PAGE_POOL_SIZE 256
1620
355810d1
SL
1621struct r5l_recovery_ctx {
1622 struct page *meta_page; /* current meta */
1623 sector_t meta_total_blocks; /* total size of current meta and data */
1624 sector_t pos; /* recovery position */
1625 u64 seq; /* recovery position seq */
b4c625c6
SL
1626 int data_parity_stripes; /* number of data_parity stripes */
1627 int data_only_stripes; /* number of data_only stripes */
1628 struct list_head cached_list;
effe6ee7
SL
1629
1630 /*
1631 * read ahead page pool (ra_pool)
1632 * in recovery, log is read sequentially. It is not efficient to
1633 * read every page with sync_page_io(). The read ahead page pool
1634 * reads multiple pages with one IO, so further log read can
1635 * just copy data from the pool.
1636 */
1637 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1638 sector_t pool_offset; /* offset of first page in the pool */
1639 int total_pages; /* total allocated pages */
1640 int valid_pages; /* pages with valid data */
1641 struct bio *ra_bio; /* bio to do the read ahead */
355810d1
SL
1642};
1643
effe6ee7
SL
1644static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1645 struct r5l_recovery_ctx *ctx)
1646{
1647 struct page *page;
1648
1649 ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, log->bs);
1650 if (!ctx->ra_bio)
1651 return -ENOMEM;
1652
1653 ctx->valid_pages = 0;
1654 ctx->total_pages = 0;
1655 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1656 page = alloc_page(GFP_KERNEL);
1657
1658 if (!page)
1659 break;
1660 ctx->ra_pool[ctx->total_pages] = page;
1661 ctx->total_pages += 1;
1662 }
1663
1664 if (ctx->total_pages == 0) {
1665 bio_put(ctx->ra_bio);
1666 return -ENOMEM;
1667 }
1668
1669 ctx->pool_offset = 0;
1670 return 0;
1671}
1672
1673static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1674 struct r5l_recovery_ctx *ctx)
1675{
1676 int i;
1677
1678 for (i = 0; i < ctx->total_pages; ++i)
1679 put_page(ctx->ra_pool[i]);
1680 bio_put(ctx->ra_bio);
1681}
1682
1683/*
1684 * fetch ctx->valid_pages pages from offset
1685 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1686 * However, if the offset is close to the end of the journal device,
1687 * ctx->valid_pages could be smaller than ctx->total_pages
1688 */
1689static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1690 struct r5l_recovery_ctx *ctx,
1691 sector_t offset)
1692{
1693 bio_reset(ctx->ra_bio);
1694 ctx->ra_bio->bi_bdev = log->rdev->bdev;
1695 bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1696 ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1697
1698 ctx->valid_pages = 0;
1699 ctx->pool_offset = offset;
1700
1701 while (ctx->valid_pages < ctx->total_pages) {
1702 bio_add_page(ctx->ra_bio,
1703 ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1704 ctx->valid_pages += 1;
1705
1706 offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1707
1708 if (offset == 0) /* reached end of the device */
1709 break;
1710 }
1711
1712 return submit_bio_wait(ctx->ra_bio);
1713}
1714
1715/*
1716 * try read a page from the read ahead page pool, if the page is not in the
1717 * pool, call r5l_recovery_fetch_ra_pool
1718 */
1719static int r5l_recovery_read_page(struct r5l_log *log,
1720 struct r5l_recovery_ctx *ctx,
1721 struct page *page,
1722 sector_t offset)
1723{
1724 int ret;
1725
1726 if (offset < ctx->pool_offset ||
1727 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1728 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1729 if (ret)
1730 return ret;
1731 }
1732
1733 BUG_ON(offset < ctx->pool_offset ||
1734 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1735
1736 memcpy(page_address(page),
1737 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1738 BLOCK_SECTOR_SHIFT]),
1739 PAGE_SIZE);
1740 return 0;
1741}
1742
9ed988f5
SL
1743static int r5l_recovery_read_meta_block(struct r5l_log *log,
1744 struct r5l_recovery_ctx *ctx)
355810d1
SL
1745{
1746 struct page *page = ctx->meta_page;
1747 struct r5l_meta_block *mb;
1748 u32 crc, stored_crc;
effe6ee7 1749 int ret;
355810d1 1750
effe6ee7
SL
1751 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1752 if (ret != 0)
1753 return ret;
355810d1
SL
1754
1755 mb = page_address(page);
1756 stored_crc = le32_to_cpu(mb->checksum);
1757 mb->checksum = 0;
1758
1759 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1760 le64_to_cpu(mb->seq) != ctx->seq ||
1761 mb->version != R5LOG_VERSION ||
1762 le64_to_cpu(mb->position) != ctx->pos)
1763 return -EINVAL;
1764
5cb2fbd6 1765 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
355810d1
SL
1766 if (stored_crc != crc)
1767 return -EINVAL;
1768
1769 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1770 return -EINVAL;
1771
1772 ctx->meta_total_blocks = BLOCK_SECTORS;
1773
1774 return 0;
1775}
1776
9ed988f5
SL
1777static void
1778r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1779 struct page *page,
1780 sector_t pos, u64 seq)
355810d1 1781{
355810d1 1782 struct r5l_meta_block *mb;
355810d1 1783
355810d1 1784 mb = page_address(page);
9ed988f5 1785 clear_page(mb);
355810d1
SL
1786 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1787 mb->version = R5LOG_VERSION;
1788 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1789 mb->seq = cpu_to_le64(seq);
1790 mb->position = cpu_to_le64(pos);
9ed988f5 1791}
355810d1 1792
9ed988f5
SL
1793static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1794 u64 seq)
1795{
1796 struct page *page;
5c88f403 1797 struct r5l_meta_block *mb;
355810d1 1798
9ed988f5
SL
1799 page = alloc_page(GFP_KERNEL);
1800 if (!page)
1801 return -ENOMEM;
1802 r5l_recovery_create_empty_meta_block(log, page, pos, seq);
5c88f403
SL
1803 mb = page_address(page);
1804 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1805 mb, PAGE_SIZE));
796a5cf0 1806 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
5a8948f8 1807 REQ_SYNC | REQ_FUA, false)) {
355810d1
SL
1808 __free_page(page);
1809 return -EIO;
1810 }
1811 __free_page(page);
1812 return 0;
1813}
355810d1 1814
b4c625c6
SL
1815/*
1816 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1817 * to mark valid (potentially not flushed) data in the journal.
1818 *
1819 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1820 * so there should not be any mismatch here.
1821 */
1822static void r5l_recovery_load_data(struct r5l_log *log,
1823 struct stripe_head *sh,
1824 struct r5l_recovery_ctx *ctx,
1825 struct r5l_payload_data_parity *payload,
1826 sector_t log_offset)
1827{
1828 struct mddev *mddev = log->rdev->mddev;
1829 struct r5conf *conf = mddev->private;
1830 int dd_idx;
1831
1832 raid5_compute_sector(conf,
1833 le64_to_cpu(payload->location), 0,
1834 &dd_idx, sh);
effe6ee7 1835 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
b4c625c6
SL
1836 sh->dev[dd_idx].log_checksum =
1837 le32_to_cpu(payload->checksum[0]);
1838 ctx->meta_total_blocks += BLOCK_SECTORS;
1839
1840 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1841 set_bit(STRIPE_R5C_CACHING, &sh->state);
1842}
1843
1844static void r5l_recovery_load_parity(struct r5l_log *log,
1845 struct stripe_head *sh,
1846 struct r5l_recovery_ctx *ctx,
1847 struct r5l_payload_data_parity *payload,
1848 sector_t log_offset)
1849{
1850 struct mddev *mddev = log->rdev->mddev;
1851 struct r5conf *conf = mddev->private;
1852
1853 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
effe6ee7 1854 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
b4c625c6
SL
1855 sh->dev[sh->pd_idx].log_checksum =
1856 le32_to_cpu(payload->checksum[0]);
1857 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1858
1859 if (sh->qd_idx >= 0) {
effe6ee7
SL
1860 r5l_recovery_read_page(
1861 log, ctx, sh->dev[sh->qd_idx].page,
1862 r5l_ring_add(log, log_offset, BLOCK_SECTORS));
b4c625c6
SL
1863 sh->dev[sh->qd_idx].log_checksum =
1864 le32_to_cpu(payload->checksum[1]);
1865 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
355810d1 1866 }
b4c625c6
SL
1867 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1868}
355810d1 1869
b4c625c6
SL
1870static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1871{
1872 int i;
1873
1874 sh->state = 0;
1875 sh->log_start = MaxSector;
1876 for (i = sh->disks; i--; )
1877 sh->dev[i].flags = 0;
1878}
1879
1880static void
1881r5l_recovery_replay_one_stripe(struct r5conf *conf,
1882 struct stripe_head *sh,
1883 struct r5l_recovery_ctx *ctx)
1884{
1885 struct md_rdev *rdev, *rrdev;
1886 int disk_index;
1887 int data_count = 0;
355810d1 1888
b4c625c6 1889 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
355810d1
SL
1890 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1891 continue;
b4c625c6
SL
1892 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1893 continue;
1894 data_count++;
355810d1
SL
1895 }
1896
b4c625c6
SL
1897 /*
1898 * stripes that only have parity must have been flushed
1899 * before the crash that we are now recovering from, so
1900 * there is nothing more to recovery.
1901 */
1902 if (data_count == 0)
1903 goto out;
355810d1 1904
b4c625c6
SL
1905 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1906 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
355810d1
SL
1907 continue;
1908
1909 /* in case device is broken */
b4c625c6 1910 rcu_read_lock();
355810d1 1911 rdev = rcu_dereference(conf->disks[disk_index].rdev);
b4c625c6
SL
1912 if (rdev) {
1913 atomic_inc(&rdev->nr_pending);
1914 rcu_read_unlock();
1915 sync_page_io(rdev, sh->sector, PAGE_SIZE,
796a5cf0
MC
1916 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1917 false);
b4c625c6
SL
1918 rdev_dec_pending(rdev, rdev->mddev);
1919 rcu_read_lock();
1920 }
355810d1 1921 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
b4c625c6
SL
1922 if (rrdev) {
1923 atomic_inc(&rrdev->nr_pending);
1924 rcu_read_unlock();
1925 sync_page_io(rrdev, sh->sector, PAGE_SIZE,
796a5cf0
MC
1926 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1927 false);
b4c625c6
SL
1928 rdev_dec_pending(rrdev, rrdev->mddev);
1929 rcu_read_lock();
1930 }
1931 rcu_read_unlock();
355810d1 1932 }
b4c625c6
SL
1933 ctx->data_parity_stripes++;
1934out:
1935 r5l_recovery_reset_stripe(sh);
1936}
1937
1938static struct stripe_head *
1939r5c_recovery_alloc_stripe(struct r5conf *conf,
3c66abba 1940 sector_t stripe_sect)
b4c625c6
SL
1941{
1942 struct stripe_head *sh;
1943
1944 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1945 if (!sh)
1946 return NULL; /* no more stripe available */
1947
1948 r5l_recovery_reset_stripe(sh);
b4c625c6
SL
1949
1950 return sh;
1951}
1952
1953static struct stripe_head *
1954r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1955{
1956 struct stripe_head *sh;
1957
1958 list_for_each_entry(sh, list, lru)
1959 if (sh->sector == sect)
1960 return sh;
1961 return NULL;
1962}
1963
1964static void
1965r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1966 struct r5l_recovery_ctx *ctx)
1967{
1968 struct stripe_head *sh, *next;
1969
1970 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1971 r5l_recovery_reset_stripe(sh);
1972 list_del_init(&sh->lru);
1973 raid5_release_stripe(sh);
1974 }
1975}
1976
1977static void
1978r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1979 struct r5l_recovery_ctx *ctx)
1980{
1981 struct stripe_head *sh, *next;
1982
1983 list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1984 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1985 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1986 list_del_init(&sh->lru);
1987 raid5_release_stripe(sh);
1988 }
1989}
1990
1991/* if matches return 0; otherwise return -EINVAL */
1992static int
effe6ee7
SL
1993r5l_recovery_verify_data_checksum(struct r5l_log *log,
1994 struct r5l_recovery_ctx *ctx,
1995 struct page *page,
b4c625c6
SL
1996 sector_t log_offset, __le32 log_checksum)
1997{
1998 void *addr;
1999 u32 checksum;
2000
effe6ee7 2001 r5l_recovery_read_page(log, ctx, page, log_offset);
b4c625c6
SL
2002 addr = kmap_atomic(page);
2003 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
2004 kunmap_atomic(addr);
2005 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
2006}
2007
2008/*
2009 * before loading data to stripe cache, we need verify checksum for all data,
2010 * if there is mismatch for any data page, we drop all data in the mata block
2011 */
2012static int
2013r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
2014 struct r5l_recovery_ctx *ctx)
2015{
2016 struct mddev *mddev = log->rdev->mddev;
2017 struct r5conf *conf = mddev->private;
2018 struct r5l_meta_block *mb = page_address(ctx->meta_page);
2019 sector_t mb_offset = sizeof(struct r5l_meta_block);
2020 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2021 struct page *page;
2022 struct r5l_payload_data_parity *payload;
2d4f4687 2023 struct r5l_payload_flush *payload_flush;
b4c625c6
SL
2024
2025 page = alloc_page(GFP_KERNEL);
2026 if (!page)
2027 return -ENOMEM;
2028
2029 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2030 payload = (void *)mb + mb_offset;
2d4f4687 2031 payload_flush = (void *)mb + mb_offset;
b4c625c6 2032
1ad45a9b 2033 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
b4c625c6 2034 if (r5l_recovery_verify_data_checksum(
effe6ee7 2035 log, ctx, page, log_offset,
b4c625c6
SL
2036 payload->checksum[0]) < 0)
2037 goto mismatch;
1ad45a9b 2038 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
b4c625c6 2039 if (r5l_recovery_verify_data_checksum(
effe6ee7 2040 log, ctx, page, log_offset,
b4c625c6
SL
2041 payload->checksum[0]) < 0)
2042 goto mismatch;
2043 if (conf->max_degraded == 2 && /* q for RAID 6 */
2044 r5l_recovery_verify_data_checksum(
effe6ee7 2045 log, ctx, page,
b4c625c6
SL
2046 r5l_ring_add(log, log_offset,
2047 BLOCK_SECTORS),
2048 payload->checksum[1]) < 0)
2049 goto mismatch;
1ad45a9b 2050 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2d4f4687
SL
2051 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2052 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
b4c625c6
SL
2053 goto mismatch;
2054
1ad45a9b 2055 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2d4f4687
SL
2056 mb_offset += sizeof(struct r5l_payload_flush) +
2057 le32_to_cpu(payload_flush->size);
2058 } else {
2059 /* DATA or PARITY payload */
2060 log_offset = r5l_ring_add(log, log_offset,
2061 le32_to_cpu(payload->size));
2062 mb_offset += sizeof(struct r5l_payload_data_parity) +
2063 sizeof(__le32) *
2064 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2065 }
b4c625c6 2066
b4c625c6
SL
2067 }
2068
2069 put_page(page);
355810d1
SL
2070 return 0;
2071
b4c625c6
SL
2072mismatch:
2073 put_page(page);
355810d1
SL
2074 return -EINVAL;
2075}
2076
b4c625c6
SL
2077/*
2078 * Analyze all data/parity pages in one meta block
2079 * Returns:
2080 * 0 for success
2081 * -EINVAL for unknown playload type
2082 * -EAGAIN for checksum mismatch of data page
2083 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2084 */
2085static int
2086r5c_recovery_analyze_meta_block(struct r5l_log *log,
2087 struct r5l_recovery_ctx *ctx,
2088 struct list_head *cached_stripe_list)
355810d1 2089{
b4c625c6
SL
2090 struct mddev *mddev = log->rdev->mddev;
2091 struct r5conf *conf = mddev->private;
355810d1 2092 struct r5l_meta_block *mb;
b4c625c6 2093 struct r5l_payload_data_parity *payload;
2d4f4687 2094 struct r5l_payload_flush *payload_flush;
b4c625c6 2095 int mb_offset;
355810d1 2096 sector_t log_offset;
b4c625c6
SL
2097 sector_t stripe_sect;
2098 struct stripe_head *sh;
2099 int ret;
2100
2101 /*
2102 * for mismatch in data blocks, we will drop all data in this mb, but
2103 * we will still read next mb for other data with FLUSH flag, as
2104 * io_unit could finish out of order.
2105 */
2106 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2107 if (ret == -EINVAL)
2108 return -EAGAIN;
2109 else if (ret)
2110 return ret; /* -ENOMEM duo to alloc_page() failed */
355810d1
SL
2111
2112 mb = page_address(ctx->meta_page);
b4c625c6 2113 mb_offset = sizeof(struct r5l_meta_block);
355810d1
SL
2114 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2115
b4c625c6 2116 while (mb_offset < le32_to_cpu(mb->meta_size)) {
355810d1
SL
2117 int dd;
2118
b4c625c6 2119 payload = (void *)mb + mb_offset;
2d4f4687
SL
2120 payload_flush = (void *)mb + mb_offset;
2121
1ad45a9b 2122 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2d4f4687
SL
2123 int i, count;
2124
2125 count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2126 for (i = 0; i < count; ++i) {
2127 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2128 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2129 stripe_sect);
2130 if (sh) {
2131 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2132 r5l_recovery_reset_stripe(sh);
2133 list_del_init(&sh->lru);
2134 raid5_release_stripe(sh);
2135 }
2136 }
2137
2138 mb_offset += sizeof(struct r5l_payload_flush) +
2139 le32_to_cpu(payload_flush->size);
2140 continue;
2141 }
2142
2143 /* DATA or PARITY payload */
1ad45a9b 2144 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
b4c625c6
SL
2145 raid5_compute_sector(
2146 conf, le64_to_cpu(payload->location), 0, &dd,
2147 NULL)
2148 : le64_to_cpu(payload->location);
2149
2150 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2151 stripe_sect);
2152
2153 if (!sh) {
3c66abba 2154 sh = r5c_recovery_alloc_stripe(conf, stripe_sect);
b4c625c6
SL
2155 /*
2156 * cannot get stripe from raid5_get_active_stripe
2157 * try replay some stripes
2158 */
2159 if (!sh) {
2160 r5c_recovery_replay_stripes(
2161 cached_stripe_list, ctx);
2162 sh = r5c_recovery_alloc_stripe(
3c66abba 2163 conf, stripe_sect);
b4c625c6
SL
2164 }
2165 if (!sh) {
2166 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2167 mdname(mddev),
2168 conf->min_nr_stripes * 2);
2169 raid5_set_cache_size(mddev,
2170 conf->min_nr_stripes * 2);
3c66abba
SL
2171 sh = r5c_recovery_alloc_stripe(conf,
2172 stripe_sect);
b4c625c6
SL
2173 }
2174 if (!sh) {
2175 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2176 mdname(mddev));
2177 return -ENOMEM;
2178 }
2179 list_add_tail(&sh->lru, cached_stripe_list);
2180 }
2181
1ad45a9b 2182 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
f7b7bee7
ZL
2183 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2184 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
b4c625c6 2185 r5l_recovery_replay_one_stripe(conf, sh, ctx);
b4c625c6
SL
2186 list_move_tail(&sh->lru, cached_stripe_list);
2187 }
2188 r5l_recovery_load_data(log, sh, ctx, payload,
2189 log_offset);
1ad45a9b 2190 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
b4c625c6
SL
2191 r5l_recovery_load_parity(log, sh, ctx, payload,
2192 log_offset);
2193 else
355810d1 2194 return -EINVAL;
b4c625c6
SL
2195
2196 log_offset = r5l_ring_add(log, log_offset,
2197 le32_to_cpu(payload->size));
2198
2199 mb_offset += sizeof(struct r5l_payload_data_parity) +
2200 sizeof(__le32) *
2201 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
355810d1 2202 }
b4c625c6 2203
355810d1
SL
2204 return 0;
2205}
2206
b4c625c6
SL
2207/*
2208 * Load the stripe into cache. The stripe will be written out later by
2209 * the stripe cache state machine.
2210 */
2211static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2212 struct stripe_head *sh)
355810d1 2213{
b4c625c6
SL
2214 struct r5dev *dev;
2215 int i;
2216
2217 for (i = sh->disks; i--; ) {
2218 dev = sh->dev + i;
2219 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2220 set_bit(R5_InJournal, &dev->flags);
2221 set_bit(R5_UPTODATE, &dev->flags);
2222 }
2223 }
b4c625c6
SL
2224}
2225
2226/*
2227 * Scan through the log for all to-be-flushed data
2228 *
2229 * For stripes with data and parity, namely Data-Parity stripe
2230 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2231 *
2232 * For stripes with only data, namely Data-Only stripe
2233 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2234 *
2235 * For a stripe, if we see data after parity, we should discard all previous
2236 * data and parity for this stripe, as these data are already flushed to
2237 * the array.
2238 *
2239 * At the end of the scan, we return the new journal_tail, which points to
2240 * first data-only stripe on the journal device, or next invalid meta block.
2241 */
2242static int r5c_recovery_flush_log(struct r5l_log *log,
2243 struct r5l_recovery_ctx *ctx)
2244{
bc8f167f 2245 struct stripe_head *sh;
b4c625c6
SL
2246 int ret = 0;
2247
2248 /* scan through the log */
355810d1 2249 while (1) {
b4c625c6
SL
2250 if (r5l_recovery_read_meta_block(log, ctx))
2251 break;
2252
2253 ret = r5c_recovery_analyze_meta_block(log, ctx,
2254 &ctx->cached_list);
2255 /*
2256 * -EAGAIN means mismatch in data block, in this case, we still
2257 * try scan the next metablock
2258 */
2259 if (ret && ret != -EAGAIN)
2260 break; /* ret == -EINVAL or -ENOMEM */
355810d1
SL
2261 ctx->seq++;
2262 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2263 }
b4c625c6
SL
2264
2265 if (ret == -ENOMEM) {
2266 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2267 return ret;
2268 }
2269
2270 /* replay data-parity stripes */
2271 r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2272
2273 /* load data-only stripes to stripe cache */
bc8f167f 2274 list_for_each_entry(sh, &ctx->cached_list, lru) {
b4c625c6
SL
2275 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2276 r5c_recovery_load_one_stripe(log, sh);
b4c625c6
SL
2277 ctx->data_only_stripes++;
2278 }
2279
2280 return 0;
355810d1
SL
2281}
2282
b4c625c6
SL
2283/*
2284 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2285 * log will start here. but we can't let superblock point to last valid
2286 * meta block. The log might looks like:
2287 * | meta 1| meta 2| meta 3|
2288 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2289 * superblock points to meta 1, we write a new valid meta 2n. if crash
2290 * happens again, new recovery will start from meta 1. Since meta 2n is
2291 * valid now, recovery will think meta 3 is valid, which is wrong.
2292 * The solution is we create a new meta in meta2 with its seq == meta
3c6edc66
SL
2293 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2294 * will not think meta 3 is a valid meta, because its seq doesn't match
b4c625c6
SL
2295 */
2296
2297/*
2298 * Before recovery, the log looks like the following
2299 *
2300 * ---------------------------------------------
2301 * | valid log | invalid log |
2302 * ---------------------------------------------
2303 * ^
2304 * |- log->last_checkpoint
2305 * |- log->last_cp_seq
2306 *
2307 * Now we scan through the log until we see invalid entry
2308 *
2309 * ---------------------------------------------
2310 * | valid log | invalid log |
2311 * ---------------------------------------------
2312 * ^ ^
2313 * |- log->last_checkpoint |- ctx->pos
2314 * |- log->last_cp_seq |- ctx->seq
2315 *
2316 * From this point, we need to increase seq number by 10 to avoid
2317 * confusing next recovery.
2318 *
2319 * ---------------------------------------------
2320 * | valid log | invalid log |
2321 * ---------------------------------------------
2322 * ^ ^
2323 * |- log->last_checkpoint |- ctx->pos+1
3c6edc66 2324 * |- log->last_cp_seq |- ctx->seq+10001
b4c625c6
SL
2325 *
2326 * However, it is not safe to start the state machine yet, because data only
2327 * parities are not yet secured in RAID. To save these data only parities, we
2328 * rewrite them from seq+11.
2329 *
2330 * -----------------------------------------------------------------
2331 * | valid log | data only stripes | invalid log |
2332 * -----------------------------------------------------------------
2333 * ^ ^
2334 * |- log->last_checkpoint |- ctx->pos+n
3c6edc66 2335 * |- log->last_cp_seq |- ctx->seq+10000+n
b4c625c6
SL
2336 *
2337 * If failure happens again during this process, the recovery can safe start
2338 * again from log->last_checkpoint.
2339 *
2340 * Once data only stripes are rewritten to journal, we move log_tail
2341 *
2342 * -----------------------------------------------------------------
2343 * | old log | data only stripes | invalid log |
2344 * -----------------------------------------------------------------
2345 * ^ ^
2346 * |- log->last_checkpoint |- ctx->pos+n
3c6edc66 2347 * |- log->last_cp_seq |- ctx->seq+10000+n
b4c625c6
SL
2348 *
2349 * Then we can safely start the state machine. If failure happens from this
2350 * point on, the recovery will start from new log->last_checkpoint.
2351 */
2352static int
2353r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2354 struct r5l_recovery_ctx *ctx)
355810d1 2355{
a85dd7b8 2356 struct stripe_head *sh;
b4c625c6 2357 struct mddev *mddev = log->rdev->mddev;
355810d1 2358 struct page *page;
3c66abba 2359 sector_t next_checkpoint = MaxSector;
355810d1 2360
b4c625c6
SL
2361 page = alloc_page(GFP_KERNEL);
2362 if (!page) {
2363 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2364 mdname(mddev));
355810d1 2365 return -ENOMEM;
b4c625c6 2366 }
355810d1 2367
3c66abba
SL
2368 WARN_ON(list_empty(&ctx->cached_list));
2369
a85dd7b8 2370 list_for_each_entry(sh, &ctx->cached_list, lru) {
b4c625c6
SL
2371 struct r5l_meta_block *mb;
2372 int i;
2373 int offset;
2374 sector_t write_pos;
2375
2376 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2377 r5l_recovery_create_empty_meta_block(log, page,
2378 ctx->pos, ctx->seq);
2379 mb = page_address(page);
2380 offset = le32_to_cpu(mb->meta_size);
fc833c2a 2381 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
b4c625c6
SL
2382
2383 for (i = sh->disks; i--; ) {
2384 struct r5dev *dev = &sh->dev[i];
2385 struct r5l_payload_data_parity *payload;
2386 void *addr;
2387
2388 if (test_bit(R5_InJournal, &dev->flags)) {
2389 payload = (void *)mb + offset;
2390 payload->header.type = cpu_to_le16(
2391 R5LOG_PAYLOAD_DATA);
1ad45a9b 2392 payload->size = cpu_to_le32(BLOCK_SECTORS);
b4c625c6
SL
2393 payload->location = cpu_to_le64(
2394 raid5_compute_blocknr(sh, i, 0));
2395 addr = kmap_atomic(dev->page);
2396 payload->checksum[0] = cpu_to_le32(
2397 crc32c_le(log->uuid_checksum, addr,
2398 PAGE_SIZE));
2399 kunmap_atomic(addr);
2400 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2401 dev->page, REQ_OP_WRITE, 0, false);
2402 write_pos = r5l_ring_add(log, write_pos,
2403 BLOCK_SECTORS);
2404 offset += sizeof(__le32) +
2405 sizeof(struct r5l_payload_data_parity);
2406
2407 }
2408 }
2409 mb->meta_size = cpu_to_le32(offset);
5c88f403
SL
2410 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2411 mb, PAGE_SIZE));
b4c625c6 2412 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
5a8948f8 2413 REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false);
b4c625c6 2414 sh->log_start = ctx->pos;
3c66abba
SL
2415 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2416 atomic_inc(&log->stripe_in_journal_count);
b4c625c6
SL
2417 ctx->pos = write_pos;
2418 ctx->seq += 1;
3c66abba 2419 next_checkpoint = sh->log_start;
355810d1 2420 }
3c66abba 2421 log->next_checkpoint = next_checkpoint;
355810d1
SL
2422 __free_page(page);
2423 return 0;
2424}
2425
a85dd7b8
SL
2426static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2427 struct r5l_recovery_ctx *ctx)
2428{
2429 struct mddev *mddev = log->rdev->mddev;
2430 struct r5conf *conf = mddev->private;
2431 struct stripe_head *sh, *next;
2432
2433 if (ctx->data_only_stripes == 0)
2434 return;
2435
2436 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2437
2438 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2439 r5c_make_stripe_write_out(sh);
2440 set_bit(STRIPE_HANDLE, &sh->state);
2441 list_del_init(&sh->lru);
2442 raid5_release_stripe(sh);
2443 }
2444
2445 md_wakeup_thread(conf->mddev->thread);
2446 /* reuse conf->wait_for_quiescent in recovery */
2447 wait_event(conf->wait_for_quiescent,
2448 atomic_read(&conf->active_stripes) == 0);
2449
2450 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2451}
2452
f6bed0ef
SL
2453static int r5l_recovery_log(struct r5l_log *log)
2454{
5aabf7c4 2455 struct mddev *mddev = log->rdev->mddev;
effe6ee7 2456 struct r5l_recovery_ctx *ctx;
5aabf7c4 2457 int ret;
43b96748 2458 sector_t pos;
355810d1 2459
effe6ee7
SL
2460 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2461 if (!ctx)
355810d1
SL
2462 return -ENOMEM;
2463
effe6ee7
SL
2464 ctx->pos = log->last_checkpoint;
2465 ctx->seq = log->last_cp_seq;
2466 INIT_LIST_HEAD(&ctx->cached_list);
2467 ctx->meta_page = alloc_page(GFP_KERNEL);
355810d1 2468
effe6ee7
SL
2469 if (!ctx->meta_page) {
2470 ret = -ENOMEM;
2471 goto meta_page;
2472 }
b4c625c6 2473
effe6ee7
SL
2474 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2475 ret = -ENOMEM;
2476 goto ra_pool;
2477 }
2478
2479 ret = r5c_recovery_flush_log(log, ctx);
2480
2481 if (ret)
2482 goto error;
43b96748 2483
effe6ee7
SL
2484 pos = ctx->pos;
2485 ctx->seq += 10000;
43b96748 2486
effe6ee7 2487 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
5aabf7c4
SL
2488 pr_debug("md/raid:%s: starting from clean shutdown\n",
2489 mdname(mddev));
a85dd7b8 2490 else
99f17890 2491 pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
effe6ee7
SL
2492 mdname(mddev), ctx->data_only_stripes,
2493 ctx->data_parity_stripes);
2494
2495 if (ctx->data_only_stripes == 0) {
2496 log->next_checkpoint = ctx->pos;
2497 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2498 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2499 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
a85dd7b8
SL
2500 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2501 mdname(mddev));
effe6ee7
SL
2502 ret = -EIO;
2503 goto error;
b4c625c6
SL
2504 }
2505
effe6ee7
SL
2506 log->log_start = ctx->pos;
2507 log->seq = ctx->seq;
43b96748
J
2508 log->last_checkpoint = pos;
2509 r5l_write_super(log, pos);
a85dd7b8 2510
effe6ee7
SL
2511 r5c_recovery_flush_data_only_stripes(log, ctx);
2512 ret = 0;
2513error:
2514 r5l_recovery_free_ra_pool(log, ctx);
2515ra_pool:
2516 __free_page(ctx->meta_page);
2517meta_page:
2518 kfree(ctx);
2519 return ret;
f6bed0ef
SL
2520}
2521
2522static void r5l_write_super(struct r5l_log *log, sector_t cp)
2523{
2524 struct mddev *mddev = log->rdev->mddev;
2525
2526 log->rdev->journal_tail = cp;
2953079c 2527 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
f6bed0ef
SL
2528}
2529
2c7da14b
SL
2530static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2531{
2532 struct r5conf *conf = mddev->private;
2533 int ret;
2534
2535 if (!conf->log)
2536 return 0;
2537
2538 switch (conf->log->r5c_journal_mode) {
2539 case R5C_JOURNAL_MODE_WRITE_THROUGH:
2540 ret = snprintf(
2541 page, PAGE_SIZE, "[%s] %s\n",
2542 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2543 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2544 break;
2545 case R5C_JOURNAL_MODE_WRITE_BACK:
2546 ret = snprintf(
2547 page, PAGE_SIZE, "%s [%s]\n",
2548 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2549 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2550 break;
2551 default:
2552 ret = 0;
2553 }
2554 return ret;
2555}
2556
78e470c2
HM
2557/*
2558 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2559 *
2560 * @mode as defined in 'enum r5c_journal_mode'.
2561 *
2562 */
2563int r5c_journal_mode_set(struct mddev *mddev, int mode)
2c7da14b 2564{
b44886c5
SL
2565 struct r5conf *conf;
2566 int err;
2c7da14b 2567
78e470c2
HM
2568 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2569 mode > R5C_JOURNAL_MODE_WRITE_BACK)
2c7da14b
SL
2570 return -EINVAL;
2571
b44886c5
SL
2572 err = mddev_lock(mddev);
2573 if (err)
2574 return err;
2575 conf = mddev->private;
2576 if (!conf || !conf->log) {
2577 mddev_unlock(mddev);
2578 return -ENODEV;
2579 }
2580
2e38a37f 2581 if (raid5_calc_degraded(conf) > 0 &&
b44886c5
SL
2582 mode == R5C_JOURNAL_MODE_WRITE_BACK) {
2583 mddev_unlock(mddev);
2e38a37f 2584 return -EINVAL;
b44886c5 2585 }
2e38a37f 2586
2c7da14b 2587 mddev_suspend(mddev);
78e470c2 2588 conf->log->r5c_journal_mode = mode;
2c7da14b 2589 mddev_resume(mddev);
b44886c5 2590 mddev_unlock(mddev);
2c7da14b
SL
2591
2592 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
78e470c2
HM
2593 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2594 return 0;
2595}
2596EXPORT_SYMBOL(r5c_journal_mode_set);
2597
2598static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2599 const char *page, size_t length)
2600{
2601 int mode = ARRAY_SIZE(r5c_journal_mode_str);
2602 size_t len = length;
2603
2604 if (len < 2)
2605 return -EINVAL;
2606
2607 if (page[len - 1] == '\n')
2608 len--;
2609
2610 while (mode--)
2611 if (strlen(r5c_journal_mode_str[mode]) == len &&
2612 !strncmp(page, r5c_journal_mode_str[mode], len))
2613 break;
2614
2615 return r5c_journal_mode_set(mddev, mode) ?: length;
2c7da14b
SL
2616}
2617
2618struct md_sysfs_entry
2619r5c_journal_mode = __ATTR(journal_mode, 0644,
2620 r5c_journal_mode_show, r5c_journal_mode_store);
2621
2ded3703
SL
2622/*
2623 * Try handle write operation in caching phase. This function should only
2624 * be called in write-back mode.
2625 *
2626 * If all outstanding writes can be handled in caching phase, returns 0
2627 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2628 * and returns -EAGAIN
2629 */
2630int r5c_try_caching_write(struct r5conf *conf,
2631 struct stripe_head *sh,
2632 struct stripe_head_state *s,
2633 int disks)
2634{
2635 struct r5l_log *log = conf->log;
1e6d690b
SL
2636 int i;
2637 struct r5dev *dev;
2638 int to_cache = 0;
03b047f4
SL
2639 void **pslot;
2640 sector_t tree_index;
2641 int ret;
2642 uintptr_t refcount;
2ded3703
SL
2643
2644 BUG_ON(!r5c_is_writeback(log));
2645
1e6d690b
SL
2646 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2647 /*
2648 * There are two different scenarios here:
2649 * 1. The stripe has some data cached, and it is sent to
2650 * write-out phase for reclaim
2651 * 2. The stripe is clean, and this is the first write
2652 *
2653 * For 1, return -EAGAIN, so we continue with
2654 * handle_stripe_dirtying().
2655 *
2656 * For 2, set STRIPE_R5C_CACHING and continue with caching
2657 * write.
2658 */
2659
2660 /* case 1: anything injournal or anything in written */
2661 if (s->injournal > 0 || s->written > 0)
2662 return -EAGAIN;
2663 /* case 2 */
2664 set_bit(STRIPE_R5C_CACHING, &sh->state);
2665 }
2666
2e38a37f
SL
2667 /*
2668 * When run in degraded mode, array is set to write-through mode.
2669 * This check helps drain pending write safely in the transition to
2670 * write-through mode.
5ddf0440
SL
2671 *
2672 * When a stripe is syncing, the write is also handled in write
2673 * through mode.
2e38a37f 2674 */
5ddf0440 2675 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2e38a37f
SL
2676 r5c_make_stripe_write_out(sh);
2677 return -EAGAIN;
2678 }
2679
1e6d690b
SL
2680 for (i = disks; i--; ) {
2681 dev = &sh->dev[i];
2682 /* if non-overwrite, use writing-out phase */
2683 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2684 !test_bit(R5_InJournal, &dev->flags)) {
2685 r5c_make_stripe_write_out(sh);
2686 return -EAGAIN;
2687 }
2688 }
2689
03b047f4
SL
2690 /* if the stripe is not counted in big_stripe_tree, add it now */
2691 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2692 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2693 tree_index = r5c_tree_index(conf, sh->sector);
2694 spin_lock(&log->tree_lock);
2695 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2696 tree_index);
2697 if (pslot) {
2698 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2699 pslot, &log->tree_lock) >>
2700 R5C_RADIX_COUNT_SHIFT;
2701 radix_tree_replace_slot(
2702 &log->big_stripe_tree, pslot,
2703 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2704 } else {
2705 /*
2706 * this radix_tree_insert can fail safely, so no
2707 * need to call radix_tree_preload()
2708 */
2709 ret = radix_tree_insert(
2710 &log->big_stripe_tree, tree_index,
2711 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2712 if (ret) {
2713 spin_unlock(&log->tree_lock);
2714 r5c_make_stripe_write_out(sh);
2715 return -EAGAIN;
2716 }
2717 }
2718 spin_unlock(&log->tree_lock);
2719
2720 /*
2721 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2722 * counted in the radix tree
2723 */
2724 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2725 atomic_inc(&conf->r5c_cached_partial_stripes);
2726 }
2727
1e6d690b
SL
2728 for (i = disks; i--; ) {
2729 dev = &sh->dev[i];
2730 if (dev->towrite) {
2731 set_bit(R5_Wantwrite, &dev->flags);
2732 set_bit(R5_Wantdrain, &dev->flags);
2733 set_bit(R5_LOCKED, &dev->flags);
2734 to_cache++;
2735 }
2736 }
2737
2738 if (to_cache) {
2739 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2740 /*
2741 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2742 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2743 * r5c_handle_data_cached()
2744 */
2745 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2746 }
2747
2748 return 0;
2749}
2750
2751/*
2752 * free extra pages (orig_page) we allocated for prexor
2753 */
2754void r5c_release_extra_page(struct stripe_head *sh)
2755{
d7bd398e 2756 struct r5conf *conf = sh->raid_conf;
1e6d690b 2757 int i;
d7bd398e
SL
2758 bool using_disk_info_extra_page;
2759
2760 using_disk_info_extra_page =
2761 sh->dev[0].orig_page == conf->disks[0].extra_page;
1e6d690b
SL
2762
2763 for (i = sh->disks; i--; )
2764 if (sh->dev[i].page != sh->dev[i].orig_page) {
2765 struct page *p = sh->dev[i].orig_page;
2766
2767 sh->dev[i].orig_page = sh->dev[i].page;
86aa1397
SL
2768 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2769
d7bd398e
SL
2770 if (!using_disk_info_extra_page)
2771 put_page(p);
1e6d690b 2772 }
d7bd398e
SL
2773
2774 if (using_disk_info_extra_page) {
2775 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2776 md_wakeup_thread(conf->mddev->thread);
2777 }
2778}
2779
2780void r5c_use_extra_page(struct stripe_head *sh)
2781{
2782 struct r5conf *conf = sh->raid_conf;
2783 int i;
2784 struct r5dev *dev;
2785
2786 for (i = sh->disks; i--; ) {
2787 dev = &sh->dev[i];
2788 if (dev->orig_page != dev->page)
2789 put_page(dev->orig_page);
2790 dev->orig_page = conf->disks[i].extra_page;
2791 }
2ded3703
SL
2792}
2793
2794/*
2795 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2796 * stripe is committed to RAID disks.
2797 */
2798void r5c_finish_stripe_write_out(struct r5conf *conf,
2799 struct stripe_head *sh,
2800 struct stripe_head_state *s)
2801{
03b047f4 2802 struct r5l_log *log = conf->log;
1e6d690b
SL
2803 int i;
2804 int do_wakeup = 0;
03b047f4
SL
2805 sector_t tree_index;
2806 void **pslot;
2807 uintptr_t refcount;
1e6d690b 2808
03b047f4 2809 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2ded3703
SL
2810 return;
2811
2812 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2813 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2814
03b047f4 2815 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2ded3703 2816 return;
1e6d690b
SL
2817
2818 for (i = sh->disks; i--; ) {
2819 clear_bit(R5_InJournal, &sh->dev[i].flags);
2820 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2821 do_wakeup = 1;
2822 }
2823
2824 /*
2825 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2826 * We updated R5_InJournal, so we also update s->injournal.
2827 */
2828 s->injournal = 0;
2829
2830 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2831 if (atomic_dec_and_test(&conf->pending_full_writes))
2832 md_wakeup_thread(conf->mddev->thread);
2833
2834 if (do_wakeup)
2835 wake_up(&conf->wait_for_overlap);
a39f7afd 2836
03b047f4 2837 spin_lock_irq(&log->stripe_in_journal_lock);
a39f7afd 2838 list_del_init(&sh->r5c);
03b047f4 2839 spin_unlock_irq(&log->stripe_in_journal_lock);
a39f7afd 2840 sh->log_start = MaxSector;
03b047f4
SL
2841
2842 atomic_dec(&log->stripe_in_journal_count);
2843 r5c_update_log_state(log);
2844
2845 /* stop counting this stripe in big_stripe_tree */
2846 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2847 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2848 tree_index = r5c_tree_index(conf, sh->sector);
2849 spin_lock(&log->tree_lock);
2850 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2851 tree_index);
2852 BUG_ON(pslot == NULL);
2853 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2854 pslot, &log->tree_lock) >>
2855 R5C_RADIX_COUNT_SHIFT;
2856 if (refcount == 1)
2857 radix_tree_delete(&log->big_stripe_tree, tree_index);
2858 else
2859 radix_tree_replace_slot(
2860 &log->big_stripe_tree, pslot,
2861 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2862 spin_unlock(&log->tree_lock);
2863 }
2864
2865 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2866 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
e33fbb9c 2867 atomic_dec(&conf->r5c_flushing_partial_stripes);
03b047f4
SL
2868 atomic_dec(&conf->r5c_cached_partial_stripes);
2869 }
2870
2871 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2872 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
e33fbb9c 2873 atomic_dec(&conf->r5c_flushing_full_stripes);
03b047f4
SL
2874 atomic_dec(&conf->r5c_cached_full_stripes);
2875 }
ea17481f
SL
2876
2877 r5l_append_flush_payload(log, sh->sector);
5ddf0440
SL
2878 /* stripe is flused to raid disks, we can do resync now */
2879 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2880 set_bit(STRIPE_HANDLE, &sh->state);
1e6d690b
SL
2881}
2882
ff875738 2883int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
1e6d690b 2884{
a39f7afd 2885 struct r5conf *conf = sh->raid_conf;
1e6d690b
SL
2886 int pages = 0;
2887 int reserve;
2888 int i;
2889 int ret = 0;
2890
2891 BUG_ON(!log);
2892
2893 for (i = 0; i < sh->disks; i++) {
2894 void *addr;
2895
2896 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2897 continue;
2898 addr = kmap_atomic(sh->dev[i].page);
2899 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2900 addr, PAGE_SIZE);
2901 kunmap_atomic(addr);
2902 pages++;
2903 }
2904 WARN_ON(pages == 0);
2905
2906 /*
2907 * The stripe must enter state machine again to call endio, so
2908 * don't delay.
2909 */
2910 clear_bit(STRIPE_DELAYED, &sh->state);
2911 atomic_inc(&sh->count);
2912
2913 mutex_lock(&log->io_mutex);
2914 /* meta + data */
2915 reserve = (1 + pages) << (PAGE_SHIFT - 9);
1e6d690b 2916
a39f7afd
SL
2917 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2918 sh->log_start == MaxSector)
2919 r5l_add_no_space_stripe(log, sh);
2920 else if (!r5l_has_free_space(log, reserve)) {
2921 if (sh->log_start == log->last_checkpoint)
2922 BUG();
2923 else
2924 r5l_add_no_space_stripe(log, sh);
1e6d690b
SL
2925 } else {
2926 ret = r5l_log_stripe(log, sh, pages, 0);
2927 if (ret) {
2928 spin_lock_irq(&log->io_list_lock);
2929 list_add_tail(&sh->log_list, &log->no_mem_stripes);
2930 spin_unlock_irq(&log->io_list_lock);
2931 }
2932 }
2933
2934 mutex_unlock(&log->io_mutex);
2935 return 0;
f6bed0ef
SL
2936}
2937
03b047f4
SL
2938/* check whether this big stripe is in write back cache. */
2939bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2940{
2941 struct r5l_log *log = conf->log;
2942 sector_t tree_index;
2943 void *slot;
2944
2945 if (!log)
2946 return false;
2947
2948 WARN_ON_ONCE(!rcu_read_lock_held());
2949 tree_index = r5c_tree_index(conf, sect);
2950 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2951 return slot != NULL;
2952}
2953
f6bed0ef
SL
2954static int r5l_load_log(struct r5l_log *log)
2955{
2956 struct md_rdev *rdev = log->rdev;
2957 struct page *page;
2958 struct r5l_meta_block *mb;
2959 sector_t cp = log->rdev->journal_tail;
2960 u32 stored_crc, expected_crc;
2961 bool create_super = false;
d30dfeb9 2962 int ret = 0;
f6bed0ef
SL
2963
2964 /* Make sure it's valid */
2965 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2966 cp = 0;
2967 page = alloc_page(GFP_KERNEL);
2968 if (!page)
2969 return -ENOMEM;
2970
796a5cf0 2971 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
f6bed0ef
SL
2972 ret = -EIO;
2973 goto ioerr;
2974 }
2975 mb = page_address(page);
2976
2977 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2978 mb->version != R5LOG_VERSION) {
2979 create_super = true;
2980 goto create;
2981 }
2982 stored_crc = le32_to_cpu(mb->checksum);
2983 mb->checksum = 0;
5cb2fbd6 2984 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
f6bed0ef
SL
2985 if (stored_crc != expected_crc) {
2986 create_super = true;
2987 goto create;
2988 }
2989 if (le64_to_cpu(mb->position) != cp) {
2990 create_super = true;
2991 goto create;
2992 }
2993create:
2994 if (create_super) {
2995 log->last_cp_seq = prandom_u32();
2996 cp = 0;
56056c2e 2997 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
f6bed0ef
SL
2998 /*
2999 * Make sure super points to correct address. Log might have
3000 * data very soon. If super hasn't correct log tail address,
3001 * recovery can't find the log
3002 */
3003 r5l_write_super(log, cp);
3004 } else
3005 log->last_cp_seq = le64_to_cpu(mb->seq);
3006
3007 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
0576b1c6
SL
3008 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3009 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3010 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
f6bed0ef
SL
3011 log->last_checkpoint = cp;
3012
3013 __free_page(page);
3014
d30dfeb9
J
3015 if (create_super) {
3016 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3017 log->seq = log->last_cp_seq + 1;
3018 log->next_checkpoint = cp;
3019 } else
3020 ret = r5l_recovery_log(log);
3021
3d7e7e1d
ZL
3022 r5c_update_log_state(log);
3023 return ret;
f6bed0ef
SL
3024ioerr:
3025 __free_page(page);
3026 return ret;
3027}
3028
70d466f7 3029void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
2e38a37f
SL
3030{
3031 struct r5conf *conf = mddev->private;
3032 struct r5l_log *log = conf->log;
3033
3034 if (!log)
3035 return;
3036
70d466f7
SL
3037 if ((raid5_calc_degraded(conf) > 0 ||
3038 test_bit(Journal, &rdev->flags)) &&
2e38a37f
SL
3039 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3040 schedule_work(&log->disable_writeback_work);
3041}
3042
f6bed0ef
SL
3043int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3044{
c888a8f9 3045 struct request_queue *q = bdev_get_queue(rdev->bdev);
f6bed0ef 3046 struct r5l_log *log;
ff875738
AP
3047 char b[BDEVNAME_SIZE];
3048
3049 pr_debug("md/raid:%s: using device %s as journal\n",
3050 mdname(conf->mddev), bdevname(rdev->bdev, b));
f6bed0ef
SL
3051
3052 if (PAGE_SIZE != 4096)
3053 return -EINVAL;
c757ec95
SL
3054
3055 /*
3056 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3057 * raid_disks r5l_payload_data_parity.
3058 *
3059 * Write journal and cache does not work for very big array
3060 * (raid_disks > 203)
3061 */
3062 if (sizeof(struct r5l_meta_block) +
3063 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3064 conf->raid_disks) > PAGE_SIZE) {
3065 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3066 mdname(conf->mddev), conf->raid_disks);
3067 return -EINVAL;
3068 }
3069
f6bed0ef
SL
3070 log = kzalloc(sizeof(*log), GFP_KERNEL);
3071 if (!log)
3072 return -ENOMEM;
3073 log->rdev = rdev;
3074
c888a8f9 3075 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
56fef7c6 3076
5cb2fbd6
SL
3077 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3078 sizeof(rdev->mddev->uuid));
f6bed0ef
SL
3079
3080 mutex_init(&log->io_mutex);
3081
3082 spin_lock_init(&log->io_list_lock);
3083 INIT_LIST_HEAD(&log->running_ios);
0576b1c6 3084 INIT_LIST_HEAD(&log->io_end_ios);
a8c34f91 3085 INIT_LIST_HEAD(&log->flushing_ios);
04732f74 3086 INIT_LIST_HEAD(&log->finished_ios);
3a83f467 3087 bio_init(&log->flush_bio, NULL, 0);
f6bed0ef
SL
3088
3089 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3090 if (!log->io_kc)
3091 goto io_kc;
3092
5036c390
CH
3093 log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
3094 if (!log->io_pool)
3095 goto io_pool;
3096
011067b0 3097 log->bs = bioset_create(R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
c38d29b3
CH
3098 if (!log->bs)
3099 goto io_bs;
3100
e8deb638
CH
3101 log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
3102 if (!log->meta_pool)
3103 goto out_mempool;
3104
03b047f4
SL
3105 spin_lock_init(&log->tree_lock);
3106 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3107
0576b1c6
SL
3108 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3109 log->rdev->mddev, "reclaim");
3110 if (!log->reclaim_thread)
3111 goto reclaim_thread;
a39f7afd
SL
3112 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3113
0fd22b45 3114 init_waitqueue_head(&log->iounit_wait);
0576b1c6 3115
5036c390
CH
3116 INIT_LIST_HEAD(&log->no_mem_stripes);
3117
f6bed0ef
SL
3118 INIT_LIST_HEAD(&log->no_space_stripes);
3119 spin_lock_init(&log->no_space_stripes_lock);
3120
3bddb7f8 3121 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
2e38a37f 3122 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3bddb7f8 3123
2ded3703 3124 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
a39f7afd
SL
3125 INIT_LIST_HEAD(&log->stripe_in_journal_list);
3126 spin_lock_init(&log->stripe_in_journal_lock);
3127 atomic_set(&log->stripe_in_journal_count, 0);
2ded3703 3128
d2250f10
SL
3129 rcu_assign_pointer(conf->log, log);
3130
f6bed0ef
SL
3131 if (r5l_load_log(log))
3132 goto error;
3133
a62ab49e 3134 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
f6bed0ef 3135 return 0;
e8deb638 3136
f6bed0ef 3137error:
d2250f10 3138 rcu_assign_pointer(conf->log, NULL);
0576b1c6
SL
3139 md_unregister_thread(&log->reclaim_thread);
3140reclaim_thread:
e8deb638
CH
3141 mempool_destroy(log->meta_pool);
3142out_mempool:
c38d29b3
CH
3143 bioset_free(log->bs);
3144io_bs:
5036c390
CH
3145 mempool_destroy(log->io_pool);
3146io_pool:
f6bed0ef
SL
3147 kmem_cache_destroy(log->io_kc);
3148io_kc:
3149 kfree(log);
3150 return -EINVAL;
3151}
3152
ff875738 3153void r5l_exit_log(struct r5conf *conf)
f6bed0ef 3154{
ff875738
AP
3155 struct r5l_log *log = conf->log;
3156
3157 conf->log = NULL;
3158 synchronize_rcu();
3159
2e38a37f 3160 flush_work(&log->disable_writeback_work);
0576b1c6 3161 md_unregister_thread(&log->reclaim_thread);
e8deb638 3162 mempool_destroy(log->meta_pool);
c38d29b3 3163 bioset_free(log->bs);
5036c390 3164 mempool_destroy(log->io_pool);
f6bed0ef
SL
3165 kmem_cache_destroy(log->io_kc);
3166 kfree(log);
3167}