]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/md/raid5.c
Merge tag 'iommu-fix-v5.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[mirror_ubuntu-eoan-kernel.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
3f07c014 57
a9add5d9 58#include <trace/events/block.h>
aaf9f12e 59#include <linux/list_sort.h>
a9add5d9 60
43b2e5d8 61#include "md.h"
bff61975 62#include "raid5.h"
54071b38 63#include "raid0.h"
935fe098 64#include "md-bitmap.h"
ff875738 65#include "raid5-log.h"
72626685 66
394ed8e4
SL
67#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
68
851c30c9
SL
69#define cpu_to_group(cpu) cpu_to_node(cpu)
70#define ANY_GROUP NUMA_NO_NODE
71
8e0e99ba
N
72static bool devices_handle_discard_safely = false;
73module_param(devices_handle_discard_safely, bool, 0644);
74MODULE_PARM_DESC(devices_handle_discard_safely,
75 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 76static struct workqueue_struct *raid5_wq;
1da177e4 77
d1688a6d 78static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
79{
80 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
81 return &conf->stripe_hashtbl[hash];
82}
1da177e4 83
566c09c5
SL
84static inline int stripe_hash_locks_hash(sector_t sect)
85{
86 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
87}
88
89static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
90{
91 spin_lock_irq(conf->hash_locks + hash);
92 spin_lock(&conf->device_lock);
93}
94
95static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
96{
97 spin_unlock(&conf->device_lock);
98 spin_unlock_irq(conf->hash_locks + hash);
99}
100
101static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
102{
103 int i;
3d05f3ae 104 spin_lock_irq(conf->hash_locks);
566c09c5
SL
105 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
106 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
107 spin_lock(&conf->device_lock);
108}
109
110static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
111{
112 int i;
113 spin_unlock(&conf->device_lock);
3d05f3ae
JC
114 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
115 spin_unlock(conf->hash_locks + i);
116 spin_unlock_irq(conf->hash_locks);
566c09c5
SL
117}
118
d0dabf7e
N
119/* Find first data disk in a raid6 stripe */
120static inline int raid6_d0(struct stripe_head *sh)
121{
67cc2b81
N
122 if (sh->ddf_layout)
123 /* ddf always start from first device */
124 return 0;
125 /* md starts just after Q block */
d0dabf7e
N
126 if (sh->qd_idx == sh->disks - 1)
127 return 0;
128 else
129 return sh->qd_idx + 1;
130}
16a53ecc
N
131static inline int raid6_next_disk(int disk, int raid_disks)
132{
133 disk++;
134 return (disk < raid_disks) ? disk : 0;
135}
a4456856 136
d0dabf7e
N
137/* When walking through the disks in a raid5, starting at raid6_d0,
138 * We need to map each disk to a 'slot', where the data disks are slot
139 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
140 * is raid_disks-1. This help does that mapping.
141 */
67cc2b81
N
142static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
143 int *count, int syndrome_disks)
d0dabf7e 144{
6629542e 145 int slot = *count;
67cc2b81 146
e4424fee 147 if (sh->ddf_layout)
6629542e 148 (*count)++;
d0dabf7e 149 if (idx == sh->pd_idx)
67cc2b81 150 return syndrome_disks;
d0dabf7e 151 if (idx == sh->qd_idx)
67cc2b81 152 return syndrome_disks + 1;
e4424fee 153 if (!sh->ddf_layout)
6629542e 154 (*count)++;
d0dabf7e
N
155 return slot;
156}
157
d1688a6d 158static void print_raid5_conf (struct r5conf *conf);
1da177e4 159
600aa109
DW
160static int stripe_operations_active(struct stripe_head *sh)
161{
162 return sh->check_state || sh->reconstruct_state ||
163 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
164 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
165}
166
535ae4eb
SL
167static bool stripe_is_lowprio(struct stripe_head *sh)
168{
169 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
170 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
171 !test_bit(STRIPE_R5C_CACHING, &sh->state);
172}
173
851c30c9
SL
174static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
175{
176 struct r5conf *conf = sh->raid_conf;
177 struct r5worker_group *group;
bfc90cb0 178 int thread_cnt;
851c30c9
SL
179 int i, cpu = sh->cpu;
180
181 if (!cpu_online(cpu)) {
182 cpu = cpumask_any(cpu_online_mask);
183 sh->cpu = cpu;
184 }
185
186 if (list_empty(&sh->lru)) {
187 struct r5worker_group *group;
188 group = conf->worker_groups + cpu_to_group(cpu);
535ae4eb
SL
189 if (stripe_is_lowprio(sh))
190 list_add_tail(&sh->lru, &group->loprio_list);
191 else
192 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
193 group->stripes_cnt++;
194 sh->group = group;
851c30c9
SL
195 }
196
197 if (conf->worker_cnt_per_group == 0) {
198 md_wakeup_thread(conf->mddev->thread);
199 return;
200 }
201
202 group = conf->worker_groups + cpu_to_group(sh->cpu);
203
bfc90cb0
SL
204 group->workers[0].working = true;
205 /* at least one worker should run to avoid race */
206 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
207
208 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
209 /* wakeup more workers */
210 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
211 if (group->workers[i].working == false) {
212 group->workers[i].working = true;
213 queue_work_on(sh->cpu, raid5_wq,
214 &group->workers[i].work);
215 thread_cnt--;
216 }
217 }
851c30c9
SL
218}
219
566c09c5
SL
220static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
221 struct list_head *temp_inactive_list)
1da177e4 222{
1e6d690b
SL
223 int i;
224 int injournal = 0; /* number of date pages with R5_InJournal */
225
4eb788df
SL
226 BUG_ON(!list_empty(&sh->lru));
227 BUG_ON(atomic_read(&conf->active_stripes)==0);
1e6d690b
SL
228
229 if (r5c_is_writeback(conf->log))
230 for (i = sh->disks; i--; )
231 if (test_bit(R5_InJournal, &sh->dev[i].flags))
232 injournal++;
a39f7afd 233 /*
5ddf0440
SL
234 * In the following cases, the stripe cannot be released to cached
235 * lists. Therefore, we make the stripe write out and set
236 * STRIPE_HANDLE:
237 * 1. when quiesce in r5c write back;
238 * 2. when resync is requested fot the stripe.
a39f7afd 239 */
5ddf0440
SL
240 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
241 (conf->quiesce && r5c_is_writeback(conf->log) &&
242 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
a39f7afd
SL
243 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
244 r5c_make_stripe_write_out(sh);
245 set_bit(STRIPE_HANDLE, &sh->state);
246 }
1e6d690b 247
4eb788df
SL
248 if (test_bit(STRIPE_HANDLE, &sh->state)) {
249 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 250 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 251 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 252 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
253 sh->bm_seq - conf->seq_write > 0)
254 list_add_tail(&sh->lru, &conf->bitmap_list);
255 else {
256 clear_bit(STRIPE_DELAYED, &sh->state);
257 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9 258 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
259 if (stripe_is_lowprio(sh))
260 list_add_tail(&sh->lru,
261 &conf->loprio_list);
262 else
263 list_add_tail(&sh->lru,
264 &conf->handle_list);
851c30c9
SL
265 } else {
266 raid5_wakeup_stripe_thread(sh);
267 return;
268 }
4eb788df
SL
269 }
270 md_wakeup_thread(conf->mddev->thread);
271 } else {
272 BUG_ON(stripe_operations_active(sh));
273 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
274 if (atomic_dec_return(&conf->preread_active_stripes)
275 < IO_THRESHOLD)
276 md_wakeup_thread(conf->mddev->thread);
277 atomic_dec(&conf->active_stripes);
1e6d690b
SL
278 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
279 if (!r5c_is_writeback(conf->log))
280 list_add_tail(&sh->lru, temp_inactive_list);
281 else {
282 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
283 if (injournal == 0)
284 list_add_tail(&sh->lru, temp_inactive_list);
285 else if (injournal == conf->raid_disks - conf->max_degraded) {
286 /* full stripe */
287 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
288 atomic_inc(&conf->r5c_cached_full_stripes);
289 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
290 atomic_dec(&conf->r5c_cached_partial_stripes);
291 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
a39f7afd 292 r5c_check_cached_full_stripe(conf);
03b047f4
SL
293 } else
294 /*
295 * STRIPE_R5C_PARTIAL_STRIPE is set in
296 * r5c_try_caching_write(). No need to
297 * set it again.
298 */
1e6d690b 299 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
1e6d690b
SL
300 }
301 }
1da177e4
LT
302 }
303}
d0dabf7e 304
566c09c5
SL
305static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
306 struct list_head *temp_inactive_list)
4eb788df
SL
307{
308 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
309 do_release_stripe(conf, sh, temp_inactive_list);
310}
311
312/*
313 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
314 *
315 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
316 * given time. Adding stripes only takes device lock, while deleting stripes
317 * only takes hash lock.
318 */
319static void release_inactive_stripe_list(struct r5conf *conf,
320 struct list_head *temp_inactive_list,
321 int hash)
322{
323 int size;
6ab2a4b8 324 bool do_wakeup = false;
566c09c5
SL
325 unsigned long flags;
326
327 if (hash == NR_STRIPE_HASH_LOCKS) {
328 size = NR_STRIPE_HASH_LOCKS;
329 hash = NR_STRIPE_HASH_LOCKS - 1;
330 } else
331 size = 1;
332 while (size) {
333 struct list_head *list = &temp_inactive_list[size - 1];
334
335 /*
6d036f7d 336 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
337 * remove stripes from the list
338 */
339 if (!list_empty_careful(list)) {
340 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
341 if (list_empty(conf->inactive_list + hash) &&
342 !list_empty(list))
343 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 344 list_splice_tail_init(list, conf->inactive_list + hash);
6ab2a4b8 345 do_wakeup = true;
566c09c5
SL
346 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
347 }
348 size--;
349 hash--;
350 }
351
352 if (do_wakeup) {
6ab2a4b8 353 wake_up(&conf->wait_for_stripe);
b1b46486
YL
354 if (atomic_read(&conf->active_stripes) == 0)
355 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
356 if (conf->retry_read_aligned)
357 md_wakeup_thread(conf->mddev->thread);
358 }
4eb788df
SL
359}
360
773ca82f 361/* should hold conf->device_lock already */
566c09c5
SL
362static int release_stripe_list(struct r5conf *conf,
363 struct list_head *temp_inactive_list)
773ca82f 364{
eae8263f 365 struct stripe_head *sh, *t;
773ca82f
SL
366 int count = 0;
367 struct llist_node *head;
368
369 head = llist_del_all(&conf->released_stripes);
d265d9dc 370 head = llist_reverse_order(head);
eae8263f 371 llist_for_each_entry_safe(sh, t, head, release_list) {
566c09c5
SL
372 int hash;
373
773ca82f
SL
374 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
375 smp_mb();
376 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
377 /*
378 * Don't worry the bit is set here, because if the bit is set
379 * again, the count is always > 1. This is true for
380 * STRIPE_ON_UNPLUG_LIST bit too.
381 */
566c09c5
SL
382 hash = sh->hash_lock_index;
383 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
384 count++;
385 }
386
387 return count;
388}
389
6d036f7d 390void raid5_release_stripe(struct stripe_head *sh)
1da177e4 391{
d1688a6d 392 struct r5conf *conf = sh->raid_conf;
1da177e4 393 unsigned long flags;
566c09c5
SL
394 struct list_head list;
395 int hash;
773ca82f 396 bool wakeup;
16a53ecc 397
cf170f3f
ES
398 /* Avoid release_list until the last reference.
399 */
400 if (atomic_add_unless(&sh->count, -1, 1))
401 return;
402
ad4068de 403 if (unlikely(!conf->mddev->thread) ||
404 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
405 goto slow_path;
406 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
407 if (wakeup)
408 md_wakeup_thread(conf->mddev->thread);
409 return;
410slow_path:
773ca82f 411 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
685dbcaa 412 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
566c09c5
SL
413 INIT_LIST_HEAD(&list);
414 hash = sh->hash_lock_index;
415 do_release_stripe(conf, sh, &list);
08edaaa6 416 spin_unlock_irqrestore(&conf->device_lock, flags);
566c09c5 417 release_inactive_stripe_list(conf, &list, hash);
4eb788df 418 }
1da177e4
LT
419}
420
fccddba0 421static inline void remove_hash(struct stripe_head *sh)
1da177e4 422{
45b4233c
DW
423 pr_debug("remove_hash(), stripe %llu\n",
424 (unsigned long long)sh->sector);
1da177e4 425
fccddba0 426 hlist_del_init(&sh->hash);
1da177e4
LT
427}
428
d1688a6d 429static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 430{
fccddba0 431 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 432
45b4233c
DW
433 pr_debug("insert_hash(), stripe %llu\n",
434 (unsigned long long)sh->sector);
1da177e4 435
fccddba0 436 hlist_add_head(&sh->hash, hp);
1da177e4
LT
437}
438
1da177e4 439/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 440static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
441{
442 struct stripe_head *sh = NULL;
443 struct list_head *first;
444
566c09c5 445 if (list_empty(conf->inactive_list + hash))
1da177e4 446 goto out;
566c09c5 447 first = (conf->inactive_list + hash)->next;
1da177e4
LT
448 sh = list_entry(first, struct stripe_head, lru);
449 list_del_init(first);
450 remove_hash(sh);
451 atomic_inc(&conf->active_stripes);
566c09c5 452 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
453 if (list_empty(conf->inactive_list + hash))
454 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
455out:
456 return sh;
457}
458
e4e11e38 459static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
460{
461 struct page *p;
462 int i;
e4e11e38 463 int num = sh->raid_conf->pool_size;
1da177e4 464
e4e11e38 465 for (i = 0; i < num ; i++) {
d592a996 466 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
467 p = sh->dev[i].page;
468 if (!p)
469 continue;
470 sh->dev[i].page = NULL;
2d1f3b5d 471 put_page(p);
1da177e4
LT
472 }
473}
474
a9683a79 475static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
476{
477 int i;
e4e11e38 478 int num = sh->raid_conf->pool_size;
1da177e4 479
e4e11e38 480 for (i = 0; i < num; i++) {
1da177e4
LT
481 struct page *page;
482
a9683a79 483 if (!(page = alloc_page(gfp))) {
1da177e4
LT
484 return 1;
485 }
486 sh->dev[i].page = page;
d592a996 487 sh->dev[i].orig_page = page;
1da177e4 488 }
3418d036 489
1da177e4
LT
490 return 0;
491}
492
d1688a6d 493static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 494 struct stripe_head *sh);
1da177e4 495
b5663ba4 496static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 497{
d1688a6d 498 struct r5conf *conf = sh->raid_conf;
566c09c5 499 int i, seq;
1da177e4 500
78bafebd
ES
501 BUG_ON(atomic_read(&sh->count) != 0);
502 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 503 BUG_ON(stripe_operations_active(sh));
59fc630b 504 BUG_ON(sh->batch_head);
d84e0f10 505
45b4233c 506 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 507 (unsigned long long)sector);
566c09c5
SL
508retry:
509 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 510 sh->generation = conf->generation - previous;
b5663ba4 511 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 512 sh->sector = sector;
911d4ee8 513 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
514 sh->state = 0;
515
7ecaa1e6 516 for (i = sh->disks; i--; ) {
1da177e4
LT
517 struct r5dev *dev = &sh->dev[i];
518
d84e0f10 519 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 520 test_bit(R5_LOCKED, &dev->flags)) {
cc6167b4 521 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 522 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 523 dev->read, dev->towrite, dev->written,
1da177e4 524 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 525 WARN_ON(1);
1da177e4
LT
526 }
527 dev->flags = 0;
27a4ff8f 528 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4 529 }
566c09c5
SL
530 if (read_seqcount_retry(&conf->gen_lock, seq))
531 goto retry;
7a87f434 532 sh->overwrite_disks = 0;
1da177e4 533 insert_hash(conf, sh);
851c30c9 534 sh->cpu = smp_processor_id();
da41ba65 535 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
536}
537
d1688a6d 538static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 539 short generation)
1da177e4
LT
540{
541 struct stripe_head *sh;
542
45b4233c 543 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 544 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 545 if (sh->sector == sector && sh->generation == generation)
1da177e4 546 return sh;
45b4233c 547 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
548 return NULL;
549}
550
674806d6
N
551/*
552 * Need to check if array has failed when deciding whether to:
553 * - start an array
554 * - remove non-faulty devices
555 * - add a spare
556 * - allow a reshape
557 * This determination is simple when no reshape is happening.
558 * However if there is a reshape, we need to carefully check
559 * both the before and after sections.
560 * This is because some failed devices may only affect one
561 * of the two sections, and some non-in_sync devices may
562 * be insync in the section most affected by failed devices.
563 */
2e38a37f 564int raid5_calc_degraded(struct r5conf *conf)
674806d6 565{
908f4fbd 566 int degraded, degraded2;
674806d6 567 int i;
674806d6
N
568
569 rcu_read_lock();
570 degraded = 0;
571 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 572 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
573 if (rdev && test_bit(Faulty, &rdev->flags))
574 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
575 if (!rdev || test_bit(Faulty, &rdev->flags))
576 degraded++;
577 else if (test_bit(In_sync, &rdev->flags))
578 ;
579 else
580 /* not in-sync or faulty.
581 * If the reshape increases the number of devices,
582 * this is being recovered by the reshape, so
583 * this 'previous' section is not in_sync.
584 * If the number of devices is being reduced however,
585 * the device can only be part of the array if
586 * we are reverting a reshape, so this section will
587 * be in-sync.
588 */
589 if (conf->raid_disks >= conf->previous_raid_disks)
590 degraded++;
591 }
592 rcu_read_unlock();
908f4fbd
N
593 if (conf->raid_disks == conf->previous_raid_disks)
594 return degraded;
674806d6 595 rcu_read_lock();
908f4fbd 596 degraded2 = 0;
674806d6 597 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 598 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
599 if (rdev && test_bit(Faulty, &rdev->flags))
600 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 601 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 602 degraded2++;
674806d6
N
603 else if (test_bit(In_sync, &rdev->flags))
604 ;
605 else
606 /* not in-sync or faulty.
607 * If reshape increases the number of devices, this
608 * section has already been recovered, else it
609 * almost certainly hasn't.
610 */
611 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 612 degraded2++;
674806d6
N
613 }
614 rcu_read_unlock();
908f4fbd
N
615 if (degraded2 > degraded)
616 return degraded2;
617 return degraded;
618}
619
620static int has_failed(struct r5conf *conf)
621{
622 int degraded;
623
624 if (conf->mddev->reshape_position == MaxSector)
625 return conf->mddev->degraded > conf->max_degraded;
626
2e38a37f 627 degraded = raid5_calc_degraded(conf);
674806d6
N
628 if (degraded > conf->max_degraded)
629 return 1;
630 return 0;
631}
632
6d036f7d
SL
633struct stripe_head *
634raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
635 int previous, int noblock, int noquiesce)
1da177e4
LT
636{
637 struct stripe_head *sh;
566c09c5 638 int hash = stripe_hash_locks_hash(sector);
ff00d3b4 639 int inc_empty_inactive_list_flag;
1da177e4 640
45b4233c 641 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 642
566c09c5 643 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
644
645 do {
b1b46486 646 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 647 conf->quiesce == 0 || noquiesce,
566c09c5 648 *(conf->hash_locks + hash));
86b42c71 649 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 650 if (!sh) {
edbe83ab 651 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 652 sh = get_free_stripe(conf, hash);
713bc5c2
SL
653 if (!sh && !test_bit(R5_DID_ALLOC,
654 &conf->cache_state))
edbe83ab
N
655 set_bit(R5_ALLOC_MORE,
656 &conf->cache_state);
657 }
1da177e4
LT
658 if (noblock && sh == NULL)
659 break;
a39f7afd
SL
660
661 r5c_check_stripe_cache_usage(conf);
1da177e4 662 if (!sh) {
5423399a
N
663 set_bit(R5_INACTIVE_BLOCKED,
664 &conf->cache_state);
a39f7afd 665 r5l_wake_reclaim(conf->log, 0);
6ab2a4b8
SL
666 wait_event_lock_irq(
667 conf->wait_for_stripe,
566c09c5
SL
668 !list_empty(conf->inactive_list + hash) &&
669 (atomic_read(&conf->active_stripes)
670 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
671 || !test_bit(R5_INACTIVE_BLOCKED,
672 &conf->cache_state)),
6ab2a4b8 673 *(conf->hash_locks + hash));
5423399a
N
674 clear_bit(R5_INACTIVE_BLOCKED,
675 &conf->cache_state);
7da9d450 676 } else {
b5663ba4 677 init_stripe(sh, sector, previous);
7da9d450
N
678 atomic_inc(&sh->count);
679 }
e240c183 680 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 681 spin_lock(&conf->device_lock);
e240c183 682 if (!atomic_read(&sh->count)) {
1da177e4
LT
683 if (!test_bit(STRIPE_HANDLE, &sh->state))
684 atomic_inc(&conf->active_stripes);
5af9bef7
N
685 BUG_ON(list_empty(&sh->lru) &&
686 !test_bit(STRIPE_EXPANDING, &sh->state));
ff00d3b4
ZL
687 inc_empty_inactive_list_flag = 0;
688 if (!list_empty(conf->inactive_list + hash))
689 inc_empty_inactive_list_flag = 1;
16a53ecc 690 list_del_init(&sh->lru);
ff00d3b4
ZL
691 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
692 atomic_inc(&conf->empty_inactive_list_nr);
bfc90cb0
SL
693 if (sh->group) {
694 sh->group->stripes_cnt--;
695 sh->group = NULL;
696 }
1da177e4 697 }
7da9d450 698 atomic_inc(&sh->count);
6d183de4 699 spin_unlock(&conf->device_lock);
1da177e4
LT
700 }
701 } while (sh == NULL);
702
566c09c5 703 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
704 return sh;
705}
706
7a87f434 707static bool is_full_stripe_write(struct stripe_head *sh)
708{
709 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
710 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
711}
712
59fc630b 713static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
714{
59fc630b 715 if (sh1 > sh2) {
3d05f3ae 716 spin_lock_irq(&sh2->stripe_lock);
59fc630b 717 spin_lock_nested(&sh1->stripe_lock, 1);
718 } else {
3d05f3ae 719 spin_lock_irq(&sh1->stripe_lock);
59fc630b 720 spin_lock_nested(&sh2->stripe_lock, 1);
721 }
722}
723
724static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
725{
726 spin_unlock(&sh1->stripe_lock);
3d05f3ae 727 spin_unlock_irq(&sh2->stripe_lock);
59fc630b 728}
729
730/* Only freshly new full stripe normal write stripe can be added to a batch list */
731static bool stripe_can_batch(struct stripe_head *sh)
732{
9c3e333d
SL
733 struct r5conf *conf = sh->raid_conf;
734
e254de6b 735 if (raid5_has_log(conf) || raid5_has_ppl(conf))
9c3e333d 736 return false;
59fc630b 737 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 738 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 739 is_full_stripe_write(sh);
740}
741
742/* we only do back search */
743static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
744{
745 struct stripe_head *head;
746 sector_t head_sector, tmp_sec;
747 int hash;
748 int dd_idx;
ff00d3b4 749 int inc_empty_inactive_list_flag;
59fc630b 750
59fc630b 751 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
752 tmp_sec = sh->sector;
753 if (!sector_div(tmp_sec, conf->chunk_sectors))
754 return;
755 head_sector = sh->sector - STRIPE_SECTORS;
756
757 hash = stripe_hash_locks_hash(head_sector);
758 spin_lock_irq(conf->hash_locks + hash);
759 head = __find_stripe(conf, head_sector, conf->generation);
760 if (head && !atomic_inc_not_zero(&head->count)) {
761 spin_lock(&conf->device_lock);
762 if (!atomic_read(&head->count)) {
763 if (!test_bit(STRIPE_HANDLE, &head->state))
764 atomic_inc(&conf->active_stripes);
765 BUG_ON(list_empty(&head->lru) &&
766 !test_bit(STRIPE_EXPANDING, &head->state));
ff00d3b4
ZL
767 inc_empty_inactive_list_flag = 0;
768 if (!list_empty(conf->inactive_list + hash))
769 inc_empty_inactive_list_flag = 1;
59fc630b 770 list_del_init(&head->lru);
ff00d3b4
ZL
771 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
772 atomic_inc(&conf->empty_inactive_list_nr);
59fc630b 773 if (head->group) {
774 head->group->stripes_cnt--;
775 head->group = NULL;
776 }
777 }
778 atomic_inc(&head->count);
779 spin_unlock(&conf->device_lock);
780 }
781 spin_unlock_irq(conf->hash_locks + hash);
782
783 if (!head)
784 return;
785 if (!stripe_can_batch(head))
786 goto out;
787
788 lock_two_stripes(head, sh);
789 /* clear_batch_ready clear the flag */
790 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
791 goto unlock_out;
792
793 if (sh->batch_head)
794 goto unlock_out;
795
796 dd_idx = 0;
797 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
798 dd_idx++;
1eff9d32 799 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796a5cf0 800 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
59fc630b 801 goto unlock_out;
802
803 if (head->batch_head) {
804 spin_lock(&head->batch_head->batch_lock);
805 /* This batch list is already running */
806 if (!stripe_can_batch(head)) {
807 spin_unlock(&head->batch_head->batch_lock);
808 goto unlock_out;
809 }
3664847d
SL
810 /*
811 * We must assign batch_head of this stripe within the
812 * batch_lock, otherwise clear_batch_ready of batch head
813 * stripe could clear BATCH_READY bit of this stripe and
814 * this stripe->batch_head doesn't get assigned, which
815 * could confuse clear_batch_ready for this stripe
816 */
817 sh->batch_head = head->batch_head;
59fc630b 818
819 /*
820 * at this point, head's BATCH_READY could be cleared, but we
821 * can still add the stripe to batch list
822 */
823 list_add(&sh->batch_list, &head->batch_list);
824 spin_unlock(&head->batch_head->batch_lock);
59fc630b 825 } else {
826 head->batch_head = head;
827 sh->batch_head = head->batch_head;
828 spin_lock(&head->batch_lock);
829 list_add_tail(&sh->batch_list, &head->batch_list);
830 spin_unlock(&head->batch_lock);
831 }
832
833 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
834 if (atomic_dec_return(&conf->preread_active_stripes)
835 < IO_THRESHOLD)
836 md_wakeup_thread(conf->mddev->thread);
837
2b6b2457
N
838 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
839 int seq = sh->bm_seq;
840 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
841 sh->batch_head->bm_seq > seq)
842 seq = sh->batch_head->bm_seq;
843 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
844 sh->batch_head->bm_seq = seq;
845 }
846
59fc630b 847 atomic_inc(&sh->count);
848unlock_out:
849 unlock_two_stripes(head, sh);
850out:
6d036f7d 851 raid5_release_stripe(head);
59fc630b 852}
853
05616be5
N
854/* Determine if 'data_offset' or 'new_data_offset' should be used
855 * in this stripe_head.
856 */
857static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
858{
859 sector_t progress = conf->reshape_progress;
860 /* Need a memory barrier to make sure we see the value
861 * of conf->generation, or ->data_offset that was set before
862 * reshape_progress was updated.
863 */
864 smp_rmb();
865 if (progress == MaxSector)
866 return 0;
867 if (sh->generation == conf->generation - 1)
868 return 0;
869 /* We are in a reshape, and this is a new-generation stripe,
870 * so use new_data_offset.
871 */
872 return 1;
873}
874
aaf9f12e 875static void dispatch_bio_list(struct bio_list *tmp)
765d704d 876{
765d704d
SL
877 struct bio *bio;
878
aaf9f12e
SL
879 while ((bio = bio_list_pop(tmp)))
880 generic_make_request(bio);
881}
882
883static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
884{
885 const struct r5pending_data *da = list_entry(a,
886 struct r5pending_data, sibling);
887 const struct r5pending_data *db = list_entry(b,
888 struct r5pending_data, sibling);
889 if (da->sector > db->sector)
890 return 1;
891 if (da->sector < db->sector)
892 return -1;
893 return 0;
894}
895
896static void dispatch_defer_bios(struct r5conf *conf, int target,
897 struct bio_list *list)
898{
899 struct r5pending_data *data;
900 struct list_head *first, *next = NULL;
901 int cnt = 0;
902
903 if (conf->pending_data_cnt == 0)
904 return;
905
906 list_sort(NULL, &conf->pending_list, cmp_stripe);
907
908 first = conf->pending_list.next;
909
910 /* temporarily move the head */
911 if (conf->next_pending_data)
912 list_move_tail(&conf->pending_list,
913 &conf->next_pending_data->sibling);
914
915 while (!list_empty(&conf->pending_list)) {
916 data = list_first_entry(&conf->pending_list,
917 struct r5pending_data, sibling);
918 if (&data->sibling == first)
919 first = data->sibling.next;
920 next = data->sibling.next;
921
922 bio_list_merge(list, &data->bios);
923 list_move(&data->sibling, &conf->free_list);
924 cnt++;
925 if (cnt >= target)
926 break;
927 }
928 conf->pending_data_cnt -= cnt;
929 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
930
931 if (next != &conf->pending_list)
932 conf->next_pending_data = list_entry(next,
933 struct r5pending_data, sibling);
934 else
935 conf->next_pending_data = NULL;
936 /* list isn't empty */
937 if (first != &conf->pending_list)
938 list_move_tail(&conf->pending_list, first);
939}
940
941static void flush_deferred_bios(struct r5conf *conf)
942{
943 struct bio_list tmp = BIO_EMPTY_LIST;
944
945 if (conf->pending_data_cnt == 0)
765d704d
SL
946 return;
947
765d704d 948 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
949 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
950 BUG_ON(conf->pending_data_cnt != 0);
765d704d
SL
951 spin_unlock(&conf->pending_bios_lock);
952
aaf9f12e 953 dispatch_bio_list(&tmp);
765d704d
SL
954}
955
aaf9f12e
SL
956static void defer_issue_bios(struct r5conf *conf, sector_t sector,
957 struct bio_list *bios)
765d704d 958{
aaf9f12e
SL
959 struct bio_list tmp = BIO_EMPTY_LIST;
960 struct r5pending_data *ent;
961
765d704d 962 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
963 ent = list_first_entry(&conf->free_list, struct r5pending_data,
964 sibling);
965 list_move_tail(&ent->sibling, &conf->pending_list);
966 ent->sector = sector;
967 bio_list_init(&ent->bios);
968 bio_list_merge(&ent->bios, bios);
969 conf->pending_data_cnt++;
970 if (conf->pending_data_cnt >= PENDING_IO_MAX)
971 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
972
765d704d 973 spin_unlock(&conf->pending_bios_lock);
aaf9f12e
SL
974
975 dispatch_bio_list(&tmp);
765d704d
SL
976}
977
6712ecf8 978static void
4246a0b6 979raid5_end_read_request(struct bio *bi);
6712ecf8 980static void
4246a0b6 981raid5_end_write_request(struct bio *bi);
91c00924 982
c4e5ac0a 983static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 984{
d1688a6d 985 struct r5conf *conf = sh->raid_conf;
91c00924 986 int i, disks = sh->disks;
59fc630b 987 struct stripe_head *head_sh = sh;
aaf9f12e
SL
988 struct bio_list pending_bios = BIO_EMPTY_LIST;
989 bool should_defer;
91c00924
DW
990
991 might_sleep();
992
ff875738
AP
993 if (log_stripe(sh, s) == 0)
994 return;
1e6d690b 995
aaf9f12e 996 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1e6d690b 997
91c00924 998 for (i = disks; i--; ) {
796a5cf0 999 int op, op_flags = 0;
9a3e1101 1000 int replace_only = 0;
977df362
N
1001 struct bio *bi, *rbi;
1002 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 1003
1004 sh = head_sh;
e9c7469b 1005 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
796a5cf0 1006 op = REQ_OP_WRITE;
e9c7469b 1007 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
70fd7614 1008 op_flags = REQ_FUA;
9e444768 1009 if (test_bit(R5_Discard, &sh->dev[i].flags))
796a5cf0 1010 op = REQ_OP_DISCARD;
e9c7469b 1011 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
796a5cf0 1012 op = REQ_OP_READ;
9a3e1101
N
1013 else if (test_and_clear_bit(R5_WantReplace,
1014 &sh->dev[i].flags)) {
796a5cf0 1015 op = REQ_OP_WRITE;
9a3e1101
N
1016 replace_only = 1;
1017 } else
91c00924 1018 continue;
bc0934f0 1019 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
796a5cf0 1020 op_flags |= REQ_SYNC;
91c00924 1021
59fc630b 1022again:
91c00924 1023 bi = &sh->dev[i].req;
977df362 1024 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 1025
91c00924 1026 rcu_read_lock();
9a3e1101 1027 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
1028 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1029 rdev = rcu_dereference(conf->disks[i].rdev);
1030 if (!rdev) {
1031 rdev = rrdev;
1032 rrdev = NULL;
1033 }
796a5cf0 1034 if (op_is_write(op)) {
9a3e1101
N
1035 if (replace_only)
1036 rdev = NULL;
dd054fce
N
1037 if (rdev == rrdev)
1038 /* We raced and saw duplicates */
1039 rrdev = NULL;
9a3e1101 1040 } else {
59fc630b 1041 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
1042 rdev = rrdev;
1043 rrdev = NULL;
1044 }
977df362 1045
91c00924
DW
1046 if (rdev && test_bit(Faulty, &rdev->flags))
1047 rdev = NULL;
1048 if (rdev)
1049 atomic_inc(&rdev->nr_pending);
977df362
N
1050 if (rrdev && test_bit(Faulty, &rrdev->flags))
1051 rrdev = NULL;
1052 if (rrdev)
1053 atomic_inc(&rrdev->nr_pending);
91c00924
DW
1054 rcu_read_unlock();
1055
73e92e51 1056 /* We have already checked bad blocks for reads. Now
977df362
N
1057 * need to check for writes. We never accept write errors
1058 * on the replacement, so we don't to check rrdev.
73e92e51 1059 */
796a5cf0 1060 while (op_is_write(op) && rdev &&
73e92e51
N
1061 test_bit(WriteErrorSeen, &rdev->flags)) {
1062 sector_t first_bad;
1063 int bad_sectors;
1064 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1065 &first_bad, &bad_sectors);
1066 if (!bad)
1067 break;
1068
1069 if (bad < 0) {
1070 set_bit(BlockedBadBlocks, &rdev->flags);
1071 if (!conf->mddev->external &&
2953079c 1072 conf->mddev->sb_flags) {
73e92e51
N
1073 /* It is very unlikely, but we might
1074 * still need to write out the
1075 * bad block log - better give it
1076 * a chance*/
1077 md_check_recovery(conf->mddev);
1078 }
1850753d 1079 /*
1080 * Because md_wait_for_blocked_rdev
1081 * will dec nr_pending, we must
1082 * increment it first.
1083 */
1084 atomic_inc(&rdev->nr_pending);
73e92e51
N
1085 md_wait_for_blocked_rdev(rdev, conf->mddev);
1086 } else {
1087 /* Acknowledged bad block - skip the write */
1088 rdev_dec_pending(rdev, conf->mddev);
1089 rdev = NULL;
1090 }
1091 }
1092
91c00924 1093 if (rdev) {
9a3e1101
N
1094 if (s->syncing || s->expanding || s->expanded
1095 || s->replacing)
91c00924
DW
1096 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1097
2b7497f0
DW
1098 set_bit(STRIPE_IO_STARTED, &sh->state);
1099
74d46992 1100 bio_set_dev(bi, rdev->bdev);
796a5cf0
MC
1101 bio_set_op_attrs(bi, op, op_flags);
1102 bi->bi_end_io = op_is_write(op)
2f6db2a7
KO
1103 ? raid5_end_write_request
1104 : raid5_end_read_request;
1105 bi->bi_private = sh;
1106
6296b960 1107 pr_debug("%s: for %llu schedule op %d on disc %d\n",
e46b272b 1108 __func__, (unsigned long long)sh->sector,
1eff9d32 1109 bi->bi_opf, i);
91c00924 1110 atomic_inc(&sh->count);
59fc630b 1111 if (sh != head_sh)
1112 atomic_inc(&head_sh->count);
05616be5 1113 if (use_new_offset(conf, sh))
4f024f37 1114 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1115 + rdev->new_data_offset);
1116 else
4f024f37 1117 bi->bi_iter.bi_sector = (sh->sector
05616be5 1118 + rdev->data_offset);
59fc630b 1119 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1eff9d32 1120 bi->bi_opf |= REQ_NOMERGE;
3f9e7c14 1121
d592a996
SL
1122 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1123 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
86aa1397
SL
1124
1125 if (!op_is_write(op) &&
1126 test_bit(R5_InJournal, &sh->dev[i].flags))
1127 /*
1128 * issuing read for a page in journal, this
1129 * must be preparing for prexor in rmw; read
1130 * the data into orig_page
1131 */
1132 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1133 else
1134 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1135 bi->bi_vcnt = 1;
91c00924
DW
1136 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1137 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1138 bi->bi_iter.bi_size = STRIPE_SIZE;
2cd259a7
MD
1139 bi->bi_write_hint = sh->dev[i].write_hint;
1140 if (!rrdev)
1141 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
37c61ff3
SL
1142 /*
1143 * If this is discard request, set bi_vcnt 0. We don't
1144 * want to confuse SCSI because SCSI will replace payload
1145 */
796a5cf0 1146 if (op == REQ_OP_DISCARD)
37c61ff3 1147 bi->bi_vcnt = 0;
977df362
N
1148 if (rrdev)
1149 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1150
1151 if (conf->mddev->gendisk)
74d46992 1152 trace_block_bio_remap(bi->bi_disk->queue,
e3620a3a
JB
1153 bi, disk_devt(conf->mddev->gendisk),
1154 sh->dev[i].sector);
aaf9f12e
SL
1155 if (should_defer && op_is_write(op))
1156 bio_list_add(&pending_bios, bi);
1157 else
1158 generic_make_request(bi);
977df362
N
1159 }
1160 if (rrdev) {
9a3e1101
N
1161 if (s->syncing || s->expanding || s->expanded
1162 || s->replacing)
977df362
N
1163 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1164
1165 set_bit(STRIPE_IO_STARTED, &sh->state);
1166
74d46992 1167 bio_set_dev(rbi, rrdev->bdev);
796a5cf0
MC
1168 bio_set_op_attrs(rbi, op, op_flags);
1169 BUG_ON(!op_is_write(op));
2f6db2a7
KO
1170 rbi->bi_end_io = raid5_end_write_request;
1171 rbi->bi_private = sh;
1172
6296b960 1173 pr_debug("%s: for %llu schedule op %d on "
977df362
N
1174 "replacement disc %d\n",
1175 __func__, (unsigned long long)sh->sector,
1eff9d32 1176 rbi->bi_opf, i);
977df362 1177 atomic_inc(&sh->count);
59fc630b 1178 if (sh != head_sh)
1179 atomic_inc(&head_sh->count);
05616be5 1180 if (use_new_offset(conf, sh))
4f024f37 1181 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1182 + rrdev->new_data_offset);
1183 else
4f024f37 1184 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1185 + rrdev->data_offset);
d592a996
SL
1186 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1187 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1188 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1189 rbi->bi_vcnt = 1;
977df362
N
1190 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1191 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1192 rbi->bi_iter.bi_size = STRIPE_SIZE;
2cd259a7
MD
1193 rbi->bi_write_hint = sh->dev[i].write_hint;
1194 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
37c61ff3
SL
1195 /*
1196 * If this is discard request, set bi_vcnt 0. We don't
1197 * want to confuse SCSI because SCSI will replace payload
1198 */
796a5cf0 1199 if (op == REQ_OP_DISCARD)
37c61ff3 1200 rbi->bi_vcnt = 0;
e3620a3a 1201 if (conf->mddev->gendisk)
74d46992 1202 trace_block_bio_remap(rbi->bi_disk->queue,
e3620a3a
JB
1203 rbi, disk_devt(conf->mddev->gendisk),
1204 sh->dev[i].sector);
aaf9f12e
SL
1205 if (should_defer && op_is_write(op))
1206 bio_list_add(&pending_bios, rbi);
1207 else
1208 generic_make_request(rbi);
977df362
N
1209 }
1210 if (!rdev && !rrdev) {
796a5cf0 1211 if (op_is_write(op))
91c00924 1212 set_bit(STRIPE_DEGRADED, &sh->state);
6296b960 1213 pr_debug("skip op %d on disc %d for sector %llu\n",
1eff9d32 1214 bi->bi_opf, i, (unsigned long long)sh->sector);
91c00924
DW
1215 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1216 set_bit(STRIPE_HANDLE, &sh->state);
1217 }
59fc630b 1218
1219 if (!head_sh->batch_head)
1220 continue;
1221 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1222 batch_list);
1223 if (sh != head_sh)
1224 goto again;
91c00924 1225 }
aaf9f12e
SL
1226
1227 if (should_defer && !bio_list_empty(&pending_bios))
1228 defer_issue_bios(conf, head_sh->sector, &pending_bios);
91c00924
DW
1229}
1230
1231static struct dma_async_tx_descriptor *
d592a996
SL
1232async_copy_data(int frombio, struct bio *bio, struct page **page,
1233 sector_t sector, struct dma_async_tx_descriptor *tx,
1e6d690b 1234 struct stripe_head *sh, int no_skipcopy)
91c00924 1235{
7988613b
KO
1236 struct bio_vec bvl;
1237 struct bvec_iter iter;
91c00924 1238 struct page *bio_page;
91c00924 1239 int page_offset;
a08abd8c 1240 struct async_submit_ctl submit;
0403e382 1241 enum async_tx_flags flags = 0;
91c00924 1242
4f024f37
KO
1243 if (bio->bi_iter.bi_sector >= sector)
1244 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1245 else
4f024f37 1246 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1247
0403e382
DW
1248 if (frombio)
1249 flags |= ASYNC_TX_FENCE;
1250 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1251
7988613b
KO
1252 bio_for_each_segment(bvl, bio, iter) {
1253 int len = bvl.bv_len;
91c00924
DW
1254 int clen;
1255 int b_offset = 0;
1256
1257 if (page_offset < 0) {
1258 b_offset = -page_offset;
1259 page_offset += b_offset;
1260 len -= b_offset;
1261 }
1262
1263 if (len > 0 && page_offset + len > STRIPE_SIZE)
1264 clen = STRIPE_SIZE - page_offset;
1265 else
1266 clen = len;
1267
1268 if (clen > 0) {
7988613b
KO
1269 b_offset += bvl.bv_offset;
1270 bio_page = bvl.bv_page;
d592a996
SL
1271 if (frombio) {
1272 if (sh->raid_conf->skip_copy &&
1273 b_offset == 0 && page_offset == 0 &&
1e6d690b
SL
1274 clen == STRIPE_SIZE &&
1275 !no_skipcopy)
d592a996
SL
1276 *page = bio_page;
1277 else
1278 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1279 b_offset, clen, &submit);
d592a996
SL
1280 } else
1281 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1282 page_offset, clen, &submit);
91c00924 1283 }
a08abd8c
DW
1284 /* chain the operations */
1285 submit.depend_tx = tx;
1286
91c00924
DW
1287 if (clen < len) /* hit end of page */
1288 break;
1289 page_offset += len;
1290 }
1291
1292 return tx;
1293}
1294
1295static void ops_complete_biofill(void *stripe_head_ref)
1296{
1297 struct stripe_head *sh = stripe_head_ref;
e4d84909 1298 int i;
91c00924 1299
e46b272b 1300 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1301 (unsigned long long)sh->sector);
1302
1303 /* clear completed biofills */
1304 for (i = sh->disks; i--; ) {
1305 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1306
1307 /* acknowledge completion of a biofill operation */
e4d84909
DW
1308 /* and check if we need to reply to a read request,
1309 * new R5_Wantfill requests are held off until
83de75cc 1310 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1311 */
1312 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1313 struct bio *rbi, *rbi2;
91c00924 1314
91c00924
DW
1315 BUG_ON(!dev->read);
1316 rbi = dev->read;
1317 dev->read = NULL;
4f024f37 1318 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1319 dev->sector + STRIPE_SECTORS) {
1320 rbi2 = r5_next_bio(rbi, dev->sector);
016c76ac 1321 bio_endio(rbi);
91c00924
DW
1322 rbi = rbi2;
1323 }
1324 }
1325 }
83de75cc 1326 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1327
e4d84909 1328 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1329 raid5_release_stripe(sh);
91c00924
DW
1330}
1331
1332static void ops_run_biofill(struct stripe_head *sh)
1333{
1334 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1335 struct async_submit_ctl submit;
91c00924
DW
1336 int i;
1337
59fc630b 1338 BUG_ON(sh->batch_head);
e46b272b 1339 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1340 (unsigned long long)sh->sector);
1341
1342 for (i = sh->disks; i--; ) {
1343 struct r5dev *dev = &sh->dev[i];
1344 if (test_bit(R5_Wantfill, &dev->flags)) {
1345 struct bio *rbi;
b17459c0 1346 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1347 dev->read = rbi = dev->toread;
1348 dev->toread = NULL;
b17459c0 1349 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1350 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1351 dev->sector + STRIPE_SECTORS) {
d592a996 1352 tx = async_copy_data(0, rbi, &dev->page,
1e6d690b 1353 dev->sector, tx, sh, 0);
91c00924
DW
1354 rbi = r5_next_bio(rbi, dev->sector);
1355 }
1356 }
1357 }
1358
1359 atomic_inc(&sh->count);
a08abd8c
DW
1360 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1361 async_trigger_callback(&submit);
91c00924
DW
1362}
1363
4e7d2c0a 1364static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1365{
4e7d2c0a 1366 struct r5dev *tgt;
91c00924 1367
4e7d2c0a
DW
1368 if (target < 0)
1369 return;
91c00924 1370
4e7d2c0a 1371 tgt = &sh->dev[target];
91c00924
DW
1372 set_bit(R5_UPTODATE, &tgt->flags);
1373 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1374 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1375}
1376
ac6b53b6 1377static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1378{
1379 struct stripe_head *sh = stripe_head_ref;
91c00924 1380
e46b272b 1381 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1382 (unsigned long long)sh->sector);
1383
ac6b53b6 1384 /* mark the computed target(s) as uptodate */
4e7d2c0a 1385 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1386 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1387
ecc65c9b
DW
1388 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1389 if (sh->check_state == check_state_compute_run)
1390 sh->check_state = check_state_compute_result;
91c00924 1391 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1392 raid5_release_stripe(sh);
91c00924
DW
1393}
1394
d6f38f31 1395/* return a pointer to the address conversion region of the scribble buffer */
b330e6a4 1396static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
d6f38f31 1397{
b330e6a4 1398 return percpu->scribble + i * percpu->scribble_obj_size;
46d5b785 1399}
1400
1401/* return a pointer to the address conversion region of the scribble buffer */
b330e6a4
KO
1402static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1403 struct raid5_percpu *percpu, int i)
46d5b785 1404{
b330e6a4 1405 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
d6f38f31
DW
1406}
1407
1408static struct dma_async_tx_descriptor *
1409ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1410{
91c00924 1411 int disks = sh->disks;
46d5b785 1412 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1413 int target = sh->ops.target;
1414 struct r5dev *tgt = &sh->dev[target];
1415 struct page *xor_dest = tgt->page;
1416 int count = 0;
1417 struct dma_async_tx_descriptor *tx;
a08abd8c 1418 struct async_submit_ctl submit;
91c00924
DW
1419 int i;
1420
59fc630b 1421 BUG_ON(sh->batch_head);
1422
91c00924 1423 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1424 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1425 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1426
1427 for (i = disks; i--; )
1428 if (i != target)
1429 xor_srcs[count++] = sh->dev[i].page;
1430
1431 atomic_inc(&sh->count);
1432
0403e382 1433 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1434 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1435 if (unlikely(count == 1))
a08abd8c 1436 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1437 else
a08abd8c 1438 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1439
91c00924
DW
1440 return tx;
1441}
1442
ac6b53b6
DW
1443/* set_syndrome_sources - populate source buffers for gen_syndrome
1444 * @srcs - (struct page *) array of size sh->disks
1445 * @sh - stripe_head to parse
1446 *
1447 * Populates srcs in proper layout order for the stripe and returns the
1448 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1449 * destination buffer is recorded in srcs[count] and the Q destination
1450 * is recorded in srcs[count+1]].
1451 */
584acdd4
MS
1452static int set_syndrome_sources(struct page **srcs,
1453 struct stripe_head *sh,
1454 int srctype)
ac6b53b6
DW
1455{
1456 int disks = sh->disks;
1457 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1458 int d0_idx = raid6_d0(sh);
1459 int count;
1460 int i;
1461
1462 for (i = 0; i < disks; i++)
5dd33c9a 1463 srcs[i] = NULL;
ac6b53b6
DW
1464
1465 count = 0;
1466 i = d0_idx;
1467 do {
1468 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1469 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1470
584acdd4
MS
1471 if (i == sh->qd_idx || i == sh->pd_idx ||
1472 (srctype == SYNDROME_SRC_ALL) ||
1473 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1e6d690b
SL
1474 (test_bit(R5_Wantdrain, &dev->flags) ||
1475 test_bit(R5_InJournal, &dev->flags))) ||
584acdd4 1476 (srctype == SYNDROME_SRC_WRITTEN &&
0977762f
SL
1477 (dev->written ||
1478 test_bit(R5_InJournal, &dev->flags)))) {
1e6d690b
SL
1479 if (test_bit(R5_InJournal, &dev->flags))
1480 srcs[slot] = sh->dev[i].orig_page;
1481 else
1482 srcs[slot] = sh->dev[i].page;
1483 }
ac6b53b6
DW
1484 i = raid6_next_disk(i, disks);
1485 } while (i != d0_idx);
ac6b53b6 1486
e4424fee 1487 return syndrome_disks;
ac6b53b6
DW
1488}
1489
1490static struct dma_async_tx_descriptor *
1491ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1492{
1493 int disks = sh->disks;
46d5b785 1494 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1495 int target;
1496 int qd_idx = sh->qd_idx;
1497 struct dma_async_tx_descriptor *tx;
1498 struct async_submit_ctl submit;
1499 struct r5dev *tgt;
1500 struct page *dest;
1501 int i;
1502 int count;
1503
59fc630b 1504 BUG_ON(sh->batch_head);
ac6b53b6
DW
1505 if (sh->ops.target < 0)
1506 target = sh->ops.target2;
1507 else if (sh->ops.target2 < 0)
1508 target = sh->ops.target;
91c00924 1509 else
ac6b53b6
DW
1510 /* we should only have one valid target */
1511 BUG();
1512 BUG_ON(target < 0);
1513 pr_debug("%s: stripe %llu block: %d\n",
1514 __func__, (unsigned long long)sh->sector, target);
1515
1516 tgt = &sh->dev[target];
1517 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1518 dest = tgt->page;
1519
1520 atomic_inc(&sh->count);
1521
1522 if (target == qd_idx) {
584acdd4 1523 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1524 blocks[count] = NULL; /* regenerating p is not necessary */
1525 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1526 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1527 ops_complete_compute, sh,
46d5b785 1528 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1529 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1530 } else {
1531 /* Compute any data- or p-drive using XOR */
1532 count = 0;
1533 for (i = disks; i-- ; ) {
1534 if (i == target || i == qd_idx)
1535 continue;
1536 blocks[count++] = sh->dev[i].page;
1537 }
1538
0403e382
DW
1539 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1540 NULL, ops_complete_compute, sh,
46d5b785 1541 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1542 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1543 }
91c00924 1544
91c00924
DW
1545 return tx;
1546}
1547
ac6b53b6
DW
1548static struct dma_async_tx_descriptor *
1549ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1550{
1551 int i, count, disks = sh->disks;
1552 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1553 int d0_idx = raid6_d0(sh);
1554 int faila = -1, failb = -1;
1555 int target = sh->ops.target;
1556 int target2 = sh->ops.target2;
1557 struct r5dev *tgt = &sh->dev[target];
1558 struct r5dev *tgt2 = &sh->dev[target2];
1559 struct dma_async_tx_descriptor *tx;
46d5b785 1560 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1561 struct async_submit_ctl submit;
1562
59fc630b 1563 BUG_ON(sh->batch_head);
ac6b53b6
DW
1564 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1565 __func__, (unsigned long long)sh->sector, target, target2);
1566 BUG_ON(target < 0 || target2 < 0);
1567 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1568 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1569
6c910a78 1570 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1571 * slot number conversion for 'faila' and 'failb'
1572 */
1573 for (i = 0; i < disks ; i++)
5dd33c9a 1574 blocks[i] = NULL;
ac6b53b6
DW
1575 count = 0;
1576 i = d0_idx;
1577 do {
1578 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1579
1580 blocks[slot] = sh->dev[i].page;
1581
1582 if (i == target)
1583 faila = slot;
1584 if (i == target2)
1585 failb = slot;
1586 i = raid6_next_disk(i, disks);
1587 } while (i != d0_idx);
ac6b53b6
DW
1588
1589 BUG_ON(faila == failb);
1590 if (failb < faila)
1591 swap(faila, failb);
1592 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1593 __func__, (unsigned long long)sh->sector, faila, failb);
1594
1595 atomic_inc(&sh->count);
1596
1597 if (failb == syndrome_disks+1) {
1598 /* Q disk is one of the missing disks */
1599 if (faila == syndrome_disks) {
1600 /* Missing P+Q, just recompute */
0403e382
DW
1601 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1602 ops_complete_compute, sh,
46d5b785 1603 to_addr_conv(sh, percpu, 0));
e4424fee 1604 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1605 STRIPE_SIZE, &submit);
1606 } else {
1607 struct page *dest;
1608 int data_target;
1609 int qd_idx = sh->qd_idx;
1610
1611 /* Missing D+Q: recompute D from P, then recompute Q */
1612 if (target == qd_idx)
1613 data_target = target2;
1614 else
1615 data_target = target;
1616
1617 count = 0;
1618 for (i = disks; i-- ; ) {
1619 if (i == data_target || i == qd_idx)
1620 continue;
1621 blocks[count++] = sh->dev[i].page;
1622 }
1623 dest = sh->dev[data_target].page;
0403e382
DW
1624 init_async_submit(&submit,
1625 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1626 NULL, NULL, NULL,
46d5b785 1627 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1628 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1629 &submit);
1630
584acdd4 1631 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1632 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1633 ops_complete_compute, sh,
46d5b785 1634 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1635 return async_gen_syndrome(blocks, 0, count+2,
1636 STRIPE_SIZE, &submit);
1637 }
ac6b53b6 1638 } else {
6c910a78
DW
1639 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1640 ops_complete_compute, sh,
46d5b785 1641 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1642 if (failb == syndrome_disks) {
1643 /* We're missing D+P. */
1644 return async_raid6_datap_recov(syndrome_disks+2,
1645 STRIPE_SIZE, faila,
1646 blocks, &submit);
1647 } else {
1648 /* We're missing D+D. */
1649 return async_raid6_2data_recov(syndrome_disks+2,
1650 STRIPE_SIZE, faila, failb,
1651 blocks, &submit);
1652 }
ac6b53b6
DW
1653 }
1654}
1655
91c00924
DW
1656static void ops_complete_prexor(void *stripe_head_ref)
1657{
1658 struct stripe_head *sh = stripe_head_ref;
1659
e46b272b 1660 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1661 (unsigned long long)sh->sector);
1e6d690b
SL
1662
1663 if (r5c_is_writeback(sh->raid_conf->log))
1664 /*
1665 * raid5-cache write back uses orig_page during prexor.
1666 * After prexor, it is time to free orig_page
1667 */
1668 r5c_release_extra_page(sh);
91c00924
DW
1669}
1670
1671static struct dma_async_tx_descriptor *
584acdd4
MS
1672ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1673 struct dma_async_tx_descriptor *tx)
91c00924 1674{
91c00924 1675 int disks = sh->disks;
46d5b785 1676 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1677 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1678 struct async_submit_ctl submit;
91c00924
DW
1679
1680 /* existing parity data subtracted */
1681 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1682
59fc630b 1683 BUG_ON(sh->batch_head);
e46b272b 1684 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1685 (unsigned long long)sh->sector);
1686
1687 for (i = disks; i--; ) {
1688 struct r5dev *dev = &sh->dev[i];
1689 /* Only process blocks that are known to be uptodate */
1e6d690b
SL
1690 if (test_bit(R5_InJournal, &dev->flags))
1691 xor_srcs[count++] = dev->orig_page;
1692 else if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1693 xor_srcs[count++] = dev->page;
1694 }
1695
0403e382 1696 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1697 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1698 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1699
1700 return tx;
1701}
1702
584acdd4
MS
1703static struct dma_async_tx_descriptor *
1704ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1705 struct dma_async_tx_descriptor *tx)
1706{
1707 struct page **blocks = to_addr_page(percpu, 0);
1708 int count;
1709 struct async_submit_ctl submit;
1710
1711 pr_debug("%s: stripe %llu\n", __func__,
1712 (unsigned long long)sh->sector);
1713
1714 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1715
1716 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1717 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1718 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1719
1720 return tx;
1721}
1722
91c00924 1723static struct dma_async_tx_descriptor *
d8ee0728 1724ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924 1725{
1e6d690b 1726 struct r5conf *conf = sh->raid_conf;
91c00924 1727 int disks = sh->disks;
d8ee0728 1728 int i;
59fc630b 1729 struct stripe_head *head_sh = sh;
91c00924 1730
e46b272b 1731 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1732 (unsigned long long)sh->sector);
1733
1734 for (i = disks; i--; ) {
59fc630b 1735 struct r5dev *dev;
91c00924 1736 struct bio *chosen;
91c00924 1737
59fc630b 1738 sh = head_sh;
1739 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1740 struct bio *wbi;
1741
59fc630b 1742again:
1743 dev = &sh->dev[i];
1e6d690b
SL
1744 /*
1745 * clear R5_InJournal, so when rewriting a page in
1746 * journal, it is not skipped by r5l_log_stripe()
1747 */
1748 clear_bit(R5_InJournal, &dev->flags);
b17459c0 1749 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1750 chosen = dev->towrite;
1751 dev->towrite = NULL;
7a87f434 1752 sh->overwrite_disks = 0;
91c00924
DW
1753 BUG_ON(dev->written);
1754 wbi = dev->written = chosen;
b17459c0 1755 spin_unlock_irq(&sh->stripe_lock);
d592a996 1756 WARN_ON(dev->page != dev->orig_page);
91c00924 1757
4f024f37 1758 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1759 dev->sector + STRIPE_SECTORS) {
1eff9d32 1760 if (wbi->bi_opf & REQ_FUA)
e9c7469b 1761 set_bit(R5_WantFUA, &dev->flags);
1eff9d32 1762 if (wbi->bi_opf & REQ_SYNC)
bc0934f0 1763 set_bit(R5_SyncIO, &dev->flags);
796a5cf0 1764 if (bio_op(wbi) == REQ_OP_DISCARD)
620125f2 1765 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1766 else {
1767 tx = async_copy_data(1, wbi, &dev->page,
1e6d690b
SL
1768 dev->sector, tx, sh,
1769 r5c_is_writeback(conf->log));
1770 if (dev->page != dev->orig_page &&
1771 !r5c_is_writeback(conf->log)) {
d592a996
SL
1772 set_bit(R5_SkipCopy, &dev->flags);
1773 clear_bit(R5_UPTODATE, &dev->flags);
1774 clear_bit(R5_OVERWRITE, &dev->flags);
1775 }
1776 }
91c00924
DW
1777 wbi = r5_next_bio(wbi, dev->sector);
1778 }
59fc630b 1779
1780 if (head_sh->batch_head) {
1781 sh = list_first_entry(&sh->batch_list,
1782 struct stripe_head,
1783 batch_list);
1784 if (sh == head_sh)
1785 continue;
1786 goto again;
1787 }
91c00924
DW
1788 }
1789 }
1790
1791 return tx;
1792}
1793
ac6b53b6 1794static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1795{
1796 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1797 int disks = sh->disks;
1798 int pd_idx = sh->pd_idx;
1799 int qd_idx = sh->qd_idx;
1800 int i;
9e444768 1801 bool fua = false, sync = false, discard = false;
91c00924 1802
e46b272b 1803 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1804 (unsigned long long)sh->sector);
1805
bc0934f0 1806 for (i = disks; i--; ) {
e9c7469b 1807 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1808 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1809 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1810 }
e9c7469b 1811
91c00924
DW
1812 for (i = disks; i--; ) {
1813 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1814
e9c7469b 1815 if (dev->written || i == pd_idx || i == qd_idx) {
235b6003 1816 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
9e444768 1817 set_bit(R5_UPTODATE, &dev->flags);
235b6003
N
1818 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1819 set_bit(R5_Expanded, &dev->flags);
1820 }
e9c7469b
TH
1821 if (fua)
1822 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1823 if (sync)
1824 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1825 }
91c00924
DW
1826 }
1827
d8ee0728
DW
1828 if (sh->reconstruct_state == reconstruct_state_drain_run)
1829 sh->reconstruct_state = reconstruct_state_drain_result;
1830 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1831 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1832 else {
1833 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1834 sh->reconstruct_state = reconstruct_state_result;
1835 }
91c00924
DW
1836
1837 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1838 raid5_release_stripe(sh);
91c00924
DW
1839}
1840
1841static void
ac6b53b6
DW
1842ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1843 struct dma_async_tx_descriptor *tx)
91c00924 1844{
91c00924 1845 int disks = sh->disks;
59fc630b 1846 struct page **xor_srcs;
a08abd8c 1847 struct async_submit_ctl submit;
59fc630b 1848 int count, pd_idx = sh->pd_idx, i;
91c00924 1849 struct page *xor_dest;
d8ee0728 1850 int prexor = 0;
91c00924 1851 unsigned long flags;
59fc630b 1852 int j = 0;
1853 struct stripe_head *head_sh = sh;
1854 int last_stripe;
91c00924 1855
e46b272b 1856 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1857 (unsigned long long)sh->sector);
1858
620125f2
SL
1859 for (i = 0; i < sh->disks; i++) {
1860 if (pd_idx == i)
1861 continue;
1862 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1863 break;
1864 }
1865 if (i >= sh->disks) {
1866 atomic_inc(&sh->count);
620125f2
SL
1867 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1868 ops_complete_reconstruct(sh);
1869 return;
1870 }
59fc630b 1871again:
1872 count = 0;
1873 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1874 /* check if prexor is active which means only process blocks
1875 * that are part of a read-modify-write (written)
1876 */
59fc630b 1877 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1878 prexor = 1;
91c00924
DW
1879 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1880 for (i = disks; i--; ) {
1881 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
1882 if (head_sh->dev[i].written ||
1883 test_bit(R5_InJournal, &head_sh->dev[i].flags))
91c00924
DW
1884 xor_srcs[count++] = dev->page;
1885 }
1886 } else {
1887 xor_dest = sh->dev[pd_idx].page;
1888 for (i = disks; i--; ) {
1889 struct r5dev *dev = &sh->dev[i];
1890 if (i != pd_idx)
1891 xor_srcs[count++] = dev->page;
1892 }
1893 }
1894
91c00924
DW
1895 /* 1/ if we prexor'd then the dest is reused as a source
1896 * 2/ if we did not prexor then we are redoing the parity
1897 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1898 * for the synchronous xor case
1899 */
59fc630b 1900 last_stripe = !head_sh->batch_head ||
1901 list_first_entry(&sh->batch_list,
1902 struct stripe_head, batch_list) == head_sh;
1903 if (last_stripe) {
1904 flags = ASYNC_TX_ACK |
1905 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1906
1907 atomic_inc(&head_sh->count);
1908 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1909 to_addr_conv(sh, percpu, j));
1910 } else {
1911 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1912 init_async_submit(&submit, flags, tx, NULL, NULL,
1913 to_addr_conv(sh, percpu, j));
1914 }
91c00924 1915
a08abd8c
DW
1916 if (unlikely(count == 1))
1917 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1918 else
1919 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1920 if (!last_stripe) {
1921 j++;
1922 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1923 batch_list);
1924 goto again;
1925 }
91c00924
DW
1926}
1927
ac6b53b6
DW
1928static void
1929ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1930 struct dma_async_tx_descriptor *tx)
1931{
1932 struct async_submit_ctl submit;
59fc630b 1933 struct page **blocks;
1934 int count, i, j = 0;
1935 struct stripe_head *head_sh = sh;
1936 int last_stripe;
584acdd4
MS
1937 int synflags;
1938 unsigned long txflags;
ac6b53b6
DW
1939
1940 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1941
620125f2
SL
1942 for (i = 0; i < sh->disks; i++) {
1943 if (sh->pd_idx == i || sh->qd_idx == i)
1944 continue;
1945 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1946 break;
1947 }
1948 if (i >= sh->disks) {
1949 atomic_inc(&sh->count);
620125f2
SL
1950 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1951 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1952 ops_complete_reconstruct(sh);
1953 return;
1954 }
1955
59fc630b 1956again:
1957 blocks = to_addr_page(percpu, j);
584acdd4
MS
1958
1959 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1960 synflags = SYNDROME_SRC_WRITTEN;
1961 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1962 } else {
1963 synflags = SYNDROME_SRC_ALL;
1964 txflags = ASYNC_TX_ACK;
1965 }
1966
1967 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1968 last_stripe = !head_sh->batch_head ||
1969 list_first_entry(&sh->batch_list,
1970 struct stripe_head, batch_list) == head_sh;
1971
1972 if (last_stripe) {
1973 atomic_inc(&head_sh->count);
584acdd4 1974 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1975 head_sh, to_addr_conv(sh, percpu, j));
1976 } else
1977 init_async_submit(&submit, 0, tx, NULL, NULL,
1978 to_addr_conv(sh, percpu, j));
48769695 1979 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1980 if (!last_stripe) {
1981 j++;
1982 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1983 batch_list);
1984 goto again;
1985 }
91c00924
DW
1986}
1987
1988static void ops_complete_check(void *stripe_head_ref)
1989{
1990 struct stripe_head *sh = stripe_head_ref;
91c00924 1991
e46b272b 1992 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1993 (unsigned long long)sh->sector);
1994
ecc65c9b 1995 sh->check_state = check_state_check_result;
91c00924 1996 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1997 raid5_release_stripe(sh);
91c00924
DW
1998}
1999
ac6b53b6 2000static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 2001{
91c00924 2002 int disks = sh->disks;
ac6b53b6
DW
2003 int pd_idx = sh->pd_idx;
2004 int qd_idx = sh->qd_idx;
2005 struct page *xor_dest;
46d5b785 2006 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 2007 struct dma_async_tx_descriptor *tx;
a08abd8c 2008 struct async_submit_ctl submit;
ac6b53b6
DW
2009 int count;
2010 int i;
91c00924 2011
e46b272b 2012 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2013 (unsigned long long)sh->sector);
2014
59fc630b 2015 BUG_ON(sh->batch_head);
ac6b53b6
DW
2016 count = 0;
2017 xor_dest = sh->dev[pd_idx].page;
2018 xor_srcs[count++] = xor_dest;
91c00924 2019 for (i = disks; i--; ) {
ac6b53b6
DW
2020 if (i == pd_idx || i == qd_idx)
2021 continue;
2022 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
2023 }
2024
d6f38f31 2025 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 2026 to_addr_conv(sh, percpu, 0));
099f53cb 2027 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 2028 &sh->ops.zero_sum_result, &submit);
91c00924 2029
91c00924 2030 atomic_inc(&sh->count);
a08abd8c
DW
2031 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2032 tx = async_trigger_callback(&submit);
91c00924
DW
2033}
2034
ac6b53b6
DW
2035static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2036{
46d5b785 2037 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
2038 struct async_submit_ctl submit;
2039 int count;
2040
2041 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2042 (unsigned long long)sh->sector, checkp);
2043
59fc630b 2044 BUG_ON(sh->batch_head);
584acdd4 2045 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
2046 if (!checkp)
2047 srcs[count] = NULL;
91c00924 2048
91c00924 2049 atomic_inc(&sh->count);
ac6b53b6 2050 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 2051 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
2052 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2053 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
2054}
2055
51acbcec 2056static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
2057{
2058 int overlap_clear = 0, i, disks = sh->disks;
2059 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 2060 struct r5conf *conf = sh->raid_conf;
ac6b53b6 2061 int level = conf->level;
d6f38f31
DW
2062 struct raid5_percpu *percpu;
2063 unsigned long cpu;
91c00924 2064
d6f38f31
DW
2065 cpu = get_cpu();
2066 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 2067 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
2068 ops_run_biofill(sh);
2069 overlap_clear++;
2070 }
2071
7b3a871e 2072 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
2073 if (level < 6)
2074 tx = ops_run_compute5(sh, percpu);
2075 else {
2076 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2077 tx = ops_run_compute6_1(sh, percpu);
2078 else
2079 tx = ops_run_compute6_2(sh, percpu);
2080 }
2081 /* terminate the chain if reconstruct is not set to be run */
2082 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
2083 async_tx_ack(tx);
2084 }
91c00924 2085
584acdd4
MS
2086 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2087 if (level < 6)
2088 tx = ops_run_prexor5(sh, percpu, tx);
2089 else
2090 tx = ops_run_prexor6(sh, percpu, tx);
2091 }
91c00924 2092
ae1713e2
AP
2093 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2094 tx = ops_run_partial_parity(sh, percpu, tx);
2095
600aa109 2096 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 2097 tx = ops_run_biodrain(sh, tx);
91c00924
DW
2098 overlap_clear++;
2099 }
2100
ac6b53b6
DW
2101 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2102 if (level < 6)
2103 ops_run_reconstruct5(sh, percpu, tx);
2104 else
2105 ops_run_reconstruct6(sh, percpu, tx);
2106 }
91c00924 2107
ac6b53b6
DW
2108 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2109 if (sh->check_state == check_state_run)
2110 ops_run_check_p(sh, percpu);
2111 else if (sh->check_state == check_state_run_q)
2112 ops_run_check_pq(sh, percpu, 0);
2113 else if (sh->check_state == check_state_run_pq)
2114 ops_run_check_pq(sh, percpu, 1);
2115 else
2116 BUG();
2117 }
91c00924 2118
59fc630b 2119 if (overlap_clear && !sh->batch_head)
91c00924
DW
2120 for (i = disks; i--; ) {
2121 struct r5dev *dev = &sh->dev[i];
2122 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2123 wake_up(&sh->raid_conf->wait_for_overlap);
2124 }
d6f38f31 2125 put_cpu();
91c00924
DW
2126}
2127
845b9e22
AP
2128static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2129{
2130 if (sh->ppl_page)
2131 __free_page(sh->ppl_page);
2132 kmem_cache_free(sc, sh);
2133}
2134
5f9d1fde 2135static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
845b9e22 2136 int disks, struct r5conf *conf)
f18c1a35
N
2137{
2138 struct stripe_head *sh;
5f9d1fde 2139 int i;
f18c1a35
N
2140
2141 sh = kmem_cache_zalloc(sc, gfp);
2142 if (sh) {
2143 spin_lock_init(&sh->stripe_lock);
2144 spin_lock_init(&sh->batch_lock);
2145 INIT_LIST_HEAD(&sh->batch_list);
2146 INIT_LIST_HEAD(&sh->lru);
a39f7afd 2147 INIT_LIST_HEAD(&sh->r5c);
d7bd398e 2148 INIT_LIST_HEAD(&sh->log_list);
f18c1a35 2149 atomic_set(&sh->count, 1);
845b9e22 2150 sh->raid_conf = conf;
a39f7afd 2151 sh->log_start = MaxSector;
5f9d1fde
SL
2152 for (i = 0; i < disks; i++) {
2153 struct r5dev *dev = &sh->dev[i];
2154
3a83f467
ML
2155 bio_init(&dev->req, &dev->vec, 1);
2156 bio_init(&dev->rreq, &dev->rvec, 1);
5f9d1fde 2157 }
845b9e22
AP
2158
2159 if (raid5_has_ppl(conf)) {
2160 sh->ppl_page = alloc_page(gfp);
2161 if (!sh->ppl_page) {
2162 free_stripe(sc, sh);
2163 sh = NULL;
2164 }
2165 }
f18c1a35
N
2166 }
2167 return sh;
2168}
486f0644 2169static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2170{
2171 struct stripe_head *sh;
f18c1a35 2172
845b9e22 2173 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
3f294f4f
N
2174 if (!sh)
2175 return 0;
6ce32846 2176
a9683a79 2177 if (grow_buffers(sh, gfp)) {
e4e11e38 2178 shrink_buffers(sh);
845b9e22 2179 free_stripe(conf->slab_cache, sh);
3f294f4f
N
2180 return 0;
2181 }
486f0644
N
2182 sh->hash_lock_index =
2183 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2184 /* we just created an active stripe so... */
3f294f4f 2185 atomic_inc(&conf->active_stripes);
59fc630b 2186
6d036f7d 2187 raid5_release_stripe(sh);
486f0644 2188 conf->max_nr_stripes++;
3f294f4f
N
2189 return 1;
2190}
2191
d1688a6d 2192static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2193{
e18b890b 2194 struct kmem_cache *sc;
53b8d89d 2195 size_t namelen = sizeof(conf->cache_name[0]);
5e5e3e78 2196 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2197
f4be6b43 2198 if (conf->mddev->gendisk)
53b8d89d 2199 snprintf(conf->cache_name[0], namelen,
f4be6b43
N
2200 "raid%d-%s", conf->level, mdname(conf->mddev));
2201 else
53b8d89d 2202 snprintf(conf->cache_name[0], namelen,
f4be6b43 2203 "raid%d-%p", conf->level, conf->mddev);
53b8d89d 2204 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
f4be6b43 2205
ad01c9e3
N
2206 conf->active_name = 0;
2207 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2208 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2209 0, 0, NULL);
1da177e4
LT
2210 if (!sc)
2211 return 1;
2212 conf->slab_cache = sc;
ad01c9e3 2213 conf->pool_size = devs;
486f0644
N
2214 while (num--)
2215 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2216 return 1;
486f0644 2217
1da177e4
LT
2218 return 0;
2219}
29269553 2220
d6f38f31
DW
2221/**
2222 * scribble_len - return the required size of the scribble region
2223 * @num - total number of disks in the array
2224 *
2225 * The size must be enough to contain:
2226 * 1/ a struct page pointer for each device in the array +2
2227 * 2/ room to convert each entry in (1) to its corresponding dma
2228 * (dma_map_page()) or page (page_address()) address.
2229 *
2230 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2231 * calculate over all devices (not just the data blocks), using zeros in place
2232 * of the P and Q blocks.
2233 */
b330e6a4
KO
2234static int scribble_alloc(struct raid5_percpu *percpu,
2235 int num, int cnt, gfp_t flags)
d6f38f31 2236{
b330e6a4
KO
2237 size_t obj_size =
2238 sizeof(struct page *) * (num+2) +
2239 sizeof(addr_conv_t) * (num+2);
2240 void *scribble;
d6f38f31 2241
b330e6a4
KO
2242 scribble = kvmalloc_array(cnt, obj_size, flags);
2243 if (!scribble)
2244 return -ENOMEM;
2245
2246 kvfree(percpu->scribble);
2247
2248 percpu->scribble = scribble;
2249 percpu->scribble_obj_size = obj_size;
2250 return 0;
d6f38f31
DW
2251}
2252
738a2738
N
2253static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2254{
2255 unsigned long cpu;
2256 int err = 0;
2257
27a353c0
SL
2258 /*
2259 * Never shrink. And mddev_suspend() could deadlock if this is called
2260 * from raid5d. In that case, scribble_disks and scribble_sectors
2261 * should equal to new_disks and new_sectors
2262 */
2263 if (conf->scribble_disks >= new_disks &&
2264 conf->scribble_sectors >= new_sectors)
2265 return 0;
738a2738
N
2266 mddev_suspend(conf->mddev);
2267 get_online_cpus();
b330e6a4 2268
738a2738
N
2269 for_each_present_cpu(cpu) {
2270 struct raid5_percpu *percpu;
738a2738
N
2271
2272 percpu = per_cpu_ptr(conf->percpu, cpu);
b330e6a4
KO
2273 err = scribble_alloc(percpu, new_disks,
2274 new_sectors / STRIPE_SECTORS,
2275 GFP_NOIO);
2276 if (err)
738a2738 2277 break;
738a2738 2278 }
b330e6a4 2279
738a2738
N
2280 put_online_cpus();
2281 mddev_resume(conf->mddev);
27a353c0
SL
2282 if (!err) {
2283 conf->scribble_disks = new_disks;
2284 conf->scribble_sectors = new_sectors;
2285 }
738a2738
N
2286 return err;
2287}
2288
d1688a6d 2289static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2290{
2291 /* Make all the stripes able to hold 'newsize' devices.
2292 * New slots in each stripe get 'page' set to a new page.
2293 *
2294 * This happens in stages:
2295 * 1/ create a new kmem_cache and allocate the required number of
2296 * stripe_heads.
83f0d77a 2297 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2298 * to the new stripe_heads. This will have the side effect of
2299 * freezing the array as once all stripe_heads have been collected,
2300 * no IO will be possible. Old stripe heads are freed once their
2301 * pages have been transferred over, and the old kmem_cache is
2302 * freed when all stripes are done.
2303 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
3560741e 2304 * we simple return a failure status - no need to clean anything up.
ad01c9e3
N
2305 * 4/ allocate new pages for the new slots in the new stripe_heads.
2306 * If this fails, we don't bother trying the shrink the
2307 * stripe_heads down again, we just leave them as they are.
2308 * As each stripe_head is processed the new one is released into
2309 * active service.
2310 *
2311 * Once step2 is started, we cannot afford to wait for a write,
2312 * so we use GFP_NOIO allocations.
2313 */
2314 struct stripe_head *osh, *nsh;
2315 LIST_HEAD(newstripes);
2316 struct disk_info *ndisks;
2214c260 2317 int err = 0;
e18b890b 2318 struct kmem_cache *sc;
ad01c9e3 2319 int i;
566c09c5 2320 int hash, cnt;
ad01c9e3 2321
2214c260 2322 md_allow_write(conf->mddev);
2a2275d6 2323
ad01c9e3
N
2324 /* Step 1 */
2325 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2326 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2327 0, 0, NULL);
ad01c9e3
N
2328 if (!sc)
2329 return -ENOMEM;
2330
2d5b569b
N
2331 /* Need to ensure auto-resizing doesn't interfere */
2332 mutex_lock(&conf->cache_size_mutex);
2333
ad01c9e3 2334 for (i = conf->max_nr_stripes; i; i--) {
845b9e22 2335 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
ad01c9e3
N
2336 if (!nsh)
2337 break;
2338
ad01c9e3
N
2339 list_add(&nsh->lru, &newstripes);
2340 }
2341 if (i) {
2342 /* didn't get enough, give up */
2343 while (!list_empty(&newstripes)) {
2344 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2345 list_del(&nsh->lru);
845b9e22 2346 free_stripe(sc, nsh);
ad01c9e3
N
2347 }
2348 kmem_cache_destroy(sc);
2d5b569b 2349 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2350 return -ENOMEM;
2351 }
2352 /* Step 2 - Must use GFP_NOIO now.
2353 * OK, we have enough stripes, start collecting inactive
2354 * stripes and copying them over
2355 */
566c09c5
SL
2356 hash = 0;
2357 cnt = 0;
ad01c9e3 2358 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2359 lock_device_hash_lock(conf, hash);
6ab2a4b8 2360 wait_event_cmd(conf->wait_for_stripe,
566c09c5
SL
2361 !list_empty(conf->inactive_list + hash),
2362 unlock_device_hash_lock(conf, hash),
2363 lock_device_hash_lock(conf, hash));
2364 osh = get_free_stripe(conf, hash);
2365 unlock_device_hash_lock(conf, hash);
f18c1a35 2366
d592a996 2367 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2368 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2369 nsh->dev[i].orig_page = osh->dev[i].page;
2370 }
566c09c5 2371 nsh->hash_lock_index = hash;
845b9e22 2372 free_stripe(conf->slab_cache, osh);
566c09c5
SL
2373 cnt++;
2374 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2375 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2376 hash++;
2377 cnt = 0;
2378 }
ad01c9e3
N
2379 }
2380 kmem_cache_destroy(conf->slab_cache);
2381
2382 /* Step 3.
2383 * At this point, we are holding all the stripes so the array
2384 * is completely stalled, so now is a good time to resize
d6f38f31 2385 * conf->disks and the scribble region
ad01c9e3 2386 */
6396bb22 2387 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
ad01c9e3 2388 if (ndisks) {
d7bd398e 2389 for (i = 0; i < conf->pool_size; i++)
ad01c9e3 2390 ndisks[i] = conf->disks[i];
d7bd398e
SL
2391
2392 for (i = conf->pool_size; i < newsize; i++) {
2393 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2394 if (!ndisks[i].extra_page)
2395 err = -ENOMEM;
2396 }
2397
2398 if (err) {
2399 for (i = conf->pool_size; i < newsize; i++)
2400 if (ndisks[i].extra_page)
2401 put_page(ndisks[i].extra_page);
2402 kfree(ndisks);
2403 } else {
2404 kfree(conf->disks);
2405 conf->disks = ndisks;
2406 }
ad01c9e3
N
2407 } else
2408 err = -ENOMEM;
2409
2d5b569b 2410 mutex_unlock(&conf->cache_size_mutex);
583da48e
DY
2411
2412 conf->slab_cache = sc;
2413 conf->active_name = 1-conf->active_name;
2414
ad01c9e3
N
2415 /* Step 4, return new stripes to service */
2416 while(!list_empty(&newstripes)) {
2417 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2418 list_del_init(&nsh->lru);
d6f38f31 2419
ad01c9e3
N
2420 for (i=conf->raid_disks; i < newsize; i++)
2421 if (nsh->dev[i].page == NULL) {
2422 struct page *p = alloc_page(GFP_NOIO);
2423 nsh->dev[i].page = p;
d592a996 2424 nsh->dev[i].orig_page = p;
ad01c9e3
N
2425 if (!p)
2426 err = -ENOMEM;
2427 }
6d036f7d 2428 raid5_release_stripe(nsh);
ad01c9e3
N
2429 }
2430 /* critical section pass, GFP_NOIO no longer needed */
2431
6e9eac2d
N
2432 if (!err)
2433 conf->pool_size = newsize;
ad01c9e3
N
2434 return err;
2435}
1da177e4 2436
486f0644 2437static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2438{
2439 struct stripe_head *sh;
49895bcc 2440 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2441
566c09c5
SL
2442 spin_lock_irq(conf->hash_locks + hash);
2443 sh = get_free_stripe(conf, hash);
2444 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2445 if (!sh)
2446 return 0;
78bafebd 2447 BUG_ON(atomic_read(&sh->count));
e4e11e38 2448 shrink_buffers(sh);
845b9e22 2449 free_stripe(conf->slab_cache, sh);
3f294f4f 2450 atomic_dec(&conf->active_stripes);
486f0644 2451 conf->max_nr_stripes--;
3f294f4f
N
2452 return 1;
2453}
2454
d1688a6d 2455static void shrink_stripes(struct r5conf *conf)
3f294f4f 2456{
486f0644
N
2457 while (conf->max_nr_stripes &&
2458 drop_one_stripe(conf))
2459 ;
3f294f4f 2460
644df1a8 2461 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2462 conf->slab_cache = NULL;
2463}
2464
4246a0b6 2465static void raid5_end_read_request(struct bio * bi)
1da177e4 2466{
99c0fb5f 2467 struct stripe_head *sh = bi->bi_private;
d1688a6d 2468 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2469 int disks = sh->disks, i;
d6950432 2470 char b[BDEVNAME_SIZE];
dd054fce 2471 struct md_rdev *rdev = NULL;
05616be5 2472 sector_t s;
1da177e4
LT
2473
2474 for (i=0 ; i<disks; i++)
2475 if (bi == &sh->dev[i].req)
2476 break;
2477
4246a0b6 2478 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2479 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4e4cbee9 2480 bi->bi_status);
1da177e4 2481 if (i == disks) {
5f9d1fde 2482 bio_reset(bi);
1da177e4 2483 BUG();
6712ecf8 2484 return;
1da177e4 2485 }
14a75d3e 2486 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2487 /* If replacement finished while this request was outstanding,
2488 * 'replacement' might be NULL already.
2489 * In that case it moved down to 'rdev'.
2490 * rdev is not removed until all requests are finished.
2491 */
14a75d3e 2492 rdev = conf->disks[i].replacement;
dd054fce 2493 if (!rdev)
14a75d3e 2494 rdev = conf->disks[i].rdev;
1da177e4 2495
05616be5
N
2496 if (use_new_offset(conf, sh))
2497 s = sh->sector + rdev->new_data_offset;
2498 else
2499 s = sh->sector + rdev->data_offset;
4e4cbee9 2500 if (!bi->bi_status) {
1da177e4 2501 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2502 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2503 /* Note that this cannot happen on a
2504 * replacement device. We just fail those on
2505 * any error
2506 */
cc6167b4
N
2507 pr_info_ratelimited(
2508 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
8bda470e 2509 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2510 (unsigned long long)s,
8bda470e 2511 bdevname(rdev->bdev, b));
ddd5115f 2512 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2513 clear_bit(R5_ReadError, &sh->dev[i].flags);
2514 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2515 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2516 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2517
86aa1397
SL
2518 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2519 /*
2520 * end read for a page in journal, this
2521 * must be preparing for prexor in rmw
2522 */
2523 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2524
14a75d3e
N
2525 if (atomic_read(&rdev->read_errors))
2526 atomic_set(&rdev->read_errors, 0);
1da177e4 2527 } else {
14a75d3e 2528 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2529 int retry = 0;
2e8ac303 2530 int set_bad = 0;
d6950432 2531
1da177e4 2532 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2533 atomic_inc(&rdev->read_errors);
14a75d3e 2534 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
cc6167b4
N
2535 pr_warn_ratelimited(
2536 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
14a75d3e 2537 mdname(conf->mddev),
05616be5 2538 (unsigned long long)s,
14a75d3e 2539 bdn);
2e8ac303 2540 else if (conf->mddev->degraded >= conf->max_degraded) {
2541 set_bad = 1;
cc6167b4
N
2542 pr_warn_ratelimited(
2543 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
8bda470e 2544 mdname(conf->mddev),
05616be5 2545 (unsigned long long)s,
8bda470e 2546 bdn);
2e8ac303 2547 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2548 /* Oh, no!!! */
2e8ac303 2549 set_bad = 1;
cc6167b4
N
2550 pr_warn_ratelimited(
2551 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
8bda470e 2552 mdname(conf->mddev),
05616be5 2553 (unsigned long long)s,
8bda470e 2554 bdn);
2e8ac303 2555 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2556 > conf->max_nr_stripes)
cc6167b4 2557 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2558 mdname(conf->mddev), bdn);
ba22dcbf
N
2559 else
2560 retry = 1;
edfa1f65
BY
2561 if (set_bad && test_bit(In_sync, &rdev->flags)
2562 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2563 retry = 1;
ba22dcbf 2564 if (retry)
3f9e7c14 2565 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2566 set_bit(R5_ReadError, &sh->dev[i].flags);
2567 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2568 } else
2569 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2570 else {
4e5314b5
N
2571 clear_bit(R5_ReadError, &sh->dev[i].flags);
2572 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2573 if (!(set_bad
2574 && test_bit(In_sync, &rdev->flags)
2575 && rdev_set_badblocks(
2576 rdev, sh->sector, STRIPE_SECTORS, 0)))
2577 md_error(conf->mddev, rdev);
ba22dcbf 2578 }
1da177e4 2579 }
14a75d3e 2580 rdev_dec_pending(rdev, conf->mddev);
c9445555 2581 bio_reset(bi);
1da177e4
LT
2582 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2583 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2584 raid5_release_stripe(sh);
1da177e4
LT
2585}
2586
4246a0b6 2587static void raid5_end_write_request(struct bio *bi)
1da177e4 2588{
99c0fb5f 2589 struct stripe_head *sh = bi->bi_private;
d1688a6d 2590 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2591 int disks = sh->disks, i;
977df362 2592 struct md_rdev *uninitialized_var(rdev);
b84db560
N
2593 sector_t first_bad;
2594 int bad_sectors;
977df362 2595 int replacement = 0;
1da177e4 2596
977df362
N
2597 for (i = 0 ; i < disks; i++) {
2598 if (bi == &sh->dev[i].req) {
2599 rdev = conf->disks[i].rdev;
1da177e4 2600 break;
977df362
N
2601 }
2602 if (bi == &sh->dev[i].rreq) {
2603 rdev = conf->disks[i].replacement;
dd054fce
N
2604 if (rdev)
2605 replacement = 1;
2606 else
2607 /* rdev was removed and 'replacement'
2608 * replaced it. rdev is not removed
2609 * until all requests are finished.
2610 */
2611 rdev = conf->disks[i].rdev;
977df362
N
2612 break;
2613 }
2614 }
4246a0b6 2615 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2616 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4e4cbee9 2617 bi->bi_status);
1da177e4 2618 if (i == disks) {
5f9d1fde 2619 bio_reset(bi);
1da177e4 2620 BUG();
6712ecf8 2621 return;
1da177e4
LT
2622 }
2623
977df362 2624 if (replacement) {
4e4cbee9 2625 if (bi->bi_status)
977df362
N
2626 md_error(conf->mddev, rdev);
2627 else if (is_badblock(rdev, sh->sector,
2628 STRIPE_SECTORS,
2629 &first_bad, &bad_sectors))
2630 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2631 } else {
4e4cbee9 2632 if (bi->bi_status) {
9f97e4b1 2633 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2634 set_bit(WriteErrorSeen, &rdev->flags);
2635 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2636 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2637 set_bit(MD_RECOVERY_NEEDED,
2638 &rdev->mddev->recovery);
977df362
N
2639 } else if (is_badblock(rdev, sh->sector,
2640 STRIPE_SECTORS,
c0b32972 2641 &first_bad, &bad_sectors)) {
977df362 2642 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2643 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2644 /* That was a successful write so make
2645 * sure it looks like we already did
2646 * a re-write.
2647 */
2648 set_bit(R5_ReWrite, &sh->dev[i].flags);
2649 }
977df362
N
2650 }
2651 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2652
4e4cbee9 2653 if (sh->batch_head && bi->bi_status && !replacement)
72ac7330 2654 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2655
c9445555 2656 bio_reset(bi);
977df362
N
2657 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2658 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2659 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2660 raid5_release_stripe(sh);
59fc630b 2661
2662 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2663 raid5_release_stripe(sh->batch_head);
1da177e4
LT
2664}
2665
849674e4 2666static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2667{
2668 char b[BDEVNAME_SIZE];
d1688a6d 2669 struct r5conf *conf = mddev->private;
908f4fbd 2670 unsigned long flags;
0c55e022 2671 pr_debug("raid456: error called\n");
1da177e4 2672
908f4fbd 2673 spin_lock_irqsave(&conf->device_lock, flags);
fb73b357
MT
2674
2675 if (test_bit(In_sync, &rdev->flags) &&
2676 mddev->degraded == conf->max_degraded) {
2677 /*
2678 * Don't allow to achieve failed state
2679 * Don't try to recover this device
2680 */
2681 conf->recovery_disabled = mddev->recovery_disabled;
2682 spin_unlock_irqrestore(&conf->device_lock, flags);
2683 return;
2684 }
2685
aff69d89 2686 set_bit(Faulty, &rdev->flags);
908f4fbd 2687 clear_bit(In_sync, &rdev->flags);
2e38a37f 2688 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd
N
2689 spin_unlock_irqrestore(&conf->device_lock, flags);
2690 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2691
de393cde 2692 set_bit(Blocked, &rdev->flags);
2953079c
SL
2693 set_mask_bits(&mddev->sb_flags, 0,
2694 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
cc6167b4
N
2695 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2696 "md/raid:%s: Operation continuing on %d devices.\n",
2697 mdname(mddev),
2698 bdevname(rdev->bdev, b),
2699 mdname(mddev),
2700 conf->raid_disks - mddev->degraded);
70d466f7 2701 r5c_update_on_rdev_error(mddev, rdev);
16a53ecc 2702}
1da177e4
LT
2703
2704/*
2705 * Input: a 'big' sector number,
2706 * Output: index of the data and parity disk, and the sector # in them.
2707 */
6d036f7d
SL
2708sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2709 int previous, int *dd_idx,
2710 struct stripe_head *sh)
1da177e4 2711{
6e3b96ed 2712 sector_t stripe, stripe2;
35f2a591 2713 sector_t chunk_number;
1da177e4 2714 unsigned int chunk_offset;
911d4ee8 2715 int pd_idx, qd_idx;
67cc2b81 2716 int ddf_layout = 0;
1da177e4 2717 sector_t new_sector;
e183eaed
N
2718 int algorithm = previous ? conf->prev_algo
2719 : conf->algorithm;
09c9e5fa
AN
2720 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2721 : conf->chunk_sectors;
112bf897
N
2722 int raid_disks = previous ? conf->previous_raid_disks
2723 : conf->raid_disks;
2724 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2725
2726 /* First compute the information on this sector */
2727
2728 /*
2729 * Compute the chunk number and the sector offset inside the chunk
2730 */
2731 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2732 chunk_number = r_sector;
1da177e4
LT
2733
2734 /*
2735 * Compute the stripe number
2736 */
35f2a591
N
2737 stripe = chunk_number;
2738 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2739 stripe2 = stripe;
1da177e4
LT
2740 /*
2741 * Select the parity disk based on the user selected algorithm.
2742 */
84789554 2743 pd_idx = qd_idx = -1;
16a53ecc
N
2744 switch(conf->level) {
2745 case 4:
911d4ee8 2746 pd_idx = data_disks;
16a53ecc
N
2747 break;
2748 case 5:
e183eaed 2749 switch (algorithm) {
1da177e4 2750 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2751 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2752 if (*dd_idx >= pd_idx)
1da177e4
LT
2753 (*dd_idx)++;
2754 break;
2755 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2756 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2757 if (*dd_idx >= pd_idx)
1da177e4
LT
2758 (*dd_idx)++;
2759 break;
2760 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2761 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2762 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2763 break;
2764 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2765 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2766 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2767 break;
99c0fb5f
N
2768 case ALGORITHM_PARITY_0:
2769 pd_idx = 0;
2770 (*dd_idx)++;
2771 break;
2772 case ALGORITHM_PARITY_N:
2773 pd_idx = data_disks;
2774 break;
1da177e4 2775 default:
99c0fb5f 2776 BUG();
16a53ecc
N
2777 }
2778 break;
2779 case 6:
2780
e183eaed 2781 switch (algorithm) {
16a53ecc 2782 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2783 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2784 qd_idx = pd_idx + 1;
2785 if (pd_idx == raid_disks-1) {
99c0fb5f 2786 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2787 qd_idx = 0;
2788 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2789 (*dd_idx) += 2; /* D D P Q D */
2790 break;
2791 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2792 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2793 qd_idx = pd_idx + 1;
2794 if (pd_idx == raid_disks-1) {
99c0fb5f 2795 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2796 qd_idx = 0;
2797 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2798 (*dd_idx) += 2; /* D D P Q D */
2799 break;
2800 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2801 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2802 qd_idx = (pd_idx + 1) % raid_disks;
2803 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2804 break;
2805 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2806 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2807 qd_idx = (pd_idx + 1) % raid_disks;
2808 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2809 break;
99c0fb5f
N
2810
2811 case ALGORITHM_PARITY_0:
2812 pd_idx = 0;
2813 qd_idx = 1;
2814 (*dd_idx) += 2;
2815 break;
2816 case ALGORITHM_PARITY_N:
2817 pd_idx = data_disks;
2818 qd_idx = data_disks + 1;
2819 break;
2820
2821 case ALGORITHM_ROTATING_ZERO_RESTART:
2822 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2823 * of blocks for computing Q is different.
2824 */
6e3b96ed 2825 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2826 qd_idx = pd_idx + 1;
2827 if (pd_idx == raid_disks-1) {
2828 (*dd_idx)++; /* Q D D D P */
2829 qd_idx = 0;
2830 } else if (*dd_idx >= pd_idx)
2831 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2832 ddf_layout = 1;
99c0fb5f
N
2833 break;
2834
2835 case ALGORITHM_ROTATING_N_RESTART:
2836 /* Same a left_asymmetric, by first stripe is
2837 * D D D P Q rather than
2838 * Q D D D P
2839 */
6e3b96ed
N
2840 stripe2 += 1;
2841 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2842 qd_idx = pd_idx + 1;
2843 if (pd_idx == raid_disks-1) {
2844 (*dd_idx)++; /* Q D D D P */
2845 qd_idx = 0;
2846 } else if (*dd_idx >= pd_idx)
2847 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2848 ddf_layout = 1;
99c0fb5f
N
2849 break;
2850
2851 case ALGORITHM_ROTATING_N_CONTINUE:
2852 /* Same as left_symmetric but Q is before P */
6e3b96ed 2853 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2854 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2855 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2856 ddf_layout = 1;
99c0fb5f
N
2857 break;
2858
2859 case ALGORITHM_LEFT_ASYMMETRIC_6:
2860 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2861 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2862 if (*dd_idx >= pd_idx)
2863 (*dd_idx)++;
2864 qd_idx = raid_disks - 1;
2865 break;
2866
2867 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2868 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2869 if (*dd_idx >= pd_idx)
2870 (*dd_idx)++;
2871 qd_idx = raid_disks - 1;
2872 break;
2873
2874 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2875 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2876 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2877 qd_idx = raid_disks - 1;
2878 break;
2879
2880 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2881 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2882 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2883 qd_idx = raid_disks - 1;
2884 break;
2885
2886 case ALGORITHM_PARITY_0_6:
2887 pd_idx = 0;
2888 (*dd_idx)++;
2889 qd_idx = raid_disks - 1;
2890 break;
2891
16a53ecc 2892 default:
99c0fb5f 2893 BUG();
16a53ecc
N
2894 }
2895 break;
1da177e4
LT
2896 }
2897
911d4ee8
N
2898 if (sh) {
2899 sh->pd_idx = pd_idx;
2900 sh->qd_idx = qd_idx;
67cc2b81 2901 sh->ddf_layout = ddf_layout;
911d4ee8 2902 }
1da177e4
LT
2903 /*
2904 * Finally, compute the new sector number
2905 */
2906 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2907 return new_sector;
2908}
2909
6d036f7d 2910sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2911{
d1688a6d 2912 struct r5conf *conf = sh->raid_conf;
b875e531
N
2913 int raid_disks = sh->disks;
2914 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2915 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2916 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2917 : conf->chunk_sectors;
e183eaed
N
2918 int algorithm = previous ? conf->prev_algo
2919 : conf->algorithm;
1da177e4
LT
2920 sector_t stripe;
2921 int chunk_offset;
35f2a591
N
2922 sector_t chunk_number;
2923 int dummy1, dd_idx = i;
1da177e4 2924 sector_t r_sector;
911d4ee8 2925 struct stripe_head sh2;
1da177e4
LT
2926
2927 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2928 stripe = new_sector;
1da177e4 2929
16a53ecc
N
2930 if (i == sh->pd_idx)
2931 return 0;
2932 switch(conf->level) {
2933 case 4: break;
2934 case 5:
e183eaed 2935 switch (algorithm) {
1da177e4
LT
2936 case ALGORITHM_LEFT_ASYMMETRIC:
2937 case ALGORITHM_RIGHT_ASYMMETRIC:
2938 if (i > sh->pd_idx)
2939 i--;
2940 break;
2941 case ALGORITHM_LEFT_SYMMETRIC:
2942 case ALGORITHM_RIGHT_SYMMETRIC:
2943 if (i < sh->pd_idx)
2944 i += raid_disks;
2945 i -= (sh->pd_idx + 1);
2946 break;
99c0fb5f
N
2947 case ALGORITHM_PARITY_0:
2948 i -= 1;
2949 break;
2950 case ALGORITHM_PARITY_N:
2951 break;
1da177e4 2952 default:
99c0fb5f 2953 BUG();
16a53ecc
N
2954 }
2955 break;
2956 case 6:
d0dabf7e 2957 if (i == sh->qd_idx)
16a53ecc 2958 return 0; /* It is the Q disk */
e183eaed 2959 switch (algorithm) {
16a53ecc
N
2960 case ALGORITHM_LEFT_ASYMMETRIC:
2961 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2962 case ALGORITHM_ROTATING_ZERO_RESTART:
2963 case ALGORITHM_ROTATING_N_RESTART:
2964 if (sh->pd_idx == raid_disks-1)
2965 i--; /* Q D D D P */
16a53ecc
N
2966 else if (i > sh->pd_idx)
2967 i -= 2; /* D D P Q D */
2968 break;
2969 case ALGORITHM_LEFT_SYMMETRIC:
2970 case ALGORITHM_RIGHT_SYMMETRIC:
2971 if (sh->pd_idx == raid_disks-1)
2972 i--; /* Q D D D P */
2973 else {
2974 /* D D P Q D */
2975 if (i < sh->pd_idx)
2976 i += raid_disks;
2977 i -= (sh->pd_idx + 2);
2978 }
2979 break;
99c0fb5f
N
2980 case ALGORITHM_PARITY_0:
2981 i -= 2;
2982 break;
2983 case ALGORITHM_PARITY_N:
2984 break;
2985 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2986 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2987 if (sh->pd_idx == 0)
2988 i--; /* P D D D Q */
e4424fee
N
2989 else {
2990 /* D D Q P D */
2991 if (i < sh->pd_idx)
2992 i += raid_disks;
2993 i -= (sh->pd_idx + 1);
2994 }
99c0fb5f
N
2995 break;
2996 case ALGORITHM_LEFT_ASYMMETRIC_6:
2997 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2998 if (i > sh->pd_idx)
2999 i--;
3000 break;
3001 case ALGORITHM_LEFT_SYMMETRIC_6:
3002 case ALGORITHM_RIGHT_SYMMETRIC_6:
3003 if (i < sh->pd_idx)
3004 i += data_disks + 1;
3005 i -= (sh->pd_idx + 1);
3006 break;
3007 case ALGORITHM_PARITY_0_6:
3008 i -= 1;
3009 break;
16a53ecc 3010 default:
99c0fb5f 3011 BUG();
16a53ecc
N
3012 }
3013 break;
1da177e4
LT
3014 }
3015
3016 chunk_number = stripe * data_disks + i;
35f2a591 3017 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 3018
112bf897 3019 check = raid5_compute_sector(conf, r_sector,
784052ec 3020 previous, &dummy1, &sh2);
911d4ee8
N
3021 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3022 || sh2.qd_idx != sh->qd_idx) {
cc6167b4
N
3023 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3024 mdname(conf->mddev));
1da177e4
LT
3025 return 0;
3026 }
3027 return r_sector;
3028}
3029
07e83364
SL
3030/*
3031 * There are cases where we want handle_stripe_dirtying() and
3032 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3033 *
3034 * This function checks whether we want to delay the towrite. Specifically,
3035 * we delay the towrite when:
3036 *
3037 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3038 * stripe has data in journal (for other devices).
3039 *
3040 * In this case, when reading data for the non-overwrite dev, it is
3041 * necessary to handle complex rmw of write back cache (prexor with
3042 * orig_page, and xor with page). To keep read path simple, we would
3043 * like to flush data in journal to RAID disks first, so complex rmw
3044 * is handled in the write patch (handle_stripe_dirtying).
3045 *
39b99586
SL
3046 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3047 *
3048 * It is important to be able to flush all stripes in raid5-cache.
3049 * Therefore, we need reserve some space on the journal device for
3050 * these flushes. If flush operation includes pending writes to the
3051 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3052 * for the flush out. If we exclude these pending writes from flush
3053 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3054 * Therefore, excluding pending writes in these cases enables more
3055 * efficient use of the journal device.
3056 *
3057 * Note: To make sure the stripe makes progress, we only delay
3058 * towrite for stripes with data already in journal (injournal > 0).
3059 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3060 * no_space_stripes list.
3061 *
70d466f7
SL
3062 * 3. during journal failure
3063 * In journal failure, we try to flush all cached data to raid disks
3064 * based on data in stripe cache. The array is read-only to upper
3065 * layers, so we would skip all pending writes.
3066 *
07e83364 3067 */
39b99586
SL
3068static inline bool delay_towrite(struct r5conf *conf,
3069 struct r5dev *dev,
3070 struct stripe_head_state *s)
07e83364 3071{
39b99586
SL
3072 /* case 1 above */
3073 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3074 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3075 return true;
3076 /* case 2 above */
3077 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3078 s->injournal > 0)
3079 return true;
70d466f7
SL
3080 /* case 3 above */
3081 if (s->log_failed && s->injournal)
3082 return true;
39b99586 3083 return false;
07e83364
SL
3084}
3085
600aa109 3086static void
c0f7bddb 3087schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 3088 int rcw, int expand)
e33129d8 3089{
584acdd4 3090 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 3091 struct r5conf *conf = sh->raid_conf;
c0f7bddb 3092 int level = conf->level;
e33129d8
DW
3093
3094 if (rcw) {
1e6d690b
SL
3095 /*
3096 * In some cases, handle_stripe_dirtying initially decided to
3097 * run rmw and allocates extra page for prexor. However, rcw is
3098 * cheaper later on. We need to free the extra page now,
3099 * because we won't be able to do that in ops_complete_prexor().
3100 */
3101 r5c_release_extra_page(sh);
e33129d8
DW
3102
3103 for (i = disks; i--; ) {
3104 struct r5dev *dev = &sh->dev[i];
3105
39b99586 3106 if (dev->towrite && !delay_towrite(conf, dev, s)) {
e33129d8 3107 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 3108 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3109 if (!expand)
3110 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3111 s->locked++;
1e6d690b
SL
3112 } else if (test_bit(R5_InJournal, &dev->flags)) {
3113 set_bit(R5_LOCKED, &dev->flags);
3114 s->locked++;
e33129d8
DW
3115 }
3116 }
ce7d363a
N
3117 /* if we are not expanding this is a proper write request, and
3118 * there will be bios with new data to be drained into the
3119 * stripe cache
3120 */
3121 if (!expand) {
3122 if (!s->locked)
3123 /* False alarm, nothing to do */
3124 return;
3125 sh->reconstruct_state = reconstruct_state_drain_run;
3126 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3127 } else
3128 sh->reconstruct_state = reconstruct_state_run;
3129
3130 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3131
c0f7bddb 3132 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 3133 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 3134 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
3135 } else {
3136 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3137 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
3138 BUG_ON(level == 6 &&
3139 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3140 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 3141
e33129d8
DW
3142 for (i = disks; i--; ) {
3143 struct r5dev *dev = &sh->dev[i];
584acdd4 3144 if (i == pd_idx || i == qd_idx)
e33129d8
DW
3145 continue;
3146
e33129d8
DW
3147 if (dev->towrite &&
3148 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
3149 test_bit(R5_Wantcompute, &dev->flags))) {
3150 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3151 set_bit(R5_LOCKED, &dev->flags);
3152 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3153 s->locked++;
1e6d690b
SL
3154 } else if (test_bit(R5_InJournal, &dev->flags)) {
3155 set_bit(R5_LOCKED, &dev->flags);
3156 s->locked++;
e33129d8
DW
3157 }
3158 }
ce7d363a
N
3159 if (!s->locked)
3160 /* False alarm - nothing to do */
3161 return;
3162 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3163 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3164 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3165 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
3166 }
3167
c0f7bddb 3168 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
3169 * are in flight
3170 */
3171 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3172 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 3173 s->locked++;
e33129d8 3174
c0f7bddb
YT
3175 if (level == 6) {
3176 int qd_idx = sh->qd_idx;
3177 struct r5dev *dev = &sh->dev[qd_idx];
3178
3179 set_bit(R5_LOCKED, &dev->flags);
3180 clear_bit(R5_UPTODATE, &dev->flags);
3181 s->locked++;
3182 }
3183
845b9e22 3184 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3418d036
AP
3185 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3186 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3187 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3188 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3189
600aa109 3190 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 3191 __func__, (unsigned long long)sh->sector,
600aa109 3192 s->locked, s->ops_request);
e33129d8 3193}
16a53ecc 3194
1da177e4
LT
3195/*
3196 * Each stripe/dev can have one or more bion attached.
16a53ecc 3197 * toread/towrite point to the first in a chain.
1da177e4
LT
3198 * The bi_next chain must be in order.
3199 */
da41ba65 3200static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3201 int forwrite, int previous)
1da177e4
LT
3202{
3203 struct bio **bip;
d1688a6d 3204 struct r5conf *conf = sh->raid_conf;
72626685 3205 int firstwrite=0;
1da177e4 3206
cbe47ec5 3207 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 3208 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
3209 (unsigned long long)sh->sector);
3210
b17459c0 3211 spin_lock_irq(&sh->stripe_lock);
2cd259a7 3212 sh->dev[dd_idx].write_hint = bi->bi_write_hint;
59fc630b 3213 /* Don't allow new IO added to stripes in batch list */
3214 if (sh->batch_head)
3215 goto overlap;
72626685 3216 if (forwrite) {
1da177e4 3217 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 3218 if (*bip == NULL)
72626685
N
3219 firstwrite = 1;
3220 } else
1da177e4 3221 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
3222 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3223 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
3224 goto overlap;
3225 bip = & (*bip)->bi_next;
3226 }
4f024f37 3227 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
3228 goto overlap;
3229
3418d036
AP
3230 if (forwrite && raid5_has_ppl(conf)) {
3231 /*
3232 * With PPL only writes to consecutive data chunks within a
3233 * stripe are allowed because for a single stripe_head we can
3234 * only have one PPL entry at a time, which describes one data
3235 * range. Not really an overlap, but wait_for_overlap can be
3236 * used to handle this.
3237 */
3238 sector_t sector;
3239 sector_t first = 0;
3240 sector_t last = 0;
3241 int count = 0;
3242 int i;
3243
3244 for (i = 0; i < sh->disks; i++) {
3245 if (i != sh->pd_idx &&
3246 (i == dd_idx || sh->dev[i].towrite)) {
3247 sector = sh->dev[i].sector;
3248 if (count == 0 || sector < first)
3249 first = sector;
3250 if (sector > last)
3251 last = sector;
3252 count++;
3253 }
3254 }
3255
3256 if (first + conf->chunk_sectors * (count - 1) != last)
3257 goto overlap;
3258 }
3259
da41ba65 3260 if (!forwrite || previous)
3261 clear_bit(STRIPE_BATCH_READY, &sh->state);
3262
78bafebd 3263 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
3264 if (*bip)
3265 bi->bi_next = *bip;
3266 *bip = bi;
016c76ac 3267 bio_inc_remaining(bi);
49728050 3268 md_write_inc(conf->mddev, bi);
72626685 3269
1da177e4
LT
3270 if (forwrite) {
3271 /* check if page is covered */
3272 sector_t sector = sh->dev[dd_idx].sector;
3273 for (bi=sh->dev[dd_idx].towrite;
3274 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 3275 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 3276 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
3277 if (bio_end_sector(bi) >= sector)
3278 sector = bio_end_sector(bi);
1da177e4
LT
3279 }
3280 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 3281 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3282 sh->overwrite_disks++;
1da177e4 3283 }
cbe47ec5
N
3284
3285 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3286 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3287 (unsigned long long)sh->sector, dd_idx);
3288
3289 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3290 /* Cannot hold spinlock over bitmap_startwrite,
3291 * but must ensure this isn't added to a batch until
3292 * we have added to the bitmap and set bm_seq.
3293 * So set STRIPE_BITMAP_PENDING to prevent
3294 * batching.
3295 * If multiple add_stripe_bio() calls race here they
3296 * much all set STRIPE_BITMAP_PENDING. So only the first one
3297 * to complete "bitmap_startwrite" gets to set
3298 * STRIPE_BIT_DELAY. This is important as once a stripe
3299 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3300 * any more.
3301 */
3302 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3303 spin_unlock_irq(&sh->stripe_lock);
e64e4018
AS
3304 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3305 STRIPE_SECTORS, 0);
d0852df5
N
3306 spin_lock_irq(&sh->stripe_lock);
3307 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3308 if (!sh->batch_head) {
3309 sh->bm_seq = conf->seq_flush+1;
3310 set_bit(STRIPE_BIT_DELAY, &sh->state);
3311 }
cbe47ec5 3312 }
d0852df5 3313 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3314
3315 if (stripe_can_batch(sh))
3316 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3317 return 1;
3318
3319 overlap:
3320 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3321 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3322 return 0;
3323}
3324
d1688a6d 3325static void end_reshape(struct r5conf *conf);
29269553 3326
d1688a6d 3327static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3328 struct stripe_head *sh)
ccfcc3c1 3329{
784052ec 3330 int sectors_per_chunk =
09c9e5fa 3331 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3332 int dd_idx;
2d2063ce 3333 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3334 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3335
112bf897
N
3336 raid5_compute_sector(conf,
3337 stripe * (disks - conf->max_degraded)
b875e531 3338 *sectors_per_chunk + chunk_offset,
112bf897 3339 previous,
911d4ee8 3340 &dd_idx, sh);
ccfcc3c1
N
3341}
3342
a4456856 3343static void
d1688a6d 3344handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
bd83d0a2 3345 struct stripe_head_state *s, int disks)
a4456856
DW
3346{
3347 int i;
59fc630b 3348 BUG_ON(sh->batch_head);
a4456856
DW
3349 for (i = disks; i--; ) {
3350 struct bio *bi;
3351 int bitmap_end = 0;
3352
3353 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3354 struct md_rdev *rdev;
a4456856
DW
3355 rcu_read_lock();
3356 rdev = rcu_dereference(conf->disks[i].rdev);
f5b67ae8
N
3357 if (rdev && test_bit(In_sync, &rdev->flags) &&
3358 !test_bit(Faulty, &rdev->flags))
7f0da59b
N
3359 atomic_inc(&rdev->nr_pending);
3360 else
3361 rdev = NULL;
a4456856 3362 rcu_read_unlock();
7f0da59b
N
3363 if (rdev) {
3364 if (!rdev_set_badblocks(
3365 rdev,
3366 sh->sector,
3367 STRIPE_SECTORS, 0))
3368 md_error(conf->mddev, rdev);
3369 rdev_dec_pending(rdev, conf->mddev);
3370 }
a4456856 3371 }
b17459c0 3372 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3373 /* fail all writes first */
3374 bi = sh->dev[i].towrite;
3375 sh->dev[i].towrite = NULL;
7a87f434 3376 sh->overwrite_disks = 0;
b17459c0 3377 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3378 if (bi)
a4456856 3379 bitmap_end = 1;
a4456856 3380
ff875738 3381 log_stripe_write_finished(sh);
0576b1c6 3382
a4456856
DW
3383 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3384 wake_up(&conf->wait_for_overlap);
3385
4f024f37 3386 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3387 sh->dev[i].sector + STRIPE_SECTORS) {
3388 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6 3389
49728050 3390 md_write_end(conf->mddev);
6308d8e3 3391 bio_io_error(bi);
a4456856
DW
3392 bi = nextbi;
3393 }
7eaf7e8e 3394 if (bitmap_end)
e64e4018
AS
3395 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3396 STRIPE_SECTORS, 0, 0);
7eaf7e8e 3397 bitmap_end = 0;
a4456856
DW
3398 /* and fail all 'written' */
3399 bi = sh->dev[i].written;
3400 sh->dev[i].written = NULL;
d592a996
SL
3401 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3402 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3403 sh->dev[i].page = sh->dev[i].orig_page;
3404 }
3405
a4456856 3406 if (bi) bitmap_end = 1;
4f024f37 3407 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3408 sh->dev[i].sector + STRIPE_SECTORS) {
3409 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6 3410
49728050 3411 md_write_end(conf->mddev);
6308d8e3 3412 bio_io_error(bi);
a4456856
DW
3413 bi = bi2;
3414 }
3415
b5e98d65
DW
3416 /* fail any reads if this device is non-operational and
3417 * the data has not reached the cache yet.
3418 */
3419 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
6e74a9cf 3420 s->failed > conf->max_degraded &&
b5e98d65
DW
3421 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3422 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3423 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3424 bi = sh->dev[i].toread;
3425 sh->dev[i].toread = NULL;
143c4d05 3426 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3427 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3428 wake_up(&conf->wait_for_overlap);
ebda780b
SL
3429 if (bi)
3430 s->to_read--;
4f024f37 3431 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3432 sh->dev[i].sector + STRIPE_SECTORS) {
3433 struct bio *nextbi =
3434 r5_next_bio(bi, sh->dev[i].sector);
4246a0b6 3435
6308d8e3 3436 bio_io_error(bi);
a4456856
DW
3437 bi = nextbi;
3438 }
3439 }
a4456856 3440 if (bitmap_end)
e64e4018
AS
3441 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3442 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3443 /* If we were in the middle of a write the parity block might
3444 * still be locked - so just clear all R5_LOCKED flags
3445 */
3446 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3447 }
ebda780b
SL
3448 s->to_write = 0;
3449 s->written = 0;
a4456856 3450
8b3e6cdc
DW
3451 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3452 if (atomic_dec_and_test(&conf->pending_full_writes))
3453 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3454}
3455
7f0da59b 3456static void
d1688a6d 3457handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3458 struct stripe_head_state *s)
3459{
3460 int abort = 0;
3461 int i;
3462
59fc630b 3463 BUG_ON(sh->batch_head);
7f0da59b 3464 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3465 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3466 wake_up(&conf->wait_for_overlap);
7f0da59b 3467 s->syncing = 0;
9a3e1101 3468 s->replacing = 0;
7f0da59b 3469 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3470 * Don't even need to abort as that is handled elsewhere
3471 * if needed, and not always wanted e.g. if there is a known
3472 * bad block here.
9a3e1101 3473 * For recover/replace we need to record a bad block on all
7f0da59b
N
3474 * non-sync devices, or abort the recovery
3475 */
18b9837e
N
3476 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3477 /* During recovery devices cannot be removed, so
3478 * locking and refcounting of rdevs is not needed
3479 */
e50d3992 3480 rcu_read_lock();
18b9837e 3481 for (i = 0; i < conf->raid_disks; i++) {
e50d3992 3482 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
18b9837e
N
3483 if (rdev
3484 && !test_bit(Faulty, &rdev->flags)
3485 && !test_bit(In_sync, &rdev->flags)
3486 && !rdev_set_badblocks(rdev, sh->sector,
3487 STRIPE_SECTORS, 0))
3488 abort = 1;
e50d3992 3489 rdev = rcu_dereference(conf->disks[i].replacement);
18b9837e
N
3490 if (rdev
3491 && !test_bit(Faulty, &rdev->flags)
3492 && !test_bit(In_sync, &rdev->flags)
3493 && !rdev_set_badblocks(rdev, sh->sector,
3494 STRIPE_SECTORS, 0))
3495 abort = 1;
3496 }
e50d3992 3497 rcu_read_unlock();
18b9837e
N
3498 if (abort)
3499 conf->recovery_disabled =
3500 conf->mddev->recovery_disabled;
7f0da59b 3501 }
18b9837e 3502 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3503}
3504
9a3e1101
N
3505static int want_replace(struct stripe_head *sh, int disk_idx)
3506{
3507 struct md_rdev *rdev;
3508 int rv = 0;
3f232d6a
N
3509
3510 rcu_read_lock();
3511 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
9a3e1101
N
3512 if (rdev
3513 && !test_bit(Faulty, &rdev->flags)
3514 && !test_bit(In_sync, &rdev->flags)
3515 && (rdev->recovery_offset <= sh->sector
3516 || rdev->mddev->recovery_cp <= sh->sector))
3517 rv = 1;
3f232d6a 3518 rcu_read_unlock();
9a3e1101
N
3519 return rv;
3520}
3521
2c58f06e
N
3522static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3523 int disk_idx, int disks)
a4456856 3524{
5599becc 3525 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3526 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3527 &sh->dev[s->failed_num[1]] };
ea664c82 3528 int i;
5599becc 3529
a79cfe12
N
3530
3531 if (test_bit(R5_LOCKED, &dev->flags) ||
3532 test_bit(R5_UPTODATE, &dev->flags))
3533 /* No point reading this as we already have it or have
3534 * decided to get it.
3535 */
3536 return 0;
3537
3538 if (dev->toread ||
3539 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3540 /* We need this block to directly satisfy a request */
3541 return 1;
3542
3543 if (s->syncing || s->expanding ||
3544 (s->replacing && want_replace(sh, disk_idx)))
3545 /* When syncing, or expanding we read everything.
3546 * When replacing, we need the replaced block.
3547 */
3548 return 1;
3549
3550 if ((s->failed >= 1 && fdev[0]->toread) ||
3551 (s->failed >= 2 && fdev[1]->toread))
3552 /* If we want to read from a failed device, then
3553 * we need to actually read every other device.
3554 */
3555 return 1;
3556
a9d56950
N
3557 /* Sometimes neither read-modify-write nor reconstruct-write
3558 * cycles can work. In those cases we read every block we
3559 * can. Then the parity-update is certain to have enough to
3560 * work with.
3561 * This can only be a problem when we need to write something,
3562 * and some device has failed. If either of those tests
3563 * fail we need look no further.
3564 */
3565 if (!s->failed || !s->to_write)
3566 return 0;
3567
3568 if (test_bit(R5_Insync, &dev->flags) &&
3569 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3570 /* Pre-reads at not permitted until after short delay
3571 * to gather multiple requests. However if this
3560741e 3572 * device is no Insync, the block could only be computed
a9d56950
N
3573 * and there is no need to delay that.
3574 */
3575 return 0;
ea664c82 3576
36707bb2 3577 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3578 if (fdev[i]->towrite &&
3579 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3580 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3581 /* If we have a partial write to a failed
3582 * device, then we will need to reconstruct
3583 * the content of that device, so all other
3584 * devices must be read.
3585 */
3586 return 1;
3587 }
3588
3589 /* If we are forced to do a reconstruct-write, either because
3590 * the current RAID6 implementation only supports that, or
3560741e 3591 * because parity cannot be trusted and we are currently
ea664c82
N
3592 * recovering it, there is extra need to be careful.
3593 * If one of the devices that we would need to read, because
3594 * it is not being overwritten (and maybe not written at all)
3595 * is missing/faulty, then we need to read everything we can.
3596 */
3597 if (sh->raid_conf->level != 6 &&
3598 sh->sector < sh->raid_conf->mddev->recovery_cp)
3599 /* reconstruct-write isn't being forced */
3600 return 0;
36707bb2 3601 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3602 if (s->failed_num[i] != sh->pd_idx &&
3603 s->failed_num[i] != sh->qd_idx &&
3604 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3605 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3606 return 1;
3607 }
3608
2c58f06e
N
3609 return 0;
3610}
3611
ba02684d
SL
3612/* fetch_block - checks the given member device to see if its data needs
3613 * to be read or computed to satisfy a request.
3614 *
3615 * Returns 1 when no more member devices need to be checked, otherwise returns
3616 * 0 to tell the loop in handle_stripe_fill to continue
3617 */
2c58f06e
N
3618static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3619 int disk_idx, int disks)
3620{
3621 struct r5dev *dev = &sh->dev[disk_idx];
3622
3623 /* is the data in this block needed, and can we get it? */
3624 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3625 /* we would like to get this block, possibly by computing it,
3626 * otherwise read it if the backing disk is insync
3627 */
3628 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3629 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3630 BUG_ON(sh->batch_head);
7471fb77
N
3631
3632 /*
3633 * In the raid6 case if the only non-uptodate disk is P
3634 * then we already trusted P to compute the other failed
3635 * drives. It is safe to compute rather than re-read P.
3636 * In other cases we only compute blocks from failed
3637 * devices, otherwise check/repair might fail to detect
3638 * a real inconsistency.
3639 */
3640
5599becc 3641 if ((s->uptodate == disks - 1) &&
7471fb77 3642 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
f2b3b44d 3643 (s->failed && (disk_idx == s->failed_num[0] ||
7471fb77 3644 disk_idx == s->failed_num[1])))) {
5599becc
YT
3645 /* have disk failed, and we're requested to fetch it;
3646 * do compute it
a4456856 3647 */
5599becc
YT
3648 pr_debug("Computing stripe %llu block %d\n",
3649 (unsigned long long)sh->sector, disk_idx);
3650 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3651 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3652 set_bit(R5_Wantcompute, &dev->flags);
3653 sh->ops.target = disk_idx;
3654 sh->ops.target2 = -1; /* no 2nd target */
3655 s->req_compute = 1;
93b3dbce
N
3656 /* Careful: from this point on 'uptodate' is in the eye
3657 * of raid_run_ops which services 'compute' operations
3658 * before writes. R5_Wantcompute flags a block that will
3659 * be R5_UPTODATE by the time it is needed for a
3660 * subsequent operation.
3661 */
5599becc
YT
3662 s->uptodate++;
3663 return 1;
3664 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3665 /* Computing 2-failure is *very* expensive; only
3666 * do it if failed >= 2
3667 */
3668 int other;
3669 for (other = disks; other--; ) {
3670 if (other == disk_idx)
3671 continue;
3672 if (!test_bit(R5_UPTODATE,
3673 &sh->dev[other].flags))
3674 break;
a4456856 3675 }
5599becc
YT
3676 BUG_ON(other < 0);
3677 pr_debug("Computing stripe %llu blocks %d,%d\n",
3678 (unsigned long long)sh->sector,
3679 disk_idx, other);
3680 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3681 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3682 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3683 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3684 sh->ops.target = disk_idx;
3685 sh->ops.target2 = other;
3686 s->uptodate += 2;
3687 s->req_compute = 1;
3688 return 1;
3689 } else if (test_bit(R5_Insync, &dev->flags)) {
3690 set_bit(R5_LOCKED, &dev->flags);
3691 set_bit(R5_Wantread, &dev->flags);
3692 s->locked++;
3693 pr_debug("Reading block %d (sync=%d)\n",
3694 disk_idx, s->syncing);
a4456856
DW
3695 }
3696 }
5599becc
YT
3697
3698 return 0;
3699}
3700
3701/**
93b3dbce 3702 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3703 */
93b3dbce
N
3704static void handle_stripe_fill(struct stripe_head *sh,
3705 struct stripe_head_state *s,
3706 int disks)
5599becc
YT
3707{
3708 int i;
3709
3710 /* look for blocks to read/compute, skip this if a compute
3711 * is already in flight, or if the stripe contents are in the
3712 * midst of changing due to a write
3713 */
3714 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
07e83364
SL
3715 !sh->reconstruct_state) {
3716
3717 /*
3718 * For degraded stripe with data in journal, do not handle
3719 * read requests yet, instead, flush the stripe to raid
3720 * disks first, this avoids handling complex rmw of write
3721 * back cache (prexor with orig_page, and then xor with
3722 * page) in the read path
3723 */
3724 if (s->injournal && s->failed) {
3725 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3726 r5c_make_stripe_write_out(sh);
3727 goto out;
3728 }
3729
5599becc 3730 for (i = disks; i--; )
93b3dbce 3731 if (fetch_block(sh, s, i, disks))
5599becc 3732 break;
07e83364
SL
3733 }
3734out:
a4456856
DW
3735 set_bit(STRIPE_HANDLE, &sh->state);
3736}
3737
787b76fa
N
3738static void break_stripe_batch_list(struct stripe_head *head_sh,
3739 unsigned long handle_flags);
1fe797e6 3740/* handle_stripe_clean_event
a4456856
DW
3741 * any written block on an uptodate or failed drive can be returned.
3742 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3743 * never LOCKED, so we don't need to test 'failed' directly.
3744 */
d1688a6d 3745static void handle_stripe_clean_event(struct r5conf *conf,
bd83d0a2 3746 struct stripe_head *sh, int disks)
a4456856
DW
3747{
3748 int i;
3749 struct r5dev *dev;
f8dfcffd 3750 int discard_pending = 0;
59fc630b 3751 struct stripe_head *head_sh = sh;
3752 bool do_endio = false;
a4456856
DW
3753
3754 for (i = disks; i--; )
3755 if (sh->dev[i].written) {
3756 dev = &sh->dev[i];
3757 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3758 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3759 test_bit(R5_Discard, &dev->flags) ||
3760 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3761 /* We can return any write requests */
3762 struct bio *wbi, *wbi2;
45b4233c 3763 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3764 if (test_and_clear_bit(R5_Discard, &dev->flags))
3765 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3766 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3767 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3768 }
59fc630b 3769 do_endio = true;
3770
3771returnbi:
3772 dev->page = dev->orig_page;
a4456856
DW
3773 wbi = dev->written;
3774 dev->written = NULL;
4f024f37 3775 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3776 dev->sector + STRIPE_SECTORS) {
3777 wbi2 = r5_next_bio(wbi, dev->sector);
49728050 3778 md_write_end(conf->mddev);
016c76ac 3779 bio_endio(wbi);
a4456856
DW
3780 wbi = wbi2;
3781 }
e64e4018
AS
3782 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3783 STRIPE_SECTORS,
3784 !test_bit(STRIPE_DEGRADED, &sh->state),
3785 0);
59fc630b 3786 if (head_sh->batch_head) {
3787 sh = list_first_entry(&sh->batch_list,
3788 struct stripe_head,
3789 batch_list);
3790 if (sh != head_sh) {
3791 dev = &sh->dev[i];
3792 goto returnbi;
3793 }
3794 }
3795 sh = head_sh;
3796 dev = &sh->dev[i];
f8dfcffd
N
3797 } else if (test_bit(R5_Discard, &dev->flags))
3798 discard_pending = 1;
3799 }
f6bed0ef 3800
ff875738 3801 log_stripe_write_finished(sh);
0576b1c6 3802
f8dfcffd
N
3803 if (!discard_pending &&
3804 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
b8a9d66d 3805 int hash;
f8dfcffd
N
3806 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3807 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3808 if (sh->qd_idx >= 0) {
3809 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3810 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3811 }
3812 /* now that discard is done we can proceed with any sync */
3813 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3814 /*
3815 * SCSI discard will change some bio fields and the stripe has
3816 * no updated data, so remove it from hash list and the stripe
3817 * will be reinitialized
3818 */
59fc630b 3819unhash:
b8a9d66d
RG
3820 hash = sh->hash_lock_index;
3821 spin_lock_irq(conf->hash_locks + hash);
d47648fc 3822 remove_hash(sh);
b8a9d66d 3823 spin_unlock_irq(conf->hash_locks + hash);
59fc630b 3824 if (head_sh->batch_head) {
3825 sh = list_first_entry(&sh->batch_list,
3826 struct stripe_head, batch_list);
3827 if (sh != head_sh)
3828 goto unhash;
3829 }
59fc630b 3830 sh = head_sh;
3831
f8dfcffd
N
3832 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3833 set_bit(STRIPE_HANDLE, &sh->state);
3834
3835 }
8b3e6cdc
DW
3836
3837 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3838 if (atomic_dec_and_test(&conf->pending_full_writes))
3839 md_wakeup_thread(conf->mddev->thread);
59fc630b 3840
787b76fa
N
3841 if (head_sh->batch_head && do_endio)
3842 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3843}
3844
86aa1397
SL
3845/*
3846 * For RMW in write back cache, we need extra page in prexor to store the
3847 * old data. This page is stored in dev->orig_page.
3848 *
3849 * This function checks whether we have data for prexor. The exact logic
3850 * is:
3851 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3852 */
3853static inline bool uptodate_for_rmw(struct r5dev *dev)
3854{
3855 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3856 (!test_bit(R5_InJournal, &dev->flags) ||
3857 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3858}
3859
d7bd398e
SL
3860static int handle_stripe_dirtying(struct r5conf *conf,
3861 struct stripe_head *sh,
3862 struct stripe_head_state *s,
3863 int disks)
a4456856
DW
3864{
3865 int rmw = 0, rcw = 0, i;
a7854487
AL
3866 sector_t recovery_cp = conf->mddev->recovery_cp;
3867
584acdd4 3868 /* Check whether resync is now happening or should start.
a7854487
AL
3869 * If yes, then the array is dirty (after unclean shutdown or
3870 * initial creation), so parity in some stripes might be inconsistent.
3871 * In this case, we need to always do reconstruct-write, to ensure
3872 * that in case of drive failure or read-error correction, we
3873 * generate correct data from the parity.
3874 */
584acdd4 3875 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3876 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3877 s->failed == 0)) {
a7854487 3878 /* Calculate the real rcw later - for now make it
c8ac1803
N
3879 * look like rcw is cheaper
3880 */
3881 rcw = 1; rmw = 2;
584acdd4
MS
3882 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3883 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3884 (unsigned long long)sh->sector);
c8ac1803 3885 } else for (i = disks; i--; ) {
a4456856
DW
3886 /* would I have to read this buffer for read_modify_write */
3887 struct r5dev *dev = &sh->dev[i];
39b99586 3888 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
07e83364 3889 i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b 3890 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3891 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3892 !(uptodate_for_rmw(dev) ||
f38e1219 3893 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3894 if (test_bit(R5_Insync, &dev->flags))
3895 rmw++;
3896 else
3897 rmw += 2*disks; /* cannot read it */
3898 }
3899 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3900 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3901 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3902 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3903 !(test_bit(R5_UPTODATE, &dev->flags) ||
1e6d690b 3904 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3905 if (test_bit(R5_Insync, &dev->flags))
3906 rcw++;
a4456856
DW
3907 else
3908 rcw += 2*disks;
3909 }
3910 }
1e6d690b 3911
39b99586
SL
3912 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3913 (unsigned long long)sh->sector, sh->state, rmw, rcw);
a4456856 3914 set_bit(STRIPE_HANDLE, &sh->state);
41257580 3915 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
a4456856 3916 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3917 if (conf->mddev->queue)
3918 blk_add_trace_msg(conf->mddev->queue,
3919 "raid5 rmw %llu %d",
3920 (unsigned long long)sh->sector, rmw);
a4456856
DW
3921 for (i = disks; i--; ) {
3922 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
3923 if (test_bit(R5_InJournal, &dev->flags) &&
3924 dev->page == dev->orig_page &&
3925 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3926 /* alloc page for prexor */
d7bd398e
SL
3927 struct page *p = alloc_page(GFP_NOIO);
3928
3929 if (p) {
3930 dev->orig_page = p;
3931 continue;
3932 }
3933
3934 /*
3935 * alloc_page() failed, try use
3936 * disk_info->extra_page
3937 */
3938 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3939 &conf->cache_state)) {
3940 r5c_use_extra_page(sh);
3941 break;
3942 }
1e6d690b 3943
d7bd398e
SL
3944 /* extra_page in use, add to delayed_list */
3945 set_bit(STRIPE_DELAYED, &sh->state);
3946 s->waiting_extra_page = 1;
3947 return -EAGAIN;
1e6d690b 3948 }
d7bd398e 3949 }
1e6d690b 3950
d7bd398e
SL
3951 for (i = disks; i--; ) {
3952 struct r5dev *dev = &sh->dev[i];
39b99586 3953 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
1e6d690b
SL
3954 i == sh->pd_idx || i == sh->qd_idx ||
3955 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3956 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3957 !(uptodate_for_rmw(dev) ||
1e6d690b 3958 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3959 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3960 if (test_bit(STRIPE_PREREAD_ACTIVE,
3961 &sh->state)) {
3962 pr_debug("Read_old block %d for r-m-w\n",
3963 i);
a4456856
DW
3964 set_bit(R5_LOCKED, &dev->flags);
3965 set_bit(R5_Wantread, &dev->flags);
3966 s->locked++;
3967 } else {
3968 set_bit(STRIPE_DELAYED, &sh->state);
3969 set_bit(STRIPE_HANDLE, &sh->state);
3970 }
3971 }
3972 }
a9add5d9 3973 }
41257580 3974 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
a4456856 3975 /* want reconstruct write, but need to get some data */
a9add5d9 3976 int qread =0;
c8ac1803 3977 rcw = 0;
a4456856
DW
3978 for (i = disks; i--; ) {
3979 struct r5dev *dev = &sh->dev[i];
3980 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3981 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3982 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3983 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3984 test_bit(R5_Wantcompute, &dev->flags))) {
3985 rcw++;
67f45548
N
3986 if (test_bit(R5_Insync, &dev->flags) &&
3987 test_bit(STRIPE_PREREAD_ACTIVE,
3988 &sh->state)) {
45b4233c 3989 pr_debug("Read_old block "
a4456856
DW
3990 "%d for Reconstruct\n", i);
3991 set_bit(R5_LOCKED, &dev->flags);
3992 set_bit(R5_Wantread, &dev->flags);
3993 s->locked++;
a9add5d9 3994 qread++;
a4456856
DW
3995 } else {
3996 set_bit(STRIPE_DELAYED, &sh->state);
3997 set_bit(STRIPE_HANDLE, &sh->state);
3998 }
3999 }
4000 }
e3620a3a 4001 if (rcw && conf->mddev->queue)
a9add5d9
N
4002 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4003 (unsigned long long)sh->sector,
4004 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 4005 }
b1b02fe9
N
4006
4007 if (rcw > disks && rmw > disks &&
4008 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4009 set_bit(STRIPE_DELAYED, &sh->state);
4010
a4456856
DW
4011 /* now if nothing is locked, and if we have enough data,
4012 * we can start a write request
4013 */
f38e1219
DW
4014 /* since handle_stripe can be called at any time we need to handle the
4015 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
4016 * subsequent call wants to start a write request. raid_run_ops only
4017 * handles the case where compute block and reconstruct are requested
f38e1219
DW
4018 * simultaneously. If this is not the case then new writes need to be
4019 * held off until the compute completes.
4020 */
976ea8d4
DW
4021 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4022 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
1e6d690b 4023 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 4024 schedule_reconstruction(sh, s, rcw == 0, 0);
d7bd398e 4025 return 0;
a4456856
DW
4026}
4027
d1688a6d 4028static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
4029 struct stripe_head_state *s, int disks)
4030{
ecc65c9b 4031 struct r5dev *dev = NULL;
bd2ab670 4032
59fc630b 4033 BUG_ON(sh->batch_head);
a4456856 4034 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 4035
ecc65c9b
DW
4036 switch (sh->check_state) {
4037 case check_state_idle:
4038 /* start a new check operation if there are no failures */
bd2ab670 4039 if (s->failed == 0) {
bd2ab670 4040 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
4041 sh->check_state = check_state_run;
4042 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 4043 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 4044 s->uptodate--;
ecc65c9b 4045 break;
bd2ab670 4046 }
f2b3b44d 4047 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
4048 /* fall through */
4049 case check_state_compute_result:
4050 sh->check_state = check_state_idle;
4051 if (!dev)
4052 dev = &sh->dev[sh->pd_idx];
4053
4054 /* check that a write has not made the stripe insync */
4055 if (test_bit(STRIPE_INSYNC, &sh->state))
4056 break;
c8894419 4057
a4456856 4058 /* either failed parity check, or recovery is happening */
a4456856
DW
4059 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4060 BUG_ON(s->uptodate != disks);
4061
4062 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 4063 s->locked++;
a4456856 4064 set_bit(R5_Wantwrite, &dev->flags);
830ea016 4065
a4456856 4066 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 4067 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
4068 break;
4069 case check_state_run:
4070 break; /* we will be called again upon completion */
4071 case check_state_check_result:
4072 sh->check_state = check_state_idle;
4073
4074 /* if a failure occurred during the check operation, leave
4075 * STRIPE_INSYNC not set and let the stripe be handled again
4076 */
4077 if (s->failed)
4078 break;
4079
4080 /* handle a successful check operation, if parity is correct
4081 * we are done. Otherwise update the mismatch count and repair
4082 * parity if !MD_RECOVERY_CHECK
4083 */
ad283ea4 4084 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
4085 /* parity is correct (on disc,
4086 * not in buffer any more)
4087 */
4088 set_bit(STRIPE_INSYNC, &sh->state);
4089 else {
7f7583d4 4090 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
e1539036 4091 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
ecc65c9b
DW
4092 /* don't try to repair!! */
4093 set_bit(STRIPE_INSYNC, &sh->state);
e1539036
N
4094 pr_warn_ratelimited("%s: mismatch sector in range "
4095 "%llu-%llu\n", mdname(conf->mddev),
4096 (unsigned long long) sh->sector,
4097 (unsigned long long) sh->sector +
4098 STRIPE_SECTORS);
4099 } else {
ecc65c9b 4100 sh->check_state = check_state_compute_run;
976ea8d4 4101 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
4102 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4103 set_bit(R5_Wantcompute,
4104 &sh->dev[sh->pd_idx].flags);
4105 sh->ops.target = sh->pd_idx;
ac6b53b6 4106 sh->ops.target2 = -1;
ecc65c9b
DW
4107 s->uptodate++;
4108 }
4109 }
4110 break;
4111 case check_state_compute_run:
4112 break;
4113 default:
cc6167b4 4114 pr_err("%s: unknown check_state: %d sector: %llu\n",
ecc65c9b
DW
4115 __func__, sh->check_state,
4116 (unsigned long long) sh->sector);
4117 BUG();
a4456856
DW
4118 }
4119}
4120
d1688a6d 4121static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 4122 struct stripe_head_state *s,
f2b3b44d 4123 int disks)
a4456856 4124{
a4456856 4125 int pd_idx = sh->pd_idx;
34e04e87 4126 int qd_idx = sh->qd_idx;
d82dfee0 4127 struct r5dev *dev;
a4456856 4128
59fc630b 4129 BUG_ON(sh->batch_head);
a4456856
DW
4130 set_bit(STRIPE_HANDLE, &sh->state);
4131
4132 BUG_ON(s->failed > 2);
d82dfee0 4133
a4456856
DW
4134 /* Want to check and possibly repair P and Q.
4135 * However there could be one 'failed' device, in which
4136 * case we can only check one of them, possibly using the
4137 * other to generate missing data
4138 */
4139
d82dfee0
DW
4140 switch (sh->check_state) {
4141 case check_state_idle:
4142 /* start a new check operation if there are < 2 failures */
f2b3b44d 4143 if (s->failed == s->q_failed) {
d82dfee0 4144 /* The only possible failed device holds Q, so it
a4456856
DW
4145 * makes sense to check P (If anything else were failed,
4146 * we would have used P to recreate it).
4147 */
d82dfee0 4148 sh->check_state = check_state_run;
a4456856 4149 }
f2b3b44d 4150 if (!s->q_failed && s->failed < 2) {
d82dfee0 4151 /* Q is not failed, and we didn't use it to generate
a4456856
DW
4152 * anything, so it makes sense to check it
4153 */
d82dfee0
DW
4154 if (sh->check_state == check_state_run)
4155 sh->check_state = check_state_run_pq;
4156 else
4157 sh->check_state = check_state_run_q;
a4456856 4158 }
a4456856 4159
d82dfee0
DW
4160 /* discard potentially stale zero_sum_result */
4161 sh->ops.zero_sum_result = 0;
a4456856 4162
d82dfee0
DW
4163 if (sh->check_state == check_state_run) {
4164 /* async_xor_zero_sum destroys the contents of P */
4165 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4166 s->uptodate--;
a4456856 4167 }
d82dfee0
DW
4168 if (sh->check_state >= check_state_run &&
4169 sh->check_state <= check_state_run_pq) {
4170 /* async_syndrome_zero_sum preserves P and Q, so
4171 * no need to mark them !uptodate here
4172 */
4173 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4174 break;
a4456856
DW
4175 }
4176
d82dfee0
DW
4177 /* we have 2-disk failure */
4178 BUG_ON(s->failed != 2);
4179 /* fall through */
4180 case check_state_compute_result:
4181 sh->check_state = check_state_idle;
a4456856 4182
d82dfee0
DW
4183 /* check that a write has not made the stripe insync */
4184 if (test_bit(STRIPE_INSYNC, &sh->state))
4185 break;
a4456856
DW
4186
4187 /* now write out any block on a failed drive,
d82dfee0 4188 * or P or Q if they were recomputed
a4456856 4189 */
d82dfee0 4190 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 4191 if (s->failed == 2) {
f2b3b44d 4192 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
4193 s->locked++;
4194 set_bit(R5_LOCKED, &dev->flags);
4195 set_bit(R5_Wantwrite, &dev->flags);
4196 }
4197 if (s->failed >= 1) {
f2b3b44d 4198 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
4199 s->locked++;
4200 set_bit(R5_LOCKED, &dev->flags);
4201 set_bit(R5_Wantwrite, &dev->flags);
4202 }
d82dfee0 4203 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
4204 dev = &sh->dev[pd_idx];
4205 s->locked++;
4206 set_bit(R5_LOCKED, &dev->flags);
4207 set_bit(R5_Wantwrite, &dev->flags);
4208 }
d82dfee0 4209 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
4210 dev = &sh->dev[qd_idx];
4211 s->locked++;
4212 set_bit(R5_LOCKED, &dev->flags);
4213 set_bit(R5_Wantwrite, &dev->flags);
4214 }
4215 clear_bit(STRIPE_DEGRADED, &sh->state);
4216
4217 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
4218 break;
4219 case check_state_run:
4220 case check_state_run_q:
4221 case check_state_run_pq:
4222 break; /* we will be called again upon completion */
4223 case check_state_check_result:
4224 sh->check_state = check_state_idle;
4225
4226 /* handle a successful check operation, if parity is correct
4227 * we are done. Otherwise update the mismatch count and repair
4228 * parity if !MD_RECOVERY_CHECK
4229 */
4230 if (sh->ops.zero_sum_result == 0) {
4231 /* both parities are correct */
4232 if (!s->failed)
4233 set_bit(STRIPE_INSYNC, &sh->state);
4234 else {
4235 /* in contrast to the raid5 case we can validate
4236 * parity, but still have a failure to write
4237 * back
4238 */
4239 sh->check_state = check_state_compute_result;
4240 /* Returning at this point means that we may go
4241 * off and bring p and/or q uptodate again so
4242 * we make sure to check zero_sum_result again
4243 * to verify if p or q need writeback
4244 */
4245 }
4246 } else {
7f7583d4 4247 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
e1539036 4248 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
d82dfee0
DW
4249 /* don't try to repair!! */
4250 set_bit(STRIPE_INSYNC, &sh->state);
e1539036
N
4251 pr_warn_ratelimited("%s: mismatch sector in range "
4252 "%llu-%llu\n", mdname(conf->mddev),
4253 (unsigned long long) sh->sector,
4254 (unsigned long long) sh->sector +
4255 STRIPE_SECTORS);
4256 } else {
d82dfee0
DW
4257 int *target = &sh->ops.target;
4258
4259 sh->ops.target = -1;
4260 sh->ops.target2 = -1;
4261 sh->check_state = check_state_compute_run;
4262 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4263 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4264 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4265 set_bit(R5_Wantcompute,
4266 &sh->dev[pd_idx].flags);
4267 *target = pd_idx;
4268 target = &sh->ops.target2;
4269 s->uptodate++;
4270 }
4271 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4272 set_bit(R5_Wantcompute,
4273 &sh->dev[qd_idx].flags);
4274 *target = qd_idx;
4275 s->uptodate++;
4276 }
4277 }
4278 }
4279 break;
4280 case check_state_compute_run:
4281 break;
4282 default:
cc6167b4
N
4283 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4284 __func__, sh->check_state,
4285 (unsigned long long) sh->sector);
d82dfee0 4286 BUG();
a4456856
DW
4287 }
4288}
4289
d1688a6d 4290static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
4291{
4292 int i;
4293
4294 /* We have read all the blocks in this stripe and now we need to
4295 * copy some of them into a target stripe for expand.
4296 */
f0a50d37 4297 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 4298 BUG_ON(sh->batch_head);
a4456856
DW
4299 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4300 for (i = 0; i < sh->disks; i++)
34e04e87 4301 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 4302 int dd_idx, j;
a4456856 4303 struct stripe_head *sh2;
a08abd8c 4304 struct async_submit_ctl submit;
a4456856 4305
6d036f7d 4306 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
4307 sector_t s = raid5_compute_sector(conf, bn, 0,
4308 &dd_idx, NULL);
6d036f7d 4309 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
4310 if (sh2 == NULL)
4311 /* so far only the early blocks of this stripe
4312 * have been requested. When later blocks
4313 * get requested, we will try again
4314 */
4315 continue;
4316 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4317 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4318 /* must have already done this block */
6d036f7d 4319 raid5_release_stripe(sh2);
a4456856
DW
4320 continue;
4321 }
f0a50d37
DW
4322
4323 /* place all the copies on one channel */
a08abd8c 4324 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 4325 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 4326 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 4327 &submit);
f0a50d37 4328
a4456856
DW
4329 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4330 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4331 for (j = 0; j < conf->raid_disks; j++)
4332 if (j != sh2->pd_idx &&
86c374ba 4333 j != sh2->qd_idx &&
a4456856
DW
4334 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4335 break;
4336 if (j == conf->raid_disks) {
4337 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4338 set_bit(STRIPE_HANDLE, &sh2->state);
4339 }
6d036f7d 4340 raid5_release_stripe(sh2);
f0a50d37 4341
a4456856 4342 }
a2e08551 4343 /* done submitting copies, wait for them to complete */
749586b7 4344 async_tx_quiesce(&tx);
a4456856 4345}
1da177e4
LT
4346
4347/*
4348 * handle_stripe - do things to a stripe.
4349 *
9a3e1101
N
4350 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4351 * state of various bits to see what needs to be done.
1da177e4 4352 * Possible results:
9a3e1101
N
4353 * return some read requests which now have data
4354 * return some write requests which are safely on storage
1da177e4
LT
4355 * schedule a read on some buffers
4356 * schedule a write of some buffers
4357 * return confirmation of parity correctness
4358 *
1da177e4 4359 */
a4456856 4360
acfe726b 4361static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4362{
d1688a6d 4363 struct r5conf *conf = sh->raid_conf;
f416885e 4364 int disks = sh->disks;
474af965
N
4365 struct r5dev *dev;
4366 int i;
9a3e1101 4367 int do_recovery = 0;
1da177e4 4368
acfe726b
N
4369 memset(s, 0, sizeof(*s));
4370
dabc4ec6 4371 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4372 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4373 s->failed_num[0] = -1;
4374 s->failed_num[1] = -1;
6e74a9cf 4375 s->log_failed = r5l_log_disk_error(conf);
1da177e4 4376
acfe726b 4377 /* Now to look around and see what can be done */
1da177e4 4378 rcu_read_lock();
16a53ecc 4379 for (i=disks; i--; ) {
3cb03002 4380 struct md_rdev *rdev;
31c176ec
N
4381 sector_t first_bad;
4382 int bad_sectors;
4383 int is_bad = 0;
acfe726b 4384
16a53ecc 4385 dev = &sh->dev[i];
1da177e4 4386
45b4233c 4387 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4388 i, dev->flags,
4389 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4390 /* maybe we can reply to a read
4391 *
4392 * new wantfill requests are only permitted while
4393 * ops_complete_biofill is guaranteed to be inactive
4394 */
4395 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4396 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4397 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4398
16a53ecc 4399 /* now count some things */
cc94015a
N
4400 if (test_bit(R5_LOCKED, &dev->flags))
4401 s->locked++;
4402 if (test_bit(R5_UPTODATE, &dev->flags))
4403 s->uptodate++;
2d6e4ecc 4404 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4405 s->compute++;
4406 BUG_ON(s->compute > 2);
2d6e4ecc 4407 }
1da177e4 4408
acfe726b 4409 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4410 s->to_fill++;
acfe726b 4411 else if (dev->toread)
cc94015a 4412 s->to_read++;
16a53ecc 4413 if (dev->towrite) {
cc94015a 4414 s->to_write++;
16a53ecc 4415 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4416 s->non_overwrite++;
16a53ecc 4417 }
a4456856 4418 if (dev->written)
cc94015a 4419 s->written++;
14a75d3e
N
4420 /* Prefer to use the replacement for reads, but only
4421 * if it is recovered enough and has no bad blocks.
4422 */
4423 rdev = rcu_dereference(conf->disks[i].replacement);
4424 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4425 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4426 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4427 &first_bad, &bad_sectors))
4428 set_bit(R5_ReadRepl, &dev->flags);
4429 else {
e6030cb0 4430 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4431 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4432 else
4433 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4434 rdev = rcu_dereference(conf->disks[i].rdev);
4435 clear_bit(R5_ReadRepl, &dev->flags);
4436 }
9283d8c5
N
4437 if (rdev && test_bit(Faulty, &rdev->flags))
4438 rdev = NULL;
31c176ec
N
4439 if (rdev) {
4440 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4441 &first_bad, &bad_sectors);
4442 if (s->blocked_rdev == NULL
4443 && (test_bit(Blocked, &rdev->flags)
4444 || is_bad < 0)) {
4445 if (is_bad < 0)
4446 set_bit(BlockedBadBlocks,
4447 &rdev->flags);
4448 s->blocked_rdev = rdev;
4449 atomic_inc(&rdev->nr_pending);
4450 }
6bfe0b49 4451 }
415e72d0
N
4452 clear_bit(R5_Insync, &dev->flags);
4453 if (!rdev)
4454 /* Not in-sync */;
31c176ec
N
4455 else if (is_bad) {
4456 /* also not in-sync */
18b9837e
N
4457 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4458 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4459 /* treat as in-sync, but with a read error
4460 * which we can now try to correct
4461 */
4462 set_bit(R5_Insync, &dev->flags);
4463 set_bit(R5_ReadError, &dev->flags);
4464 }
4465 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4466 set_bit(R5_Insync, &dev->flags);
30d7a483 4467 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4468 /* in sync if before recovery_offset */
30d7a483
N
4469 set_bit(R5_Insync, &dev->flags);
4470 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4471 test_bit(R5_Expanded, &dev->flags))
4472 /* If we've reshaped into here, we assume it is Insync.
4473 * We will shortly update recovery_offset to make
4474 * it official.
4475 */
4476 set_bit(R5_Insync, &dev->flags);
4477
1cc03eb9 4478 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4479 /* This flag does not apply to '.replacement'
4480 * only to .rdev, so make sure to check that*/
4481 struct md_rdev *rdev2 = rcu_dereference(
4482 conf->disks[i].rdev);
4483 if (rdev2 == rdev)
4484 clear_bit(R5_Insync, &dev->flags);
4485 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4486 s->handle_bad_blocks = 1;
14a75d3e 4487 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4488 } else
4489 clear_bit(R5_WriteError, &dev->flags);
4490 }
1cc03eb9 4491 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4492 /* This flag does not apply to '.replacement'
4493 * only to .rdev, so make sure to check that*/
4494 struct md_rdev *rdev2 = rcu_dereference(
4495 conf->disks[i].rdev);
4496 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4497 s->handle_bad_blocks = 1;
14a75d3e 4498 atomic_inc(&rdev2->nr_pending);
b84db560
N
4499 } else
4500 clear_bit(R5_MadeGood, &dev->flags);
4501 }
977df362
N
4502 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4503 struct md_rdev *rdev2 = rcu_dereference(
4504 conf->disks[i].replacement);
4505 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4506 s->handle_bad_blocks = 1;
4507 atomic_inc(&rdev2->nr_pending);
4508 } else
4509 clear_bit(R5_MadeGoodRepl, &dev->flags);
4510 }
415e72d0 4511 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4512 /* The ReadError flag will just be confusing now */
4513 clear_bit(R5_ReadError, &dev->flags);
4514 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4515 }
415e72d0
N
4516 if (test_bit(R5_ReadError, &dev->flags))
4517 clear_bit(R5_Insync, &dev->flags);
4518 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4519 if (s->failed < 2)
4520 s->failed_num[s->failed] = i;
4521 s->failed++;
9a3e1101
N
4522 if (rdev && !test_bit(Faulty, &rdev->flags))
4523 do_recovery = 1;
d63e2fc8
BC
4524 else if (!rdev) {
4525 rdev = rcu_dereference(
4526 conf->disks[i].replacement);
4527 if (rdev && !test_bit(Faulty, &rdev->flags))
4528 do_recovery = 1;
4529 }
415e72d0 4530 }
2ded3703
SL
4531
4532 if (test_bit(R5_InJournal, &dev->flags))
4533 s->injournal++;
1e6d690b
SL
4534 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4535 s->just_cached++;
1da177e4 4536 }
9a3e1101
N
4537 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4538 /* If there is a failed device being replaced,
4539 * we must be recovering.
4540 * else if we are after recovery_cp, we must be syncing
c6d2e084 4541 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4542 * else we can only be replacing
4543 * sync and recovery both need to read all devices, and so
4544 * use the same flag.
4545 */
4546 if (do_recovery ||
c6d2e084 4547 sh->sector >= conf->mddev->recovery_cp ||
4548 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4549 s->syncing = 1;
4550 else
4551 s->replacing = 1;
4552 }
1da177e4 4553 rcu_read_unlock();
cc94015a
N
4554}
4555
59fc630b 4556static int clear_batch_ready(struct stripe_head *sh)
4557{
b15a9dbd
N
4558 /* Return '1' if this is a member of batch, or
4559 * '0' if it is a lone stripe or a head which can now be
4560 * handled.
4561 */
59fc630b 4562 struct stripe_head *tmp;
4563 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4564 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4565 spin_lock(&sh->stripe_lock);
4566 if (!sh->batch_head) {
4567 spin_unlock(&sh->stripe_lock);
4568 return 0;
4569 }
4570
4571 /*
4572 * this stripe could be added to a batch list before we check
4573 * BATCH_READY, skips it
4574 */
4575 if (sh->batch_head != sh) {
4576 spin_unlock(&sh->stripe_lock);
4577 return 1;
4578 }
4579 spin_lock(&sh->batch_lock);
4580 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4581 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4582 spin_unlock(&sh->batch_lock);
4583 spin_unlock(&sh->stripe_lock);
4584
4585 /*
4586 * BATCH_READY is cleared, no new stripes can be added.
4587 * batch_list can be accessed without lock
4588 */
4589 return 0;
4590}
4591
3960ce79
N
4592static void break_stripe_batch_list(struct stripe_head *head_sh,
4593 unsigned long handle_flags)
72ac7330 4594{
4e3d62ff 4595 struct stripe_head *sh, *next;
72ac7330 4596 int i;
fb642b92 4597 int do_wakeup = 0;
72ac7330 4598
bb27051f
N
4599 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4600
72ac7330 4601 list_del_init(&sh->batch_list);
4602
fb3229d5 4603 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
1b956f7a
N
4604 (1 << STRIPE_SYNCING) |
4605 (1 << STRIPE_REPLACED) |
1b956f7a
N
4606 (1 << STRIPE_DELAYED) |
4607 (1 << STRIPE_BIT_DELAY) |
4608 (1 << STRIPE_FULL_WRITE) |
4609 (1 << STRIPE_BIOFILL_RUN) |
4610 (1 << STRIPE_COMPUTE_RUN) |
4611 (1 << STRIPE_OPS_REQ_PENDING) |
4612 (1 << STRIPE_DISCARD) |
4613 (1 << STRIPE_BATCH_READY) |
4614 (1 << STRIPE_BATCH_ERR) |
fb3229d5
SL
4615 (1 << STRIPE_BITMAP_PENDING)),
4616 "stripe state: %lx\n", sh->state);
4617 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4618 (1 << STRIPE_REPLACED)),
4619 "head stripe state: %lx\n", head_sh->state);
1b956f7a
N
4620
4621 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
550da24f 4622 (1 << STRIPE_PREREAD_ACTIVE) |
184a09eb
DY
4623 (1 << STRIPE_DEGRADED) |
4624 (1 << STRIPE_ON_UNPLUG_LIST)),
1b956f7a
N
4625 head_sh->state & (1 << STRIPE_INSYNC));
4626
72ac7330 4627 sh->check_state = head_sh->check_state;
4628 sh->reconstruct_state = head_sh->reconstruct_state;
448ec638
AC
4629 spin_lock_irq(&sh->stripe_lock);
4630 sh->batch_head = NULL;
4631 spin_unlock_irq(&sh->stripe_lock);
fb642b92
N
4632 for (i = 0; i < sh->disks; i++) {
4633 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4634 do_wakeup = 1;
72ac7330 4635 sh->dev[i].flags = head_sh->dev[i].flags &
4636 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4637 }
3960ce79
N
4638 if (handle_flags == 0 ||
4639 sh->state & handle_flags)
4640 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4641 raid5_release_stripe(sh);
72ac7330 4642 }
fb642b92
N
4643 spin_lock_irq(&head_sh->stripe_lock);
4644 head_sh->batch_head = NULL;
4645 spin_unlock_irq(&head_sh->stripe_lock);
4646 for (i = 0; i < head_sh->disks; i++)
4647 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4648 do_wakeup = 1;
3960ce79
N
4649 if (head_sh->state & handle_flags)
4650 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4651
4652 if (do_wakeup)
4653 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4654}
4655
cc94015a
N
4656static void handle_stripe(struct stripe_head *sh)
4657{
4658 struct stripe_head_state s;
d1688a6d 4659 struct r5conf *conf = sh->raid_conf;
3687c061 4660 int i;
84789554
N
4661 int prexor;
4662 int disks = sh->disks;
474af965 4663 struct r5dev *pdev, *qdev;
cc94015a
N
4664
4665 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4666 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4667 /* already being handled, ensure it gets handled
4668 * again when current action finishes */
4669 set_bit(STRIPE_HANDLE, &sh->state);
4670 return;
4671 }
4672
59fc630b 4673 if (clear_batch_ready(sh) ) {
4674 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4675 return;
4676 }
4677
4e3d62ff 4678 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4679 break_stripe_batch_list(sh, 0);
72ac7330 4680
dabc4ec6 4681 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd 4682 spin_lock(&sh->stripe_lock);
5ddf0440
SL
4683 /*
4684 * Cannot process 'sync' concurrently with 'discard'.
4685 * Flush data in r5cache before 'sync'.
4686 */
4687 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4688 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4689 !test_bit(STRIPE_DISCARD, &sh->state) &&
f8dfcffd
N
4690 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4691 set_bit(STRIPE_SYNCING, &sh->state);
4692 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4693 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4694 }
4695 spin_unlock(&sh->stripe_lock);
cc94015a
N
4696 }
4697 clear_bit(STRIPE_DELAYED, &sh->state);
4698
4699 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4700 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4701 (unsigned long long)sh->sector, sh->state,
4702 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4703 sh->check_state, sh->reconstruct_state);
3687c061 4704
acfe726b 4705 analyse_stripe(sh, &s);
c5a31000 4706
b70abcb2
SL
4707 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4708 goto finish;
4709
16d997b7
N
4710 if (s.handle_bad_blocks ||
4711 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
bc2607f3
N
4712 set_bit(STRIPE_HANDLE, &sh->state);
4713 goto finish;
4714 }
4715
474af965
N
4716 if (unlikely(s.blocked_rdev)) {
4717 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4718 s.replacing || s.to_write || s.written) {
474af965
N
4719 set_bit(STRIPE_HANDLE, &sh->state);
4720 goto finish;
4721 }
4722 /* There is nothing for the blocked_rdev to block */
4723 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4724 s.blocked_rdev = NULL;
4725 }
4726
4727 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4728 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4729 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4730 }
4731
4732 pr_debug("locked=%d uptodate=%d to_read=%d"
4733 " to_write=%d failed=%d failed_num=%d,%d\n",
4734 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4735 s.failed_num[0], s.failed_num[1]);
70d466f7
SL
4736 /*
4737 * check if the array has lost more than max_degraded devices and,
474af965 4738 * if so, some requests might need to be failed.
70d466f7
SL
4739 *
4740 * When journal device failed (log_failed), we will only process
4741 * the stripe if there is data need write to raid disks
474af965 4742 */
70d466f7
SL
4743 if (s.failed > conf->max_degraded ||
4744 (s.log_failed && s.injournal == 0)) {
9a3f530f
N
4745 sh->check_state = 0;
4746 sh->reconstruct_state = 0;
626f2092 4747 break_stripe_batch_list(sh, 0);
9a3f530f 4748 if (s.to_read+s.to_write+s.written)
bd83d0a2 4749 handle_failed_stripe(conf, sh, &s, disks);
9a3e1101 4750 if (s.syncing + s.replacing)
9a3f530f
N
4751 handle_failed_sync(conf, sh, &s);
4752 }
474af965 4753
84789554
N
4754 /* Now we check to see if any write operations have recently
4755 * completed
4756 */
4757 prexor = 0;
4758 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4759 prexor = 1;
4760 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4761 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4762 sh->reconstruct_state = reconstruct_state_idle;
4763
4764 /* All the 'written' buffers and the parity block are ready to
4765 * be written back to disk
4766 */
9e444768
SL
4767 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4768 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4769 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4770 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4771 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4772 for (i = disks; i--; ) {
4773 struct r5dev *dev = &sh->dev[i];
4774 if (test_bit(R5_LOCKED, &dev->flags) &&
4775 (i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b
SL
4776 dev->written || test_bit(R5_InJournal,
4777 &dev->flags))) {
84789554
N
4778 pr_debug("Writing block %d\n", i);
4779 set_bit(R5_Wantwrite, &dev->flags);
4780 if (prexor)
4781 continue;
9c4bdf69
N
4782 if (s.failed > 1)
4783 continue;
84789554
N
4784 if (!test_bit(R5_Insync, &dev->flags) ||
4785 ((i == sh->pd_idx || i == sh->qd_idx) &&
4786 s.failed == 0))
4787 set_bit(STRIPE_INSYNC, &sh->state);
4788 }
4789 }
4790 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4791 s.dec_preread_active = 1;
4792 }
4793
ef5b7c69
N
4794 /*
4795 * might be able to return some write requests if the parity blocks
4796 * are safe, or on a failed drive
4797 */
4798 pdev = &sh->dev[sh->pd_idx];
4799 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4800 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4801 qdev = &sh->dev[sh->qd_idx];
4802 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4803 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4804 || conf->level < 6;
4805
4806 if (s.written &&
4807 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4808 && !test_bit(R5_LOCKED, &pdev->flags)
4809 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4810 test_bit(R5_Discard, &pdev->flags))))) &&
4811 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4812 && !test_bit(R5_LOCKED, &qdev->flags)
4813 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4814 test_bit(R5_Discard, &qdev->flags))))))
bd83d0a2 4815 handle_stripe_clean_event(conf, sh, disks);
ef5b7c69 4816
1e6d690b 4817 if (s.just_cached)
bd83d0a2 4818 r5c_handle_cached_data_endio(conf, sh, disks);
ff875738 4819 log_stripe_write_finished(sh);
1e6d690b 4820
ef5b7c69
N
4821 /* Now we might consider reading some blocks, either to check/generate
4822 * parity, or to satisfy requests
4823 * or to load a block that is being partially written.
4824 */
4825 if (s.to_read || s.non_overwrite
4826 || (conf->level == 6 && s.to_write && s.failed)
4827 || (s.syncing && (s.uptodate + s.compute < disks))
4828 || s.replacing
4829 || s.expanding)
4830 handle_stripe_fill(sh, &s, disks);
4831
2ded3703
SL
4832 /*
4833 * When the stripe finishes full journal write cycle (write to journal
4834 * and raid disk), this is the clean up procedure so it is ready for
4835 * next operation.
4836 */
4837 r5c_finish_stripe_write_out(conf, sh, &s);
4838
4839 /*
4840 * Now to consider new write requests, cache write back and what else,
4841 * if anything should be read. We do not handle new writes when:
84789554
N
4842 * 1/ A 'write' operation (copy+xor) is already in flight.
4843 * 2/ A 'check' operation is in flight, as it may clobber the parity
4844 * block.
2ded3703 4845 * 3/ A r5c cache log write is in flight.
84789554 4846 */
2ded3703
SL
4847
4848 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4849 if (!r5c_is_writeback(conf->log)) {
4850 if (s.to_write)
4851 handle_stripe_dirtying(conf, sh, &s, disks);
4852 } else { /* write back cache */
4853 int ret = 0;
4854
4855 /* First, try handle writes in caching phase */
4856 if (s.to_write)
4857 ret = r5c_try_caching_write(conf, sh, &s,
4858 disks);
4859 /*
4860 * If caching phase failed: ret == -EAGAIN
4861 * OR
4862 * stripe under reclaim: !caching && injournal
4863 *
4864 * fall back to handle_stripe_dirtying()
4865 */
4866 if (ret == -EAGAIN ||
4867 /* stripe under reclaim: !caching && injournal */
4868 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
d7bd398e
SL
4869 s.injournal > 0)) {
4870 ret = handle_stripe_dirtying(conf, sh, &s,
4871 disks);
4872 if (ret == -EAGAIN)
4873 goto finish;
4874 }
2ded3703
SL
4875 }
4876 }
84789554
N
4877
4878 /* maybe we need to check and possibly fix the parity for this stripe
4879 * Any reads will already have been scheduled, so we just see if enough
4880 * data is available. The parity check is held off while parity
4881 * dependent operations are in flight.
4882 */
4883 if (sh->check_state ||
4884 (s.syncing && s.locked == 0 &&
4885 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4886 !test_bit(STRIPE_INSYNC, &sh->state))) {
4887 if (conf->level == 6)
4888 handle_parity_checks6(conf, sh, &s, disks);
4889 else
4890 handle_parity_checks5(conf, sh, &s, disks);
4891 }
c5a31000 4892
f94c0b66
N
4893 if ((s.replacing || s.syncing) && s.locked == 0
4894 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4895 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4896 /* Write out to replacement devices where possible */
4897 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4898 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4899 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4900 set_bit(R5_WantReplace, &sh->dev[i].flags);
4901 set_bit(R5_LOCKED, &sh->dev[i].flags);
4902 s.locked++;
4903 }
f94c0b66
N
4904 if (s.replacing)
4905 set_bit(STRIPE_INSYNC, &sh->state);
4906 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4907 }
4908 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4909 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4910 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4911 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4912 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4913 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4914 wake_up(&conf->wait_for_overlap);
c5a31000
N
4915 }
4916
4917 /* If the failed drives are just a ReadError, then we might need
4918 * to progress the repair/check process
4919 */
4920 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4921 for (i = 0; i < s.failed; i++) {
4922 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4923 if (test_bit(R5_ReadError, &dev->flags)
4924 && !test_bit(R5_LOCKED, &dev->flags)
4925 && test_bit(R5_UPTODATE, &dev->flags)
4926 ) {
4927 if (!test_bit(R5_ReWrite, &dev->flags)) {
4928 set_bit(R5_Wantwrite, &dev->flags);
4929 set_bit(R5_ReWrite, &dev->flags);
4930 set_bit(R5_LOCKED, &dev->flags);
4931 s.locked++;
4932 } else {
4933 /* let's read it back */
4934 set_bit(R5_Wantread, &dev->flags);
4935 set_bit(R5_LOCKED, &dev->flags);
4936 s.locked++;
4937 }
4938 }
4939 }
4940
3687c061
N
4941 /* Finish reconstruct operations initiated by the expansion process */
4942 if (sh->reconstruct_state == reconstruct_state_result) {
4943 struct stripe_head *sh_src
6d036f7d 4944 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
3687c061
N
4945 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4946 /* sh cannot be written until sh_src has been read.
4947 * so arrange for sh to be delayed a little
4948 */
4949 set_bit(STRIPE_DELAYED, &sh->state);
4950 set_bit(STRIPE_HANDLE, &sh->state);
4951 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4952 &sh_src->state))
4953 atomic_inc(&conf->preread_active_stripes);
6d036f7d 4954 raid5_release_stripe(sh_src);
3687c061
N
4955 goto finish;
4956 }
4957 if (sh_src)
6d036f7d 4958 raid5_release_stripe(sh_src);
3687c061
N
4959
4960 sh->reconstruct_state = reconstruct_state_idle;
4961 clear_bit(STRIPE_EXPANDING, &sh->state);
4962 for (i = conf->raid_disks; i--; ) {
4963 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4964 set_bit(R5_LOCKED, &sh->dev[i].flags);
4965 s.locked++;
4966 }
4967 }
f416885e 4968
3687c061
N
4969 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4970 !sh->reconstruct_state) {
4971 /* Need to write out all blocks after computing parity */
4972 sh->disks = conf->raid_disks;
4973 stripe_set_idx(sh->sector, conf, 0, sh);
4974 schedule_reconstruction(sh, &s, 1, 1);
4975 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4976 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4977 atomic_dec(&conf->reshape_stripes);
4978 wake_up(&conf->wait_for_overlap);
4979 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4980 }
4981
4982 if (s.expanding && s.locked == 0 &&
4983 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4984 handle_stripe_expansion(conf, sh);
16a53ecc 4985
3687c061 4986finish:
6bfe0b49 4987 /* wait for this device to become unblocked */
5f066c63
N
4988 if (unlikely(s.blocked_rdev)) {
4989 if (conf->mddev->external)
4990 md_wait_for_blocked_rdev(s.blocked_rdev,
4991 conf->mddev);
4992 else
4993 /* Internal metadata will immediately
4994 * be written by raid5d, so we don't
4995 * need to wait here.
4996 */
4997 rdev_dec_pending(s.blocked_rdev,
4998 conf->mddev);
4999 }
6bfe0b49 5000
bc2607f3
N
5001 if (s.handle_bad_blocks)
5002 for (i = disks; i--; ) {
3cb03002 5003 struct md_rdev *rdev;
bc2607f3
N
5004 struct r5dev *dev = &sh->dev[i];
5005 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5006 /* We own a safe reference to the rdev */
5007 rdev = conf->disks[i].rdev;
5008 if (!rdev_set_badblocks(rdev, sh->sector,
5009 STRIPE_SECTORS, 0))
5010 md_error(conf->mddev, rdev);
5011 rdev_dec_pending(rdev, conf->mddev);
5012 }
b84db560
N
5013 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5014 rdev = conf->disks[i].rdev;
5015 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 5016 STRIPE_SECTORS, 0);
b84db560
N
5017 rdev_dec_pending(rdev, conf->mddev);
5018 }
977df362
N
5019 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5020 rdev = conf->disks[i].replacement;
dd054fce
N
5021 if (!rdev)
5022 /* rdev have been moved down */
5023 rdev = conf->disks[i].rdev;
977df362 5024 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 5025 STRIPE_SECTORS, 0);
977df362
N
5026 rdev_dec_pending(rdev, conf->mddev);
5027 }
bc2607f3
N
5028 }
5029
6c0069c0
YT
5030 if (s.ops_request)
5031 raid_run_ops(sh, s.ops_request);
5032
f0e43bcd 5033 ops_run_io(sh, &s);
16a53ecc 5034
c5709ef6 5035 if (s.dec_preread_active) {
729a1866 5036 /* We delay this until after ops_run_io so that if make_request
e9c7469b 5037 * is waiting on a flush, it won't continue until the writes
729a1866
N
5038 * have actually been submitted.
5039 */
5040 atomic_dec(&conf->preread_active_stripes);
5041 if (atomic_read(&conf->preread_active_stripes) <
5042 IO_THRESHOLD)
5043 md_wakeup_thread(conf->mddev->thread);
5044 }
5045
257a4b42 5046 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
5047}
5048
d1688a6d 5049static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
5050{
5051 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5052 while (!list_empty(&conf->delayed_list)) {
5053 struct list_head *l = conf->delayed_list.next;
5054 struct stripe_head *sh;
5055 sh = list_entry(l, struct stripe_head, lru);
5056 list_del_init(l);
5057 clear_bit(STRIPE_DELAYED, &sh->state);
5058 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5059 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 5060 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 5061 raid5_wakeup_stripe_thread(sh);
16a53ecc 5062 }
482c0834 5063 }
16a53ecc
N
5064}
5065
566c09c5
SL
5066static void activate_bit_delay(struct r5conf *conf,
5067 struct list_head *temp_inactive_list)
16a53ecc
N
5068{
5069 /* device_lock is held */
5070 struct list_head head;
5071 list_add(&head, &conf->bitmap_list);
5072 list_del_init(&conf->bitmap_list);
5073 while (!list_empty(&head)) {
5074 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 5075 int hash;
16a53ecc
N
5076 list_del_init(&sh->lru);
5077 atomic_inc(&sh->count);
566c09c5
SL
5078 hash = sh->hash_lock_index;
5079 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
5080 }
5081}
5082
5c675f83 5083static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 5084{
d1688a6d 5085 struct r5conf *conf = mddev->private;
f022b2fd
N
5086
5087 /* No difference between reads and writes. Just check
5088 * how busy the stripe_cache is
5089 */
3fa841d7 5090
5423399a 5091 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd 5092 return 1;
a39f7afd
SL
5093
5094 /* Also checks whether there is pressure on r5cache log space */
5095 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5096 return 1;
f022b2fd
N
5097 if (conf->quiesce)
5098 return 1;
4bda556a 5099 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
5100 return 1;
5101
5102 return 0;
5103}
5104
fd01b88c 5105static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 5106{
3cb5edf4 5107 struct r5conf *conf = mddev->private;
10433d04 5108 sector_t sector = bio->bi_iter.bi_sector;
3cb5edf4 5109 unsigned int chunk_sectors;
aa8b57aa 5110 unsigned int bio_sectors = bio_sectors(bio);
f679623f 5111
10433d04
CH
5112 WARN_ON_ONCE(bio->bi_partno);
5113
3cb5edf4 5114 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
5115 return chunk_sectors >=
5116 ((sector & (chunk_sectors - 1)) + bio_sectors);
5117}
5118
46031f9a
RBJ
5119/*
5120 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5121 * later sampled by raid5d.
5122 */
d1688a6d 5123static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
5124{
5125 unsigned long flags;
5126
5127 spin_lock_irqsave(&conf->device_lock, flags);
5128
5129 bi->bi_next = conf->retry_read_aligned_list;
5130 conf->retry_read_aligned_list = bi;
5131
5132 spin_unlock_irqrestore(&conf->device_lock, flags);
5133 md_wakeup_thread(conf->mddev->thread);
5134}
5135
0472a42b
N
5136static struct bio *remove_bio_from_retry(struct r5conf *conf,
5137 unsigned int *offset)
46031f9a
RBJ
5138{
5139 struct bio *bi;
5140
5141 bi = conf->retry_read_aligned;
5142 if (bi) {
0472a42b 5143 *offset = conf->retry_read_offset;
46031f9a
RBJ
5144 conf->retry_read_aligned = NULL;
5145 return bi;
5146 }
5147 bi = conf->retry_read_aligned_list;
5148 if(bi) {
387bb173 5149 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 5150 bi->bi_next = NULL;
0472a42b 5151 *offset = 0;
46031f9a
RBJ
5152 }
5153
5154 return bi;
5155}
5156
f679623f
RBJ
5157/*
5158 * The "raid5_align_endio" should check if the read succeeded and if it
5159 * did, call bio_endio on the original bio (having bio_put the new bio
5160 * first).
5161 * If the read failed..
5162 */
4246a0b6 5163static void raid5_align_endio(struct bio *bi)
f679623f
RBJ
5164{
5165 struct bio* raid_bi = bi->bi_private;
fd01b88c 5166 struct mddev *mddev;
d1688a6d 5167 struct r5conf *conf;
3cb03002 5168 struct md_rdev *rdev;
4e4cbee9 5169 blk_status_t error = bi->bi_status;
46031f9a 5170
f679623f 5171 bio_put(bi);
46031f9a 5172
46031f9a
RBJ
5173 rdev = (void*)raid_bi->bi_next;
5174 raid_bi->bi_next = NULL;
2b7f2228
N
5175 mddev = rdev->mddev;
5176 conf = mddev->private;
46031f9a
RBJ
5177
5178 rdev_dec_pending(rdev, conf->mddev);
5179
9b81c842 5180 if (!error) {
4246a0b6 5181 bio_endio(raid_bi);
46031f9a 5182 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5183 wake_up(&conf->wait_for_quiescent);
6712ecf8 5184 return;
46031f9a
RBJ
5185 }
5186
45b4233c 5187 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
5188
5189 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
5190}
5191
7ef6b12a 5192static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 5193{
d1688a6d 5194 struct r5conf *conf = mddev->private;
8553fe7e 5195 int dd_idx;
f679623f 5196 struct bio* align_bi;
3cb03002 5197 struct md_rdev *rdev;
671488cc 5198 sector_t end_sector;
f679623f
RBJ
5199
5200 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 5201 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
5202 return 0;
5203 }
5204 /*
d7a10308 5205 * use bio_clone_fast to make a copy of the bio
f679623f 5206 */
afeee514 5207 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
f679623f
RBJ
5208 if (!align_bi)
5209 return 0;
5210 /*
5211 * set bi_end_io to a new function, and set bi_private to the
5212 * original bio.
5213 */
5214 align_bi->bi_end_io = raid5_align_endio;
5215 align_bi->bi_private = raid_bio;
5216 /*
5217 * compute position
5218 */
4f024f37
KO
5219 align_bi->bi_iter.bi_sector =
5220 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5221 0, &dd_idx, NULL);
f679623f 5222
f73a1c7d 5223 end_sector = bio_end_sector(align_bi);
f679623f 5224 rcu_read_lock();
671488cc
N
5225 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5226 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5227 rdev->recovery_offset < end_sector) {
5228 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5229 if (rdev &&
5230 (test_bit(Faulty, &rdev->flags) ||
5231 !(test_bit(In_sync, &rdev->flags) ||
5232 rdev->recovery_offset >= end_sector)))
5233 rdev = NULL;
5234 }
03b047f4
SL
5235
5236 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5237 rcu_read_unlock();
5238 bio_put(align_bi);
5239 return 0;
5240 }
5241
671488cc 5242 if (rdev) {
31c176ec
N
5243 sector_t first_bad;
5244 int bad_sectors;
5245
f679623f
RBJ
5246 atomic_inc(&rdev->nr_pending);
5247 rcu_read_unlock();
46031f9a 5248 raid_bio->bi_next = (void*)rdev;
74d46992 5249 bio_set_dev(align_bi, rdev->bdev);
b7c44ed9 5250 bio_clear_flag(align_bi, BIO_SEG_VALID);
46031f9a 5251
7140aafc 5252 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4f024f37 5253 bio_sectors(align_bi),
31c176ec 5254 &first_bad, &bad_sectors)) {
387bb173
NB
5255 bio_put(align_bi);
5256 rdev_dec_pending(rdev, mddev);
5257 return 0;
5258 }
5259
6c0544e2 5260 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 5261 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 5262
46031f9a 5263 spin_lock_irq(&conf->device_lock);
b1b46486 5264 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 5265 conf->quiesce == 0,
eed8c02e 5266 conf->device_lock);
46031f9a
RBJ
5267 atomic_inc(&conf->active_aligned_reads);
5268 spin_unlock_irq(&conf->device_lock);
5269
e3620a3a 5270 if (mddev->gendisk)
74d46992 5271 trace_block_bio_remap(align_bi->bi_disk->queue,
e3620a3a 5272 align_bi, disk_devt(mddev->gendisk),
4f024f37 5273 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
5274 generic_make_request(align_bi);
5275 return 1;
5276 } else {
5277 rcu_read_unlock();
46031f9a 5278 bio_put(align_bi);
f679623f
RBJ
5279 return 0;
5280 }
5281}
5282
7ef6b12a
ML
5283static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5284{
5285 struct bio *split;
dd7a8f5d
N
5286 sector_t sector = raid_bio->bi_iter.bi_sector;
5287 unsigned chunk_sects = mddev->chunk_sectors;
5288 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
7ef6b12a 5289
dd7a8f5d
N
5290 if (sectors < bio_sectors(raid_bio)) {
5291 struct r5conf *conf = mddev->private;
afeee514 5292 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
dd7a8f5d
N
5293 bio_chain(split, raid_bio);
5294 generic_make_request(raid_bio);
5295 raid_bio = split;
5296 }
7ef6b12a 5297
dd7a8f5d
N
5298 if (!raid5_read_one_chunk(mddev, raid_bio))
5299 return raid_bio;
7ef6b12a
ML
5300
5301 return NULL;
5302}
5303
8b3e6cdc
DW
5304/* __get_priority_stripe - get the next stripe to process
5305 *
5306 * Full stripe writes are allowed to pass preread active stripes up until
5307 * the bypass_threshold is exceeded. In general the bypass_count
5308 * increments when the handle_list is handled before the hold_list; however, it
5309 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5310 * stripe with in flight i/o. The bypass_count will be reset when the
5311 * head of the hold_list has changed, i.e. the head was promoted to the
5312 * handle_list.
5313 */
851c30c9 5314static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 5315{
535ae4eb 5316 struct stripe_head *sh, *tmp;
851c30c9 5317 struct list_head *handle_list = NULL;
535ae4eb 5318 struct r5worker_group *wg;
70d466f7
SL
5319 bool second_try = !r5c_is_writeback(conf->log) &&
5320 !r5l_log_disk_error(conf);
5321 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5322 r5l_log_disk_error(conf);
851c30c9 5323
535ae4eb
SL
5324again:
5325 wg = NULL;
5326 sh = NULL;
851c30c9 5327 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
5328 handle_list = try_loprio ? &conf->loprio_list :
5329 &conf->handle_list;
851c30c9 5330 } else if (group != ANY_GROUP) {
535ae4eb
SL
5331 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5332 &conf->worker_groups[group].handle_list;
bfc90cb0 5333 wg = &conf->worker_groups[group];
851c30c9
SL
5334 } else {
5335 int i;
5336 for (i = 0; i < conf->group_cnt; i++) {
535ae4eb
SL
5337 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5338 &conf->worker_groups[i].handle_list;
bfc90cb0 5339 wg = &conf->worker_groups[i];
851c30c9
SL
5340 if (!list_empty(handle_list))
5341 break;
5342 }
5343 }
8b3e6cdc
DW
5344
5345 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5346 __func__,
851c30c9 5347 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
5348 list_empty(&conf->hold_list) ? "empty" : "busy",
5349 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5350
851c30c9
SL
5351 if (!list_empty(handle_list)) {
5352 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
5353
5354 if (list_empty(&conf->hold_list))
5355 conf->bypass_count = 0;
5356 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5357 if (conf->hold_list.next == conf->last_hold)
5358 conf->bypass_count++;
5359 else {
5360 conf->last_hold = conf->hold_list.next;
5361 conf->bypass_count -= conf->bypass_threshold;
5362 if (conf->bypass_count < 0)
5363 conf->bypass_count = 0;
5364 }
5365 }
5366 } else if (!list_empty(&conf->hold_list) &&
5367 ((conf->bypass_threshold &&
5368 conf->bypass_count > conf->bypass_threshold) ||
5369 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
5370
5371 list_for_each_entry(tmp, &conf->hold_list, lru) {
5372 if (conf->worker_cnt_per_group == 0 ||
5373 group == ANY_GROUP ||
5374 !cpu_online(tmp->cpu) ||
5375 cpu_to_group(tmp->cpu) == group) {
5376 sh = tmp;
5377 break;
5378 }
5379 }
5380
5381 if (sh) {
5382 conf->bypass_count -= conf->bypass_threshold;
5383 if (conf->bypass_count < 0)
5384 conf->bypass_count = 0;
5385 }
bfc90cb0 5386 wg = NULL;
851c30c9
SL
5387 }
5388
535ae4eb
SL
5389 if (!sh) {
5390 if (second_try)
5391 return NULL;
5392 second_try = true;
5393 try_loprio = !try_loprio;
5394 goto again;
5395 }
8b3e6cdc 5396
bfc90cb0
SL
5397 if (wg) {
5398 wg->stripes_cnt--;
5399 sh->group = NULL;
5400 }
8b3e6cdc 5401 list_del_init(&sh->lru);
c7a6d35e 5402 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
5403 return sh;
5404}
f679623f 5405
8811b596
SL
5406struct raid5_plug_cb {
5407 struct blk_plug_cb cb;
5408 struct list_head list;
566c09c5 5409 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
5410};
5411
5412static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5413{
5414 struct raid5_plug_cb *cb = container_of(
5415 blk_cb, struct raid5_plug_cb, cb);
5416 struct stripe_head *sh;
5417 struct mddev *mddev = cb->cb.data;
5418 struct r5conf *conf = mddev->private;
a9add5d9 5419 int cnt = 0;
566c09c5 5420 int hash;
8811b596
SL
5421
5422 if (cb->list.next && !list_empty(&cb->list)) {
5423 spin_lock_irq(&conf->device_lock);
5424 while (!list_empty(&cb->list)) {
5425 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5426 list_del_init(&sh->lru);
5427 /*
5428 * avoid race release_stripe_plug() sees
5429 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5430 * is still in our list
5431 */
4e857c58 5432 smp_mb__before_atomic();
8811b596 5433 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
5434 /*
5435 * STRIPE_ON_RELEASE_LIST could be set here. In that
5436 * case, the count is always > 1 here
5437 */
566c09c5
SL
5438 hash = sh->hash_lock_index;
5439 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5440 cnt++;
8811b596
SL
5441 }
5442 spin_unlock_irq(&conf->device_lock);
5443 }
566c09c5
SL
5444 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5445 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5446 if (mddev->queue)
5447 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5448 kfree(cb);
5449}
5450
5451static void release_stripe_plug(struct mddev *mddev,
5452 struct stripe_head *sh)
5453{
5454 struct blk_plug_cb *blk_cb = blk_check_plugged(
5455 raid5_unplug, mddev,
5456 sizeof(struct raid5_plug_cb));
5457 struct raid5_plug_cb *cb;
5458
5459 if (!blk_cb) {
6d036f7d 5460 raid5_release_stripe(sh);
8811b596
SL
5461 return;
5462 }
5463
5464 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5465
566c09c5
SL
5466 if (cb->list.next == NULL) {
5467 int i;
8811b596 5468 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5469 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5470 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5471 }
8811b596
SL
5472
5473 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5474 list_add_tail(&sh->lru, &cb->list);
5475 else
6d036f7d 5476 raid5_release_stripe(sh);
8811b596
SL
5477}
5478
620125f2
SL
5479static void make_discard_request(struct mddev *mddev, struct bio *bi)
5480{
5481 struct r5conf *conf = mddev->private;
5482 sector_t logical_sector, last_sector;
5483 struct stripe_head *sh;
620125f2
SL
5484 int stripe_sectors;
5485
5486 if (mddev->reshape_position != MaxSector)
5487 /* Skip discard while reshape is happening */
5488 return;
5489
4f024f37
KO
5490 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5491 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5492
5493 bi->bi_next = NULL;
620125f2
SL
5494
5495 stripe_sectors = conf->chunk_sectors *
5496 (conf->raid_disks - conf->max_degraded);
5497 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5498 stripe_sectors);
5499 sector_div(last_sector, stripe_sectors);
5500
5501 logical_sector *= conf->chunk_sectors;
5502 last_sector *= conf->chunk_sectors;
5503
5504 for (; logical_sector < last_sector;
5505 logical_sector += STRIPE_SECTORS) {
5506 DEFINE_WAIT(w);
5507 int d;
5508 again:
6d036f7d 5509 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
620125f2
SL
5510 prepare_to_wait(&conf->wait_for_overlap, &w,
5511 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5512 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5513 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5514 raid5_release_stripe(sh);
f8dfcffd
N
5515 schedule();
5516 goto again;
5517 }
5518 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5519 spin_lock_irq(&sh->stripe_lock);
5520 for (d = 0; d < conf->raid_disks; d++) {
5521 if (d == sh->pd_idx || d == sh->qd_idx)
5522 continue;
5523 if (sh->dev[d].towrite || sh->dev[d].toread) {
5524 set_bit(R5_Overlap, &sh->dev[d].flags);
5525 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5526 raid5_release_stripe(sh);
620125f2
SL
5527 schedule();
5528 goto again;
5529 }
5530 }
f8dfcffd 5531 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5532 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5533 sh->overwrite_disks = 0;
620125f2
SL
5534 for (d = 0; d < conf->raid_disks; d++) {
5535 if (d == sh->pd_idx || d == sh->qd_idx)
5536 continue;
5537 sh->dev[d].towrite = bi;
5538 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
016c76ac 5539 bio_inc_remaining(bi);
49728050 5540 md_write_inc(mddev, bi);
7a87f434 5541 sh->overwrite_disks++;
620125f2
SL
5542 }
5543 spin_unlock_irq(&sh->stripe_lock);
5544 if (conf->mddev->bitmap) {
5545 for (d = 0;
5546 d < conf->raid_disks - conf->max_degraded;
5547 d++)
e64e4018
AS
5548 md_bitmap_startwrite(mddev->bitmap,
5549 sh->sector,
5550 STRIPE_SECTORS,
5551 0);
620125f2
SL
5552 sh->bm_seq = conf->seq_flush + 1;
5553 set_bit(STRIPE_BIT_DELAY, &sh->state);
5554 }
5555
5556 set_bit(STRIPE_HANDLE, &sh->state);
5557 clear_bit(STRIPE_DELAYED, &sh->state);
5558 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5559 atomic_inc(&conf->preread_active_stripes);
5560 release_stripe_plug(mddev, sh);
5561 }
5562
016c76ac 5563 bio_endio(bi);
620125f2
SL
5564}
5565
cc27b0c7 5566static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5567{
d1688a6d 5568 struct r5conf *conf = mddev->private;
911d4ee8 5569 int dd_idx;
1da177e4
LT
5570 sector_t new_sector;
5571 sector_t logical_sector, last_sector;
5572 struct stripe_head *sh;
a362357b 5573 const int rw = bio_data_dir(bi);
27c0f68f
SL
5574 DEFINE_WAIT(w);
5575 bool do_prepare;
3bddb7f8 5576 bool do_flush = false;
1da177e4 5577
1eff9d32 5578 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
1532d9e8 5579 int ret = log_handle_flush_request(conf, bi);
828cbe98
SL
5580
5581 if (ret == 0)
cc27b0c7 5582 return true;
828cbe98
SL
5583 if (ret == -ENODEV) {
5584 md_flush_request(mddev, bi);
cc27b0c7 5585 return true;
828cbe98
SL
5586 }
5587 /* ret == -EAGAIN, fallback */
3bddb7f8
SL
5588 /*
5589 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5590 * we need to flush journal device
5591 */
5592 do_flush = bi->bi_opf & REQ_PREFLUSH;
e5dcdd80
N
5593 }
5594
cc27b0c7
N
5595 if (!md_write_start(mddev, bi))
5596 return false;
9ffc8f7c
EM
5597 /*
5598 * If array is degraded, better not do chunk aligned read because
5599 * later we might have to read it again in order to reconstruct
5600 * data on failed drives.
5601 */
5602 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
5603 mddev->reshape_position == MaxSector) {
5604 bi = chunk_aligned_read(mddev, bi);
5605 if (!bi)
cc27b0c7 5606 return true;
7ef6b12a 5607 }
52488615 5608
796a5cf0 5609 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
620125f2 5610 make_discard_request(mddev, bi);
cc27b0c7
N
5611 md_write_end(mddev);
5612 return true;
620125f2
SL
5613 }
5614
4f024f37 5615 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5616 last_sector = bio_end_sector(bi);
1da177e4 5617 bi->bi_next = NULL;
06d91a5f 5618
27c0f68f 5619 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5620 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5621 int previous;
c46501b2 5622 int seq;
b578d55f 5623
27c0f68f 5624 do_prepare = false;
7ecaa1e6 5625 retry:
c46501b2 5626 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5627 previous = 0;
27c0f68f
SL
5628 if (do_prepare)
5629 prepare_to_wait(&conf->wait_for_overlap, &w,
5630 TASK_UNINTERRUPTIBLE);
b0f9ec04 5631 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5632 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5633 * 64bit on a 32bit platform, and so it might be
5634 * possible to see a half-updated value
aeb878b0 5635 * Of course reshape_progress could change after
df8e7f76
N
5636 * the lock is dropped, so once we get a reference
5637 * to the stripe that we think it is, we will have
5638 * to check again.
5639 */
7ecaa1e6 5640 spin_lock_irq(&conf->device_lock);
2c810cdd 5641 if (mddev->reshape_backwards
fef9c61f
N
5642 ? logical_sector < conf->reshape_progress
5643 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5644 previous = 1;
5645 } else {
2c810cdd 5646 if (mddev->reshape_backwards
fef9c61f
N
5647 ? logical_sector < conf->reshape_safe
5648 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5649 spin_unlock_irq(&conf->device_lock);
5650 schedule();
27c0f68f 5651 do_prepare = true;
b578d55f
N
5652 goto retry;
5653 }
5654 }
7ecaa1e6
N
5655 spin_unlock_irq(&conf->device_lock);
5656 }
16a53ecc 5657
112bf897
N
5658 new_sector = raid5_compute_sector(conf, logical_sector,
5659 previous,
911d4ee8 5660 &dd_idx, NULL);
849674e4 5661 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
c46501b2 5662 (unsigned long long)new_sector,
1da177e4
LT
5663 (unsigned long long)logical_sector);
5664
6d036f7d 5665 sh = raid5_get_active_stripe(conf, new_sector, previous,
1eff9d32 5666 (bi->bi_opf & REQ_RAHEAD), 0);
1da177e4 5667 if (sh) {
b0f9ec04 5668 if (unlikely(previous)) {
7ecaa1e6 5669 /* expansion might have moved on while waiting for a
df8e7f76
N
5670 * stripe, so we must do the range check again.
5671 * Expansion could still move past after this
5672 * test, but as we are holding a reference to
5673 * 'sh', we know that if that happens,
5674 * STRIPE_EXPANDING will get set and the expansion
5675 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5676 */
5677 int must_retry = 0;
5678 spin_lock_irq(&conf->device_lock);
2c810cdd 5679 if (mddev->reshape_backwards
b0f9ec04
N
5680 ? logical_sector >= conf->reshape_progress
5681 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5682 /* mismatch, need to try again */
5683 must_retry = 1;
5684 spin_unlock_irq(&conf->device_lock);
5685 if (must_retry) {
6d036f7d 5686 raid5_release_stripe(sh);
7a3ab908 5687 schedule();
27c0f68f 5688 do_prepare = true;
7ecaa1e6
N
5689 goto retry;
5690 }
5691 }
c46501b2
N
5692 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5693 /* Might have got the wrong stripe_head
5694 * by accident
5695 */
6d036f7d 5696 raid5_release_stripe(sh);
c46501b2
N
5697 goto retry;
5698 }
e62e58a5 5699
7ecaa1e6 5700 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5701 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5702 /* Stripe is busy expanding or
5703 * add failed due to overlap. Flush everything
1da177e4
LT
5704 * and wait a while
5705 */
482c0834 5706 md_wakeup_thread(mddev->thread);
6d036f7d 5707 raid5_release_stripe(sh);
1da177e4 5708 schedule();
27c0f68f 5709 do_prepare = true;
1da177e4
LT
5710 goto retry;
5711 }
3bddb7f8
SL
5712 if (do_flush) {
5713 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5714 /* we only need flush for one stripe */
5715 do_flush = false;
5716 }
5717
6ed3003c
N
5718 set_bit(STRIPE_HANDLE, &sh->state);
5719 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5720 if ((!sh->batch_head || sh == sh->batch_head) &&
1eff9d32 5721 (bi->bi_opf & REQ_SYNC) &&
729a1866
N
5722 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5723 atomic_inc(&conf->preread_active_stripes);
8811b596 5724 release_stripe_plug(mddev, sh);
1da177e4
LT
5725 } else {
5726 /* cannot get stripe for read-ahead, just give-up */
4e4cbee9 5727 bi->bi_status = BLK_STS_IOERR;
1da177e4
LT
5728 break;
5729 }
1da177e4 5730 }
27c0f68f 5731 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5732
49728050
N
5733 if (rw == WRITE)
5734 md_write_end(mddev);
016c76ac 5735 bio_endio(bi);
cc27b0c7 5736 return true;
1da177e4
LT
5737}
5738
fd01b88c 5739static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5740
fd01b88c 5741static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5742{
52c03291
N
5743 /* reshaping is quite different to recovery/resync so it is
5744 * handled quite separately ... here.
5745 *
5746 * On each call to sync_request, we gather one chunk worth of
5747 * destination stripes and flag them as expanding.
5748 * Then we find all the source stripes and request reads.
5749 * As the reads complete, handle_stripe will copy the data
5750 * into the destination stripe and release that stripe.
5751 */
d1688a6d 5752 struct r5conf *conf = mddev->private;
1da177e4 5753 struct stripe_head *sh;
db0505d3 5754 struct md_rdev *rdev;
ccfcc3c1 5755 sector_t first_sector, last_sector;
f416885e
N
5756 int raid_disks = conf->previous_raid_disks;
5757 int data_disks = raid_disks - conf->max_degraded;
5758 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5759 int i;
5760 int dd_idx;
c8f517c4 5761 sector_t writepos, readpos, safepos;
ec32a2bd 5762 sector_t stripe_addr;
7a661381 5763 int reshape_sectors;
ab69ae12 5764 struct list_head stripes;
92140480 5765 sector_t retn;
52c03291 5766
fef9c61f
N
5767 if (sector_nr == 0) {
5768 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5769 if (mddev->reshape_backwards &&
fef9c61f
N
5770 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5771 sector_nr = raid5_size(mddev, 0, 0)
5772 - conf->reshape_progress;
6cbd8148
N
5773 } else if (mddev->reshape_backwards &&
5774 conf->reshape_progress == MaxSector) {
5775 /* shouldn't happen, but just in case, finish up.*/
5776 sector_nr = MaxSector;
2c810cdd 5777 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5778 conf->reshape_progress > 0)
5779 sector_nr = conf->reshape_progress;
f416885e 5780 sector_div(sector_nr, new_data_disks);
fef9c61f 5781 if (sector_nr) {
8dee7211
N
5782 mddev->curr_resync_completed = sector_nr;
5783 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f 5784 *skipped = 1;
92140480
N
5785 retn = sector_nr;
5786 goto finish;
fef9c61f 5787 }
52c03291
N
5788 }
5789
7a661381
N
5790 /* We need to process a full chunk at a time.
5791 * If old and new chunk sizes differ, we need to process the
5792 * largest of these
5793 */
3cb5edf4
N
5794
5795 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 5796
b5254dd5
N
5797 /* We update the metadata at least every 10 seconds, or when
5798 * the data about to be copied would over-write the source of
5799 * the data at the front of the range. i.e. one new_stripe
5800 * along from reshape_progress new_maps to after where
5801 * reshape_safe old_maps to
52c03291 5802 */
fef9c61f 5803 writepos = conf->reshape_progress;
f416885e 5804 sector_div(writepos, new_data_disks);
c8f517c4
N
5805 readpos = conf->reshape_progress;
5806 sector_div(readpos, data_disks);
fef9c61f 5807 safepos = conf->reshape_safe;
f416885e 5808 sector_div(safepos, data_disks);
2c810cdd 5809 if (mddev->reshape_backwards) {
c74c0d76
N
5810 BUG_ON(writepos < reshape_sectors);
5811 writepos -= reshape_sectors;
c8f517c4 5812 readpos += reshape_sectors;
7a661381 5813 safepos += reshape_sectors;
fef9c61f 5814 } else {
7a661381 5815 writepos += reshape_sectors;
c74c0d76
N
5816 /* readpos and safepos are worst-case calculations.
5817 * A negative number is overly pessimistic, and causes
5818 * obvious problems for unsigned storage. So clip to 0.
5819 */
ed37d83e
N
5820 readpos -= min_t(sector_t, reshape_sectors, readpos);
5821 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5822 }
52c03291 5823
b5254dd5
N
5824 /* Having calculated the 'writepos' possibly use it
5825 * to set 'stripe_addr' which is where we will write to.
5826 */
5827 if (mddev->reshape_backwards) {
5828 BUG_ON(conf->reshape_progress == 0);
5829 stripe_addr = writepos;
5830 BUG_ON((mddev->dev_sectors &
5831 ~((sector_t)reshape_sectors - 1))
5832 - reshape_sectors - stripe_addr
5833 != sector_nr);
5834 } else {
5835 BUG_ON(writepos != sector_nr + reshape_sectors);
5836 stripe_addr = sector_nr;
5837 }
5838
c8f517c4
N
5839 /* 'writepos' is the most advanced device address we might write.
5840 * 'readpos' is the least advanced device address we might read.
5841 * 'safepos' is the least address recorded in the metadata as having
5842 * been reshaped.
b5254dd5
N
5843 * If there is a min_offset_diff, these are adjusted either by
5844 * increasing the safepos/readpos if diff is negative, or
5845 * increasing writepos if diff is positive.
5846 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5847 * ensure safety in the face of a crash - that must be done by userspace
5848 * making a backup of the data. So in that case there is no particular
5849 * rush to update metadata.
5850 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5851 * update the metadata to advance 'safepos' to match 'readpos' so that
5852 * we can be safe in the event of a crash.
5853 * So we insist on updating metadata if safepos is behind writepos and
5854 * readpos is beyond writepos.
5855 * In any case, update the metadata every 10 seconds.
5856 * Maybe that number should be configurable, but I'm not sure it is
5857 * worth it.... maybe it could be a multiple of safemode_delay???
5858 */
b5254dd5
N
5859 if (conf->min_offset_diff < 0) {
5860 safepos += -conf->min_offset_diff;
5861 readpos += -conf->min_offset_diff;
5862 } else
5863 writepos += conf->min_offset_diff;
5864
2c810cdd 5865 if ((mddev->reshape_backwards
c8f517c4
N
5866 ? (safepos > writepos && readpos < writepos)
5867 : (safepos < writepos && readpos > writepos)) ||
5868 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5869 /* Cannot proceed until we've updated the superblock... */
5870 wait_event(conf->wait_for_overlap,
c91abf5a
N
5871 atomic_read(&conf->reshape_stripes)==0
5872 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5873 if (atomic_read(&conf->reshape_stripes) != 0)
5874 return 0;
fef9c61f 5875 mddev->reshape_position = conf->reshape_progress;
75d3da43 5876 mddev->curr_resync_completed = sector_nr;
db0505d3
N
5877 if (!mddev->reshape_backwards)
5878 /* Can update recovery_offset */
5879 rdev_for_each(rdev, mddev)
5880 if (rdev->raid_disk >= 0 &&
5881 !test_bit(Journal, &rdev->flags) &&
5882 !test_bit(In_sync, &rdev->flags) &&
5883 rdev->recovery_offset < sector_nr)
5884 rdev->recovery_offset = sector_nr;
5885
c8f517c4 5886 conf->reshape_checkpoint = jiffies;
2953079c 5887 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
52c03291 5888 md_wakeup_thread(mddev->thread);
2953079c 5889 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
5890 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5891 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5892 return 0;
52c03291 5893 spin_lock_irq(&conf->device_lock);
fef9c61f 5894 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5895 spin_unlock_irq(&conf->device_lock);
5896 wake_up(&conf->wait_for_overlap);
acb180b0 5897 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5898 }
5899
ab69ae12 5900 INIT_LIST_HEAD(&stripes);
7a661381 5901 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5902 int j;
a9f326eb 5903 int skipped_disk = 0;
6d036f7d 5904 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5905 set_bit(STRIPE_EXPANDING, &sh->state);
5906 atomic_inc(&conf->reshape_stripes);
5907 /* If any of this stripe is beyond the end of the old
5908 * array, then we need to zero those blocks
5909 */
5910 for (j=sh->disks; j--;) {
5911 sector_t s;
5912 if (j == sh->pd_idx)
5913 continue;
f416885e 5914 if (conf->level == 6 &&
d0dabf7e 5915 j == sh->qd_idx)
f416885e 5916 continue;
6d036f7d 5917 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 5918 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5919 skipped_disk = 1;
52c03291
N
5920 continue;
5921 }
5922 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5923 set_bit(R5_Expanded, &sh->dev[j].flags);
5924 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5925 }
a9f326eb 5926 if (!skipped_disk) {
52c03291
N
5927 set_bit(STRIPE_EXPAND_READY, &sh->state);
5928 set_bit(STRIPE_HANDLE, &sh->state);
5929 }
ab69ae12 5930 list_add(&sh->lru, &stripes);
52c03291
N
5931 }
5932 spin_lock_irq(&conf->device_lock);
2c810cdd 5933 if (mddev->reshape_backwards)
7a661381 5934 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5935 else
7a661381 5936 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5937 spin_unlock_irq(&conf->device_lock);
5938 /* Ok, those stripe are ready. We can start scheduling
5939 * reads on the source stripes.
5940 * The source stripes are determined by mapping the first and last
5941 * block on the destination stripes.
5942 */
52c03291 5943 first_sector =
ec32a2bd 5944 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5945 1, &dd_idx, NULL);
52c03291 5946 last_sector =
0e6e0271 5947 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5948 * new_data_disks - 1),
911d4ee8 5949 1, &dd_idx, NULL);
58c0fed4
AN
5950 if (last_sector >= mddev->dev_sectors)
5951 last_sector = mddev->dev_sectors - 1;
52c03291 5952 while (first_sector <= last_sector) {
6d036f7d 5953 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5954 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5955 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 5956 raid5_release_stripe(sh);
52c03291
N
5957 first_sector += STRIPE_SECTORS;
5958 }
ab69ae12
N
5959 /* Now that the sources are clearly marked, we can release
5960 * the destination stripes
5961 */
5962 while (!list_empty(&stripes)) {
5963 sh = list_entry(stripes.next, struct stripe_head, lru);
5964 list_del_init(&sh->lru);
6d036f7d 5965 raid5_release_stripe(sh);
ab69ae12 5966 }
c6207277
N
5967 /* If this takes us to the resync_max point where we have to pause,
5968 * then we need to write out the superblock.
5969 */
7a661381 5970 sector_nr += reshape_sectors;
92140480
N
5971 retn = reshape_sectors;
5972finish:
c5e19d90
N
5973 if (mddev->curr_resync_completed > mddev->resync_max ||
5974 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 5975 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5976 /* Cannot proceed until we've updated the superblock... */
5977 wait_event(conf->wait_for_overlap,
c91abf5a
N
5978 atomic_read(&conf->reshape_stripes) == 0
5979 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5980 if (atomic_read(&conf->reshape_stripes) != 0)
5981 goto ret;
fef9c61f 5982 mddev->reshape_position = conf->reshape_progress;
75d3da43 5983 mddev->curr_resync_completed = sector_nr;
db0505d3
N
5984 if (!mddev->reshape_backwards)
5985 /* Can update recovery_offset */
5986 rdev_for_each(rdev, mddev)
5987 if (rdev->raid_disk >= 0 &&
5988 !test_bit(Journal, &rdev->flags) &&
5989 !test_bit(In_sync, &rdev->flags) &&
5990 rdev->recovery_offset < sector_nr)
5991 rdev->recovery_offset = sector_nr;
c8f517c4 5992 conf->reshape_checkpoint = jiffies;
2953079c 5993 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
c6207277
N
5994 md_wakeup_thread(mddev->thread);
5995 wait_event(mddev->sb_wait,
2953079c 5996 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
c91abf5a
N
5997 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5998 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5999 goto ret;
c6207277 6000 spin_lock_irq(&conf->device_lock);
fef9c61f 6001 conf->reshape_safe = mddev->reshape_position;
c6207277
N
6002 spin_unlock_irq(&conf->device_lock);
6003 wake_up(&conf->wait_for_overlap);
acb180b0 6004 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 6005 }
c91abf5a 6006ret:
92140480 6007 return retn;
52c03291
N
6008}
6009
849674e4
SL
6010static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6011 int *skipped)
52c03291 6012{
d1688a6d 6013 struct r5conf *conf = mddev->private;
52c03291 6014 struct stripe_head *sh;
58c0fed4 6015 sector_t max_sector = mddev->dev_sectors;
57dab0bd 6016 sector_t sync_blocks;
16a53ecc
N
6017 int still_degraded = 0;
6018 int i;
1da177e4 6019
72626685 6020 if (sector_nr >= max_sector) {
1da177e4 6021 /* just being told to finish up .. nothing much to do */
cea9c228 6022
29269553
N
6023 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6024 end_reshape(conf);
6025 return 0;
6026 }
72626685
N
6027
6028 if (mddev->curr_resync < max_sector) /* aborted */
e64e4018
AS
6029 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6030 &sync_blocks, 1);
16a53ecc 6031 else /* completed sync */
72626685 6032 conf->fullsync = 0;
e64e4018 6033 md_bitmap_close_sync(mddev->bitmap);
72626685 6034
1da177e4
LT
6035 return 0;
6036 }
ccfcc3c1 6037
64bd660b
N
6038 /* Allow raid5_quiesce to complete */
6039 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6040
52c03291
N
6041 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6042 return reshape_request(mddev, sector_nr, skipped);
f6705578 6043
c6207277
N
6044 /* No need to check resync_max as we never do more than one
6045 * stripe, and as resync_max will always be on a chunk boundary,
6046 * if the check in md_do_sync didn't fire, there is no chance
6047 * of overstepping resync_max here
6048 */
6049
16a53ecc 6050 /* if there is too many failed drives and we are trying
1da177e4
LT
6051 * to resync, then assert that we are finished, because there is
6052 * nothing we can do.
6053 */
3285edf1 6054 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 6055 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 6056 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 6057 *skipped = 1;
1da177e4
LT
6058 return rv;
6059 }
6f608040 6060 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6061 !conf->fullsync &&
e64e4018 6062 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6f608040 6063 sync_blocks >= STRIPE_SECTORS) {
72626685
N
6064 /* we can skip this block, and probably more */
6065 sync_blocks /= STRIPE_SECTORS;
6066 *skipped = 1;
6067 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6068 }
1da177e4 6069
e64e4018 6070 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
b47490c9 6071
6d036f7d 6072 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 6073 if (sh == NULL) {
6d036f7d 6074 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 6075 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 6076 * is trying to get access
1da177e4 6077 */
66c006a5 6078 schedule_timeout_uninterruptible(1);
1da177e4 6079 }
16a53ecc 6080 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
6081 * Note in case of > 1 drive failures it's possible we're rebuilding
6082 * one drive while leaving another faulty drive in array.
16a53ecc 6083 */
16d9cfab
EM
6084 rcu_read_lock();
6085 for (i = 0; i < conf->raid_disks; i++) {
6aa7de05 6086 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
16d9cfab
EM
6087
6088 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 6089 still_degraded = 1;
16d9cfab
EM
6090 }
6091 rcu_read_unlock();
16a53ecc 6092
e64e4018 6093 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
16a53ecc 6094
83206d66 6095 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 6096 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 6097
6d036f7d 6098 raid5_release_stripe(sh);
1da177e4
LT
6099
6100 return STRIPE_SECTORS;
6101}
6102
0472a42b
N
6103static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6104 unsigned int offset)
46031f9a
RBJ
6105{
6106 /* We may not be able to submit a whole bio at once as there
6107 * may not be enough stripe_heads available.
6108 * We cannot pre-allocate enough stripe_heads as we may need
6109 * more than exist in the cache (if we allow ever large chunks).
6110 * So we do one stripe head at a time and record in
6111 * ->bi_hw_segments how many have been done.
6112 *
6113 * We *know* that this entire raid_bio is in one chunk, so
6114 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6115 */
6116 struct stripe_head *sh;
911d4ee8 6117 int dd_idx;
46031f9a
RBJ
6118 sector_t sector, logical_sector, last_sector;
6119 int scnt = 0;
46031f9a
RBJ
6120 int handled = 0;
6121
4f024f37
KO
6122 logical_sector = raid_bio->bi_iter.bi_sector &
6123 ~((sector_t)STRIPE_SECTORS-1);
112bf897 6124 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 6125 0, &dd_idx, NULL);
f73a1c7d 6126 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
6127
6128 for (; logical_sector < last_sector;
387bb173
NB
6129 logical_sector += STRIPE_SECTORS,
6130 sector += STRIPE_SECTORS,
6131 scnt++) {
46031f9a 6132
0472a42b 6133 if (scnt < offset)
46031f9a
RBJ
6134 /* already done this stripe */
6135 continue;
6136
6d036f7d 6137 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
6138
6139 if (!sh) {
6140 /* failed to get a stripe - must wait */
46031f9a 6141 conf->retry_read_aligned = raid_bio;
0472a42b 6142 conf->retry_read_offset = scnt;
46031f9a
RBJ
6143 return handled;
6144 }
6145
da41ba65 6146 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 6147 raid5_release_stripe(sh);
387bb173 6148 conf->retry_read_aligned = raid_bio;
0472a42b 6149 conf->retry_read_offset = scnt;
387bb173
NB
6150 return handled;
6151 }
6152
3f9e7c14 6153 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 6154 handle_stripe(sh);
6d036f7d 6155 raid5_release_stripe(sh);
46031f9a
RBJ
6156 handled++;
6157 }
016c76ac
N
6158
6159 bio_endio(raid_bio);
6160
46031f9a 6161 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 6162 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
6163 return handled;
6164}
6165
bfc90cb0 6166static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
6167 struct r5worker *worker,
6168 struct list_head *temp_inactive_list)
46a06401
SL
6169{
6170 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
6171 int i, batch_size = 0, hash;
6172 bool release_inactive = false;
46a06401
SL
6173
6174 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 6175 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
6176 batch[batch_size++] = sh;
6177
566c09c5
SL
6178 if (batch_size == 0) {
6179 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6180 if (!list_empty(temp_inactive_list + i))
6181 break;
a8c34f91
SL
6182 if (i == NR_STRIPE_HASH_LOCKS) {
6183 spin_unlock_irq(&conf->device_lock);
1532d9e8 6184 log_flush_stripe_to_raid(conf);
a8c34f91 6185 spin_lock_irq(&conf->device_lock);
566c09c5 6186 return batch_size;
a8c34f91 6187 }
566c09c5
SL
6188 release_inactive = true;
6189 }
46a06401
SL
6190 spin_unlock_irq(&conf->device_lock);
6191
566c09c5
SL
6192 release_inactive_stripe_list(conf, temp_inactive_list,
6193 NR_STRIPE_HASH_LOCKS);
6194
a8c34f91 6195 r5l_flush_stripe_to_raid(conf->log);
566c09c5
SL
6196 if (release_inactive) {
6197 spin_lock_irq(&conf->device_lock);
6198 return 0;
6199 }
6200
46a06401
SL
6201 for (i = 0; i < batch_size; i++)
6202 handle_stripe(batch[i]);
ff875738 6203 log_write_stripe_run(conf);
46a06401
SL
6204
6205 cond_resched();
6206
6207 spin_lock_irq(&conf->device_lock);
566c09c5
SL
6208 for (i = 0; i < batch_size; i++) {
6209 hash = batch[i]->hash_lock_index;
6210 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6211 }
46a06401
SL
6212 return batch_size;
6213}
46031f9a 6214
851c30c9
SL
6215static void raid5_do_work(struct work_struct *work)
6216{
6217 struct r5worker *worker = container_of(work, struct r5worker, work);
6218 struct r5worker_group *group = worker->group;
6219 struct r5conf *conf = group->conf;
16d997b7 6220 struct mddev *mddev = conf->mddev;
851c30c9
SL
6221 int group_id = group - conf->worker_groups;
6222 int handled;
6223 struct blk_plug plug;
6224
6225 pr_debug("+++ raid5worker active\n");
6226
6227 blk_start_plug(&plug);
6228 handled = 0;
6229 spin_lock_irq(&conf->device_lock);
6230 while (1) {
6231 int batch_size, released;
6232
566c09c5 6233 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 6234
566c09c5
SL
6235 batch_size = handle_active_stripes(conf, group_id, worker,
6236 worker->temp_inactive_list);
bfc90cb0 6237 worker->working = false;
851c30c9
SL
6238 if (!batch_size && !released)
6239 break;
6240 handled += batch_size;
16d997b7
N
6241 wait_event_lock_irq(mddev->sb_wait,
6242 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6243 conf->device_lock);
851c30c9
SL
6244 }
6245 pr_debug("%d stripes handled\n", handled);
6246
6247 spin_unlock_irq(&conf->device_lock);
7e96d559 6248
9c72a18e
SL
6249 flush_deferred_bios(conf);
6250
6251 r5l_flush_stripe_to_raid(conf->log);
6252
7e96d559 6253 async_tx_issue_pending_all();
851c30c9
SL
6254 blk_finish_plug(&plug);
6255
6256 pr_debug("--- raid5worker inactive\n");
6257}
6258
1da177e4
LT
6259/*
6260 * This is our raid5 kernel thread.
6261 *
6262 * We scan the hash table for stripes which can be handled now.
6263 * During the scan, completed stripes are saved for us by the interrupt
6264 * handler, so that they will not have to wait for our next wakeup.
6265 */
4ed8731d 6266static void raid5d(struct md_thread *thread)
1da177e4 6267{
4ed8731d 6268 struct mddev *mddev = thread->mddev;
d1688a6d 6269 struct r5conf *conf = mddev->private;
1da177e4 6270 int handled;
e1dfa0a2 6271 struct blk_plug plug;
1da177e4 6272
45b4233c 6273 pr_debug("+++ raid5d active\n");
1da177e4
LT
6274
6275 md_check_recovery(mddev);
1da177e4 6276
e1dfa0a2 6277 blk_start_plug(&plug);
1da177e4
LT
6278 handled = 0;
6279 spin_lock_irq(&conf->device_lock);
6280 while (1) {
46031f9a 6281 struct bio *bio;
773ca82f 6282 int batch_size, released;
0472a42b 6283 unsigned int offset;
773ca82f 6284
566c09c5 6285 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
6286 if (released)
6287 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 6288
0021b7bc 6289 if (
7c13edc8
N
6290 !list_empty(&conf->bitmap_list)) {
6291 /* Now is a good time to flush some bitmap updates */
6292 conf->seq_flush++;
700e432d 6293 spin_unlock_irq(&conf->device_lock);
e64e4018 6294 md_bitmap_unplug(mddev->bitmap);
700e432d 6295 spin_lock_irq(&conf->device_lock);
7c13edc8 6296 conf->seq_write = conf->seq_flush;
566c09c5 6297 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 6298 }
0021b7bc 6299 raid5_activate_delayed(conf);
72626685 6300
0472a42b 6301 while ((bio = remove_bio_from_retry(conf, &offset))) {
46031f9a
RBJ
6302 int ok;
6303 spin_unlock_irq(&conf->device_lock);
0472a42b 6304 ok = retry_aligned_read(conf, bio, offset);
46031f9a
RBJ
6305 spin_lock_irq(&conf->device_lock);
6306 if (!ok)
6307 break;
6308 handled++;
6309 }
6310
566c09c5
SL
6311 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6312 conf->temp_inactive_list);
773ca82f 6313 if (!batch_size && !released)
1da177e4 6314 break;
46a06401 6315 handled += batch_size;
1da177e4 6316
2953079c 6317 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
46a06401 6318 spin_unlock_irq(&conf->device_lock);
de393cde 6319 md_check_recovery(mddev);
46a06401
SL
6320 spin_lock_irq(&conf->device_lock);
6321 }
1da177e4 6322 }
45b4233c 6323 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
6324
6325 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
6326 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6327 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
6328 grow_one_stripe(conf, __GFP_NOWARN);
6329 /* Set flag even if allocation failed. This helps
6330 * slow down allocation requests when mem is short
6331 */
6332 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 6333 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 6334 }
1da177e4 6335
765d704d
SL
6336 flush_deferred_bios(conf);
6337
0576b1c6
SL
6338 r5l_flush_stripe_to_raid(conf->log);
6339
c9f21aaf 6340 async_tx_issue_pending_all();
e1dfa0a2 6341 blk_finish_plug(&plug);
1da177e4 6342
45b4233c 6343 pr_debug("--- raid5d inactive\n");
1da177e4
LT
6344}
6345
3f294f4f 6346static ssize_t
fd01b88c 6347raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 6348{
7b1485ba
N
6349 struct r5conf *conf;
6350 int ret = 0;
6351 spin_lock(&mddev->lock);
6352 conf = mddev->private;
96de1e66 6353 if (conf)
edbe83ab 6354 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
6355 spin_unlock(&mddev->lock);
6356 return ret;
3f294f4f
N
6357}
6358
c41d4ac4 6359int
fd01b88c 6360raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 6361{
483cbbed 6362 int result = 0;
d1688a6d 6363 struct r5conf *conf = mddev->private;
b5470dc5 6364
c41d4ac4 6365 if (size <= 16 || size > 32768)
3f294f4f 6366 return -EINVAL;
486f0644 6367
edbe83ab 6368 conf->min_nr_stripes = size;
2d5b569b 6369 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6370 while (size < conf->max_nr_stripes &&
6371 drop_one_stripe(conf))
6372 ;
2d5b569b 6373 mutex_unlock(&conf->cache_size_mutex);
486f0644 6374
2214c260 6375 md_allow_write(mddev);
486f0644 6376
2d5b569b 6377 mutex_lock(&conf->cache_size_mutex);
486f0644 6378 while (size > conf->max_nr_stripes)
483cbbed
AN
6379 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6380 conf->min_nr_stripes = conf->max_nr_stripes;
6381 result = -ENOMEM;
486f0644 6382 break;
483cbbed 6383 }
2d5b569b 6384 mutex_unlock(&conf->cache_size_mutex);
486f0644 6385
483cbbed 6386 return result;
c41d4ac4
N
6387}
6388EXPORT_SYMBOL(raid5_set_cache_size);
6389
6390static ssize_t
fd01b88c 6391raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 6392{
6791875e 6393 struct r5conf *conf;
c41d4ac4
N
6394 unsigned long new;
6395 int err;
6396
6397 if (len >= PAGE_SIZE)
6398 return -EINVAL;
b29bebd6 6399 if (kstrtoul(page, 10, &new))
c41d4ac4 6400 return -EINVAL;
6791875e 6401 err = mddev_lock(mddev);
c41d4ac4
N
6402 if (err)
6403 return err;
6791875e
N
6404 conf = mddev->private;
6405 if (!conf)
6406 err = -ENODEV;
6407 else
6408 err = raid5_set_cache_size(mddev, new);
6409 mddev_unlock(mddev);
6410
6411 return err ?: len;
3f294f4f 6412}
007583c9 6413
96de1e66
N
6414static struct md_sysfs_entry
6415raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6416 raid5_show_stripe_cache_size,
6417 raid5_store_stripe_cache_size);
3f294f4f 6418
d06f191f
MS
6419static ssize_t
6420raid5_show_rmw_level(struct mddev *mddev, char *page)
6421{
6422 struct r5conf *conf = mddev->private;
6423 if (conf)
6424 return sprintf(page, "%d\n", conf->rmw_level);
6425 else
6426 return 0;
6427}
6428
6429static ssize_t
6430raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6431{
6432 struct r5conf *conf = mddev->private;
6433 unsigned long new;
6434
6435 if (!conf)
6436 return -ENODEV;
6437
6438 if (len >= PAGE_SIZE)
6439 return -EINVAL;
6440
6441 if (kstrtoul(page, 10, &new))
6442 return -EINVAL;
6443
6444 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6445 return -EINVAL;
6446
6447 if (new != PARITY_DISABLE_RMW &&
6448 new != PARITY_ENABLE_RMW &&
6449 new != PARITY_PREFER_RMW)
6450 return -EINVAL;
6451
6452 conf->rmw_level = new;
6453 return len;
6454}
6455
6456static struct md_sysfs_entry
6457raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6458 raid5_show_rmw_level,
6459 raid5_store_rmw_level);
6460
6461
8b3e6cdc 6462static ssize_t
fd01b88c 6463raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 6464{
7b1485ba
N
6465 struct r5conf *conf;
6466 int ret = 0;
6467 spin_lock(&mddev->lock);
6468 conf = mddev->private;
8b3e6cdc 6469 if (conf)
7b1485ba
N
6470 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6471 spin_unlock(&mddev->lock);
6472 return ret;
8b3e6cdc
DW
6473}
6474
6475static ssize_t
fd01b88c 6476raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6477{
6791875e 6478 struct r5conf *conf;
4ef197d8 6479 unsigned long new;
6791875e
N
6480 int err;
6481
8b3e6cdc
DW
6482 if (len >= PAGE_SIZE)
6483 return -EINVAL;
b29bebd6 6484 if (kstrtoul(page, 10, &new))
8b3e6cdc 6485 return -EINVAL;
6791875e
N
6486
6487 err = mddev_lock(mddev);
6488 if (err)
6489 return err;
6490 conf = mddev->private;
6491 if (!conf)
6492 err = -ENODEV;
edbe83ab 6493 else if (new > conf->min_nr_stripes)
6791875e
N
6494 err = -EINVAL;
6495 else
6496 conf->bypass_threshold = new;
6497 mddev_unlock(mddev);
6498 return err ?: len;
8b3e6cdc
DW
6499}
6500
6501static struct md_sysfs_entry
6502raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6503 S_IRUGO | S_IWUSR,
6504 raid5_show_preread_threshold,
6505 raid5_store_preread_threshold);
6506
d592a996
SL
6507static ssize_t
6508raid5_show_skip_copy(struct mddev *mddev, char *page)
6509{
7b1485ba
N
6510 struct r5conf *conf;
6511 int ret = 0;
6512 spin_lock(&mddev->lock);
6513 conf = mddev->private;
d592a996 6514 if (conf)
7b1485ba
N
6515 ret = sprintf(page, "%d\n", conf->skip_copy);
6516 spin_unlock(&mddev->lock);
6517 return ret;
d592a996
SL
6518}
6519
6520static ssize_t
6521raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6522{
6791875e 6523 struct r5conf *conf;
d592a996 6524 unsigned long new;
6791875e
N
6525 int err;
6526
d592a996
SL
6527 if (len >= PAGE_SIZE)
6528 return -EINVAL;
d592a996
SL
6529 if (kstrtoul(page, 10, &new))
6530 return -EINVAL;
6531 new = !!new;
6791875e
N
6532
6533 err = mddev_lock(mddev);
6534 if (err)
6535 return err;
6536 conf = mddev->private;
6537 if (!conf)
6538 err = -ENODEV;
6539 else if (new != conf->skip_copy) {
6540 mddev_suspend(mddev);
6541 conf->skip_copy = new;
6542 if (new)
dc3b17cc 6543 mddev->queue->backing_dev_info->capabilities |=
6791875e
N
6544 BDI_CAP_STABLE_WRITES;
6545 else
dc3b17cc 6546 mddev->queue->backing_dev_info->capabilities &=
6791875e
N
6547 ~BDI_CAP_STABLE_WRITES;
6548 mddev_resume(mddev);
6549 }
6550 mddev_unlock(mddev);
6551 return err ?: len;
d592a996
SL
6552}
6553
6554static struct md_sysfs_entry
6555raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6556 raid5_show_skip_copy,
6557 raid5_store_skip_copy);
6558
3f294f4f 6559static ssize_t
fd01b88c 6560stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6561{
d1688a6d 6562 struct r5conf *conf = mddev->private;
96de1e66
N
6563 if (conf)
6564 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6565 else
6566 return 0;
3f294f4f
N
6567}
6568
96de1e66
N
6569static struct md_sysfs_entry
6570raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6571
b721420e
SL
6572static ssize_t
6573raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6574{
7b1485ba
N
6575 struct r5conf *conf;
6576 int ret = 0;
6577 spin_lock(&mddev->lock);
6578 conf = mddev->private;
b721420e 6579 if (conf)
7b1485ba
N
6580 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6581 spin_unlock(&mddev->lock);
6582 return ret;
b721420e
SL
6583}
6584
60aaf933 6585static int alloc_thread_groups(struct r5conf *conf, int cnt,
6586 int *group_cnt,
6587 int *worker_cnt_per_group,
6588 struct r5worker_group **worker_groups);
b721420e
SL
6589static ssize_t
6590raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6591{
6791875e 6592 struct r5conf *conf;
7d5d7b50 6593 unsigned int new;
b721420e 6594 int err;
60aaf933 6595 struct r5worker_group *new_groups, *old_groups;
6596 int group_cnt, worker_cnt_per_group;
b721420e
SL
6597
6598 if (len >= PAGE_SIZE)
6599 return -EINVAL;
7d5d7b50
SL
6600 if (kstrtouint(page, 10, &new))
6601 return -EINVAL;
6602 /* 8192 should be big enough */
6603 if (new > 8192)
b721420e
SL
6604 return -EINVAL;
6605
6791875e
N
6606 err = mddev_lock(mddev);
6607 if (err)
6608 return err;
6609 conf = mddev->private;
6610 if (!conf)
6611 err = -ENODEV;
6612 else if (new != conf->worker_cnt_per_group) {
6613 mddev_suspend(mddev);
b721420e 6614
6791875e
N
6615 old_groups = conf->worker_groups;
6616 if (old_groups)
6617 flush_workqueue(raid5_wq);
d206dcfa 6618
6791875e
N
6619 err = alloc_thread_groups(conf, new,
6620 &group_cnt, &worker_cnt_per_group,
6621 &new_groups);
6622 if (!err) {
6623 spin_lock_irq(&conf->device_lock);
6624 conf->group_cnt = group_cnt;
6625 conf->worker_cnt_per_group = worker_cnt_per_group;
6626 conf->worker_groups = new_groups;
6627 spin_unlock_irq(&conf->device_lock);
b721420e 6628
6791875e
N
6629 if (old_groups)
6630 kfree(old_groups[0].workers);
6631 kfree(old_groups);
6632 }
6633 mddev_resume(mddev);
b721420e 6634 }
6791875e 6635 mddev_unlock(mddev);
b721420e 6636
6791875e 6637 return err ?: len;
b721420e
SL
6638}
6639
6640static struct md_sysfs_entry
6641raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6642 raid5_show_group_thread_cnt,
6643 raid5_store_group_thread_cnt);
6644
007583c9 6645static struct attribute *raid5_attrs[] = {
3f294f4f
N
6646 &raid5_stripecache_size.attr,
6647 &raid5_stripecache_active.attr,
8b3e6cdc 6648 &raid5_preread_bypass_threshold.attr,
b721420e 6649 &raid5_group_thread_cnt.attr,
d592a996 6650 &raid5_skip_copy.attr,
d06f191f 6651 &raid5_rmw_level.attr,
2c7da14b 6652 &r5c_journal_mode.attr,
3f294f4f
N
6653 NULL,
6654};
007583c9
N
6655static struct attribute_group raid5_attrs_group = {
6656 .name = NULL,
6657 .attrs = raid5_attrs,
3f294f4f
N
6658};
6659
60aaf933 6660static int alloc_thread_groups(struct r5conf *conf, int cnt,
6661 int *group_cnt,
6662 int *worker_cnt_per_group,
6663 struct r5worker_group **worker_groups)
851c30c9 6664{
566c09c5 6665 int i, j, k;
851c30c9
SL
6666 ssize_t size;
6667 struct r5worker *workers;
6668
60aaf933 6669 *worker_cnt_per_group = cnt;
851c30c9 6670 if (cnt == 0) {
60aaf933 6671 *group_cnt = 0;
6672 *worker_groups = NULL;
851c30c9
SL
6673 return 0;
6674 }
60aaf933 6675 *group_cnt = num_possible_nodes();
851c30c9 6676 size = sizeof(struct r5worker) * cnt;
6396bb22
KC
6677 workers = kcalloc(size, *group_cnt, GFP_NOIO);
6678 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6679 GFP_NOIO);
60aaf933 6680 if (!*worker_groups || !workers) {
851c30c9 6681 kfree(workers);
60aaf933 6682 kfree(*worker_groups);
851c30c9
SL
6683 return -ENOMEM;
6684 }
6685
60aaf933 6686 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6687 struct r5worker_group *group;
6688
0c775d52 6689 group = &(*worker_groups)[i];
851c30c9 6690 INIT_LIST_HEAD(&group->handle_list);
535ae4eb 6691 INIT_LIST_HEAD(&group->loprio_list);
851c30c9
SL
6692 group->conf = conf;
6693 group->workers = workers + i * cnt;
6694
6695 for (j = 0; j < cnt; j++) {
566c09c5
SL
6696 struct r5worker *worker = group->workers + j;
6697 worker->group = group;
6698 INIT_WORK(&worker->work, raid5_do_work);
6699
6700 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6701 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6702 }
6703 }
6704
6705 return 0;
6706}
6707
6708static void free_thread_groups(struct r5conf *conf)
6709{
6710 if (conf->worker_groups)
6711 kfree(conf->worker_groups[0].workers);
6712 kfree(conf->worker_groups);
6713 conf->worker_groups = NULL;
6714}
6715
80c3a6ce 6716static sector_t
fd01b88c 6717raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6718{
d1688a6d 6719 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6720
6721 if (!sectors)
6722 sectors = mddev->dev_sectors;
5e5e3e78 6723 if (!raid_disks)
7ec05478 6724 /* size is defined by the smallest of previous and new size */
5e5e3e78 6725 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6726
3cb5edf4
N
6727 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6728 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
6729 return sectors * (raid_disks - conf->max_degraded);
6730}
6731
789b5e03
ON
6732static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6733{
6734 safe_put_page(percpu->spare_page);
789b5e03 6735 percpu->spare_page = NULL;
b330e6a4 6736 kvfree(percpu->scribble);
789b5e03
ON
6737 percpu->scribble = NULL;
6738}
6739
6740static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6741{
b330e6a4 6742 if (conf->level == 6 && !percpu->spare_page) {
789b5e03 6743 percpu->spare_page = alloc_page(GFP_KERNEL);
b330e6a4
KO
6744 if (!percpu->spare_page)
6745 return -ENOMEM;
6746 }
6747
6748 if (scribble_alloc(percpu,
6749 max(conf->raid_disks,
6750 conf->previous_raid_disks),
6751 max(conf->chunk_sectors,
6752 conf->prev_chunk_sectors)
6753 / STRIPE_SECTORS,
6754 GFP_KERNEL)) {
789b5e03
ON
6755 free_scratch_buffer(conf, percpu);
6756 return -ENOMEM;
6757 }
6758
6759 return 0;
6760}
6761
29c6d1bb 6762static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
36d1c647 6763{
29c6d1bb
SAS
6764 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6765
6766 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6767 return 0;
6768}
36d1c647 6769
29c6d1bb
SAS
6770static void raid5_free_percpu(struct r5conf *conf)
6771{
36d1c647
DW
6772 if (!conf->percpu)
6773 return;
6774
29c6d1bb 6775 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
36d1c647
DW
6776 free_percpu(conf->percpu);
6777}
6778
d1688a6d 6779static void free_conf(struct r5conf *conf)
95fc17aa 6780{
d7bd398e
SL
6781 int i;
6782
ff875738
AP
6783 log_exit(conf);
6784
565e0450 6785 unregister_shrinker(&conf->shrinker);
851c30c9 6786 free_thread_groups(conf);
95fc17aa 6787 shrink_stripes(conf);
36d1c647 6788 raid5_free_percpu(conf);
d7bd398e
SL
6789 for (i = 0; i < conf->pool_size; i++)
6790 if (conf->disks[i].extra_page)
6791 put_page(conf->disks[i].extra_page);
95fc17aa 6792 kfree(conf->disks);
afeee514 6793 bioset_exit(&conf->bio_split);
95fc17aa 6794 kfree(conf->stripe_hashtbl);
aaf9f12e 6795 kfree(conf->pending_data);
95fc17aa
DW
6796 kfree(conf);
6797}
6798
29c6d1bb 6799static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
36d1c647 6800{
29c6d1bb 6801 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
36d1c647
DW
6802 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6803
29c6d1bb 6804 if (alloc_scratch_buffer(conf, percpu)) {
cc6167b4
N
6805 pr_warn("%s: failed memory allocation for cpu%u\n",
6806 __func__, cpu);
29c6d1bb 6807 return -ENOMEM;
36d1c647 6808 }
29c6d1bb 6809 return 0;
36d1c647 6810}
36d1c647 6811
d1688a6d 6812static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647 6813{
789b5e03 6814 int err = 0;
36d1c647 6815
789b5e03
ON
6816 conf->percpu = alloc_percpu(struct raid5_percpu);
6817 if (!conf->percpu)
36d1c647 6818 return -ENOMEM;
789b5e03 6819
29c6d1bb 6820 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
27a353c0
SL
6821 if (!err) {
6822 conf->scribble_disks = max(conf->raid_disks,
6823 conf->previous_raid_disks);
6824 conf->scribble_sectors = max(conf->chunk_sectors,
6825 conf->prev_chunk_sectors);
6826 }
36d1c647
DW
6827 return err;
6828}
6829
edbe83ab
N
6830static unsigned long raid5_cache_scan(struct shrinker *shrink,
6831 struct shrink_control *sc)
6832{
6833 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
6834 unsigned long ret = SHRINK_STOP;
6835
6836 if (mutex_trylock(&conf->cache_size_mutex)) {
6837 ret= 0;
49895bcc
N
6838 while (ret < sc->nr_to_scan &&
6839 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
6840 if (drop_one_stripe(conf) == 0) {
6841 ret = SHRINK_STOP;
6842 break;
6843 }
6844 ret++;
6845 }
6846 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
6847 }
6848 return ret;
6849}
6850
6851static unsigned long raid5_cache_count(struct shrinker *shrink,
6852 struct shrink_control *sc)
6853{
6854 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6855
6856 if (conf->max_nr_stripes < conf->min_nr_stripes)
6857 /* unlikely, but not impossible */
6858 return 0;
6859 return conf->max_nr_stripes - conf->min_nr_stripes;
6860}
6861
d1688a6d 6862static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6863{
d1688a6d 6864 struct r5conf *conf;
5e5e3e78 6865 int raid_disk, memory, max_disks;
3cb03002 6866 struct md_rdev *rdev;
1da177e4 6867 struct disk_info *disk;
0232605d 6868 char pers_name[6];
566c09c5 6869 int i;
60aaf933 6870 int group_cnt, worker_cnt_per_group;
6871 struct r5worker_group *new_group;
afeee514 6872 int ret;
1da177e4 6873
91adb564
N
6874 if (mddev->new_level != 5
6875 && mddev->new_level != 4
6876 && mddev->new_level != 6) {
cc6167b4
N
6877 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6878 mdname(mddev), mddev->new_level);
91adb564 6879 return ERR_PTR(-EIO);
1da177e4 6880 }
91adb564
N
6881 if ((mddev->new_level == 5
6882 && !algorithm_valid_raid5(mddev->new_layout)) ||
6883 (mddev->new_level == 6
6884 && !algorithm_valid_raid6(mddev->new_layout))) {
cc6167b4
N
6885 pr_warn("md/raid:%s: layout %d not supported\n",
6886 mdname(mddev), mddev->new_layout);
91adb564 6887 return ERR_PTR(-EIO);
99c0fb5f 6888 }
91adb564 6889 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
cc6167b4
N
6890 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6891 mdname(mddev), mddev->raid_disks);
91adb564 6892 return ERR_PTR(-EINVAL);
4bbf3771
N
6893 }
6894
664e7c41
AN
6895 if (!mddev->new_chunk_sectors ||
6896 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6897 !is_power_of_2(mddev->new_chunk_sectors)) {
cc6167b4
N
6898 pr_warn("md/raid:%s: invalid chunk size %d\n",
6899 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6900 return ERR_PTR(-EINVAL);
f6705578
N
6901 }
6902
d1688a6d 6903 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6904 if (conf == NULL)
1da177e4 6905 goto abort;
aaf9f12e
SL
6906 INIT_LIST_HEAD(&conf->free_list);
6907 INIT_LIST_HEAD(&conf->pending_list);
6396bb22
KC
6908 conf->pending_data = kcalloc(PENDING_IO_MAX,
6909 sizeof(struct r5pending_data),
6910 GFP_KERNEL);
aaf9f12e
SL
6911 if (!conf->pending_data)
6912 goto abort;
6913 for (i = 0; i < PENDING_IO_MAX; i++)
6914 list_add(&conf->pending_data[i].sibling, &conf->free_list);
851c30c9 6915 /* Don't enable multi-threading by default*/
60aaf933 6916 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6917 &new_group)) {
6918 conf->group_cnt = group_cnt;
6919 conf->worker_cnt_per_group = worker_cnt_per_group;
6920 conf->worker_groups = new_group;
6921 } else
851c30c9 6922 goto abort;
f5efd45a 6923 spin_lock_init(&conf->device_lock);
c46501b2 6924 seqcount_init(&conf->gen_lock);
2d5b569b 6925 mutex_init(&conf->cache_size_mutex);
b1b46486 6926 init_waitqueue_head(&conf->wait_for_quiescent);
6ab2a4b8 6927 init_waitqueue_head(&conf->wait_for_stripe);
f5efd45a
DW
6928 init_waitqueue_head(&conf->wait_for_overlap);
6929 INIT_LIST_HEAD(&conf->handle_list);
535ae4eb 6930 INIT_LIST_HEAD(&conf->loprio_list);
f5efd45a
DW
6931 INIT_LIST_HEAD(&conf->hold_list);
6932 INIT_LIST_HEAD(&conf->delayed_list);
6933 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 6934 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6935 atomic_set(&conf->active_stripes, 0);
6936 atomic_set(&conf->preread_active_stripes, 0);
6937 atomic_set(&conf->active_aligned_reads, 0);
765d704d
SL
6938 spin_lock_init(&conf->pending_bios_lock);
6939 conf->batch_bio_dispatch = true;
6940 rdev_for_each(rdev, mddev) {
6941 if (test_bit(Journal, &rdev->flags))
6942 continue;
6943 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6944 conf->batch_bio_dispatch = false;
6945 break;
6946 }
6947 }
6948
f5efd45a 6949 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6950 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6951
6952 conf->raid_disks = mddev->raid_disks;
6953 if (mddev->reshape_position == MaxSector)
6954 conf->previous_raid_disks = mddev->raid_disks;
6955 else
f6705578 6956 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6957 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6958
6396bb22 6959 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
b55e6bfc 6960 GFP_KERNEL);
d7bd398e 6961
b55e6bfc
N
6962 if (!conf->disks)
6963 goto abort;
9ffae0cf 6964
d7bd398e
SL
6965 for (i = 0; i < max_disks; i++) {
6966 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6967 if (!conf->disks[i].extra_page)
6968 goto abort;
6969 }
6970
afeee514
KO
6971 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6972 if (ret)
dd7a8f5d 6973 goto abort;
1da177e4
LT
6974 conf->mddev = mddev;
6975
fccddba0 6976 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6977 goto abort;
1da177e4 6978
566c09c5
SL
6979 /* We init hash_locks[0] separately to that it can be used
6980 * as the reference lock in the spin_lock_nest_lock() call
6981 * in lock_all_device_hash_locks_irq in order to convince
6982 * lockdep that we know what we are doing.
6983 */
6984 spin_lock_init(conf->hash_locks);
6985 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6986 spin_lock_init(conf->hash_locks + i);
6987
6988 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6989 INIT_LIST_HEAD(conf->inactive_list + i);
6990
6991 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6992 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6993
1e6d690b
SL
6994 atomic_set(&conf->r5c_cached_full_stripes, 0);
6995 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6996 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6997 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
e33fbb9c
SL
6998 atomic_set(&conf->r5c_flushing_full_stripes, 0);
6999 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
1e6d690b 7000
36d1c647 7001 conf->level = mddev->new_level;
46d5b785 7002 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
7003 if (raid5_alloc_percpu(conf) != 0)
7004 goto abort;
7005
0c55e022 7006 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 7007
dafb20fa 7008 rdev_for_each(rdev, mddev) {
1da177e4 7009 raid_disk = rdev->raid_disk;
5e5e3e78 7010 if (raid_disk >= max_disks
f2076e7d 7011 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
1da177e4
LT
7012 continue;
7013 disk = conf->disks + raid_disk;
7014
17045f52
N
7015 if (test_bit(Replacement, &rdev->flags)) {
7016 if (disk->replacement)
7017 goto abort;
7018 disk->replacement = rdev;
7019 } else {
7020 if (disk->rdev)
7021 goto abort;
7022 disk->rdev = rdev;
7023 }
1da177e4 7024
b2d444d7 7025 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 7026 char b[BDEVNAME_SIZE];
cc6167b4
N
7027 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7028 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 7029 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
7030 /* Cannot rely on bitmap to complete recovery */
7031 conf->fullsync = 1;
1da177e4
LT
7032 }
7033
91adb564 7034 conf->level = mddev->new_level;
584acdd4 7035 if (conf->level == 6) {
16a53ecc 7036 conf->max_degraded = 2;
584acdd4
MS
7037 if (raid6_call.xor_syndrome)
7038 conf->rmw_level = PARITY_ENABLE_RMW;
7039 else
7040 conf->rmw_level = PARITY_DISABLE_RMW;
7041 } else {
16a53ecc 7042 conf->max_degraded = 1;
584acdd4
MS
7043 conf->rmw_level = PARITY_ENABLE_RMW;
7044 }
91adb564 7045 conf->algorithm = mddev->new_layout;
fef9c61f 7046 conf->reshape_progress = mddev->reshape_position;
e183eaed 7047 if (conf->reshape_progress != MaxSector) {
09c9e5fa 7048 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 7049 conf->prev_algo = mddev->layout;
5cac6bcb
N
7050 } else {
7051 conf->prev_chunk_sectors = conf->chunk_sectors;
7052 conf->prev_algo = conf->algorithm;
e183eaed 7053 }
1da177e4 7054
edbe83ab 7055 conf->min_nr_stripes = NR_STRIPES;
ad5b0f76
SL
7056 if (mddev->reshape_position != MaxSector) {
7057 int stripes = max_t(int,
7058 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7059 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7060 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7061 if (conf->min_nr_stripes != NR_STRIPES)
cc6167b4 7062 pr_info("md/raid:%s: force stripe size %d for reshape\n",
ad5b0f76
SL
7063 mdname(mddev), conf->min_nr_stripes);
7064 }
edbe83ab 7065 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 7066 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 7067 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 7068 if (grow_stripes(conf, conf->min_nr_stripes)) {
cc6167b4
N
7069 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7070 mdname(mddev), memory);
91adb564
N
7071 goto abort;
7072 } else
cc6167b4 7073 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
edbe83ab
N
7074 /*
7075 * Losing a stripe head costs more than the time to refill it,
7076 * it reduces the queue depth and so can hurt throughput.
7077 * So set it rather large, scaled by number of devices.
7078 */
7079 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7080 conf->shrinker.scan_objects = raid5_cache_scan;
7081 conf->shrinker.count_objects = raid5_cache_count;
7082 conf->shrinker.batch = 128;
7083 conf->shrinker.flags = 0;
6a0f53ff 7084 if (register_shrinker(&conf->shrinker)) {
cc6167b4
N
7085 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7086 mdname(mddev));
6a0f53ff
CY
7087 goto abort;
7088 }
1da177e4 7089
0232605d
N
7090 sprintf(pers_name, "raid%d", mddev->new_level);
7091 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564 7092 if (!conf->thread) {
cc6167b4
N
7093 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7094 mdname(mddev));
16a53ecc
N
7095 goto abort;
7096 }
91adb564
N
7097
7098 return conf;
7099
7100 abort:
7101 if (conf) {
95fc17aa 7102 free_conf(conf);
91adb564
N
7103 return ERR_PTR(-EIO);
7104 } else
7105 return ERR_PTR(-ENOMEM);
7106}
7107
c148ffdc
N
7108static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7109{
7110 switch (algo) {
7111 case ALGORITHM_PARITY_0:
7112 if (raid_disk < max_degraded)
7113 return 1;
7114 break;
7115 case ALGORITHM_PARITY_N:
7116 if (raid_disk >= raid_disks - max_degraded)
7117 return 1;
7118 break;
7119 case ALGORITHM_PARITY_0_6:
f72ffdd6 7120 if (raid_disk == 0 ||
c148ffdc
N
7121 raid_disk == raid_disks - 1)
7122 return 1;
7123 break;
7124 case ALGORITHM_LEFT_ASYMMETRIC_6:
7125 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7126 case ALGORITHM_LEFT_SYMMETRIC_6:
7127 case ALGORITHM_RIGHT_SYMMETRIC_6:
7128 if (raid_disk == raid_disks - 1)
7129 return 1;
7130 }
7131 return 0;
7132}
7133
849674e4 7134static int raid5_run(struct mddev *mddev)
91adb564 7135{
d1688a6d 7136 struct r5conf *conf;
9f7c2220 7137 int working_disks = 0;
c148ffdc 7138 int dirty_parity_disks = 0;
3cb03002 7139 struct md_rdev *rdev;
713cf5a6 7140 struct md_rdev *journal_dev = NULL;
c148ffdc 7141 sector_t reshape_offset = 0;
17045f52 7142 int i;
b5254dd5
N
7143 long long min_offset_diff = 0;
7144 int first = 1;
91adb564 7145
a415c0f1
N
7146 if (mddev_init_writes_pending(mddev) < 0)
7147 return -ENOMEM;
7148
8c6ac868 7149 if (mddev->recovery_cp != MaxSector)
cc6167b4
N
7150 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7151 mdname(mddev));
b5254dd5
N
7152
7153 rdev_for_each(rdev, mddev) {
7154 long long diff;
713cf5a6 7155
f2076e7d 7156 if (test_bit(Journal, &rdev->flags)) {
713cf5a6 7157 journal_dev = rdev;
f2076e7d
SL
7158 continue;
7159 }
b5254dd5
N
7160 if (rdev->raid_disk < 0)
7161 continue;
7162 diff = (rdev->new_data_offset - rdev->data_offset);
7163 if (first) {
7164 min_offset_diff = diff;
7165 first = 0;
7166 } else if (mddev->reshape_backwards &&
7167 diff < min_offset_diff)
7168 min_offset_diff = diff;
7169 else if (!mddev->reshape_backwards &&
7170 diff > min_offset_diff)
7171 min_offset_diff = diff;
7172 }
7173
230b55fa
N
7174 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7175 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7176 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7177 mdname(mddev));
7178 return -EINVAL;
7179 }
7180
91adb564
N
7181 if (mddev->reshape_position != MaxSector) {
7182 /* Check that we can continue the reshape.
b5254dd5
N
7183 * Difficulties arise if the stripe we would write to
7184 * next is at or after the stripe we would read from next.
7185 * For a reshape that changes the number of devices, this
7186 * is only possible for a very short time, and mdadm makes
7187 * sure that time appears to have past before assembling
7188 * the array. So we fail if that time hasn't passed.
7189 * For a reshape that keeps the number of devices the same
7190 * mdadm must be monitoring the reshape can keeping the
7191 * critical areas read-only and backed up. It will start
7192 * the array in read-only mode, so we check for that.
91adb564
N
7193 */
7194 sector_t here_new, here_old;
7195 int old_disks;
18b00334 7196 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
7197 int chunk_sectors;
7198 int new_data_disks;
91adb564 7199
713cf5a6 7200 if (journal_dev) {
cc6167b4
N
7201 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7202 mdname(mddev));
713cf5a6
SL
7203 return -EINVAL;
7204 }
7205
88ce4930 7206 if (mddev->new_level != mddev->level) {
cc6167b4
N
7207 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7208 mdname(mddev));
91adb564
N
7209 return -EINVAL;
7210 }
91adb564
N
7211 old_disks = mddev->raid_disks - mddev->delta_disks;
7212 /* reshape_position must be on a new-stripe boundary, and one
7213 * further up in new geometry must map after here in old
7214 * geometry.
05256d98
N
7215 * If the chunk sizes are different, then as we perform reshape
7216 * in units of the largest of the two, reshape_position needs
7217 * be a multiple of the largest chunk size times new data disks.
91adb564
N
7218 */
7219 here_new = mddev->reshape_position;
05256d98
N
7220 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7221 new_data_disks = mddev->raid_disks - max_degraded;
7222 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
cc6167b4
N
7223 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7224 mdname(mddev));
91adb564
N
7225 return -EINVAL;
7226 }
05256d98 7227 reshape_offset = here_new * chunk_sectors;
91adb564
N
7228 /* here_new is the stripe we will write to */
7229 here_old = mddev->reshape_position;
05256d98 7230 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
7231 /* here_old is the first stripe that we might need to read
7232 * from */
67ac6011
N
7233 if (mddev->delta_disks == 0) {
7234 /* We cannot be sure it is safe to start an in-place
b5254dd5 7235 * reshape. It is only safe if user-space is monitoring
67ac6011
N
7236 * and taking constant backups.
7237 * mdadm always starts a situation like this in
7238 * readonly mode so it can take control before
7239 * allowing any writes. So just check for that.
7240 */
b5254dd5
N
7241 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7242 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7243 /* not really in-place - so OK */;
7244 else if (mddev->ro == 0) {
cc6167b4
N
7245 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7246 mdname(mddev));
67ac6011
N
7247 return -EINVAL;
7248 }
2c810cdd 7249 } else if (mddev->reshape_backwards
05256d98
N
7250 ? (here_new * chunk_sectors + min_offset_diff <=
7251 here_old * chunk_sectors)
7252 : (here_new * chunk_sectors >=
7253 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 7254 /* Reading from the same stripe as writing to - bad */
cc6167b4
N
7255 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7256 mdname(mddev));
91adb564
N
7257 return -EINVAL;
7258 }
cc6167b4 7259 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
91adb564
N
7260 /* OK, we should be able to continue; */
7261 } else {
7262 BUG_ON(mddev->level != mddev->new_level);
7263 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 7264 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 7265 BUG_ON(mddev->delta_disks != 0);
1da177e4 7266 }
91adb564 7267
3418d036
AP
7268 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7269 test_bit(MD_HAS_PPL, &mddev->flags)) {
7270 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7271 mdname(mddev));
7272 clear_bit(MD_HAS_PPL, &mddev->flags);
ddc08823 7273 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
3418d036
AP
7274 }
7275
245f46c2
N
7276 if (mddev->private == NULL)
7277 conf = setup_conf(mddev);
7278 else
7279 conf = mddev->private;
7280
91adb564
N
7281 if (IS_ERR(conf))
7282 return PTR_ERR(conf);
7283
486b0f7b
SL
7284 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7285 if (!journal_dev) {
cc6167b4
N
7286 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7287 mdname(mddev));
486b0f7b
SL
7288 mddev->ro = 1;
7289 set_disk_ro(mddev->gendisk, 1);
7290 } else if (mddev->recovery_cp == MaxSector)
7291 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7dde2ad3
SL
7292 }
7293
b5254dd5 7294 conf->min_offset_diff = min_offset_diff;
91adb564
N
7295 mddev->thread = conf->thread;
7296 conf->thread = NULL;
7297 mddev->private = conf;
7298
17045f52
N
7299 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7300 i++) {
7301 rdev = conf->disks[i].rdev;
7302 if (!rdev && conf->disks[i].replacement) {
7303 /* The replacement is all we have yet */
7304 rdev = conf->disks[i].replacement;
7305 conf->disks[i].replacement = NULL;
7306 clear_bit(Replacement, &rdev->flags);
7307 conf->disks[i].rdev = rdev;
7308 }
7309 if (!rdev)
c148ffdc 7310 continue;
17045f52
N
7311 if (conf->disks[i].replacement &&
7312 conf->reshape_progress != MaxSector) {
7313 /* replacements and reshape simply do not mix. */
cc6167b4 7314 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
17045f52
N
7315 goto abort;
7316 }
2f115882 7317 if (test_bit(In_sync, &rdev->flags)) {
91adb564 7318 working_disks++;
2f115882
N
7319 continue;
7320 }
c148ffdc
N
7321 /* This disc is not fully in-sync. However if it
7322 * just stored parity (beyond the recovery_offset),
7323 * when we don't need to be concerned about the
7324 * array being dirty.
7325 * When reshape goes 'backwards', we never have
7326 * partially completed devices, so we only need
7327 * to worry about reshape going forwards.
7328 */
7329 /* Hack because v0.91 doesn't store recovery_offset properly. */
7330 if (mddev->major_version == 0 &&
7331 mddev->minor_version > 90)
7332 rdev->recovery_offset = reshape_offset;
5026d7a9 7333
c148ffdc
N
7334 if (rdev->recovery_offset < reshape_offset) {
7335 /* We need to check old and new layout */
7336 if (!only_parity(rdev->raid_disk,
7337 conf->algorithm,
7338 conf->raid_disks,
7339 conf->max_degraded))
7340 continue;
7341 }
7342 if (!only_parity(rdev->raid_disk,
7343 conf->prev_algo,
7344 conf->previous_raid_disks,
7345 conf->max_degraded))
7346 continue;
7347 dirty_parity_disks++;
7348 }
91adb564 7349
17045f52
N
7350 /*
7351 * 0 for a fully functional array, 1 or 2 for a degraded array.
7352 */
2e38a37f 7353 mddev->degraded = raid5_calc_degraded(conf);
91adb564 7354
674806d6 7355 if (has_failed(conf)) {
cc6167b4 7356 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
02c2de8c 7357 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
7358 goto abort;
7359 }
7360
91adb564 7361 /* device size must be a multiple of chunk size */
9d8f0363 7362 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
7363 mddev->resync_max_sectors = mddev->dev_sectors;
7364
c148ffdc 7365 if (mddev->degraded > dirty_parity_disks &&
1da177e4 7366 mddev->recovery_cp != MaxSector) {
4536bf9b
AP
7367 if (test_bit(MD_HAS_PPL, &mddev->flags))
7368 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7369 mdname(mddev));
7370 else if (mddev->ok_start_degraded)
cc6167b4
N
7371 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7372 mdname(mddev));
6ff8d8ec 7373 else {
cc6167b4
N
7374 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7375 mdname(mddev));
6ff8d8ec
N
7376 goto abort;
7377 }
1da177e4
LT
7378 }
7379
cc6167b4
N
7380 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7381 mdname(mddev), conf->level,
7382 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7383 mddev->new_layout);
1da177e4
LT
7384
7385 print_raid5_conf(conf);
7386
fef9c61f 7387 if (conf->reshape_progress != MaxSector) {
fef9c61f 7388 conf->reshape_safe = conf->reshape_progress;
f6705578
N
7389 atomic_set(&conf->reshape_stripes, 0);
7390 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7391 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7392 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7393 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7394 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7395 "reshape");
f6705578
N
7396 }
7397
1da177e4 7398 /* Ok, everything is just fine now */
a64c876f
N
7399 if (mddev->to_remove == &raid5_attrs_group)
7400 mddev->to_remove = NULL;
00bcb4ac
N
7401 else if (mddev->kobj.sd &&
7402 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
cc6167b4
N
7403 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7404 mdname(mddev));
4a5add49 7405 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 7406
4a5add49 7407 if (mddev->queue) {
9f7c2220 7408 int chunk_size;
4a5add49
N
7409 /* read-ahead size must cover two whole stripes, which
7410 * is 2 * (datadisks) * chunksize where 'n' is the
7411 * number of raid devices
7412 */
7413 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7414 int stripe = data_disks *
7415 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
dc3b17cc
JK
7416 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7417 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
91adb564 7418
9f7c2220
N
7419 chunk_size = mddev->chunk_sectors << 9;
7420 blk_queue_io_min(mddev->queue, chunk_size);
7421 blk_queue_io_opt(mddev->queue, chunk_size *
7422 (conf->raid_disks - conf->max_degraded));
c78afc62 7423 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
7424 /*
7425 * We can only discard a whole stripe. It doesn't make sense to
7426 * discard data disk but write parity disk
7427 */
7428 stripe = stripe * PAGE_SIZE;
4ac6875e
N
7429 /* Round up to power of 2, as discard handling
7430 * currently assumes that */
7431 while ((stripe-1) & stripe)
7432 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
7433 mddev->queue->limits.discard_alignment = stripe;
7434 mddev->queue->limits.discard_granularity = stripe;
e8d7c332 7435
5026d7a9 7436 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7 7437 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
5026d7a9 7438
05616be5 7439 rdev_for_each(rdev, mddev) {
9f7c2220
N
7440 disk_stack_limits(mddev->gendisk, rdev->bdev,
7441 rdev->data_offset << 9);
05616be5
N
7442 disk_stack_limits(mddev->gendisk, rdev->bdev,
7443 rdev->new_data_offset << 9);
7444 }
620125f2 7445
48920ff2
CH
7446 /*
7447 * zeroing is required, otherwise data
7448 * could be lost. Consider a scenario: discard a stripe
7449 * (the stripe could be inconsistent if
7450 * discard_zeroes_data is 0); write one disk of the
7451 * stripe (the stripe could be inconsistent again
7452 * depending on which disks are used to calculate
7453 * parity); the disk is broken; The stripe data of this
7454 * disk is lost.
7455 *
7456 * We only allow DISCARD if the sysadmin has confirmed that
7457 * only safe devices are in use by setting a module parameter.
7458 * A better idea might be to turn DISCARD into WRITE_ZEROES
7459 * requests, as that is required to be safe.
7460 */
7461 if (devices_handle_discard_safely &&
e7597e69
JS
7462 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7463 mddev->queue->limits.discard_granularity >= stripe)
8b904b5b 7464 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
620125f2
SL
7465 mddev->queue);
7466 else
8b904b5b 7467 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
620125f2 7468 mddev->queue);
1dffdddd
SL
7469
7470 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
9f7c2220 7471 }
23032a0e 7472
845b9e22 7473 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
ff875738 7474 goto abort;
5c7e81c3 7475
1da177e4
LT
7476 return 0;
7477abort:
01f96c0a 7478 md_unregister_thread(&mddev->thread);
e4f869d9
N
7479 print_raid5_conf(conf);
7480 free_conf(conf);
1da177e4 7481 mddev->private = NULL;
cc6167b4 7482 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
7483 return -EIO;
7484}
7485
afa0f557 7486static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 7487{
afa0f557 7488 struct r5conf *conf = priv;
1da177e4 7489
95fc17aa 7490 free_conf(conf);
a64c876f 7491 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
7492}
7493
849674e4 7494static void raid5_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 7495{
d1688a6d 7496 struct r5conf *conf = mddev->private;
1da177e4
LT
7497 int i;
7498
9d8f0363 7499 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 7500 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 7501 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5fd13351
N
7502 rcu_read_lock();
7503 for (i = 0; i < conf->raid_disks; i++) {
7504 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7505 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7506 }
7507 rcu_read_unlock();
1da177e4 7508 seq_printf (seq, "]");
1da177e4
LT
7509}
7510
d1688a6d 7511static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
7512{
7513 int i;
7514 struct disk_info *tmp;
7515
cc6167b4 7516 pr_debug("RAID conf printout:\n");
1da177e4 7517 if (!conf) {
cc6167b4 7518 pr_debug("(conf==NULL)\n");
1da177e4
LT
7519 return;
7520 }
cc6167b4 7521 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
0c55e022
N
7522 conf->raid_disks,
7523 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
7524
7525 for (i = 0; i < conf->raid_disks; i++) {
7526 char b[BDEVNAME_SIZE];
7527 tmp = conf->disks + i;
7528 if (tmp->rdev)
cc6167b4 7529 pr_debug(" disk %d, o:%d, dev:%s\n",
0c55e022
N
7530 i, !test_bit(Faulty, &tmp->rdev->flags),
7531 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7532 }
7533}
7534
fd01b88c 7535static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7536{
7537 int i;
d1688a6d 7538 struct r5conf *conf = mddev->private;
1da177e4 7539 struct disk_info *tmp;
6b965620
N
7540 int count = 0;
7541 unsigned long flags;
1da177e4
LT
7542
7543 for (i = 0; i < conf->raid_disks; i++) {
7544 tmp = conf->disks + i;
dd054fce
N
7545 if (tmp->replacement
7546 && tmp->replacement->recovery_offset == MaxSector
7547 && !test_bit(Faulty, &tmp->replacement->flags)
7548 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7549 /* Replacement has just become active. */
7550 if (!tmp->rdev
7551 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7552 count++;
7553 if (tmp->rdev) {
7554 /* Replaced device not technically faulty,
7555 * but we need to be sure it gets removed
7556 * and never re-added.
7557 */
7558 set_bit(Faulty, &tmp->rdev->flags);
7559 sysfs_notify_dirent_safe(
7560 tmp->rdev->sysfs_state);
7561 }
7562 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7563 } else if (tmp->rdev
70fffd0b 7564 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7565 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7566 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7567 count++;
43c73ca4 7568 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7569 }
7570 }
6b965620 7571 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7572 mddev->degraded = raid5_calc_degraded(conf);
6b965620 7573 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7574 print_raid5_conf(conf);
6b965620 7575 return count;
1da177e4
LT
7576}
7577
b8321b68 7578static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7579{
d1688a6d 7580 struct r5conf *conf = mddev->private;
1da177e4 7581 int err = 0;
b8321b68 7582 int number = rdev->raid_disk;
657e3e4d 7583 struct md_rdev **rdevp;
1da177e4
LT
7584 struct disk_info *p = conf->disks + number;
7585
7586 print_raid5_conf(conf);
f6b6ec5c 7587 if (test_bit(Journal, &rdev->flags) && conf->log) {
c2bb6242 7588 /*
f6b6ec5c
SL
7589 * we can't wait pending write here, as this is called in
7590 * raid5d, wait will deadlock.
84dd97a6
N
7591 * neilb: there is no locking about new writes here,
7592 * so this cannot be safe.
c2bb6242 7593 */
70d466f7
SL
7594 if (atomic_read(&conf->active_stripes) ||
7595 atomic_read(&conf->r5c_cached_full_stripes) ||
7596 atomic_read(&conf->r5c_cached_partial_stripes)) {
f6b6ec5c 7597 return -EBUSY;
84dd97a6 7598 }
ff875738 7599 log_exit(conf);
f6b6ec5c 7600 return 0;
c2bb6242 7601 }
657e3e4d
N
7602 if (rdev == p->rdev)
7603 rdevp = &p->rdev;
7604 else if (rdev == p->replacement)
7605 rdevp = &p->replacement;
7606 else
7607 return 0;
7608
7609 if (number >= conf->raid_disks &&
7610 conf->reshape_progress == MaxSector)
7611 clear_bit(In_sync, &rdev->flags);
7612
7613 if (test_bit(In_sync, &rdev->flags) ||
7614 atomic_read(&rdev->nr_pending)) {
7615 err = -EBUSY;
7616 goto abort;
7617 }
7618 /* Only remove non-faulty devices if recovery
7619 * isn't possible.
7620 */
7621 if (!test_bit(Faulty, &rdev->flags) &&
7622 mddev->recovery_disabled != conf->recovery_disabled &&
7623 !has_failed(conf) &&
dd054fce 7624 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7625 number < conf->raid_disks) {
7626 err = -EBUSY;
7627 goto abort;
7628 }
7629 *rdevp = NULL;
d787be40
N
7630 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7631 synchronize_rcu();
7632 if (atomic_read(&rdev->nr_pending)) {
7633 /* lost the race, try later */
7634 err = -EBUSY;
7635 *rdevp = rdev;
7636 }
7637 }
6358c239
AP
7638 if (!err) {
7639 err = log_modify(conf, rdev, false);
7640 if (err)
7641 goto abort;
7642 }
d787be40 7643 if (p->replacement) {
dd054fce
N
7644 /* We must have just cleared 'rdev' */
7645 p->rdev = p->replacement;
7646 clear_bit(Replacement, &p->replacement->flags);
7647 smp_mb(); /* Make sure other CPUs may see both as identical
7648 * but will never see neither - if they are careful
7649 */
7650 p->replacement = NULL;
6358c239
AP
7651
7652 if (!err)
7653 err = log_modify(conf, p->rdev, true);
e5bc9c3c
GJ
7654 }
7655
7656 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7657abort:
7658
7659 print_raid5_conf(conf);
7660 return err;
7661}
7662
fd01b88c 7663static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7664{
d1688a6d 7665 struct r5conf *conf = mddev->private;
199050ea 7666 int err = -EEXIST;
1da177e4
LT
7667 int disk;
7668 struct disk_info *p;
6c2fce2e
NB
7669 int first = 0;
7670 int last = conf->raid_disks - 1;
1da177e4 7671
f6b6ec5c 7672 if (test_bit(Journal, &rdev->flags)) {
f6b6ec5c
SL
7673 if (conf->log)
7674 return -EBUSY;
7675
7676 rdev->raid_disk = 0;
7677 /*
7678 * The array is in readonly mode if journal is missing, so no
7679 * write requests running. We should be safe
7680 */
845b9e22 7681 log_init(conf, rdev, false);
f6b6ec5c
SL
7682 return 0;
7683 }
7f0da59b
N
7684 if (mddev->recovery_disabled == conf->recovery_disabled)
7685 return -EBUSY;
7686
dc10c643 7687 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7688 /* no point adding a device */
199050ea 7689 return -EINVAL;
1da177e4 7690
6c2fce2e
NB
7691 if (rdev->raid_disk >= 0)
7692 first = last = rdev->raid_disk;
1da177e4
LT
7693
7694 /*
16a53ecc
N
7695 * find the disk ... but prefer rdev->saved_raid_disk
7696 * if possible.
1da177e4 7697 */
16a53ecc 7698 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7699 rdev->saved_raid_disk >= first &&
16a53ecc 7700 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7701 first = rdev->saved_raid_disk;
7702
7703 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7704 p = conf->disks + disk;
7705 if (p->rdev == NULL) {
b2d444d7 7706 clear_bit(In_sync, &rdev->flags);
1da177e4 7707 rdev->raid_disk = disk;
72626685
N
7708 if (rdev->saved_raid_disk != disk)
7709 conf->fullsync = 1;
d6065f7b 7710 rcu_assign_pointer(p->rdev, rdev);
6358c239
AP
7711
7712 err = log_modify(conf, rdev, true);
7713
5cfb22a1 7714 goto out;
1da177e4 7715 }
5cfb22a1
N
7716 }
7717 for (disk = first; disk <= last; disk++) {
7718 p = conf->disks + disk;
7bfec5f3
N
7719 if (test_bit(WantReplacement, &p->rdev->flags) &&
7720 p->replacement == NULL) {
7721 clear_bit(In_sync, &rdev->flags);
7722 set_bit(Replacement, &rdev->flags);
7723 rdev->raid_disk = disk;
7724 err = 0;
7725 conf->fullsync = 1;
7726 rcu_assign_pointer(p->replacement, rdev);
7727 break;
7728 }
7729 }
5cfb22a1 7730out:
1da177e4 7731 print_raid5_conf(conf);
199050ea 7732 return err;
1da177e4
LT
7733}
7734
fd01b88c 7735static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7736{
7737 /* no resync is happening, and there is enough space
7738 * on all devices, so we can resize.
7739 * We need to make sure resync covers any new space.
7740 * If the array is shrinking we should possibly wait until
7741 * any io in the removed space completes, but it hardly seems
7742 * worth it.
7743 */
a4a6125a 7744 sector_t newsize;
3cb5edf4
N
7745 struct r5conf *conf = mddev->private;
7746
e254de6b 7747 if (raid5_has_log(conf) || raid5_has_ppl(conf))
713cf5a6 7748 return -EINVAL;
3cb5edf4 7749 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
7750 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7751 if (mddev->external_size &&
7752 mddev->array_sectors > newsize)
b522adcd 7753 return -EINVAL;
a4a6125a 7754 if (mddev->bitmap) {
e64e4018 7755 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
a4a6125a
N
7756 if (ret)
7757 return ret;
7758 }
7759 md_set_array_sectors(mddev, newsize);
b098636c
N
7760 if (sectors > mddev->dev_sectors &&
7761 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7762 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7763 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7764 }
58c0fed4 7765 mddev->dev_sectors = sectors;
4b5c7ae8 7766 mddev->resync_max_sectors = sectors;
1da177e4
LT
7767 return 0;
7768}
7769
fd01b88c 7770static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7771{
7772 /* Can only proceed if there are plenty of stripe_heads.
7773 * We need a minimum of one full stripe,, and for sensible progress
7774 * it is best to have about 4 times that.
7775 * If we require 4 times, then the default 256 4K stripe_heads will
7776 * allow for chunk sizes up to 256K, which is probably OK.
7777 * If the chunk size is greater, user-space should request more
7778 * stripe_heads first.
7779 */
d1688a6d 7780 struct r5conf *conf = mddev->private;
01ee22b4 7781 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7782 > conf->min_nr_stripes ||
01ee22b4 7783 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7784 > conf->min_nr_stripes) {
cc6167b4
N
7785 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7786 mdname(mddev),
7787 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7788 / STRIPE_SIZE)*4);
01ee22b4
N
7789 return 0;
7790 }
7791 return 1;
7792}
7793
fd01b88c 7794static int check_reshape(struct mddev *mddev)
29269553 7795{
d1688a6d 7796 struct r5conf *conf = mddev->private;
29269553 7797
e254de6b 7798 if (raid5_has_log(conf) || raid5_has_ppl(conf))
713cf5a6 7799 return -EINVAL;
88ce4930
N
7800 if (mddev->delta_disks == 0 &&
7801 mddev->new_layout == mddev->layout &&
664e7c41 7802 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7803 return 0; /* nothing to do */
674806d6 7804 if (has_failed(conf))
ec32a2bd 7805 return -EINVAL;
fdcfbbb6 7806 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7807 /* We might be able to shrink, but the devices must
7808 * be made bigger first.
7809 * For raid6, 4 is the minimum size.
7810 * Otherwise 2 is the minimum
7811 */
7812 int min = 2;
7813 if (mddev->level == 6)
7814 min = 4;
7815 if (mddev->raid_disks + mddev->delta_disks < min)
7816 return -EINVAL;
7817 }
29269553 7818
01ee22b4 7819 if (!check_stripe_cache(mddev))
29269553 7820 return -ENOSPC;
29269553 7821
738a2738
N
7822 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7823 mddev->delta_disks > 0)
7824 if (resize_chunks(conf,
7825 conf->previous_raid_disks
7826 + max(0, mddev->delta_disks),
7827 max(mddev->new_chunk_sectors,
7828 mddev->chunk_sectors)
7829 ) < 0)
7830 return -ENOMEM;
845b9e22
AP
7831
7832 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7833 return 0; /* never bother to shrink */
e56108d6
N
7834 return resize_stripes(conf, (conf->previous_raid_disks
7835 + mddev->delta_disks));
63c70c4f
N
7836}
7837
fd01b88c 7838static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7839{
d1688a6d 7840 struct r5conf *conf = mddev->private;
3cb03002 7841 struct md_rdev *rdev;
63c70c4f 7842 int spares = 0;
c04be0aa 7843 unsigned long flags;
63c70c4f 7844
f416885e 7845 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7846 return -EBUSY;
7847
01ee22b4
N
7848 if (!check_stripe_cache(mddev))
7849 return -ENOSPC;
7850
30b67645
N
7851 if (has_failed(conf))
7852 return -EINVAL;
7853
c6563a8c 7854 rdev_for_each(rdev, mddev) {
469518a3
N
7855 if (!test_bit(In_sync, &rdev->flags)
7856 && !test_bit(Faulty, &rdev->flags))
29269553 7857 spares++;
c6563a8c 7858 }
63c70c4f 7859
f416885e 7860 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7861 /* Not enough devices even to make a degraded array
7862 * of that size
7863 */
7864 return -EINVAL;
7865
ec32a2bd
N
7866 /* Refuse to reduce size of the array. Any reductions in
7867 * array size must be through explicit setting of array_size
7868 * attribute.
7869 */
7870 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7871 < mddev->array_sectors) {
cc6167b4
N
7872 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7873 mdname(mddev));
ec32a2bd
N
7874 return -EINVAL;
7875 }
7876
f6705578 7877 atomic_set(&conf->reshape_stripes, 0);
29269553 7878 spin_lock_irq(&conf->device_lock);
c46501b2 7879 write_seqcount_begin(&conf->gen_lock);
29269553 7880 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7881 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7882 conf->prev_chunk_sectors = conf->chunk_sectors;
7883 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7884 conf->prev_algo = conf->algorithm;
7885 conf->algorithm = mddev->new_layout;
05616be5
N
7886 conf->generation++;
7887 /* Code that selects data_offset needs to see the generation update
7888 * if reshape_progress has been set - so a memory barrier needed.
7889 */
7890 smp_mb();
2c810cdd 7891 if (mddev->reshape_backwards)
fef9c61f
N
7892 conf->reshape_progress = raid5_size(mddev, 0, 0);
7893 else
7894 conf->reshape_progress = 0;
7895 conf->reshape_safe = conf->reshape_progress;
c46501b2 7896 write_seqcount_end(&conf->gen_lock);
29269553
N
7897 spin_unlock_irq(&conf->device_lock);
7898
4d77e3ba
N
7899 /* Now make sure any requests that proceeded on the assumption
7900 * the reshape wasn't running - like Discard or Read - have
7901 * completed.
7902 */
7903 mddev_suspend(mddev);
7904 mddev_resume(mddev);
7905
29269553
N
7906 /* Add some new drives, as many as will fit.
7907 * We know there are enough to make the newly sized array work.
3424bf6a
N
7908 * Don't add devices if we are reducing the number of
7909 * devices in the array. This is because it is not possible
7910 * to correctly record the "partially reconstructed" state of
7911 * such devices during the reshape and confusion could result.
29269553 7912 */
87a8dec9 7913 if (mddev->delta_disks >= 0) {
dafb20fa 7914 rdev_for_each(rdev, mddev)
87a8dec9
N
7915 if (rdev->raid_disk < 0 &&
7916 !test_bit(Faulty, &rdev->flags)) {
7917 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7918 if (rdev->raid_disk
9d4c7d87 7919 >= conf->previous_raid_disks)
87a8dec9 7920 set_bit(In_sync, &rdev->flags);
9d4c7d87 7921 else
87a8dec9 7922 rdev->recovery_offset = 0;
36fad858
NK
7923
7924 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7925 /* Failure here is OK */;
50da0840 7926 }
87a8dec9
N
7927 } else if (rdev->raid_disk >= conf->previous_raid_disks
7928 && !test_bit(Faulty, &rdev->flags)) {
7929 /* This is a spare that was manually added */
7930 set_bit(In_sync, &rdev->flags);
87a8dec9 7931 }
29269553 7932
87a8dec9
N
7933 /* When a reshape changes the number of devices,
7934 * ->degraded is measured against the larger of the
7935 * pre and post number of devices.
7936 */
ec32a2bd 7937 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7938 mddev->degraded = raid5_calc_degraded(conf);
ec32a2bd
N
7939 spin_unlock_irqrestore(&conf->device_lock, flags);
7940 }
63c70c4f 7941 mddev->raid_disks = conf->raid_disks;
e516402c 7942 mddev->reshape_position = conf->reshape_progress;
2953079c 7943 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
f6705578 7944
29269553
N
7945 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7946 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 7947 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
7948 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7949 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7950 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7951 "reshape");
29269553
N
7952 if (!mddev->sync_thread) {
7953 mddev->recovery = 0;
7954 spin_lock_irq(&conf->device_lock);
ba8805b9 7955 write_seqcount_begin(&conf->gen_lock);
29269553 7956 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7957 mddev->new_chunk_sectors =
7958 conf->chunk_sectors = conf->prev_chunk_sectors;
7959 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7960 rdev_for_each(rdev, mddev)
7961 rdev->new_data_offset = rdev->data_offset;
7962 smp_wmb();
ba8805b9 7963 conf->generation --;
fef9c61f 7964 conf->reshape_progress = MaxSector;
1e3fa9bd 7965 mddev->reshape_position = MaxSector;
ba8805b9 7966 write_seqcount_end(&conf->gen_lock);
29269553
N
7967 spin_unlock_irq(&conf->device_lock);
7968 return -EAGAIN;
7969 }
c8f517c4 7970 conf->reshape_checkpoint = jiffies;
29269553
N
7971 md_wakeup_thread(mddev->sync_thread);
7972 md_new_event(mddev);
7973 return 0;
7974}
29269553 7975
ec32a2bd
N
7976/* This is called from the reshape thread and should make any
7977 * changes needed in 'conf'
7978 */
d1688a6d 7979static void end_reshape(struct r5conf *conf)
29269553 7980{
29269553 7981
f6705578 7982 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
db0505d3 7983 struct md_rdev *rdev;
f6705578 7984
f6705578 7985 spin_lock_irq(&conf->device_lock);
cea9c228 7986 conf->previous_raid_disks = conf->raid_disks;
b5d27718 7987 md_finish_reshape(conf->mddev);
05616be5 7988 smp_wmb();
fef9c61f 7989 conf->reshape_progress = MaxSector;
6cbd8148 7990 conf->mddev->reshape_position = MaxSector;
db0505d3
N
7991 rdev_for_each(rdev, conf->mddev)
7992 if (rdev->raid_disk >= 0 &&
7993 !test_bit(Journal, &rdev->flags) &&
7994 !test_bit(In_sync, &rdev->flags))
7995 rdev->recovery_offset = MaxSector;
f6705578 7996 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7997 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7998
7999 /* read-ahead size must cover two whole stripes, which is
8000 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8001 */
4a5add49 8002 if (conf->mddev->queue) {
cea9c228 8003 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 8004 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 8005 / PAGE_SIZE);
dc3b17cc
JK
8006 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8007 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
16a53ecc 8008 }
29269553 8009 }
29269553
N
8010}
8011
ec32a2bd
N
8012/* This is called from the raid5d thread with mddev_lock held.
8013 * It makes config changes to the device.
8014 */
fd01b88c 8015static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 8016{
d1688a6d 8017 struct r5conf *conf = mddev->private;
cea9c228
N
8018
8019 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8020
8876391e 8021 if (mddev->delta_disks <= 0) {
ec32a2bd 8022 int d;
908f4fbd 8023 spin_lock_irq(&conf->device_lock);
2e38a37f 8024 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd 8025 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
8026 for (d = conf->raid_disks ;
8027 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 8028 d++) {
3cb03002 8029 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
8030 if (rdev)
8031 clear_bit(In_sync, &rdev->flags);
8032 rdev = conf->disks[d].replacement;
8033 if (rdev)
8034 clear_bit(In_sync, &rdev->flags);
1a67dde0 8035 }
cea9c228 8036 }
88ce4930 8037 mddev->layout = conf->algorithm;
09c9e5fa 8038 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
8039 mddev->reshape_position = MaxSector;
8040 mddev->delta_disks = 0;
2c810cdd 8041 mddev->reshape_backwards = 0;
cea9c228
N
8042 }
8043}
8044
b03e0ccb 8045static void raid5_quiesce(struct mddev *mddev, int quiesce)
72626685 8046{
d1688a6d 8047 struct r5conf *conf = mddev->private;
72626685 8048
b03e0ccb
N
8049 if (quiesce) {
8050 /* stop all writes */
566c09c5 8051 lock_all_device_hash_locks_irq(conf);
64bd660b
N
8052 /* '2' tells resync/reshape to pause so that all
8053 * active stripes can drain
8054 */
a39f7afd 8055 r5c_flush_cache(conf, INT_MAX);
64bd660b 8056 conf->quiesce = 2;
b1b46486 8057 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
8058 atomic_read(&conf->active_stripes) == 0 &&
8059 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
8060 unlock_all_device_hash_locks_irq(conf),
8061 lock_all_device_hash_locks_irq(conf));
64bd660b 8062 conf->quiesce = 1;
566c09c5 8063 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
8064 /* allow reshape to continue */
8065 wake_up(&conf->wait_for_overlap);
b03e0ccb
N
8066 } else {
8067 /* re-enable writes */
566c09c5 8068 lock_all_device_hash_locks_irq(conf);
72626685 8069 conf->quiesce = 0;
b1b46486 8070 wake_up(&conf->wait_for_quiescent);
e464eafd 8071 wake_up(&conf->wait_for_overlap);
566c09c5 8072 unlock_all_device_hash_locks_irq(conf);
72626685 8073 }
1532d9e8 8074 log_quiesce(conf, quiesce);
72626685 8075}
b15c2e57 8076
fd01b88c 8077static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 8078{
e373ab10 8079 struct r0conf *raid0_conf = mddev->private;
d76c8420 8080 sector_t sectors;
54071b38 8081
f1b29bca 8082 /* for raid0 takeover only one zone is supported */
e373ab10 8083 if (raid0_conf->nr_strip_zones > 1) {
cc6167b4
N
8084 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8085 mdname(mddev));
f1b29bca
DW
8086 return ERR_PTR(-EINVAL);
8087 }
8088
e373ab10
N
8089 sectors = raid0_conf->strip_zone[0].zone_end;
8090 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 8091 mddev->dev_sectors = sectors;
f1b29bca 8092 mddev->new_level = level;
54071b38
TM
8093 mddev->new_layout = ALGORITHM_PARITY_N;
8094 mddev->new_chunk_sectors = mddev->chunk_sectors;
8095 mddev->raid_disks += 1;
8096 mddev->delta_disks = 1;
8097 /* make sure it will be not marked as dirty */
8098 mddev->recovery_cp = MaxSector;
8099
8100 return setup_conf(mddev);
8101}
8102
fd01b88c 8103static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
8104{
8105 int chunksect;
6995f0b2 8106 void *ret;
d562b0c4
N
8107
8108 if (mddev->raid_disks != 2 ||
8109 mddev->degraded > 1)
8110 return ERR_PTR(-EINVAL);
8111
8112 /* Should check if there are write-behind devices? */
8113
8114 chunksect = 64*2; /* 64K by default */
8115
8116 /* The array must be an exact multiple of chunksize */
8117 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8118 chunksect >>= 1;
8119
8120 if ((chunksect<<9) < STRIPE_SIZE)
8121 /* array size does not allow a suitable chunk size */
8122 return ERR_PTR(-EINVAL);
8123
8124 mddev->new_level = 5;
8125 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 8126 mddev->new_chunk_sectors = chunksect;
d562b0c4 8127
6995f0b2 8128 ret = setup_conf(mddev);
32cd7cbb 8129 if (!IS_ERR(ret))
394ed8e4
SL
8130 mddev_clear_unsupported_flags(mddev,
8131 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 8132 return ret;
d562b0c4
N
8133}
8134
fd01b88c 8135static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
8136{
8137 int new_layout;
8138
8139 switch (mddev->layout) {
8140 case ALGORITHM_LEFT_ASYMMETRIC_6:
8141 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8142 break;
8143 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8144 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8145 break;
8146 case ALGORITHM_LEFT_SYMMETRIC_6:
8147 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8148 break;
8149 case ALGORITHM_RIGHT_SYMMETRIC_6:
8150 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8151 break;
8152 case ALGORITHM_PARITY_0_6:
8153 new_layout = ALGORITHM_PARITY_0;
8154 break;
8155 case ALGORITHM_PARITY_N:
8156 new_layout = ALGORITHM_PARITY_N;
8157 break;
8158 default:
8159 return ERR_PTR(-EINVAL);
8160 }
8161 mddev->new_level = 5;
8162 mddev->new_layout = new_layout;
8163 mddev->delta_disks = -1;
8164 mddev->raid_disks -= 1;
8165 return setup_conf(mddev);
8166}
8167
fd01b88c 8168static int raid5_check_reshape(struct mddev *mddev)
b3546035 8169{
88ce4930
N
8170 /* For a 2-drive array, the layout and chunk size can be changed
8171 * immediately as not restriping is needed.
8172 * For larger arrays we record the new value - after validation
8173 * to be used by a reshape pass.
b3546035 8174 */
d1688a6d 8175 struct r5conf *conf = mddev->private;
597a711b 8176 int new_chunk = mddev->new_chunk_sectors;
b3546035 8177
597a711b 8178 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
8179 return -EINVAL;
8180 if (new_chunk > 0) {
0ba459d2 8181 if (!is_power_of_2(new_chunk))
b3546035 8182 return -EINVAL;
597a711b 8183 if (new_chunk < (PAGE_SIZE>>9))
b3546035 8184 return -EINVAL;
597a711b 8185 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
8186 /* not factor of array size */
8187 return -EINVAL;
8188 }
8189
8190 /* They look valid */
8191
88ce4930 8192 if (mddev->raid_disks == 2) {
597a711b
N
8193 /* can make the change immediately */
8194 if (mddev->new_layout >= 0) {
8195 conf->algorithm = mddev->new_layout;
8196 mddev->layout = mddev->new_layout;
88ce4930
N
8197 }
8198 if (new_chunk > 0) {
597a711b
N
8199 conf->chunk_sectors = new_chunk ;
8200 mddev->chunk_sectors = new_chunk;
88ce4930 8201 }
2953079c 8202 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
88ce4930 8203 md_wakeup_thread(mddev->thread);
b3546035 8204 }
50ac168a 8205 return check_reshape(mddev);
88ce4930
N
8206}
8207
fd01b88c 8208static int raid6_check_reshape(struct mddev *mddev)
88ce4930 8209{
597a711b 8210 int new_chunk = mddev->new_chunk_sectors;
50ac168a 8211
597a711b 8212 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 8213 return -EINVAL;
b3546035 8214 if (new_chunk > 0) {
0ba459d2 8215 if (!is_power_of_2(new_chunk))
88ce4930 8216 return -EINVAL;
597a711b 8217 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 8218 return -EINVAL;
597a711b 8219 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
8220 /* not factor of array size */
8221 return -EINVAL;
b3546035 8222 }
88ce4930
N
8223
8224 /* They look valid */
50ac168a 8225 return check_reshape(mddev);
b3546035
N
8226}
8227
fd01b88c 8228static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
8229{
8230 /* raid5 can take over:
f1b29bca 8231 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
8232 * raid1 - if there are two drives. We need to know the chunk size
8233 * raid4 - trivial - just use a raid4 layout.
8234 * raid6 - Providing it is a *_6 layout
d562b0c4 8235 */
f1b29bca
DW
8236 if (mddev->level == 0)
8237 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
8238 if (mddev->level == 1)
8239 return raid5_takeover_raid1(mddev);
e9d4758f
N
8240 if (mddev->level == 4) {
8241 mddev->new_layout = ALGORITHM_PARITY_N;
8242 mddev->new_level = 5;
8243 return setup_conf(mddev);
8244 }
fc9739c6
N
8245 if (mddev->level == 6)
8246 return raid5_takeover_raid6(mddev);
d562b0c4
N
8247
8248 return ERR_PTR(-EINVAL);
8249}
8250
fd01b88c 8251static void *raid4_takeover(struct mddev *mddev)
a78d38a1 8252{
f1b29bca
DW
8253 /* raid4 can take over:
8254 * raid0 - if there is only one strip zone
8255 * raid5 - if layout is right
a78d38a1 8256 */
f1b29bca
DW
8257 if (mddev->level == 0)
8258 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
8259 if (mddev->level == 5 &&
8260 mddev->layout == ALGORITHM_PARITY_N) {
8261 mddev->new_layout = 0;
8262 mddev->new_level = 4;
8263 return setup_conf(mddev);
8264 }
8265 return ERR_PTR(-EINVAL);
8266}
d562b0c4 8267
84fc4b56 8268static struct md_personality raid5_personality;
245f46c2 8269
fd01b88c 8270static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
8271{
8272 /* Currently can only take over a raid5. We map the
8273 * personality to an equivalent raid6 personality
8274 * with the Q block at the end.
8275 */
8276 int new_layout;
8277
8278 if (mddev->pers != &raid5_personality)
8279 return ERR_PTR(-EINVAL);
8280 if (mddev->degraded > 1)
8281 return ERR_PTR(-EINVAL);
8282 if (mddev->raid_disks > 253)
8283 return ERR_PTR(-EINVAL);
8284 if (mddev->raid_disks < 3)
8285 return ERR_PTR(-EINVAL);
8286
8287 switch (mddev->layout) {
8288 case ALGORITHM_LEFT_ASYMMETRIC:
8289 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8290 break;
8291 case ALGORITHM_RIGHT_ASYMMETRIC:
8292 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8293 break;
8294 case ALGORITHM_LEFT_SYMMETRIC:
8295 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8296 break;
8297 case ALGORITHM_RIGHT_SYMMETRIC:
8298 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8299 break;
8300 case ALGORITHM_PARITY_0:
8301 new_layout = ALGORITHM_PARITY_0_6;
8302 break;
8303 case ALGORITHM_PARITY_N:
8304 new_layout = ALGORITHM_PARITY_N;
8305 break;
8306 default:
8307 return ERR_PTR(-EINVAL);
8308 }
8309 mddev->new_level = 6;
8310 mddev->new_layout = new_layout;
8311 mddev->delta_disks = 1;
8312 mddev->raid_disks += 1;
8313 return setup_conf(mddev);
8314}
8315
ba903a3e
AP
8316static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8317{
8318 struct r5conf *conf;
8319 int err;
8320
8321 err = mddev_lock(mddev);
8322 if (err)
8323 return err;
8324 conf = mddev->private;
8325 if (!conf) {
8326 mddev_unlock(mddev);
8327 return -ENODEV;
8328 }
8329
845b9e22 8330 if (strncmp(buf, "ppl", 3) == 0) {
0bb0c105 8331 /* ppl only works with RAID 5 */
845b9e22
AP
8332 if (!raid5_has_ppl(conf) && conf->level == 5) {
8333 err = log_init(conf, NULL, true);
8334 if (!err) {
8335 err = resize_stripes(conf, conf->pool_size);
8336 if (err)
8337 log_exit(conf);
8338 }
0bb0c105
SL
8339 } else
8340 err = -EINVAL;
8341 } else if (strncmp(buf, "resync", 6) == 0) {
8342 if (raid5_has_ppl(conf)) {
8343 mddev_suspend(mddev);
8344 log_exit(conf);
0bb0c105 8345 mddev_resume(mddev);
845b9e22 8346 err = resize_stripes(conf, conf->pool_size);
0bb0c105
SL
8347 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8348 r5l_log_disk_error(conf)) {
8349 bool journal_dev_exists = false;
8350 struct md_rdev *rdev;
8351
8352 rdev_for_each(rdev, mddev)
8353 if (test_bit(Journal, &rdev->flags)) {
8354 journal_dev_exists = true;
8355 break;
8356 }
8357
8358 if (!journal_dev_exists) {
8359 mddev_suspend(mddev);
8360 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8361 mddev_resume(mddev);
8362 } else /* need remove journal device first */
8363 err = -EBUSY;
8364 } else
8365 err = -EINVAL;
ba903a3e
AP
8366 } else {
8367 err = -EINVAL;
8368 }
8369
8370 if (!err)
8371 md_update_sb(mddev, 1);
8372
8373 mddev_unlock(mddev);
8374
8375 return err;
8376}
8377
d5d885fd
SL
8378static int raid5_start(struct mddev *mddev)
8379{
8380 struct r5conf *conf = mddev->private;
8381
8382 return r5l_start(conf->log);
8383}
8384
84fc4b56 8385static struct md_personality raid6_personality =
16a53ecc
N
8386{
8387 .name = "raid6",
8388 .level = 6,
8389 .owner = THIS_MODULE,
849674e4
SL
8390 .make_request = raid5_make_request,
8391 .run = raid5_run,
d5d885fd 8392 .start = raid5_start,
afa0f557 8393 .free = raid5_free,
849674e4
SL
8394 .status = raid5_status,
8395 .error_handler = raid5_error,
16a53ecc
N
8396 .hot_add_disk = raid5_add_disk,
8397 .hot_remove_disk= raid5_remove_disk,
8398 .spare_active = raid5_spare_active,
849674e4 8399 .sync_request = raid5_sync_request,
16a53ecc 8400 .resize = raid5_resize,
80c3a6ce 8401 .size = raid5_size,
50ac168a 8402 .check_reshape = raid6_check_reshape,
f416885e 8403 .start_reshape = raid5_start_reshape,
cea9c228 8404 .finish_reshape = raid5_finish_reshape,
16a53ecc 8405 .quiesce = raid5_quiesce,
245f46c2 8406 .takeover = raid6_takeover,
5c675f83 8407 .congested = raid5_congested,
0bb0c105 8408 .change_consistency_policy = raid5_change_consistency_policy,
16a53ecc 8409};
84fc4b56 8410static struct md_personality raid5_personality =
1da177e4
LT
8411{
8412 .name = "raid5",
2604b703 8413 .level = 5,
1da177e4 8414 .owner = THIS_MODULE,
849674e4
SL
8415 .make_request = raid5_make_request,
8416 .run = raid5_run,
d5d885fd 8417 .start = raid5_start,
afa0f557 8418 .free = raid5_free,
849674e4
SL
8419 .status = raid5_status,
8420 .error_handler = raid5_error,
1da177e4
LT
8421 .hot_add_disk = raid5_add_disk,
8422 .hot_remove_disk= raid5_remove_disk,
8423 .spare_active = raid5_spare_active,
849674e4 8424 .sync_request = raid5_sync_request,
1da177e4 8425 .resize = raid5_resize,
80c3a6ce 8426 .size = raid5_size,
63c70c4f
N
8427 .check_reshape = raid5_check_reshape,
8428 .start_reshape = raid5_start_reshape,
cea9c228 8429 .finish_reshape = raid5_finish_reshape,
72626685 8430 .quiesce = raid5_quiesce,
d562b0c4 8431 .takeover = raid5_takeover,
5c675f83 8432 .congested = raid5_congested,
ba903a3e 8433 .change_consistency_policy = raid5_change_consistency_policy,
1da177e4
LT
8434};
8435
84fc4b56 8436static struct md_personality raid4_personality =
1da177e4 8437{
2604b703
N
8438 .name = "raid4",
8439 .level = 4,
8440 .owner = THIS_MODULE,
849674e4
SL
8441 .make_request = raid5_make_request,
8442 .run = raid5_run,
d5d885fd 8443 .start = raid5_start,
afa0f557 8444 .free = raid5_free,
849674e4
SL
8445 .status = raid5_status,
8446 .error_handler = raid5_error,
2604b703
N
8447 .hot_add_disk = raid5_add_disk,
8448 .hot_remove_disk= raid5_remove_disk,
8449 .spare_active = raid5_spare_active,
849674e4 8450 .sync_request = raid5_sync_request,
2604b703 8451 .resize = raid5_resize,
80c3a6ce 8452 .size = raid5_size,
3d37890b
N
8453 .check_reshape = raid5_check_reshape,
8454 .start_reshape = raid5_start_reshape,
cea9c228 8455 .finish_reshape = raid5_finish_reshape,
2604b703 8456 .quiesce = raid5_quiesce,
a78d38a1 8457 .takeover = raid4_takeover,
5c675f83 8458 .congested = raid5_congested,
0bb0c105 8459 .change_consistency_policy = raid5_change_consistency_policy,
2604b703
N
8460};
8461
8462static int __init raid5_init(void)
8463{
29c6d1bb
SAS
8464 int ret;
8465
851c30c9
SL
8466 raid5_wq = alloc_workqueue("raid5wq",
8467 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8468 if (!raid5_wq)
8469 return -ENOMEM;
29c6d1bb
SAS
8470
8471 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8472 "md/raid5:prepare",
8473 raid456_cpu_up_prepare,
8474 raid456_cpu_dead);
8475 if (ret) {
8476 destroy_workqueue(raid5_wq);
8477 return ret;
8478 }
16a53ecc 8479 register_md_personality(&raid6_personality);
2604b703
N
8480 register_md_personality(&raid5_personality);
8481 register_md_personality(&raid4_personality);
8482 return 0;
1da177e4
LT
8483}
8484
2604b703 8485static void raid5_exit(void)
1da177e4 8486{
16a53ecc 8487 unregister_md_personality(&raid6_personality);
2604b703
N
8488 unregister_md_personality(&raid5_personality);
8489 unregister_md_personality(&raid4_personality);
29c6d1bb 8490 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
851c30c9 8491 destroy_workqueue(raid5_wq);
1da177e4
LT
8492}
8493
8494module_init(raid5_init);
8495module_exit(raid5_exit);
8496MODULE_LICENSE("GPL");
0efb9e61 8497MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 8498MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
8499MODULE_ALIAS("md-raid5");
8500MODULE_ALIAS("md-raid4");
2604b703
N
8501MODULE_ALIAS("md-level-5");
8502MODULE_ALIAS("md-level-4");
16a53ecc
N
8503MODULE_ALIAS("md-personality-8"); /* RAID6 */
8504MODULE_ALIAS("md-raid6");
8505MODULE_ALIAS("md-level-6");
8506
8507/* This used to be two separate modules, they were: */
8508MODULE_ALIAS("raid5");
8509MODULE_ALIAS("raid6");