]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid5.c
Merge tag 'for-4.15-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
3f07c014 58
a9add5d9 59#include <trace/events/block.h>
aaf9f12e 60#include <linux/list_sort.h>
a9add5d9 61
43b2e5d8 62#include "md.h"
bff61975 63#include "raid5.h"
54071b38 64#include "raid0.h"
935fe098 65#include "md-bitmap.h"
ff875738 66#include "raid5-log.h"
72626685 67
394ed8e4
SL
68#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
69
851c30c9
SL
70#define cpu_to_group(cpu) cpu_to_node(cpu)
71#define ANY_GROUP NUMA_NO_NODE
72
8e0e99ba
N
73static bool devices_handle_discard_safely = false;
74module_param(devices_handle_discard_safely, bool, 0644);
75MODULE_PARM_DESC(devices_handle_discard_safely,
76 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 77static struct workqueue_struct *raid5_wq;
1da177e4 78
d1688a6d 79static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
80{
81 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
82 return &conf->stripe_hashtbl[hash];
83}
1da177e4 84
566c09c5
SL
85static inline int stripe_hash_locks_hash(sector_t sect)
86{
87 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
88}
89
90static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
91{
92 spin_lock_irq(conf->hash_locks + hash);
93 spin_lock(&conf->device_lock);
94}
95
96static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
97{
98 spin_unlock(&conf->device_lock);
99 spin_unlock_irq(conf->hash_locks + hash);
100}
101
102static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
103{
104 int i;
3d05f3ae 105 spin_lock_irq(conf->hash_locks);
566c09c5
SL
106 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
107 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
108 spin_lock(&conf->device_lock);
109}
110
111static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
112{
113 int i;
114 spin_unlock(&conf->device_lock);
3d05f3ae
JC
115 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
116 spin_unlock(conf->hash_locks + i);
117 spin_unlock_irq(conf->hash_locks);
566c09c5
SL
118}
119
d0dabf7e
N
120/* Find first data disk in a raid6 stripe */
121static inline int raid6_d0(struct stripe_head *sh)
122{
67cc2b81
N
123 if (sh->ddf_layout)
124 /* ddf always start from first device */
125 return 0;
126 /* md starts just after Q block */
d0dabf7e
N
127 if (sh->qd_idx == sh->disks - 1)
128 return 0;
129 else
130 return sh->qd_idx + 1;
131}
16a53ecc
N
132static inline int raid6_next_disk(int disk, int raid_disks)
133{
134 disk++;
135 return (disk < raid_disks) ? disk : 0;
136}
a4456856 137
d0dabf7e
N
138/* When walking through the disks in a raid5, starting at raid6_d0,
139 * We need to map each disk to a 'slot', where the data disks are slot
140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141 * is raid_disks-1. This help does that mapping.
142 */
67cc2b81
N
143static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144 int *count, int syndrome_disks)
d0dabf7e 145{
6629542e 146 int slot = *count;
67cc2b81 147
e4424fee 148 if (sh->ddf_layout)
6629542e 149 (*count)++;
d0dabf7e 150 if (idx == sh->pd_idx)
67cc2b81 151 return syndrome_disks;
d0dabf7e 152 if (idx == sh->qd_idx)
67cc2b81 153 return syndrome_disks + 1;
e4424fee 154 if (!sh->ddf_layout)
6629542e 155 (*count)++;
d0dabf7e
N
156 return slot;
157}
158
d1688a6d 159static void print_raid5_conf (struct r5conf *conf);
1da177e4 160
600aa109
DW
161static int stripe_operations_active(struct stripe_head *sh)
162{
163 return sh->check_state || sh->reconstruct_state ||
164 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
165 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
166}
167
535ae4eb
SL
168static bool stripe_is_lowprio(struct stripe_head *sh)
169{
170 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
171 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
172 !test_bit(STRIPE_R5C_CACHING, &sh->state);
173}
174
851c30c9
SL
175static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
176{
177 struct r5conf *conf = sh->raid_conf;
178 struct r5worker_group *group;
bfc90cb0 179 int thread_cnt;
851c30c9
SL
180 int i, cpu = sh->cpu;
181
182 if (!cpu_online(cpu)) {
183 cpu = cpumask_any(cpu_online_mask);
184 sh->cpu = cpu;
185 }
186
187 if (list_empty(&sh->lru)) {
188 struct r5worker_group *group;
189 group = conf->worker_groups + cpu_to_group(cpu);
535ae4eb
SL
190 if (stripe_is_lowprio(sh))
191 list_add_tail(&sh->lru, &group->loprio_list);
192 else
193 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
194 group->stripes_cnt++;
195 sh->group = group;
851c30c9
SL
196 }
197
198 if (conf->worker_cnt_per_group == 0) {
199 md_wakeup_thread(conf->mddev->thread);
200 return;
201 }
202
203 group = conf->worker_groups + cpu_to_group(sh->cpu);
204
bfc90cb0
SL
205 group->workers[0].working = true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208
209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 /* wakeup more workers */
211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 if (group->workers[i].working == false) {
213 group->workers[i].working = true;
214 queue_work_on(sh->cpu, raid5_wq,
215 &group->workers[i].work);
216 thread_cnt--;
217 }
218 }
851c30c9
SL
219}
220
566c09c5
SL
221static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 struct list_head *temp_inactive_list)
1da177e4 223{
1e6d690b
SL
224 int i;
225 int injournal = 0; /* number of date pages with R5_InJournal */
226
4eb788df
SL
227 BUG_ON(!list_empty(&sh->lru));
228 BUG_ON(atomic_read(&conf->active_stripes)==0);
1e6d690b
SL
229
230 if (r5c_is_writeback(conf->log))
231 for (i = sh->disks; i--; )
232 if (test_bit(R5_InJournal, &sh->dev[i].flags))
233 injournal++;
a39f7afd 234 /*
5ddf0440
SL
235 * In the following cases, the stripe cannot be released to cached
236 * lists. Therefore, we make the stripe write out and set
237 * STRIPE_HANDLE:
238 * 1. when quiesce in r5c write back;
239 * 2. when resync is requested fot the stripe.
a39f7afd 240 */
5ddf0440
SL
241 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
242 (conf->quiesce && r5c_is_writeback(conf->log) &&
243 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
a39f7afd
SL
244 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
245 r5c_make_stripe_write_out(sh);
246 set_bit(STRIPE_HANDLE, &sh->state);
247 }
1e6d690b 248
4eb788df
SL
249 if (test_bit(STRIPE_HANDLE, &sh->state)) {
250 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 251 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 252 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 253 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
254 sh->bm_seq - conf->seq_write > 0)
255 list_add_tail(&sh->lru, &conf->bitmap_list);
256 else {
257 clear_bit(STRIPE_DELAYED, &sh->state);
258 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9 259 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
260 if (stripe_is_lowprio(sh))
261 list_add_tail(&sh->lru,
262 &conf->loprio_list);
263 else
264 list_add_tail(&sh->lru,
265 &conf->handle_list);
851c30c9
SL
266 } else {
267 raid5_wakeup_stripe_thread(sh);
268 return;
269 }
4eb788df
SL
270 }
271 md_wakeup_thread(conf->mddev->thread);
272 } else {
273 BUG_ON(stripe_operations_active(sh));
274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
275 if (atomic_dec_return(&conf->preread_active_stripes)
276 < IO_THRESHOLD)
277 md_wakeup_thread(conf->mddev->thread);
278 atomic_dec(&conf->active_stripes);
1e6d690b
SL
279 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
280 if (!r5c_is_writeback(conf->log))
281 list_add_tail(&sh->lru, temp_inactive_list);
282 else {
283 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
284 if (injournal == 0)
285 list_add_tail(&sh->lru, temp_inactive_list);
286 else if (injournal == conf->raid_disks - conf->max_degraded) {
287 /* full stripe */
288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
289 atomic_inc(&conf->r5c_cached_full_stripes);
290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
291 atomic_dec(&conf->r5c_cached_partial_stripes);
292 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
a39f7afd 293 r5c_check_cached_full_stripe(conf);
03b047f4
SL
294 } else
295 /*
296 * STRIPE_R5C_PARTIAL_STRIPE is set in
297 * r5c_try_caching_write(). No need to
298 * set it again.
299 */
1e6d690b 300 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
1e6d690b
SL
301 }
302 }
1da177e4
LT
303 }
304}
d0dabf7e 305
566c09c5
SL
306static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
307 struct list_head *temp_inactive_list)
4eb788df
SL
308{
309 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
310 do_release_stripe(conf, sh, temp_inactive_list);
311}
312
313/*
314 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
315 *
316 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
317 * given time. Adding stripes only takes device lock, while deleting stripes
318 * only takes hash lock.
319 */
320static void release_inactive_stripe_list(struct r5conf *conf,
321 struct list_head *temp_inactive_list,
322 int hash)
323{
324 int size;
6ab2a4b8 325 bool do_wakeup = false;
566c09c5
SL
326 unsigned long flags;
327
328 if (hash == NR_STRIPE_HASH_LOCKS) {
329 size = NR_STRIPE_HASH_LOCKS;
330 hash = NR_STRIPE_HASH_LOCKS - 1;
331 } else
332 size = 1;
333 while (size) {
334 struct list_head *list = &temp_inactive_list[size - 1];
335
336 /*
6d036f7d 337 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
338 * remove stripes from the list
339 */
340 if (!list_empty_careful(list)) {
341 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
342 if (list_empty(conf->inactive_list + hash) &&
343 !list_empty(list))
344 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 345 list_splice_tail_init(list, conf->inactive_list + hash);
6ab2a4b8 346 do_wakeup = true;
566c09c5
SL
347 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
348 }
349 size--;
350 hash--;
351 }
352
353 if (do_wakeup) {
6ab2a4b8 354 wake_up(&conf->wait_for_stripe);
b1b46486
YL
355 if (atomic_read(&conf->active_stripes) == 0)
356 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
357 if (conf->retry_read_aligned)
358 md_wakeup_thread(conf->mddev->thread);
359 }
4eb788df
SL
360}
361
773ca82f 362/* should hold conf->device_lock already */
566c09c5
SL
363static int release_stripe_list(struct r5conf *conf,
364 struct list_head *temp_inactive_list)
773ca82f 365{
eae8263f 366 struct stripe_head *sh, *t;
773ca82f
SL
367 int count = 0;
368 struct llist_node *head;
369
370 head = llist_del_all(&conf->released_stripes);
d265d9dc 371 head = llist_reverse_order(head);
eae8263f 372 llist_for_each_entry_safe(sh, t, head, release_list) {
566c09c5
SL
373 int hash;
374
773ca82f
SL
375 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
376 smp_mb();
377 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
378 /*
379 * Don't worry the bit is set here, because if the bit is set
380 * again, the count is always > 1. This is true for
381 * STRIPE_ON_UNPLUG_LIST bit too.
382 */
566c09c5
SL
383 hash = sh->hash_lock_index;
384 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
385 count++;
386 }
387
388 return count;
389}
390
6d036f7d 391void raid5_release_stripe(struct stripe_head *sh)
1da177e4 392{
d1688a6d 393 struct r5conf *conf = sh->raid_conf;
1da177e4 394 unsigned long flags;
566c09c5
SL
395 struct list_head list;
396 int hash;
773ca82f 397 bool wakeup;
16a53ecc 398
cf170f3f
ES
399 /* Avoid release_list until the last reference.
400 */
401 if (atomic_add_unless(&sh->count, -1, 1))
402 return;
403
ad4068de 404 if (unlikely(!conf->mddev->thread) ||
405 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
406 goto slow_path;
407 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
408 if (wakeup)
409 md_wakeup_thread(conf->mddev->thread);
410 return;
411slow_path:
4eb788df 412 local_irq_save(flags);
773ca82f 413 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 414 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
415 INIT_LIST_HEAD(&list);
416 hash = sh->hash_lock_index;
417 do_release_stripe(conf, sh, &list);
4eb788df 418 spin_unlock(&conf->device_lock);
566c09c5 419 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
420 }
421 local_irq_restore(flags);
1da177e4
LT
422}
423
fccddba0 424static inline void remove_hash(struct stripe_head *sh)
1da177e4 425{
45b4233c
DW
426 pr_debug("remove_hash(), stripe %llu\n",
427 (unsigned long long)sh->sector);
1da177e4 428
fccddba0 429 hlist_del_init(&sh->hash);
1da177e4
LT
430}
431
d1688a6d 432static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 433{
fccddba0 434 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 435
45b4233c
DW
436 pr_debug("insert_hash(), stripe %llu\n",
437 (unsigned long long)sh->sector);
1da177e4 438
fccddba0 439 hlist_add_head(&sh->hash, hp);
1da177e4
LT
440}
441
1da177e4 442/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 443static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
444{
445 struct stripe_head *sh = NULL;
446 struct list_head *first;
447
566c09c5 448 if (list_empty(conf->inactive_list + hash))
1da177e4 449 goto out;
566c09c5 450 first = (conf->inactive_list + hash)->next;
1da177e4
LT
451 sh = list_entry(first, struct stripe_head, lru);
452 list_del_init(first);
453 remove_hash(sh);
454 atomic_inc(&conf->active_stripes);
566c09c5 455 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
456 if (list_empty(conf->inactive_list + hash))
457 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
458out:
459 return sh;
460}
461
e4e11e38 462static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
463{
464 struct page *p;
465 int i;
e4e11e38 466 int num = sh->raid_conf->pool_size;
1da177e4 467
e4e11e38 468 for (i = 0; i < num ; i++) {
d592a996 469 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
470 p = sh->dev[i].page;
471 if (!p)
472 continue;
473 sh->dev[i].page = NULL;
2d1f3b5d 474 put_page(p);
1da177e4
LT
475 }
476}
477
a9683a79 478static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
479{
480 int i;
e4e11e38 481 int num = sh->raid_conf->pool_size;
1da177e4 482
e4e11e38 483 for (i = 0; i < num; i++) {
1da177e4
LT
484 struct page *page;
485
a9683a79 486 if (!(page = alloc_page(gfp))) {
1da177e4
LT
487 return 1;
488 }
489 sh->dev[i].page = page;
d592a996 490 sh->dev[i].orig_page = page;
1da177e4 491 }
3418d036 492
1da177e4
LT
493 return 0;
494}
495
d1688a6d 496static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 497 struct stripe_head *sh);
1da177e4 498
b5663ba4 499static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 500{
d1688a6d 501 struct r5conf *conf = sh->raid_conf;
566c09c5 502 int i, seq;
1da177e4 503
78bafebd
ES
504 BUG_ON(atomic_read(&sh->count) != 0);
505 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 506 BUG_ON(stripe_operations_active(sh));
59fc630b 507 BUG_ON(sh->batch_head);
d84e0f10 508
45b4233c 509 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 510 (unsigned long long)sector);
566c09c5
SL
511retry:
512 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 513 sh->generation = conf->generation - previous;
b5663ba4 514 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 515 sh->sector = sector;
911d4ee8 516 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
517 sh->state = 0;
518
7ecaa1e6 519 for (i = sh->disks; i--; ) {
1da177e4
LT
520 struct r5dev *dev = &sh->dev[i];
521
d84e0f10 522 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 523 test_bit(R5_LOCKED, &dev->flags)) {
cc6167b4 524 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 525 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 526 dev->read, dev->towrite, dev->written,
1da177e4 527 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 528 WARN_ON(1);
1da177e4
LT
529 }
530 dev->flags = 0;
27a4ff8f 531 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4 532 }
566c09c5
SL
533 if (read_seqcount_retry(&conf->gen_lock, seq))
534 goto retry;
7a87f434 535 sh->overwrite_disks = 0;
1da177e4 536 insert_hash(conf, sh);
851c30c9 537 sh->cpu = smp_processor_id();
da41ba65 538 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
539}
540
d1688a6d 541static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 542 short generation)
1da177e4
LT
543{
544 struct stripe_head *sh;
545
45b4233c 546 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 547 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 548 if (sh->sector == sector && sh->generation == generation)
1da177e4 549 return sh;
45b4233c 550 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
551 return NULL;
552}
553
674806d6
N
554/*
555 * Need to check if array has failed when deciding whether to:
556 * - start an array
557 * - remove non-faulty devices
558 * - add a spare
559 * - allow a reshape
560 * This determination is simple when no reshape is happening.
561 * However if there is a reshape, we need to carefully check
562 * both the before and after sections.
563 * This is because some failed devices may only affect one
564 * of the two sections, and some non-in_sync devices may
565 * be insync in the section most affected by failed devices.
566 */
2e38a37f 567int raid5_calc_degraded(struct r5conf *conf)
674806d6 568{
908f4fbd 569 int degraded, degraded2;
674806d6 570 int i;
674806d6
N
571
572 rcu_read_lock();
573 degraded = 0;
574 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 575 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
576 if (rdev && test_bit(Faulty, &rdev->flags))
577 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
578 if (!rdev || test_bit(Faulty, &rdev->flags))
579 degraded++;
580 else if (test_bit(In_sync, &rdev->flags))
581 ;
582 else
583 /* not in-sync or faulty.
584 * If the reshape increases the number of devices,
585 * this is being recovered by the reshape, so
586 * this 'previous' section is not in_sync.
587 * If the number of devices is being reduced however,
588 * the device can only be part of the array if
589 * we are reverting a reshape, so this section will
590 * be in-sync.
591 */
592 if (conf->raid_disks >= conf->previous_raid_disks)
593 degraded++;
594 }
595 rcu_read_unlock();
908f4fbd
N
596 if (conf->raid_disks == conf->previous_raid_disks)
597 return degraded;
674806d6 598 rcu_read_lock();
908f4fbd 599 degraded2 = 0;
674806d6 600 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 601 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
602 if (rdev && test_bit(Faulty, &rdev->flags))
603 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 604 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 605 degraded2++;
674806d6
N
606 else if (test_bit(In_sync, &rdev->flags))
607 ;
608 else
609 /* not in-sync or faulty.
610 * If reshape increases the number of devices, this
611 * section has already been recovered, else it
612 * almost certainly hasn't.
613 */
614 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 615 degraded2++;
674806d6
N
616 }
617 rcu_read_unlock();
908f4fbd
N
618 if (degraded2 > degraded)
619 return degraded2;
620 return degraded;
621}
622
623static int has_failed(struct r5conf *conf)
624{
625 int degraded;
626
627 if (conf->mddev->reshape_position == MaxSector)
628 return conf->mddev->degraded > conf->max_degraded;
629
2e38a37f 630 degraded = raid5_calc_degraded(conf);
674806d6
N
631 if (degraded > conf->max_degraded)
632 return 1;
633 return 0;
634}
635
6d036f7d
SL
636struct stripe_head *
637raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
638 int previous, int noblock, int noquiesce)
1da177e4
LT
639{
640 struct stripe_head *sh;
566c09c5 641 int hash = stripe_hash_locks_hash(sector);
ff00d3b4 642 int inc_empty_inactive_list_flag;
1da177e4 643
45b4233c 644 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 645
566c09c5 646 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
647
648 do {
b1b46486 649 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 650 conf->quiesce == 0 || noquiesce,
566c09c5 651 *(conf->hash_locks + hash));
86b42c71 652 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 653 if (!sh) {
edbe83ab 654 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 655 sh = get_free_stripe(conf, hash);
713bc5c2
SL
656 if (!sh && !test_bit(R5_DID_ALLOC,
657 &conf->cache_state))
edbe83ab
N
658 set_bit(R5_ALLOC_MORE,
659 &conf->cache_state);
660 }
1da177e4
LT
661 if (noblock && sh == NULL)
662 break;
a39f7afd
SL
663
664 r5c_check_stripe_cache_usage(conf);
1da177e4 665 if (!sh) {
5423399a
N
666 set_bit(R5_INACTIVE_BLOCKED,
667 &conf->cache_state);
a39f7afd 668 r5l_wake_reclaim(conf->log, 0);
6ab2a4b8
SL
669 wait_event_lock_irq(
670 conf->wait_for_stripe,
566c09c5
SL
671 !list_empty(conf->inactive_list + hash) &&
672 (atomic_read(&conf->active_stripes)
673 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
674 || !test_bit(R5_INACTIVE_BLOCKED,
675 &conf->cache_state)),
6ab2a4b8 676 *(conf->hash_locks + hash));
5423399a
N
677 clear_bit(R5_INACTIVE_BLOCKED,
678 &conf->cache_state);
7da9d450 679 } else {
b5663ba4 680 init_stripe(sh, sector, previous);
7da9d450
N
681 atomic_inc(&sh->count);
682 }
e240c183 683 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 684 spin_lock(&conf->device_lock);
e240c183 685 if (!atomic_read(&sh->count)) {
1da177e4
LT
686 if (!test_bit(STRIPE_HANDLE, &sh->state))
687 atomic_inc(&conf->active_stripes);
5af9bef7
N
688 BUG_ON(list_empty(&sh->lru) &&
689 !test_bit(STRIPE_EXPANDING, &sh->state));
ff00d3b4
ZL
690 inc_empty_inactive_list_flag = 0;
691 if (!list_empty(conf->inactive_list + hash))
692 inc_empty_inactive_list_flag = 1;
16a53ecc 693 list_del_init(&sh->lru);
ff00d3b4
ZL
694 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
695 atomic_inc(&conf->empty_inactive_list_nr);
bfc90cb0
SL
696 if (sh->group) {
697 sh->group->stripes_cnt--;
698 sh->group = NULL;
699 }
1da177e4 700 }
7da9d450 701 atomic_inc(&sh->count);
6d183de4 702 spin_unlock(&conf->device_lock);
1da177e4
LT
703 }
704 } while (sh == NULL);
705
566c09c5 706 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
707 return sh;
708}
709
7a87f434 710static bool is_full_stripe_write(struct stripe_head *sh)
711{
712 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
713 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
714}
715
59fc630b 716static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
717{
59fc630b 718 if (sh1 > sh2) {
3d05f3ae 719 spin_lock_irq(&sh2->stripe_lock);
59fc630b 720 spin_lock_nested(&sh1->stripe_lock, 1);
721 } else {
3d05f3ae 722 spin_lock_irq(&sh1->stripe_lock);
59fc630b 723 spin_lock_nested(&sh2->stripe_lock, 1);
724 }
725}
726
727static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
728{
729 spin_unlock(&sh1->stripe_lock);
3d05f3ae 730 spin_unlock_irq(&sh2->stripe_lock);
59fc630b 731}
732
733/* Only freshly new full stripe normal write stripe can be added to a batch list */
734static bool stripe_can_batch(struct stripe_head *sh)
735{
9c3e333d
SL
736 struct r5conf *conf = sh->raid_conf;
737
3418d036 738 if (conf->log || raid5_has_ppl(conf))
9c3e333d 739 return false;
59fc630b 740 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 741 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 742 is_full_stripe_write(sh);
743}
744
745/* we only do back search */
746static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
747{
748 struct stripe_head *head;
749 sector_t head_sector, tmp_sec;
750 int hash;
751 int dd_idx;
ff00d3b4 752 int inc_empty_inactive_list_flag;
59fc630b 753
59fc630b 754 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
755 tmp_sec = sh->sector;
756 if (!sector_div(tmp_sec, conf->chunk_sectors))
757 return;
758 head_sector = sh->sector - STRIPE_SECTORS;
759
760 hash = stripe_hash_locks_hash(head_sector);
761 spin_lock_irq(conf->hash_locks + hash);
762 head = __find_stripe(conf, head_sector, conf->generation);
763 if (head && !atomic_inc_not_zero(&head->count)) {
764 spin_lock(&conf->device_lock);
765 if (!atomic_read(&head->count)) {
766 if (!test_bit(STRIPE_HANDLE, &head->state))
767 atomic_inc(&conf->active_stripes);
768 BUG_ON(list_empty(&head->lru) &&
769 !test_bit(STRIPE_EXPANDING, &head->state));
ff00d3b4
ZL
770 inc_empty_inactive_list_flag = 0;
771 if (!list_empty(conf->inactive_list + hash))
772 inc_empty_inactive_list_flag = 1;
59fc630b 773 list_del_init(&head->lru);
ff00d3b4
ZL
774 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
775 atomic_inc(&conf->empty_inactive_list_nr);
59fc630b 776 if (head->group) {
777 head->group->stripes_cnt--;
778 head->group = NULL;
779 }
780 }
781 atomic_inc(&head->count);
782 spin_unlock(&conf->device_lock);
783 }
784 spin_unlock_irq(conf->hash_locks + hash);
785
786 if (!head)
787 return;
788 if (!stripe_can_batch(head))
789 goto out;
790
791 lock_two_stripes(head, sh);
792 /* clear_batch_ready clear the flag */
793 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
794 goto unlock_out;
795
796 if (sh->batch_head)
797 goto unlock_out;
798
799 dd_idx = 0;
800 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
801 dd_idx++;
1eff9d32 802 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796a5cf0 803 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
59fc630b 804 goto unlock_out;
805
806 if (head->batch_head) {
807 spin_lock(&head->batch_head->batch_lock);
808 /* This batch list is already running */
809 if (!stripe_can_batch(head)) {
810 spin_unlock(&head->batch_head->batch_lock);
811 goto unlock_out;
812 }
3664847d
SL
813 /*
814 * We must assign batch_head of this stripe within the
815 * batch_lock, otherwise clear_batch_ready of batch head
816 * stripe could clear BATCH_READY bit of this stripe and
817 * this stripe->batch_head doesn't get assigned, which
818 * could confuse clear_batch_ready for this stripe
819 */
820 sh->batch_head = head->batch_head;
59fc630b 821
822 /*
823 * at this point, head's BATCH_READY could be cleared, but we
824 * can still add the stripe to batch list
825 */
826 list_add(&sh->batch_list, &head->batch_list);
827 spin_unlock(&head->batch_head->batch_lock);
59fc630b 828 } else {
829 head->batch_head = head;
830 sh->batch_head = head->batch_head;
831 spin_lock(&head->batch_lock);
832 list_add_tail(&sh->batch_list, &head->batch_list);
833 spin_unlock(&head->batch_lock);
834 }
835
836 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
837 if (atomic_dec_return(&conf->preread_active_stripes)
838 < IO_THRESHOLD)
839 md_wakeup_thread(conf->mddev->thread);
840
2b6b2457
N
841 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
842 int seq = sh->bm_seq;
843 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
844 sh->batch_head->bm_seq > seq)
845 seq = sh->batch_head->bm_seq;
846 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
847 sh->batch_head->bm_seq = seq;
848 }
849
59fc630b 850 atomic_inc(&sh->count);
851unlock_out:
852 unlock_two_stripes(head, sh);
853out:
6d036f7d 854 raid5_release_stripe(head);
59fc630b 855}
856
05616be5
N
857/* Determine if 'data_offset' or 'new_data_offset' should be used
858 * in this stripe_head.
859 */
860static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
861{
862 sector_t progress = conf->reshape_progress;
863 /* Need a memory barrier to make sure we see the value
864 * of conf->generation, or ->data_offset that was set before
865 * reshape_progress was updated.
866 */
867 smp_rmb();
868 if (progress == MaxSector)
869 return 0;
870 if (sh->generation == conf->generation - 1)
871 return 0;
872 /* We are in a reshape, and this is a new-generation stripe,
873 * so use new_data_offset.
874 */
875 return 1;
876}
877
aaf9f12e 878static void dispatch_bio_list(struct bio_list *tmp)
765d704d 879{
765d704d
SL
880 struct bio *bio;
881
aaf9f12e
SL
882 while ((bio = bio_list_pop(tmp)))
883 generic_make_request(bio);
884}
885
886static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
887{
888 const struct r5pending_data *da = list_entry(a,
889 struct r5pending_data, sibling);
890 const struct r5pending_data *db = list_entry(b,
891 struct r5pending_data, sibling);
892 if (da->sector > db->sector)
893 return 1;
894 if (da->sector < db->sector)
895 return -1;
896 return 0;
897}
898
899static void dispatch_defer_bios(struct r5conf *conf, int target,
900 struct bio_list *list)
901{
902 struct r5pending_data *data;
903 struct list_head *first, *next = NULL;
904 int cnt = 0;
905
906 if (conf->pending_data_cnt == 0)
907 return;
908
909 list_sort(NULL, &conf->pending_list, cmp_stripe);
910
911 first = conf->pending_list.next;
912
913 /* temporarily move the head */
914 if (conf->next_pending_data)
915 list_move_tail(&conf->pending_list,
916 &conf->next_pending_data->sibling);
917
918 while (!list_empty(&conf->pending_list)) {
919 data = list_first_entry(&conf->pending_list,
920 struct r5pending_data, sibling);
921 if (&data->sibling == first)
922 first = data->sibling.next;
923 next = data->sibling.next;
924
925 bio_list_merge(list, &data->bios);
926 list_move(&data->sibling, &conf->free_list);
927 cnt++;
928 if (cnt >= target)
929 break;
930 }
931 conf->pending_data_cnt -= cnt;
932 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
933
934 if (next != &conf->pending_list)
935 conf->next_pending_data = list_entry(next,
936 struct r5pending_data, sibling);
937 else
938 conf->next_pending_data = NULL;
939 /* list isn't empty */
940 if (first != &conf->pending_list)
941 list_move_tail(&conf->pending_list, first);
942}
943
944static void flush_deferred_bios(struct r5conf *conf)
945{
946 struct bio_list tmp = BIO_EMPTY_LIST;
947
948 if (conf->pending_data_cnt == 0)
765d704d
SL
949 return;
950
765d704d 951 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
952 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
953 BUG_ON(conf->pending_data_cnt != 0);
765d704d
SL
954 spin_unlock(&conf->pending_bios_lock);
955
aaf9f12e 956 dispatch_bio_list(&tmp);
765d704d
SL
957}
958
aaf9f12e
SL
959static void defer_issue_bios(struct r5conf *conf, sector_t sector,
960 struct bio_list *bios)
765d704d 961{
aaf9f12e
SL
962 struct bio_list tmp = BIO_EMPTY_LIST;
963 struct r5pending_data *ent;
964
765d704d 965 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
966 ent = list_first_entry(&conf->free_list, struct r5pending_data,
967 sibling);
968 list_move_tail(&ent->sibling, &conf->pending_list);
969 ent->sector = sector;
970 bio_list_init(&ent->bios);
971 bio_list_merge(&ent->bios, bios);
972 conf->pending_data_cnt++;
973 if (conf->pending_data_cnt >= PENDING_IO_MAX)
974 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
975
765d704d 976 spin_unlock(&conf->pending_bios_lock);
aaf9f12e
SL
977
978 dispatch_bio_list(&tmp);
765d704d
SL
979}
980
6712ecf8 981static void
4246a0b6 982raid5_end_read_request(struct bio *bi);
6712ecf8 983static void
4246a0b6 984raid5_end_write_request(struct bio *bi);
91c00924 985
c4e5ac0a 986static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 987{
d1688a6d 988 struct r5conf *conf = sh->raid_conf;
91c00924 989 int i, disks = sh->disks;
59fc630b 990 struct stripe_head *head_sh = sh;
aaf9f12e
SL
991 struct bio_list pending_bios = BIO_EMPTY_LIST;
992 bool should_defer;
91c00924
DW
993
994 might_sleep();
995
ff875738
AP
996 if (log_stripe(sh, s) == 0)
997 return;
1e6d690b 998
aaf9f12e 999 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1e6d690b 1000
91c00924 1001 for (i = disks; i--; ) {
796a5cf0 1002 int op, op_flags = 0;
9a3e1101 1003 int replace_only = 0;
977df362
N
1004 struct bio *bi, *rbi;
1005 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 1006
1007 sh = head_sh;
e9c7469b 1008 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
796a5cf0 1009 op = REQ_OP_WRITE;
e9c7469b 1010 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
70fd7614 1011 op_flags = REQ_FUA;
9e444768 1012 if (test_bit(R5_Discard, &sh->dev[i].flags))
796a5cf0 1013 op = REQ_OP_DISCARD;
e9c7469b 1014 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
796a5cf0 1015 op = REQ_OP_READ;
9a3e1101
N
1016 else if (test_and_clear_bit(R5_WantReplace,
1017 &sh->dev[i].flags)) {
796a5cf0 1018 op = REQ_OP_WRITE;
9a3e1101
N
1019 replace_only = 1;
1020 } else
91c00924 1021 continue;
bc0934f0 1022 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
796a5cf0 1023 op_flags |= REQ_SYNC;
91c00924 1024
59fc630b 1025again:
91c00924 1026 bi = &sh->dev[i].req;
977df362 1027 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 1028
91c00924 1029 rcu_read_lock();
9a3e1101 1030 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
1031 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1032 rdev = rcu_dereference(conf->disks[i].rdev);
1033 if (!rdev) {
1034 rdev = rrdev;
1035 rrdev = NULL;
1036 }
796a5cf0 1037 if (op_is_write(op)) {
9a3e1101
N
1038 if (replace_only)
1039 rdev = NULL;
dd054fce
N
1040 if (rdev == rrdev)
1041 /* We raced and saw duplicates */
1042 rrdev = NULL;
9a3e1101 1043 } else {
59fc630b 1044 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
1045 rdev = rrdev;
1046 rrdev = NULL;
1047 }
977df362 1048
91c00924
DW
1049 if (rdev && test_bit(Faulty, &rdev->flags))
1050 rdev = NULL;
1051 if (rdev)
1052 atomic_inc(&rdev->nr_pending);
977df362
N
1053 if (rrdev && test_bit(Faulty, &rrdev->flags))
1054 rrdev = NULL;
1055 if (rrdev)
1056 atomic_inc(&rrdev->nr_pending);
91c00924
DW
1057 rcu_read_unlock();
1058
73e92e51 1059 /* We have already checked bad blocks for reads. Now
977df362
N
1060 * need to check for writes. We never accept write errors
1061 * on the replacement, so we don't to check rrdev.
73e92e51 1062 */
796a5cf0 1063 while (op_is_write(op) && rdev &&
73e92e51
N
1064 test_bit(WriteErrorSeen, &rdev->flags)) {
1065 sector_t first_bad;
1066 int bad_sectors;
1067 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1068 &first_bad, &bad_sectors);
1069 if (!bad)
1070 break;
1071
1072 if (bad < 0) {
1073 set_bit(BlockedBadBlocks, &rdev->flags);
1074 if (!conf->mddev->external &&
2953079c 1075 conf->mddev->sb_flags) {
73e92e51
N
1076 /* It is very unlikely, but we might
1077 * still need to write out the
1078 * bad block log - better give it
1079 * a chance*/
1080 md_check_recovery(conf->mddev);
1081 }
1850753d 1082 /*
1083 * Because md_wait_for_blocked_rdev
1084 * will dec nr_pending, we must
1085 * increment it first.
1086 */
1087 atomic_inc(&rdev->nr_pending);
73e92e51
N
1088 md_wait_for_blocked_rdev(rdev, conf->mddev);
1089 } else {
1090 /* Acknowledged bad block - skip the write */
1091 rdev_dec_pending(rdev, conf->mddev);
1092 rdev = NULL;
1093 }
1094 }
1095
91c00924 1096 if (rdev) {
9a3e1101
N
1097 if (s->syncing || s->expanding || s->expanded
1098 || s->replacing)
91c00924
DW
1099 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1100
2b7497f0
DW
1101 set_bit(STRIPE_IO_STARTED, &sh->state);
1102
74d46992 1103 bio_set_dev(bi, rdev->bdev);
796a5cf0
MC
1104 bio_set_op_attrs(bi, op, op_flags);
1105 bi->bi_end_io = op_is_write(op)
2f6db2a7
KO
1106 ? raid5_end_write_request
1107 : raid5_end_read_request;
1108 bi->bi_private = sh;
1109
6296b960 1110 pr_debug("%s: for %llu schedule op %d on disc %d\n",
e46b272b 1111 __func__, (unsigned long long)sh->sector,
1eff9d32 1112 bi->bi_opf, i);
91c00924 1113 atomic_inc(&sh->count);
59fc630b 1114 if (sh != head_sh)
1115 atomic_inc(&head_sh->count);
05616be5 1116 if (use_new_offset(conf, sh))
4f024f37 1117 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1118 + rdev->new_data_offset);
1119 else
4f024f37 1120 bi->bi_iter.bi_sector = (sh->sector
05616be5 1121 + rdev->data_offset);
59fc630b 1122 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1eff9d32 1123 bi->bi_opf |= REQ_NOMERGE;
3f9e7c14 1124
d592a996
SL
1125 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1126 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
86aa1397
SL
1127
1128 if (!op_is_write(op) &&
1129 test_bit(R5_InJournal, &sh->dev[i].flags))
1130 /*
1131 * issuing read for a page in journal, this
1132 * must be preparing for prexor in rmw; read
1133 * the data into orig_page
1134 */
1135 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1136 else
1137 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1138 bi->bi_vcnt = 1;
91c00924
DW
1139 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1140 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1141 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1142 /*
1143 * If this is discard request, set bi_vcnt 0. We don't
1144 * want to confuse SCSI because SCSI will replace payload
1145 */
796a5cf0 1146 if (op == REQ_OP_DISCARD)
37c61ff3 1147 bi->bi_vcnt = 0;
977df362
N
1148 if (rrdev)
1149 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1150
1151 if (conf->mddev->gendisk)
74d46992 1152 trace_block_bio_remap(bi->bi_disk->queue,
e3620a3a
JB
1153 bi, disk_devt(conf->mddev->gendisk),
1154 sh->dev[i].sector);
aaf9f12e
SL
1155 if (should_defer && op_is_write(op))
1156 bio_list_add(&pending_bios, bi);
1157 else
1158 generic_make_request(bi);
977df362
N
1159 }
1160 if (rrdev) {
9a3e1101
N
1161 if (s->syncing || s->expanding || s->expanded
1162 || s->replacing)
977df362
N
1163 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1164
1165 set_bit(STRIPE_IO_STARTED, &sh->state);
1166
74d46992 1167 bio_set_dev(rbi, rrdev->bdev);
796a5cf0
MC
1168 bio_set_op_attrs(rbi, op, op_flags);
1169 BUG_ON(!op_is_write(op));
2f6db2a7
KO
1170 rbi->bi_end_io = raid5_end_write_request;
1171 rbi->bi_private = sh;
1172
6296b960 1173 pr_debug("%s: for %llu schedule op %d on "
977df362
N
1174 "replacement disc %d\n",
1175 __func__, (unsigned long long)sh->sector,
1eff9d32 1176 rbi->bi_opf, i);
977df362 1177 atomic_inc(&sh->count);
59fc630b 1178 if (sh != head_sh)
1179 atomic_inc(&head_sh->count);
05616be5 1180 if (use_new_offset(conf, sh))
4f024f37 1181 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1182 + rrdev->new_data_offset);
1183 else
4f024f37 1184 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1185 + rrdev->data_offset);
d592a996
SL
1186 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1187 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1188 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1189 rbi->bi_vcnt = 1;
977df362
N
1190 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1191 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1192 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1193 /*
1194 * If this is discard request, set bi_vcnt 0. We don't
1195 * want to confuse SCSI because SCSI will replace payload
1196 */
796a5cf0 1197 if (op == REQ_OP_DISCARD)
37c61ff3 1198 rbi->bi_vcnt = 0;
e3620a3a 1199 if (conf->mddev->gendisk)
74d46992 1200 trace_block_bio_remap(rbi->bi_disk->queue,
e3620a3a
JB
1201 rbi, disk_devt(conf->mddev->gendisk),
1202 sh->dev[i].sector);
aaf9f12e
SL
1203 if (should_defer && op_is_write(op))
1204 bio_list_add(&pending_bios, rbi);
1205 else
1206 generic_make_request(rbi);
977df362
N
1207 }
1208 if (!rdev && !rrdev) {
796a5cf0 1209 if (op_is_write(op))
91c00924 1210 set_bit(STRIPE_DEGRADED, &sh->state);
6296b960 1211 pr_debug("skip op %d on disc %d for sector %llu\n",
1eff9d32 1212 bi->bi_opf, i, (unsigned long long)sh->sector);
91c00924
DW
1213 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1214 set_bit(STRIPE_HANDLE, &sh->state);
1215 }
59fc630b 1216
1217 if (!head_sh->batch_head)
1218 continue;
1219 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1220 batch_list);
1221 if (sh != head_sh)
1222 goto again;
91c00924 1223 }
aaf9f12e
SL
1224
1225 if (should_defer && !bio_list_empty(&pending_bios))
1226 defer_issue_bios(conf, head_sh->sector, &pending_bios);
91c00924
DW
1227}
1228
1229static struct dma_async_tx_descriptor *
d592a996
SL
1230async_copy_data(int frombio, struct bio *bio, struct page **page,
1231 sector_t sector, struct dma_async_tx_descriptor *tx,
1e6d690b 1232 struct stripe_head *sh, int no_skipcopy)
91c00924 1233{
7988613b
KO
1234 struct bio_vec bvl;
1235 struct bvec_iter iter;
91c00924 1236 struct page *bio_page;
91c00924 1237 int page_offset;
a08abd8c 1238 struct async_submit_ctl submit;
0403e382 1239 enum async_tx_flags flags = 0;
91c00924 1240
4f024f37
KO
1241 if (bio->bi_iter.bi_sector >= sector)
1242 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1243 else
4f024f37 1244 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1245
0403e382
DW
1246 if (frombio)
1247 flags |= ASYNC_TX_FENCE;
1248 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1249
7988613b
KO
1250 bio_for_each_segment(bvl, bio, iter) {
1251 int len = bvl.bv_len;
91c00924
DW
1252 int clen;
1253 int b_offset = 0;
1254
1255 if (page_offset < 0) {
1256 b_offset = -page_offset;
1257 page_offset += b_offset;
1258 len -= b_offset;
1259 }
1260
1261 if (len > 0 && page_offset + len > STRIPE_SIZE)
1262 clen = STRIPE_SIZE - page_offset;
1263 else
1264 clen = len;
1265
1266 if (clen > 0) {
7988613b
KO
1267 b_offset += bvl.bv_offset;
1268 bio_page = bvl.bv_page;
d592a996
SL
1269 if (frombio) {
1270 if (sh->raid_conf->skip_copy &&
1271 b_offset == 0 && page_offset == 0 &&
1e6d690b
SL
1272 clen == STRIPE_SIZE &&
1273 !no_skipcopy)
d592a996
SL
1274 *page = bio_page;
1275 else
1276 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1277 b_offset, clen, &submit);
d592a996
SL
1278 } else
1279 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1280 page_offset, clen, &submit);
91c00924 1281 }
a08abd8c
DW
1282 /* chain the operations */
1283 submit.depend_tx = tx;
1284
91c00924
DW
1285 if (clen < len) /* hit end of page */
1286 break;
1287 page_offset += len;
1288 }
1289
1290 return tx;
1291}
1292
1293static void ops_complete_biofill(void *stripe_head_ref)
1294{
1295 struct stripe_head *sh = stripe_head_ref;
e4d84909 1296 int i;
91c00924 1297
e46b272b 1298 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1299 (unsigned long long)sh->sector);
1300
1301 /* clear completed biofills */
1302 for (i = sh->disks; i--; ) {
1303 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1304
1305 /* acknowledge completion of a biofill operation */
e4d84909
DW
1306 /* and check if we need to reply to a read request,
1307 * new R5_Wantfill requests are held off until
83de75cc 1308 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1309 */
1310 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1311 struct bio *rbi, *rbi2;
91c00924 1312
91c00924
DW
1313 BUG_ON(!dev->read);
1314 rbi = dev->read;
1315 dev->read = NULL;
4f024f37 1316 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1317 dev->sector + STRIPE_SECTORS) {
1318 rbi2 = r5_next_bio(rbi, dev->sector);
016c76ac 1319 bio_endio(rbi);
91c00924
DW
1320 rbi = rbi2;
1321 }
1322 }
1323 }
83de75cc 1324 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1325
e4d84909 1326 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1327 raid5_release_stripe(sh);
91c00924
DW
1328}
1329
1330static void ops_run_biofill(struct stripe_head *sh)
1331{
1332 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1333 struct async_submit_ctl submit;
91c00924
DW
1334 int i;
1335
59fc630b 1336 BUG_ON(sh->batch_head);
e46b272b 1337 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1338 (unsigned long long)sh->sector);
1339
1340 for (i = sh->disks; i--; ) {
1341 struct r5dev *dev = &sh->dev[i];
1342 if (test_bit(R5_Wantfill, &dev->flags)) {
1343 struct bio *rbi;
b17459c0 1344 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1345 dev->read = rbi = dev->toread;
1346 dev->toread = NULL;
b17459c0 1347 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1348 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1349 dev->sector + STRIPE_SECTORS) {
d592a996 1350 tx = async_copy_data(0, rbi, &dev->page,
1e6d690b 1351 dev->sector, tx, sh, 0);
91c00924
DW
1352 rbi = r5_next_bio(rbi, dev->sector);
1353 }
1354 }
1355 }
1356
1357 atomic_inc(&sh->count);
a08abd8c
DW
1358 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1359 async_trigger_callback(&submit);
91c00924
DW
1360}
1361
4e7d2c0a 1362static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1363{
4e7d2c0a 1364 struct r5dev *tgt;
91c00924 1365
4e7d2c0a
DW
1366 if (target < 0)
1367 return;
91c00924 1368
4e7d2c0a 1369 tgt = &sh->dev[target];
91c00924
DW
1370 set_bit(R5_UPTODATE, &tgt->flags);
1371 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1372 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1373}
1374
ac6b53b6 1375static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1376{
1377 struct stripe_head *sh = stripe_head_ref;
91c00924 1378
e46b272b 1379 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1380 (unsigned long long)sh->sector);
1381
ac6b53b6 1382 /* mark the computed target(s) as uptodate */
4e7d2c0a 1383 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1384 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1385
ecc65c9b
DW
1386 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1387 if (sh->check_state == check_state_compute_run)
1388 sh->check_state = check_state_compute_result;
91c00924 1389 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1390 raid5_release_stripe(sh);
91c00924
DW
1391}
1392
d6f38f31
DW
1393/* return a pointer to the address conversion region of the scribble buffer */
1394static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1395 struct raid5_percpu *percpu, int i)
d6f38f31 1396{
46d5b785 1397 void *addr;
1398
1399 addr = flex_array_get(percpu->scribble, i);
1400 return addr + sizeof(struct page *) * (sh->disks + 2);
1401}
1402
1403/* return a pointer to the address conversion region of the scribble buffer */
1404static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1405{
1406 void *addr;
1407
1408 addr = flex_array_get(percpu->scribble, i);
1409 return addr;
d6f38f31
DW
1410}
1411
1412static struct dma_async_tx_descriptor *
1413ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1414{
91c00924 1415 int disks = sh->disks;
46d5b785 1416 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1417 int target = sh->ops.target;
1418 struct r5dev *tgt = &sh->dev[target];
1419 struct page *xor_dest = tgt->page;
1420 int count = 0;
1421 struct dma_async_tx_descriptor *tx;
a08abd8c 1422 struct async_submit_ctl submit;
91c00924
DW
1423 int i;
1424
59fc630b 1425 BUG_ON(sh->batch_head);
1426
91c00924 1427 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1428 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1429 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1430
1431 for (i = disks; i--; )
1432 if (i != target)
1433 xor_srcs[count++] = sh->dev[i].page;
1434
1435 atomic_inc(&sh->count);
1436
0403e382 1437 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1438 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1439 if (unlikely(count == 1))
a08abd8c 1440 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1441 else
a08abd8c 1442 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1443
91c00924
DW
1444 return tx;
1445}
1446
ac6b53b6
DW
1447/* set_syndrome_sources - populate source buffers for gen_syndrome
1448 * @srcs - (struct page *) array of size sh->disks
1449 * @sh - stripe_head to parse
1450 *
1451 * Populates srcs in proper layout order for the stripe and returns the
1452 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1453 * destination buffer is recorded in srcs[count] and the Q destination
1454 * is recorded in srcs[count+1]].
1455 */
584acdd4
MS
1456static int set_syndrome_sources(struct page **srcs,
1457 struct stripe_head *sh,
1458 int srctype)
ac6b53b6
DW
1459{
1460 int disks = sh->disks;
1461 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1462 int d0_idx = raid6_d0(sh);
1463 int count;
1464 int i;
1465
1466 for (i = 0; i < disks; i++)
5dd33c9a 1467 srcs[i] = NULL;
ac6b53b6
DW
1468
1469 count = 0;
1470 i = d0_idx;
1471 do {
1472 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1473 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1474
584acdd4
MS
1475 if (i == sh->qd_idx || i == sh->pd_idx ||
1476 (srctype == SYNDROME_SRC_ALL) ||
1477 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1e6d690b
SL
1478 (test_bit(R5_Wantdrain, &dev->flags) ||
1479 test_bit(R5_InJournal, &dev->flags))) ||
584acdd4 1480 (srctype == SYNDROME_SRC_WRITTEN &&
0977762f
SL
1481 (dev->written ||
1482 test_bit(R5_InJournal, &dev->flags)))) {
1e6d690b
SL
1483 if (test_bit(R5_InJournal, &dev->flags))
1484 srcs[slot] = sh->dev[i].orig_page;
1485 else
1486 srcs[slot] = sh->dev[i].page;
1487 }
ac6b53b6
DW
1488 i = raid6_next_disk(i, disks);
1489 } while (i != d0_idx);
ac6b53b6 1490
e4424fee 1491 return syndrome_disks;
ac6b53b6
DW
1492}
1493
1494static struct dma_async_tx_descriptor *
1495ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1496{
1497 int disks = sh->disks;
46d5b785 1498 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1499 int target;
1500 int qd_idx = sh->qd_idx;
1501 struct dma_async_tx_descriptor *tx;
1502 struct async_submit_ctl submit;
1503 struct r5dev *tgt;
1504 struct page *dest;
1505 int i;
1506 int count;
1507
59fc630b 1508 BUG_ON(sh->batch_head);
ac6b53b6
DW
1509 if (sh->ops.target < 0)
1510 target = sh->ops.target2;
1511 else if (sh->ops.target2 < 0)
1512 target = sh->ops.target;
91c00924 1513 else
ac6b53b6
DW
1514 /* we should only have one valid target */
1515 BUG();
1516 BUG_ON(target < 0);
1517 pr_debug("%s: stripe %llu block: %d\n",
1518 __func__, (unsigned long long)sh->sector, target);
1519
1520 tgt = &sh->dev[target];
1521 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1522 dest = tgt->page;
1523
1524 atomic_inc(&sh->count);
1525
1526 if (target == qd_idx) {
584acdd4 1527 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1528 blocks[count] = NULL; /* regenerating p is not necessary */
1529 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1530 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1531 ops_complete_compute, sh,
46d5b785 1532 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1533 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1534 } else {
1535 /* Compute any data- or p-drive using XOR */
1536 count = 0;
1537 for (i = disks; i-- ; ) {
1538 if (i == target || i == qd_idx)
1539 continue;
1540 blocks[count++] = sh->dev[i].page;
1541 }
1542
0403e382
DW
1543 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1544 NULL, ops_complete_compute, sh,
46d5b785 1545 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1546 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1547 }
91c00924 1548
91c00924
DW
1549 return tx;
1550}
1551
ac6b53b6
DW
1552static struct dma_async_tx_descriptor *
1553ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1554{
1555 int i, count, disks = sh->disks;
1556 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1557 int d0_idx = raid6_d0(sh);
1558 int faila = -1, failb = -1;
1559 int target = sh->ops.target;
1560 int target2 = sh->ops.target2;
1561 struct r5dev *tgt = &sh->dev[target];
1562 struct r5dev *tgt2 = &sh->dev[target2];
1563 struct dma_async_tx_descriptor *tx;
46d5b785 1564 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1565 struct async_submit_ctl submit;
1566
59fc630b 1567 BUG_ON(sh->batch_head);
ac6b53b6
DW
1568 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1569 __func__, (unsigned long long)sh->sector, target, target2);
1570 BUG_ON(target < 0 || target2 < 0);
1571 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1572 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1573
6c910a78 1574 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1575 * slot number conversion for 'faila' and 'failb'
1576 */
1577 for (i = 0; i < disks ; i++)
5dd33c9a 1578 blocks[i] = NULL;
ac6b53b6
DW
1579 count = 0;
1580 i = d0_idx;
1581 do {
1582 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1583
1584 blocks[slot] = sh->dev[i].page;
1585
1586 if (i == target)
1587 faila = slot;
1588 if (i == target2)
1589 failb = slot;
1590 i = raid6_next_disk(i, disks);
1591 } while (i != d0_idx);
ac6b53b6
DW
1592
1593 BUG_ON(faila == failb);
1594 if (failb < faila)
1595 swap(faila, failb);
1596 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1597 __func__, (unsigned long long)sh->sector, faila, failb);
1598
1599 atomic_inc(&sh->count);
1600
1601 if (failb == syndrome_disks+1) {
1602 /* Q disk is one of the missing disks */
1603 if (faila == syndrome_disks) {
1604 /* Missing P+Q, just recompute */
0403e382
DW
1605 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1606 ops_complete_compute, sh,
46d5b785 1607 to_addr_conv(sh, percpu, 0));
e4424fee 1608 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1609 STRIPE_SIZE, &submit);
1610 } else {
1611 struct page *dest;
1612 int data_target;
1613 int qd_idx = sh->qd_idx;
1614
1615 /* Missing D+Q: recompute D from P, then recompute Q */
1616 if (target == qd_idx)
1617 data_target = target2;
1618 else
1619 data_target = target;
1620
1621 count = 0;
1622 for (i = disks; i-- ; ) {
1623 if (i == data_target || i == qd_idx)
1624 continue;
1625 blocks[count++] = sh->dev[i].page;
1626 }
1627 dest = sh->dev[data_target].page;
0403e382
DW
1628 init_async_submit(&submit,
1629 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1630 NULL, NULL, NULL,
46d5b785 1631 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1632 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1633 &submit);
1634
584acdd4 1635 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1636 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1637 ops_complete_compute, sh,
46d5b785 1638 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1639 return async_gen_syndrome(blocks, 0, count+2,
1640 STRIPE_SIZE, &submit);
1641 }
ac6b53b6 1642 } else {
6c910a78
DW
1643 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1644 ops_complete_compute, sh,
46d5b785 1645 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1646 if (failb == syndrome_disks) {
1647 /* We're missing D+P. */
1648 return async_raid6_datap_recov(syndrome_disks+2,
1649 STRIPE_SIZE, faila,
1650 blocks, &submit);
1651 } else {
1652 /* We're missing D+D. */
1653 return async_raid6_2data_recov(syndrome_disks+2,
1654 STRIPE_SIZE, faila, failb,
1655 blocks, &submit);
1656 }
ac6b53b6
DW
1657 }
1658}
1659
91c00924
DW
1660static void ops_complete_prexor(void *stripe_head_ref)
1661{
1662 struct stripe_head *sh = stripe_head_ref;
1663
e46b272b 1664 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1665 (unsigned long long)sh->sector);
1e6d690b
SL
1666
1667 if (r5c_is_writeback(sh->raid_conf->log))
1668 /*
1669 * raid5-cache write back uses orig_page during prexor.
1670 * After prexor, it is time to free orig_page
1671 */
1672 r5c_release_extra_page(sh);
91c00924
DW
1673}
1674
1675static struct dma_async_tx_descriptor *
584acdd4
MS
1676ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1677 struct dma_async_tx_descriptor *tx)
91c00924 1678{
91c00924 1679 int disks = sh->disks;
46d5b785 1680 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1681 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1682 struct async_submit_ctl submit;
91c00924
DW
1683
1684 /* existing parity data subtracted */
1685 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1686
59fc630b 1687 BUG_ON(sh->batch_head);
e46b272b 1688 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1689 (unsigned long long)sh->sector);
1690
1691 for (i = disks; i--; ) {
1692 struct r5dev *dev = &sh->dev[i];
1693 /* Only process blocks that are known to be uptodate */
1e6d690b
SL
1694 if (test_bit(R5_InJournal, &dev->flags))
1695 xor_srcs[count++] = dev->orig_page;
1696 else if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1697 xor_srcs[count++] = dev->page;
1698 }
1699
0403e382 1700 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1701 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1702 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1703
1704 return tx;
1705}
1706
584acdd4
MS
1707static struct dma_async_tx_descriptor *
1708ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1709 struct dma_async_tx_descriptor *tx)
1710{
1711 struct page **blocks = to_addr_page(percpu, 0);
1712 int count;
1713 struct async_submit_ctl submit;
1714
1715 pr_debug("%s: stripe %llu\n", __func__,
1716 (unsigned long long)sh->sector);
1717
1718 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1719
1720 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1721 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1722 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1723
1724 return tx;
1725}
1726
91c00924 1727static struct dma_async_tx_descriptor *
d8ee0728 1728ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924 1729{
1e6d690b 1730 struct r5conf *conf = sh->raid_conf;
91c00924 1731 int disks = sh->disks;
d8ee0728 1732 int i;
59fc630b 1733 struct stripe_head *head_sh = sh;
91c00924 1734
e46b272b 1735 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1736 (unsigned long long)sh->sector);
1737
1738 for (i = disks; i--; ) {
59fc630b 1739 struct r5dev *dev;
91c00924 1740 struct bio *chosen;
91c00924 1741
59fc630b 1742 sh = head_sh;
1743 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1744 struct bio *wbi;
1745
59fc630b 1746again:
1747 dev = &sh->dev[i];
1e6d690b
SL
1748 /*
1749 * clear R5_InJournal, so when rewriting a page in
1750 * journal, it is not skipped by r5l_log_stripe()
1751 */
1752 clear_bit(R5_InJournal, &dev->flags);
b17459c0 1753 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1754 chosen = dev->towrite;
1755 dev->towrite = NULL;
7a87f434 1756 sh->overwrite_disks = 0;
91c00924
DW
1757 BUG_ON(dev->written);
1758 wbi = dev->written = chosen;
b17459c0 1759 spin_unlock_irq(&sh->stripe_lock);
d592a996 1760 WARN_ON(dev->page != dev->orig_page);
91c00924 1761
4f024f37 1762 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1763 dev->sector + STRIPE_SECTORS) {
1eff9d32 1764 if (wbi->bi_opf & REQ_FUA)
e9c7469b 1765 set_bit(R5_WantFUA, &dev->flags);
1eff9d32 1766 if (wbi->bi_opf & REQ_SYNC)
bc0934f0 1767 set_bit(R5_SyncIO, &dev->flags);
796a5cf0 1768 if (bio_op(wbi) == REQ_OP_DISCARD)
620125f2 1769 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1770 else {
1771 tx = async_copy_data(1, wbi, &dev->page,
1e6d690b
SL
1772 dev->sector, tx, sh,
1773 r5c_is_writeback(conf->log));
1774 if (dev->page != dev->orig_page &&
1775 !r5c_is_writeback(conf->log)) {
d592a996
SL
1776 set_bit(R5_SkipCopy, &dev->flags);
1777 clear_bit(R5_UPTODATE, &dev->flags);
1778 clear_bit(R5_OVERWRITE, &dev->flags);
1779 }
1780 }
91c00924
DW
1781 wbi = r5_next_bio(wbi, dev->sector);
1782 }
59fc630b 1783
1784 if (head_sh->batch_head) {
1785 sh = list_first_entry(&sh->batch_list,
1786 struct stripe_head,
1787 batch_list);
1788 if (sh == head_sh)
1789 continue;
1790 goto again;
1791 }
91c00924
DW
1792 }
1793 }
1794
1795 return tx;
1796}
1797
ac6b53b6 1798static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1799{
1800 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1801 int disks = sh->disks;
1802 int pd_idx = sh->pd_idx;
1803 int qd_idx = sh->qd_idx;
1804 int i;
9e444768 1805 bool fua = false, sync = false, discard = false;
91c00924 1806
e46b272b 1807 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1808 (unsigned long long)sh->sector);
1809
bc0934f0 1810 for (i = disks; i--; ) {
e9c7469b 1811 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1812 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1813 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1814 }
e9c7469b 1815
91c00924
DW
1816 for (i = disks; i--; ) {
1817 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1818
e9c7469b 1819 if (dev->written || i == pd_idx || i == qd_idx) {
235b6003 1820 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
9e444768 1821 set_bit(R5_UPTODATE, &dev->flags);
235b6003
N
1822 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1823 set_bit(R5_Expanded, &dev->flags);
1824 }
e9c7469b
TH
1825 if (fua)
1826 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1827 if (sync)
1828 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1829 }
91c00924
DW
1830 }
1831
d8ee0728
DW
1832 if (sh->reconstruct_state == reconstruct_state_drain_run)
1833 sh->reconstruct_state = reconstruct_state_drain_result;
1834 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1835 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1836 else {
1837 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1838 sh->reconstruct_state = reconstruct_state_result;
1839 }
91c00924
DW
1840
1841 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1842 raid5_release_stripe(sh);
91c00924
DW
1843}
1844
1845static void
ac6b53b6
DW
1846ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1847 struct dma_async_tx_descriptor *tx)
91c00924 1848{
91c00924 1849 int disks = sh->disks;
59fc630b 1850 struct page **xor_srcs;
a08abd8c 1851 struct async_submit_ctl submit;
59fc630b 1852 int count, pd_idx = sh->pd_idx, i;
91c00924 1853 struct page *xor_dest;
d8ee0728 1854 int prexor = 0;
91c00924 1855 unsigned long flags;
59fc630b 1856 int j = 0;
1857 struct stripe_head *head_sh = sh;
1858 int last_stripe;
91c00924 1859
e46b272b 1860 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1861 (unsigned long long)sh->sector);
1862
620125f2
SL
1863 for (i = 0; i < sh->disks; i++) {
1864 if (pd_idx == i)
1865 continue;
1866 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1867 break;
1868 }
1869 if (i >= sh->disks) {
1870 atomic_inc(&sh->count);
620125f2
SL
1871 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1872 ops_complete_reconstruct(sh);
1873 return;
1874 }
59fc630b 1875again:
1876 count = 0;
1877 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1878 /* check if prexor is active which means only process blocks
1879 * that are part of a read-modify-write (written)
1880 */
59fc630b 1881 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1882 prexor = 1;
91c00924
DW
1883 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1884 for (i = disks; i--; ) {
1885 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
1886 if (head_sh->dev[i].written ||
1887 test_bit(R5_InJournal, &head_sh->dev[i].flags))
91c00924
DW
1888 xor_srcs[count++] = dev->page;
1889 }
1890 } else {
1891 xor_dest = sh->dev[pd_idx].page;
1892 for (i = disks; i--; ) {
1893 struct r5dev *dev = &sh->dev[i];
1894 if (i != pd_idx)
1895 xor_srcs[count++] = dev->page;
1896 }
1897 }
1898
91c00924
DW
1899 /* 1/ if we prexor'd then the dest is reused as a source
1900 * 2/ if we did not prexor then we are redoing the parity
1901 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1902 * for the synchronous xor case
1903 */
59fc630b 1904 last_stripe = !head_sh->batch_head ||
1905 list_first_entry(&sh->batch_list,
1906 struct stripe_head, batch_list) == head_sh;
1907 if (last_stripe) {
1908 flags = ASYNC_TX_ACK |
1909 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1910
1911 atomic_inc(&head_sh->count);
1912 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1913 to_addr_conv(sh, percpu, j));
1914 } else {
1915 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1916 init_async_submit(&submit, flags, tx, NULL, NULL,
1917 to_addr_conv(sh, percpu, j));
1918 }
91c00924 1919
a08abd8c
DW
1920 if (unlikely(count == 1))
1921 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1922 else
1923 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1924 if (!last_stripe) {
1925 j++;
1926 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1927 batch_list);
1928 goto again;
1929 }
91c00924
DW
1930}
1931
ac6b53b6
DW
1932static void
1933ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1934 struct dma_async_tx_descriptor *tx)
1935{
1936 struct async_submit_ctl submit;
59fc630b 1937 struct page **blocks;
1938 int count, i, j = 0;
1939 struct stripe_head *head_sh = sh;
1940 int last_stripe;
584acdd4
MS
1941 int synflags;
1942 unsigned long txflags;
ac6b53b6
DW
1943
1944 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1945
620125f2
SL
1946 for (i = 0; i < sh->disks; i++) {
1947 if (sh->pd_idx == i || sh->qd_idx == i)
1948 continue;
1949 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1950 break;
1951 }
1952 if (i >= sh->disks) {
1953 atomic_inc(&sh->count);
620125f2
SL
1954 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1955 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1956 ops_complete_reconstruct(sh);
1957 return;
1958 }
1959
59fc630b 1960again:
1961 blocks = to_addr_page(percpu, j);
584acdd4
MS
1962
1963 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1964 synflags = SYNDROME_SRC_WRITTEN;
1965 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1966 } else {
1967 synflags = SYNDROME_SRC_ALL;
1968 txflags = ASYNC_TX_ACK;
1969 }
1970
1971 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1972 last_stripe = !head_sh->batch_head ||
1973 list_first_entry(&sh->batch_list,
1974 struct stripe_head, batch_list) == head_sh;
1975
1976 if (last_stripe) {
1977 atomic_inc(&head_sh->count);
584acdd4 1978 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1979 head_sh, to_addr_conv(sh, percpu, j));
1980 } else
1981 init_async_submit(&submit, 0, tx, NULL, NULL,
1982 to_addr_conv(sh, percpu, j));
48769695 1983 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1984 if (!last_stripe) {
1985 j++;
1986 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1987 batch_list);
1988 goto again;
1989 }
91c00924
DW
1990}
1991
1992static void ops_complete_check(void *stripe_head_ref)
1993{
1994 struct stripe_head *sh = stripe_head_ref;
91c00924 1995
e46b272b 1996 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1997 (unsigned long long)sh->sector);
1998
ecc65c9b 1999 sh->check_state = check_state_check_result;
91c00924 2000 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2001 raid5_release_stripe(sh);
91c00924
DW
2002}
2003
ac6b53b6 2004static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 2005{
91c00924 2006 int disks = sh->disks;
ac6b53b6
DW
2007 int pd_idx = sh->pd_idx;
2008 int qd_idx = sh->qd_idx;
2009 struct page *xor_dest;
46d5b785 2010 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 2011 struct dma_async_tx_descriptor *tx;
a08abd8c 2012 struct async_submit_ctl submit;
ac6b53b6
DW
2013 int count;
2014 int i;
91c00924 2015
e46b272b 2016 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2017 (unsigned long long)sh->sector);
2018
59fc630b 2019 BUG_ON(sh->batch_head);
ac6b53b6
DW
2020 count = 0;
2021 xor_dest = sh->dev[pd_idx].page;
2022 xor_srcs[count++] = xor_dest;
91c00924 2023 for (i = disks; i--; ) {
ac6b53b6
DW
2024 if (i == pd_idx || i == qd_idx)
2025 continue;
2026 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
2027 }
2028
d6f38f31 2029 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 2030 to_addr_conv(sh, percpu, 0));
099f53cb 2031 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 2032 &sh->ops.zero_sum_result, &submit);
91c00924 2033
91c00924 2034 atomic_inc(&sh->count);
a08abd8c
DW
2035 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2036 tx = async_trigger_callback(&submit);
91c00924
DW
2037}
2038
ac6b53b6
DW
2039static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2040{
46d5b785 2041 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
2042 struct async_submit_ctl submit;
2043 int count;
2044
2045 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2046 (unsigned long long)sh->sector, checkp);
2047
59fc630b 2048 BUG_ON(sh->batch_head);
584acdd4 2049 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
2050 if (!checkp)
2051 srcs[count] = NULL;
91c00924 2052
91c00924 2053 atomic_inc(&sh->count);
ac6b53b6 2054 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 2055 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
2056 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2057 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
2058}
2059
51acbcec 2060static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
2061{
2062 int overlap_clear = 0, i, disks = sh->disks;
2063 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 2064 struct r5conf *conf = sh->raid_conf;
ac6b53b6 2065 int level = conf->level;
d6f38f31
DW
2066 struct raid5_percpu *percpu;
2067 unsigned long cpu;
91c00924 2068
d6f38f31
DW
2069 cpu = get_cpu();
2070 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 2071 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
2072 ops_run_biofill(sh);
2073 overlap_clear++;
2074 }
2075
7b3a871e 2076 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
2077 if (level < 6)
2078 tx = ops_run_compute5(sh, percpu);
2079 else {
2080 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2081 tx = ops_run_compute6_1(sh, percpu);
2082 else
2083 tx = ops_run_compute6_2(sh, percpu);
2084 }
2085 /* terminate the chain if reconstruct is not set to be run */
2086 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
2087 async_tx_ack(tx);
2088 }
91c00924 2089
584acdd4
MS
2090 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2091 if (level < 6)
2092 tx = ops_run_prexor5(sh, percpu, tx);
2093 else
2094 tx = ops_run_prexor6(sh, percpu, tx);
2095 }
91c00924 2096
ae1713e2
AP
2097 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2098 tx = ops_run_partial_parity(sh, percpu, tx);
2099
600aa109 2100 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 2101 tx = ops_run_biodrain(sh, tx);
91c00924
DW
2102 overlap_clear++;
2103 }
2104
ac6b53b6
DW
2105 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2106 if (level < 6)
2107 ops_run_reconstruct5(sh, percpu, tx);
2108 else
2109 ops_run_reconstruct6(sh, percpu, tx);
2110 }
91c00924 2111
ac6b53b6
DW
2112 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2113 if (sh->check_state == check_state_run)
2114 ops_run_check_p(sh, percpu);
2115 else if (sh->check_state == check_state_run_q)
2116 ops_run_check_pq(sh, percpu, 0);
2117 else if (sh->check_state == check_state_run_pq)
2118 ops_run_check_pq(sh, percpu, 1);
2119 else
2120 BUG();
2121 }
91c00924 2122
59fc630b 2123 if (overlap_clear && !sh->batch_head)
91c00924
DW
2124 for (i = disks; i--; ) {
2125 struct r5dev *dev = &sh->dev[i];
2126 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2127 wake_up(&sh->raid_conf->wait_for_overlap);
2128 }
d6f38f31 2129 put_cpu();
91c00924
DW
2130}
2131
845b9e22
AP
2132static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2133{
2134 if (sh->ppl_page)
2135 __free_page(sh->ppl_page);
2136 kmem_cache_free(sc, sh);
2137}
2138
5f9d1fde 2139static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
845b9e22 2140 int disks, struct r5conf *conf)
f18c1a35
N
2141{
2142 struct stripe_head *sh;
5f9d1fde 2143 int i;
f18c1a35
N
2144
2145 sh = kmem_cache_zalloc(sc, gfp);
2146 if (sh) {
2147 spin_lock_init(&sh->stripe_lock);
2148 spin_lock_init(&sh->batch_lock);
2149 INIT_LIST_HEAD(&sh->batch_list);
2150 INIT_LIST_HEAD(&sh->lru);
a39f7afd 2151 INIT_LIST_HEAD(&sh->r5c);
d7bd398e 2152 INIT_LIST_HEAD(&sh->log_list);
f18c1a35 2153 atomic_set(&sh->count, 1);
845b9e22 2154 sh->raid_conf = conf;
a39f7afd 2155 sh->log_start = MaxSector;
5f9d1fde
SL
2156 for (i = 0; i < disks; i++) {
2157 struct r5dev *dev = &sh->dev[i];
2158
3a83f467
ML
2159 bio_init(&dev->req, &dev->vec, 1);
2160 bio_init(&dev->rreq, &dev->rvec, 1);
5f9d1fde 2161 }
845b9e22
AP
2162
2163 if (raid5_has_ppl(conf)) {
2164 sh->ppl_page = alloc_page(gfp);
2165 if (!sh->ppl_page) {
2166 free_stripe(sc, sh);
2167 sh = NULL;
2168 }
2169 }
f18c1a35
N
2170 }
2171 return sh;
2172}
486f0644 2173static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2174{
2175 struct stripe_head *sh;
f18c1a35 2176
845b9e22 2177 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
3f294f4f
N
2178 if (!sh)
2179 return 0;
6ce32846 2180
a9683a79 2181 if (grow_buffers(sh, gfp)) {
e4e11e38 2182 shrink_buffers(sh);
845b9e22 2183 free_stripe(conf->slab_cache, sh);
3f294f4f
N
2184 return 0;
2185 }
486f0644
N
2186 sh->hash_lock_index =
2187 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2188 /* we just created an active stripe so... */
3f294f4f 2189 atomic_inc(&conf->active_stripes);
59fc630b 2190
6d036f7d 2191 raid5_release_stripe(sh);
486f0644 2192 conf->max_nr_stripes++;
3f294f4f
N
2193 return 1;
2194}
2195
d1688a6d 2196static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2197{
e18b890b 2198 struct kmem_cache *sc;
5e5e3e78 2199 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2200
f4be6b43
N
2201 if (conf->mddev->gendisk)
2202 sprintf(conf->cache_name[0],
2203 "raid%d-%s", conf->level, mdname(conf->mddev));
2204 else
2205 sprintf(conf->cache_name[0],
2206 "raid%d-%p", conf->level, conf->mddev);
2207 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2208
ad01c9e3
N
2209 conf->active_name = 0;
2210 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2211 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2212 0, 0, NULL);
1da177e4
LT
2213 if (!sc)
2214 return 1;
2215 conf->slab_cache = sc;
ad01c9e3 2216 conf->pool_size = devs;
486f0644
N
2217 while (num--)
2218 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2219 return 1;
486f0644 2220
1da177e4
LT
2221 return 0;
2222}
29269553 2223
d6f38f31
DW
2224/**
2225 * scribble_len - return the required size of the scribble region
2226 * @num - total number of disks in the array
2227 *
2228 * The size must be enough to contain:
2229 * 1/ a struct page pointer for each device in the array +2
2230 * 2/ room to convert each entry in (1) to its corresponding dma
2231 * (dma_map_page()) or page (page_address()) address.
2232 *
2233 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2234 * calculate over all devices (not just the data blocks), using zeros in place
2235 * of the P and Q blocks.
2236 */
46d5b785 2237static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2238{
46d5b785 2239 struct flex_array *ret;
d6f38f31
DW
2240 size_t len;
2241
2242 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2243 ret = flex_array_alloc(len, cnt, flags);
2244 if (!ret)
2245 return NULL;
2246 /* always prealloc all elements, so no locking is required */
2247 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2248 flex_array_free(ret);
2249 return NULL;
2250 }
2251 return ret;
d6f38f31
DW
2252}
2253
738a2738
N
2254static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2255{
2256 unsigned long cpu;
2257 int err = 0;
2258
27a353c0
SL
2259 /*
2260 * Never shrink. And mddev_suspend() could deadlock if this is called
2261 * from raid5d. In that case, scribble_disks and scribble_sectors
2262 * should equal to new_disks and new_sectors
2263 */
2264 if (conf->scribble_disks >= new_disks &&
2265 conf->scribble_sectors >= new_sectors)
2266 return 0;
738a2738
N
2267 mddev_suspend(conf->mddev);
2268 get_online_cpus();
2269 for_each_present_cpu(cpu) {
2270 struct raid5_percpu *percpu;
2271 struct flex_array *scribble;
2272
2273 percpu = per_cpu_ptr(conf->percpu, cpu);
2274 scribble = scribble_alloc(new_disks,
2275 new_sectors / STRIPE_SECTORS,
2276 GFP_NOIO);
2277
2278 if (scribble) {
2279 flex_array_free(percpu->scribble);
2280 percpu->scribble = scribble;
2281 } else {
2282 err = -ENOMEM;
2283 break;
2284 }
2285 }
2286 put_online_cpus();
2287 mddev_resume(conf->mddev);
27a353c0
SL
2288 if (!err) {
2289 conf->scribble_disks = new_disks;
2290 conf->scribble_sectors = new_sectors;
2291 }
738a2738
N
2292 return err;
2293}
2294
d1688a6d 2295static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2296{
2297 /* Make all the stripes able to hold 'newsize' devices.
2298 * New slots in each stripe get 'page' set to a new page.
2299 *
2300 * This happens in stages:
2301 * 1/ create a new kmem_cache and allocate the required number of
2302 * stripe_heads.
83f0d77a 2303 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2304 * to the new stripe_heads. This will have the side effect of
2305 * freezing the array as once all stripe_heads have been collected,
2306 * no IO will be possible. Old stripe heads are freed once their
2307 * pages have been transferred over, and the old kmem_cache is
2308 * freed when all stripes are done.
2309 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
3560741e 2310 * we simple return a failure status - no need to clean anything up.
ad01c9e3
N
2311 * 4/ allocate new pages for the new slots in the new stripe_heads.
2312 * If this fails, we don't bother trying the shrink the
2313 * stripe_heads down again, we just leave them as they are.
2314 * As each stripe_head is processed the new one is released into
2315 * active service.
2316 *
2317 * Once step2 is started, we cannot afford to wait for a write,
2318 * so we use GFP_NOIO allocations.
2319 */
2320 struct stripe_head *osh, *nsh;
2321 LIST_HEAD(newstripes);
2322 struct disk_info *ndisks;
2214c260 2323 int err = 0;
e18b890b 2324 struct kmem_cache *sc;
ad01c9e3 2325 int i;
566c09c5 2326 int hash, cnt;
ad01c9e3 2327
2214c260 2328 md_allow_write(conf->mddev);
2a2275d6 2329
ad01c9e3
N
2330 /* Step 1 */
2331 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2332 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2333 0, 0, NULL);
ad01c9e3
N
2334 if (!sc)
2335 return -ENOMEM;
2336
2d5b569b
N
2337 /* Need to ensure auto-resizing doesn't interfere */
2338 mutex_lock(&conf->cache_size_mutex);
2339
ad01c9e3 2340 for (i = conf->max_nr_stripes; i; i--) {
845b9e22 2341 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
ad01c9e3
N
2342 if (!nsh)
2343 break;
2344
ad01c9e3
N
2345 list_add(&nsh->lru, &newstripes);
2346 }
2347 if (i) {
2348 /* didn't get enough, give up */
2349 while (!list_empty(&newstripes)) {
2350 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2351 list_del(&nsh->lru);
845b9e22 2352 free_stripe(sc, nsh);
ad01c9e3
N
2353 }
2354 kmem_cache_destroy(sc);
2d5b569b 2355 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2356 return -ENOMEM;
2357 }
2358 /* Step 2 - Must use GFP_NOIO now.
2359 * OK, we have enough stripes, start collecting inactive
2360 * stripes and copying them over
2361 */
566c09c5
SL
2362 hash = 0;
2363 cnt = 0;
ad01c9e3 2364 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2365 lock_device_hash_lock(conf, hash);
6ab2a4b8 2366 wait_event_cmd(conf->wait_for_stripe,
566c09c5
SL
2367 !list_empty(conf->inactive_list + hash),
2368 unlock_device_hash_lock(conf, hash),
2369 lock_device_hash_lock(conf, hash));
2370 osh = get_free_stripe(conf, hash);
2371 unlock_device_hash_lock(conf, hash);
f18c1a35 2372
d592a996 2373 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2374 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2375 nsh->dev[i].orig_page = osh->dev[i].page;
2376 }
566c09c5 2377 nsh->hash_lock_index = hash;
845b9e22 2378 free_stripe(conf->slab_cache, osh);
566c09c5
SL
2379 cnt++;
2380 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2381 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2382 hash++;
2383 cnt = 0;
2384 }
ad01c9e3
N
2385 }
2386 kmem_cache_destroy(conf->slab_cache);
2387
2388 /* Step 3.
2389 * At this point, we are holding all the stripes so the array
2390 * is completely stalled, so now is a good time to resize
d6f38f31 2391 * conf->disks and the scribble region
ad01c9e3
N
2392 */
2393 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2394 if (ndisks) {
d7bd398e 2395 for (i = 0; i < conf->pool_size; i++)
ad01c9e3 2396 ndisks[i] = conf->disks[i];
d7bd398e
SL
2397
2398 for (i = conf->pool_size; i < newsize; i++) {
2399 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2400 if (!ndisks[i].extra_page)
2401 err = -ENOMEM;
2402 }
2403
2404 if (err) {
2405 for (i = conf->pool_size; i < newsize; i++)
2406 if (ndisks[i].extra_page)
2407 put_page(ndisks[i].extra_page);
2408 kfree(ndisks);
2409 } else {
2410 kfree(conf->disks);
2411 conf->disks = ndisks;
2412 }
ad01c9e3
N
2413 } else
2414 err = -ENOMEM;
2415
2d5b569b 2416 mutex_unlock(&conf->cache_size_mutex);
583da48e
DY
2417
2418 conf->slab_cache = sc;
2419 conf->active_name = 1-conf->active_name;
2420
ad01c9e3
N
2421 /* Step 4, return new stripes to service */
2422 while(!list_empty(&newstripes)) {
2423 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2424 list_del_init(&nsh->lru);
d6f38f31 2425
ad01c9e3
N
2426 for (i=conf->raid_disks; i < newsize; i++)
2427 if (nsh->dev[i].page == NULL) {
2428 struct page *p = alloc_page(GFP_NOIO);
2429 nsh->dev[i].page = p;
d592a996 2430 nsh->dev[i].orig_page = p;
ad01c9e3
N
2431 if (!p)
2432 err = -ENOMEM;
2433 }
6d036f7d 2434 raid5_release_stripe(nsh);
ad01c9e3
N
2435 }
2436 /* critical section pass, GFP_NOIO no longer needed */
2437
6e9eac2d
N
2438 if (!err)
2439 conf->pool_size = newsize;
ad01c9e3
N
2440 return err;
2441}
1da177e4 2442
486f0644 2443static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2444{
2445 struct stripe_head *sh;
49895bcc 2446 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2447
566c09c5
SL
2448 spin_lock_irq(conf->hash_locks + hash);
2449 sh = get_free_stripe(conf, hash);
2450 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2451 if (!sh)
2452 return 0;
78bafebd 2453 BUG_ON(atomic_read(&sh->count));
e4e11e38 2454 shrink_buffers(sh);
845b9e22 2455 free_stripe(conf->slab_cache, sh);
3f294f4f 2456 atomic_dec(&conf->active_stripes);
486f0644 2457 conf->max_nr_stripes--;
3f294f4f
N
2458 return 1;
2459}
2460
d1688a6d 2461static void shrink_stripes(struct r5conf *conf)
3f294f4f 2462{
486f0644
N
2463 while (conf->max_nr_stripes &&
2464 drop_one_stripe(conf))
2465 ;
3f294f4f 2466
644df1a8 2467 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2468 conf->slab_cache = NULL;
2469}
2470
4246a0b6 2471static void raid5_end_read_request(struct bio * bi)
1da177e4 2472{
99c0fb5f 2473 struct stripe_head *sh = bi->bi_private;
d1688a6d 2474 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2475 int disks = sh->disks, i;
d6950432 2476 char b[BDEVNAME_SIZE];
dd054fce 2477 struct md_rdev *rdev = NULL;
05616be5 2478 sector_t s;
1da177e4
LT
2479
2480 for (i=0 ; i<disks; i++)
2481 if (bi == &sh->dev[i].req)
2482 break;
2483
4246a0b6 2484 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2485 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4e4cbee9 2486 bi->bi_status);
1da177e4 2487 if (i == disks) {
5f9d1fde 2488 bio_reset(bi);
1da177e4 2489 BUG();
6712ecf8 2490 return;
1da177e4 2491 }
14a75d3e 2492 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2493 /* If replacement finished while this request was outstanding,
2494 * 'replacement' might be NULL already.
2495 * In that case it moved down to 'rdev'.
2496 * rdev is not removed until all requests are finished.
2497 */
14a75d3e 2498 rdev = conf->disks[i].replacement;
dd054fce 2499 if (!rdev)
14a75d3e 2500 rdev = conf->disks[i].rdev;
1da177e4 2501
05616be5
N
2502 if (use_new_offset(conf, sh))
2503 s = sh->sector + rdev->new_data_offset;
2504 else
2505 s = sh->sector + rdev->data_offset;
4e4cbee9 2506 if (!bi->bi_status) {
1da177e4 2507 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2508 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2509 /* Note that this cannot happen on a
2510 * replacement device. We just fail those on
2511 * any error
2512 */
cc6167b4
N
2513 pr_info_ratelimited(
2514 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
8bda470e 2515 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2516 (unsigned long long)s,
8bda470e 2517 bdevname(rdev->bdev, b));
ddd5115f 2518 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2519 clear_bit(R5_ReadError, &sh->dev[i].flags);
2520 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2521 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2522 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2523
86aa1397
SL
2524 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2525 /*
2526 * end read for a page in journal, this
2527 * must be preparing for prexor in rmw
2528 */
2529 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2530
14a75d3e
N
2531 if (atomic_read(&rdev->read_errors))
2532 atomic_set(&rdev->read_errors, 0);
1da177e4 2533 } else {
14a75d3e 2534 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2535 int retry = 0;
2e8ac303 2536 int set_bad = 0;
d6950432 2537
1da177e4 2538 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2539 atomic_inc(&rdev->read_errors);
14a75d3e 2540 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
cc6167b4
N
2541 pr_warn_ratelimited(
2542 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
14a75d3e 2543 mdname(conf->mddev),
05616be5 2544 (unsigned long long)s,
14a75d3e 2545 bdn);
2e8ac303 2546 else if (conf->mddev->degraded >= conf->max_degraded) {
2547 set_bad = 1;
cc6167b4
N
2548 pr_warn_ratelimited(
2549 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
8bda470e 2550 mdname(conf->mddev),
05616be5 2551 (unsigned long long)s,
8bda470e 2552 bdn);
2e8ac303 2553 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2554 /* Oh, no!!! */
2e8ac303 2555 set_bad = 1;
cc6167b4
N
2556 pr_warn_ratelimited(
2557 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
8bda470e 2558 mdname(conf->mddev),
05616be5 2559 (unsigned long long)s,
8bda470e 2560 bdn);
2e8ac303 2561 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2562 > conf->max_nr_stripes)
cc6167b4 2563 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2564 mdname(conf->mddev), bdn);
ba22dcbf
N
2565 else
2566 retry = 1;
edfa1f65
BY
2567 if (set_bad && test_bit(In_sync, &rdev->flags)
2568 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2569 retry = 1;
ba22dcbf 2570 if (retry)
3f9e7c14 2571 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2572 set_bit(R5_ReadError, &sh->dev[i].flags);
2573 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2574 } else
2575 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2576 else {
4e5314b5
N
2577 clear_bit(R5_ReadError, &sh->dev[i].flags);
2578 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2579 if (!(set_bad
2580 && test_bit(In_sync, &rdev->flags)
2581 && rdev_set_badblocks(
2582 rdev, sh->sector, STRIPE_SECTORS, 0)))
2583 md_error(conf->mddev, rdev);
ba22dcbf 2584 }
1da177e4 2585 }
14a75d3e 2586 rdev_dec_pending(rdev, conf->mddev);
c9445555 2587 bio_reset(bi);
1da177e4
LT
2588 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2589 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2590 raid5_release_stripe(sh);
1da177e4
LT
2591}
2592
4246a0b6 2593static void raid5_end_write_request(struct bio *bi)
1da177e4 2594{
99c0fb5f 2595 struct stripe_head *sh = bi->bi_private;
d1688a6d 2596 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2597 int disks = sh->disks, i;
977df362 2598 struct md_rdev *uninitialized_var(rdev);
b84db560
N
2599 sector_t first_bad;
2600 int bad_sectors;
977df362 2601 int replacement = 0;
1da177e4 2602
977df362
N
2603 for (i = 0 ; i < disks; i++) {
2604 if (bi == &sh->dev[i].req) {
2605 rdev = conf->disks[i].rdev;
1da177e4 2606 break;
977df362
N
2607 }
2608 if (bi == &sh->dev[i].rreq) {
2609 rdev = conf->disks[i].replacement;
dd054fce
N
2610 if (rdev)
2611 replacement = 1;
2612 else
2613 /* rdev was removed and 'replacement'
2614 * replaced it. rdev is not removed
2615 * until all requests are finished.
2616 */
2617 rdev = conf->disks[i].rdev;
977df362
N
2618 break;
2619 }
2620 }
4246a0b6 2621 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2622 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4e4cbee9 2623 bi->bi_status);
1da177e4 2624 if (i == disks) {
5f9d1fde 2625 bio_reset(bi);
1da177e4 2626 BUG();
6712ecf8 2627 return;
1da177e4
LT
2628 }
2629
977df362 2630 if (replacement) {
4e4cbee9 2631 if (bi->bi_status)
977df362
N
2632 md_error(conf->mddev, rdev);
2633 else if (is_badblock(rdev, sh->sector,
2634 STRIPE_SECTORS,
2635 &first_bad, &bad_sectors))
2636 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2637 } else {
4e4cbee9 2638 if (bi->bi_status) {
9f97e4b1 2639 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2640 set_bit(WriteErrorSeen, &rdev->flags);
2641 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2642 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2643 set_bit(MD_RECOVERY_NEEDED,
2644 &rdev->mddev->recovery);
977df362
N
2645 } else if (is_badblock(rdev, sh->sector,
2646 STRIPE_SECTORS,
c0b32972 2647 &first_bad, &bad_sectors)) {
977df362 2648 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2649 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2650 /* That was a successful write so make
2651 * sure it looks like we already did
2652 * a re-write.
2653 */
2654 set_bit(R5_ReWrite, &sh->dev[i].flags);
2655 }
977df362
N
2656 }
2657 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2658
4e4cbee9 2659 if (sh->batch_head && bi->bi_status && !replacement)
72ac7330 2660 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2661
c9445555 2662 bio_reset(bi);
977df362
N
2663 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2664 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2665 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2666 raid5_release_stripe(sh);
59fc630b 2667
2668 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2669 raid5_release_stripe(sh->batch_head);
1da177e4
LT
2670}
2671
849674e4 2672static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2673{
2674 char b[BDEVNAME_SIZE];
d1688a6d 2675 struct r5conf *conf = mddev->private;
908f4fbd 2676 unsigned long flags;
0c55e022 2677 pr_debug("raid456: error called\n");
1da177e4 2678
908f4fbd 2679 spin_lock_irqsave(&conf->device_lock, flags);
aff69d89 2680 set_bit(Faulty, &rdev->flags);
908f4fbd 2681 clear_bit(In_sync, &rdev->flags);
2e38a37f 2682 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd
N
2683 spin_unlock_irqrestore(&conf->device_lock, flags);
2684 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2685
de393cde 2686 set_bit(Blocked, &rdev->flags);
2953079c
SL
2687 set_mask_bits(&mddev->sb_flags, 0,
2688 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
cc6167b4
N
2689 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2690 "md/raid:%s: Operation continuing on %d devices.\n",
2691 mdname(mddev),
2692 bdevname(rdev->bdev, b),
2693 mdname(mddev),
2694 conf->raid_disks - mddev->degraded);
70d466f7 2695 r5c_update_on_rdev_error(mddev, rdev);
16a53ecc 2696}
1da177e4
LT
2697
2698/*
2699 * Input: a 'big' sector number,
2700 * Output: index of the data and parity disk, and the sector # in them.
2701 */
6d036f7d
SL
2702sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2703 int previous, int *dd_idx,
2704 struct stripe_head *sh)
1da177e4 2705{
6e3b96ed 2706 sector_t stripe, stripe2;
35f2a591 2707 sector_t chunk_number;
1da177e4 2708 unsigned int chunk_offset;
911d4ee8 2709 int pd_idx, qd_idx;
67cc2b81 2710 int ddf_layout = 0;
1da177e4 2711 sector_t new_sector;
e183eaed
N
2712 int algorithm = previous ? conf->prev_algo
2713 : conf->algorithm;
09c9e5fa
AN
2714 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2715 : conf->chunk_sectors;
112bf897
N
2716 int raid_disks = previous ? conf->previous_raid_disks
2717 : conf->raid_disks;
2718 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2719
2720 /* First compute the information on this sector */
2721
2722 /*
2723 * Compute the chunk number and the sector offset inside the chunk
2724 */
2725 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2726 chunk_number = r_sector;
1da177e4
LT
2727
2728 /*
2729 * Compute the stripe number
2730 */
35f2a591
N
2731 stripe = chunk_number;
2732 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2733 stripe2 = stripe;
1da177e4
LT
2734 /*
2735 * Select the parity disk based on the user selected algorithm.
2736 */
84789554 2737 pd_idx = qd_idx = -1;
16a53ecc
N
2738 switch(conf->level) {
2739 case 4:
911d4ee8 2740 pd_idx = data_disks;
16a53ecc
N
2741 break;
2742 case 5:
e183eaed 2743 switch (algorithm) {
1da177e4 2744 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2745 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2746 if (*dd_idx >= pd_idx)
1da177e4
LT
2747 (*dd_idx)++;
2748 break;
2749 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2750 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2751 if (*dd_idx >= pd_idx)
1da177e4
LT
2752 (*dd_idx)++;
2753 break;
2754 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2755 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2756 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2757 break;
2758 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2759 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2760 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2761 break;
99c0fb5f
N
2762 case ALGORITHM_PARITY_0:
2763 pd_idx = 0;
2764 (*dd_idx)++;
2765 break;
2766 case ALGORITHM_PARITY_N:
2767 pd_idx = data_disks;
2768 break;
1da177e4 2769 default:
99c0fb5f 2770 BUG();
16a53ecc
N
2771 }
2772 break;
2773 case 6:
2774
e183eaed 2775 switch (algorithm) {
16a53ecc 2776 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2777 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2778 qd_idx = pd_idx + 1;
2779 if (pd_idx == raid_disks-1) {
99c0fb5f 2780 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2781 qd_idx = 0;
2782 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2783 (*dd_idx) += 2; /* D D P Q D */
2784 break;
2785 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2786 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2787 qd_idx = pd_idx + 1;
2788 if (pd_idx == raid_disks-1) {
99c0fb5f 2789 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2790 qd_idx = 0;
2791 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2792 (*dd_idx) += 2; /* D D P Q D */
2793 break;
2794 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2795 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2796 qd_idx = (pd_idx + 1) % raid_disks;
2797 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2798 break;
2799 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2800 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2801 qd_idx = (pd_idx + 1) % raid_disks;
2802 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2803 break;
99c0fb5f
N
2804
2805 case ALGORITHM_PARITY_0:
2806 pd_idx = 0;
2807 qd_idx = 1;
2808 (*dd_idx) += 2;
2809 break;
2810 case ALGORITHM_PARITY_N:
2811 pd_idx = data_disks;
2812 qd_idx = data_disks + 1;
2813 break;
2814
2815 case ALGORITHM_ROTATING_ZERO_RESTART:
2816 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2817 * of blocks for computing Q is different.
2818 */
6e3b96ed 2819 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2820 qd_idx = pd_idx + 1;
2821 if (pd_idx == raid_disks-1) {
2822 (*dd_idx)++; /* Q D D D P */
2823 qd_idx = 0;
2824 } else if (*dd_idx >= pd_idx)
2825 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2826 ddf_layout = 1;
99c0fb5f
N
2827 break;
2828
2829 case ALGORITHM_ROTATING_N_RESTART:
2830 /* Same a left_asymmetric, by first stripe is
2831 * D D D P Q rather than
2832 * Q D D D P
2833 */
6e3b96ed
N
2834 stripe2 += 1;
2835 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2836 qd_idx = pd_idx + 1;
2837 if (pd_idx == raid_disks-1) {
2838 (*dd_idx)++; /* Q D D D P */
2839 qd_idx = 0;
2840 } else if (*dd_idx >= pd_idx)
2841 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2842 ddf_layout = 1;
99c0fb5f
N
2843 break;
2844
2845 case ALGORITHM_ROTATING_N_CONTINUE:
2846 /* Same as left_symmetric but Q is before P */
6e3b96ed 2847 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2848 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2849 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2850 ddf_layout = 1;
99c0fb5f
N
2851 break;
2852
2853 case ALGORITHM_LEFT_ASYMMETRIC_6:
2854 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2855 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2856 if (*dd_idx >= pd_idx)
2857 (*dd_idx)++;
2858 qd_idx = raid_disks - 1;
2859 break;
2860
2861 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2862 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2863 if (*dd_idx >= pd_idx)
2864 (*dd_idx)++;
2865 qd_idx = raid_disks - 1;
2866 break;
2867
2868 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2869 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2870 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2871 qd_idx = raid_disks - 1;
2872 break;
2873
2874 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2875 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2876 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2877 qd_idx = raid_disks - 1;
2878 break;
2879
2880 case ALGORITHM_PARITY_0_6:
2881 pd_idx = 0;
2882 (*dd_idx)++;
2883 qd_idx = raid_disks - 1;
2884 break;
2885
16a53ecc 2886 default:
99c0fb5f 2887 BUG();
16a53ecc
N
2888 }
2889 break;
1da177e4
LT
2890 }
2891
911d4ee8
N
2892 if (sh) {
2893 sh->pd_idx = pd_idx;
2894 sh->qd_idx = qd_idx;
67cc2b81 2895 sh->ddf_layout = ddf_layout;
911d4ee8 2896 }
1da177e4
LT
2897 /*
2898 * Finally, compute the new sector number
2899 */
2900 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2901 return new_sector;
2902}
2903
6d036f7d 2904sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2905{
d1688a6d 2906 struct r5conf *conf = sh->raid_conf;
b875e531
N
2907 int raid_disks = sh->disks;
2908 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2909 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2910 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2911 : conf->chunk_sectors;
e183eaed
N
2912 int algorithm = previous ? conf->prev_algo
2913 : conf->algorithm;
1da177e4
LT
2914 sector_t stripe;
2915 int chunk_offset;
35f2a591
N
2916 sector_t chunk_number;
2917 int dummy1, dd_idx = i;
1da177e4 2918 sector_t r_sector;
911d4ee8 2919 struct stripe_head sh2;
1da177e4
LT
2920
2921 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2922 stripe = new_sector;
1da177e4 2923
16a53ecc
N
2924 if (i == sh->pd_idx)
2925 return 0;
2926 switch(conf->level) {
2927 case 4: break;
2928 case 5:
e183eaed 2929 switch (algorithm) {
1da177e4
LT
2930 case ALGORITHM_LEFT_ASYMMETRIC:
2931 case ALGORITHM_RIGHT_ASYMMETRIC:
2932 if (i > sh->pd_idx)
2933 i--;
2934 break;
2935 case ALGORITHM_LEFT_SYMMETRIC:
2936 case ALGORITHM_RIGHT_SYMMETRIC:
2937 if (i < sh->pd_idx)
2938 i += raid_disks;
2939 i -= (sh->pd_idx + 1);
2940 break;
99c0fb5f
N
2941 case ALGORITHM_PARITY_0:
2942 i -= 1;
2943 break;
2944 case ALGORITHM_PARITY_N:
2945 break;
1da177e4 2946 default:
99c0fb5f 2947 BUG();
16a53ecc
N
2948 }
2949 break;
2950 case 6:
d0dabf7e 2951 if (i == sh->qd_idx)
16a53ecc 2952 return 0; /* It is the Q disk */
e183eaed 2953 switch (algorithm) {
16a53ecc
N
2954 case ALGORITHM_LEFT_ASYMMETRIC:
2955 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2956 case ALGORITHM_ROTATING_ZERO_RESTART:
2957 case ALGORITHM_ROTATING_N_RESTART:
2958 if (sh->pd_idx == raid_disks-1)
2959 i--; /* Q D D D P */
16a53ecc
N
2960 else if (i > sh->pd_idx)
2961 i -= 2; /* D D P Q D */
2962 break;
2963 case ALGORITHM_LEFT_SYMMETRIC:
2964 case ALGORITHM_RIGHT_SYMMETRIC:
2965 if (sh->pd_idx == raid_disks-1)
2966 i--; /* Q D D D P */
2967 else {
2968 /* D D P Q D */
2969 if (i < sh->pd_idx)
2970 i += raid_disks;
2971 i -= (sh->pd_idx + 2);
2972 }
2973 break;
99c0fb5f
N
2974 case ALGORITHM_PARITY_0:
2975 i -= 2;
2976 break;
2977 case ALGORITHM_PARITY_N:
2978 break;
2979 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2980 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2981 if (sh->pd_idx == 0)
2982 i--; /* P D D D Q */
e4424fee
N
2983 else {
2984 /* D D Q P D */
2985 if (i < sh->pd_idx)
2986 i += raid_disks;
2987 i -= (sh->pd_idx + 1);
2988 }
99c0fb5f
N
2989 break;
2990 case ALGORITHM_LEFT_ASYMMETRIC_6:
2991 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2992 if (i > sh->pd_idx)
2993 i--;
2994 break;
2995 case ALGORITHM_LEFT_SYMMETRIC_6:
2996 case ALGORITHM_RIGHT_SYMMETRIC_6:
2997 if (i < sh->pd_idx)
2998 i += data_disks + 1;
2999 i -= (sh->pd_idx + 1);
3000 break;
3001 case ALGORITHM_PARITY_0_6:
3002 i -= 1;
3003 break;
16a53ecc 3004 default:
99c0fb5f 3005 BUG();
16a53ecc
N
3006 }
3007 break;
1da177e4
LT
3008 }
3009
3010 chunk_number = stripe * data_disks + i;
35f2a591 3011 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 3012
112bf897 3013 check = raid5_compute_sector(conf, r_sector,
784052ec 3014 previous, &dummy1, &sh2);
911d4ee8
N
3015 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3016 || sh2.qd_idx != sh->qd_idx) {
cc6167b4
N
3017 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3018 mdname(conf->mddev));
1da177e4
LT
3019 return 0;
3020 }
3021 return r_sector;
3022}
3023
07e83364
SL
3024/*
3025 * There are cases where we want handle_stripe_dirtying() and
3026 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3027 *
3028 * This function checks whether we want to delay the towrite. Specifically,
3029 * we delay the towrite when:
3030 *
3031 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3032 * stripe has data in journal (for other devices).
3033 *
3034 * In this case, when reading data for the non-overwrite dev, it is
3035 * necessary to handle complex rmw of write back cache (prexor with
3036 * orig_page, and xor with page). To keep read path simple, we would
3037 * like to flush data in journal to RAID disks first, so complex rmw
3038 * is handled in the write patch (handle_stripe_dirtying).
3039 *
39b99586
SL
3040 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3041 *
3042 * It is important to be able to flush all stripes in raid5-cache.
3043 * Therefore, we need reserve some space on the journal device for
3044 * these flushes. If flush operation includes pending writes to the
3045 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3046 * for the flush out. If we exclude these pending writes from flush
3047 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3048 * Therefore, excluding pending writes in these cases enables more
3049 * efficient use of the journal device.
3050 *
3051 * Note: To make sure the stripe makes progress, we only delay
3052 * towrite for stripes with data already in journal (injournal > 0).
3053 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3054 * no_space_stripes list.
3055 *
70d466f7
SL
3056 * 3. during journal failure
3057 * In journal failure, we try to flush all cached data to raid disks
3058 * based on data in stripe cache. The array is read-only to upper
3059 * layers, so we would skip all pending writes.
3060 *
07e83364 3061 */
39b99586
SL
3062static inline bool delay_towrite(struct r5conf *conf,
3063 struct r5dev *dev,
3064 struct stripe_head_state *s)
07e83364 3065{
39b99586
SL
3066 /* case 1 above */
3067 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3068 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3069 return true;
3070 /* case 2 above */
3071 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3072 s->injournal > 0)
3073 return true;
70d466f7
SL
3074 /* case 3 above */
3075 if (s->log_failed && s->injournal)
3076 return true;
39b99586 3077 return false;
07e83364
SL
3078}
3079
600aa109 3080static void
c0f7bddb 3081schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 3082 int rcw, int expand)
e33129d8 3083{
584acdd4 3084 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 3085 struct r5conf *conf = sh->raid_conf;
c0f7bddb 3086 int level = conf->level;
e33129d8
DW
3087
3088 if (rcw) {
1e6d690b
SL
3089 /*
3090 * In some cases, handle_stripe_dirtying initially decided to
3091 * run rmw and allocates extra page for prexor. However, rcw is
3092 * cheaper later on. We need to free the extra page now,
3093 * because we won't be able to do that in ops_complete_prexor().
3094 */
3095 r5c_release_extra_page(sh);
e33129d8
DW
3096
3097 for (i = disks; i--; ) {
3098 struct r5dev *dev = &sh->dev[i];
3099
39b99586 3100 if (dev->towrite && !delay_towrite(conf, dev, s)) {
e33129d8 3101 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 3102 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3103 if (!expand)
3104 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3105 s->locked++;
1e6d690b
SL
3106 } else if (test_bit(R5_InJournal, &dev->flags)) {
3107 set_bit(R5_LOCKED, &dev->flags);
3108 s->locked++;
e33129d8
DW
3109 }
3110 }
ce7d363a
N
3111 /* if we are not expanding this is a proper write request, and
3112 * there will be bios with new data to be drained into the
3113 * stripe cache
3114 */
3115 if (!expand) {
3116 if (!s->locked)
3117 /* False alarm, nothing to do */
3118 return;
3119 sh->reconstruct_state = reconstruct_state_drain_run;
3120 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3121 } else
3122 sh->reconstruct_state = reconstruct_state_run;
3123
3124 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3125
c0f7bddb 3126 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 3127 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 3128 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
3129 } else {
3130 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3131 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
3132 BUG_ON(level == 6 &&
3133 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3134 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 3135
e33129d8
DW
3136 for (i = disks; i--; ) {
3137 struct r5dev *dev = &sh->dev[i];
584acdd4 3138 if (i == pd_idx || i == qd_idx)
e33129d8
DW
3139 continue;
3140
e33129d8
DW
3141 if (dev->towrite &&
3142 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
3143 test_bit(R5_Wantcompute, &dev->flags))) {
3144 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3145 set_bit(R5_LOCKED, &dev->flags);
3146 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3147 s->locked++;
1e6d690b
SL
3148 } else if (test_bit(R5_InJournal, &dev->flags)) {
3149 set_bit(R5_LOCKED, &dev->flags);
3150 s->locked++;
e33129d8
DW
3151 }
3152 }
ce7d363a
N
3153 if (!s->locked)
3154 /* False alarm - nothing to do */
3155 return;
3156 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3157 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3158 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3159 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
3160 }
3161
c0f7bddb 3162 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
3163 * are in flight
3164 */
3165 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3166 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 3167 s->locked++;
e33129d8 3168
c0f7bddb
YT
3169 if (level == 6) {
3170 int qd_idx = sh->qd_idx;
3171 struct r5dev *dev = &sh->dev[qd_idx];
3172
3173 set_bit(R5_LOCKED, &dev->flags);
3174 clear_bit(R5_UPTODATE, &dev->flags);
3175 s->locked++;
3176 }
3177
845b9e22 3178 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3418d036
AP
3179 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3180 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3181 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3182 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3183
600aa109 3184 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 3185 __func__, (unsigned long long)sh->sector,
600aa109 3186 s->locked, s->ops_request);
e33129d8 3187}
16a53ecc 3188
1da177e4
LT
3189/*
3190 * Each stripe/dev can have one or more bion attached.
16a53ecc 3191 * toread/towrite point to the first in a chain.
1da177e4
LT
3192 * The bi_next chain must be in order.
3193 */
da41ba65 3194static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3195 int forwrite, int previous)
1da177e4
LT
3196{
3197 struct bio **bip;
d1688a6d 3198 struct r5conf *conf = sh->raid_conf;
72626685 3199 int firstwrite=0;
1da177e4 3200
cbe47ec5 3201 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 3202 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
3203 (unsigned long long)sh->sector);
3204
b17459c0 3205 spin_lock_irq(&sh->stripe_lock);
59fc630b 3206 /* Don't allow new IO added to stripes in batch list */
3207 if (sh->batch_head)
3208 goto overlap;
72626685 3209 if (forwrite) {
1da177e4 3210 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 3211 if (*bip == NULL)
72626685
N
3212 firstwrite = 1;
3213 } else
1da177e4 3214 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
3215 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3216 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
3217 goto overlap;
3218 bip = & (*bip)->bi_next;
3219 }
4f024f37 3220 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
3221 goto overlap;
3222
3418d036
AP
3223 if (forwrite && raid5_has_ppl(conf)) {
3224 /*
3225 * With PPL only writes to consecutive data chunks within a
3226 * stripe are allowed because for a single stripe_head we can
3227 * only have one PPL entry at a time, which describes one data
3228 * range. Not really an overlap, but wait_for_overlap can be
3229 * used to handle this.
3230 */
3231 sector_t sector;
3232 sector_t first = 0;
3233 sector_t last = 0;
3234 int count = 0;
3235 int i;
3236
3237 for (i = 0; i < sh->disks; i++) {
3238 if (i != sh->pd_idx &&
3239 (i == dd_idx || sh->dev[i].towrite)) {
3240 sector = sh->dev[i].sector;
3241 if (count == 0 || sector < first)
3242 first = sector;
3243 if (sector > last)
3244 last = sector;
3245 count++;
3246 }
3247 }
3248
3249 if (first + conf->chunk_sectors * (count - 1) != last)
3250 goto overlap;
3251 }
3252
da41ba65 3253 if (!forwrite || previous)
3254 clear_bit(STRIPE_BATCH_READY, &sh->state);
3255
78bafebd 3256 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
3257 if (*bip)
3258 bi->bi_next = *bip;
3259 *bip = bi;
016c76ac 3260 bio_inc_remaining(bi);
49728050 3261 md_write_inc(conf->mddev, bi);
72626685 3262
1da177e4
LT
3263 if (forwrite) {
3264 /* check if page is covered */
3265 sector_t sector = sh->dev[dd_idx].sector;
3266 for (bi=sh->dev[dd_idx].towrite;
3267 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 3268 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 3269 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
3270 if (bio_end_sector(bi) >= sector)
3271 sector = bio_end_sector(bi);
1da177e4
LT
3272 }
3273 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 3274 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3275 sh->overwrite_disks++;
1da177e4 3276 }
cbe47ec5
N
3277
3278 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3279 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3280 (unsigned long long)sh->sector, dd_idx);
3281
3282 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3283 /* Cannot hold spinlock over bitmap_startwrite,
3284 * but must ensure this isn't added to a batch until
3285 * we have added to the bitmap and set bm_seq.
3286 * So set STRIPE_BITMAP_PENDING to prevent
3287 * batching.
3288 * If multiple add_stripe_bio() calls race here they
3289 * much all set STRIPE_BITMAP_PENDING. So only the first one
3290 * to complete "bitmap_startwrite" gets to set
3291 * STRIPE_BIT_DELAY. This is important as once a stripe
3292 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3293 * any more.
3294 */
3295 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3296 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
3297 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3298 STRIPE_SECTORS, 0);
d0852df5
N
3299 spin_lock_irq(&sh->stripe_lock);
3300 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3301 if (!sh->batch_head) {
3302 sh->bm_seq = conf->seq_flush+1;
3303 set_bit(STRIPE_BIT_DELAY, &sh->state);
3304 }
cbe47ec5 3305 }
d0852df5 3306 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3307
3308 if (stripe_can_batch(sh))
3309 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3310 return 1;
3311
3312 overlap:
3313 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3314 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3315 return 0;
3316}
3317
d1688a6d 3318static void end_reshape(struct r5conf *conf);
29269553 3319
d1688a6d 3320static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3321 struct stripe_head *sh)
ccfcc3c1 3322{
784052ec 3323 int sectors_per_chunk =
09c9e5fa 3324 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3325 int dd_idx;
2d2063ce 3326 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3327 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3328
112bf897
N
3329 raid5_compute_sector(conf,
3330 stripe * (disks - conf->max_degraded)
b875e531 3331 *sectors_per_chunk + chunk_offset,
112bf897 3332 previous,
911d4ee8 3333 &dd_idx, sh);
ccfcc3c1
N
3334}
3335
a4456856 3336static void
d1688a6d 3337handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
bd83d0a2 3338 struct stripe_head_state *s, int disks)
a4456856
DW
3339{
3340 int i;
59fc630b 3341 BUG_ON(sh->batch_head);
a4456856
DW
3342 for (i = disks; i--; ) {
3343 struct bio *bi;
3344 int bitmap_end = 0;
3345
3346 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3347 struct md_rdev *rdev;
a4456856
DW
3348 rcu_read_lock();
3349 rdev = rcu_dereference(conf->disks[i].rdev);
f5b67ae8
N
3350 if (rdev && test_bit(In_sync, &rdev->flags) &&
3351 !test_bit(Faulty, &rdev->flags))
7f0da59b
N
3352 atomic_inc(&rdev->nr_pending);
3353 else
3354 rdev = NULL;
a4456856 3355 rcu_read_unlock();
7f0da59b
N
3356 if (rdev) {
3357 if (!rdev_set_badblocks(
3358 rdev,
3359 sh->sector,
3360 STRIPE_SECTORS, 0))
3361 md_error(conf->mddev, rdev);
3362 rdev_dec_pending(rdev, conf->mddev);
3363 }
a4456856 3364 }
b17459c0 3365 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3366 /* fail all writes first */
3367 bi = sh->dev[i].towrite;
3368 sh->dev[i].towrite = NULL;
7a87f434 3369 sh->overwrite_disks = 0;
b17459c0 3370 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3371 if (bi)
a4456856 3372 bitmap_end = 1;
a4456856 3373
ff875738 3374 log_stripe_write_finished(sh);
0576b1c6 3375
a4456856
DW
3376 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3377 wake_up(&conf->wait_for_overlap);
3378
4f024f37 3379 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3380 sh->dev[i].sector + STRIPE_SECTORS) {
3381 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6 3382
49728050 3383 md_write_end(conf->mddev);
6308d8e3 3384 bio_io_error(bi);
a4456856
DW
3385 bi = nextbi;
3386 }
7eaf7e8e
SL
3387 if (bitmap_end)
3388 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3389 STRIPE_SECTORS, 0, 0);
3390 bitmap_end = 0;
a4456856
DW
3391 /* and fail all 'written' */
3392 bi = sh->dev[i].written;
3393 sh->dev[i].written = NULL;
d592a996
SL
3394 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3395 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3396 sh->dev[i].page = sh->dev[i].orig_page;
3397 }
3398
a4456856 3399 if (bi) bitmap_end = 1;
4f024f37 3400 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3401 sh->dev[i].sector + STRIPE_SECTORS) {
3402 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6 3403
49728050 3404 md_write_end(conf->mddev);
6308d8e3 3405 bio_io_error(bi);
a4456856
DW
3406 bi = bi2;
3407 }
3408
b5e98d65
DW
3409 /* fail any reads if this device is non-operational and
3410 * the data has not reached the cache yet.
3411 */
3412 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
6e74a9cf 3413 s->failed > conf->max_degraded &&
b5e98d65
DW
3414 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3415 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3416 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3417 bi = sh->dev[i].toread;
3418 sh->dev[i].toread = NULL;
143c4d05 3419 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3420 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3421 wake_up(&conf->wait_for_overlap);
ebda780b
SL
3422 if (bi)
3423 s->to_read--;
4f024f37 3424 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3425 sh->dev[i].sector + STRIPE_SECTORS) {
3426 struct bio *nextbi =
3427 r5_next_bio(bi, sh->dev[i].sector);
4246a0b6 3428
6308d8e3 3429 bio_io_error(bi);
a4456856
DW
3430 bi = nextbi;
3431 }
3432 }
a4456856
DW
3433 if (bitmap_end)
3434 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3435 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3436 /* If we were in the middle of a write the parity block might
3437 * still be locked - so just clear all R5_LOCKED flags
3438 */
3439 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3440 }
ebda780b
SL
3441 s->to_write = 0;
3442 s->written = 0;
a4456856 3443
8b3e6cdc
DW
3444 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3445 if (atomic_dec_and_test(&conf->pending_full_writes))
3446 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3447}
3448
7f0da59b 3449static void
d1688a6d 3450handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3451 struct stripe_head_state *s)
3452{
3453 int abort = 0;
3454 int i;
3455
59fc630b 3456 BUG_ON(sh->batch_head);
7f0da59b 3457 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3458 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3459 wake_up(&conf->wait_for_overlap);
7f0da59b 3460 s->syncing = 0;
9a3e1101 3461 s->replacing = 0;
7f0da59b 3462 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3463 * Don't even need to abort as that is handled elsewhere
3464 * if needed, and not always wanted e.g. if there is a known
3465 * bad block here.
9a3e1101 3466 * For recover/replace we need to record a bad block on all
7f0da59b
N
3467 * non-sync devices, or abort the recovery
3468 */
18b9837e
N
3469 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3470 /* During recovery devices cannot be removed, so
3471 * locking and refcounting of rdevs is not needed
3472 */
e50d3992 3473 rcu_read_lock();
18b9837e 3474 for (i = 0; i < conf->raid_disks; i++) {
e50d3992 3475 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
18b9837e
N
3476 if (rdev
3477 && !test_bit(Faulty, &rdev->flags)
3478 && !test_bit(In_sync, &rdev->flags)
3479 && !rdev_set_badblocks(rdev, sh->sector,
3480 STRIPE_SECTORS, 0))
3481 abort = 1;
e50d3992 3482 rdev = rcu_dereference(conf->disks[i].replacement);
18b9837e
N
3483 if (rdev
3484 && !test_bit(Faulty, &rdev->flags)
3485 && !test_bit(In_sync, &rdev->flags)
3486 && !rdev_set_badblocks(rdev, sh->sector,
3487 STRIPE_SECTORS, 0))
3488 abort = 1;
3489 }
e50d3992 3490 rcu_read_unlock();
18b9837e
N
3491 if (abort)
3492 conf->recovery_disabled =
3493 conf->mddev->recovery_disabled;
7f0da59b 3494 }
18b9837e 3495 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3496}
3497
9a3e1101
N
3498static int want_replace(struct stripe_head *sh, int disk_idx)
3499{
3500 struct md_rdev *rdev;
3501 int rv = 0;
3f232d6a
N
3502
3503 rcu_read_lock();
3504 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
9a3e1101
N
3505 if (rdev
3506 && !test_bit(Faulty, &rdev->flags)
3507 && !test_bit(In_sync, &rdev->flags)
3508 && (rdev->recovery_offset <= sh->sector
3509 || rdev->mddev->recovery_cp <= sh->sector))
3510 rv = 1;
3f232d6a 3511 rcu_read_unlock();
9a3e1101
N
3512 return rv;
3513}
3514
2c58f06e
N
3515static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3516 int disk_idx, int disks)
a4456856 3517{
5599becc 3518 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3519 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3520 &sh->dev[s->failed_num[1]] };
ea664c82 3521 int i;
5599becc 3522
a79cfe12
N
3523
3524 if (test_bit(R5_LOCKED, &dev->flags) ||
3525 test_bit(R5_UPTODATE, &dev->flags))
3526 /* No point reading this as we already have it or have
3527 * decided to get it.
3528 */
3529 return 0;
3530
3531 if (dev->toread ||
3532 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3533 /* We need this block to directly satisfy a request */
3534 return 1;
3535
3536 if (s->syncing || s->expanding ||
3537 (s->replacing && want_replace(sh, disk_idx)))
3538 /* When syncing, or expanding we read everything.
3539 * When replacing, we need the replaced block.
3540 */
3541 return 1;
3542
3543 if ((s->failed >= 1 && fdev[0]->toread) ||
3544 (s->failed >= 2 && fdev[1]->toread))
3545 /* If we want to read from a failed device, then
3546 * we need to actually read every other device.
3547 */
3548 return 1;
3549
a9d56950
N
3550 /* Sometimes neither read-modify-write nor reconstruct-write
3551 * cycles can work. In those cases we read every block we
3552 * can. Then the parity-update is certain to have enough to
3553 * work with.
3554 * This can only be a problem when we need to write something,
3555 * and some device has failed. If either of those tests
3556 * fail we need look no further.
3557 */
3558 if (!s->failed || !s->to_write)
3559 return 0;
3560
3561 if (test_bit(R5_Insync, &dev->flags) &&
3562 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3563 /* Pre-reads at not permitted until after short delay
3564 * to gather multiple requests. However if this
3560741e 3565 * device is no Insync, the block could only be computed
a9d56950
N
3566 * and there is no need to delay that.
3567 */
3568 return 0;
ea664c82 3569
36707bb2 3570 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3571 if (fdev[i]->towrite &&
3572 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3573 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3574 /* If we have a partial write to a failed
3575 * device, then we will need to reconstruct
3576 * the content of that device, so all other
3577 * devices must be read.
3578 */
3579 return 1;
3580 }
3581
3582 /* If we are forced to do a reconstruct-write, either because
3583 * the current RAID6 implementation only supports that, or
3560741e 3584 * because parity cannot be trusted and we are currently
ea664c82
N
3585 * recovering it, there is extra need to be careful.
3586 * If one of the devices that we would need to read, because
3587 * it is not being overwritten (and maybe not written at all)
3588 * is missing/faulty, then we need to read everything we can.
3589 */
3590 if (sh->raid_conf->level != 6 &&
3591 sh->sector < sh->raid_conf->mddev->recovery_cp)
3592 /* reconstruct-write isn't being forced */
3593 return 0;
36707bb2 3594 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3595 if (s->failed_num[i] != sh->pd_idx &&
3596 s->failed_num[i] != sh->qd_idx &&
3597 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3598 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3599 return 1;
3600 }
3601
2c58f06e
N
3602 return 0;
3603}
3604
ba02684d
SL
3605/* fetch_block - checks the given member device to see if its data needs
3606 * to be read or computed to satisfy a request.
3607 *
3608 * Returns 1 when no more member devices need to be checked, otherwise returns
3609 * 0 to tell the loop in handle_stripe_fill to continue
3610 */
2c58f06e
N
3611static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3612 int disk_idx, int disks)
3613{
3614 struct r5dev *dev = &sh->dev[disk_idx];
3615
3616 /* is the data in this block needed, and can we get it? */
3617 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3618 /* we would like to get this block, possibly by computing it,
3619 * otherwise read it if the backing disk is insync
3620 */
3621 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3622 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3623 BUG_ON(sh->batch_head);
7471fb77
N
3624
3625 /*
3626 * In the raid6 case if the only non-uptodate disk is P
3627 * then we already trusted P to compute the other failed
3628 * drives. It is safe to compute rather than re-read P.
3629 * In other cases we only compute blocks from failed
3630 * devices, otherwise check/repair might fail to detect
3631 * a real inconsistency.
3632 */
3633
5599becc 3634 if ((s->uptodate == disks - 1) &&
7471fb77 3635 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
f2b3b44d 3636 (s->failed && (disk_idx == s->failed_num[0] ||
7471fb77 3637 disk_idx == s->failed_num[1])))) {
5599becc
YT
3638 /* have disk failed, and we're requested to fetch it;
3639 * do compute it
a4456856 3640 */
5599becc
YT
3641 pr_debug("Computing stripe %llu block %d\n",
3642 (unsigned long long)sh->sector, disk_idx);
3643 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3644 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3645 set_bit(R5_Wantcompute, &dev->flags);
3646 sh->ops.target = disk_idx;
3647 sh->ops.target2 = -1; /* no 2nd target */
3648 s->req_compute = 1;
93b3dbce
N
3649 /* Careful: from this point on 'uptodate' is in the eye
3650 * of raid_run_ops which services 'compute' operations
3651 * before writes. R5_Wantcompute flags a block that will
3652 * be R5_UPTODATE by the time it is needed for a
3653 * subsequent operation.
3654 */
5599becc
YT
3655 s->uptodate++;
3656 return 1;
3657 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3658 /* Computing 2-failure is *very* expensive; only
3659 * do it if failed >= 2
3660 */
3661 int other;
3662 for (other = disks; other--; ) {
3663 if (other == disk_idx)
3664 continue;
3665 if (!test_bit(R5_UPTODATE,
3666 &sh->dev[other].flags))
3667 break;
a4456856 3668 }
5599becc
YT
3669 BUG_ON(other < 0);
3670 pr_debug("Computing stripe %llu blocks %d,%d\n",
3671 (unsigned long long)sh->sector,
3672 disk_idx, other);
3673 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3674 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3675 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3676 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3677 sh->ops.target = disk_idx;
3678 sh->ops.target2 = other;
3679 s->uptodate += 2;
3680 s->req_compute = 1;
3681 return 1;
3682 } else if (test_bit(R5_Insync, &dev->flags)) {
3683 set_bit(R5_LOCKED, &dev->flags);
3684 set_bit(R5_Wantread, &dev->flags);
3685 s->locked++;
3686 pr_debug("Reading block %d (sync=%d)\n",
3687 disk_idx, s->syncing);
a4456856
DW
3688 }
3689 }
5599becc
YT
3690
3691 return 0;
3692}
3693
3694/**
93b3dbce 3695 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3696 */
93b3dbce
N
3697static void handle_stripe_fill(struct stripe_head *sh,
3698 struct stripe_head_state *s,
3699 int disks)
5599becc
YT
3700{
3701 int i;
3702
3703 /* look for blocks to read/compute, skip this if a compute
3704 * is already in flight, or if the stripe contents are in the
3705 * midst of changing due to a write
3706 */
3707 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
07e83364
SL
3708 !sh->reconstruct_state) {
3709
3710 /*
3711 * For degraded stripe with data in journal, do not handle
3712 * read requests yet, instead, flush the stripe to raid
3713 * disks first, this avoids handling complex rmw of write
3714 * back cache (prexor with orig_page, and then xor with
3715 * page) in the read path
3716 */
3717 if (s->injournal && s->failed) {
3718 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3719 r5c_make_stripe_write_out(sh);
3720 goto out;
3721 }
3722
5599becc 3723 for (i = disks; i--; )
93b3dbce 3724 if (fetch_block(sh, s, i, disks))
5599becc 3725 break;
07e83364
SL
3726 }
3727out:
a4456856
DW
3728 set_bit(STRIPE_HANDLE, &sh->state);
3729}
3730
787b76fa
N
3731static void break_stripe_batch_list(struct stripe_head *head_sh,
3732 unsigned long handle_flags);
1fe797e6 3733/* handle_stripe_clean_event
a4456856
DW
3734 * any written block on an uptodate or failed drive can be returned.
3735 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3736 * never LOCKED, so we don't need to test 'failed' directly.
3737 */
d1688a6d 3738static void handle_stripe_clean_event(struct r5conf *conf,
bd83d0a2 3739 struct stripe_head *sh, int disks)
a4456856
DW
3740{
3741 int i;
3742 struct r5dev *dev;
f8dfcffd 3743 int discard_pending = 0;
59fc630b 3744 struct stripe_head *head_sh = sh;
3745 bool do_endio = false;
a4456856
DW
3746
3747 for (i = disks; i--; )
3748 if (sh->dev[i].written) {
3749 dev = &sh->dev[i];
3750 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3751 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3752 test_bit(R5_Discard, &dev->flags) ||
3753 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3754 /* We can return any write requests */
3755 struct bio *wbi, *wbi2;
45b4233c 3756 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3757 if (test_and_clear_bit(R5_Discard, &dev->flags))
3758 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3759 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3760 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3761 }
59fc630b 3762 do_endio = true;
3763
3764returnbi:
3765 dev->page = dev->orig_page;
a4456856
DW
3766 wbi = dev->written;
3767 dev->written = NULL;
4f024f37 3768 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3769 dev->sector + STRIPE_SECTORS) {
3770 wbi2 = r5_next_bio(wbi, dev->sector);
49728050 3771 md_write_end(conf->mddev);
016c76ac 3772 bio_endio(wbi);
a4456856
DW
3773 wbi = wbi2;
3774 }
7eaf7e8e
SL
3775 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3776 STRIPE_SECTORS,
a4456856 3777 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3778 0);
59fc630b 3779 if (head_sh->batch_head) {
3780 sh = list_first_entry(&sh->batch_list,
3781 struct stripe_head,
3782 batch_list);
3783 if (sh != head_sh) {
3784 dev = &sh->dev[i];
3785 goto returnbi;
3786 }
3787 }
3788 sh = head_sh;
3789 dev = &sh->dev[i];
f8dfcffd
N
3790 } else if (test_bit(R5_Discard, &dev->flags))
3791 discard_pending = 1;
3792 }
f6bed0ef 3793
ff875738 3794 log_stripe_write_finished(sh);
0576b1c6 3795
f8dfcffd
N
3796 if (!discard_pending &&
3797 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
b8a9d66d 3798 int hash;
f8dfcffd
N
3799 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3800 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3801 if (sh->qd_idx >= 0) {
3802 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3803 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3804 }
3805 /* now that discard is done we can proceed with any sync */
3806 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3807 /*
3808 * SCSI discard will change some bio fields and the stripe has
3809 * no updated data, so remove it from hash list and the stripe
3810 * will be reinitialized
3811 */
59fc630b 3812unhash:
b8a9d66d
RG
3813 hash = sh->hash_lock_index;
3814 spin_lock_irq(conf->hash_locks + hash);
d47648fc 3815 remove_hash(sh);
b8a9d66d 3816 spin_unlock_irq(conf->hash_locks + hash);
59fc630b 3817 if (head_sh->batch_head) {
3818 sh = list_first_entry(&sh->batch_list,
3819 struct stripe_head, batch_list);
3820 if (sh != head_sh)
3821 goto unhash;
3822 }
59fc630b 3823 sh = head_sh;
3824
f8dfcffd
N
3825 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3826 set_bit(STRIPE_HANDLE, &sh->state);
3827
3828 }
8b3e6cdc
DW
3829
3830 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3831 if (atomic_dec_and_test(&conf->pending_full_writes))
3832 md_wakeup_thread(conf->mddev->thread);
59fc630b 3833
787b76fa
N
3834 if (head_sh->batch_head && do_endio)
3835 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3836}
3837
86aa1397
SL
3838/*
3839 * For RMW in write back cache, we need extra page in prexor to store the
3840 * old data. This page is stored in dev->orig_page.
3841 *
3842 * This function checks whether we have data for prexor. The exact logic
3843 * is:
3844 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3845 */
3846static inline bool uptodate_for_rmw(struct r5dev *dev)
3847{
3848 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3849 (!test_bit(R5_InJournal, &dev->flags) ||
3850 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3851}
3852
d7bd398e
SL
3853static int handle_stripe_dirtying(struct r5conf *conf,
3854 struct stripe_head *sh,
3855 struct stripe_head_state *s,
3856 int disks)
a4456856
DW
3857{
3858 int rmw = 0, rcw = 0, i;
a7854487
AL
3859 sector_t recovery_cp = conf->mddev->recovery_cp;
3860
584acdd4 3861 /* Check whether resync is now happening or should start.
a7854487
AL
3862 * If yes, then the array is dirty (after unclean shutdown or
3863 * initial creation), so parity in some stripes might be inconsistent.
3864 * In this case, we need to always do reconstruct-write, to ensure
3865 * that in case of drive failure or read-error correction, we
3866 * generate correct data from the parity.
3867 */
584acdd4 3868 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3869 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3870 s->failed == 0)) {
a7854487 3871 /* Calculate the real rcw later - for now make it
c8ac1803
N
3872 * look like rcw is cheaper
3873 */
3874 rcw = 1; rmw = 2;
584acdd4
MS
3875 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3876 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3877 (unsigned long long)sh->sector);
c8ac1803 3878 } else for (i = disks; i--; ) {
a4456856
DW
3879 /* would I have to read this buffer for read_modify_write */
3880 struct r5dev *dev = &sh->dev[i];
39b99586 3881 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
07e83364 3882 i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b 3883 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3884 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3885 !(uptodate_for_rmw(dev) ||
f38e1219 3886 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3887 if (test_bit(R5_Insync, &dev->flags))
3888 rmw++;
3889 else
3890 rmw += 2*disks; /* cannot read it */
3891 }
3892 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3893 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3894 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3895 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3896 !(test_bit(R5_UPTODATE, &dev->flags) ||
1e6d690b 3897 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3898 if (test_bit(R5_Insync, &dev->flags))
3899 rcw++;
a4456856
DW
3900 else
3901 rcw += 2*disks;
3902 }
3903 }
1e6d690b 3904
39b99586
SL
3905 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3906 (unsigned long long)sh->sector, sh->state, rmw, rcw);
a4456856 3907 set_bit(STRIPE_HANDLE, &sh->state);
41257580 3908 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
a4456856 3909 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3910 if (conf->mddev->queue)
3911 blk_add_trace_msg(conf->mddev->queue,
3912 "raid5 rmw %llu %d",
3913 (unsigned long long)sh->sector, rmw);
a4456856
DW
3914 for (i = disks; i--; ) {
3915 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
3916 if (test_bit(R5_InJournal, &dev->flags) &&
3917 dev->page == dev->orig_page &&
3918 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3919 /* alloc page for prexor */
d7bd398e
SL
3920 struct page *p = alloc_page(GFP_NOIO);
3921
3922 if (p) {
3923 dev->orig_page = p;
3924 continue;
3925 }
3926
3927 /*
3928 * alloc_page() failed, try use
3929 * disk_info->extra_page
3930 */
3931 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3932 &conf->cache_state)) {
3933 r5c_use_extra_page(sh);
3934 break;
3935 }
1e6d690b 3936
d7bd398e
SL
3937 /* extra_page in use, add to delayed_list */
3938 set_bit(STRIPE_DELAYED, &sh->state);
3939 s->waiting_extra_page = 1;
3940 return -EAGAIN;
1e6d690b 3941 }
d7bd398e 3942 }
1e6d690b 3943
d7bd398e
SL
3944 for (i = disks; i--; ) {
3945 struct r5dev *dev = &sh->dev[i];
39b99586 3946 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
1e6d690b
SL
3947 i == sh->pd_idx || i == sh->qd_idx ||
3948 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3949 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3950 !(uptodate_for_rmw(dev) ||
1e6d690b 3951 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3952 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3953 if (test_bit(STRIPE_PREREAD_ACTIVE,
3954 &sh->state)) {
3955 pr_debug("Read_old block %d for r-m-w\n",
3956 i);
a4456856
DW
3957 set_bit(R5_LOCKED, &dev->flags);
3958 set_bit(R5_Wantread, &dev->flags);
3959 s->locked++;
3960 } else {
3961 set_bit(STRIPE_DELAYED, &sh->state);
3962 set_bit(STRIPE_HANDLE, &sh->state);
3963 }
3964 }
3965 }
a9add5d9 3966 }
41257580 3967 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
a4456856 3968 /* want reconstruct write, but need to get some data */
a9add5d9 3969 int qread =0;
c8ac1803 3970 rcw = 0;
a4456856
DW
3971 for (i = disks; i--; ) {
3972 struct r5dev *dev = &sh->dev[i];
3973 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3974 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3975 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3976 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3977 test_bit(R5_Wantcompute, &dev->flags))) {
3978 rcw++;
67f45548
N
3979 if (test_bit(R5_Insync, &dev->flags) &&
3980 test_bit(STRIPE_PREREAD_ACTIVE,
3981 &sh->state)) {
45b4233c 3982 pr_debug("Read_old block "
a4456856
DW
3983 "%d for Reconstruct\n", i);
3984 set_bit(R5_LOCKED, &dev->flags);
3985 set_bit(R5_Wantread, &dev->flags);
3986 s->locked++;
a9add5d9 3987 qread++;
a4456856
DW
3988 } else {
3989 set_bit(STRIPE_DELAYED, &sh->state);
3990 set_bit(STRIPE_HANDLE, &sh->state);
3991 }
3992 }
3993 }
e3620a3a 3994 if (rcw && conf->mddev->queue)
a9add5d9
N
3995 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3996 (unsigned long long)sh->sector,
3997 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3998 }
b1b02fe9
N
3999
4000 if (rcw > disks && rmw > disks &&
4001 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4002 set_bit(STRIPE_DELAYED, &sh->state);
4003
a4456856
DW
4004 /* now if nothing is locked, and if we have enough data,
4005 * we can start a write request
4006 */
f38e1219
DW
4007 /* since handle_stripe can be called at any time we need to handle the
4008 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
4009 * subsequent call wants to start a write request. raid_run_ops only
4010 * handles the case where compute block and reconstruct are requested
f38e1219
DW
4011 * simultaneously. If this is not the case then new writes need to be
4012 * held off until the compute completes.
4013 */
976ea8d4
DW
4014 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4015 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
1e6d690b 4016 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 4017 schedule_reconstruction(sh, s, rcw == 0, 0);
d7bd398e 4018 return 0;
a4456856
DW
4019}
4020
d1688a6d 4021static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
4022 struct stripe_head_state *s, int disks)
4023{
ecc65c9b 4024 struct r5dev *dev = NULL;
bd2ab670 4025
59fc630b 4026 BUG_ON(sh->batch_head);
a4456856 4027 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 4028
ecc65c9b
DW
4029 switch (sh->check_state) {
4030 case check_state_idle:
4031 /* start a new check operation if there are no failures */
bd2ab670 4032 if (s->failed == 0) {
bd2ab670 4033 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
4034 sh->check_state = check_state_run;
4035 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 4036 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 4037 s->uptodate--;
ecc65c9b 4038 break;
bd2ab670 4039 }
f2b3b44d 4040 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
4041 /* fall through */
4042 case check_state_compute_result:
4043 sh->check_state = check_state_idle;
4044 if (!dev)
4045 dev = &sh->dev[sh->pd_idx];
4046
4047 /* check that a write has not made the stripe insync */
4048 if (test_bit(STRIPE_INSYNC, &sh->state))
4049 break;
c8894419 4050
a4456856 4051 /* either failed parity check, or recovery is happening */
a4456856
DW
4052 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4053 BUG_ON(s->uptodate != disks);
4054
4055 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 4056 s->locked++;
a4456856 4057 set_bit(R5_Wantwrite, &dev->flags);
830ea016 4058
a4456856 4059 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 4060 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
4061 break;
4062 case check_state_run:
4063 break; /* we will be called again upon completion */
4064 case check_state_check_result:
4065 sh->check_state = check_state_idle;
4066
4067 /* if a failure occurred during the check operation, leave
4068 * STRIPE_INSYNC not set and let the stripe be handled again
4069 */
4070 if (s->failed)
4071 break;
4072
4073 /* handle a successful check operation, if parity is correct
4074 * we are done. Otherwise update the mismatch count and repair
4075 * parity if !MD_RECOVERY_CHECK
4076 */
ad283ea4 4077 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
4078 /* parity is correct (on disc,
4079 * not in buffer any more)
4080 */
4081 set_bit(STRIPE_INSYNC, &sh->state);
4082 else {
7f7583d4 4083 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
e1539036 4084 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
ecc65c9b
DW
4085 /* don't try to repair!! */
4086 set_bit(STRIPE_INSYNC, &sh->state);
e1539036
N
4087 pr_warn_ratelimited("%s: mismatch sector in range "
4088 "%llu-%llu\n", mdname(conf->mddev),
4089 (unsigned long long) sh->sector,
4090 (unsigned long long) sh->sector +
4091 STRIPE_SECTORS);
4092 } else {
ecc65c9b 4093 sh->check_state = check_state_compute_run;
976ea8d4 4094 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
4095 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4096 set_bit(R5_Wantcompute,
4097 &sh->dev[sh->pd_idx].flags);
4098 sh->ops.target = sh->pd_idx;
ac6b53b6 4099 sh->ops.target2 = -1;
ecc65c9b
DW
4100 s->uptodate++;
4101 }
4102 }
4103 break;
4104 case check_state_compute_run:
4105 break;
4106 default:
cc6167b4 4107 pr_err("%s: unknown check_state: %d sector: %llu\n",
ecc65c9b
DW
4108 __func__, sh->check_state,
4109 (unsigned long long) sh->sector);
4110 BUG();
a4456856
DW
4111 }
4112}
4113
d1688a6d 4114static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 4115 struct stripe_head_state *s,
f2b3b44d 4116 int disks)
a4456856 4117{
a4456856 4118 int pd_idx = sh->pd_idx;
34e04e87 4119 int qd_idx = sh->qd_idx;
d82dfee0 4120 struct r5dev *dev;
a4456856 4121
59fc630b 4122 BUG_ON(sh->batch_head);
a4456856
DW
4123 set_bit(STRIPE_HANDLE, &sh->state);
4124
4125 BUG_ON(s->failed > 2);
d82dfee0 4126
a4456856
DW
4127 /* Want to check and possibly repair P and Q.
4128 * However there could be one 'failed' device, in which
4129 * case we can only check one of them, possibly using the
4130 * other to generate missing data
4131 */
4132
d82dfee0
DW
4133 switch (sh->check_state) {
4134 case check_state_idle:
4135 /* start a new check operation if there are < 2 failures */
f2b3b44d 4136 if (s->failed == s->q_failed) {
d82dfee0 4137 /* The only possible failed device holds Q, so it
a4456856
DW
4138 * makes sense to check P (If anything else were failed,
4139 * we would have used P to recreate it).
4140 */
d82dfee0 4141 sh->check_state = check_state_run;
a4456856 4142 }
f2b3b44d 4143 if (!s->q_failed && s->failed < 2) {
d82dfee0 4144 /* Q is not failed, and we didn't use it to generate
a4456856
DW
4145 * anything, so it makes sense to check it
4146 */
d82dfee0
DW
4147 if (sh->check_state == check_state_run)
4148 sh->check_state = check_state_run_pq;
4149 else
4150 sh->check_state = check_state_run_q;
a4456856 4151 }
a4456856 4152
d82dfee0
DW
4153 /* discard potentially stale zero_sum_result */
4154 sh->ops.zero_sum_result = 0;
a4456856 4155
d82dfee0
DW
4156 if (sh->check_state == check_state_run) {
4157 /* async_xor_zero_sum destroys the contents of P */
4158 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4159 s->uptodate--;
a4456856 4160 }
d82dfee0
DW
4161 if (sh->check_state >= check_state_run &&
4162 sh->check_state <= check_state_run_pq) {
4163 /* async_syndrome_zero_sum preserves P and Q, so
4164 * no need to mark them !uptodate here
4165 */
4166 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4167 break;
a4456856
DW
4168 }
4169
d82dfee0
DW
4170 /* we have 2-disk failure */
4171 BUG_ON(s->failed != 2);
4172 /* fall through */
4173 case check_state_compute_result:
4174 sh->check_state = check_state_idle;
a4456856 4175
d82dfee0
DW
4176 /* check that a write has not made the stripe insync */
4177 if (test_bit(STRIPE_INSYNC, &sh->state))
4178 break;
a4456856
DW
4179
4180 /* now write out any block on a failed drive,
d82dfee0 4181 * or P or Q if they were recomputed
a4456856 4182 */
d82dfee0 4183 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 4184 if (s->failed == 2) {
f2b3b44d 4185 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
4186 s->locked++;
4187 set_bit(R5_LOCKED, &dev->flags);
4188 set_bit(R5_Wantwrite, &dev->flags);
4189 }
4190 if (s->failed >= 1) {
f2b3b44d 4191 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
4192 s->locked++;
4193 set_bit(R5_LOCKED, &dev->flags);
4194 set_bit(R5_Wantwrite, &dev->flags);
4195 }
d82dfee0 4196 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
4197 dev = &sh->dev[pd_idx];
4198 s->locked++;
4199 set_bit(R5_LOCKED, &dev->flags);
4200 set_bit(R5_Wantwrite, &dev->flags);
4201 }
d82dfee0 4202 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
4203 dev = &sh->dev[qd_idx];
4204 s->locked++;
4205 set_bit(R5_LOCKED, &dev->flags);
4206 set_bit(R5_Wantwrite, &dev->flags);
4207 }
4208 clear_bit(STRIPE_DEGRADED, &sh->state);
4209
4210 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
4211 break;
4212 case check_state_run:
4213 case check_state_run_q:
4214 case check_state_run_pq:
4215 break; /* we will be called again upon completion */
4216 case check_state_check_result:
4217 sh->check_state = check_state_idle;
4218
4219 /* handle a successful check operation, if parity is correct
4220 * we are done. Otherwise update the mismatch count and repair
4221 * parity if !MD_RECOVERY_CHECK
4222 */
4223 if (sh->ops.zero_sum_result == 0) {
4224 /* both parities are correct */
4225 if (!s->failed)
4226 set_bit(STRIPE_INSYNC, &sh->state);
4227 else {
4228 /* in contrast to the raid5 case we can validate
4229 * parity, but still have a failure to write
4230 * back
4231 */
4232 sh->check_state = check_state_compute_result;
4233 /* Returning at this point means that we may go
4234 * off and bring p and/or q uptodate again so
4235 * we make sure to check zero_sum_result again
4236 * to verify if p or q need writeback
4237 */
4238 }
4239 } else {
7f7583d4 4240 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
e1539036 4241 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
d82dfee0
DW
4242 /* don't try to repair!! */
4243 set_bit(STRIPE_INSYNC, &sh->state);
e1539036
N
4244 pr_warn_ratelimited("%s: mismatch sector in range "
4245 "%llu-%llu\n", mdname(conf->mddev),
4246 (unsigned long long) sh->sector,
4247 (unsigned long long) sh->sector +
4248 STRIPE_SECTORS);
4249 } else {
d82dfee0
DW
4250 int *target = &sh->ops.target;
4251
4252 sh->ops.target = -1;
4253 sh->ops.target2 = -1;
4254 sh->check_state = check_state_compute_run;
4255 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4256 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4257 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4258 set_bit(R5_Wantcompute,
4259 &sh->dev[pd_idx].flags);
4260 *target = pd_idx;
4261 target = &sh->ops.target2;
4262 s->uptodate++;
4263 }
4264 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4265 set_bit(R5_Wantcompute,
4266 &sh->dev[qd_idx].flags);
4267 *target = qd_idx;
4268 s->uptodate++;
4269 }
4270 }
4271 }
4272 break;
4273 case check_state_compute_run:
4274 break;
4275 default:
cc6167b4
N
4276 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4277 __func__, sh->check_state,
4278 (unsigned long long) sh->sector);
d82dfee0 4279 BUG();
a4456856
DW
4280 }
4281}
4282
d1688a6d 4283static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
4284{
4285 int i;
4286
4287 /* We have read all the blocks in this stripe and now we need to
4288 * copy some of them into a target stripe for expand.
4289 */
f0a50d37 4290 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 4291 BUG_ON(sh->batch_head);
a4456856
DW
4292 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4293 for (i = 0; i < sh->disks; i++)
34e04e87 4294 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 4295 int dd_idx, j;
a4456856 4296 struct stripe_head *sh2;
a08abd8c 4297 struct async_submit_ctl submit;
a4456856 4298
6d036f7d 4299 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
4300 sector_t s = raid5_compute_sector(conf, bn, 0,
4301 &dd_idx, NULL);
6d036f7d 4302 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
4303 if (sh2 == NULL)
4304 /* so far only the early blocks of this stripe
4305 * have been requested. When later blocks
4306 * get requested, we will try again
4307 */
4308 continue;
4309 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4310 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4311 /* must have already done this block */
6d036f7d 4312 raid5_release_stripe(sh2);
a4456856
DW
4313 continue;
4314 }
f0a50d37
DW
4315
4316 /* place all the copies on one channel */
a08abd8c 4317 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 4318 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 4319 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 4320 &submit);
f0a50d37 4321
a4456856
DW
4322 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4323 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4324 for (j = 0; j < conf->raid_disks; j++)
4325 if (j != sh2->pd_idx &&
86c374ba 4326 j != sh2->qd_idx &&
a4456856
DW
4327 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4328 break;
4329 if (j == conf->raid_disks) {
4330 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4331 set_bit(STRIPE_HANDLE, &sh2->state);
4332 }
6d036f7d 4333 raid5_release_stripe(sh2);
f0a50d37 4334
a4456856 4335 }
a2e08551 4336 /* done submitting copies, wait for them to complete */
749586b7 4337 async_tx_quiesce(&tx);
a4456856 4338}
1da177e4
LT
4339
4340/*
4341 * handle_stripe - do things to a stripe.
4342 *
9a3e1101
N
4343 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4344 * state of various bits to see what needs to be done.
1da177e4 4345 * Possible results:
9a3e1101
N
4346 * return some read requests which now have data
4347 * return some write requests which are safely on storage
1da177e4
LT
4348 * schedule a read on some buffers
4349 * schedule a write of some buffers
4350 * return confirmation of parity correctness
4351 *
1da177e4 4352 */
a4456856 4353
acfe726b 4354static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4355{
d1688a6d 4356 struct r5conf *conf = sh->raid_conf;
f416885e 4357 int disks = sh->disks;
474af965
N
4358 struct r5dev *dev;
4359 int i;
9a3e1101 4360 int do_recovery = 0;
1da177e4 4361
acfe726b
N
4362 memset(s, 0, sizeof(*s));
4363
dabc4ec6 4364 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4365 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4366 s->failed_num[0] = -1;
4367 s->failed_num[1] = -1;
6e74a9cf 4368 s->log_failed = r5l_log_disk_error(conf);
1da177e4 4369
acfe726b 4370 /* Now to look around and see what can be done */
1da177e4 4371 rcu_read_lock();
16a53ecc 4372 for (i=disks; i--; ) {
3cb03002 4373 struct md_rdev *rdev;
31c176ec
N
4374 sector_t first_bad;
4375 int bad_sectors;
4376 int is_bad = 0;
acfe726b 4377
16a53ecc 4378 dev = &sh->dev[i];
1da177e4 4379
45b4233c 4380 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4381 i, dev->flags,
4382 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4383 /* maybe we can reply to a read
4384 *
4385 * new wantfill requests are only permitted while
4386 * ops_complete_biofill is guaranteed to be inactive
4387 */
4388 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4389 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4390 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4391
16a53ecc 4392 /* now count some things */
cc94015a
N
4393 if (test_bit(R5_LOCKED, &dev->flags))
4394 s->locked++;
4395 if (test_bit(R5_UPTODATE, &dev->flags))
4396 s->uptodate++;
2d6e4ecc 4397 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4398 s->compute++;
4399 BUG_ON(s->compute > 2);
2d6e4ecc 4400 }
1da177e4 4401
acfe726b 4402 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4403 s->to_fill++;
acfe726b 4404 else if (dev->toread)
cc94015a 4405 s->to_read++;
16a53ecc 4406 if (dev->towrite) {
cc94015a 4407 s->to_write++;
16a53ecc 4408 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4409 s->non_overwrite++;
16a53ecc 4410 }
a4456856 4411 if (dev->written)
cc94015a 4412 s->written++;
14a75d3e
N
4413 /* Prefer to use the replacement for reads, but only
4414 * if it is recovered enough and has no bad blocks.
4415 */
4416 rdev = rcu_dereference(conf->disks[i].replacement);
4417 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4418 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4419 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4420 &first_bad, &bad_sectors))
4421 set_bit(R5_ReadRepl, &dev->flags);
4422 else {
e6030cb0 4423 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4424 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4425 else
4426 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4427 rdev = rcu_dereference(conf->disks[i].rdev);
4428 clear_bit(R5_ReadRepl, &dev->flags);
4429 }
9283d8c5
N
4430 if (rdev && test_bit(Faulty, &rdev->flags))
4431 rdev = NULL;
31c176ec
N
4432 if (rdev) {
4433 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4434 &first_bad, &bad_sectors);
4435 if (s->blocked_rdev == NULL
4436 && (test_bit(Blocked, &rdev->flags)
4437 || is_bad < 0)) {
4438 if (is_bad < 0)
4439 set_bit(BlockedBadBlocks,
4440 &rdev->flags);
4441 s->blocked_rdev = rdev;
4442 atomic_inc(&rdev->nr_pending);
4443 }
6bfe0b49 4444 }
415e72d0
N
4445 clear_bit(R5_Insync, &dev->flags);
4446 if (!rdev)
4447 /* Not in-sync */;
31c176ec
N
4448 else if (is_bad) {
4449 /* also not in-sync */
18b9837e
N
4450 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4451 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4452 /* treat as in-sync, but with a read error
4453 * which we can now try to correct
4454 */
4455 set_bit(R5_Insync, &dev->flags);
4456 set_bit(R5_ReadError, &dev->flags);
4457 }
4458 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4459 set_bit(R5_Insync, &dev->flags);
30d7a483 4460 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4461 /* in sync if before recovery_offset */
30d7a483
N
4462 set_bit(R5_Insync, &dev->flags);
4463 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4464 test_bit(R5_Expanded, &dev->flags))
4465 /* If we've reshaped into here, we assume it is Insync.
4466 * We will shortly update recovery_offset to make
4467 * it official.
4468 */
4469 set_bit(R5_Insync, &dev->flags);
4470
1cc03eb9 4471 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4472 /* This flag does not apply to '.replacement'
4473 * only to .rdev, so make sure to check that*/
4474 struct md_rdev *rdev2 = rcu_dereference(
4475 conf->disks[i].rdev);
4476 if (rdev2 == rdev)
4477 clear_bit(R5_Insync, &dev->flags);
4478 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4479 s->handle_bad_blocks = 1;
14a75d3e 4480 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4481 } else
4482 clear_bit(R5_WriteError, &dev->flags);
4483 }
1cc03eb9 4484 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4485 /* This flag does not apply to '.replacement'
4486 * only to .rdev, so make sure to check that*/
4487 struct md_rdev *rdev2 = rcu_dereference(
4488 conf->disks[i].rdev);
4489 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4490 s->handle_bad_blocks = 1;
14a75d3e 4491 atomic_inc(&rdev2->nr_pending);
b84db560
N
4492 } else
4493 clear_bit(R5_MadeGood, &dev->flags);
4494 }
977df362
N
4495 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4496 struct md_rdev *rdev2 = rcu_dereference(
4497 conf->disks[i].replacement);
4498 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4499 s->handle_bad_blocks = 1;
4500 atomic_inc(&rdev2->nr_pending);
4501 } else
4502 clear_bit(R5_MadeGoodRepl, &dev->flags);
4503 }
415e72d0 4504 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4505 /* The ReadError flag will just be confusing now */
4506 clear_bit(R5_ReadError, &dev->flags);
4507 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4508 }
415e72d0
N
4509 if (test_bit(R5_ReadError, &dev->flags))
4510 clear_bit(R5_Insync, &dev->flags);
4511 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4512 if (s->failed < 2)
4513 s->failed_num[s->failed] = i;
4514 s->failed++;
9a3e1101
N
4515 if (rdev && !test_bit(Faulty, &rdev->flags))
4516 do_recovery = 1;
415e72d0 4517 }
2ded3703
SL
4518
4519 if (test_bit(R5_InJournal, &dev->flags))
4520 s->injournal++;
1e6d690b
SL
4521 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4522 s->just_cached++;
1da177e4 4523 }
9a3e1101
N
4524 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4525 /* If there is a failed device being replaced,
4526 * we must be recovering.
4527 * else if we are after recovery_cp, we must be syncing
c6d2e084 4528 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4529 * else we can only be replacing
4530 * sync and recovery both need to read all devices, and so
4531 * use the same flag.
4532 */
4533 if (do_recovery ||
c6d2e084 4534 sh->sector >= conf->mddev->recovery_cp ||
4535 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4536 s->syncing = 1;
4537 else
4538 s->replacing = 1;
4539 }
1da177e4 4540 rcu_read_unlock();
cc94015a
N
4541}
4542
59fc630b 4543static int clear_batch_ready(struct stripe_head *sh)
4544{
b15a9dbd
N
4545 /* Return '1' if this is a member of batch, or
4546 * '0' if it is a lone stripe or a head which can now be
4547 * handled.
4548 */
59fc630b 4549 struct stripe_head *tmp;
4550 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4551 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4552 spin_lock(&sh->stripe_lock);
4553 if (!sh->batch_head) {
4554 spin_unlock(&sh->stripe_lock);
4555 return 0;
4556 }
4557
4558 /*
4559 * this stripe could be added to a batch list before we check
4560 * BATCH_READY, skips it
4561 */
4562 if (sh->batch_head != sh) {
4563 spin_unlock(&sh->stripe_lock);
4564 return 1;
4565 }
4566 spin_lock(&sh->batch_lock);
4567 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4568 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4569 spin_unlock(&sh->batch_lock);
4570 spin_unlock(&sh->stripe_lock);
4571
4572 /*
4573 * BATCH_READY is cleared, no new stripes can be added.
4574 * batch_list can be accessed without lock
4575 */
4576 return 0;
4577}
4578
3960ce79
N
4579static void break_stripe_batch_list(struct stripe_head *head_sh,
4580 unsigned long handle_flags)
72ac7330 4581{
4e3d62ff 4582 struct stripe_head *sh, *next;
72ac7330 4583 int i;
fb642b92 4584 int do_wakeup = 0;
72ac7330 4585
bb27051f
N
4586 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4587
72ac7330 4588 list_del_init(&sh->batch_list);
4589
fb3229d5 4590 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
1b956f7a
N
4591 (1 << STRIPE_SYNCING) |
4592 (1 << STRIPE_REPLACED) |
1b956f7a
N
4593 (1 << STRIPE_DELAYED) |
4594 (1 << STRIPE_BIT_DELAY) |
4595 (1 << STRIPE_FULL_WRITE) |
4596 (1 << STRIPE_BIOFILL_RUN) |
4597 (1 << STRIPE_COMPUTE_RUN) |
4598 (1 << STRIPE_OPS_REQ_PENDING) |
4599 (1 << STRIPE_DISCARD) |
4600 (1 << STRIPE_BATCH_READY) |
4601 (1 << STRIPE_BATCH_ERR) |
fb3229d5
SL
4602 (1 << STRIPE_BITMAP_PENDING)),
4603 "stripe state: %lx\n", sh->state);
4604 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4605 (1 << STRIPE_REPLACED)),
4606 "head stripe state: %lx\n", head_sh->state);
1b956f7a
N
4607
4608 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
550da24f 4609 (1 << STRIPE_PREREAD_ACTIVE) |
184a09eb
DY
4610 (1 << STRIPE_DEGRADED) |
4611 (1 << STRIPE_ON_UNPLUG_LIST)),
1b956f7a
N
4612 head_sh->state & (1 << STRIPE_INSYNC));
4613
72ac7330 4614 sh->check_state = head_sh->check_state;
4615 sh->reconstruct_state = head_sh->reconstruct_state;
fb642b92
N
4616 for (i = 0; i < sh->disks; i++) {
4617 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4618 do_wakeup = 1;
72ac7330 4619 sh->dev[i].flags = head_sh->dev[i].flags &
4620 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4621 }
72ac7330 4622 spin_lock_irq(&sh->stripe_lock);
4623 sh->batch_head = NULL;
4624 spin_unlock_irq(&sh->stripe_lock);
3960ce79
N
4625 if (handle_flags == 0 ||
4626 sh->state & handle_flags)
4627 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4628 raid5_release_stripe(sh);
72ac7330 4629 }
fb642b92
N
4630 spin_lock_irq(&head_sh->stripe_lock);
4631 head_sh->batch_head = NULL;
4632 spin_unlock_irq(&head_sh->stripe_lock);
4633 for (i = 0; i < head_sh->disks; i++)
4634 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4635 do_wakeup = 1;
3960ce79
N
4636 if (head_sh->state & handle_flags)
4637 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4638
4639 if (do_wakeup)
4640 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4641}
4642
cc94015a
N
4643static void handle_stripe(struct stripe_head *sh)
4644{
4645 struct stripe_head_state s;
d1688a6d 4646 struct r5conf *conf = sh->raid_conf;
3687c061 4647 int i;
84789554
N
4648 int prexor;
4649 int disks = sh->disks;
474af965 4650 struct r5dev *pdev, *qdev;
cc94015a
N
4651
4652 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4653 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4654 /* already being handled, ensure it gets handled
4655 * again when current action finishes */
4656 set_bit(STRIPE_HANDLE, &sh->state);
4657 return;
4658 }
4659
59fc630b 4660 if (clear_batch_ready(sh) ) {
4661 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4662 return;
4663 }
4664
4e3d62ff 4665 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4666 break_stripe_batch_list(sh, 0);
72ac7330 4667
dabc4ec6 4668 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd 4669 spin_lock(&sh->stripe_lock);
5ddf0440
SL
4670 /*
4671 * Cannot process 'sync' concurrently with 'discard'.
4672 * Flush data in r5cache before 'sync'.
4673 */
4674 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4675 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4676 !test_bit(STRIPE_DISCARD, &sh->state) &&
f8dfcffd
N
4677 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4678 set_bit(STRIPE_SYNCING, &sh->state);
4679 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4680 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4681 }
4682 spin_unlock(&sh->stripe_lock);
cc94015a
N
4683 }
4684 clear_bit(STRIPE_DELAYED, &sh->state);
4685
4686 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4687 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4688 (unsigned long long)sh->sector, sh->state,
4689 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4690 sh->check_state, sh->reconstruct_state);
3687c061 4691
acfe726b 4692 analyse_stripe(sh, &s);
c5a31000 4693
b70abcb2
SL
4694 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4695 goto finish;
4696
16d997b7
N
4697 if (s.handle_bad_blocks ||
4698 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
bc2607f3
N
4699 set_bit(STRIPE_HANDLE, &sh->state);
4700 goto finish;
4701 }
4702
474af965
N
4703 if (unlikely(s.blocked_rdev)) {
4704 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4705 s.replacing || s.to_write || s.written) {
474af965
N
4706 set_bit(STRIPE_HANDLE, &sh->state);
4707 goto finish;
4708 }
4709 /* There is nothing for the blocked_rdev to block */
4710 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4711 s.blocked_rdev = NULL;
4712 }
4713
4714 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4715 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4716 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4717 }
4718
4719 pr_debug("locked=%d uptodate=%d to_read=%d"
4720 " to_write=%d failed=%d failed_num=%d,%d\n",
4721 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4722 s.failed_num[0], s.failed_num[1]);
70d466f7
SL
4723 /*
4724 * check if the array has lost more than max_degraded devices and,
474af965 4725 * if so, some requests might need to be failed.
70d466f7
SL
4726 *
4727 * When journal device failed (log_failed), we will only process
4728 * the stripe if there is data need write to raid disks
474af965 4729 */
70d466f7
SL
4730 if (s.failed > conf->max_degraded ||
4731 (s.log_failed && s.injournal == 0)) {
9a3f530f
N
4732 sh->check_state = 0;
4733 sh->reconstruct_state = 0;
626f2092 4734 break_stripe_batch_list(sh, 0);
9a3f530f 4735 if (s.to_read+s.to_write+s.written)
bd83d0a2 4736 handle_failed_stripe(conf, sh, &s, disks);
9a3e1101 4737 if (s.syncing + s.replacing)
9a3f530f
N
4738 handle_failed_sync(conf, sh, &s);
4739 }
474af965 4740
84789554
N
4741 /* Now we check to see if any write operations have recently
4742 * completed
4743 */
4744 prexor = 0;
4745 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4746 prexor = 1;
4747 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4748 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4749 sh->reconstruct_state = reconstruct_state_idle;
4750
4751 /* All the 'written' buffers and the parity block are ready to
4752 * be written back to disk
4753 */
9e444768
SL
4754 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4755 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4756 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4757 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4758 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4759 for (i = disks; i--; ) {
4760 struct r5dev *dev = &sh->dev[i];
4761 if (test_bit(R5_LOCKED, &dev->flags) &&
4762 (i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b
SL
4763 dev->written || test_bit(R5_InJournal,
4764 &dev->flags))) {
84789554
N
4765 pr_debug("Writing block %d\n", i);
4766 set_bit(R5_Wantwrite, &dev->flags);
4767 if (prexor)
4768 continue;
9c4bdf69
N
4769 if (s.failed > 1)
4770 continue;
84789554
N
4771 if (!test_bit(R5_Insync, &dev->flags) ||
4772 ((i == sh->pd_idx || i == sh->qd_idx) &&
4773 s.failed == 0))
4774 set_bit(STRIPE_INSYNC, &sh->state);
4775 }
4776 }
4777 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4778 s.dec_preread_active = 1;
4779 }
4780
ef5b7c69
N
4781 /*
4782 * might be able to return some write requests if the parity blocks
4783 * are safe, or on a failed drive
4784 */
4785 pdev = &sh->dev[sh->pd_idx];
4786 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4787 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4788 qdev = &sh->dev[sh->qd_idx];
4789 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4790 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4791 || conf->level < 6;
4792
4793 if (s.written &&
4794 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4795 && !test_bit(R5_LOCKED, &pdev->flags)
4796 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4797 test_bit(R5_Discard, &pdev->flags))))) &&
4798 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4799 && !test_bit(R5_LOCKED, &qdev->flags)
4800 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4801 test_bit(R5_Discard, &qdev->flags))))))
bd83d0a2 4802 handle_stripe_clean_event(conf, sh, disks);
ef5b7c69 4803
1e6d690b 4804 if (s.just_cached)
bd83d0a2 4805 r5c_handle_cached_data_endio(conf, sh, disks);
ff875738 4806 log_stripe_write_finished(sh);
1e6d690b 4807
ef5b7c69
N
4808 /* Now we might consider reading some blocks, either to check/generate
4809 * parity, or to satisfy requests
4810 * or to load a block that is being partially written.
4811 */
4812 if (s.to_read || s.non_overwrite
4813 || (conf->level == 6 && s.to_write && s.failed)
4814 || (s.syncing && (s.uptodate + s.compute < disks))
4815 || s.replacing
4816 || s.expanding)
4817 handle_stripe_fill(sh, &s, disks);
4818
2ded3703
SL
4819 /*
4820 * When the stripe finishes full journal write cycle (write to journal
4821 * and raid disk), this is the clean up procedure so it is ready for
4822 * next operation.
4823 */
4824 r5c_finish_stripe_write_out(conf, sh, &s);
4825
4826 /*
4827 * Now to consider new write requests, cache write back and what else,
4828 * if anything should be read. We do not handle new writes when:
84789554
N
4829 * 1/ A 'write' operation (copy+xor) is already in flight.
4830 * 2/ A 'check' operation is in flight, as it may clobber the parity
4831 * block.
2ded3703 4832 * 3/ A r5c cache log write is in flight.
84789554 4833 */
2ded3703
SL
4834
4835 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4836 if (!r5c_is_writeback(conf->log)) {
4837 if (s.to_write)
4838 handle_stripe_dirtying(conf, sh, &s, disks);
4839 } else { /* write back cache */
4840 int ret = 0;
4841
4842 /* First, try handle writes in caching phase */
4843 if (s.to_write)
4844 ret = r5c_try_caching_write(conf, sh, &s,
4845 disks);
4846 /*
4847 * If caching phase failed: ret == -EAGAIN
4848 * OR
4849 * stripe under reclaim: !caching && injournal
4850 *
4851 * fall back to handle_stripe_dirtying()
4852 */
4853 if (ret == -EAGAIN ||
4854 /* stripe under reclaim: !caching && injournal */
4855 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
d7bd398e
SL
4856 s.injournal > 0)) {
4857 ret = handle_stripe_dirtying(conf, sh, &s,
4858 disks);
4859 if (ret == -EAGAIN)
4860 goto finish;
4861 }
2ded3703
SL
4862 }
4863 }
84789554
N
4864
4865 /* maybe we need to check and possibly fix the parity for this stripe
4866 * Any reads will already have been scheduled, so we just see if enough
4867 * data is available. The parity check is held off while parity
4868 * dependent operations are in flight.
4869 */
4870 if (sh->check_state ||
4871 (s.syncing && s.locked == 0 &&
4872 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4873 !test_bit(STRIPE_INSYNC, &sh->state))) {
4874 if (conf->level == 6)
4875 handle_parity_checks6(conf, sh, &s, disks);
4876 else
4877 handle_parity_checks5(conf, sh, &s, disks);
4878 }
c5a31000 4879
f94c0b66
N
4880 if ((s.replacing || s.syncing) && s.locked == 0
4881 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4882 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4883 /* Write out to replacement devices where possible */
4884 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4885 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4886 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4887 set_bit(R5_WantReplace, &sh->dev[i].flags);
4888 set_bit(R5_LOCKED, &sh->dev[i].flags);
4889 s.locked++;
4890 }
f94c0b66
N
4891 if (s.replacing)
4892 set_bit(STRIPE_INSYNC, &sh->state);
4893 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4894 }
4895 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4896 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4897 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4898 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4899 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4900 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4901 wake_up(&conf->wait_for_overlap);
c5a31000
N
4902 }
4903
4904 /* If the failed drives are just a ReadError, then we might need
4905 * to progress the repair/check process
4906 */
4907 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4908 for (i = 0; i < s.failed; i++) {
4909 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4910 if (test_bit(R5_ReadError, &dev->flags)
4911 && !test_bit(R5_LOCKED, &dev->flags)
4912 && test_bit(R5_UPTODATE, &dev->flags)
4913 ) {
4914 if (!test_bit(R5_ReWrite, &dev->flags)) {
4915 set_bit(R5_Wantwrite, &dev->flags);
4916 set_bit(R5_ReWrite, &dev->flags);
4917 set_bit(R5_LOCKED, &dev->flags);
4918 s.locked++;
4919 } else {
4920 /* let's read it back */
4921 set_bit(R5_Wantread, &dev->flags);
4922 set_bit(R5_LOCKED, &dev->flags);
4923 s.locked++;
4924 }
4925 }
4926 }
4927
3687c061
N
4928 /* Finish reconstruct operations initiated by the expansion process */
4929 if (sh->reconstruct_state == reconstruct_state_result) {
4930 struct stripe_head *sh_src
6d036f7d 4931 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
3687c061
N
4932 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4933 /* sh cannot be written until sh_src has been read.
4934 * so arrange for sh to be delayed a little
4935 */
4936 set_bit(STRIPE_DELAYED, &sh->state);
4937 set_bit(STRIPE_HANDLE, &sh->state);
4938 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4939 &sh_src->state))
4940 atomic_inc(&conf->preread_active_stripes);
6d036f7d 4941 raid5_release_stripe(sh_src);
3687c061
N
4942 goto finish;
4943 }
4944 if (sh_src)
6d036f7d 4945 raid5_release_stripe(sh_src);
3687c061
N
4946
4947 sh->reconstruct_state = reconstruct_state_idle;
4948 clear_bit(STRIPE_EXPANDING, &sh->state);
4949 for (i = conf->raid_disks; i--; ) {
4950 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4951 set_bit(R5_LOCKED, &sh->dev[i].flags);
4952 s.locked++;
4953 }
4954 }
f416885e 4955
3687c061
N
4956 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4957 !sh->reconstruct_state) {
4958 /* Need to write out all blocks after computing parity */
4959 sh->disks = conf->raid_disks;
4960 stripe_set_idx(sh->sector, conf, 0, sh);
4961 schedule_reconstruction(sh, &s, 1, 1);
4962 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4963 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4964 atomic_dec(&conf->reshape_stripes);
4965 wake_up(&conf->wait_for_overlap);
4966 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4967 }
4968
4969 if (s.expanding && s.locked == 0 &&
4970 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4971 handle_stripe_expansion(conf, sh);
16a53ecc 4972
3687c061 4973finish:
6bfe0b49 4974 /* wait for this device to become unblocked */
5f066c63
N
4975 if (unlikely(s.blocked_rdev)) {
4976 if (conf->mddev->external)
4977 md_wait_for_blocked_rdev(s.blocked_rdev,
4978 conf->mddev);
4979 else
4980 /* Internal metadata will immediately
4981 * be written by raid5d, so we don't
4982 * need to wait here.
4983 */
4984 rdev_dec_pending(s.blocked_rdev,
4985 conf->mddev);
4986 }
6bfe0b49 4987
bc2607f3
N
4988 if (s.handle_bad_blocks)
4989 for (i = disks; i--; ) {
3cb03002 4990 struct md_rdev *rdev;
bc2607f3
N
4991 struct r5dev *dev = &sh->dev[i];
4992 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4993 /* We own a safe reference to the rdev */
4994 rdev = conf->disks[i].rdev;
4995 if (!rdev_set_badblocks(rdev, sh->sector,
4996 STRIPE_SECTORS, 0))
4997 md_error(conf->mddev, rdev);
4998 rdev_dec_pending(rdev, conf->mddev);
4999 }
b84db560
N
5000 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5001 rdev = conf->disks[i].rdev;
5002 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 5003 STRIPE_SECTORS, 0);
b84db560
N
5004 rdev_dec_pending(rdev, conf->mddev);
5005 }
977df362
N
5006 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5007 rdev = conf->disks[i].replacement;
dd054fce
N
5008 if (!rdev)
5009 /* rdev have been moved down */
5010 rdev = conf->disks[i].rdev;
977df362 5011 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 5012 STRIPE_SECTORS, 0);
977df362
N
5013 rdev_dec_pending(rdev, conf->mddev);
5014 }
bc2607f3
N
5015 }
5016
6c0069c0
YT
5017 if (s.ops_request)
5018 raid_run_ops(sh, s.ops_request);
5019
f0e43bcd 5020 ops_run_io(sh, &s);
16a53ecc 5021
c5709ef6 5022 if (s.dec_preread_active) {
729a1866 5023 /* We delay this until after ops_run_io so that if make_request
e9c7469b 5024 * is waiting on a flush, it won't continue until the writes
729a1866
N
5025 * have actually been submitted.
5026 */
5027 atomic_dec(&conf->preread_active_stripes);
5028 if (atomic_read(&conf->preread_active_stripes) <
5029 IO_THRESHOLD)
5030 md_wakeup_thread(conf->mddev->thread);
5031 }
5032
257a4b42 5033 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
5034}
5035
d1688a6d 5036static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
5037{
5038 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5039 while (!list_empty(&conf->delayed_list)) {
5040 struct list_head *l = conf->delayed_list.next;
5041 struct stripe_head *sh;
5042 sh = list_entry(l, struct stripe_head, lru);
5043 list_del_init(l);
5044 clear_bit(STRIPE_DELAYED, &sh->state);
5045 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5046 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 5047 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 5048 raid5_wakeup_stripe_thread(sh);
16a53ecc 5049 }
482c0834 5050 }
16a53ecc
N
5051}
5052
566c09c5
SL
5053static void activate_bit_delay(struct r5conf *conf,
5054 struct list_head *temp_inactive_list)
16a53ecc
N
5055{
5056 /* device_lock is held */
5057 struct list_head head;
5058 list_add(&head, &conf->bitmap_list);
5059 list_del_init(&conf->bitmap_list);
5060 while (!list_empty(&head)) {
5061 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 5062 int hash;
16a53ecc
N
5063 list_del_init(&sh->lru);
5064 atomic_inc(&sh->count);
566c09c5
SL
5065 hash = sh->hash_lock_index;
5066 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
5067 }
5068}
5069
5c675f83 5070static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 5071{
d1688a6d 5072 struct r5conf *conf = mddev->private;
f022b2fd
N
5073
5074 /* No difference between reads and writes. Just check
5075 * how busy the stripe_cache is
5076 */
3fa841d7 5077
5423399a 5078 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd 5079 return 1;
a39f7afd
SL
5080
5081 /* Also checks whether there is pressure on r5cache log space */
5082 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5083 return 1;
f022b2fd
N
5084 if (conf->quiesce)
5085 return 1;
4bda556a 5086 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
5087 return 1;
5088
5089 return 0;
5090}
5091
fd01b88c 5092static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 5093{
3cb5edf4 5094 struct r5conf *conf = mddev->private;
10433d04 5095 sector_t sector = bio->bi_iter.bi_sector;
3cb5edf4 5096 unsigned int chunk_sectors;
aa8b57aa 5097 unsigned int bio_sectors = bio_sectors(bio);
f679623f 5098
10433d04
CH
5099 WARN_ON_ONCE(bio->bi_partno);
5100
3cb5edf4 5101 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
5102 return chunk_sectors >=
5103 ((sector & (chunk_sectors - 1)) + bio_sectors);
5104}
5105
46031f9a
RBJ
5106/*
5107 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5108 * later sampled by raid5d.
5109 */
d1688a6d 5110static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
5111{
5112 unsigned long flags;
5113
5114 spin_lock_irqsave(&conf->device_lock, flags);
5115
5116 bi->bi_next = conf->retry_read_aligned_list;
5117 conf->retry_read_aligned_list = bi;
5118
5119 spin_unlock_irqrestore(&conf->device_lock, flags);
5120 md_wakeup_thread(conf->mddev->thread);
5121}
5122
0472a42b
N
5123static struct bio *remove_bio_from_retry(struct r5conf *conf,
5124 unsigned int *offset)
46031f9a
RBJ
5125{
5126 struct bio *bi;
5127
5128 bi = conf->retry_read_aligned;
5129 if (bi) {
0472a42b 5130 *offset = conf->retry_read_offset;
46031f9a
RBJ
5131 conf->retry_read_aligned = NULL;
5132 return bi;
5133 }
5134 bi = conf->retry_read_aligned_list;
5135 if(bi) {
387bb173 5136 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 5137 bi->bi_next = NULL;
0472a42b 5138 *offset = 0;
46031f9a
RBJ
5139 }
5140
5141 return bi;
5142}
5143
f679623f
RBJ
5144/*
5145 * The "raid5_align_endio" should check if the read succeeded and if it
5146 * did, call bio_endio on the original bio (having bio_put the new bio
5147 * first).
5148 * If the read failed..
5149 */
4246a0b6 5150static void raid5_align_endio(struct bio *bi)
f679623f
RBJ
5151{
5152 struct bio* raid_bi = bi->bi_private;
fd01b88c 5153 struct mddev *mddev;
d1688a6d 5154 struct r5conf *conf;
3cb03002 5155 struct md_rdev *rdev;
4e4cbee9 5156 blk_status_t error = bi->bi_status;
46031f9a 5157
f679623f 5158 bio_put(bi);
46031f9a 5159
46031f9a
RBJ
5160 rdev = (void*)raid_bi->bi_next;
5161 raid_bi->bi_next = NULL;
2b7f2228
N
5162 mddev = rdev->mddev;
5163 conf = mddev->private;
46031f9a
RBJ
5164
5165 rdev_dec_pending(rdev, conf->mddev);
5166
9b81c842 5167 if (!error) {
4246a0b6 5168 bio_endio(raid_bi);
46031f9a 5169 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5170 wake_up(&conf->wait_for_quiescent);
6712ecf8 5171 return;
46031f9a
RBJ
5172 }
5173
45b4233c 5174 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
5175
5176 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
5177}
5178
7ef6b12a 5179static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 5180{
d1688a6d 5181 struct r5conf *conf = mddev->private;
8553fe7e 5182 int dd_idx;
f679623f 5183 struct bio* align_bi;
3cb03002 5184 struct md_rdev *rdev;
671488cc 5185 sector_t end_sector;
f679623f
RBJ
5186
5187 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 5188 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
5189 return 0;
5190 }
5191 /*
d7a10308 5192 * use bio_clone_fast to make a copy of the bio
f679623f 5193 */
d7a10308 5194 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
f679623f
RBJ
5195 if (!align_bi)
5196 return 0;
5197 /*
5198 * set bi_end_io to a new function, and set bi_private to the
5199 * original bio.
5200 */
5201 align_bi->bi_end_io = raid5_align_endio;
5202 align_bi->bi_private = raid_bio;
5203 /*
5204 * compute position
5205 */
4f024f37
KO
5206 align_bi->bi_iter.bi_sector =
5207 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5208 0, &dd_idx, NULL);
f679623f 5209
f73a1c7d 5210 end_sector = bio_end_sector(align_bi);
f679623f 5211 rcu_read_lock();
671488cc
N
5212 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5213 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5214 rdev->recovery_offset < end_sector) {
5215 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5216 if (rdev &&
5217 (test_bit(Faulty, &rdev->flags) ||
5218 !(test_bit(In_sync, &rdev->flags) ||
5219 rdev->recovery_offset >= end_sector)))
5220 rdev = NULL;
5221 }
03b047f4
SL
5222
5223 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5224 rcu_read_unlock();
5225 bio_put(align_bi);
5226 return 0;
5227 }
5228
671488cc 5229 if (rdev) {
31c176ec
N
5230 sector_t first_bad;
5231 int bad_sectors;
5232
f679623f
RBJ
5233 atomic_inc(&rdev->nr_pending);
5234 rcu_read_unlock();
46031f9a 5235 raid_bio->bi_next = (void*)rdev;
74d46992 5236 bio_set_dev(align_bi, rdev->bdev);
b7c44ed9 5237 bio_clear_flag(align_bi, BIO_SEG_VALID);
46031f9a 5238
7140aafc 5239 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4f024f37 5240 bio_sectors(align_bi),
31c176ec 5241 &first_bad, &bad_sectors)) {
387bb173
NB
5242 bio_put(align_bi);
5243 rdev_dec_pending(rdev, mddev);
5244 return 0;
5245 }
5246
6c0544e2 5247 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 5248 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 5249
46031f9a 5250 spin_lock_irq(&conf->device_lock);
b1b46486 5251 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 5252 conf->quiesce == 0,
eed8c02e 5253 conf->device_lock);
46031f9a
RBJ
5254 atomic_inc(&conf->active_aligned_reads);
5255 spin_unlock_irq(&conf->device_lock);
5256
e3620a3a 5257 if (mddev->gendisk)
74d46992 5258 trace_block_bio_remap(align_bi->bi_disk->queue,
e3620a3a 5259 align_bi, disk_devt(mddev->gendisk),
4f024f37 5260 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
5261 generic_make_request(align_bi);
5262 return 1;
5263 } else {
5264 rcu_read_unlock();
46031f9a 5265 bio_put(align_bi);
f679623f
RBJ
5266 return 0;
5267 }
5268}
5269
7ef6b12a
ML
5270static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5271{
5272 struct bio *split;
dd7a8f5d
N
5273 sector_t sector = raid_bio->bi_iter.bi_sector;
5274 unsigned chunk_sects = mddev->chunk_sectors;
5275 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
7ef6b12a 5276
dd7a8f5d
N
5277 if (sectors < bio_sectors(raid_bio)) {
5278 struct r5conf *conf = mddev->private;
5279 split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5280 bio_chain(split, raid_bio);
5281 generic_make_request(raid_bio);
5282 raid_bio = split;
5283 }
7ef6b12a 5284
dd7a8f5d
N
5285 if (!raid5_read_one_chunk(mddev, raid_bio))
5286 return raid_bio;
7ef6b12a
ML
5287
5288 return NULL;
5289}
5290
8b3e6cdc
DW
5291/* __get_priority_stripe - get the next stripe to process
5292 *
5293 * Full stripe writes are allowed to pass preread active stripes up until
5294 * the bypass_threshold is exceeded. In general the bypass_count
5295 * increments when the handle_list is handled before the hold_list; however, it
5296 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5297 * stripe with in flight i/o. The bypass_count will be reset when the
5298 * head of the hold_list has changed, i.e. the head was promoted to the
5299 * handle_list.
5300 */
851c30c9 5301static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 5302{
535ae4eb 5303 struct stripe_head *sh, *tmp;
851c30c9 5304 struct list_head *handle_list = NULL;
535ae4eb 5305 struct r5worker_group *wg;
70d466f7
SL
5306 bool second_try = !r5c_is_writeback(conf->log) &&
5307 !r5l_log_disk_error(conf);
5308 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5309 r5l_log_disk_error(conf);
851c30c9 5310
535ae4eb
SL
5311again:
5312 wg = NULL;
5313 sh = NULL;
851c30c9 5314 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
5315 handle_list = try_loprio ? &conf->loprio_list :
5316 &conf->handle_list;
851c30c9 5317 } else if (group != ANY_GROUP) {
535ae4eb
SL
5318 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5319 &conf->worker_groups[group].handle_list;
bfc90cb0 5320 wg = &conf->worker_groups[group];
851c30c9
SL
5321 } else {
5322 int i;
5323 for (i = 0; i < conf->group_cnt; i++) {
535ae4eb
SL
5324 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5325 &conf->worker_groups[i].handle_list;
bfc90cb0 5326 wg = &conf->worker_groups[i];
851c30c9
SL
5327 if (!list_empty(handle_list))
5328 break;
5329 }
5330 }
8b3e6cdc
DW
5331
5332 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5333 __func__,
851c30c9 5334 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
5335 list_empty(&conf->hold_list) ? "empty" : "busy",
5336 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5337
851c30c9
SL
5338 if (!list_empty(handle_list)) {
5339 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
5340
5341 if (list_empty(&conf->hold_list))
5342 conf->bypass_count = 0;
5343 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5344 if (conf->hold_list.next == conf->last_hold)
5345 conf->bypass_count++;
5346 else {
5347 conf->last_hold = conf->hold_list.next;
5348 conf->bypass_count -= conf->bypass_threshold;
5349 if (conf->bypass_count < 0)
5350 conf->bypass_count = 0;
5351 }
5352 }
5353 } else if (!list_empty(&conf->hold_list) &&
5354 ((conf->bypass_threshold &&
5355 conf->bypass_count > conf->bypass_threshold) ||
5356 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
5357
5358 list_for_each_entry(tmp, &conf->hold_list, lru) {
5359 if (conf->worker_cnt_per_group == 0 ||
5360 group == ANY_GROUP ||
5361 !cpu_online(tmp->cpu) ||
5362 cpu_to_group(tmp->cpu) == group) {
5363 sh = tmp;
5364 break;
5365 }
5366 }
5367
5368 if (sh) {
5369 conf->bypass_count -= conf->bypass_threshold;
5370 if (conf->bypass_count < 0)
5371 conf->bypass_count = 0;
5372 }
bfc90cb0 5373 wg = NULL;
851c30c9
SL
5374 }
5375
535ae4eb
SL
5376 if (!sh) {
5377 if (second_try)
5378 return NULL;
5379 second_try = true;
5380 try_loprio = !try_loprio;
5381 goto again;
5382 }
8b3e6cdc 5383
bfc90cb0
SL
5384 if (wg) {
5385 wg->stripes_cnt--;
5386 sh->group = NULL;
5387 }
8b3e6cdc 5388 list_del_init(&sh->lru);
c7a6d35e 5389 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
5390 return sh;
5391}
f679623f 5392
8811b596
SL
5393struct raid5_plug_cb {
5394 struct blk_plug_cb cb;
5395 struct list_head list;
566c09c5 5396 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
5397};
5398
5399static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5400{
5401 struct raid5_plug_cb *cb = container_of(
5402 blk_cb, struct raid5_plug_cb, cb);
5403 struct stripe_head *sh;
5404 struct mddev *mddev = cb->cb.data;
5405 struct r5conf *conf = mddev->private;
a9add5d9 5406 int cnt = 0;
566c09c5 5407 int hash;
8811b596
SL
5408
5409 if (cb->list.next && !list_empty(&cb->list)) {
5410 spin_lock_irq(&conf->device_lock);
5411 while (!list_empty(&cb->list)) {
5412 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5413 list_del_init(&sh->lru);
5414 /*
5415 * avoid race release_stripe_plug() sees
5416 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5417 * is still in our list
5418 */
4e857c58 5419 smp_mb__before_atomic();
8811b596 5420 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
5421 /*
5422 * STRIPE_ON_RELEASE_LIST could be set here. In that
5423 * case, the count is always > 1 here
5424 */
566c09c5
SL
5425 hash = sh->hash_lock_index;
5426 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5427 cnt++;
8811b596
SL
5428 }
5429 spin_unlock_irq(&conf->device_lock);
5430 }
566c09c5
SL
5431 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5432 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5433 if (mddev->queue)
5434 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5435 kfree(cb);
5436}
5437
5438static void release_stripe_plug(struct mddev *mddev,
5439 struct stripe_head *sh)
5440{
5441 struct blk_plug_cb *blk_cb = blk_check_plugged(
5442 raid5_unplug, mddev,
5443 sizeof(struct raid5_plug_cb));
5444 struct raid5_plug_cb *cb;
5445
5446 if (!blk_cb) {
6d036f7d 5447 raid5_release_stripe(sh);
8811b596
SL
5448 return;
5449 }
5450
5451 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5452
566c09c5
SL
5453 if (cb->list.next == NULL) {
5454 int i;
8811b596 5455 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5456 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5457 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5458 }
8811b596
SL
5459
5460 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5461 list_add_tail(&sh->lru, &cb->list);
5462 else
6d036f7d 5463 raid5_release_stripe(sh);
8811b596
SL
5464}
5465
620125f2
SL
5466static void make_discard_request(struct mddev *mddev, struct bio *bi)
5467{
5468 struct r5conf *conf = mddev->private;
5469 sector_t logical_sector, last_sector;
5470 struct stripe_head *sh;
620125f2
SL
5471 int stripe_sectors;
5472
5473 if (mddev->reshape_position != MaxSector)
5474 /* Skip discard while reshape is happening */
5475 return;
5476
4f024f37
KO
5477 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5478 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5479
5480 bi->bi_next = NULL;
620125f2
SL
5481
5482 stripe_sectors = conf->chunk_sectors *
5483 (conf->raid_disks - conf->max_degraded);
5484 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5485 stripe_sectors);
5486 sector_div(last_sector, stripe_sectors);
5487
5488 logical_sector *= conf->chunk_sectors;
5489 last_sector *= conf->chunk_sectors;
5490
5491 for (; logical_sector < last_sector;
5492 logical_sector += STRIPE_SECTORS) {
5493 DEFINE_WAIT(w);
5494 int d;
5495 again:
6d036f7d 5496 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
620125f2
SL
5497 prepare_to_wait(&conf->wait_for_overlap, &w,
5498 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5499 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5500 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5501 raid5_release_stripe(sh);
f8dfcffd
N
5502 schedule();
5503 goto again;
5504 }
5505 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5506 spin_lock_irq(&sh->stripe_lock);
5507 for (d = 0; d < conf->raid_disks; d++) {
5508 if (d == sh->pd_idx || d == sh->qd_idx)
5509 continue;
5510 if (sh->dev[d].towrite || sh->dev[d].toread) {
5511 set_bit(R5_Overlap, &sh->dev[d].flags);
5512 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5513 raid5_release_stripe(sh);
620125f2
SL
5514 schedule();
5515 goto again;
5516 }
5517 }
f8dfcffd 5518 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5519 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5520 sh->overwrite_disks = 0;
620125f2
SL
5521 for (d = 0; d < conf->raid_disks; d++) {
5522 if (d == sh->pd_idx || d == sh->qd_idx)
5523 continue;
5524 sh->dev[d].towrite = bi;
5525 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
016c76ac 5526 bio_inc_remaining(bi);
49728050 5527 md_write_inc(mddev, bi);
7a87f434 5528 sh->overwrite_disks++;
620125f2
SL
5529 }
5530 spin_unlock_irq(&sh->stripe_lock);
5531 if (conf->mddev->bitmap) {
5532 for (d = 0;
5533 d < conf->raid_disks - conf->max_degraded;
5534 d++)
5535 bitmap_startwrite(mddev->bitmap,
5536 sh->sector,
5537 STRIPE_SECTORS,
5538 0);
5539 sh->bm_seq = conf->seq_flush + 1;
5540 set_bit(STRIPE_BIT_DELAY, &sh->state);
5541 }
5542
5543 set_bit(STRIPE_HANDLE, &sh->state);
5544 clear_bit(STRIPE_DELAYED, &sh->state);
5545 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5546 atomic_inc(&conf->preread_active_stripes);
5547 release_stripe_plug(mddev, sh);
5548 }
5549
016c76ac 5550 bio_endio(bi);
620125f2
SL
5551}
5552
cc27b0c7 5553static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5554{
d1688a6d 5555 struct r5conf *conf = mddev->private;
911d4ee8 5556 int dd_idx;
1da177e4
LT
5557 sector_t new_sector;
5558 sector_t logical_sector, last_sector;
5559 struct stripe_head *sh;
a362357b 5560 const int rw = bio_data_dir(bi);
27c0f68f
SL
5561 DEFINE_WAIT(w);
5562 bool do_prepare;
3bddb7f8 5563 bool do_flush = false;
1da177e4 5564
1eff9d32 5565 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
828cbe98
SL
5566 int ret = r5l_handle_flush_request(conf->log, bi);
5567
5568 if (ret == 0)
cc27b0c7 5569 return true;
828cbe98
SL
5570 if (ret == -ENODEV) {
5571 md_flush_request(mddev, bi);
cc27b0c7 5572 return true;
828cbe98
SL
5573 }
5574 /* ret == -EAGAIN, fallback */
3bddb7f8
SL
5575 /*
5576 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5577 * we need to flush journal device
5578 */
5579 do_flush = bi->bi_opf & REQ_PREFLUSH;
e5dcdd80
N
5580 }
5581
cc27b0c7
N
5582 if (!md_write_start(mddev, bi))
5583 return false;
9ffc8f7c
EM
5584 /*
5585 * If array is degraded, better not do chunk aligned read because
5586 * later we might have to read it again in order to reconstruct
5587 * data on failed drives.
5588 */
5589 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
5590 mddev->reshape_position == MaxSector) {
5591 bi = chunk_aligned_read(mddev, bi);
5592 if (!bi)
cc27b0c7 5593 return true;
7ef6b12a 5594 }
52488615 5595
796a5cf0 5596 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
620125f2 5597 make_discard_request(mddev, bi);
cc27b0c7
N
5598 md_write_end(mddev);
5599 return true;
620125f2
SL
5600 }
5601
4f024f37 5602 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5603 last_sector = bio_end_sector(bi);
1da177e4 5604 bi->bi_next = NULL;
06d91a5f 5605
27c0f68f 5606 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5607 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5608 int previous;
c46501b2 5609 int seq;
b578d55f 5610
27c0f68f 5611 do_prepare = false;
7ecaa1e6 5612 retry:
c46501b2 5613 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5614 previous = 0;
27c0f68f
SL
5615 if (do_prepare)
5616 prepare_to_wait(&conf->wait_for_overlap, &w,
5617 TASK_UNINTERRUPTIBLE);
b0f9ec04 5618 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5619 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5620 * 64bit on a 32bit platform, and so it might be
5621 * possible to see a half-updated value
aeb878b0 5622 * Of course reshape_progress could change after
df8e7f76
N
5623 * the lock is dropped, so once we get a reference
5624 * to the stripe that we think it is, we will have
5625 * to check again.
5626 */
7ecaa1e6 5627 spin_lock_irq(&conf->device_lock);
2c810cdd 5628 if (mddev->reshape_backwards
fef9c61f
N
5629 ? logical_sector < conf->reshape_progress
5630 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5631 previous = 1;
5632 } else {
2c810cdd 5633 if (mddev->reshape_backwards
fef9c61f
N
5634 ? logical_sector < conf->reshape_safe
5635 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5636 spin_unlock_irq(&conf->device_lock);
5637 schedule();
27c0f68f 5638 do_prepare = true;
b578d55f
N
5639 goto retry;
5640 }
5641 }
7ecaa1e6
N
5642 spin_unlock_irq(&conf->device_lock);
5643 }
16a53ecc 5644
112bf897
N
5645 new_sector = raid5_compute_sector(conf, logical_sector,
5646 previous,
911d4ee8 5647 &dd_idx, NULL);
849674e4 5648 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
c46501b2 5649 (unsigned long long)new_sector,
1da177e4
LT
5650 (unsigned long long)logical_sector);
5651
6d036f7d 5652 sh = raid5_get_active_stripe(conf, new_sector, previous,
1eff9d32 5653 (bi->bi_opf & REQ_RAHEAD), 0);
1da177e4 5654 if (sh) {
b0f9ec04 5655 if (unlikely(previous)) {
7ecaa1e6 5656 /* expansion might have moved on while waiting for a
df8e7f76
N
5657 * stripe, so we must do the range check again.
5658 * Expansion could still move past after this
5659 * test, but as we are holding a reference to
5660 * 'sh', we know that if that happens,
5661 * STRIPE_EXPANDING will get set and the expansion
5662 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5663 */
5664 int must_retry = 0;
5665 spin_lock_irq(&conf->device_lock);
2c810cdd 5666 if (mddev->reshape_backwards
b0f9ec04
N
5667 ? logical_sector >= conf->reshape_progress
5668 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5669 /* mismatch, need to try again */
5670 must_retry = 1;
5671 spin_unlock_irq(&conf->device_lock);
5672 if (must_retry) {
6d036f7d 5673 raid5_release_stripe(sh);
7a3ab908 5674 schedule();
27c0f68f 5675 do_prepare = true;
7ecaa1e6
N
5676 goto retry;
5677 }
5678 }
c46501b2
N
5679 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5680 /* Might have got the wrong stripe_head
5681 * by accident
5682 */
6d036f7d 5683 raid5_release_stripe(sh);
c46501b2
N
5684 goto retry;
5685 }
e62e58a5 5686
7ecaa1e6 5687 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5688 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5689 /* Stripe is busy expanding or
5690 * add failed due to overlap. Flush everything
1da177e4
LT
5691 * and wait a while
5692 */
482c0834 5693 md_wakeup_thread(mddev->thread);
6d036f7d 5694 raid5_release_stripe(sh);
1da177e4 5695 schedule();
27c0f68f 5696 do_prepare = true;
1da177e4
LT
5697 goto retry;
5698 }
3bddb7f8
SL
5699 if (do_flush) {
5700 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5701 /* we only need flush for one stripe */
5702 do_flush = false;
5703 }
5704
6ed3003c
N
5705 set_bit(STRIPE_HANDLE, &sh->state);
5706 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5707 if ((!sh->batch_head || sh == sh->batch_head) &&
1eff9d32 5708 (bi->bi_opf & REQ_SYNC) &&
729a1866
N
5709 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5710 atomic_inc(&conf->preread_active_stripes);
8811b596 5711 release_stripe_plug(mddev, sh);
1da177e4
LT
5712 } else {
5713 /* cannot get stripe for read-ahead, just give-up */
4e4cbee9 5714 bi->bi_status = BLK_STS_IOERR;
1da177e4
LT
5715 break;
5716 }
1da177e4 5717 }
27c0f68f 5718 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5719
49728050
N
5720 if (rw == WRITE)
5721 md_write_end(mddev);
016c76ac 5722 bio_endio(bi);
cc27b0c7 5723 return true;
1da177e4
LT
5724}
5725
fd01b88c 5726static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5727
fd01b88c 5728static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5729{
52c03291
N
5730 /* reshaping is quite different to recovery/resync so it is
5731 * handled quite separately ... here.
5732 *
5733 * On each call to sync_request, we gather one chunk worth of
5734 * destination stripes and flag them as expanding.
5735 * Then we find all the source stripes and request reads.
5736 * As the reads complete, handle_stripe will copy the data
5737 * into the destination stripe and release that stripe.
5738 */
d1688a6d 5739 struct r5conf *conf = mddev->private;
1da177e4 5740 struct stripe_head *sh;
db0505d3 5741 struct md_rdev *rdev;
ccfcc3c1 5742 sector_t first_sector, last_sector;
f416885e
N
5743 int raid_disks = conf->previous_raid_disks;
5744 int data_disks = raid_disks - conf->max_degraded;
5745 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5746 int i;
5747 int dd_idx;
c8f517c4 5748 sector_t writepos, readpos, safepos;
ec32a2bd 5749 sector_t stripe_addr;
7a661381 5750 int reshape_sectors;
ab69ae12 5751 struct list_head stripes;
92140480 5752 sector_t retn;
52c03291 5753
fef9c61f
N
5754 if (sector_nr == 0) {
5755 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5756 if (mddev->reshape_backwards &&
fef9c61f
N
5757 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5758 sector_nr = raid5_size(mddev, 0, 0)
5759 - conf->reshape_progress;
6cbd8148
N
5760 } else if (mddev->reshape_backwards &&
5761 conf->reshape_progress == MaxSector) {
5762 /* shouldn't happen, but just in case, finish up.*/
5763 sector_nr = MaxSector;
2c810cdd 5764 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5765 conf->reshape_progress > 0)
5766 sector_nr = conf->reshape_progress;
f416885e 5767 sector_div(sector_nr, new_data_disks);
fef9c61f 5768 if (sector_nr) {
8dee7211
N
5769 mddev->curr_resync_completed = sector_nr;
5770 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f 5771 *skipped = 1;
92140480
N
5772 retn = sector_nr;
5773 goto finish;
fef9c61f 5774 }
52c03291
N
5775 }
5776
7a661381
N
5777 /* We need to process a full chunk at a time.
5778 * If old and new chunk sizes differ, we need to process the
5779 * largest of these
5780 */
3cb5edf4
N
5781
5782 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 5783
b5254dd5
N
5784 /* We update the metadata at least every 10 seconds, or when
5785 * the data about to be copied would over-write the source of
5786 * the data at the front of the range. i.e. one new_stripe
5787 * along from reshape_progress new_maps to after where
5788 * reshape_safe old_maps to
52c03291 5789 */
fef9c61f 5790 writepos = conf->reshape_progress;
f416885e 5791 sector_div(writepos, new_data_disks);
c8f517c4
N
5792 readpos = conf->reshape_progress;
5793 sector_div(readpos, data_disks);
fef9c61f 5794 safepos = conf->reshape_safe;
f416885e 5795 sector_div(safepos, data_disks);
2c810cdd 5796 if (mddev->reshape_backwards) {
c74c0d76
N
5797 BUG_ON(writepos < reshape_sectors);
5798 writepos -= reshape_sectors;
c8f517c4 5799 readpos += reshape_sectors;
7a661381 5800 safepos += reshape_sectors;
fef9c61f 5801 } else {
7a661381 5802 writepos += reshape_sectors;
c74c0d76
N
5803 /* readpos and safepos are worst-case calculations.
5804 * A negative number is overly pessimistic, and causes
5805 * obvious problems for unsigned storage. So clip to 0.
5806 */
ed37d83e
N
5807 readpos -= min_t(sector_t, reshape_sectors, readpos);
5808 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5809 }
52c03291 5810
b5254dd5
N
5811 /* Having calculated the 'writepos' possibly use it
5812 * to set 'stripe_addr' which is where we will write to.
5813 */
5814 if (mddev->reshape_backwards) {
5815 BUG_ON(conf->reshape_progress == 0);
5816 stripe_addr = writepos;
5817 BUG_ON((mddev->dev_sectors &
5818 ~((sector_t)reshape_sectors - 1))
5819 - reshape_sectors - stripe_addr
5820 != sector_nr);
5821 } else {
5822 BUG_ON(writepos != sector_nr + reshape_sectors);
5823 stripe_addr = sector_nr;
5824 }
5825
c8f517c4
N
5826 /* 'writepos' is the most advanced device address we might write.
5827 * 'readpos' is the least advanced device address we might read.
5828 * 'safepos' is the least address recorded in the metadata as having
5829 * been reshaped.
b5254dd5
N
5830 * If there is a min_offset_diff, these are adjusted either by
5831 * increasing the safepos/readpos if diff is negative, or
5832 * increasing writepos if diff is positive.
5833 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5834 * ensure safety in the face of a crash - that must be done by userspace
5835 * making a backup of the data. So in that case there is no particular
5836 * rush to update metadata.
5837 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5838 * update the metadata to advance 'safepos' to match 'readpos' so that
5839 * we can be safe in the event of a crash.
5840 * So we insist on updating metadata if safepos is behind writepos and
5841 * readpos is beyond writepos.
5842 * In any case, update the metadata every 10 seconds.
5843 * Maybe that number should be configurable, but I'm not sure it is
5844 * worth it.... maybe it could be a multiple of safemode_delay???
5845 */
b5254dd5
N
5846 if (conf->min_offset_diff < 0) {
5847 safepos += -conf->min_offset_diff;
5848 readpos += -conf->min_offset_diff;
5849 } else
5850 writepos += conf->min_offset_diff;
5851
2c810cdd 5852 if ((mddev->reshape_backwards
c8f517c4
N
5853 ? (safepos > writepos && readpos < writepos)
5854 : (safepos < writepos && readpos > writepos)) ||
5855 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5856 /* Cannot proceed until we've updated the superblock... */
5857 wait_event(conf->wait_for_overlap,
c91abf5a
N
5858 atomic_read(&conf->reshape_stripes)==0
5859 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5860 if (atomic_read(&conf->reshape_stripes) != 0)
5861 return 0;
fef9c61f 5862 mddev->reshape_position = conf->reshape_progress;
75d3da43 5863 mddev->curr_resync_completed = sector_nr;
db0505d3
N
5864 if (!mddev->reshape_backwards)
5865 /* Can update recovery_offset */
5866 rdev_for_each(rdev, mddev)
5867 if (rdev->raid_disk >= 0 &&
5868 !test_bit(Journal, &rdev->flags) &&
5869 !test_bit(In_sync, &rdev->flags) &&
5870 rdev->recovery_offset < sector_nr)
5871 rdev->recovery_offset = sector_nr;
5872
c8f517c4 5873 conf->reshape_checkpoint = jiffies;
2953079c 5874 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
52c03291 5875 md_wakeup_thread(mddev->thread);
2953079c 5876 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
5877 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5878 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5879 return 0;
52c03291 5880 spin_lock_irq(&conf->device_lock);
fef9c61f 5881 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5882 spin_unlock_irq(&conf->device_lock);
5883 wake_up(&conf->wait_for_overlap);
acb180b0 5884 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5885 }
5886
ab69ae12 5887 INIT_LIST_HEAD(&stripes);
7a661381 5888 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5889 int j;
a9f326eb 5890 int skipped_disk = 0;
6d036f7d 5891 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5892 set_bit(STRIPE_EXPANDING, &sh->state);
5893 atomic_inc(&conf->reshape_stripes);
5894 /* If any of this stripe is beyond the end of the old
5895 * array, then we need to zero those blocks
5896 */
5897 for (j=sh->disks; j--;) {
5898 sector_t s;
5899 if (j == sh->pd_idx)
5900 continue;
f416885e 5901 if (conf->level == 6 &&
d0dabf7e 5902 j == sh->qd_idx)
f416885e 5903 continue;
6d036f7d 5904 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 5905 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5906 skipped_disk = 1;
52c03291
N
5907 continue;
5908 }
5909 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5910 set_bit(R5_Expanded, &sh->dev[j].flags);
5911 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5912 }
a9f326eb 5913 if (!skipped_disk) {
52c03291
N
5914 set_bit(STRIPE_EXPAND_READY, &sh->state);
5915 set_bit(STRIPE_HANDLE, &sh->state);
5916 }
ab69ae12 5917 list_add(&sh->lru, &stripes);
52c03291
N
5918 }
5919 spin_lock_irq(&conf->device_lock);
2c810cdd 5920 if (mddev->reshape_backwards)
7a661381 5921 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5922 else
7a661381 5923 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5924 spin_unlock_irq(&conf->device_lock);
5925 /* Ok, those stripe are ready. We can start scheduling
5926 * reads on the source stripes.
5927 * The source stripes are determined by mapping the first and last
5928 * block on the destination stripes.
5929 */
52c03291 5930 first_sector =
ec32a2bd 5931 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5932 1, &dd_idx, NULL);
52c03291 5933 last_sector =
0e6e0271 5934 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5935 * new_data_disks - 1),
911d4ee8 5936 1, &dd_idx, NULL);
58c0fed4
AN
5937 if (last_sector >= mddev->dev_sectors)
5938 last_sector = mddev->dev_sectors - 1;
52c03291 5939 while (first_sector <= last_sector) {
6d036f7d 5940 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5941 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5942 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 5943 raid5_release_stripe(sh);
52c03291
N
5944 first_sector += STRIPE_SECTORS;
5945 }
ab69ae12
N
5946 /* Now that the sources are clearly marked, we can release
5947 * the destination stripes
5948 */
5949 while (!list_empty(&stripes)) {
5950 sh = list_entry(stripes.next, struct stripe_head, lru);
5951 list_del_init(&sh->lru);
6d036f7d 5952 raid5_release_stripe(sh);
ab69ae12 5953 }
c6207277
N
5954 /* If this takes us to the resync_max point where we have to pause,
5955 * then we need to write out the superblock.
5956 */
7a661381 5957 sector_nr += reshape_sectors;
92140480
N
5958 retn = reshape_sectors;
5959finish:
c5e19d90
N
5960 if (mddev->curr_resync_completed > mddev->resync_max ||
5961 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 5962 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5963 /* Cannot proceed until we've updated the superblock... */
5964 wait_event(conf->wait_for_overlap,
c91abf5a
N
5965 atomic_read(&conf->reshape_stripes) == 0
5966 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5967 if (atomic_read(&conf->reshape_stripes) != 0)
5968 goto ret;
fef9c61f 5969 mddev->reshape_position = conf->reshape_progress;
75d3da43 5970 mddev->curr_resync_completed = sector_nr;
db0505d3
N
5971 if (!mddev->reshape_backwards)
5972 /* Can update recovery_offset */
5973 rdev_for_each(rdev, mddev)
5974 if (rdev->raid_disk >= 0 &&
5975 !test_bit(Journal, &rdev->flags) &&
5976 !test_bit(In_sync, &rdev->flags) &&
5977 rdev->recovery_offset < sector_nr)
5978 rdev->recovery_offset = sector_nr;
c8f517c4 5979 conf->reshape_checkpoint = jiffies;
2953079c 5980 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
c6207277
N
5981 md_wakeup_thread(mddev->thread);
5982 wait_event(mddev->sb_wait,
2953079c 5983 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
c91abf5a
N
5984 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5985 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5986 goto ret;
c6207277 5987 spin_lock_irq(&conf->device_lock);
fef9c61f 5988 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5989 spin_unlock_irq(&conf->device_lock);
5990 wake_up(&conf->wait_for_overlap);
acb180b0 5991 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5992 }
c91abf5a 5993ret:
92140480 5994 return retn;
52c03291
N
5995}
5996
849674e4
SL
5997static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5998 int *skipped)
52c03291 5999{
d1688a6d 6000 struct r5conf *conf = mddev->private;
52c03291 6001 struct stripe_head *sh;
58c0fed4 6002 sector_t max_sector = mddev->dev_sectors;
57dab0bd 6003 sector_t sync_blocks;
16a53ecc
N
6004 int still_degraded = 0;
6005 int i;
1da177e4 6006
72626685 6007 if (sector_nr >= max_sector) {
1da177e4 6008 /* just being told to finish up .. nothing much to do */
cea9c228 6009
29269553
N
6010 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6011 end_reshape(conf);
6012 return 0;
6013 }
72626685
N
6014
6015 if (mddev->curr_resync < max_sector) /* aborted */
6016 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6017 &sync_blocks, 1);
16a53ecc 6018 else /* completed sync */
72626685
N
6019 conf->fullsync = 0;
6020 bitmap_close_sync(mddev->bitmap);
6021
1da177e4
LT
6022 return 0;
6023 }
ccfcc3c1 6024
64bd660b
N
6025 /* Allow raid5_quiesce to complete */
6026 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6027
52c03291
N
6028 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6029 return reshape_request(mddev, sector_nr, skipped);
f6705578 6030
c6207277
N
6031 /* No need to check resync_max as we never do more than one
6032 * stripe, and as resync_max will always be on a chunk boundary,
6033 * if the check in md_do_sync didn't fire, there is no chance
6034 * of overstepping resync_max here
6035 */
6036
16a53ecc 6037 /* if there is too many failed drives and we are trying
1da177e4
LT
6038 * to resync, then assert that we are finished, because there is
6039 * nothing we can do.
6040 */
3285edf1 6041 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 6042 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 6043 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 6044 *skipped = 1;
1da177e4
LT
6045 return rv;
6046 }
6f608040 6047 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6048 !conf->fullsync &&
6049 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6050 sync_blocks >= STRIPE_SECTORS) {
72626685
N
6051 /* we can skip this block, and probably more */
6052 sync_blocks /= STRIPE_SECTORS;
6053 *skipped = 1;
6054 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6055 }
1da177e4 6056
c40f341f 6057 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
b47490c9 6058
6d036f7d 6059 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 6060 if (sh == NULL) {
6d036f7d 6061 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 6062 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 6063 * is trying to get access
1da177e4 6064 */
66c006a5 6065 schedule_timeout_uninterruptible(1);
1da177e4 6066 }
16a53ecc 6067 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
6068 * Note in case of > 1 drive failures it's possible we're rebuilding
6069 * one drive while leaving another faulty drive in array.
16a53ecc 6070 */
16d9cfab
EM
6071 rcu_read_lock();
6072 for (i = 0; i < conf->raid_disks; i++) {
6aa7de05 6073 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
16d9cfab
EM
6074
6075 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 6076 still_degraded = 1;
16d9cfab
EM
6077 }
6078 rcu_read_unlock();
16a53ecc
N
6079
6080 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6081
83206d66 6082 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 6083 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 6084
6d036f7d 6085 raid5_release_stripe(sh);
1da177e4
LT
6086
6087 return STRIPE_SECTORS;
6088}
6089
0472a42b
N
6090static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6091 unsigned int offset)
46031f9a
RBJ
6092{
6093 /* We may not be able to submit a whole bio at once as there
6094 * may not be enough stripe_heads available.
6095 * We cannot pre-allocate enough stripe_heads as we may need
6096 * more than exist in the cache (if we allow ever large chunks).
6097 * So we do one stripe head at a time and record in
6098 * ->bi_hw_segments how many have been done.
6099 *
6100 * We *know* that this entire raid_bio is in one chunk, so
6101 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6102 */
6103 struct stripe_head *sh;
911d4ee8 6104 int dd_idx;
46031f9a
RBJ
6105 sector_t sector, logical_sector, last_sector;
6106 int scnt = 0;
46031f9a
RBJ
6107 int handled = 0;
6108
4f024f37
KO
6109 logical_sector = raid_bio->bi_iter.bi_sector &
6110 ~((sector_t)STRIPE_SECTORS-1);
112bf897 6111 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 6112 0, &dd_idx, NULL);
f73a1c7d 6113 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
6114
6115 for (; logical_sector < last_sector;
387bb173
NB
6116 logical_sector += STRIPE_SECTORS,
6117 sector += STRIPE_SECTORS,
6118 scnt++) {
46031f9a 6119
0472a42b 6120 if (scnt < offset)
46031f9a
RBJ
6121 /* already done this stripe */
6122 continue;
6123
6d036f7d 6124 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
6125
6126 if (!sh) {
6127 /* failed to get a stripe - must wait */
46031f9a 6128 conf->retry_read_aligned = raid_bio;
0472a42b 6129 conf->retry_read_offset = scnt;
46031f9a
RBJ
6130 return handled;
6131 }
6132
da41ba65 6133 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 6134 raid5_release_stripe(sh);
387bb173 6135 conf->retry_read_aligned = raid_bio;
0472a42b 6136 conf->retry_read_offset = scnt;
387bb173
NB
6137 return handled;
6138 }
6139
3f9e7c14 6140 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 6141 handle_stripe(sh);
6d036f7d 6142 raid5_release_stripe(sh);
46031f9a
RBJ
6143 handled++;
6144 }
016c76ac
N
6145
6146 bio_endio(raid_bio);
6147
46031f9a 6148 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 6149 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
6150 return handled;
6151}
6152
bfc90cb0 6153static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
6154 struct r5worker *worker,
6155 struct list_head *temp_inactive_list)
46a06401
SL
6156{
6157 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
6158 int i, batch_size = 0, hash;
6159 bool release_inactive = false;
46a06401
SL
6160
6161 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 6162 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
6163 batch[batch_size++] = sh;
6164
566c09c5
SL
6165 if (batch_size == 0) {
6166 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6167 if (!list_empty(temp_inactive_list + i))
6168 break;
a8c34f91
SL
6169 if (i == NR_STRIPE_HASH_LOCKS) {
6170 spin_unlock_irq(&conf->device_lock);
6171 r5l_flush_stripe_to_raid(conf->log);
6172 spin_lock_irq(&conf->device_lock);
566c09c5 6173 return batch_size;
a8c34f91 6174 }
566c09c5
SL
6175 release_inactive = true;
6176 }
46a06401
SL
6177 spin_unlock_irq(&conf->device_lock);
6178
566c09c5
SL
6179 release_inactive_stripe_list(conf, temp_inactive_list,
6180 NR_STRIPE_HASH_LOCKS);
6181
a8c34f91 6182 r5l_flush_stripe_to_raid(conf->log);
566c09c5
SL
6183 if (release_inactive) {
6184 spin_lock_irq(&conf->device_lock);
6185 return 0;
6186 }
6187
46a06401
SL
6188 for (i = 0; i < batch_size; i++)
6189 handle_stripe(batch[i]);
ff875738 6190 log_write_stripe_run(conf);
46a06401
SL
6191
6192 cond_resched();
6193
6194 spin_lock_irq(&conf->device_lock);
566c09c5
SL
6195 for (i = 0; i < batch_size; i++) {
6196 hash = batch[i]->hash_lock_index;
6197 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6198 }
46a06401
SL
6199 return batch_size;
6200}
46031f9a 6201
851c30c9
SL
6202static void raid5_do_work(struct work_struct *work)
6203{
6204 struct r5worker *worker = container_of(work, struct r5worker, work);
6205 struct r5worker_group *group = worker->group;
6206 struct r5conf *conf = group->conf;
16d997b7 6207 struct mddev *mddev = conf->mddev;
851c30c9
SL
6208 int group_id = group - conf->worker_groups;
6209 int handled;
6210 struct blk_plug plug;
6211
6212 pr_debug("+++ raid5worker active\n");
6213
6214 blk_start_plug(&plug);
6215 handled = 0;
6216 spin_lock_irq(&conf->device_lock);
6217 while (1) {
6218 int batch_size, released;
6219
566c09c5 6220 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 6221
566c09c5
SL
6222 batch_size = handle_active_stripes(conf, group_id, worker,
6223 worker->temp_inactive_list);
bfc90cb0 6224 worker->working = false;
851c30c9
SL
6225 if (!batch_size && !released)
6226 break;
6227 handled += batch_size;
16d997b7
N
6228 wait_event_lock_irq(mddev->sb_wait,
6229 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6230 conf->device_lock);
851c30c9
SL
6231 }
6232 pr_debug("%d stripes handled\n", handled);
6233
6234 spin_unlock_irq(&conf->device_lock);
7e96d559 6235
9c72a18e
SL
6236 flush_deferred_bios(conf);
6237
6238 r5l_flush_stripe_to_raid(conf->log);
6239
7e96d559 6240 async_tx_issue_pending_all();
851c30c9
SL
6241 blk_finish_plug(&plug);
6242
6243 pr_debug("--- raid5worker inactive\n");
6244}
6245
1da177e4
LT
6246/*
6247 * This is our raid5 kernel thread.
6248 *
6249 * We scan the hash table for stripes which can be handled now.
6250 * During the scan, completed stripes are saved for us by the interrupt
6251 * handler, so that they will not have to wait for our next wakeup.
6252 */
4ed8731d 6253static void raid5d(struct md_thread *thread)
1da177e4 6254{
4ed8731d 6255 struct mddev *mddev = thread->mddev;
d1688a6d 6256 struct r5conf *conf = mddev->private;
1da177e4 6257 int handled;
e1dfa0a2 6258 struct blk_plug plug;
1da177e4 6259
45b4233c 6260 pr_debug("+++ raid5d active\n");
1da177e4
LT
6261
6262 md_check_recovery(mddev);
1da177e4 6263
e1dfa0a2 6264 blk_start_plug(&plug);
1da177e4
LT
6265 handled = 0;
6266 spin_lock_irq(&conf->device_lock);
6267 while (1) {
46031f9a 6268 struct bio *bio;
773ca82f 6269 int batch_size, released;
0472a42b 6270 unsigned int offset;
773ca82f 6271
566c09c5 6272 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
6273 if (released)
6274 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 6275
0021b7bc 6276 if (
7c13edc8
N
6277 !list_empty(&conf->bitmap_list)) {
6278 /* Now is a good time to flush some bitmap updates */
6279 conf->seq_flush++;
700e432d 6280 spin_unlock_irq(&conf->device_lock);
72626685 6281 bitmap_unplug(mddev->bitmap);
700e432d 6282 spin_lock_irq(&conf->device_lock);
7c13edc8 6283 conf->seq_write = conf->seq_flush;
566c09c5 6284 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 6285 }
0021b7bc 6286 raid5_activate_delayed(conf);
72626685 6287
0472a42b 6288 while ((bio = remove_bio_from_retry(conf, &offset))) {
46031f9a
RBJ
6289 int ok;
6290 spin_unlock_irq(&conf->device_lock);
0472a42b 6291 ok = retry_aligned_read(conf, bio, offset);
46031f9a
RBJ
6292 spin_lock_irq(&conf->device_lock);
6293 if (!ok)
6294 break;
6295 handled++;
6296 }
6297
566c09c5
SL
6298 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6299 conf->temp_inactive_list);
773ca82f 6300 if (!batch_size && !released)
1da177e4 6301 break;
46a06401 6302 handled += batch_size;
1da177e4 6303
2953079c 6304 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
46a06401 6305 spin_unlock_irq(&conf->device_lock);
de393cde 6306 md_check_recovery(mddev);
46a06401
SL
6307 spin_lock_irq(&conf->device_lock);
6308 }
1da177e4 6309 }
45b4233c 6310 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
6311
6312 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
6313 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6314 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
6315 grow_one_stripe(conf, __GFP_NOWARN);
6316 /* Set flag even if allocation failed. This helps
6317 * slow down allocation requests when mem is short
6318 */
6319 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 6320 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 6321 }
1da177e4 6322
765d704d
SL
6323 flush_deferred_bios(conf);
6324
0576b1c6
SL
6325 r5l_flush_stripe_to_raid(conf->log);
6326
c9f21aaf 6327 async_tx_issue_pending_all();
e1dfa0a2 6328 blk_finish_plug(&plug);
1da177e4 6329
45b4233c 6330 pr_debug("--- raid5d inactive\n");
1da177e4
LT
6331}
6332
3f294f4f 6333static ssize_t
fd01b88c 6334raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 6335{
7b1485ba
N
6336 struct r5conf *conf;
6337 int ret = 0;
6338 spin_lock(&mddev->lock);
6339 conf = mddev->private;
96de1e66 6340 if (conf)
edbe83ab 6341 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
6342 spin_unlock(&mddev->lock);
6343 return ret;
3f294f4f
N
6344}
6345
c41d4ac4 6346int
fd01b88c 6347raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 6348{
d1688a6d 6349 struct r5conf *conf = mddev->private;
b5470dc5 6350
c41d4ac4 6351 if (size <= 16 || size > 32768)
3f294f4f 6352 return -EINVAL;
486f0644 6353
edbe83ab 6354 conf->min_nr_stripes = size;
2d5b569b 6355 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6356 while (size < conf->max_nr_stripes &&
6357 drop_one_stripe(conf))
6358 ;
2d5b569b 6359 mutex_unlock(&conf->cache_size_mutex);
486f0644 6360
2214c260 6361 md_allow_write(mddev);
486f0644 6362
2d5b569b 6363 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6364 while (size > conf->max_nr_stripes)
6365 if (!grow_one_stripe(conf, GFP_KERNEL))
6366 break;
2d5b569b 6367 mutex_unlock(&conf->cache_size_mutex);
486f0644 6368
c41d4ac4
N
6369 return 0;
6370}
6371EXPORT_SYMBOL(raid5_set_cache_size);
6372
6373static ssize_t
fd01b88c 6374raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 6375{
6791875e 6376 struct r5conf *conf;
c41d4ac4
N
6377 unsigned long new;
6378 int err;
6379
6380 if (len >= PAGE_SIZE)
6381 return -EINVAL;
b29bebd6 6382 if (kstrtoul(page, 10, &new))
c41d4ac4 6383 return -EINVAL;
6791875e 6384 err = mddev_lock(mddev);
c41d4ac4
N
6385 if (err)
6386 return err;
6791875e
N
6387 conf = mddev->private;
6388 if (!conf)
6389 err = -ENODEV;
6390 else
6391 err = raid5_set_cache_size(mddev, new);
6392 mddev_unlock(mddev);
6393
6394 return err ?: len;
3f294f4f 6395}
007583c9 6396
96de1e66
N
6397static struct md_sysfs_entry
6398raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6399 raid5_show_stripe_cache_size,
6400 raid5_store_stripe_cache_size);
3f294f4f 6401
d06f191f
MS
6402static ssize_t
6403raid5_show_rmw_level(struct mddev *mddev, char *page)
6404{
6405 struct r5conf *conf = mddev->private;
6406 if (conf)
6407 return sprintf(page, "%d\n", conf->rmw_level);
6408 else
6409 return 0;
6410}
6411
6412static ssize_t
6413raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6414{
6415 struct r5conf *conf = mddev->private;
6416 unsigned long new;
6417
6418 if (!conf)
6419 return -ENODEV;
6420
6421 if (len >= PAGE_SIZE)
6422 return -EINVAL;
6423
6424 if (kstrtoul(page, 10, &new))
6425 return -EINVAL;
6426
6427 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6428 return -EINVAL;
6429
6430 if (new != PARITY_DISABLE_RMW &&
6431 new != PARITY_ENABLE_RMW &&
6432 new != PARITY_PREFER_RMW)
6433 return -EINVAL;
6434
6435 conf->rmw_level = new;
6436 return len;
6437}
6438
6439static struct md_sysfs_entry
6440raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6441 raid5_show_rmw_level,
6442 raid5_store_rmw_level);
6443
6444
8b3e6cdc 6445static ssize_t
fd01b88c 6446raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 6447{
7b1485ba
N
6448 struct r5conf *conf;
6449 int ret = 0;
6450 spin_lock(&mddev->lock);
6451 conf = mddev->private;
8b3e6cdc 6452 if (conf)
7b1485ba
N
6453 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6454 spin_unlock(&mddev->lock);
6455 return ret;
8b3e6cdc
DW
6456}
6457
6458static ssize_t
fd01b88c 6459raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6460{
6791875e 6461 struct r5conf *conf;
4ef197d8 6462 unsigned long new;
6791875e
N
6463 int err;
6464
8b3e6cdc
DW
6465 if (len >= PAGE_SIZE)
6466 return -EINVAL;
b29bebd6 6467 if (kstrtoul(page, 10, &new))
8b3e6cdc 6468 return -EINVAL;
6791875e
N
6469
6470 err = mddev_lock(mddev);
6471 if (err)
6472 return err;
6473 conf = mddev->private;
6474 if (!conf)
6475 err = -ENODEV;
edbe83ab 6476 else if (new > conf->min_nr_stripes)
6791875e
N
6477 err = -EINVAL;
6478 else
6479 conf->bypass_threshold = new;
6480 mddev_unlock(mddev);
6481 return err ?: len;
8b3e6cdc
DW
6482}
6483
6484static struct md_sysfs_entry
6485raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6486 S_IRUGO | S_IWUSR,
6487 raid5_show_preread_threshold,
6488 raid5_store_preread_threshold);
6489
d592a996
SL
6490static ssize_t
6491raid5_show_skip_copy(struct mddev *mddev, char *page)
6492{
7b1485ba
N
6493 struct r5conf *conf;
6494 int ret = 0;
6495 spin_lock(&mddev->lock);
6496 conf = mddev->private;
d592a996 6497 if (conf)
7b1485ba
N
6498 ret = sprintf(page, "%d\n", conf->skip_copy);
6499 spin_unlock(&mddev->lock);
6500 return ret;
d592a996
SL
6501}
6502
6503static ssize_t
6504raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6505{
6791875e 6506 struct r5conf *conf;
d592a996 6507 unsigned long new;
6791875e
N
6508 int err;
6509
d592a996
SL
6510 if (len >= PAGE_SIZE)
6511 return -EINVAL;
d592a996
SL
6512 if (kstrtoul(page, 10, &new))
6513 return -EINVAL;
6514 new = !!new;
6791875e
N
6515
6516 err = mddev_lock(mddev);
6517 if (err)
6518 return err;
6519 conf = mddev->private;
6520 if (!conf)
6521 err = -ENODEV;
6522 else if (new != conf->skip_copy) {
6523 mddev_suspend(mddev);
6524 conf->skip_copy = new;
6525 if (new)
dc3b17cc 6526 mddev->queue->backing_dev_info->capabilities |=
6791875e
N
6527 BDI_CAP_STABLE_WRITES;
6528 else
dc3b17cc 6529 mddev->queue->backing_dev_info->capabilities &=
6791875e
N
6530 ~BDI_CAP_STABLE_WRITES;
6531 mddev_resume(mddev);
6532 }
6533 mddev_unlock(mddev);
6534 return err ?: len;
d592a996
SL
6535}
6536
6537static struct md_sysfs_entry
6538raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6539 raid5_show_skip_copy,
6540 raid5_store_skip_copy);
6541
3f294f4f 6542static ssize_t
fd01b88c 6543stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6544{
d1688a6d 6545 struct r5conf *conf = mddev->private;
96de1e66
N
6546 if (conf)
6547 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6548 else
6549 return 0;
3f294f4f
N
6550}
6551
96de1e66
N
6552static struct md_sysfs_entry
6553raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6554
b721420e
SL
6555static ssize_t
6556raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6557{
7b1485ba
N
6558 struct r5conf *conf;
6559 int ret = 0;
6560 spin_lock(&mddev->lock);
6561 conf = mddev->private;
b721420e 6562 if (conf)
7b1485ba
N
6563 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6564 spin_unlock(&mddev->lock);
6565 return ret;
b721420e
SL
6566}
6567
60aaf933 6568static int alloc_thread_groups(struct r5conf *conf, int cnt,
6569 int *group_cnt,
6570 int *worker_cnt_per_group,
6571 struct r5worker_group **worker_groups);
b721420e
SL
6572static ssize_t
6573raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6574{
6791875e 6575 struct r5conf *conf;
7d5d7b50 6576 unsigned int new;
b721420e 6577 int err;
60aaf933 6578 struct r5worker_group *new_groups, *old_groups;
6579 int group_cnt, worker_cnt_per_group;
b721420e
SL
6580
6581 if (len >= PAGE_SIZE)
6582 return -EINVAL;
7d5d7b50
SL
6583 if (kstrtouint(page, 10, &new))
6584 return -EINVAL;
6585 /* 8192 should be big enough */
6586 if (new > 8192)
b721420e
SL
6587 return -EINVAL;
6588
6791875e
N
6589 err = mddev_lock(mddev);
6590 if (err)
6591 return err;
6592 conf = mddev->private;
6593 if (!conf)
6594 err = -ENODEV;
6595 else if (new != conf->worker_cnt_per_group) {
6596 mddev_suspend(mddev);
b721420e 6597
6791875e
N
6598 old_groups = conf->worker_groups;
6599 if (old_groups)
6600 flush_workqueue(raid5_wq);
d206dcfa 6601
6791875e
N
6602 err = alloc_thread_groups(conf, new,
6603 &group_cnt, &worker_cnt_per_group,
6604 &new_groups);
6605 if (!err) {
6606 spin_lock_irq(&conf->device_lock);
6607 conf->group_cnt = group_cnt;
6608 conf->worker_cnt_per_group = worker_cnt_per_group;
6609 conf->worker_groups = new_groups;
6610 spin_unlock_irq(&conf->device_lock);
b721420e 6611
6791875e
N
6612 if (old_groups)
6613 kfree(old_groups[0].workers);
6614 kfree(old_groups);
6615 }
6616 mddev_resume(mddev);
b721420e 6617 }
6791875e 6618 mddev_unlock(mddev);
b721420e 6619
6791875e 6620 return err ?: len;
b721420e
SL
6621}
6622
6623static struct md_sysfs_entry
6624raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6625 raid5_show_group_thread_cnt,
6626 raid5_store_group_thread_cnt);
6627
007583c9 6628static struct attribute *raid5_attrs[] = {
3f294f4f
N
6629 &raid5_stripecache_size.attr,
6630 &raid5_stripecache_active.attr,
8b3e6cdc 6631 &raid5_preread_bypass_threshold.attr,
b721420e 6632 &raid5_group_thread_cnt.attr,
d592a996 6633 &raid5_skip_copy.attr,
d06f191f 6634 &raid5_rmw_level.attr,
2c7da14b 6635 &r5c_journal_mode.attr,
3f294f4f
N
6636 NULL,
6637};
007583c9
N
6638static struct attribute_group raid5_attrs_group = {
6639 .name = NULL,
6640 .attrs = raid5_attrs,
3f294f4f
N
6641};
6642
60aaf933 6643static int alloc_thread_groups(struct r5conf *conf, int cnt,
6644 int *group_cnt,
6645 int *worker_cnt_per_group,
6646 struct r5worker_group **worker_groups)
851c30c9 6647{
566c09c5 6648 int i, j, k;
851c30c9
SL
6649 ssize_t size;
6650 struct r5worker *workers;
6651
60aaf933 6652 *worker_cnt_per_group = cnt;
851c30c9 6653 if (cnt == 0) {
60aaf933 6654 *group_cnt = 0;
6655 *worker_groups = NULL;
851c30c9
SL
6656 return 0;
6657 }
60aaf933 6658 *group_cnt = num_possible_nodes();
851c30c9 6659 size = sizeof(struct r5worker) * cnt;
60aaf933 6660 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6661 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6662 *group_cnt, GFP_NOIO);
6663 if (!*worker_groups || !workers) {
851c30c9 6664 kfree(workers);
60aaf933 6665 kfree(*worker_groups);
851c30c9
SL
6666 return -ENOMEM;
6667 }
6668
60aaf933 6669 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6670 struct r5worker_group *group;
6671
0c775d52 6672 group = &(*worker_groups)[i];
851c30c9 6673 INIT_LIST_HEAD(&group->handle_list);
535ae4eb 6674 INIT_LIST_HEAD(&group->loprio_list);
851c30c9
SL
6675 group->conf = conf;
6676 group->workers = workers + i * cnt;
6677
6678 for (j = 0; j < cnt; j++) {
566c09c5
SL
6679 struct r5worker *worker = group->workers + j;
6680 worker->group = group;
6681 INIT_WORK(&worker->work, raid5_do_work);
6682
6683 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6684 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6685 }
6686 }
6687
6688 return 0;
6689}
6690
6691static void free_thread_groups(struct r5conf *conf)
6692{
6693 if (conf->worker_groups)
6694 kfree(conf->worker_groups[0].workers);
6695 kfree(conf->worker_groups);
6696 conf->worker_groups = NULL;
6697}
6698
80c3a6ce 6699static sector_t
fd01b88c 6700raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6701{
d1688a6d 6702 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6703
6704 if (!sectors)
6705 sectors = mddev->dev_sectors;
5e5e3e78 6706 if (!raid_disks)
7ec05478 6707 /* size is defined by the smallest of previous and new size */
5e5e3e78 6708 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6709
3cb5edf4
N
6710 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6711 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
6712 return sectors * (raid_disks - conf->max_degraded);
6713}
6714
789b5e03
ON
6715static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6716{
6717 safe_put_page(percpu->spare_page);
46d5b785 6718 if (percpu->scribble)
6719 flex_array_free(percpu->scribble);
789b5e03
ON
6720 percpu->spare_page = NULL;
6721 percpu->scribble = NULL;
6722}
6723
6724static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6725{
6726 if (conf->level == 6 && !percpu->spare_page)
6727 percpu->spare_page = alloc_page(GFP_KERNEL);
6728 if (!percpu->scribble)
46d5b785 6729 percpu->scribble = scribble_alloc(max(conf->raid_disks,
738a2738
N
6730 conf->previous_raid_disks),
6731 max(conf->chunk_sectors,
6732 conf->prev_chunk_sectors)
6733 / STRIPE_SECTORS,
6734 GFP_KERNEL);
789b5e03
ON
6735
6736 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6737 free_scratch_buffer(conf, percpu);
6738 return -ENOMEM;
6739 }
6740
6741 return 0;
6742}
6743
29c6d1bb 6744static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
36d1c647 6745{
29c6d1bb
SAS
6746 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6747
6748 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6749 return 0;
6750}
36d1c647 6751
29c6d1bb
SAS
6752static void raid5_free_percpu(struct r5conf *conf)
6753{
36d1c647
DW
6754 if (!conf->percpu)
6755 return;
6756
29c6d1bb 6757 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
36d1c647
DW
6758 free_percpu(conf->percpu);
6759}
6760
d1688a6d 6761static void free_conf(struct r5conf *conf)
95fc17aa 6762{
d7bd398e
SL
6763 int i;
6764
ff875738
AP
6765 log_exit(conf);
6766
30c89465 6767 if (conf->shrinker.nr_deferred)
edbe83ab 6768 unregister_shrinker(&conf->shrinker);
5c7e81c3 6769
851c30c9 6770 free_thread_groups(conf);
95fc17aa 6771 shrink_stripes(conf);
36d1c647 6772 raid5_free_percpu(conf);
d7bd398e
SL
6773 for (i = 0; i < conf->pool_size; i++)
6774 if (conf->disks[i].extra_page)
6775 put_page(conf->disks[i].extra_page);
95fc17aa 6776 kfree(conf->disks);
dd7a8f5d
N
6777 if (conf->bio_split)
6778 bioset_free(conf->bio_split);
95fc17aa 6779 kfree(conf->stripe_hashtbl);
aaf9f12e 6780 kfree(conf->pending_data);
95fc17aa
DW
6781 kfree(conf);
6782}
6783
29c6d1bb 6784static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
36d1c647 6785{
29c6d1bb 6786 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
36d1c647
DW
6787 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6788
29c6d1bb 6789 if (alloc_scratch_buffer(conf, percpu)) {
cc6167b4
N
6790 pr_warn("%s: failed memory allocation for cpu%u\n",
6791 __func__, cpu);
29c6d1bb 6792 return -ENOMEM;
36d1c647 6793 }
29c6d1bb 6794 return 0;
36d1c647 6795}
36d1c647 6796
d1688a6d 6797static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647 6798{
789b5e03 6799 int err = 0;
36d1c647 6800
789b5e03
ON
6801 conf->percpu = alloc_percpu(struct raid5_percpu);
6802 if (!conf->percpu)
36d1c647 6803 return -ENOMEM;
789b5e03 6804
29c6d1bb 6805 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
27a353c0
SL
6806 if (!err) {
6807 conf->scribble_disks = max(conf->raid_disks,
6808 conf->previous_raid_disks);
6809 conf->scribble_sectors = max(conf->chunk_sectors,
6810 conf->prev_chunk_sectors);
6811 }
36d1c647
DW
6812 return err;
6813}
6814
edbe83ab
N
6815static unsigned long raid5_cache_scan(struct shrinker *shrink,
6816 struct shrink_control *sc)
6817{
6818 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
6819 unsigned long ret = SHRINK_STOP;
6820
6821 if (mutex_trylock(&conf->cache_size_mutex)) {
6822 ret= 0;
49895bcc
N
6823 while (ret < sc->nr_to_scan &&
6824 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
6825 if (drop_one_stripe(conf) == 0) {
6826 ret = SHRINK_STOP;
6827 break;
6828 }
6829 ret++;
6830 }
6831 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
6832 }
6833 return ret;
6834}
6835
6836static unsigned long raid5_cache_count(struct shrinker *shrink,
6837 struct shrink_control *sc)
6838{
6839 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6840
6841 if (conf->max_nr_stripes < conf->min_nr_stripes)
6842 /* unlikely, but not impossible */
6843 return 0;
6844 return conf->max_nr_stripes - conf->min_nr_stripes;
6845}
6846
d1688a6d 6847static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6848{
d1688a6d 6849 struct r5conf *conf;
5e5e3e78 6850 int raid_disk, memory, max_disks;
3cb03002 6851 struct md_rdev *rdev;
1da177e4 6852 struct disk_info *disk;
0232605d 6853 char pers_name[6];
566c09c5 6854 int i;
60aaf933 6855 int group_cnt, worker_cnt_per_group;
6856 struct r5worker_group *new_group;
1da177e4 6857
91adb564
N
6858 if (mddev->new_level != 5
6859 && mddev->new_level != 4
6860 && mddev->new_level != 6) {
cc6167b4
N
6861 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6862 mdname(mddev), mddev->new_level);
91adb564 6863 return ERR_PTR(-EIO);
1da177e4 6864 }
91adb564
N
6865 if ((mddev->new_level == 5
6866 && !algorithm_valid_raid5(mddev->new_layout)) ||
6867 (mddev->new_level == 6
6868 && !algorithm_valid_raid6(mddev->new_layout))) {
cc6167b4
N
6869 pr_warn("md/raid:%s: layout %d not supported\n",
6870 mdname(mddev), mddev->new_layout);
91adb564 6871 return ERR_PTR(-EIO);
99c0fb5f 6872 }
91adb564 6873 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
cc6167b4
N
6874 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6875 mdname(mddev), mddev->raid_disks);
91adb564 6876 return ERR_PTR(-EINVAL);
4bbf3771
N
6877 }
6878
664e7c41
AN
6879 if (!mddev->new_chunk_sectors ||
6880 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6881 !is_power_of_2(mddev->new_chunk_sectors)) {
cc6167b4
N
6882 pr_warn("md/raid:%s: invalid chunk size %d\n",
6883 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6884 return ERR_PTR(-EINVAL);
f6705578
N
6885 }
6886
d1688a6d 6887 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6888 if (conf == NULL)
1da177e4 6889 goto abort;
aaf9f12e
SL
6890 INIT_LIST_HEAD(&conf->free_list);
6891 INIT_LIST_HEAD(&conf->pending_list);
6892 conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6893 PENDING_IO_MAX, GFP_KERNEL);
6894 if (!conf->pending_data)
6895 goto abort;
6896 for (i = 0; i < PENDING_IO_MAX; i++)
6897 list_add(&conf->pending_data[i].sibling, &conf->free_list);
851c30c9 6898 /* Don't enable multi-threading by default*/
60aaf933 6899 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6900 &new_group)) {
6901 conf->group_cnt = group_cnt;
6902 conf->worker_cnt_per_group = worker_cnt_per_group;
6903 conf->worker_groups = new_group;
6904 } else
851c30c9 6905 goto abort;
f5efd45a 6906 spin_lock_init(&conf->device_lock);
c46501b2 6907 seqcount_init(&conf->gen_lock);
2d5b569b 6908 mutex_init(&conf->cache_size_mutex);
b1b46486 6909 init_waitqueue_head(&conf->wait_for_quiescent);
6ab2a4b8 6910 init_waitqueue_head(&conf->wait_for_stripe);
f5efd45a
DW
6911 init_waitqueue_head(&conf->wait_for_overlap);
6912 INIT_LIST_HEAD(&conf->handle_list);
535ae4eb 6913 INIT_LIST_HEAD(&conf->loprio_list);
f5efd45a
DW
6914 INIT_LIST_HEAD(&conf->hold_list);
6915 INIT_LIST_HEAD(&conf->delayed_list);
6916 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 6917 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6918 atomic_set(&conf->active_stripes, 0);
6919 atomic_set(&conf->preread_active_stripes, 0);
6920 atomic_set(&conf->active_aligned_reads, 0);
765d704d
SL
6921 spin_lock_init(&conf->pending_bios_lock);
6922 conf->batch_bio_dispatch = true;
6923 rdev_for_each(rdev, mddev) {
6924 if (test_bit(Journal, &rdev->flags))
6925 continue;
6926 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6927 conf->batch_bio_dispatch = false;
6928 break;
6929 }
6930 }
6931
f5efd45a 6932 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6933 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6934
6935 conf->raid_disks = mddev->raid_disks;
6936 if (mddev->reshape_position == MaxSector)
6937 conf->previous_raid_disks = mddev->raid_disks;
6938 else
f6705578 6939 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6940 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6941
5e5e3e78 6942 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc 6943 GFP_KERNEL);
d7bd398e 6944
b55e6bfc
N
6945 if (!conf->disks)
6946 goto abort;
9ffae0cf 6947
d7bd398e
SL
6948 for (i = 0; i < max_disks; i++) {
6949 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6950 if (!conf->disks[i].extra_page)
6951 goto abort;
6952 }
6953
011067b0 6954 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
dd7a8f5d
N
6955 if (!conf->bio_split)
6956 goto abort;
1da177e4
LT
6957 conf->mddev = mddev;
6958
fccddba0 6959 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6960 goto abort;
1da177e4 6961
566c09c5
SL
6962 /* We init hash_locks[0] separately to that it can be used
6963 * as the reference lock in the spin_lock_nest_lock() call
6964 * in lock_all_device_hash_locks_irq in order to convince
6965 * lockdep that we know what we are doing.
6966 */
6967 spin_lock_init(conf->hash_locks);
6968 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6969 spin_lock_init(conf->hash_locks + i);
6970
6971 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6972 INIT_LIST_HEAD(conf->inactive_list + i);
6973
6974 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6975 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6976
1e6d690b
SL
6977 atomic_set(&conf->r5c_cached_full_stripes, 0);
6978 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6979 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6980 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
e33fbb9c
SL
6981 atomic_set(&conf->r5c_flushing_full_stripes, 0);
6982 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
1e6d690b 6983
36d1c647 6984 conf->level = mddev->new_level;
46d5b785 6985 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6986 if (raid5_alloc_percpu(conf) != 0)
6987 goto abort;
6988
0c55e022 6989 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6990
dafb20fa 6991 rdev_for_each(rdev, mddev) {
1da177e4 6992 raid_disk = rdev->raid_disk;
5e5e3e78 6993 if (raid_disk >= max_disks
f2076e7d 6994 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
1da177e4
LT
6995 continue;
6996 disk = conf->disks + raid_disk;
6997
17045f52
N
6998 if (test_bit(Replacement, &rdev->flags)) {
6999 if (disk->replacement)
7000 goto abort;
7001 disk->replacement = rdev;
7002 } else {
7003 if (disk->rdev)
7004 goto abort;
7005 disk->rdev = rdev;
7006 }
1da177e4 7007
b2d444d7 7008 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 7009 char b[BDEVNAME_SIZE];
cc6167b4
N
7010 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7011 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 7012 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
7013 /* Cannot rely on bitmap to complete recovery */
7014 conf->fullsync = 1;
1da177e4
LT
7015 }
7016
91adb564 7017 conf->level = mddev->new_level;
584acdd4 7018 if (conf->level == 6) {
16a53ecc 7019 conf->max_degraded = 2;
584acdd4
MS
7020 if (raid6_call.xor_syndrome)
7021 conf->rmw_level = PARITY_ENABLE_RMW;
7022 else
7023 conf->rmw_level = PARITY_DISABLE_RMW;
7024 } else {
16a53ecc 7025 conf->max_degraded = 1;
584acdd4
MS
7026 conf->rmw_level = PARITY_ENABLE_RMW;
7027 }
91adb564 7028 conf->algorithm = mddev->new_layout;
fef9c61f 7029 conf->reshape_progress = mddev->reshape_position;
e183eaed 7030 if (conf->reshape_progress != MaxSector) {
09c9e5fa 7031 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 7032 conf->prev_algo = mddev->layout;
5cac6bcb
N
7033 } else {
7034 conf->prev_chunk_sectors = conf->chunk_sectors;
7035 conf->prev_algo = conf->algorithm;
e183eaed 7036 }
1da177e4 7037
edbe83ab 7038 conf->min_nr_stripes = NR_STRIPES;
ad5b0f76
SL
7039 if (mddev->reshape_position != MaxSector) {
7040 int stripes = max_t(int,
7041 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7042 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7043 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7044 if (conf->min_nr_stripes != NR_STRIPES)
cc6167b4 7045 pr_info("md/raid:%s: force stripe size %d for reshape\n",
ad5b0f76
SL
7046 mdname(mddev), conf->min_nr_stripes);
7047 }
edbe83ab 7048 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 7049 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 7050 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 7051 if (grow_stripes(conf, conf->min_nr_stripes)) {
cc6167b4
N
7052 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7053 mdname(mddev), memory);
91adb564
N
7054 goto abort;
7055 } else
cc6167b4 7056 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
edbe83ab
N
7057 /*
7058 * Losing a stripe head costs more than the time to refill it,
7059 * it reduces the queue depth and so can hurt throughput.
7060 * So set it rather large, scaled by number of devices.
7061 */
7062 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7063 conf->shrinker.scan_objects = raid5_cache_scan;
7064 conf->shrinker.count_objects = raid5_cache_count;
7065 conf->shrinker.batch = 128;
7066 conf->shrinker.flags = 0;
6a0f53ff 7067 if (register_shrinker(&conf->shrinker)) {
cc6167b4
N
7068 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7069 mdname(mddev));
6a0f53ff
CY
7070 goto abort;
7071 }
1da177e4 7072
0232605d
N
7073 sprintf(pers_name, "raid%d", mddev->new_level);
7074 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564 7075 if (!conf->thread) {
cc6167b4
N
7076 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7077 mdname(mddev));
16a53ecc
N
7078 goto abort;
7079 }
91adb564
N
7080
7081 return conf;
7082
7083 abort:
7084 if (conf) {
95fc17aa 7085 free_conf(conf);
91adb564
N
7086 return ERR_PTR(-EIO);
7087 } else
7088 return ERR_PTR(-ENOMEM);
7089}
7090
c148ffdc
N
7091static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7092{
7093 switch (algo) {
7094 case ALGORITHM_PARITY_0:
7095 if (raid_disk < max_degraded)
7096 return 1;
7097 break;
7098 case ALGORITHM_PARITY_N:
7099 if (raid_disk >= raid_disks - max_degraded)
7100 return 1;
7101 break;
7102 case ALGORITHM_PARITY_0_6:
f72ffdd6 7103 if (raid_disk == 0 ||
c148ffdc
N
7104 raid_disk == raid_disks - 1)
7105 return 1;
7106 break;
7107 case ALGORITHM_LEFT_ASYMMETRIC_6:
7108 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7109 case ALGORITHM_LEFT_SYMMETRIC_6:
7110 case ALGORITHM_RIGHT_SYMMETRIC_6:
7111 if (raid_disk == raid_disks - 1)
7112 return 1;
7113 }
7114 return 0;
7115}
7116
849674e4 7117static int raid5_run(struct mddev *mddev)
91adb564 7118{
d1688a6d 7119 struct r5conf *conf;
9f7c2220 7120 int working_disks = 0;
c148ffdc 7121 int dirty_parity_disks = 0;
3cb03002 7122 struct md_rdev *rdev;
713cf5a6 7123 struct md_rdev *journal_dev = NULL;
c148ffdc 7124 sector_t reshape_offset = 0;
17045f52 7125 int i;
b5254dd5
N
7126 long long min_offset_diff = 0;
7127 int first = 1;
91adb564 7128
a415c0f1
N
7129 if (mddev_init_writes_pending(mddev) < 0)
7130 return -ENOMEM;
7131
8c6ac868 7132 if (mddev->recovery_cp != MaxSector)
cc6167b4
N
7133 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7134 mdname(mddev));
b5254dd5
N
7135
7136 rdev_for_each(rdev, mddev) {
7137 long long diff;
713cf5a6 7138
f2076e7d 7139 if (test_bit(Journal, &rdev->flags)) {
713cf5a6 7140 journal_dev = rdev;
f2076e7d
SL
7141 continue;
7142 }
b5254dd5
N
7143 if (rdev->raid_disk < 0)
7144 continue;
7145 diff = (rdev->new_data_offset - rdev->data_offset);
7146 if (first) {
7147 min_offset_diff = diff;
7148 first = 0;
7149 } else if (mddev->reshape_backwards &&
7150 diff < min_offset_diff)
7151 min_offset_diff = diff;
7152 else if (!mddev->reshape_backwards &&
7153 diff > min_offset_diff)
7154 min_offset_diff = diff;
7155 }
7156
230b55fa
N
7157 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7158 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7159 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7160 mdname(mddev));
7161 return -EINVAL;
7162 }
7163
91adb564
N
7164 if (mddev->reshape_position != MaxSector) {
7165 /* Check that we can continue the reshape.
b5254dd5
N
7166 * Difficulties arise if the stripe we would write to
7167 * next is at or after the stripe we would read from next.
7168 * For a reshape that changes the number of devices, this
7169 * is only possible for a very short time, and mdadm makes
7170 * sure that time appears to have past before assembling
7171 * the array. So we fail if that time hasn't passed.
7172 * For a reshape that keeps the number of devices the same
7173 * mdadm must be monitoring the reshape can keeping the
7174 * critical areas read-only and backed up. It will start
7175 * the array in read-only mode, so we check for that.
91adb564
N
7176 */
7177 sector_t here_new, here_old;
7178 int old_disks;
18b00334 7179 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
7180 int chunk_sectors;
7181 int new_data_disks;
91adb564 7182
713cf5a6 7183 if (journal_dev) {
cc6167b4
N
7184 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7185 mdname(mddev));
713cf5a6
SL
7186 return -EINVAL;
7187 }
7188
88ce4930 7189 if (mddev->new_level != mddev->level) {
cc6167b4
N
7190 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7191 mdname(mddev));
91adb564
N
7192 return -EINVAL;
7193 }
91adb564
N
7194 old_disks = mddev->raid_disks - mddev->delta_disks;
7195 /* reshape_position must be on a new-stripe boundary, and one
7196 * further up in new geometry must map after here in old
7197 * geometry.
05256d98
N
7198 * If the chunk sizes are different, then as we perform reshape
7199 * in units of the largest of the two, reshape_position needs
7200 * be a multiple of the largest chunk size times new data disks.
91adb564
N
7201 */
7202 here_new = mddev->reshape_position;
05256d98
N
7203 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7204 new_data_disks = mddev->raid_disks - max_degraded;
7205 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
cc6167b4
N
7206 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7207 mdname(mddev));
91adb564
N
7208 return -EINVAL;
7209 }
05256d98 7210 reshape_offset = here_new * chunk_sectors;
91adb564
N
7211 /* here_new is the stripe we will write to */
7212 here_old = mddev->reshape_position;
05256d98 7213 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
7214 /* here_old is the first stripe that we might need to read
7215 * from */
67ac6011
N
7216 if (mddev->delta_disks == 0) {
7217 /* We cannot be sure it is safe to start an in-place
b5254dd5 7218 * reshape. It is only safe if user-space is monitoring
67ac6011
N
7219 * and taking constant backups.
7220 * mdadm always starts a situation like this in
7221 * readonly mode so it can take control before
7222 * allowing any writes. So just check for that.
7223 */
b5254dd5
N
7224 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7225 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7226 /* not really in-place - so OK */;
7227 else if (mddev->ro == 0) {
cc6167b4
N
7228 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7229 mdname(mddev));
67ac6011
N
7230 return -EINVAL;
7231 }
2c810cdd 7232 } else if (mddev->reshape_backwards
05256d98
N
7233 ? (here_new * chunk_sectors + min_offset_diff <=
7234 here_old * chunk_sectors)
7235 : (here_new * chunk_sectors >=
7236 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 7237 /* Reading from the same stripe as writing to - bad */
cc6167b4
N
7238 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7239 mdname(mddev));
91adb564
N
7240 return -EINVAL;
7241 }
cc6167b4 7242 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
91adb564
N
7243 /* OK, we should be able to continue; */
7244 } else {
7245 BUG_ON(mddev->level != mddev->new_level);
7246 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 7247 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 7248 BUG_ON(mddev->delta_disks != 0);
1da177e4 7249 }
91adb564 7250
3418d036
AP
7251 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7252 test_bit(MD_HAS_PPL, &mddev->flags)) {
7253 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7254 mdname(mddev));
7255 clear_bit(MD_HAS_PPL, &mddev->flags);
ddc08823 7256 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
3418d036
AP
7257 }
7258
245f46c2
N
7259 if (mddev->private == NULL)
7260 conf = setup_conf(mddev);
7261 else
7262 conf = mddev->private;
7263
91adb564
N
7264 if (IS_ERR(conf))
7265 return PTR_ERR(conf);
7266
486b0f7b
SL
7267 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7268 if (!journal_dev) {
cc6167b4
N
7269 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7270 mdname(mddev));
486b0f7b
SL
7271 mddev->ro = 1;
7272 set_disk_ro(mddev->gendisk, 1);
7273 } else if (mddev->recovery_cp == MaxSector)
7274 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7dde2ad3
SL
7275 }
7276
b5254dd5 7277 conf->min_offset_diff = min_offset_diff;
91adb564
N
7278 mddev->thread = conf->thread;
7279 conf->thread = NULL;
7280 mddev->private = conf;
7281
17045f52
N
7282 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7283 i++) {
7284 rdev = conf->disks[i].rdev;
7285 if (!rdev && conf->disks[i].replacement) {
7286 /* The replacement is all we have yet */
7287 rdev = conf->disks[i].replacement;
7288 conf->disks[i].replacement = NULL;
7289 clear_bit(Replacement, &rdev->flags);
7290 conf->disks[i].rdev = rdev;
7291 }
7292 if (!rdev)
c148ffdc 7293 continue;
17045f52
N
7294 if (conf->disks[i].replacement &&
7295 conf->reshape_progress != MaxSector) {
7296 /* replacements and reshape simply do not mix. */
cc6167b4 7297 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
17045f52
N
7298 goto abort;
7299 }
2f115882 7300 if (test_bit(In_sync, &rdev->flags)) {
91adb564 7301 working_disks++;
2f115882
N
7302 continue;
7303 }
c148ffdc
N
7304 /* This disc is not fully in-sync. However if it
7305 * just stored parity (beyond the recovery_offset),
7306 * when we don't need to be concerned about the
7307 * array being dirty.
7308 * When reshape goes 'backwards', we never have
7309 * partially completed devices, so we only need
7310 * to worry about reshape going forwards.
7311 */
7312 /* Hack because v0.91 doesn't store recovery_offset properly. */
7313 if (mddev->major_version == 0 &&
7314 mddev->minor_version > 90)
7315 rdev->recovery_offset = reshape_offset;
5026d7a9 7316
c148ffdc
N
7317 if (rdev->recovery_offset < reshape_offset) {
7318 /* We need to check old and new layout */
7319 if (!only_parity(rdev->raid_disk,
7320 conf->algorithm,
7321 conf->raid_disks,
7322 conf->max_degraded))
7323 continue;
7324 }
7325 if (!only_parity(rdev->raid_disk,
7326 conf->prev_algo,
7327 conf->previous_raid_disks,
7328 conf->max_degraded))
7329 continue;
7330 dirty_parity_disks++;
7331 }
91adb564 7332
17045f52
N
7333 /*
7334 * 0 for a fully functional array, 1 or 2 for a degraded array.
7335 */
2e38a37f 7336 mddev->degraded = raid5_calc_degraded(conf);
91adb564 7337
674806d6 7338 if (has_failed(conf)) {
cc6167b4 7339 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
02c2de8c 7340 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
7341 goto abort;
7342 }
7343
91adb564 7344 /* device size must be a multiple of chunk size */
9d8f0363 7345 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
7346 mddev->resync_max_sectors = mddev->dev_sectors;
7347
c148ffdc 7348 if (mddev->degraded > dirty_parity_disks &&
1da177e4 7349 mddev->recovery_cp != MaxSector) {
4536bf9b
AP
7350 if (test_bit(MD_HAS_PPL, &mddev->flags))
7351 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7352 mdname(mddev));
7353 else if (mddev->ok_start_degraded)
cc6167b4
N
7354 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7355 mdname(mddev));
6ff8d8ec 7356 else {
cc6167b4
N
7357 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7358 mdname(mddev));
6ff8d8ec
N
7359 goto abort;
7360 }
1da177e4
LT
7361 }
7362
cc6167b4
N
7363 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7364 mdname(mddev), conf->level,
7365 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7366 mddev->new_layout);
1da177e4
LT
7367
7368 print_raid5_conf(conf);
7369
fef9c61f 7370 if (conf->reshape_progress != MaxSector) {
fef9c61f 7371 conf->reshape_safe = conf->reshape_progress;
f6705578
N
7372 atomic_set(&conf->reshape_stripes, 0);
7373 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7374 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7375 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7376 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7377 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7378 "reshape");
f6705578
N
7379 }
7380
1da177e4 7381 /* Ok, everything is just fine now */
a64c876f
N
7382 if (mddev->to_remove == &raid5_attrs_group)
7383 mddev->to_remove = NULL;
00bcb4ac
N
7384 else if (mddev->kobj.sd &&
7385 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
cc6167b4
N
7386 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7387 mdname(mddev));
4a5add49 7388 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 7389
4a5add49 7390 if (mddev->queue) {
9f7c2220 7391 int chunk_size;
4a5add49
N
7392 /* read-ahead size must cover two whole stripes, which
7393 * is 2 * (datadisks) * chunksize where 'n' is the
7394 * number of raid devices
7395 */
7396 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7397 int stripe = data_disks *
7398 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
dc3b17cc
JK
7399 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7400 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
91adb564 7401
9f7c2220
N
7402 chunk_size = mddev->chunk_sectors << 9;
7403 blk_queue_io_min(mddev->queue, chunk_size);
7404 blk_queue_io_opt(mddev->queue, chunk_size *
7405 (conf->raid_disks - conf->max_degraded));
c78afc62 7406 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
7407 /*
7408 * We can only discard a whole stripe. It doesn't make sense to
7409 * discard data disk but write parity disk
7410 */
7411 stripe = stripe * PAGE_SIZE;
4ac6875e
N
7412 /* Round up to power of 2, as discard handling
7413 * currently assumes that */
7414 while ((stripe-1) & stripe)
7415 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
7416 mddev->queue->limits.discard_alignment = stripe;
7417 mddev->queue->limits.discard_granularity = stripe;
e8d7c332 7418
5026d7a9 7419 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7 7420 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
5026d7a9 7421
05616be5 7422 rdev_for_each(rdev, mddev) {
9f7c2220
N
7423 disk_stack_limits(mddev->gendisk, rdev->bdev,
7424 rdev->data_offset << 9);
05616be5
N
7425 disk_stack_limits(mddev->gendisk, rdev->bdev,
7426 rdev->new_data_offset << 9);
7427 }
620125f2 7428
48920ff2
CH
7429 /*
7430 * zeroing is required, otherwise data
7431 * could be lost. Consider a scenario: discard a stripe
7432 * (the stripe could be inconsistent if
7433 * discard_zeroes_data is 0); write one disk of the
7434 * stripe (the stripe could be inconsistent again
7435 * depending on which disks are used to calculate
7436 * parity); the disk is broken; The stripe data of this
7437 * disk is lost.
7438 *
7439 * We only allow DISCARD if the sysadmin has confirmed that
7440 * only safe devices are in use by setting a module parameter.
7441 * A better idea might be to turn DISCARD into WRITE_ZEROES
7442 * requests, as that is required to be safe.
7443 */
7444 if (devices_handle_discard_safely &&
e7597e69
JS
7445 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7446 mddev->queue->limits.discard_granularity >= stripe)
620125f2
SL
7447 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7448 mddev->queue);
7449 else
7450 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7451 mddev->queue);
1dffdddd
SL
7452
7453 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
9f7c2220 7454 }
23032a0e 7455
845b9e22 7456 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
ff875738 7457 goto abort;
5c7e81c3 7458
1da177e4
LT
7459 return 0;
7460abort:
01f96c0a 7461 md_unregister_thread(&mddev->thread);
e4f869d9
N
7462 print_raid5_conf(conf);
7463 free_conf(conf);
1da177e4 7464 mddev->private = NULL;
cc6167b4 7465 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
7466 return -EIO;
7467}
7468
afa0f557 7469static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 7470{
afa0f557 7471 struct r5conf *conf = priv;
1da177e4 7472
95fc17aa 7473 free_conf(conf);
a64c876f 7474 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
7475}
7476
849674e4 7477static void raid5_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 7478{
d1688a6d 7479 struct r5conf *conf = mddev->private;
1da177e4
LT
7480 int i;
7481
9d8f0363 7482 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 7483 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 7484 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5fd13351
N
7485 rcu_read_lock();
7486 for (i = 0; i < conf->raid_disks; i++) {
7487 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7488 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7489 }
7490 rcu_read_unlock();
1da177e4 7491 seq_printf (seq, "]");
1da177e4
LT
7492}
7493
d1688a6d 7494static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
7495{
7496 int i;
7497 struct disk_info *tmp;
7498
cc6167b4 7499 pr_debug("RAID conf printout:\n");
1da177e4 7500 if (!conf) {
cc6167b4 7501 pr_debug("(conf==NULL)\n");
1da177e4
LT
7502 return;
7503 }
cc6167b4 7504 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
0c55e022
N
7505 conf->raid_disks,
7506 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
7507
7508 for (i = 0; i < conf->raid_disks; i++) {
7509 char b[BDEVNAME_SIZE];
7510 tmp = conf->disks + i;
7511 if (tmp->rdev)
cc6167b4 7512 pr_debug(" disk %d, o:%d, dev:%s\n",
0c55e022
N
7513 i, !test_bit(Faulty, &tmp->rdev->flags),
7514 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7515 }
7516}
7517
fd01b88c 7518static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7519{
7520 int i;
d1688a6d 7521 struct r5conf *conf = mddev->private;
1da177e4 7522 struct disk_info *tmp;
6b965620
N
7523 int count = 0;
7524 unsigned long flags;
1da177e4
LT
7525
7526 for (i = 0; i < conf->raid_disks; i++) {
7527 tmp = conf->disks + i;
dd054fce
N
7528 if (tmp->replacement
7529 && tmp->replacement->recovery_offset == MaxSector
7530 && !test_bit(Faulty, &tmp->replacement->flags)
7531 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7532 /* Replacement has just become active. */
7533 if (!tmp->rdev
7534 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7535 count++;
7536 if (tmp->rdev) {
7537 /* Replaced device not technically faulty,
7538 * but we need to be sure it gets removed
7539 * and never re-added.
7540 */
7541 set_bit(Faulty, &tmp->rdev->flags);
7542 sysfs_notify_dirent_safe(
7543 tmp->rdev->sysfs_state);
7544 }
7545 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7546 } else if (tmp->rdev
70fffd0b 7547 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7548 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7549 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7550 count++;
43c73ca4 7551 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7552 }
7553 }
6b965620 7554 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7555 mddev->degraded = raid5_calc_degraded(conf);
6b965620 7556 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7557 print_raid5_conf(conf);
6b965620 7558 return count;
1da177e4
LT
7559}
7560
b8321b68 7561static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7562{
d1688a6d 7563 struct r5conf *conf = mddev->private;
1da177e4 7564 int err = 0;
b8321b68 7565 int number = rdev->raid_disk;
657e3e4d 7566 struct md_rdev **rdevp;
1da177e4
LT
7567 struct disk_info *p = conf->disks + number;
7568
7569 print_raid5_conf(conf);
f6b6ec5c 7570 if (test_bit(Journal, &rdev->flags) && conf->log) {
c2bb6242 7571 /*
f6b6ec5c
SL
7572 * we can't wait pending write here, as this is called in
7573 * raid5d, wait will deadlock.
84dd97a6
N
7574 * neilb: there is no locking about new writes here,
7575 * so this cannot be safe.
c2bb6242 7576 */
70d466f7
SL
7577 if (atomic_read(&conf->active_stripes) ||
7578 atomic_read(&conf->r5c_cached_full_stripes) ||
7579 atomic_read(&conf->r5c_cached_partial_stripes)) {
f6b6ec5c 7580 return -EBUSY;
84dd97a6 7581 }
ff875738 7582 log_exit(conf);
f6b6ec5c 7583 return 0;
c2bb6242 7584 }
657e3e4d
N
7585 if (rdev == p->rdev)
7586 rdevp = &p->rdev;
7587 else if (rdev == p->replacement)
7588 rdevp = &p->replacement;
7589 else
7590 return 0;
7591
7592 if (number >= conf->raid_disks &&
7593 conf->reshape_progress == MaxSector)
7594 clear_bit(In_sync, &rdev->flags);
7595
7596 if (test_bit(In_sync, &rdev->flags) ||
7597 atomic_read(&rdev->nr_pending)) {
7598 err = -EBUSY;
7599 goto abort;
7600 }
7601 /* Only remove non-faulty devices if recovery
7602 * isn't possible.
7603 */
7604 if (!test_bit(Faulty, &rdev->flags) &&
7605 mddev->recovery_disabled != conf->recovery_disabled &&
7606 !has_failed(conf) &&
dd054fce 7607 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7608 number < conf->raid_disks) {
7609 err = -EBUSY;
7610 goto abort;
7611 }
7612 *rdevp = NULL;
d787be40
N
7613 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7614 synchronize_rcu();
7615 if (atomic_read(&rdev->nr_pending)) {
7616 /* lost the race, try later */
7617 err = -EBUSY;
7618 *rdevp = rdev;
7619 }
7620 }
6358c239
AP
7621 if (!err) {
7622 err = log_modify(conf, rdev, false);
7623 if (err)
7624 goto abort;
7625 }
d787be40 7626 if (p->replacement) {
dd054fce
N
7627 /* We must have just cleared 'rdev' */
7628 p->rdev = p->replacement;
7629 clear_bit(Replacement, &p->replacement->flags);
7630 smp_mb(); /* Make sure other CPUs may see both as identical
7631 * but will never see neither - if they are careful
7632 */
7633 p->replacement = NULL;
6358c239
AP
7634
7635 if (!err)
7636 err = log_modify(conf, p->rdev, true);
e5bc9c3c
GJ
7637 }
7638
7639 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7640abort:
7641
7642 print_raid5_conf(conf);
7643 return err;
7644}
7645
fd01b88c 7646static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7647{
d1688a6d 7648 struct r5conf *conf = mddev->private;
199050ea 7649 int err = -EEXIST;
1da177e4
LT
7650 int disk;
7651 struct disk_info *p;
6c2fce2e
NB
7652 int first = 0;
7653 int last = conf->raid_disks - 1;
1da177e4 7654
f6b6ec5c 7655 if (test_bit(Journal, &rdev->flags)) {
f6b6ec5c
SL
7656 if (conf->log)
7657 return -EBUSY;
7658
7659 rdev->raid_disk = 0;
7660 /*
7661 * The array is in readonly mode if journal is missing, so no
7662 * write requests running. We should be safe
7663 */
845b9e22 7664 log_init(conf, rdev, false);
f6b6ec5c
SL
7665 return 0;
7666 }
7f0da59b
N
7667 if (mddev->recovery_disabled == conf->recovery_disabled)
7668 return -EBUSY;
7669
dc10c643 7670 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7671 /* no point adding a device */
199050ea 7672 return -EINVAL;
1da177e4 7673
6c2fce2e
NB
7674 if (rdev->raid_disk >= 0)
7675 first = last = rdev->raid_disk;
1da177e4
LT
7676
7677 /*
16a53ecc
N
7678 * find the disk ... but prefer rdev->saved_raid_disk
7679 * if possible.
1da177e4 7680 */
16a53ecc 7681 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7682 rdev->saved_raid_disk >= first &&
16a53ecc 7683 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7684 first = rdev->saved_raid_disk;
7685
7686 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7687 p = conf->disks + disk;
7688 if (p->rdev == NULL) {
b2d444d7 7689 clear_bit(In_sync, &rdev->flags);
1da177e4 7690 rdev->raid_disk = disk;
72626685
N
7691 if (rdev->saved_raid_disk != disk)
7692 conf->fullsync = 1;
d6065f7b 7693 rcu_assign_pointer(p->rdev, rdev);
6358c239
AP
7694
7695 err = log_modify(conf, rdev, true);
7696
5cfb22a1 7697 goto out;
1da177e4 7698 }
5cfb22a1
N
7699 }
7700 for (disk = first; disk <= last; disk++) {
7701 p = conf->disks + disk;
7bfec5f3
N
7702 if (test_bit(WantReplacement, &p->rdev->flags) &&
7703 p->replacement == NULL) {
7704 clear_bit(In_sync, &rdev->flags);
7705 set_bit(Replacement, &rdev->flags);
7706 rdev->raid_disk = disk;
7707 err = 0;
7708 conf->fullsync = 1;
7709 rcu_assign_pointer(p->replacement, rdev);
7710 break;
7711 }
7712 }
5cfb22a1 7713out:
1da177e4 7714 print_raid5_conf(conf);
199050ea 7715 return err;
1da177e4
LT
7716}
7717
fd01b88c 7718static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7719{
7720 /* no resync is happening, and there is enough space
7721 * on all devices, so we can resize.
7722 * We need to make sure resync covers any new space.
7723 * If the array is shrinking we should possibly wait until
7724 * any io in the removed space completes, but it hardly seems
7725 * worth it.
7726 */
a4a6125a 7727 sector_t newsize;
3cb5edf4
N
7728 struct r5conf *conf = mddev->private;
7729
3418d036 7730 if (conf->log || raid5_has_ppl(conf))
713cf5a6 7731 return -EINVAL;
3cb5edf4 7732 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
7733 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7734 if (mddev->external_size &&
7735 mddev->array_sectors > newsize)
b522adcd 7736 return -EINVAL;
a4a6125a
N
7737 if (mddev->bitmap) {
7738 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7739 if (ret)
7740 return ret;
7741 }
7742 md_set_array_sectors(mddev, newsize);
b098636c
N
7743 if (sectors > mddev->dev_sectors &&
7744 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7745 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7746 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7747 }
58c0fed4 7748 mddev->dev_sectors = sectors;
4b5c7ae8 7749 mddev->resync_max_sectors = sectors;
1da177e4
LT
7750 return 0;
7751}
7752
fd01b88c 7753static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7754{
7755 /* Can only proceed if there are plenty of stripe_heads.
7756 * We need a minimum of one full stripe,, and for sensible progress
7757 * it is best to have about 4 times that.
7758 * If we require 4 times, then the default 256 4K stripe_heads will
7759 * allow for chunk sizes up to 256K, which is probably OK.
7760 * If the chunk size is greater, user-space should request more
7761 * stripe_heads first.
7762 */
d1688a6d 7763 struct r5conf *conf = mddev->private;
01ee22b4 7764 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7765 > conf->min_nr_stripes ||
01ee22b4 7766 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7767 > conf->min_nr_stripes) {
cc6167b4
N
7768 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7769 mdname(mddev),
7770 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7771 / STRIPE_SIZE)*4);
01ee22b4
N
7772 return 0;
7773 }
7774 return 1;
7775}
7776
fd01b88c 7777static int check_reshape(struct mddev *mddev)
29269553 7778{
d1688a6d 7779 struct r5conf *conf = mddev->private;
29269553 7780
3418d036 7781 if (conf->log || raid5_has_ppl(conf))
713cf5a6 7782 return -EINVAL;
88ce4930
N
7783 if (mddev->delta_disks == 0 &&
7784 mddev->new_layout == mddev->layout &&
664e7c41 7785 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7786 return 0; /* nothing to do */
674806d6 7787 if (has_failed(conf))
ec32a2bd 7788 return -EINVAL;
fdcfbbb6 7789 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7790 /* We might be able to shrink, but the devices must
7791 * be made bigger first.
7792 * For raid6, 4 is the minimum size.
7793 * Otherwise 2 is the minimum
7794 */
7795 int min = 2;
7796 if (mddev->level == 6)
7797 min = 4;
7798 if (mddev->raid_disks + mddev->delta_disks < min)
7799 return -EINVAL;
7800 }
29269553 7801
01ee22b4 7802 if (!check_stripe_cache(mddev))
29269553 7803 return -ENOSPC;
29269553 7804
738a2738
N
7805 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7806 mddev->delta_disks > 0)
7807 if (resize_chunks(conf,
7808 conf->previous_raid_disks
7809 + max(0, mddev->delta_disks),
7810 max(mddev->new_chunk_sectors,
7811 mddev->chunk_sectors)
7812 ) < 0)
7813 return -ENOMEM;
845b9e22
AP
7814
7815 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7816 return 0; /* never bother to shrink */
e56108d6
N
7817 return resize_stripes(conf, (conf->previous_raid_disks
7818 + mddev->delta_disks));
63c70c4f
N
7819}
7820
fd01b88c 7821static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7822{
d1688a6d 7823 struct r5conf *conf = mddev->private;
3cb03002 7824 struct md_rdev *rdev;
63c70c4f 7825 int spares = 0;
c04be0aa 7826 unsigned long flags;
63c70c4f 7827
f416885e 7828 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7829 return -EBUSY;
7830
01ee22b4
N
7831 if (!check_stripe_cache(mddev))
7832 return -ENOSPC;
7833
30b67645
N
7834 if (has_failed(conf))
7835 return -EINVAL;
7836
c6563a8c 7837 rdev_for_each(rdev, mddev) {
469518a3
N
7838 if (!test_bit(In_sync, &rdev->flags)
7839 && !test_bit(Faulty, &rdev->flags))
29269553 7840 spares++;
c6563a8c 7841 }
63c70c4f 7842
f416885e 7843 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7844 /* Not enough devices even to make a degraded array
7845 * of that size
7846 */
7847 return -EINVAL;
7848
ec32a2bd
N
7849 /* Refuse to reduce size of the array. Any reductions in
7850 * array size must be through explicit setting of array_size
7851 * attribute.
7852 */
7853 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7854 < mddev->array_sectors) {
cc6167b4
N
7855 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7856 mdname(mddev));
ec32a2bd
N
7857 return -EINVAL;
7858 }
7859
f6705578 7860 atomic_set(&conf->reshape_stripes, 0);
29269553 7861 spin_lock_irq(&conf->device_lock);
c46501b2 7862 write_seqcount_begin(&conf->gen_lock);
29269553 7863 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7864 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7865 conf->prev_chunk_sectors = conf->chunk_sectors;
7866 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7867 conf->prev_algo = conf->algorithm;
7868 conf->algorithm = mddev->new_layout;
05616be5
N
7869 conf->generation++;
7870 /* Code that selects data_offset needs to see the generation update
7871 * if reshape_progress has been set - so a memory barrier needed.
7872 */
7873 smp_mb();
2c810cdd 7874 if (mddev->reshape_backwards)
fef9c61f
N
7875 conf->reshape_progress = raid5_size(mddev, 0, 0);
7876 else
7877 conf->reshape_progress = 0;
7878 conf->reshape_safe = conf->reshape_progress;
c46501b2 7879 write_seqcount_end(&conf->gen_lock);
29269553
N
7880 spin_unlock_irq(&conf->device_lock);
7881
4d77e3ba
N
7882 /* Now make sure any requests that proceeded on the assumption
7883 * the reshape wasn't running - like Discard or Read - have
7884 * completed.
7885 */
7886 mddev_suspend(mddev);
7887 mddev_resume(mddev);
7888
29269553
N
7889 /* Add some new drives, as many as will fit.
7890 * We know there are enough to make the newly sized array work.
3424bf6a
N
7891 * Don't add devices if we are reducing the number of
7892 * devices in the array. This is because it is not possible
7893 * to correctly record the "partially reconstructed" state of
7894 * such devices during the reshape and confusion could result.
29269553 7895 */
87a8dec9 7896 if (mddev->delta_disks >= 0) {
dafb20fa 7897 rdev_for_each(rdev, mddev)
87a8dec9
N
7898 if (rdev->raid_disk < 0 &&
7899 !test_bit(Faulty, &rdev->flags)) {
7900 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7901 if (rdev->raid_disk
9d4c7d87 7902 >= conf->previous_raid_disks)
87a8dec9 7903 set_bit(In_sync, &rdev->flags);
9d4c7d87 7904 else
87a8dec9 7905 rdev->recovery_offset = 0;
36fad858
NK
7906
7907 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7908 /* Failure here is OK */;
50da0840 7909 }
87a8dec9
N
7910 } else if (rdev->raid_disk >= conf->previous_raid_disks
7911 && !test_bit(Faulty, &rdev->flags)) {
7912 /* This is a spare that was manually added */
7913 set_bit(In_sync, &rdev->flags);
87a8dec9 7914 }
29269553 7915
87a8dec9
N
7916 /* When a reshape changes the number of devices,
7917 * ->degraded is measured against the larger of the
7918 * pre and post number of devices.
7919 */
ec32a2bd 7920 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7921 mddev->degraded = raid5_calc_degraded(conf);
ec32a2bd
N
7922 spin_unlock_irqrestore(&conf->device_lock, flags);
7923 }
63c70c4f 7924 mddev->raid_disks = conf->raid_disks;
e516402c 7925 mddev->reshape_position = conf->reshape_progress;
2953079c 7926 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
f6705578 7927
29269553
N
7928 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7929 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 7930 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
7931 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7932 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7933 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7934 "reshape");
29269553
N
7935 if (!mddev->sync_thread) {
7936 mddev->recovery = 0;
7937 spin_lock_irq(&conf->device_lock);
ba8805b9 7938 write_seqcount_begin(&conf->gen_lock);
29269553 7939 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7940 mddev->new_chunk_sectors =
7941 conf->chunk_sectors = conf->prev_chunk_sectors;
7942 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7943 rdev_for_each(rdev, mddev)
7944 rdev->new_data_offset = rdev->data_offset;
7945 smp_wmb();
ba8805b9 7946 conf->generation --;
fef9c61f 7947 conf->reshape_progress = MaxSector;
1e3fa9bd 7948 mddev->reshape_position = MaxSector;
ba8805b9 7949 write_seqcount_end(&conf->gen_lock);
29269553
N
7950 spin_unlock_irq(&conf->device_lock);
7951 return -EAGAIN;
7952 }
c8f517c4 7953 conf->reshape_checkpoint = jiffies;
29269553
N
7954 md_wakeup_thread(mddev->sync_thread);
7955 md_new_event(mddev);
7956 return 0;
7957}
29269553 7958
ec32a2bd
N
7959/* This is called from the reshape thread and should make any
7960 * changes needed in 'conf'
7961 */
d1688a6d 7962static void end_reshape(struct r5conf *conf)
29269553 7963{
29269553 7964
f6705578 7965 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
db0505d3 7966 struct md_rdev *rdev;
f6705578 7967
f6705578 7968 spin_lock_irq(&conf->device_lock);
cea9c228 7969 conf->previous_raid_disks = conf->raid_disks;
b5d27718 7970 md_finish_reshape(conf->mddev);
05616be5 7971 smp_wmb();
fef9c61f 7972 conf->reshape_progress = MaxSector;
6cbd8148 7973 conf->mddev->reshape_position = MaxSector;
db0505d3
N
7974 rdev_for_each(rdev, conf->mddev)
7975 if (rdev->raid_disk >= 0 &&
7976 !test_bit(Journal, &rdev->flags) &&
7977 !test_bit(In_sync, &rdev->flags))
7978 rdev->recovery_offset = MaxSector;
f6705578 7979 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7980 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7981
7982 /* read-ahead size must cover two whole stripes, which is
7983 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7984 */
4a5add49 7985 if (conf->mddev->queue) {
cea9c228 7986 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7987 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7988 / PAGE_SIZE);
dc3b17cc
JK
7989 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7990 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
16a53ecc 7991 }
29269553 7992 }
29269553
N
7993}
7994
ec32a2bd
N
7995/* This is called from the raid5d thread with mddev_lock held.
7996 * It makes config changes to the device.
7997 */
fd01b88c 7998static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7999{
d1688a6d 8000 struct r5conf *conf = mddev->private;
cea9c228
N
8001
8002 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8003
ec32a2bd
N
8004 if (mddev->delta_disks > 0) {
8005 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
fe67d19a
HM
8006 if (mddev->queue) {
8007 set_capacity(mddev->gendisk, mddev->array_sectors);
8008 revalidate_disk(mddev->gendisk);
8009 }
ec32a2bd
N
8010 } else {
8011 int d;
908f4fbd 8012 spin_lock_irq(&conf->device_lock);
2e38a37f 8013 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd 8014 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
8015 for (d = conf->raid_disks ;
8016 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 8017 d++) {
3cb03002 8018 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
8019 if (rdev)
8020 clear_bit(In_sync, &rdev->flags);
8021 rdev = conf->disks[d].replacement;
8022 if (rdev)
8023 clear_bit(In_sync, &rdev->flags);
1a67dde0 8024 }
cea9c228 8025 }
88ce4930 8026 mddev->layout = conf->algorithm;
09c9e5fa 8027 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
8028 mddev->reshape_position = MaxSector;
8029 mddev->delta_disks = 0;
2c810cdd 8030 mddev->reshape_backwards = 0;
cea9c228
N
8031 }
8032}
8033
b03e0ccb 8034static void raid5_quiesce(struct mddev *mddev, int quiesce)
72626685 8035{
d1688a6d 8036 struct r5conf *conf = mddev->private;
72626685 8037
b03e0ccb
N
8038 if (quiesce) {
8039 /* stop all writes */
566c09c5 8040 lock_all_device_hash_locks_irq(conf);
64bd660b
N
8041 /* '2' tells resync/reshape to pause so that all
8042 * active stripes can drain
8043 */
a39f7afd 8044 r5c_flush_cache(conf, INT_MAX);
64bd660b 8045 conf->quiesce = 2;
b1b46486 8046 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
8047 atomic_read(&conf->active_stripes) == 0 &&
8048 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
8049 unlock_all_device_hash_locks_irq(conf),
8050 lock_all_device_hash_locks_irq(conf));
64bd660b 8051 conf->quiesce = 1;
566c09c5 8052 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
8053 /* allow reshape to continue */
8054 wake_up(&conf->wait_for_overlap);
b03e0ccb
N
8055 } else {
8056 /* re-enable writes */
566c09c5 8057 lock_all_device_hash_locks_irq(conf);
72626685 8058 conf->quiesce = 0;
b1b46486 8059 wake_up(&conf->wait_for_quiescent);
e464eafd 8060 wake_up(&conf->wait_for_overlap);
566c09c5 8061 unlock_all_device_hash_locks_irq(conf);
72626685 8062 }
b03e0ccb 8063 r5l_quiesce(conf->log, quiesce);
72626685 8064}
b15c2e57 8065
fd01b88c 8066static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 8067{
e373ab10 8068 struct r0conf *raid0_conf = mddev->private;
d76c8420 8069 sector_t sectors;
54071b38 8070
f1b29bca 8071 /* for raid0 takeover only one zone is supported */
e373ab10 8072 if (raid0_conf->nr_strip_zones > 1) {
cc6167b4
N
8073 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8074 mdname(mddev));
f1b29bca
DW
8075 return ERR_PTR(-EINVAL);
8076 }
8077
e373ab10
N
8078 sectors = raid0_conf->strip_zone[0].zone_end;
8079 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 8080 mddev->dev_sectors = sectors;
f1b29bca 8081 mddev->new_level = level;
54071b38
TM
8082 mddev->new_layout = ALGORITHM_PARITY_N;
8083 mddev->new_chunk_sectors = mddev->chunk_sectors;
8084 mddev->raid_disks += 1;
8085 mddev->delta_disks = 1;
8086 /* make sure it will be not marked as dirty */
8087 mddev->recovery_cp = MaxSector;
8088
8089 return setup_conf(mddev);
8090}
8091
fd01b88c 8092static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
8093{
8094 int chunksect;
6995f0b2 8095 void *ret;
d562b0c4
N
8096
8097 if (mddev->raid_disks != 2 ||
8098 mddev->degraded > 1)
8099 return ERR_PTR(-EINVAL);
8100
8101 /* Should check if there are write-behind devices? */
8102
8103 chunksect = 64*2; /* 64K by default */
8104
8105 /* The array must be an exact multiple of chunksize */
8106 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8107 chunksect >>= 1;
8108
8109 if ((chunksect<<9) < STRIPE_SIZE)
8110 /* array size does not allow a suitable chunk size */
8111 return ERR_PTR(-EINVAL);
8112
8113 mddev->new_level = 5;
8114 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 8115 mddev->new_chunk_sectors = chunksect;
d562b0c4 8116
6995f0b2 8117 ret = setup_conf(mddev);
32cd7cbb 8118 if (!IS_ERR(ret))
394ed8e4
SL
8119 mddev_clear_unsupported_flags(mddev,
8120 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 8121 return ret;
d562b0c4
N
8122}
8123
fd01b88c 8124static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
8125{
8126 int new_layout;
8127
8128 switch (mddev->layout) {
8129 case ALGORITHM_LEFT_ASYMMETRIC_6:
8130 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8131 break;
8132 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8133 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8134 break;
8135 case ALGORITHM_LEFT_SYMMETRIC_6:
8136 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8137 break;
8138 case ALGORITHM_RIGHT_SYMMETRIC_6:
8139 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8140 break;
8141 case ALGORITHM_PARITY_0_6:
8142 new_layout = ALGORITHM_PARITY_0;
8143 break;
8144 case ALGORITHM_PARITY_N:
8145 new_layout = ALGORITHM_PARITY_N;
8146 break;
8147 default:
8148 return ERR_PTR(-EINVAL);
8149 }
8150 mddev->new_level = 5;
8151 mddev->new_layout = new_layout;
8152 mddev->delta_disks = -1;
8153 mddev->raid_disks -= 1;
8154 return setup_conf(mddev);
8155}
8156
fd01b88c 8157static int raid5_check_reshape(struct mddev *mddev)
b3546035 8158{
88ce4930
N
8159 /* For a 2-drive array, the layout and chunk size can be changed
8160 * immediately as not restriping is needed.
8161 * For larger arrays we record the new value - after validation
8162 * to be used by a reshape pass.
b3546035 8163 */
d1688a6d 8164 struct r5conf *conf = mddev->private;
597a711b 8165 int new_chunk = mddev->new_chunk_sectors;
b3546035 8166
597a711b 8167 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
8168 return -EINVAL;
8169 if (new_chunk > 0) {
0ba459d2 8170 if (!is_power_of_2(new_chunk))
b3546035 8171 return -EINVAL;
597a711b 8172 if (new_chunk < (PAGE_SIZE>>9))
b3546035 8173 return -EINVAL;
597a711b 8174 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
8175 /* not factor of array size */
8176 return -EINVAL;
8177 }
8178
8179 /* They look valid */
8180
88ce4930 8181 if (mddev->raid_disks == 2) {
597a711b
N
8182 /* can make the change immediately */
8183 if (mddev->new_layout >= 0) {
8184 conf->algorithm = mddev->new_layout;
8185 mddev->layout = mddev->new_layout;
88ce4930
N
8186 }
8187 if (new_chunk > 0) {
597a711b
N
8188 conf->chunk_sectors = new_chunk ;
8189 mddev->chunk_sectors = new_chunk;
88ce4930 8190 }
2953079c 8191 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
88ce4930 8192 md_wakeup_thread(mddev->thread);
b3546035 8193 }
50ac168a 8194 return check_reshape(mddev);
88ce4930
N
8195}
8196
fd01b88c 8197static int raid6_check_reshape(struct mddev *mddev)
88ce4930 8198{
597a711b 8199 int new_chunk = mddev->new_chunk_sectors;
50ac168a 8200
597a711b 8201 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 8202 return -EINVAL;
b3546035 8203 if (new_chunk > 0) {
0ba459d2 8204 if (!is_power_of_2(new_chunk))
88ce4930 8205 return -EINVAL;
597a711b 8206 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 8207 return -EINVAL;
597a711b 8208 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
8209 /* not factor of array size */
8210 return -EINVAL;
b3546035 8211 }
88ce4930
N
8212
8213 /* They look valid */
50ac168a 8214 return check_reshape(mddev);
b3546035
N
8215}
8216
fd01b88c 8217static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
8218{
8219 /* raid5 can take over:
f1b29bca 8220 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
8221 * raid1 - if there are two drives. We need to know the chunk size
8222 * raid4 - trivial - just use a raid4 layout.
8223 * raid6 - Providing it is a *_6 layout
d562b0c4 8224 */
f1b29bca
DW
8225 if (mddev->level == 0)
8226 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
8227 if (mddev->level == 1)
8228 return raid5_takeover_raid1(mddev);
e9d4758f
N
8229 if (mddev->level == 4) {
8230 mddev->new_layout = ALGORITHM_PARITY_N;
8231 mddev->new_level = 5;
8232 return setup_conf(mddev);
8233 }
fc9739c6
N
8234 if (mddev->level == 6)
8235 return raid5_takeover_raid6(mddev);
d562b0c4
N
8236
8237 return ERR_PTR(-EINVAL);
8238}
8239
fd01b88c 8240static void *raid4_takeover(struct mddev *mddev)
a78d38a1 8241{
f1b29bca
DW
8242 /* raid4 can take over:
8243 * raid0 - if there is only one strip zone
8244 * raid5 - if layout is right
a78d38a1 8245 */
f1b29bca
DW
8246 if (mddev->level == 0)
8247 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
8248 if (mddev->level == 5 &&
8249 mddev->layout == ALGORITHM_PARITY_N) {
8250 mddev->new_layout = 0;
8251 mddev->new_level = 4;
8252 return setup_conf(mddev);
8253 }
8254 return ERR_PTR(-EINVAL);
8255}
d562b0c4 8256
84fc4b56 8257static struct md_personality raid5_personality;
245f46c2 8258
fd01b88c 8259static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
8260{
8261 /* Currently can only take over a raid5. We map the
8262 * personality to an equivalent raid6 personality
8263 * with the Q block at the end.
8264 */
8265 int new_layout;
8266
8267 if (mddev->pers != &raid5_personality)
8268 return ERR_PTR(-EINVAL);
8269 if (mddev->degraded > 1)
8270 return ERR_PTR(-EINVAL);
8271 if (mddev->raid_disks > 253)
8272 return ERR_PTR(-EINVAL);
8273 if (mddev->raid_disks < 3)
8274 return ERR_PTR(-EINVAL);
8275
8276 switch (mddev->layout) {
8277 case ALGORITHM_LEFT_ASYMMETRIC:
8278 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8279 break;
8280 case ALGORITHM_RIGHT_ASYMMETRIC:
8281 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8282 break;
8283 case ALGORITHM_LEFT_SYMMETRIC:
8284 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8285 break;
8286 case ALGORITHM_RIGHT_SYMMETRIC:
8287 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8288 break;
8289 case ALGORITHM_PARITY_0:
8290 new_layout = ALGORITHM_PARITY_0_6;
8291 break;
8292 case ALGORITHM_PARITY_N:
8293 new_layout = ALGORITHM_PARITY_N;
8294 break;
8295 default:
8296 return ERR_PTR(-EINVAL);
8297 }
8298 mddev->new_level = 6;
8299 mddev->new_layout = new_layout;
8300 mddev->delta_disks = 1;
8301 mddev->raid_disks += 1;
8302 return setup_conf(mddev);
8303}
8304
ba903a3e
AP
8305static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8306{
8307 struct r5conf *conf;
8308 int err;
8309
8310 err = mddev_lock(mddev);
8311 if (err)
8312 return err;
8313 conf = mddev->private;
8314 if (!conf) {
8315 mddev_unlock(mddev);
8316 return -ENODEV;
8317 }
8318
845b9e22 8319 if (strncmp(buf, "ppl", 3) == 0) {
0bb0c105 8320 /* ppl only works with RAID 5 */
845b9e22
AP
8321 if (!raid5_has_ppl(conf) && conf->level == 5) {
8322 err = log_init(conf, NULL, true);
8323 if (!err) {
8324 err = resize_stripes(conf, conf->pool_size);
8325 if (err)
8326 log_exit(conf);
8327 }
0bb0c105
SL
8328 } else
8329 err = -EINVAL;
8330 } else if (strncmp(buf, "resync", 6) == 0) {
8331 if (raid5_has_ppl(conf)) {
8332 mddev_suspend(mddev);
8333 log_exit(conf);
0bb0c105 8334 mddev_resume(mddev);
845b9e22 8335 err = resize_stripes(conf, conf->pool_size);
0bb0c105
SL
8336 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8337 r5l_log_disk_error(conf)) {
8338 bool journal_dev_exists = false;
8339 struct md_rdev *rdev;
8340
8341 rdev_for_each(rdev, mddev)
8342 if (test_bit(Journal, &rdev->flags)) {
8343 journal_dev_exists = true;
8344 break;
8345 }
8346
8347 if (!journal_dev_exists) {
8348 mddev_suspend(mddev);
8349 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8350 mddev_resume(mddev);
8351 } else /* need remove journal device first */
8352 err = -EBUSY;
8353 } else
8354 err = -EINVAL;
ba903a3e
AP
8355 } else {
8356 err = -EINVAL;
8357 }
8358
8359 if (!err)
8360 md_update_sb(mddev, 1);
8361
8362 mddev_unlock(mddev);
8363
8364 return err;
8365}
8366
84fc4b56 8367static struct md_personality raid6_personality =
16a53ecc
N
8368{
8369 .name = "raid6",
8370 .level = 6,
8371 .owner = THIS_MODULE,
849674e4
SL
8372 .make_request = raid5_make_request,
8373 .run = raid5_run,
afa0f557 8374 .free = raid5_free,
849674e4
SL
8375 .status = raid5_status,
8376 .error_handler = raid5_error,
16a53ecc
N
8377 .hot_add_disk = raid5_add_disk,
8378 .hot_remove_disk= raid5_remove_disk,
8379 .spare_active = raid5_spare_active,
849674e4 8380 .sync_request = raid5_sync_request,
16a53ecc 8381 .resize = raid5_resize,
80c3a6ce 8382 .size = raid5_size,
50ac168a 8383 .check_reshape = raid6_check_reshape,
f416885e 8384 .start_reshape = raid5_start_reshape,
cea9c228 8385 .finish_reshape = raid5_finish_reshape,
16a53ecc 8386 .quiesce = raid5_quiesce,
245f46c2 8387 .takeover = raid6_takeover,
5c675f83 8388 .congested = raid5_congested,
0bb0c105 8389 .change_consistency_policy = raid5_change_consistency_policy,
16a53ecc 8390};
84fc4b56 8391static struct md_personality raid5_personality =
1da177e4
LT
8392{
8393 .name = "raid5",
2604b703 8394 .level = 5,
1da177e4 8395 .owner = THIS_MODULE,
849674e4
SL
8396 .make_request = raid5_make_request,
8397 .run = raid5_run,
afa0f557 8398 .free = raid5_free,
849674e4
SL
8399 .status = raid5_status,
8400 .error_handler = raid5_error,
1da177e4
LT
8401 .hot_add_disk = raid5_add_disk,
8402 .hot_remove_disk= raid5_remove_disk,
8403 .spare_active = raid5_spare_active,
849674e4 8404 .sync_request = raid5_sync_request,
1da177e4 8405 .resize = raid5_resize,
80c3a6ce 8406 .size = raid5_size,
63c70c4f
N
8407 .check_reshape = raid5_check_reshape,
8408 .start_reshape = raid5_start_reshape,
cea9c228 8409 .finish_reshape = raid5_finish_reshape,
72626685 8410 .quiesce = raid5_quiesce,
d562b0c4 8411 .takeover = raid5_takeover,
5c675f83 8412 .congested = raid5_congested,
ba903a3e 8413 .change_consistency_policy = raid5_change_consistency_policy,
1da177e4
LT
8414};
8415
84fc4b56 8416static struct md_personality raid4_personality =
1da177e4 8417{
2604b703
N
8418 .name = "raid4",
8419 .level = 4,
8420 .owner = THIS_MODULE,
849674e4
SL
8421 .make_request = raid5_make_request,
8422 .run = raid5_run,
afa0f557 8423 .free = raid5_free,
849674e4
SL
8424 .status = raid5_status,
8425 .error_handler = raid5_error,
2604b703
N
8426 .hot_add_disk = raid5_add_disk,
8427 .hot_remove_disk= raid5_remove_disk,
8428 .spare_active = raid5_spare_active,
849674e4 8429 .sync_request = raid5_sync_request,
2604b703 8430 .resize = raid5_resize,
80c3a6ce 8431 .size = raid5_size,
3d37890b
N
8432 .check_reshape = raid5_check_reshape,
8433 .start_reshape = raid5_start_reshape,
cea9c228 8434 .finish_reshape = raid5_finish_reshape,
2604b703 8435 .quiesce = raid5_quiesce,
a78d38a1 8436 .takeover = raid4_takeover,
5c675f83 8437 .congested = raid5_congested,
0bb0c105 8438 .change_consistency_policy = raid5_change_consistency_policy,
2604b703
N
8439};
8440
8441static int __init raid5_init(void)
8442{
29c6d1bb
SAS
8443 int ret;
8444
851c30c9
SL
8445 raid5_wq = alloc_workqueue("raid5wq",
8446 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8447 if (!raid5_wq)
8448 return -ENOMEM;
29c6d1bb
SAS
8449
8450 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8451 "md/raid5:prepare",
8452 raid456_cpu_up_prepare,
8453 raid456_cpu_dead);
8454 if (ret) {
8455 destroy_workqueue(raid5_wq);
8456 return ret;
8457 }
16a53ecc 8458 register_md_personality(&raid6_personality);
2604b703
N
8459 register_md_personality(&raid5_personality);
8460 register_md_personality(&raid4_personality);
8461 return 0;
1da177e4
LT
8462}
8463
2604b703 8464static void raid5_exit(void)
1da177e4 8465{
16a53ecc 8466 unregister_md_personality(&raid6_personality);
2604b703
N
8467 unregister_md_personality(&raid5_personality);
8468 unregister_md_personality(&raid4_personality);
29c6d1bb 8469 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
851c30c9 8470 destroy_workqueue(raid5_wq);
1da177e4
LT
8471}
8472
8473module_init(raid5_init);
8474module_exit(raid5_exit);
8475MODULE_LICENSE("GPL");
0efb9e61 8476MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 8477MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
8478MODULE_ALIAS("md-raid5");
8479MODULE_ALIAS("md-raid4");
2604b703
N
8480MODULE_ALIAS("md-level-5");
8481MODULE_ALIAS("md-level-4");
16a53ecc
N
8482MODULE_ALIAS("md-personality-8"); /* RAID6 */
8483MODULE_ALIAS("md-raid6");
8484MODULE_ALIAS("md-level-6");
8485
8486/* This used to be two separate modules, they were: */
8487MODULE_ALIAS("raid5");
8488MODULE_ALIAS("raid6");