]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/md/raid5.c
md: add io accounting for raid0 and raid5
[mirror_ubuntu-jammy-kernel.git] / drivers / md / raid5.c
CommitLineData
af1a8899 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 6 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 7 *
16a53ecc
N
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
1da177e4
LT
11 */
12
ae3c20cc
N
13/*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 27 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
1da177e4 37
bff61975 38#include <linux/blkdev.h>
f6705578 39#include <linux/kthread.h>
f701d589 40#include <linux/raid/pq.h>
91c00924 41#include <linux/async_tx.h>
056075c7 42#include <linux/module.h>
07a3b417 43#include <linux/async.h>
bff61975 44#include <linux/seq_file.h>
36d1c647 45#include <linux/cpu.h>
5a0e3ad6 46#include <linux/slab.h>
8bda470e 47#include <linux/ratelimit.h>
851c30c9 48#include <linux/nodemask.h>
3f07c014 49
a9add5d9 50#include <trace/events/block.h>
aaf9f12e 51#include <linux/list_sort.h>
a9add5d9 52
43b2e5d8 53#include "md.h"
bff61975 54#include "raid5.h"
54071b38 55#include "raid0.h"
935fe098 56#include "md-bitmap.h"
ff875738 57#include "raid5-log.h"
72626685 58
394ed8e4
SL
59#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
60
851c30c9
SL
61#define cpu_to_group(cpu) cpu_to_node(cpu)
62#define ANY_GROUP NUMA_NO_NODE
63
8e0e99ba
N
64static bool devices_handle_discard_safely = false;
65module_param(devices_handle_discard_safely, bool, 0644);
66MODULE_PARM_DESC(devices_handle_discard_safely,
67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 68static struct workqueue_struct *raid5_wq;
1da177e4 69
d1688a6d 70static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19 71{
c911c46c 72 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
db298e19
N
73 return &conf->stripe_hashtbl[hash];
74}
1da177e4 75
c911c46c 76static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
566c09c5 77{
c911c46c 78 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
566c09c5
SL
79}
80
81static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82{
83 spin_lock_irq(conf->hash_locks + hash);
84 spin_lock(&conf->device_lock);
85}
86
87static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
88{
89 spin_unlock(&conf->device_lock);
90 spin_unlock_irq(conf->hash_locks + hash);
91}
92
93static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
94{
95 int i;
3d05f3ae 96 spin_lock_irq(conf->hash_locks);
566c09c5
SL
97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99 spin_lock(&conf->device_lock);
100}
101
102static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
103{
104 int i;
105 spin_unlock(&conf->device_lock);
3d05f3ae
JC
106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107 spin_unlock(conf->hash_locks + i);
108 spin_unlock_irq(conf->hash_locks);
566c09c5
SL
109}
110
d0dabf7e
N
111/* Find first data disk in a raid6 stripe */
112static inline int raid6_d0(struct stripe_head *sh)
113{
67cc2b81
N
114 if (sh->ddf_layout)
115 /* ddf always start from first device */
116 return 0;
117 /* md starts just after Q block */
d0dabf7e
N
118 if (sh->qd_idx == sh->disks - 1)
119 return 0;
120 else
121 return sh->qd_idx + 1;
122}
16a53ecc
N
123static inline int raid6_next_disk(int disk, int raid_disks)
124{
125 disk++;
126 return (disk < raid_disks) ? disk : 0;
127}
a4456856 128
d0dabf7e
N
129/* When walking through the disks in a raid5, starting at raid6_d0,
130 * We need to map each disk to a 'slot', where the data disks are slot
131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132 * is raid_disks-1. This help does that mapping.
133 */
67cc2b81
N
134static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135 int *count, int syndrome_disks)
d0dabf7e 136{
6629542e 137 int slot = *count;
67cc2b81 138
e4424fee 139 if (sh->ddf_layout)
6629542e 140 (*count)++;
d0dabf7e 141 if (idx == sh->pd_idx)
67cc2b81 142 return syndrome_disks;
d0dabf7e 143 if (idx == sh->qd_idx)
67cc2b81 144 return syndrome_disks + 1;
e4424fee 145 if (!sh->ddf_layout)
6629542e 146 (*count)++;
d0dabf7e
N
147 return slot;
148}
149
d1688a6d 150static void print_raid5_conf (struct r5conf *conf);
1da177e4 151
600aa109
DW
152static int stripe_operations_active(struct stripe_head *sh)
153{
154 return sh->check_state || sh->reconstruct_state ||
155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
157}
158
535ae4eb
SL
159static bool stripe_is_lowprio(struct stripe_head *sh)
160{
161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163 !test_bit(STRIPE_R5C_CACHING, &sh->state);
164}
165
851c30c9
SL
166static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
167{
168 struct r5conf *conf = sh->raid_conf;
169 struct r5worker_group *group;
bfc90cb0 170 int thread_cnt;
851c30c9
SL
171 int i, cpu = sh->cpu;
172
173 if (!cpu_online(cpu)) {
174 cpu = cpumask_any(cpu_online_mask);
175 sh->cpu = cpu;
176 }
177
178 if (list_empty(&sh->lru)) {
179 struct r5worker_group *group;
180 group = conf->worker_groups + cpu_to_group(cpu);
535ae4eb
SL
181 if (stripe_is_lowprio(sh))
182 list_add_tail(&sh->lru, &group->loprio_list);
183 else
184 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
185 group->stripes_cnt++;
186 sh->group = group;
851c30c9
SL
187 }
188
189 if (conf->worker_cnt_per_group == 0) {
190 md_wakeup_thread(conf->mddev->thread);
191 return;
192 }
193
194 group = conf->worker_groups + cpu_to_group(sh->cpu);
195
bfc90cb0
SL
196 group->workers[0].working = true;
197 /* at least one worker should run to avoid race */
198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
199
200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201 /* wakeup more workers */
202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203 if (group->workers[i].working == false) {
204 group->workers[i].working = true;
205 queue_work_on(sh->cpu, raid5_wq,
206 &group->workers[i].work);
207 thread_cnt--;
208 }
209 }
851c30c9
SL
210}
211
566c09c5
SL
212static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213 struct list_head *temp_inactive_list)
1da177e4 214{
1e6d690b
SL
215 int i;
216 int injournal = 0; /* number of date pages with R5_InJournal */
217
4eb788df
SL
218 BUG_ON(!list_empty(&sh->lru));
219 BUG_ON(atomic_read(&conf->active_stripes)==0);
1e6d690b
SL
220
221 if (r5c_is_writeback(conf->log))
222 for (i = sh->disks; i--; )
223 if (test_bit(R5_InJournal, &sh->dev[i].flags))
224 injournal++;
a39f7afd 225 /*
5ddf0440
SL
226 * In the following cases, the stripe cannot be released to cached
227 * lists. Therefore, we make the stripe write out and set
228 * STRIPE_HANDLE:
229 * 1. when quiesce in r5c write back;
230 * 2. when resync is requested fot the stripe.
a39f7afd 231 */
5ddf0440
SL
232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233 (conf->quiesce && r5c_is_writeback(conf->log) &&
234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
a39f7afd
SL
235 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236 r5c_make_stripe_write_out(sh);
237 set_bit(STRIPE_HANDLE, &sh->state);
238 }
1e6d690b 239
4eb788df
SL
240 if (test_bit(STRIPE_HANDLE, &sh->state)) {
241 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 243 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
245 sh->bm_seq - conf->seq_write > 0)
246 list_add_tail(&sh->lru, &conf->bitmap_list);
247 else {
248 clear_bit(STRIPE_DELAYED, &sh->state);
249 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9 250 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
251 if (stripe_is_lowprio(sh))
252 list_add_tail(&sh->lru,
253 &conf->loprio_list);
254 else
255 list_add_tail(&sh->lru,
256 &conf->handle_list);
851c30c9
SL
257 } else {
258 raid5_wakeup_stripe_thread(sh);
259 return;
260 }
4eb788df
SL
261 }
262 md_wakeup_thread(conf->mddev->thread);
263 } else {
264 BUG_ON(stripe_operations_active(sh));
265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266 if (atomic_dec_return(&conf->preread_active_stripes)
267 < IO_THRESHOLD)
268 md_wakeup_thread(conf->mddev->thread);
269 atomic_dec(&conf->active_stripes);
1e6d690b
SL
270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271 if (!r5c_is_writeback(conf->log))
272 list_add_tail(&sh->lru, temp_inactive_list);
273 else {
274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
275 if (injournal == 0)
276 list_add_tail(&sh->lru, temp_inactive_list);
277 else if (injournal == conf->raid_disks - conf->max_degraded) {
278 /* full stripe */
279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280 atomic_inc(&conf->r5c_cached_full_stripes);
281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282 atomic_dec(&conf->r5c_cached_partial_stripes);
283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
a39f7afd 284 r5c_check_cached_full_stripe(conf);
03b047f4
SL
285 } else
286 /*
287 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 * r5c_try_caching_write(). No need to
289 * set it again.
290 */
1e6d690b 291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
1e6d690b
SL
292 }
293 }
1da177e4
LT
294 }
295}
d0dabf7e 296
566c09c5
SL
297static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298 struct list_head *temp_inactive_list)
4eb788df
SL
299{
300 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
301 do_release_stripe(conf, sh, temp_inactive_list);
302}
303
304/*
305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
306 *
307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308 * given time. Adding stripes only takes device lock, while deleting stripes
309 * only takes hash lock.
310 */
311static void release_inactive_stripe_list(struct r5conf *conf,
312 struct list_head *temp_inactive_list,
313 int hash)
314{
315 int size;
6ab2a4b8 316 bool do_wakeup = false;
566c09c5
SL
317 unsigned long flags;
318
319 if (hash == NR_STRIPE_HASH_LOCKS) {
320 size = NR_STRIPE_HASH_LOCKS;
321 hash = NR_STRIPE_HASH_LOCKS - 1;
322 } else
323 size = 1;
324 while (size) {
325 struct list_head *list = &temp_inactive_list[size - 1];
326
327 /*
6d036f7d 328 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
329 * remove stripes from the list
330 */
331 if (!list_empty_careful(list)) {
332 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
333 if (list_empty(conf->inactive_list + hash) &&
334 !list_empty(list))
335 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 336 list_splice_tail_init(list, conf->inactive_list + hash);
6ab2a4b8 337 do_wakeup = true;
566c09c5
SL
338 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
339 }
340 size--;
341 hash--;
342 }
343
344 if (do_wakeup) {
6ab2a4b8 345 wake_up(&conf->wait_for_stripe);
b1b46486
YL
346 if (atomic_read(&conf->active_stripes) == 0)
347 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
348 if (conf->retry_read_aligned)
349 md_wakeup_thread(conf->mddev->thread);
350 }
4eb788df
SL
351}
352
773ca82f 353/* should hold conf->device_lock already */
566c09c5
SL
354static int release_stripe_list(struct r5conf *conf,
355 struct list_head *temp_inactive_list)
773ca82f 356{
eae8263f 357 struct stripe_head *sh, *t;
773ca82f
SL
358 int count = 0;
359 struct llist_node *head;
360
361 head = llist_del_all(&conf->released_stripes);
d265d9dc 362 head = llist_reverse_order(head);
eae8263f 363 llist_for_each_entry_safe(sh, t, head, release_list) {
566c09c5
SL
364 int hash;
365
773ca82f
SL
366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367 smp_mb();
368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
369 /*
370 * Don't worry the bit is set here, because if the bit is set
371 * again, the count is always > 1. This is true for
372 * STRIPE_ON_UNPLUG_LIST bit too.
373 */
566c09c5
SL
374 hash = sh->hash_lock_index;
375 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
376 count++;
377 }
378
379 return count;
380}
381
6d036f7d 382void raid5_release_stripe(struct stripe_head *sh)
1da177e4 383{
d1688a6d 384 struct r5conf *conf = sh->raid_conf;
1da177e4 385 unsigned long flags;
566c09c5
SL
386 struct list_head list;
387 int hash;
773ca82f 388 bool wakeup;
16a53ecc 389
cf170f3f
ES
390 /* Avoid release_list until the last reference.
391 */
392 if (atomic_add_unless(&sh->count, -1, 1))
393 return;
394
ad4068de 395 if (unlikely(!conf->mddev->thread) ||
396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
397 goto slow_path;
398 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
399 if (wakeup)
400 md_wakeup_thread(conf->mddev->thread);
401 return;
402slow_path:
773ca82f 403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
685dbcaa 404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
566c09c5
SL
405 INIT_LIST_HEAD(&list);
406 hash = sh->hash_lock_index;
407 do_release_stripe(conf, sh, &list);
08edaaa6 408 spin_unlock_irqrestore(&conf->device_lock, flags);
566c09c5 409 release_inactive_stripe_list(conf, &list, hash);
4eb788df 410 }
1da177e4
LT
411}
412
fccddba0 413static inline void remove_hash(struct stripe_head *sh)
1da177e4 414{
45b4233c
DW
415 pr_debug("remove_hash(), stripe %llu\n",
416 (unsigned long long)sh->sector);
1da177e4 417
fccddba0 418 hlist_del_init(&sh->hash);
1da177e4
LT
419}
420
d1688a6d 421static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 422{
fccddba0 423 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 424
45b4233c
DW
425 pr_debug("insert_hash(), stripe %llu\n",
426 (unsigned long long)sh->sector);
1da177e4 427
fccddba0 428 hlist_add_head(&sh->hash, hp);
1da177e4
LT
429}
430
1da177e4 431/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 432static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
433{
434 struct stripe_head *sh = NULL;
435 struct list_head *first;
436
566c09c5 437 if (list_empty(conf->inactive_list + hash))
1da177e4 438 goto out;
566c09c5 439 first = (conf->inactive_list + hash)->next;
1da177e4
LT
440 sh = list_entry(first, struct stripe_head, lru);
441 list_del_init(first);
442 remove_hash(sh);
443 atomic_inc(&conf->active_stripes);
566c09c5 444 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
445 if (list_empty(conf->inactive_list + hash))
446 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
447out:
448 return sh;
449}
450
046169f0
YY
451#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
452static void free_stripe_pages(struct stripe_head *sh)
1da177e4 453{
046169f0 454 int i;
1da177e4 455 struct page *p;
046169f0
YY
456
457 /* Have not allocate page pool */
458 if (!sh->pages)
459 return;
460
461 for (i = 0; i < sh->nr_pages; i++) {
462 p = sh->pages[i];
463 if (p)
464 put_page(p);
465 sh->pages[i] = NULL;
466 }
467}
468
469static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
470{
471 int i;
472 struct page *p;
473
474 for (i = 0; i < sh->nr_pages; i++) {
475 /* The page have allocated. */
476 if (sh->pages[i])
477 continue;
478
479 p = alloc_page(gfp);
480 if (!p) {
481 free_stripe_pages(sh);
482 return -ENOMEM;
483 }
484 sh->pages[i] = p;
485 }
486 return 0;
487}
488
489static int
490init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
491{
492 int nr_pages, cnt;
493
494 if (sh->pages)
495 return 0;
496
497 /* Each of the sh->dev[i] need one conf->stripe_size */
498 cnt = PAGE_SIZE / conf->stripe_size;
499 nr_pages = (disks + cnt - 1) / cnt;
500
501 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
502 if (!sh->pages)
503 return -ENOMEM;
504 sh->nr_pages = nr_pages;
505 sh->stripes_per_page = cnt;
506 return 0;
507}
508#endif
509
510static void shrink_buffers(struct stripe_head *sh)
511{
1da177e4 512 int i;
e4e11e38 513 int num = sh->raid_conf->pool_size;
1da177e4 514
046169f0 515#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
e4e11e38 516 for (i = 0; i < num ; i++) {
046169f0
YY
517 struct page *p;
518
d592a996 519 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
520 p = sh->dev[i].page;
521 if (!p)
522 continue;
523 sh->dev[i].page = NULL;
2d1f3b5d 524 put_page(p);
1da177e4 525 }
046169f0
YY
526#else
527 for (i = 0; i < num; i++)
528 sh->dev[i].page = NULL;
529 free_stripe_pages(sh); /* Free pages */
530#endif
1da177e4
LT
531}
532
a9683a79 533static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
534{
535 int i;
e4e11e38 536 int num = sh->raid_conf->pool_size;
1da177e4 537
046169f0 538#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
e4e11e38 539 for (i = 0; i < num; i++) {
1da177e4
LT
540 struct page *page;
541
a9683a79 542 if (!(page = alloc_page(gfp))) {
1da177e4
LT
543 return 1;
544 }
545 sh->dev[i].page = page;
d592a996 546 sh->dev[i].orig_page = page;
7aba13b7 547 sh->dev[i].offset = 0;
1da177e4 548 }
046169f0
YY
549#else
550 if (alloc_stripe_pages(sh, gfp))
551 return -ENOMEM;
3418d036 552
046169f0
YY
553 for (i = 0; i < num; i++) {
554 sh->dev[i].page = raid5_get_dev_page(sh, i);
555 sh->dev[i].orig_page = sh->dev[i].page;
556 sh->dev[i].offset = raid5_get_page_offset(sh, i);
557 }
558#endif
1da177e4
LT
559 return 0;
560}
561
d1688a6d 562static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 563 struct stripe_head *sh);
1da177e4 564
b5663ba4 565static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 566{
d1688a6d 567 struct r5conf *conf = sh->raid_conf;
566c09c5 568 int i, seq;
1da177e4 569
78bafebd
ES
570 BUG_ON(atomic_read(&sh->count) != 0);
571 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 572 BUG_ON(stripe_operations_active(sh));
59fc630b 573 BUG_ON(sh->batch_head);
d84e0f10 574
45b4233c 575 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 576 (unsigned long long)sector);
566c09c5
SL
577retry:
578 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 579 sh->generation = conf->generation - previous;
b5663ba4 580 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 581 sh->sector = sector;
911d4ee8 582 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
583 sh->state = 0;
584
7ecaa1e6 585 for (i = sh->disks; i--; ) {
1da177e4
LT
586 struct r5dev *dev = &sh->dev[i];
587
d84e0f10 588 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 589 test_bit(R5_LOCKED, &dev->flags)) {
cc6167b4 590 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 591 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 592 dev->read, dev->towrite, dev->written,
1da177e4 593 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 594 WARN_ON(1);
1da177e4
LT
595 }
596 dev->flags = 0;
27a4ff8f 597 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4 598 }
566c09c5
SL
599 if (read_seqcount_retry(&conf->gen_lock, seq))
600 goto retry;
7a87f434 601 sh->overwrite_disks = 0;
1da177e4 602 insert_hash(conf, sh);
851c30c9 603 sh->cpu = smp_processor_id();
da41ba65 604 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
605}
606
d1688a6d 607static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 608 short generation)
1da177e4
LT
609{
610 struct stripe_head *sh;
611
45b4233c 612 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 613 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 614 if (sh->sector == sector && sh->generation == generation)
1da177e4 615 return sh;
45b4233c 616 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
617 return NULL;
618}
619
674806d6
N
620/*
621 * Need to check if array has failed when deciding whether to:
622 * - start an array
623 * - remove non-faulty devices
624 * - add a spare
625 * - allow a reshape
626 * This determination is simple when no reshape is happening.
627 * However if there is a reshape, we need to carefully check
628 * both the before and after sections.
629 * This is because some failed devices may only affect one
630 * of the two sections, and some non-in_sync devices may
631 * be insync in the section most affected by failed devices.
632 */
2e38a37f 633int raid5_calc_degraded(struct r5conf *conf)
674806d6 634{
908f4fbd 635 int degraded, degraded2;
674806d6 636 int i;
674806d6
N
637
638 rcu_read_lock();
639 degraded = 0;
640 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 641 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
642 if (rdev && test_bit(Faulty, &rdev->flags))
643 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
644 if (!rdev || test_bit(Faulty, &rdev->flags))
645 degraded++;
646 else if (test_bit(In_sync, &rdev->flags))
647 ;
648 else
649 /* not in-sync or faulty.
650 * If the reshape increases the number of devices,
651 * this is being recovered by the reshape, so
652 * this 'previous' section is not in_sync.
653 * If the number of devices is being reduced however,
654 * the device can only be part of the array if
655 * we are reverting a reshape, so this section will
656 * be in-sync.
657 */
658 if (conf->raid_disks >= conf->previous_raid_disks)
659 degraded++;
660 }
661 rcu_read_unlock();
908f4fbd
N
662 if (conf->raid_disks == conf->previous_raid_disks)
663 return degraded;
674806d6 664 rcu_read_lock();
908f4fbd 665 degraded2 = 0;
674806d6 666 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 667 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
668 if (rdev && test_bit(Faulty, &rdev->flags))
669 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 670 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 671 degraded2++;
674806d6
N
672 else if (test_bit(In_sync, &rdev->flags))
673 ;
674 else
675 /* not in-sync or faulty.
676 * If reshape increases the number of devices, this
677 * section has already been recovered, else it
678 * almost certainly hasn't.
679 */
680 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 681 degraded2++;
674806d6
N
682 }
683 rcu_read_unlock();
908f4fbd
N
684 if (degraded2 > degraded)
685 return degraded2;
686 return degraded;
687}
688
689static int has_failed(struct r5conf *conf)
690{
691 int degraded;
692
693 if (conf->mddev->reshape_position == MaxSector)
694 return conf->mddev->degraded > conf->max_degraded;
695
2e38a37f 696 degraded = raid5_calc_degraded(conf);
674806d6
N
697 if (degraded > conf->max_degraded)
698 return 1;
699 return 0;
700}
701
6d036f7d
SL
702struct stripe_head *
703raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
704 int previous, int noblock, int noquiesce)
1da177e4
LT
705{
706 struct stripe_head *sh;
c911c46c 707 int hash = stripe_hash_locks_hash(conf, sector);
ff00d3b4 708 int inc_empty_inactive_list_flag;
1da177e4 709
45b4233c 710 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 711
566c09c5 712 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
713
714 do {
b1b46486 715 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 716 conf->quiesce == 0 || noquiesce,
566c09c5 717 *(conf->hash_locks + hash));
86b42c71 718 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 719 if (!sh) {
edbe83ab 720 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 721 sh = get_free_stripe(conf, hash);
713bc5c2
SL
722 if (!sh && !test_bit(R5_DID_ALLOC,
723 &conf->cache_state))
edbe83ab
N
724 set_bit(R5_ALLOC_MORE,
725 &conf->cache_state);
726 }
1da177e4
LT
727 if (noblock && sh == NULL)
728 break;
a39f7afd
SL
729
730 r5c_check_stripe_cache_usage(conf);
1da177e4 731 if (!sh) {
5423399a
N
732 set_bit(R5_INACTIVE_BLOCKED,
733 &conf->cache_state);
a39f7afd 734 r5l_wake_reclaim(conf->log, 0);
6ab2a4b8
SL
735 wait_event_lock_irq(
736 conf->wait_for_stripe,
566c09c5
SL
737 !list_empty(conf->inactive_list + hash) &&
738 (atomic_read(&conf->active_stripes)
739 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
740 || !test_bit(R5_INACTIVE_BLOCKED,
741 &conf->cache_state)),
6ab2a4b8 742 *(conf->hash_locks + hash));
5423399a
N
743 clear_bit(R5_INACTIVE_BLOCKED,
744 &conf->cache_state);
7da9d450 745 } else {
b5663ba4 746 init_stripe(sh, sector, previous);
7da9d450
N
747 atomic_inc(&sh->count);
748 }
e240c183 749 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 750 spin_lock(&conf->device_lock);
e240c183 751 if (!atomic_read(&sh->count)) {
1da177e4
LT
752 if (!test_bit(STRIPE_HANDLE, &sh->state))
753 atomic_inc(&conf->active_stripes);
5af9bef7
N
754 BUG_ON(list_empty(&sh->lru) &&
755 !test_bit(STRIPE_EXPANDING, &sh->state));
ff00d3b4
ZL
756 inc_empty_inactive_list_flag = 0;
757 if (!list_empty(conf->inactive_list + hash))
758 inc_empty_inactive_list_flag = 1;
16a53ecc 759 list_del_init(&sh->lru);
ff00d3b4
ZL
760 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
761 atomic_inc(&conf->empty_inactive_list_nr);
bfc90cb0
SL
762 if (sh->group) {
763 sh->group->stripes_cnt--;
764 sh->group = NULL;
765 }
1da177e4 766 }
7da9d450 767 atomic_inc(&sh->count);
6d183de4 768 spin_unlock(&conf->device_lock);
1da177e4
LT
769 }
770 } while (sh == NULL);
771
566c09c5 772 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
773 return sh;
774}
775
7a87f434 776static bool is_full_stripe_write(struct stripe_head *sh)
777{
778 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
779 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
780}
781
59fc630b 782static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
368ecade
CH
783 __acquires(&sh1->stripe_lock)
784 __acquires(&sh2->stripe_lock)
59fc630b 785{
59fc630b 786 if (sh1 > sh2) {
3d05f3ae 787 spin_lock_irq(&sh2->stripe_lock);
59fc630b 788 spin_lock_nested(&sh1->stripe_lock, 1);
789 } else {
3d05f3ae 790 spin_lock_irq(&sh1->stripe_lock);
59fc630b 791 spin_lock_nested(&sh2->stripe_lock, 1);
792 }
793}
794
795static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
368ecade
CH
796 __releases(&sh1->stripe_lock)
797 __releases(&sh2->stripe_lock)
59fc630b 798{
799 spin_unlock(&sh1->stripe_lock);
3d05f3ae 800 spin_unlock_irq(&sh2->stripe_lock);
59fc630b 801}
802
803/* Only freshly new full stripe normal write stripe can be added to a batch list */
804static bool stripe_can_batch(struct stripe_head *sh)
805{
9c3e333d
SL
806 struct r5conf *conf = sh->raid_conf;
807
e254de6b 808 if (raid5_has_log(conf) || raid5_has_ppl(conf))
9c3e333d 809 return false;
59fc630b 810 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 811 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 812 is_full_stripe_write(sh);
813}
814
815/* we only do back search */
816static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
817{
818 struct stripe_head *head;
819 sector_t head_sector, tmp_sec;
820 int hash;
821 int dd_idx;
ff00d3b4 822 int inc_empty_inactive_list_flag;
59fc630b 823
59fc630b 824 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
825 tmp_sec = sh->sector;
826 if (!sector_div(tmp_sec, conf->chunk_sectors))
827 return;
c911c46c 828 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
59fc630b 829
c911c46c 830 hash = stripe_hash_locks_hash(conf, head_sector);
59fc630b 831 spin_lock_irq(conf->hash_locks + hash);
832 head = __find_stripe(conf, head_sector, conf->generation);
833 if (head && !atomic_inc_not_zero(&head->count)) {
834 spin_lock(&conf->device_lock);
835 if (!atomic_read(&head->count)) {
836 if (!test_bit(STRIPE_HANDLE, &head->state))
837 atomic_inc(&conf->active_stripes);
838 BUG_ON(list_empty(&head->lru) &&
839 !test_bit(STRIPE_EXPANDING, &head->state));
ff00d3b4
ZL
840 inc_empty_inactive_list_flag = 0;
841 if (!list_empty(conf->inactive_list + hash))
842 inc_empty_inactive_list_flag = 1;
59fc630b 843 list_del_init(&head->lru);
ff00d3b4
ZL
844 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
845 atomic_inc(&conf->empty_inactive_list_nr);
59fc630b 846 if (head->group) {
847 head->group->stripes_cnt--;
848 head->group = NULL;
849 }
850 }
851 atomic_inc(&head->count);
852 spin_unlock(&conf->device_lock);
853 }
854 spin_unlock_irq(conf->hash_locks + hash);
855
856 if (!head)
857 return;
858 if (!stripe_can_batch(head))
859 goto out;
860
861 lock_two_stripes(head, sh);
862 /* clear_batch_ready clear the flag */
863 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
864 goto unlock_out;
865
866 if (sh->batch_head)
867 goto unlock_out;
868
869 dd_idx = 0;
870 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
871 dd_idx++;
1eff9d32 872 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796a5cf0 873 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
59fc630b 874 goto unlock_out;
875
876 if (head->batch_head) {
877 spin_lock(&head->batch_head->batch_lock);
878 /* This batch list is already running */
879 if (!stripe_can_batch(head)) {
880 spin_unlock(&head->batch_head->batch_lock);
881 goto unlock_out;
882 }
3664847d
SL
883 /*
884 * We must assign batch_head of this stripe within the
885 * batch_lock, otherwise clear_batch_ready of batch head
886 * stripe could clear BATCH_READY bit of this stripe and
887 * this stripe->batch_head doesn't get assigned, which
888 * could confuse clear_batch_ready for this stripe
889 */
890 sh->batch_head = head->batch_head;
59fc630b 891
892 /*
893 * at this point, head's BATCH_READY could be cleared, but we
894 * can still add the stripe to batch list
895 */
896 list_add(&sh->batch_list, &head->batch_list);
897 spin_unlock(&head->batch_head->batch_lock);
59fc630b 898 } else {
899 head->batch_head = head;
900 sh->batch_head = head->batch_head;
901 spin_lock(&head->batch_lock);
902 list_add_tail(&sh->batch_list, &head->batch_list);
903 spin_unlock(&head->batch_lock);
904 }
905
906 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
907 if (atomic_dec_return(&conf->preread_active_stripes)
908 < IO_THRESHOLD)
909 md_wakeup_thread(conf->mddev->thread);
910
2b6b2457
N
911 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
912 int seq = sh->bm_seq;
913 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
914 sh->batch_head->bm_seq > seq)
915 seq = sh->batch_head->bm_seq;
916 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
917 sh->batch_head->bm_seq = seq;
918 }
919
59fc630b 920 atomic_inc(&sh->count);
921unlock_out:
922 unlock_two_stripes(head, sh);
923out:
6d036f7d 924 raid5_release_stripe(head);
59fc630b 925}
926
05616be5
N
927/* Determine if 'data_offset' or 'new_data_offset' should be used
928 * in this stripe_head.
929 */
930static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
931{
932 sector_t progress = conf->reshape_progress;
933 /* Need a memory barrier to make sure we see the value
934 * of conf->generation, or ->data_offset that was set before
935 * reshape_progress was updated.
936 */
937 smp_rmb();
938 if (progress == MaxSector)
939 return 0;
940 if (sh->generation == conf->generation - 1)
941 return 0;
942 /* We are in a reshape, and this is a new-generation stripe,
943 * so use new_data_offset.
944 */
945 return 1;
946}
947
aaf9f12e 948static void dispatch_bio_list(struct bio_list *tmp)
765d704d 949{
765d704d
SL
950 struct bio *bio;
951
aaf9f12e 952 while ((bio = bio_list_pop(tmp)))
ed00aabd 953 submit_bio_noacct(bio);
aaf9f12e
SL
954}
955
4f0f586b
ST
956static int cmp_stripe(void *priv, const struct list_head *a,
957 const struct list_head *b)
aaf9f12e
SL
958{
959 const struct r5pending_data *da = list_entry(a,
960 struct r5pending_data, sibling);
961 const struct r5pending_data *db = list_entry(b,
962 struct r5pending_data, sibling);
963 if (da->sector > db->sector)
964 return 1;
965 if (da->sector < db->sector)
966 return -1;
967 return 0;
968}
969
970static void dispatch_defer_bios(struct r5conf *conf, int target,
971 struct bio_list *list)
972{
973 struct r5pending_data *data;
974 struct list_head *first, *next = NULL;
975 int cnt = 0;
976
977 if (conf->pending_data_cnt == 0)
978 return;
979
980 list_sort(NULL, &conf->pending_list, cmp_stripe);
981
982 first = conf->pending_list.next;
983
984 /* temporarily move the head */
985 if (conf->next_pending_data)
986 list_move_tail(&conf->pending_list,
987 &conf->next_pending_data->sibling);
988
989 while (!list_empty(&conf->pending_list)) {
990 data = list_first_entry(&conf->pending_list,
991 struct r5pending_data, sibling);
992 if (&data->sibling == first)
993 first = data->sibling.next;
994 next = data->sibling.next;
995
996 bio_list_merge(list, &data->bios);
997 list_move(&data->sibling, &conf->free_list);
998 cnt++;
999 if (cnt >= target)
1000 break;
1001 }
1002 conf->pending_data_cnt -= cnt;
1003 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1004
1005 if (next != &conf->pending_list)
1006 conf->next_pending_data = list_entry(next,
1007 struct r5pending_data, sibling);
1008 else
1009 conf->next_pending_data = NULL;
1010 /* list isn't empty */
1011 if (first != &conf->pending_list)
1012 list_move_tail(&conf->pending_list, first);
1013}
1014
1015static void flush_deferred_bios(struct r5conf *conf)
1016{
1017 struct bio_list tmp = BIO_EMPTY_LIST;
1018
1019 if (conf->pending_data_cnt == 0)
765d704d
SL
1020 return;
1021
765d704d 1022 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
1023 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1024 BUG_ON(conf->pending_data_cnt != 0);
765d704d
SL
1025 spin_unlock(&conf->pending_bios_lock);
1026
aaf9f12e 1027 dispatch_bio_list(&tmp);
765d704d
SL
1028}
1029
aaf9f12e
SL
1030static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1031 struct bio_list *bios)
765d704d 1032{
aaf9f12e
SL
1033 struct bio_list tmp = BIO_EMPTY_LIST;
1034 struct r5pending_data *ent;
1035
765d704d 1036 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
1037 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1038 sibling);
1039 list_move_tail(&ent->sibling, &conf->pending_list);
1040 ent->sector = sector;
1041 bio_list_init(&ent->bios);
1042 bio_list_merge(&ent->bios, bios);
1043 conf->pending_data_cnt++;
1044 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1045 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1046
765d704d 1047 spin_unlock(&conf->pending_bios_lock);
aaf9f12e
SL
1048
1049 dispatch_bio_list(&tmp);
765d704d
SL
1050}
1051
6712ecf8 1052static void
4246a0b6 1053raid5_end_read_request(struct bio *bi);
6712ecf8 1054static void
4246a0b6 1055raid5_end_write_request(struct bio *bi);
91c00924 1056
c4e5ac0a 1057static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 1058{
d1688a6d 1059 struct r5conf *conf = sh->raid_conf;
91c00924 1060 int i, disks = sh->disks;
59fc630b 1061 struct stripe_head *head_sh = sh;
aaf9f12e
SL
1062 struct bio_list pending_bios = BIO_EMPTY_LIST;
1063 bool should_defer;
91c00924
DW
1064
1065 might_sleep();
1066
ff875738
AP
1067 if (log_stripe(sh, s) == 0)
1068 return;
1e6d690b 1069
aaf9f12e 1070 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1e6d690b 1071
91c00924 1072 for (i = disks; i--; ) {
796a5cf0 1073 int op, op_flags = 0;
9a3e1101 1074 int replace_only = 0;
977df362
N
1075 struct bio *bi, *rbi;
1076 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 1077
1078 sh = head_sh;
e9c7469b 1079 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
796a5cf0 1080 op = REQ_OP_WRITE;
e9c7469b 1081 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
70fd7614 1082 op_flags = REQ_FUA;
9e444768 1083 if (test_bit(R5_Discard, &sh->dev[i].flags))
796a5cf0 1084 op = REQ_OP_DISCARD;
e9c7469b 1085 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
796a5cf0 1086 op = REQ_OP_READ;
9a3e1101
N
1087 else if (test_and_clear_bit(R5_WantReplace,
1088 &sh->dev[i].flags)) {
796a5cf0 1089 op = REQ_OP_WRITE;
9a3e1101
N
1090 replace_only = 1;
1091 } else
91c00924 1092 continue;
bc0934f0 1093 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
796a5cf0 1094 op_flags |= REQ_SYNC;
91c00924 1095
59fc630b 1096again:
91c00924 1097 bi = &sh->dev[i].req;
977df362 1098 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 1099
91c00924 1100 rcu_read_lock();
9a3e1101 1101 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
1102 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1103 rdev = rcu_dereference(conf->disks[i].rdev);
1104 if (!rdev) {
1105 rdev = rrdev;
1106 rrdev = NULL;
1107 }
796a5cf0 1108 if (op_is_write(op)) {
9a3e1101
N
1109 if (replace_only)
1110 rdev = NULL;
dd054fce
N
1111 if (rdev == rrdev)
1112 /* We raced and saw duplicates */
1113 rrdev = NULL;
9a3e1101 1114 } else {
59fc630b 1115 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
1116 rdev = rrdev;
1117 rrdev = NULL;
1118 }
977df362 1119
91c00924
DW
1120 if (rdev && test_bit(Faulty, &rdev->flags))
1121 rdev = NULL;
1122 if (rdev)
1123 atomic_inc(&rdev->nr_pending);
977df362
N
1124 if (rrdev && test_bit(Faulty, &rrdev->flags))
1125 rrdev = NULL;
1126 if (rrdev)
1127 atomic_inc(&rrdev->nr_pending);
91c00924
DW
1128 rcu_read_unlock();
1129
73e92e51 1130 /* We have already checked bad blocks for reads. Now
977df362
N
1131 * need to check for writes. We never accept write errors
1132 * on the replacement, so we don't to check rrdev.
73e92e51 1133 */
796a5cf0 1134 while (op_is_write(op) && rdev &&
73e92e51
N
1135 test_bit(WriteErrorSeen, &rdev->flags)) {
1136 sector_t first_bad;
1137 int bad_sectors;
c911c46c 1138 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
73e92e51
N
1139 &first_bad, &bad_sectors);
1140 if (!bad)
1141 break;
1142
1143 if (bad < 0) {
1144 set_bit(BlockedBadBlocks, &rdev->flags);
1145 if (!conf->mddev->external &&
2953079c 1146 conf->mddev->sb_flags) {
73e92e51
N
1147 /* It is very unlikely, but we might
1148 * still need to write out the
1149 * bad block log - better give it
1150 * a chance*/
1151 md_check_recovery(conf->mddev);
1152 }
1850753d 1153 /*
1154 * Because md_wait_for_blocked_rdev
1155 * will dec nr_pending, we must
1156 * increment it first.
1157 */
1158 atomic_inc(&rdev->nr_pending);
73e92e51
N
1159 md_wait_for_blocked_rdev(rdev, conf->mddev);
1160 } else {
1161 /* Acknowledged bad block - skip the write */
1162 rdev_dec_pending(rdev, conf->mddev);
1163 rdev = NULL;
1164 }
1165 }
1166
91c00924 1167 if (rdev) {
9a3e1101
N
1168 if (s->syncing || s->expanding || s->expanded
1169 || s->replacing)
c911c46c 1170 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
91c00924 1171
2b7497f0
DW
1172 set_bit(STRIPE_IO_STARTED, &sh->state);
1173
74d46992 1174 bio_set_dev(bi, rdev->bdev);
796a5cf0
MC
1175 bio_set_op_attrs(bi, op, op_flags);
1176 bi->bi_end_io = op_is_write(op)
2f6db2a7
KO
1177 ? raid5_end_write_request
1178 : raid5_end_read_request;
1179 bi->bi_private = sh;
1180
6296b960 1181 pr_debug("%s: for %llu schedule op %d on disc %d\n",
e46b272b 1182 __func__, (unsigned long long)sh->sector,
1eff9d32 1183 bi->bi_opf, i);
91c00924 1184 atomic_inc(&sh->count);
59fc630b 1185 if (sh != head_sh)
1186 atomic_inc(&head_sh->count);
05616be5 1187 if (use_new_offset(conf, sh))
4f024f37 1188 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1189 + rdev->new_data_offset);
1190 else
4f024f37 1191 bi->bi_iter.bi_sector = (sh->sector
05616be5 1192 + rdev->data_offset);
59fc630b 1193 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1eff9d32 1194 bi->bi_opf |= REQ_NOMERGE;
3f9e7c14 1195
d592a996
SL
1196 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1197 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
86aa1397
SL
1198
1199 if (!op_is_write(op) &&
1200 test_bit(R5_InJournal, &sh->dev[i].flags))
1201 /*
1202 * issuing read for a page in journal, this
1203 * must be preparing for prexor in rmw; read
1204 * the data into orig_page
1205 */
1206 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1207 else
1208 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1209 bi->bi_vcnt = 1;
c911c46c 1210 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
7aba13b7 1211 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
c911c46c 1212 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
2cd259a7
MD
1213 bi->bi_write_hint = sh->dev[i].write_hint;
1214 if (!rrdev)
f1934892 1215 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
37c61ff3
SL
1216 /*
1217 * If this is discard request, set bi_vcnt 0. We don't
1218 * want to confuse SCSI because SCSI will replace payload
1219 */
796a5cf0 1220 if (op == REQ_OP_DISCARD)
37c61ff3 1221 bi->bi_vcnt = 0;
977df362
N
1222 if (rrdev)
1223 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1224
1225 if (conf->mddev->gendisk)
1c02fca6
CH
1226 trace_block_bio_remap(bi,
1227 disk_devt(conf->mddev->gendisk),
1228 sh->dev[i].sector);
aaf9f12e
SL
1229 if (should_defer && op_is_write(op))
1230 bio_list_add(&pending_bios, bi);
1231 else
ed00aabd 1232 submit_bio_noacct(bi);
977df362
N
1233 }
1234 if (rrdev) {
9a3e1101
N
1235 if (s->syncing || s->expanding || s->expanded
1236 || s->replacing)
c911c46c 1237 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
977df362
N
1238
1239 set_bit(STRIPE_IO_STARTED, &sh->state);
1240
74d46992 1241 bio_set_dev(rbi, rrdev->bdev);
796a5cf0
MC
1242 bio_set_op_attrs(rbi, op, op_flags);
1243 BUG_ON(!op_is_write(op));
2f6db2a7
KO
1244 rbi->bi_end_io = raid5_end_write_request;
1245 rbi->bi_private = sh;
1246
6296b960 1247 pr_debug("%s: for %llu schedule op %d on "
977df362
N
1248 "replacement disc %d\n",
1249 __func__, (unsigned long long)sh->sector,
1eff9d32 1250 rbi->bi_opf, i);
977df362 1251 atomic_inc(&sh->count);
59fc630b 1252 if (sh != head_sh)
1253 atomic_inc(&head_sh->count);
05616be5 1254 if (use_new_offset(conf, sh))
4f024f37 1255 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1256 + rrdev->new_data_offset);
1257 else
4f024f37 1258 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1259 + rrdev->data_offset);
d592a996
SL
1260 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1261 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1262 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1263 rbi->bi_vcnt = 1;
c911c46c 1264 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
7aba13b7 1265 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
c911c46c 1266 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
2cd259a7 1267 rbi->bi_write_hint = sh->dev[i].write_hint;
f1934892 1268 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
37c61ff3
SL
1269 /*
1270 * If this is discard request, set bi_vcnt 0. We don't
1271 * want to confuse SCSI because SCSI will replace payload
1272 */
796a5cf0 1273 if (op == REQ_OP_DISCARD)
37c61ff3 1274 rbi->bi_vcnt = 0;
e3620a3a 1275 if (conf->mddev->gendisk)
1c02fca6
CH
1276 trace_block_bio_remap(rbi,
1277 disk_devt(conf->mddev->gendisk),
1278 sh->dev[i].sector);
aaf9f12e
SL
1279 if (should_defer && op_is_write(op))
1280 bio_list_add(&pending_bios, rbi);
1281 else
ed00aabd 1282 submit_bio_noacct(rbi);
977df362
N
1283 }
1284 if (!rdev && !rrdev) {
796a5cf0 1285 if (op_is_write(op))
91c00924 1286 set_bit(STRIPE_DEGRADED, &sh->state);
6296b960 1287 pr_debug("skip op %d on disc %d for sector %llu\n",
1eff9d32 1288 bi->bi_opf, i, (unsigned long long)sh->sector);
91c00924
DW
1289 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1290 set_bit(STRIPE_HANDLE, &sh->state);
1291 }
59fc630b 1292
1293 if (!head_sh->batch_head)
1294 continue;
1295 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1296 batch_list);
1297 if (sh != head_sh)
1298 goto again;
91c00924 1299 }
aaf9f12e
SL
1300
1301 if (should_defer && !bio_list_empty(&pending_bios))
1302 defer_issue_bios(conf, head_sh->sector, &pending_bios);
91c00924
DW
1303}
1304
1305static struct dma_async_tx_descriptor *
d592a996 1306async_copy_data(int frombio, struct bio *bio, struct page **page,
248728dd 1307 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1e6d690b 1308 struct stripe_head *sh, int no_skipcopy)
91c00924 1309{
7988613b
KO
1310 struct bio_vec bvl;
1311 struct bvec_iter iter;
91c00924 1312 struct page *bio_page;
91c00924 1313 int page_offset;
a08abd8c 1314 struct async_submit_ctl submit;
0403e382 1315 enum async_tx_flags flags = 0;
c911c46c 1316 struct r5conf *conf = sh->raid_conf;
91c00924 1317
4f024f37
KO
1318 if (bio->bi_iter.bi_sector >= sector)
1319 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1320 else
4f024f37 1321 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1322
0403e382
DW
1323 if (frombio)
1324 flags |= ASYNC_TX_FENCE;
1325 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1326
7988613b
KO
1327 bio_for_each_segment(bvl, bio, iter) {
1328 int len = bvl.bv_len;
91c00924
DW
1329 int clen;
1330 int b_offset = 0;
1331
1332 if (page_offset < 0) {
1333 b_offset = -page_offset;
1334 page_offset += b_offset;
1335 len -= b_offset;
1336 }
1337
c911c46c
YY
1338 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1339 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
91c00924
DW
1340 else
1341 clen = len;
1342
1343 if (clen > 0) {
7988613b
KO
1344 b_offset += bvl.bv_offset;
1345 bio_page = bvl.bv_page;
d592a996 1346 if (frombio) {
c911c46c 1347 if (conf->skip_copy &&
d592a996 1348 b_offset == 0 && page_offset == 0 &&
c911c46c 1349 clen == RAID5_STRIPE_SIZE(conf) &&
1e6d690b 1350 !no_skipcopy)
d592a996
SL
1351 *page = bio_page;
1352 else
248728dd 1353 tx = async_memcpy(*page, bio_page, page_offset + poff,
a08abd8c 1354 b_offset, clen, &submit);
d592a996
SL
1355 } else
1356 tx = async_memcpy(bio_page, *page, b_offset,
248728dd 1357 page_offset + poff, clen, &submit);
91c00924 1358 }
a08abd8c
DW
1359 /* chain the operations */
1360 submit.depend_tx = tx;
1361
91c00924
DW
1362 if (clen < len) /* hit end of page */
1363 break;
1364 page_offset += len;
1365 }
1366
1367 return tx;
1368}
1369
1370static void ops_complete_biofill(void *stripe_head_ref)
1371{
1372 struct stripe_head *sh = stripe_head_ref;
e4d84909 1373 int i;
c911c46c 1374 struct r5conf *conf = sh->raid_conf;
91c00924 1375
e46b272b 1376 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1377 (unsigned long long)sh->sector);
1378
1379 /* clear completed biofills */
1380 for (i = sh->disks; i--; ) {
1381 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1382
1383 /* acknowledge completion of a biofill operation */
e4d84909
DW
1384 /* and check if we need to reply to a read request,
1385 * new R5_Wantfill requests are held off until
83de75cc 1386 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1387 */
1388 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1389 struct bio *rbi, *rbi2;
91c00924 1390
91c00924
DW
1391 BUG_ON(!dev->read);
1392 rbi = dev->read;
1393 dev->read = NULL;
4f024f37 1394 while (rbi && rbi->bi_iter.bi_sector <
c911c46c
YY
1395 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1396 rbi2 = r5_next_bio(conf, rbi, dev->sector);
016c76ac 1397 bio_endio(rbi);
91c00924
DW
1398 rbi = rbi2;
1399 }
1400 }
1401 }
83de75cc 1402 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1403
e4d84909 1404 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1405 raid5_release_stripe(sh);
91c00924
DW
1406}
1407
1408static void ops_run_biofill(struct stripe_head *sh)
1409{
1410 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1411 struct async_submit_ctl submit;
91c00924 1412 int i;
c911c46c 1413 struct r5conf *conf = sh->raid_conf;
91c00924 1414
59fc630b 1415 BUG_ON(sh->batch_head);
e46b272b 1416 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1417 (unsigned long long)sh->sector);
1418
1419 for (i = sh->disks; i--; ) {
1420 struct r5dev *dev = &sh->dev[i];
1421 if (test_bit(R5_Wantfill, &dev->flags)) {
1422 struct bio *rbi;
b17459c0 1423 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1424 dev->read = rbi = dev->toread;
1425 dev->toread = NULL;
b17459c0 1426 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1427 while (rbi && rbi->bi_iter.bi_sector <
c911c46c 1428 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
d592a996 1429 tx = async_copy_data(0, rbi, &dev->page,
248728dd 1430 dev->offset,
1e6d690b 1431 dev->sector, tx, sh, 0);
c911c46c 1432 rbi = r5_next_bio(conf, rbi, dev->sector);
91c00924
DW
1433 }
1434 }
1435 }
1436
1437 atomic_inc(&sh->count);
a08abd8c
DW
1438 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1439 async_trigger_callback(&submit);
91c00924
DW
1440}
1441
4e7d2c0a 1442static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1443{
4e7d2c0a 1444 struct r5dev *tgt;
91c00924 1445
4e7d2c0a
DW
1446 if (target < 0)
1447 return;
91c00924 1448
4e7d2c0a 1449 tgt = &sh->dev[target];
91c00924
DW
1450 set_bit(R5_UPTODATE, &tgt->flags);
1451 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1452 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1453}
1454
ac6b53b6 1455static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1456{
1457 struct stripe_head *sh = stripe_head_ref;
91c00924 1458
e46b272b 1459 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1460 (unsigned long long)sh->sector);
1461
ac6b53b6 1462 /* mark the computed target(s) as uptodate */
4e7d2c0a 1463 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1464 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1465
ecc65c9b
DW
1466 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1467 if (sh->check_state == check_state_compute_run)
1468 sh->check_state = check_state_compute_result;
91c00924 1469 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1470 raid5_release_stripe(sh);
91c00924
DW
1471}
1472
d6f38f31 1473/* return a pointer to the address conversion region of the scribble buffer */
b330e6a4 1474static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
d6f38f31 1475{
b330e6a4 1476 return percpu->scribble + i * percpu->scribble_obj_size;
46d5b785 1477}
1478
1479/* return a pointer to the address conversion region of the scribble buffer */
b330e6a4
KO
1480static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1481 struct raid5_percpu *percpu, int i)
46d5b785 1482{
b330e6a4 1483 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
d6f38f31
DW
1484}
1485
7aba13b7
YY
1486/*
1487 * Return a pointer to record offset address.
1488 */
1489static unsigned int *
1490to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1491{
1492 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1493}
1494
d6f38f31
DW
1495static struct dma_async_tx_descriptor *
1496ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1497{
91c00924 1498 int disks = sh->disks;
46d5b785 1499 struct page **xor_srcs = to_addr_page(percpu, 0);
7aba13b7 1500 unsigned int *off_srcs = to_addr_offs(sh, percpu);
91c00924
DW
1501 int target = sh->ops.target;
1502 struct r5dev *tgt = &sh->dev[target];
1503 struct page *xor_dest = tgt->page;
7aba13b7 1504 unsigned int off_dest = tgt->offset;
91c00924
DW
1505 int count = 0;
1506 struct dma_async_tx_descriptor *tx;
a08abd8c 1507 struct async_submit_ctl submit;
91c00924
DW
1508 int i;
1509
59fc630b 1510 BUG_ON(sh->batch_head);
1511
91c00924 1512 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1513 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1514 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1515
7aba13b7
YY
1516 for (i = disks; i--; ) {
1517 if (i != target) {
1518 off_srcs[count] = sh->dev[i].offset;
91c00924 1519 xor_srcs[count++] = sh->dev[i].page;
7aba13b7
YY
1520 }
1521 }
91c00924
DW
1522
1523 atomic_inc(&sh->count);
1524
0403e382 1525 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1526 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1527 if (unlikely(count == 1))
7aba13b7 1528 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
c911c46c 1529 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
91c00924 1530 else
a7c224a8 1531 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
c911c46c 1532 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
91c00924 1533
91c00924
DW
1534 return tx;
1535}
1536
ac6b53b6
DW
1537/* set_syndrome_sources - populate source buffers for gen_syndrome
1538 * @srcs - (struct page *) array of size sh->disks
d69454bc 1539 * @offs - (unsigned int) array of offset for each page
ac6b53b6
DW
1540 * @sh - stripe_head to parse
1541 *
1542 * Populates srcs in proper layout order for the stripe and returns the
1543 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1544 * destination buffer is recorded in srcs[count] and the Q destination
1545 * is recorded in srcs[count+1]].
1546 */
584acdd4 1547static int set_syndrome_sources(struct page **srcs,
d69454bc 1548 unsigned int *offs,
584acdd4
MS
1549 struct stripe_head *sh,
1550 int srctype)
ac6b53b6
DW
1551{
1552 int disks = sh->disks;
1553 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1554 int d0_idx = raid6_d0(sh);
1555 int count;
1556 int i;
1557
1558 for (i = 0; i < disks; i++)
5dd33c9a 1559 srcs[i] = NULL;
ac6b53b6
DW
1560
1561 count = 0;
1562 i = d0_idx;
1563 do {
1564 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1565 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1566
584acdd4
MS
1567 if (i == sh->qd_idx || i == sh->pd_idx ||
1568 (srctype == SYNDROME_SRC_ALL) ||
1569 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1e6d690b
SL
1570 (test_bit(R5_Wantdrain, &dev->flags) ||
1571 test_bit(R5_InJournal, &dev->flags))) ||
584acdd4 1572 (srctype == SYNDROME_SRC_WRITTEN &&
0977762f
SL
1573 (dev->written ||
1574 test_bit(R5_InJournal, &dev->flags)))) {
1e6d690b
SL
1575 if (test_bit(R5_InJournal, &dev->flags))
1576 srcs[slot] = sh->dev[i].orig_page;
1577 else
1578 srcs[slot] = sh->dev[i].page;
d69454bc
YY
1579 /*
1580 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1581 * not shared page. In that case, dev[i].offset
1582 * is 0.
1583 */
1584 offs[slot] = sh->dev[i].offset;
1e6d690b 1585 }
ac6b53b6
DW
1586 i = raid6_next_disk(i, disks);
1587 } while (i != d0_idx);
ac6b53b6 1588
e4424fee 1589 return syndrome_disks;
ac6b53b6
DW
1590}
1591
1592static struct dma_async_tx_descriptor *
1593ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1594{
1595 int disks = sh->disks;
46d5b785 1596 struct page **blocks = to_addr_page(percpu, 0);
a7c224a8 1597 unsigned int *offs = to_addr_offs(sh, percpu);
ac6b53b6
DW
1598 int target;
1599 int qd_idx = sh->qd_idx;
1600 struct dma_async_tx_descriptor *tx;
1601 struct async_submit_ctl submit;
1602 struct r5dev *tgt;
1603 struct page *dest;
a7c224a8 1604 unsigned int dest_off;
ac6b53b6
DW
1605 int i;
1606 int count;
1607
59fc630b 1608 BUG_ON(sh->batch_head);
ac6b53b6
DW
1609 if (sh->ops.target < 0)
1610 target = sh->ops.target2;
1611 else if (sh->ops.target2 < 0)
1612 target = sh->ops.target;
91c00924 1613 else
ac6b53b6
DW
1614 /* we should only have one valid target */
1615 BUG();
1616 BUG_ON(target < 0);
1617 pr_debug("%s: stripe %llu block: %d\n",
1618 __func__, (unsigned long long)sh->sector, target);
1619
1620 tgt = &sh->dev[target];
1621 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1622 dest = tgt->page;
a7c224a8 1623 dest_off = tgt->offset;
ac6b53b6
DW
1624
1625 atomic_inc(&sh->count);
1626
1627 if (target == qd_idx) {
d69454bc 1628 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1629 blocks[count] = NULL; /* regenerating p is not necessary */
1630 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1631 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1632 ops_complete_compute, sh,
46d5b785 1633 to_addr_conv(sh, percpu, 0));
d69454bc 1634 tx = async_gen_syndrome(blocks, offs, count+2,
c911c46c 1635 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
ac6b53b6
DW
1636 } else {
1637 /* Compute any data- or p-drive using XOR */
1638 count = 0;
1639 for (i = disks; i-- ; ) {
1640 if (i == target || i == qd_idx)
1641 continue;
a7c224a8 1642 offs[count] = sh->dev[i].offset;
ac6b53b6
DW
1643 blocks[count++] = sh->dev[i].page;
1644 }
1645
0403e382
DW
1646 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1647 NULL, ops_complete_compute, sh,
46d5b785 1648 to_addr_conv(sh, percpu, 0));
a7c224a8 1649 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
c911c46c 1650 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
ac6b53b6 1651 }
91c00924 1652
91c00924
DW
1653 return tx;
1654}
1655
ac6b53b6
DW
1656static struct dma_async_tx_descriptor *
1657ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1658{
1659 int i, count, disks = sh->disks;
1660 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1661 int d0_idx = raid6_d0(sh);
1662 int faila = -1, failb = -1;
1663 int target = sh->ops.target;
1664 int target2 = sh->ops.target2;
1665 struct r5dev *tgt = &sh->dev[target];
1666 struct r5dev *tgt2 = &sh->dev[target2];
1667 struct dma_async_tx_descriptor *tx;
46d5b785 1668 struct page **blocks = to_addr_page(percpu, 0);
a7c224a8 1669 unsigned int *offs = to_addr_offs(sh, percpu);
ac6b53b6
DW
1670 struct async_submit_ctl submit;
1671
59fc630b 1672 BUG_ON(sh->batch_head);
ac6b53b6
DW
1673 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1674 __func__, (unsigned long long)sh->sector, target, target2);
1675 BUG_ON(target < 0 || target2 < 0);
1676 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1677 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1678
6c910a78 1679 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1680 * slot number conversion for 'faila' and 'failb'
1681 */
a7c224a8
YY
1682 for (i = 0; i < disks ; i++) {
1683 offs[i] = 0;
5dd33c9a 1684 blocks[i] = NULL;
a7c224a8 1685 }
ac6b53b6
DW
1686 count = 0;
1687 i = d0_idx;
1688 do {
1689 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1690
a7c224a8 1691 offs[slot] = sh->dev[i].offset;
ac6b53b6
DW
1692 blocks[slot] = sh->dev[i].page;
1693
1694 if (i == target)
1695 faila = slot;
1696 if (i == target2)
1697 failb = slot;
1698 i = raid6_next_disk(i, disks);
1699 } while (i != d0_idx);
ac6b53b6
DW
1700
1701 BUG_ON(faila == failb);
1702 if (failb < faila)
1703 swap(faila, failb);
1704 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1705 __func__, (unsigned long long)sh->sector, faila, failb);
1706
1707 atomic_inc(&sh->count);
1708
1709 if (failb == syndrome_disks+1) {
1710 /* Q disk is one of the missing disks */
1711 if (faila == syndrome_disks) {
1712 /* Missing P+Q, just recompute */
0403e382
DW
1713 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1714 ops_complete_compute, sh,
46d5b785 1715 to_addr_conv(sh, percpu, 0));
d69454bc 1716 return async_gen_syndrome(blocks, offs, syndrome_disks+2,
c911c46c
YY
1717 RAID5_STRIPE_SIZE(sh->raid_conf),
1718 &submit);
ac6b53b6
DW
1719 } else {
1720 struct page *dest;
a7c224a8 1721 unsigned int dest_off;
ac6b53b6
DW
1722 int data_target;
1723 int qd_idx = sh->qd_idx;
1724
1725 /* Missing D+Q: recompute D from P, then recompute Q */
1726 if (target == qd_idx)
1727 data_target = target2;
1728 else
1729 data_target = target;
1730
1731 count = 0;
1732 for (i = disks; i-- ; ) {
1733 if (i == data_target || i == qd_idx)
1734 continue;
a7c224a8 1735 offs[count] = sh->dev[i].offset;
ac6b53b6
DW
1736 blocks[count++] = sh->dev[i].page;
1737 }
1738 dest = sh->dev[data_target].page;
a7c224a8 1739 dest_off = sh->dev[data_target].offset;
0403e382
DW
1740 init_async_submit(&submit,
1741 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1742 NULL, NULL, NULL,
46d5b785 1743 to_addr_conv(sh, percpu, 0));
a7c224a8 1744 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
c911c46c 1745 RAID5_STRIPE_SIZE(sh->raid_conf),
ac6b53b6
DW
1746 &submit);
1747
d69454bc 1748 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
0403e382
DW
1749 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1750 ops_complete_compute, sh,
46d5b785 1751 to_addr_conv(sh, percpu, 0));
d69454bc 1752 return async_gen_syndrome(blocks, offs, count+2,
c911c46c
YY
1753 RAID5_STRIPE_SIZE(sh->raid_conf),
1754 &submit);
ac6b53b6 1755 }
ac6b53b6 1756 } else {
6c910a78
DW
1757 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1758 ops_complete_compute, sh,
46d5b785 1759 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1760 if (failb == syndrome_disks) {
1761 /* We're missing D+P. */
1762 return async_raid6_datap_recov(syndrome_disks+2,
c911c46c
YY
1763 RAID5_STRIPE_SIZE(sh->raid_conf),
1764 faila,
4f86ff55 1765 blocks, offs, &submit);
6c910a78
DW
1766 } else {
1767 /* We're missing D+D. */
1768 return async_raid6_2data_recov(syndrome_disks+2,
c911c46c
YY
1769 RAID5_STRIPE_SIZE(sh->raid_conf),
1770 faila, failb,
4f86ff55 1771 blocks, offs, &submit);
6c910a78 1772 }
ac6b53b6
DW
1773 }
1774}
1775
91c00924
DW
1776static void ops_complete_prexor(void *stripe_head_ref)
1777{
1778 struct stripe_head *sh = stripe_head_ref;
1779
e46b272b 1780 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1781 (unsigned long long)sh->sector);
1e6d690b
SL
1782
1783 if (r5c_is_writeback(sh->raid_conf->log))
1784 /*
1785 * raid5-cache write back uses orig_page during prexor.
1786 * After prexor, it is time to free orig_page
1787 */
1788 r5c_release_extra_page(sh);
91c00924
DW
1789}
1790
1791static struct dma_async_tx_descriptor *
584acdd4
MS
1792ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1793 struct dma_async_tx_descriptor *tx)
91c00924 1794{
91c00924 1795 int disks = sh->disks;
46d5b785 1796 struct page **xor_srcs = to_addr_page(percpu, 0);
a7c224a8 1797 unsigned int *off_srcs = to_addr_offs(sh, percpu);
91c00924 1798 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1799 struct async_submit_ctl submit;
91c00924
DW
1800
1801 /* existing parity data subtracted */
a7c224a8 1802 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
91c00924
DW
1803 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1804
59fc630b 1805 BUG_ON(sh->batch_head);
e46b272b 1806 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1807 (unsigned long long)sh->sector);
1808
1809 for (i = disks; i--; ) {
1810 struct r5dev *dev = &sh->dev[i];
1811 /* Only process blocks that are known to be uptodate */
a7c224a8
YY
1812 if (test_bit(R5_InJournal, &dev->flags)) {
1813 /*
1814 * For this case, PAGE_SIZE must be equal to 4KB and
1815 * page offset is zero.
1816 */
1817 off_srcs[count] = dev->offset;
1e6d690b 1818 xor_srcs[count++] = dev->orig_page;
a7c224a8
YY
1819 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1820 off_srcs[count] = dev->offset;
91c00924 1821 xor_srcs[count++] = dev->page;
a7c224a8 1822 }
91c00924
DW
1823 }
1824
0403e382 1825 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1826 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a7c224a8 1827 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
c911c46c 1828 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
91c00924
DW
1829
1830 return tx;
1831}
1832
584acdd4
MS
1833static struct dma_async_tx_descriptor *
1834ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1835 struct dma_async_tx_descriptor *tx)
1836{
1837 struct page **blocks = to_addr_page(percpu, 0);
d69454bc 1838 unsigned int *offs = to_addr_offs(sh, percpu);
584acdd4
MS
1839 int count;
1840 struct async_submit_ctl submit;
1841
1842 pr_debug("%s: stripe %llu\n", __func__,
1843 (unsigned long long)sh->sector);
1844
d69454bc 1845 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
584acdd4
MS
1846
1847 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1848 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
d69454bc 1849 tx = async_gen_syndrome(blocks, offs, count+2,
c911c46c 1850 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
584acdd4
MS
1851
1852 return tx;
1853}
1854
91c00924 1855static struct dma_async_tx_descriptor *
d8ee0728 1856ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924 1857{
1e6d690b 1858 struct r5conf *conf = sh->raid_conf;
91c00924 1859 int disks = sh->disks;
d8ee0728 1860 int i;
59fc630b 1861 struct stripe_head *head_sh = sh;
91c00924 1862
e46b272b 1863 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1864 (unsigned long long)sh->sector);
1865
1866 for (i = disks; i--; ) {
59fc630b 1867 struct r5dev *dev;
91c00924 1868 struct bio *chosen;
91c00924 1869
59fc630b 1870 sh = head_sh;
1871 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1872 struct bio *wbi;
1873
59fc630b 1874again:
1875 dev = &sh->dev[i];
1e6d690b
SL
1876 /*
1877 * clear R5_InJournal, so when rewriting a page in
1878 * journal, it is not skipped by r5l_log_stripe()
1879 */
1880 clear_bit(R5_InJournal, &dev->flags);
b17459c0 1881 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1882 chosen = dev->towrite;
1883 dev->towrite = NULL;
7a87f434 1884 sh->overwrite_disks = 0;
91c00924
DW
1885 BUG_ON(dev->written);
1886 wbi = dev->written = chosen;
b17459c0 1887 spin_unlock_irq(&sh->stripe_lock);
d592a996 1888 WARN_ON(dev->page != dev->orig_page);
91c00924 1889
4f024f37 1890 while (wbi && wbi->bi_iter.bi_sector <
c911c46c 1891 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1eff9d32 1892 if (wbi->bi_opf & REQ_FUA)
e9c7469b 1893 set_bit(R5_WantFUA, &dev->flags);
1eff9d32 1894 if (wbi->bi_opf & REQ_SYNC)
bc0934f0 1895 set_bit(R5_SyncIO, &dev->flags);
796a5cf0 1896 if (bio_op(wbi) == REQ_OP_DISCARD)
620125f2 1897 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1898 else {
1899 tx = async_copy_data(1, wbi, &dev->page,
248728dd 1900 dev->offset,
1e6d690b
SL
1901 dev->sector, tx, sh,
1902 r5c_is_writeback(conf->log));
1903 if (dev->page != dev->orig_page &&
1904 !r5c_is_writeback(conf->log)) {
d592a996
SL
1905 set_bit(R5_SkipCopy, &dev->flags);
1906 clear_bit(R5_UPTODATE, &dev->flags);
1907 clear_bit(R5_OVERWRITE, &dev->flags);
1908 }
1909 }
c911c46c 1910 wbi = r5_next_bio(conf, wbi, dev->sector);
91c00924 1911 }
59fc630b 1912
1913 if (head_sh->batch_head) {
1914 sh = list_first_entry(&sh->batch_list,
1915 struct stripe_head,
1916 batch_list);
1917 if (sh == head_sh)
1918 continue;
1919 goto again;
1920 }
91c00924
DW
1921 }
1922 }
1923
1924 return tx;
1925}
1926
ac6b53b6 1927static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1928{
1929 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1930 int disks = sh->disks;
1931 int pd_idx = sh->pd_idx;
1932 int qd_idx = sh->qd_idx;
1933 int i;
9e444768 1934 bool fua = false, sync = false, discard = false;
91c00924 1935
e46b272b 1936 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1937 (unsigned long long)sh->sector);
1938
bc0934f0 1939 for (i = disks; i--; ) {
e9c7469b 1940 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1941 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1942 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1943 }
e9c7469b 1944
91c00924
DW
1945 for (i = disks; i--; ) {
1946 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1947
e9c7469b 1948 if (dev->written || i == pd_idx || i == qd_idx) {
235b6003 1949 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
9e444768 1950 set_bit(R5_UPTODATE, &dev->flags);
235b6003
N
1951 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1952 set_bit(R5_Expanded, &dev->flags);
1953 }
e9c7469b
TH
1954 if (fua)
1955 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1956 if (sync)
1957 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1958 }
91c00924
DW
1959 }
1960
d8ee0728
DW
1961 if (sh->reconstruct_state == reconstruct_state_drain_run)
1962 sh->reconstruct_state = reconstruct_state_drain_result;
1963 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1964 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1965 else {
1966 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1967 sh->reconstruct_state = reconstruct_state_result;
1968 }
91c00924
DW
1969
1970 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1971 raid5_release_stripe(sh);
91c00924
DW
1972}
1973
1974static void
ac6b53b6
DW
1975ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1976 struct dma_async_tx_descriptor *tx)
91c00924 1977{
91c00924 1978 int disks = sh->disks;
59fc630b 1979 struct page **xor_srcs;
7aba13b7 1980 unsigned int *off_srcs;
a08abd8c 1981 struct async_submit_ctl submit;
59fc630b 1982 int count, pd_idx = sh->pd_idx, i;
91c00924 1983 struct page *xor_dest;
7aba13b7 1984 unsigned int off_dest;
d8ee0728 1985 int prexor = 0;
91c00924 1986 unsigned long flags;
59fc630b 1987 int j = 0;
1988 struct stripe_head *head_sh = sh;
1989 int last_stripe;
91c00924 1990
e46b272b 1991 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1992 (unsigned long long)sh->sector);
1993
620125f2
SL
1994 for (i = 0; i < sh->disks; i++) {
1995 if (pd_idx == i)
1996 continue;
1997 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1998 break;
1999 }
2000 if (i >= sh->disks) {
2001 atomic_inc(&sh->count);
620125f2
SL
2002 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2003 ops_complete_reconstruct(sh);
2004 return;
2005 }
59fc630b 2006again:
2007 count = 0;
2008 xor_srcs = to_addr_page(percpu, j);
7aba13b7 2009 off_srcs = to_addr_offs(sh, percpu);
91c00924
DW
2010 /* check if prexor is active which means only process blocks
2011 * that are part of a read-modify-write (written)
2012 */
59fc630b 2013 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 2014 prexor = 1;
7aba13b7 2015 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
91c00924
DW
2016 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2017 for (i = disks; i--; ) {
2018 struct r5dev *dev = &sh->dev[i];
1e6d690b 2019 if (head_sh->dev[i].written ||
7aba13b7
YY
2020 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2021 off_srcs[count] = dev->offset;
91c00924 2022 xor_srcs[count++] = dev->page;
7aba13b7 2023 }
91c00924
DW
2024 }
2025 } else {
2026 xor_dest = sh->dev[pd_idx].page;
7aba13b7 2027 off_dest = sh->dev[pd_idx].offset;
91c00924
DW
2028 for (i = disks; i--; ) {
2029 struct r5dev *dev = &sh->dev[i];
7aba13b7
YY
2030 if (i != pd_idx) {
2031 off_srcs[count] = dev->offset;
91c00924 2032 xor_srcs[count++] = dev->page;
7aba13b7 2033 }
91c00924
DW
2034 }
2035 }
2036
91c00924
DW
2037 /* 1/ if we prexor'd then the dest is reused as a source
2038 * 2/ if we did not prexor then we are redoing the parity
2039 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2040 * for the synchronous xor case
2041 */
59fc630b 2042 last_stripe = !head_sh->batch_head ||
2043 list_first_entry(&sh->batch_list,
2044 struct stripe_head, batch_list) == head_sh;
2045 if (last_stripe) {
2046 flags = ASYNC_TX_ACK |
2047 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2048
2049 atomic_inc(&head_sh->count);
2050 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2051 to_addr_conv(sh, percpu, j));
2052 } else {
2053 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2054 init_async_submit(&submit, flags, tx, NULL, NULL,
2055 to_addr_conv(sh, percpu, j));
2056 }
91c00924 2057
a08abd8c 2058 if (unlikely(count == 1))
7aba13b7 2059 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
c911c46c 2060 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
a08abd8c 2061 else
a7c224a8 2062 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
c911c46c 2063 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
59fc630b 2064 if (!last_stripe) {
2065 j++;
2066 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2067 batch_list);
2068 goto again;
2069 }
91c00924
DW
2070}
2071
ac6b53b6
DW
2072static void
2073ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2074 struct dma_async_tx_descriptor *tx)
2075{
2076 struct async_submit_ctl submit;
59fc630b 2077 struct page **blocks;
d69454bc 2078 unsigned int *offs;
59fc630b 2079 int count, i, j = 0;
2080 struct stripe_head *head_sh = sh;
2081 int last_stripe;
584acdd4
MS
2082 int synflags;
2083 unsigned long txflags;
ac6b53b6
DW
2084
2085 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2086
620125f2
SL
2087 for (i = 0; i < sh->disks; i++) {
2088 if (sh->pd_idx == i || sh->qd_idx == i)
2089 continue;
2090 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2091 break;
2092 }
2093 if (i >= sh->disks) {
2094 atomic_inc(&sh->count);
620125f2
SL
2095 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2096 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2097 ops_complete_reconstruct(sh);
2098 return;
2099 }
2100
59fc630b 2101again:
2102 blocks = to_addr_page(percpu, j);
d69454bc 2103 offs = to_addr_offs(sh, percpu);
584acdd4
MS
2104
2105 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2106 synflags = SYNDROME_SRC_WRITTEN;
2107 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2108 } else {
2109 synflags = SYNDROME_SRC_ALL;
2110 txflags = ASYNC_TX_ACK;
2111 }
2112
d69454bc 2113 count = set_syndrome_sources(blocks, offs, sh, synflags);
59fc630b 2114 last_stripe = !head_sh->batch_head ||
2115 list_first_entry(&sh->batch_list,
2116 struct stripe_head, batch_list) == head_sh;
2117
2118 if (last_stripe) {
2119 atomic_inc(&head_sh->count);
584acdd4 2120 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 2121 head_sh, to_addr_conv(sh, percpu, j));
2122 } else
2123 init_async_submit(&submit, 0, tx, NULL, NULL,
2124 to_addr_conv(sh, percpu, j));
d69454bc 2125 tx = async_gen_syndrome(blocks, offs, count+2,
c911c46c 2126 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
59fc630b 2127 if (!last_stripe) {
2128 j++;
2129 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2130 batch_list);
2131 goto again;
2132 }
91c00924
DW
2133}
2134
2135static void ops_complete_check(void *stripe_head_ref)
2136{
2137 struct stripe_head *sh = stripe_head_ref;
91c00924 2138
e46b272b 2139 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2140 (unsigned long long)sh->sector);
2141
ecc65c9b 2142 sh->check_state = check_state_check_result;
91c00924 2143 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2144 raid5_release_stripe(sh);
91c00924
DW
2145}
2146
ac6b53b6 2147static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 2148{
91c00924 2149 int disks = sh->disks;
ac6b53b6
DW
2150 int pd_idx = sh->pd_idx;
2151 int qd_idx = sh->qd_idx;
2152 struct page *xor_dest;
a7c224a8 2153 unsigned int off_dest;
46d5b785 2154 struct page **xor_srcs = to_addr_page(percpu, 0);
a7c224a8 2155 unsigned int *off_srcs = to_addr_offs(sh, percpu);
91c00924 2156 struct dma_async_tx_descriptor *tx;
a08abd8c 2157 struct async_submit_ctl submit;
ac6b53b6
DW
2158 int count;
2159 int i;
91c00924 2160
e46b272b 2161 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2162 (unsigned long long)sh->sector);
2163
59fc630b 2164 BUG_ON(sh->batch_head);
ac6b53b6
DW
2165 count = 0;
2166 xor_dest = sh->dev[pd_idx].page;
a7c224a8
YY
2167 off_dest = sh->dev[pd_idx].offset;
2168 off_srcs[count] = off_dest;
ac6b53b6 2169 xor_srcs[count++] = xor_dest;
91c00924 2170 for (i = disks; i--; ) {
ac6b53b6
DW
2171 if (i == pd_idx || i == qd_idx)
2172 continue;
a7c224a8 2173 off_srcs[count] = sh->dev[i].offset;
ac6b53b6 2174 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
2175 }
2176
d6f38f31 2177 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 2178 to_addr_conv(sh, percpu, 0));
a7c224a8 2179 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
c911c46c 2180 RAID5_STRIPE_SIZE(sh->raid_conf),
a08abd8c 2181 &sh->ops.zero_sum_result, &submit);
91c00924 2182
91c00924 2183 atomic_inc(&sh->count);
a08abd8c
DW
2184 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2185 tx = async_trigger_callback(&submit);
91c00924
DW
2186}
2187
ac6b53b6
DW
2188static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2189{
46d5b785 2190 struct page **srcs = to_addr_page(percpu, 0);
d69454bc 2191 unsigned int *offs = to_addr_offs(sh, percpu);
ac6b53b6
DW
2192 struct async_submit_ctl submit;
2193 int count;
2194
2195 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2196 (unsigned long long)sh->sector, checkp);
2197
59fc630b 2198 BUG_ON(sh->batch_head);
d69454bc 2199 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
2200 if (!checkp)
2201 srcs[count] = NULL;
91c00924 2202
91c00924 2203 atomic_inc(&sh->count);
ac6b53b6 2204 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 2205 sh, to_addr_conv(sh, percpu, 0));
d69454bc 2206 async_syndrome_val(srcs, offs, count+2,
c911c46c 2207 RAID5_STRIPE_SIZE(sh->raid_conf),
d69454bc 2208 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
91c00924
DW
2209}
2210
51acbcec 2211static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
2212{
2213 int overlap_clear = 0, i, disks = sh->disks;
2214 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 2215 struct r5conf *conf = sh->raid_conf;
ac6b53b6 2216 int level = conf->level;
d6f38f31
DW
2217 struct raid5_percpu *percpu;
2218 unsigned long cpu;
91c00924 2219
d6f38f31
DW
2220 cpu = get_cpu();
2221 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 2222 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
2223 ops_run_biofill(sh);
2224 overlap_clear++;
2225 }
2226
7b3a871e 2227 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
2228 if (level < 6)
2229 tx = ops_run_compute5(sh, percpu);
2230 else {
2231 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2232 tx = ops_run_compute6_1(sh, percpu);
2233 else
2234 tx = ops_run_compute6_2(sh, percpu);
2235 }
2236 /* terminate the chain if reconstruct is not set to be run */
2237 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
2238 async_tx_ack(tx);
2239 }
91c00924 2240
584acdd4
MS
2241 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2242 if (level < 6)
2243 tx = ops_run_prexor5(sh, percpu, tx);
2244 else
2245 tx = ops_run_prexor6(sh, percpu, tx);
2246 }
91c00924 2247
ae1713e2
AP
2248 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2249 tx = ops_run_partial_parity(sh, percpu, tx);
2250
600aa109 2251 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 2252 tx = ops_run_biodrain(sh, tx);
91c00924
DW
2253 overlap_clear++;
2254 }
2255
ac6b53b6
DW
2256 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2257 if (level < 6)
2258 ops_run_reconstruct5(sh, percpu, tx);
2259 else
2260 ops_run_reconstruct6(sh, percpu, tx);
2261 }
91c00924 2262
ac6b53b6
DW
2263 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2264 if (sh->check_state == check_state_run)
2265 ops_run_check_p(sh, percpu);
2266 else if (sh->check_state == check_state_run_q)
2267 ops_run_check_pq(sh, percpu, 0);
2268 else if (sh->check_state == check_state_run_pq)
2269 ops_run_check_pq(sh, percpu, 1);
2270 else
2271 BUG();
2272 }
91c00924 2273
59fc630b 2274 if (overlap_clear && !sh->batch_head)
91c00924
DW
2275 for (i = disks; i--; ) {
2276 struct r5dev *dev = &sh->dev[i];
2277 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2278 wake_up(&sh->raid_conf->wait_for_overlap);
2279 }
d6f38f31 2280 put_cpu();
91c00924
DW
2281}
2282
845b9e22
AP
2283static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2284{
046169f0
YY
2285#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2286 kfree(sh->pages);
2287#endif
845b9e22
AP
2288 if (sh->ppl_page)
2289 __free_page(sh->ppl_page);
2290 kmem_cache_free(sc, sh);
2291}
2292
5f9d1fde 2293static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
845b9e22 2294 int disks, struct r5conf *conf)
f18c1a35
N
2295{
2296 struct stripe_head *sh;
5f9d1fde 2297 int i;
f18c1a35
N
2298
2299 sh = kmem_cache_zalloc(sc, gfp);
2300 if (sh) {
2301 spin_lock_init(&sh->stripe_lock);
2302 spin_lock_init(&sh->batch_lock);
2303 INIT_LIST_HEAD(&sh->batch_list);
2304 INIT_LIST_HEAD(&sh->lru);
a39f7afd 2305 INIT_LIST_HEAD(&sh->r5c);
d7bd398e 2306 INIT_LIST_HEAD(&sh->log_list);
f18c1a35 2307 atomic_set(&sh->count, 1);
845b9e22 2308 sh->raid_conf = conf;
a39f7afd 2309 sh->log_start = MaxSector;
5f9d1fde
SL
2310 for (i = 0; i < disks; i++) {
2311 struct r5dev *dev = &sh->dev[i];
2312
3a83f467
ML
2313 bio_init(&dev->req, &dev->vec, 1);
2314 bio_init(&dev->rreq, &dev->rvec, 1);
5f9d1fde 2315 }
845b9e22
AP
2316
2317 if (raid5_has_ppl(conf)) {
2318 sh->ppl_page = alloc_page(gfp);
2319 if (!sh->ppl_page) {
2320 free_stripe(sc, sh);
046169f0 2321 return NULL;
845b9e22
AP
2322 }
2323 }
046169f0
YY
2324#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2325 if (init_stripe_shared_pages(sh, conf, disks)) {
2326 free_stripe(sc, sh);
2327 return NULL;
2328 }
2329#endif
f18c1a35
N
2330 }
2331 return sh;
2332}
486f0644 2333static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2334{
2335 struct stripe_head *sh;
f18c1a35 2336
845b9e22 2337 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
3f294f4f
N
2338 if (!sh)
2339 return 0;
6ce32846 2340
a9683a79 2341 if (grow_buffers(sh, gfp)) {
e4e11e38 2342 shrink_buffers(sh);
845b9e22 2343 free_stripe(conf->slab_cache, sh);
3f294f4f
N
2344 return 0;
2345 }
486f0644
N
2346 sh->hash_lock_index =
2347 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2348 /* we just created an active stripe so... */
3f294f4f 2349 atomic_inc(&conf->active_stripes);
59fc630b 2350
6d036f7d 2351 raid5_release_stripe(sh);
486f0644 2352 conf->max_nr_stripes++;
3f294f4f
N
2353 return 1;
2354}
2355
d1688a6d 2356static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2357{
e18b890b 2358 struct kmem_cache *sc;
53b8d89d 2359 size_t namelen = sizeof(conf->cache_name[0]);
5e5e3e78 2360 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2361
f4be6b43 2362 if (conf->mddev->gendisk)
53b8d89d 2363 snprintf(conf->cache_name[0], namelen,
f4be6b43
N
2364 "raid%d-%s", conf->level, mdname(conf->mddev));
2365 else
53b8d89d 2366 snprintf(conf->cache_name[0], namelen,
f4be6b43 2367 "raid%d-%p", conf->level, conf->mddev);
53b8d89d 2368 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
f4be6b43 2369
ad01c9e3
N
2370 conf->active_name = 0;
2371 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2372 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2373 0, 0, NULL);
1da177e4
LT
2374 if (!sc)
2375 return 1;
2376 conf->slab_cache = sc;
ad01c9e3 2377 conf->pool_size = devs;
486f0644
N
2378 while (num--)
2379 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2380 return 1;
486f0644 2381
1da177e4
LT
2382 return 0;
2383}
29269553 2384
d6f38f31 2385/**
7f8a30e5
CL
2386 * scribble_alloc - allocate percpu scribble buffer for required size
2387 * of the scribble region
2aada5b1
DLM
2388 * @percpu: from for_each_present_cpu() of the caller
2389 * @num: total number of disks in the array
2390 * @cnt: scribble objs count for required size of the scribble region
d6f38f31 2391 *
7f8a30e5 2392 * The scribble buffer size must be enough to contain:
d6f38f31
DW
2393 * 1/ a struct page pointer for each device in the array +2
2394 * 2/ room to convert each entry in (1) to its corresponding dma
2395 * (dma_map_page()) or page (page_address()) address.
2396 *
2397 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2398 * calculate over all devices (not just the data blocks), using zeros in place
2399 * of the P and Q blocks.
2400 */
b330e6a4 2401static int scribble_alloc(struct raid5_percpu *percpu,
ba54d4d4 2402 int num, int cnt)
d6f38f31 2403{
b330e6a4 2404 size_t obj_size =
7aba13b7
YY
2405 sizeof(struct page *) * (num + 2) +
2406 sizeof(addr_conv_t) * (num + 2) +
2407 sizeof(unsigned int) * (num + 2);
b330e6a4 2408 void *scribble;
d6f38f31 2409
ba54d4d4
CL
2410 /*
2411 * If here is in raid array suspend context, it is in memalloc noio
2412 * context as well, there is no potential recursive memory reclaim
2413 * I/Os with the GFP_KERNEL flag.
2414 */
2415 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
b330e6a4
KO
2416 if (!scribble)
2417 return -ENOMEM;
2418
2419 kvfree(percpu->scribble);
2420
2421 percpu->scribble = scribble;
2422 percpu->scribble_obj_size = obj_size;
2423 return 0;
d6f38f31
DW
2424}
2425
738a2738
N
2426static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2427{
2428 unsigned long cpu;
2429 int err = 0;
2430
27a353c0
SL
2431 /*
2432 * Never shrink. And mddev_suspend() could deadlock if this is called
2433 * from raid5d. In that case, scribble_disks and scribble_sectors
2434 * should equal to new_disks and new_sectors
2435 */
2436 if (conf->scribble_disks >= new_disks &&
2437 conf->scribble_sectors >= new_sectors)
2438 return 0;
738a2738
N
2439 mddev_suspend(conf->mddev);
2440 get_online_cpus();
b330e6a4 2441
738a2738
N
2442 for_each_present_cpu(cpu) {
2443 struct raid5_percpu *percpu;
738a2738
N
2444
2445 percpu = per_cpu_ptr(conf->percpu, cpu);
b330e6a4 2446 err = scribble_alloc(percpu, new_disks,
c911c46c 2447 new_sectors / RAID5_STRIPE_SECTORS(conf));
b330e6a4 2448 if (err)
738a2738 2449 break;
738a2738 2450 }
b330e6a4 2451
738a2738
N
2452 put_online_cpus();
2453 mddev_resume(conf->mddev);
27a353c0
SL
2454 if (!err) {
2455 conf->scribble_disks = new_disks;
2456 conf->scribble_sectors = new_sectors;
2457 }
738a2738
N
2458 return err;
2459}
2460
d1688a6d 2461static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2462{
2463 /* Make all the stripes able to hold 'newsize' devices.
2464 * New slots in each stripe get 'page' set to a new page.
2465 *
2466 * This happens in stages:
2467 * 1/ create a new kmem_cache and allocate the required number of
2468 * stripe_heads.
83f0d77a 2469 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2470 * to the new stripe_heads. This will have the side effect of
2471 * freezing the array as once all stripe_heads have been collected,
2472 * no IO will be possible. Old stripe heads are freed once their
2473 * pages have been transferred over, and the old kmem_cache is
2474 * freed when all stripes are done.
2475 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
3560741e 2476 * we simple return a failure status - no need to clean anything up.
ad01c9e3
N
2477 * 4/ allocate new pages for the new slots in the new stripe_heads.
2478 * If this fails, we don't bother trying the shrink the
2479 * stripe_heads down again, we just leave them as they are.
2480 * As each stripe_head is processed the new one is released into
2481 * active service.
2482 *
2483 * Once step2 is started, we cannot afford to wait for a write,
2484 * so we use GFP_NOIO allocations.
2485 */
2486 struct stripe_head *osh, *nsh;
2487 LIST_HEAD(newstripes);
2488 struct disk_info *ndisks;
2214c260 2489 int err = 0;
e18b890b 2490 struct kmem_cache *sc;
ad01c9e3 2491 int i;
566c09c5 2492 int hash, cnt;
ad01c9e3 2493
2214c260 2494 md_allow_write(conf->mddev);
2a2275d6 2495
ad01c9e3
N
2496 /* Step 1 */
2497 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2498 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2499 0, 0, NULL);
ad01c9e3
N
2500 if (!sc)
2501 return -ENOMEM;
2502
2d5b569b
N
2503 /* Need to ensure auto-resizing doesn't interfere */
2504 mutex_lock(&conf->cache_size_mutex);
2505
ad01c9e3 2506 for (i = conf->max_nr_stripes; i; i--) {
845b9e22 2507 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
ad01c9e3
N
2508 if (!nsh)
2509 break;
2510
ad01c9e3
N
2511 list_add(&nsh->lru, &newstripes);
2512 }
2513 if (i) {
2514 /* didn't get enough, give up */
2515 while (!list_empty(&newstripes)) {
2516 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2517 list_del(&nsh->lru);
845b9e22 2518 free_stripe(sc, nsh);
ad01c9e3
N
2519 }
2520 kmem_cache_destroy(sc);
2d5b569b 2521 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2522 return -ENOMEM;
2523 }
2524 /* Step 2 - Must use GFP_NOIO now.
2525 * OK, we have enough stripes, start collecting inactive
2526 * stripes and copying them over
2527 */
566c09c5
SL
2528 hash = 0;
2529 cnt = 0;
ad01c9e3 2530 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2531 lock_device_hash_lock(conf, hash);
6ab2a4b8 2532 wait_event_cmd(conf->wait_for_stripe,
566c09c5
SL
2533 !list_empty(conf->inactive_list + hash),
2534 unlock_device_hash_lock(conf, hash),
2535 lock_device_hash_lock(conf, hash));
2536 osh = get_free_stripe(conf, hash);
2537 unlock_device_hash_lock(conf, hash);
f18c1a35 2538
f16acaf3
YY
2539#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2540 for (i = 0; i < osh->nr_pages; i++) {
2541 nsh->pages[i] = osh->pages[i];
2542 osh->pages[i] = NULL;
2543 }
2544#endif
d592a996 2545 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2546 nsh->dev[i].page = osh->dev[i].page;
d592a996 2547 nsh->dev[i].orig_page = osh->dev[i].page;
7aba13b7 2548 nsh->dev[i].offset = osh->dev[i].offset;
d592a996 2549 }
566c09c5 2550 nsh->hash_lock_index = hash;
845b9e22 2551 free_stripe(conf->slab_cache, osh);
566c09c5
SL
2552 cnt++;
2553 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2554 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2555 hash++;
2556 cnt = 0;
2557 }
ad01c9e3
N
2558 }
2559 kmem_cache_destroy(conf->slab_cache);
2560
2561 /* Step 3.
2562 * At this point, we are holding all the stripes so the array
2563 * is completely stalled, so now is a good time to resize
d6f38f31 2564 * conf->disks and the scribble region
ad01c9e3 2565 */
6396bb22 2566 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
ad01c9e3 2567 if (ndisks) {
d7bd398e 2568 for (i = 0; i < conf->pool_size; i++)
ad01c9e3 2569 ndisks[i] = conf->disks[i];
d7bd398e
SL
2570
2571 for (i = conf->pool_size; i < newsize; i++) {
2572 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2573 if (!ndisks[i].extra_page)
2574 err = -ENOMEM;
2575 }
2576
2577 if (err) {
2578 for (i = conf->pool_size; i < newsize; i++)
2579 if (ndisks[i].extra_page)
2580 put_page(ndisks[i].extra_page);
2581 kfree(ndisks);
2582 } else {
2583 kfree(conf->disks);
2584 conf->disks = ndisks;
2585 }
ad01c9e3
N
2586 } else
2587 err = -ENOMEM;
2588
583da48e
DY
2589 conf->slab_cache = sc;
2590 conf->active_name = 1-conf->active_name;
2591
ad01c9e3
N
2592 /* Step 4, return new stripes to service */
2593 while(!list_empty(&newstripes)) {
2594 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2595 list_del_init(&nsh->lru);
d6f38f31 2596
f16acaf3
YY
2597#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2598 for (i = 0; i < nsh->nr_pages; i++) {
2599 if (nsh->pages[i])
2600 continue;
2601 nsh->pages[i] = alloc_page(GFP_NOIO);
2602 if (!nsh->pages[i])
2603 err = -ENOMEM;
2604 }
2605
2606 for (i = conf->raid_disks; i < newsize; i++) {
2607 if (nsh->dev[i].page)
2608 continue;
2609 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2610 nsh->dev[i].orig_page = nsh->dev[i].page;
2611 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2612 }
2613#else
ad01c9e3
N
2614 for (i=conf->raid_disks; i < newsize; i++)
2615 if (nsh->dev[i].page == NULL) {
2616 struct page *p = alloc_page(GFP_NOIO);
2617 nsh->dev[i].page = p;
d592a996 2618 nsh->dev[i].orig_page = p;
7aba13b7 2619 nsh->dev[i].offset = 0;
ad01c9e3
N
2620 if (!p)
2621 err = -ENOMEM;
2622 }
f16acaf3 2623#endif
6d036f7d 2624 raid5_release_stripe(nsh);
ad01c9e3
N
2625 }
2626 /* critical section pass, GFP_NOIO no longer needed */
2627
6e9eac2d
N
2628 if (!err)
2629 conf->pool_size = newsize;
b44c018c
SL
2630 mutex_unlock(&conf->cache_size_mutex);
2631
ad01c9e3
N
2632 return err;
2633}
1da177e4 2634
486f0644 2635static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2636{
2637 struct stripe_head *sh;
49895bcc 2638 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2639
566c09c5
SL
2640 spin_lock_irq(conf->hash_locks + hash);
2641 sh = get_free_stripe(conf, hash);
2642 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2643 if (!sh)
2644 return 0;
78bafebd 2645 BUG_ON(atomic_read(&sh->count));
e4e11e38 2646 shrink_buffers(sh);
845b9e22 2647 free_stripe(conf->slab_cache, sh);
3f294f4f 2648 atomic_dec(&conf->active_stripes);
486f0644 2649 conf->max_nr_stripes--;
3f294f4f
N
2650 return 1;
2651}
2652
d1688a6d 2653static void shrink_stripes(struct r5conf *conf)
3f294f4f 2654{
486f0644
N
2655 while (conf->max_nr_stripes &&
2656 drop_one_stripe(conf))
2657 ;
3f294f4f 2658
644df1a8 2659 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2660 conf->slab_cache = NULL;
2661}
2662
4246a0b6 2663static void raid5_end_read_request(struct bio * bi)
1da177e4 2664{
99c0fb5f 2665 struct stripe_head *sh = bi->bi_private;
d1688a6d 2666 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2667 int disks = sh->disks, i;
d6950432 2668 char b[BDEVNAME_SIZE];
dd054fce 2669 struct md_rdev *rdev = NULL;
05616be5 2670 sector_t s;
1da177e4
LT
2671
2672 for (i=0 ; i<disks; i++)
2673 if (bi == &sh->dev[i].req)
2674 break;
2675
4246a0b6 2676 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2677 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4e4cbee9 2678 bi->bi_status);
1da177e4 2679 if (i == disks) {
5f9d1fde 2680 bio_reset(bi);
1da177e4 2681 BUG();
6712ecf8 2682 return;
1da177e4 2683 }
14a75d3e 2684 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2685 /* If replacement finished while this request was outstanding,
2686 * 'replacement' might be NULL already.
2687 * In that case it moved down to 'rdev'.
2688 * rdev is not removed until all requests are finished.
2689 */
14a75d3e 2690 rdev = conf->disks[i].replacement;
dd054fce 2691 if (!rdev)
14a75d3e 2692 rdev = conf->disks[i].rdev;
1da177e4 2693
05616be5
N
2694 if (use_new_offset(conf, sh))
2695 s = sh->sector + rdev->new_data_offset;
2696 else
2697 s = sh->sector + rdev->data_offset;
4e4cbee9 2698 if (!bi->bi_status) {
1da177e4 2699 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2700 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2701 /* Note that this cannot happen on a
2702 * replacement device. We just fail those on
2703 * any error
2704 */
cc6167b4
N
2705 pr_info_ratelimited(
2706 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
c911c46c 2707 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
05616be5 2708 (unsigned long long)s,
8bda470e 2709 bdevname(rdev->bdev, b));
c911c46c 2710 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
4e5314b5
N
2711 clear_bit(R5_ReadError, &sh->dev[i].flags);
2712 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2713 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2714 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2715
86aa1397
SL
2716 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2717 /*
2718 * end read for a page in journal, this
2719 * must be preparing for prexor in rmw
2720 */
2721 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2722
14a75d3e
N
2723 if (atomic_read(&rdev->read_errors))
2724 atomic_set(&rdev->read_errors, 0);
1da177e4 2725 } else {
14a75d3e 2726 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2727 int retry = 0;
2e8ac303 2728 int set_bad = 0;
d6950432 2729
1da177e4 2730 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
b76b4715
NC
2731 if (!(bi->bi_status == BLK_STS_PROTECTION))
2732 atomic_inc(&rdev->read_errors);
14a75d3e 2733 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
cc6167b4
N
2734 pr_warn_ratelimited(
2735 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
14a75d3e 2736 mdname(conf->mddev),
05616be5 2737 (unsigned long long)s,
14a75d3e 2738 bdn);
2e8ac303 2739 else if (conf->mddev->degraded >= conf->max_degraded) {
2740 set_bad = 1;
cc6167b4
N
2741 pr_warn_ratelimited(
2742 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
8bda470e 2743 mdname(conf->mddev),
05616be5 2744 (unsigned long long)s,
8bda470e 2745 bdn);
2e8ac303 2746 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2747 /* Oh, no!!! */
2e8ac303 2748 set_bad = 1;
cc6167b4
N
2749 pr_warn_ratelimited(
2750 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
8bda470e 2751 mdname(conf->mddev),
05616be5 2752 (unsigned long long)s,
8bda470e 2753 bdn);
2e8ac303 2754 } else if (atomic_read(&rdev->read_errors)
0009fad0
NC
2755 > conf->max_nr_stripes) {
2756 if (!test_bit(Faulty, &rdev->flags)) {
2757 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2758 mdname(conf->mddev),
2759 atomic_read(&rdev->read_errors),
2760 conf->max_nr_stripes);
2761 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2762 mdname(conf->mddev), bdn);
2763 }
2764 } else
ba22dcbf 2765 retry = 1;
edfa1f65
BY
2766 if (set_bad && test_bit(In_sync, &rdev->flags)
2767 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2768 retry = 1;
ba22dcbf 2769 if (retry)
143f6e73
XN
2770 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2771 set_bit(R5_ReadError, &sh->dev[i].flags);
2772 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
3f9e7c14 2773 set_bit(R5_ReadError, &sh->dev[i].flags);
2774 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2775 } else
2776 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2777 else {
4e5314b5
N
2778 clear_bit(R5_ReadError, &sh->dev[i].flags);
2779 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2780 if (!(set_bad
2781 && test_bit(In_sync, &rdev->flags)
2782 && rdev_set_badblocks(
c911c46c 2783 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2e8ac303 2784 md_error(conf->mddev, rdev);
ba22dcbf 2785 }
1da177e4 2786 }
14a75d3e 2787 rdev_dec_pending(rdev, conf->mddev);
c9445555 2788 bio_reset(bi);
1da177e4
LT
2789 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2790 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2791 raid5_release_stripe(sh);
1da177e4
LT
2792}
2793
4246a0b6 2794static void raid5_end_write_request(struct bio *bi)
1da177e4 2795{
99c0fb5f 2796 struct stripe_head *sh = bi->bi_private;
d1688a6d 2797 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2798 int disks = sh->disks, i;
3f649ab7 2799 struct md_rdev *rdev;
b84db560
N
2800 sector_t first_bad;
2801 int bad_sectors;
977df362 2802 int replacement = 0;
1da177e4 2803
977df362
N
2804 for (i = 0 ; i < disks; i++) {
2805 if (bi == &sh->dev[i].req) {
2806 rdev = conf->disks[i].rdev;
1da177e4 2807 break;
977df362
N
2808 }
2809 if (bi == &sh->dev[i].rreq) {
2810 rdev = conf->disks[i].replacement;
dd054fce
N
2811 if (rdev)
2812 replacement = 1;
2813 else
2814 /* rdev was removed and 'replacement'
2815 * replaced it. rdev is not removed
2816 * until all requests are finished.
2817 */
2818 rdev = conf->disks[i].rdev;
977df362
N
2819 break;
2820 }
2821 }
4246a0b6 2822 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2823 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4e4cbee9 2824 bi->bi_status);
1da177e4 2825 if (i == disks) {
5f9d1fde 2826 bio_reset(bi);
1da177e4 2827 BUG();
6712ecf8 2828 return;
1da177e4
LT
2829 }
2830
977df362 2831 if (replacement) {
4e4cbee9 2832 if (bi->bi_status)
977df362
N
2833 md_error(conf->mddev, rdev);
2834 else if (is_badblock(rdev, sh->sector,
c911c46c 2835 RAID5_STRIPE_SECTORS(conf),
977df362
N
2836 &first_bad, &bad_sectors))
2837 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2838 } else {
4e4cbee9 2839 if (bi->bi_status) {
9f97e4b1 2840 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2841 set_bit(WriteErrorSeen, &rdev->flags);
2842 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2843 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2844 set_bit(MD_RECOVERY_NEEDED,
2845 &rdev->mddev->recovery);
977df362 2846 } else if (is_badblock(rdev, sh->sector,
c911c46c 2847 RAID5_STRIPE_SECTORS(conf),
c0b32972 2848 &first_bad, &bad_sectors)) {
977df362 2849 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2850 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2851 /* That was a successful write so make
2852 * sure it looks like we already did
2853 * a re-write.
2854 */
2855 set_bit(R5_ReWrite, &sh->dev[i].flags);
2856 }
977df362
N
2857 }
2858 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2859
4e4cbee9 2860 if (sh->batch_head && bi->bi_status && !replacement)
72ac7330 2861 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2862
c9445555 2863 bio_reset(bi);
977df362
N
2864 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2865 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2866 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2867 raid5_release_stripe(sh);
59fc630b 2868
2869 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2870 raid5_release_stripe(sh->batch_head);
1da177e4
LT
2871}
2872
849674e4 2873static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2874{
2875 char b[BDEVNAME_SIZE];
d1688a6d 2876 struct r5conf *conf = mddev->private;
908f4fbd 2877 unsigned long flags;
0c55e022 2878 pr_debug("raid456: error called\n");
1da177e4 2879
908f4fbd 2880 spin_lock_irqsave(&conf->device_lock, flags);
fb73b357
MT
2881
2882 if (test_bit(In_sync, &rdev->flags) &&
2883 mddev->degraded == conf->max_degraded) {
2884 /*
2885 * Don't allow to achieve failed state
2886 * Don't try to recover this device
2887 */
2888 conf->recovery_disabled = mddev->recovery_disabled;
2889 spin_unlock_irqrestore(&conf->device_lock, flags);
2890 return;
2891 }
2892
aff69d89 2893 set_bit(Faulty, &rdev->flags);
908f4fbd 2894 clear_bit(In_sync, &rdev->flags);
2e38a37f 2895 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd
N
2896 spin_unlock_irqrestore(&conf->device_lock, flags);
2897 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2898
de393cde 2899 set_bit(Blocked, &rdev->flags);
2953079c
SL
2900 set_mask_bits(&mddev->sb_flags, 0,
2901 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
cc6167b4
N
2902 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2903 "md/raid:%s: Operation continuing on %d devices.\n",
2904 mdname(mddev),
2905 bdevname(rdev->bdev, b),
2906 mdname(mddev),
2907 conf->raid_disks - mddev->degraded);
70d466f7 2908 r5c_update_on_rdev_error(mddev, rdev);
16a53ecc 2909}
1da177e4
LT
2910
2911/*
2912 * Input: a 'big' sector number,
2913 * Output: index of the data and parity disk, and the sector # in them.
2914 */
6d036f7d
SL
2915sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2916 int previous, int *dd_idx,
2917 struct stripe_head *sh)
1da177e4 2918{
6e3b96ed 2919 sector_t stripe, stripe2;
35f2a591 2920 sector_t chunk_number;
1da177e4 2921 unsigned int chunk_offset;
911d4ee8 2922 int pd_idx, qd_idx;
67cc2b81 2923 int ddf_layout = 0;
1da177e4 2924 sector_t new_sector;
e183eaed
N
2925 int algorithm = previous ? conf->prev_algo
2926 : conf->algorithm;
09c9e5fa
AN
2927 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2928 : conf->chunk_sectors;
112bf897
N
2929 int raid_disks = previous ? conf->previous_raid_disks
2930 : conf->raid_disks;
2931 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2932
2933 /* First compute the information on this sector */
2934
2935 /*
2936 * Compute the chunk number and the sector offset inside the chunk
2937 */
2938 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2939 chunk_number = r_sector;
1da177e4
LT
2940
2941 /*
2942 * Compute the stripe number
2943 */
35f2a591
N
2944 stripe = chunk_number;
2945 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2946 stripe2 = stripe;
1da177e4
LT
2947 /*
2948 * Select the parity disk based on the user selected algorithm.
2949 */
84789554 2950 pd_idx = qd_idx = -1;
16a53ecc
N
2951 switch(conf->level) {
2952 case 4:
911d4ee8 2953 pd_idx = data_disks;
16a53ecc
N
2954 break;
2955 case 5:
e183eaed 2956 switch (algorithm) {
1da177e4 2957 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2958 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2959 if (*dd_idx >= pd_idx)
1da177e4
LT
2960 (*dd_idx)++;
2961 break;
2962 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2963 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2964 if (*dd_idx >= pd_idx)
1da177e4
LT
2965 (*dd_idx)++;
2966 break;
2967 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2968 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2969 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2970 break;
2971 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2972 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2973 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2974 break;
99c0fb5f
N
2975 case ALGORITHM_PARITY_0:
2976 pd_idx = 0;
2977 (*dd_idx)++;
2978 break;
2979 case ALGORITHM_PARITY_N:
2980 pd_idx = data_disks;
2981 break;
1da177e4 2982 default:
99c0fb5f 2983 BUG();
16a53ecc
N
2984 }
2985 break;
2986 case 6:
2987
e183eaed 2988 switch (algorithm) {
16a53ecc 2989 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2990 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2991 qd_idx = pd_idx + 1;
2992 if (pd_idx == raid_disks-1) {
99c0fb5f 2993 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2994 qd_idx = 0;
2995 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2996 (*dd_idx) += 2; /* D D P Q D */
2997 break;
2998 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2999 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
3000 qd_idx = pd_idx + 1;
3001 if (pd_idx == raid_disks-1) {
99c0fb5f 3002 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
3003 qd_idx = 0;
3004 } else if (*dd_idx >= pd_idx)
16a53ecc
N
3005 (*dd_idx) += 2; /* D D P Q D */
3006 break;
3007 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 3008 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
3009 qd_idx = (pd_idx + 1) % raid_disks;
3010 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
3011 break;
3012 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 3013 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
3014 qd_idx = (pd_idx + 1) % raid_disks;
3015 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 3016 break;
99c0fb5f
N
3017
3018 case ALGORITHM_PARITY_0:
3019 pd_idx = 0;
3020 qd_idx = 1;
3021 (*dd_idx) += 2;
3022 break;
3023 case ALGORITHM_PARITY_N:
3024 pd_idx = data_disks;
3025 qd_idx = data_disks + 1;
3026 break;
3027
3028 case ALGORITHM_ROTATING_ZERO_RESTART:
3029 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3030 * of blocks for computing Q is different.
3031 */
6e3b96ed 3032 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
3033 qd_idx = pd_idx + 1;
3034 if (pd_idx == raid_disks-1) {
3035 (*dd_idx)++; /* Q D D D P */
3036 qd_idx = 0;
3037 } else if (*dd_idx >= pd_idx)
3038 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 3039 ddf_layout = 1;
99c0fb5f
N
3040 break;
3041
3042 case ALGORITHM_ROTATING_N_RESTART:
3043 /* Same a left_asymmetric, by first stripe is
3044 * D D D P Q rather than
3045 * Q D D D P
3046 */
6e3b96ed
N
3047 stripe2 += 1;
3048 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
3049 qd_idx = pd_idx + 1;
3050 if (pd_idx == raid_disks-1) {
3051 (*dd_idx)++; /* Q D D D P */
3052 qd_idx = 0;
3053 } else if (*dd_idx >= pd_idx)
3054 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 3055 ddf_layout = 1;
99c0fb5f
N
3056 break;
3057
3058 case ALGORITHM_ROTATING_N_CONTINUE:
3059 /* Same as left_symmetric but Q is before P */
6e3b96ed 3060 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
3061 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3062 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 3063 ddf_layout = 1;
99c0fb5f
N
3064 break;
3065
3066 case ALGORITHM_LEFT_ASYMMETRIC_6:
3067 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 3068 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
3069 if (*dd_idx >= pd_idx)
3070 (*dd_idx)++;
3071 qd_idx = raid_disks - 1;
3072 break;
3073
3074 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 3075 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
3076 if (*dd_idx >= pd_idx)
3077 (*dd_idx)++;
3078 qd_idx = raid_disks - 1;
3079 break;
3080
3081 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 3082 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
3083 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3084 qd_idx = raid_disks - 1;
3085 break;
3086
3087 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 3088 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
3089 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3090 qd_idx = raid_disks - 1;
3091 break;
3092
3093 case ALGORITHM_PARITY_0_6:
3094 pd_idx = 0;
3095 (*dd_idx)++;
3096 qd_idx = raid_disks - 1;
3097 break;
3098
16a53ecc 3099 default:
99c0fb5f 3100 BUG();
16a53ecc
N
3101 }
3102 break;
1da177e4
LT
3103 }
3104
911d4ee8
N
3105 if (sh) {
3106 sh->pd_idx = pd_idx;
3107 sh->qd_idx = qd_idx;
67cc2b81 3108 sh->ddf_layout = ddf_layout;
911d4ee8 3109 }
1da177e4
LT
3110 /*
3111 * Finally, compute the new sector number
3112 */
3113 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3114 return new_sector;
3115}
3116
6d036f7d 3117sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 3118{
d1688a6d 3119 struct r5conf *conf = sh->raid_conf;
b875e531
N
3120 int raid_disks = sh->disks;
3121 int data_disks = raid_disks - conf->max_degraded;
1da177e4 3122 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
3123 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3124 : conf->chunk_sectors;
e183eaed
N
3125 int algorithm = previous ? conf->prev_algo
3126 : conf->algorithm;
1da177e4
LT
3127 sector_t stripe;
3128 int chunk_offset;
35f2a591
N
3129 sector_t chunk_number;
3130 int dummy1, dd_idx = i;
1da177e4 3131 sector_t r_sector;
911d4ee8 3132 struct stripe_head sh2;
1da177e4
LT
3133
3134 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3135 stripe = new_sector;
1da177e4 3136
16a53ecc
N
3137 if (i == sh->pd_idx)
3138 return 0;
3139 switch(conf->level) {
3140 case 4: break;
3141 case 5:
e183eaed 3142 switch (algorithm) {
1da177e4
LT
3143 case ALGORITHM_LEFT_ASYMMETRIC:
3144 case ALGORITHM_RIGHT_ASYMMETRIC:
3145 if (i > sh->pd_idx)
3146 i--;
3147 break;
3148 case ALGORITHM_LEFT_SYMMETRIC:
3149 case ALGORITHM_RIGHT_SYMMETRIC:
3150 if (i < sh->pd_idx)
3151 i += raid_disks;
3152 i -= (sh->pd_idx + 1);
3153 break;
99c0fb5f
N
3154 case ALGORITHM_PARITY_0:
3155 i -= 1;
3156 break;
3157 case ALGORITHM_PARITY_N:
3158 break;
1da177e4 3159 default:
99c0fb5f 3160 BUG();
16a53ecc
N
3161 }
3162 break;
3163 case 6:
d0dabf7e 3164 if (i == sh->qd_idx)
16a53ecc 3165 return 0; /* It is the Q disk */
e183eaed 3166 switch (algorithm) {
16a53ecc
N
3167 case ALGORITHM_LEFT_ASYMMETRIC:
3168 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
3169 case ALGORITHM_ROTATING_ZERO_RESTART:
3170 case ALGORITHM_ROTATING_N_RESTART:
3171 if (sh->pd_idx == raid_disks-1)
3172 i--; /* Q D D D P */
16a53ecc
N
3173 else if (i > sh->pd_idx)
3174 i -= 2; /* D D P Q D */
3175 break;
3176 case ALGORITHM_LEFT_SYMMETRIC:
3177 case ALGORITHM_RIGHT_SYMMETRIC:
3178 if (sh->pd_idx == raid_disks-1)
3179 i--; /* Q D D D P */
3180 else {
3181 /* D D P Q D */
3182 if (i < sh->pd_idx)
3183 i += raid_disks;
3184 i -= (sh->pd_idx + 2);
3185 }
3186 break;
99c0fb5f
N
3187 case ALGORITHM_PARITY_0:
3188 i -= 2;
3189 break;
3190 case ALGORITHM_PARITY_N:
3191 break;
3192 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 3193 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
3194 if (sh->pd_idx == 0)
3195 i--; /* P D D D Q */
e4424fee
N
3196 else {
3197 /* D D Q P D */
3198 if (i < sh->pd_idx)
3199 i += raid_disks;
3200 i -= (sh->pd_idx + 1);
3201 }
99c0fb5f
N
3202 break;
3203 case ALGORITHM_LEFT_ASYMMETRIC_6:
3204 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3205 if (i > sh->pd_idx)
3206 i--;
3207 break;
3208 case ALGORITHM_LEFT_SYMMETRIC_6:
3209 case ALGORITHM_RIGHT_SYMMETRIC_6:
3210 if (i < sh->pd_idx)
3211 i += data_disks + 1;
3212 i -= (sh->pd_idx + 1);
3213 break;
3214 case ALGORITHM_PARITY_0_6:
3215 i -= 1;
3216 break;
16a53ecc 3217 default:
99c0fb5f 3218 BUG();
16a53ecc
N
3219 }
3220 break;
1da177e4
LT
3221 }
3222
3223 chunk_number = stripe * data_disks + i;
35f2a591 3224 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 3225
112bf897 3226 check = raid5_compute_sector(conf, r_sector,
784052ec 3227 previous, &dummy1, &sh2);
911d4ee8
N
3228 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3229 || sh2.qd_idx != sh->qd_idx) {
cc6167b4
N
3230 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3231 mdname(conf->mddev));
1da177e4
LT
3232 return 0;
3233 }
3234 return r_sector;
3235}
3236
07e83364
SL
3237/*
3238 * There are cases where we want handle_stripe_dirtying() and
3239 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3240 *
3241 * This function checks whether we want to delay the towrite. Specifically,
3242 * we delay the towrite when:
3243 *
3244 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3245 * stripe has data in journal (for other devices).
3246 *
3247 * In this case, when reading data for the non-overwrite dev, it is
3248 * necessary to handle complex rmw of write back cache (prexor with
3249 * orig_page, and xor with page). To keep read path simple, we would
3250 * like to flush data in journal to RAID disks first, so complex rmw
3251 * is handled in the write patch (handle_stripe_dirtying).
3252 *
39b99586
SL
3253 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3254 *
3255 * It is important to be able to flush all stripes in raid5-cache.
3256 * Therefore, we need reserve some space on the journal device for
3257 * these flushes. If flush operation includes pending writes to the
3258 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3259 * for the flush out. If we exclude these pending writes from flush
3260 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3261 * Therefore, excluding pending writes in these cases enables more
3262 * efficient use of the journal device.
3263 *
3264 * Note: To make sure the stripe makes progress, we only delay
3265 * towrite for stripes with data already in journal (injournal > 0).
3266 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3267 * no_space_stripes list.
3268 *
70d466f7
SL
3269 * 3. during journal failure
3270 * In journal failure, we try to flush all cached data to raid disks
3271 * based on data in stripe cache. The array is read-only to upper
3272 * layers, so we would skip all pending writes.
3273 *
07e83364 3274 */
39b99586
SL
3275static inline bool delay_towrite(struct r5conf *conf,
3276 struct r5dev *dev,
3277 struct stripe_head_state *s)
07e83364 3278{
39b99586
SL
3279 /* case 1 above */
3280 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3281 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3282 return true;
3283 /* case 2 above */
3284 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3285 s->injournal > 0)
3286 return true;
70d466f7
SL
3287 /* case 3 above */
3288 if (s->log_failed && s->injournal)
3289 return true;
39b99586 3290 return false;
07e83364
SL
3291}
3292
600aa109 3293static void
c0f7bddb 3294schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 3295 int rcw, int expand)
e33129d8 3296{
584acdd4 3297 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 3298 struct r5conf *conf = sh->raid_conf;
c0f7bddb 3299 int level = conf->level;
e33129d8
DW
3300
3301 if (rcw) {
1e6d690b
SL
3302 /*
3303 * In some cases, handle_stripe_dirtying initially decided to
3304 * run rmw and allocates extra page for prexor. However, rcw is
3305 * cheaper later on. We need to free the extra page now,
3306 * because we won't be able to do that in ops_complete_prexor().
3307 */
3308 r5c_release_extra_page(sh);
e33129d8
DW
3309
3310 for (i = disks; i--; ) {
3311 struct r5dev *dev = &sh->dev[i];
3312
39b99586 3313 if (dev->towrite && !delay_towrite(conf, dev, s)) {
e33129d8 3314 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 3315 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3316 if (!expand)
3317 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3318 s->locked++;
1e6d690b
SL
3319 } else if (test_bit(R5_InJournal, &dev->flags)) {
3320 set_bit(R5_LOCKED, &dev->flags);
3321 s->locked++;
e33129d8
DW
3322 }
3323 }
ce7d363a
N
3324 /* if we are not expanding this is a proper write request, and
3325 * there will be bios with new data to be drained into the
3326 * stripe cache
3327 */
3328 if (!expand) {
3329 if (!s->locked)
3330 /* False alarm, nothing to do */
3331 return;
3332 sh->reconstruct_state = reconstruct_state_drain_run;
3333 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3334 } else
3335 sh->reconstruct_state = reconstruct_state_run;
3336
3337 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3338
c0f7bddb 3339 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 3340 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 3341 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
3342 } else {
3343 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3344 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
3345 BUG_ON(level == 6 &&
3346 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3347 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 3348
e33129d8
DW
3349 for (i = disks; i--; ) {
3350 struct r5dev *dev = &sh->dev[i];
584acdd4 3351 if (i == pd_idx || i == qd_idx)
e33129d8
DW
3352 continue;
3353
e33129d8
DW
3354 if (dev->towrite &&
3355 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
3356 test_bit(R5_Wantcompute, &dev->flags))) {
3357 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3358 set_bit(R5_LOCKED, &dev->flags);
3359 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3360 s->locked++;
1e6d690b
SL
3361 } else if (test_bit(R5_InJournal, &dev->flags)) {
3362 set_bit(R5_LOCKED, &dev->flags);
3363 s->locked++;
e33129d8
DW
3364 }
3365 }
ce7d363a
N
3366 if (!s->locked)
3367 /* False alarm - nothing to do */
3368 return;
3369 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3370 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3371 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3372 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
3373 }
3374
c0f7bddb 3375 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
3376 * are in flight
3377 */
3378 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3379 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 3380 s->locked++;
e33129d8 3381
c0f7bddb
YT
3382 if (level == 6) {
3383 int qd_idx = sh->qd_idx;
3384 struct r5dev *dev = &sh->dev[qd_idx];
3385
3386 set_bit(R5_LOCKED, &dev->flags);
3387 clear_bit(R5_UPTODATE, &dev->flags);
3388 s->locked++;
3389 }
3390
845b9e22 3391 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3418d036
AP
3392 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3393 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3394 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3395 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3396
600aa109 3397 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 3398 __func__, (unsigned long long)sh->sector,
600aa109 3399 s->locked, s->ops_request);
e33129d8 3400}
16a53ecc 3401
1da177e4
LT
3402/*
3403 * Each stripe/dev can have one or more bion attached.
16a53ecc 3404 * toread/towrite point to the first in a chain.
1da177e4
LT
3405 * The bi_next chain must be in order.
3406 */
da41ba65 3407static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3408 int forwrite, int previous)
1da177e4
LT
3409{
3410 struct bio **bip;
d1688a6d 3411 struct r5conf *conf = sh->raid_conf;
72626685 3412 int firstwrite=0;
1da177e4 3413
cbe47ec5 3414 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 3415 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
3416 (unsigned long long)sh->sector);
3417
b17459c0 3418 spin_lock_irq(&sh->stripe_lock);
2cd259a7 3419 sh->dev[dd_idx].write_hint = bi->bi_write_hint;
59fc630b 3420 /* Don't allow new IO added to stripes in batch list */
3421 if (sh->batch_head)
3422 goto overlap;
72626685 3423 if (forwrite) {
1da177e4 3424 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 3425 if (*bip == NULL)
72626685
N
3426 firstwrite = 1;
3427 } else
1da177e4 3428 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
3429 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3430 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
3431 goto overlap;
3432 bip = & (*bip)->bi_next;
3433 }
4f024f37 3434 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
3435 goto overlap;
3436
3418d036
AP
3437 if (forwrite && raid5_has_ppl(conf)) {
3438 /*
3439 * With PPL only writes to consecutive data chunks within a
3440 * stripe are allowed because for a single stripe_head we can
3441 * only have one PPL entry at a time, which describes one data
3442 * range. Not really an overlap, but wait_for_overlap can be
3443 * used to handle this.
3444 */
3445 sector_t sector;
3446 sector_t first = 0;
3447 sector_t last = 0;
3448 int count = 0;
3449 int i;
3450
3451 for (i = 0; i < sh->disks; i++) {
3452 if (i != sh->pd_idx &&
3453 (i == dd_idx || sh->dev[i].towrite)) {
3454 sector = sh->dev[i].sector;
3455 if (count == 0 || sector < first)
3456 first = sector;
3457 if (sector > last)
3458 last = sector;
3459 count++;
3460 }
3461 }
3462
3463 if (first + conf->chunk_sectors * (count - 1) != last)
3464 goto overlap;
3465 }
3466
da41ba65 3467 if (!forwrite || previous)
3468 clear_bit(STRIPE_BATCH_READY, &sh->state);
3469
78bafebd 3470 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
3471 if (*bip)
3472 bi->bi_next = *bip;
3473 *bip = bi;
016c76ac 3474 bio_inc_remaining(bi);
49728050 3475 md_write_inc(conf->mddev, bi);
72626685 3476
1da177e4
LT
3477 if (forwrite) {
3478 /* check if page is covered */
3479 sector_t sector = sh->dev[dd_idx].sector;
3480 for (bi=sh->dev[dd_idx].towrite;
c911c46c 3481 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
4f024f37 3482 bi && bi->bi_iter.bi_sector <= sector;
c911c46c 3483 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
3484 if (bio_end_sector(bi) >= sector)
3485 sector = bio_end_sector(bi);
1da177e4 3486 }
c911c46c 3487 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
7a87f434 3488 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3489 sh->overwrite_disks++;
1da177e4 3490 }
cbe47ec5
N
3491
3492 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3493 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3494 (unsigned long long)sh->sector, dd_idx);
3495
3496 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3497 /* Cannot hold spinlock over bitmap_startwrite,
3498 * but must ensure this isn't added to a batch until
3499 * we have added to the bitmap and set bm_seq.
3500 * So set STRIPE_BITMAP_PENDING to prevent
3501 * batching.
3502 * If multiple add_stripe_bio() calls race here they
3503 * much all set STRIPE_BITMAP_PENDING. So only the first one
3504 * to complete "bitmap_startwrite" gets to set
3505 * STRIPE_BIT_DELAY. This is important as once a stripe
3506 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3507 * any more.
3508 */
3509 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3510 spin_unlock_irq(&sh->stripe_lock);
e64e4018 3511 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
c911c46c 3512 RAID5_STRIPE_SECTORS(conf), 0);
d0852df5
N
3513 spin_lock_irq(&sh->stripe_lock);
3514 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3515 if (!sh->batch_head) {
3516 sh->bm_seq = conf->seq_flush+1;
3517 set_bit(STRIPE_BIT_DELAY, &sh->state);
3518 }
cbe47ec5 3519 }
d0852df5 3520 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3521
3522 if (stripe_can_batch(sh))
3523 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3524 return 1;
3525
3526 overlap:
3527 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3528 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3529 return 0;
3530}
3531
d1688a6d 3532static void end_reshape(struct r5conf *conf);
29269553 3533
d1688a6d 3534static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3535 struct stripe_head *sh)
ccfcc3c1 3536{
784052ec 3537 int sectors_per_chunk =
09c9e5fa 3538 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3539 int dd_idx;
2d2063ce 3540 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3541 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3542
112bf897
N
3543 raid5_compute_sector(conf,
3544 stripe * (disks - conf->max_degraded)
b875e531 3545 *sectors_per_chunk + chunk_offset,
112bf897 3546 previous,
911d4ee8 3547 &dd_idx, sh);
ccfcc3c1
N
3548}
3549
a4456856 3550static void
d1688a6d 3551handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
bd83d0a2 3552 struct stripe_head_state *s, int disks)
a4456856
DW
3553{
3554 int i;
59fc630b 3555 BUG_ON(sh->batch_head);
a4456856
DW
3556 for (i = disks; i--; ) {
3557 struct bio *bi;
3558 int bitmap_end = 0;
3559
3560 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3561 struct md_rdev *rdev;
a4456856
DW
3562 rcu_read_lock();
3563 rdev = rcu_dereference(conf->disks[i].rdev);
f5b67ae8
N
3564 if (rdev && test_bit(In_sync, &rdev->flags) &&
3565 !test_bit(Faulty, &rdev->flags))
7f0da59b
N
3566 atomic_inc(&rdev->nr_pending);
3567 else
3568 rdev = NULL;
a4456856 3569 rcu_read_unlock();
7f0da59b
N
3570 if (rdev) {
3571 if (!rdev_set_badblocks(
3572 rdev,
3573 sh->sector,
c911c46c 3574 RAID5_STRIPE_SECTORS(conf), 0))
7f0da59b
N
3575 md_error(conf->mddev, rdev);
3576 rdev_dec_pending(rdev, conf->mddev);
3577 }
a4456856 3578 }
b17459c0 3579 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3580 /* fail all writes first */
3581 bi = sh->dev[i].towrite;
3582 sh->dev[i].towrite = NULL;
7a87f434 3583 sh->overwrite_disks = 0;
b17459c0 3584 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3585 if (bi)
a4456856 3586 bitmap_end = 1;
a4456856 3587
ff875738 3588 log_stripe_write_finished(sh);
0576b1c6 3589
a4456856
DW
3590 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3591 wake_up(&conf->wait_for_overlap);
3592
4f024f37 3593 while (bi && bi->bi_iter.bi_sector <
c911c46c
YY
3594 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3595 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
4246a0b6 3596
49728050 3597 md_write_end(conf->mddev);
6308d8e3 3598 bio_io_error(bi);
a4456856
DW
3599 bi = nextbi;
3600 }
7eaf7e8e 3601 if (bitmap_end)
e64e4018 3602 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
c911c46c 3603 RAID5_STRIPE_SECTORS(conf), 0, 0);
7eaf7e8e 3604 bitmap_end = 0;
a4456856
DW
3605 /* and fail all 'written' */
3606 bi = sh->dev[i].written;
3607 sh->dev[i].written = NULL;
d592a996
SL
3608 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3609 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3610 sh->dev[i].page = sh->dev[i].orig_page;
3611 }
3612
a4456856 3613 if (bi) bitmap_end = 1;
4f024f37 3614 while (bi && bi->bi_iter.bi_sector <
c911c46c
YY
3615 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3616 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
4246a0b6 3617
49728050 3618 md_write_end(conf->mddev);
6308d8e3 3619 bio_io_error(bi);
a4456856
DW
3620 bi = bi2;
3621 }
3622
b5e98d65
DW
3623 /* fail any reads if this device is non-operational and
3624 * the data has not reached the cache yet.
3625 */
3626 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
6e74a9cf 3627 s->failed > conf->max_degraded &&
b5e98d65
DW
3628 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3629 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3630 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3631 bi = sh->dev[i].toread;
3632 sh->dev[i].toread = NULL;
143c4d05 3633 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3634 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3635 wake_up(&conf->wait_for_overlap);
ebda780b
SL
3636 if (bi)
3637 s->to_read--;
4f024f37 3638 while (bi && bi->bi_iter.bi_sector <
c911c46c 3639 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
a4456856 3640 struct bio *nextbi =
c911c46c 3641 r5_next_bio(conf, bi, sh->dev[i].sector);
4246a0b6 3642
6308d8e3 3643 bio_io_error(bi);
a4456856
DW
3644 bi = nextbi;
3645 }
3646 }
a4456856 3647 if (bitmap_end)
e64e4018 3648 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
c911c46c 3649 RAID5_STRIPE_SECTORS(conf), 0, 0);
8cfa7b0f
N
3650 /* If we were in the middle of a write the parity block might
3651 * still be locked - so just clear all R5_LOCKED flags
3652 */
3653 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3654 }
ebda780b
SL
3655 s->to_write = 0;
3656 s->written = 0;
a4456856 3657
8b3e6cdc
DW
3658 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3659 if (atomic_dec_and_test(&conf->pending_full_writes))
3660 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3661}
3662
7f0da59b 3663static void
d1688a6d 3664handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3665 struct stripe_head_state *s)
3666{
3667 int abort = 0;
3668 int i;
3669
59fc630b 3670 BUG_ON(sh->batch_head);
7f0da59b 3671 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3672 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3673 wake_up(&conf->wait_for_overlap);
7f0da59b 3674 s->syncing = 0;
9a3e1101 3675 s->replacing = 0;
7f0da59b 3676 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3677 * Don't even need to abort as that is handled elsewhere
3678 * if needed, and not always wanted e.g. if there is a known
3679 * bad block here.
9a3e1101 3680 * For recover/replace we need to record a bad block on all
7f0da59b
N
3681 * non-sync devices, or abort the recovery
3682 */
18b9837e
N
3683 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3684 /* During recovery devices cannot be removed, so
3685 * locking and refcounting of rdevs is not needed
3686 */
e50d3992 3687 rcu_read_lock();
18b9837e 3688 for (i = 0; i < conf->raid_disks; i++) {
e50d3992 3689 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
18b9837e
N
3690 if (rdev
3691 && !test_bit(Faulty, &rdev->flags)
3692 && !test_bit(In_sync, &rdev->flags)
3693 && !rdev_set_badblocks(rdev, sh->sector,
c911c46c 3694 RAID5_STRIPE_SECTORS(conf), 0))
18b9837e 3695 abort = 1;
e50d3992 3696 rdev = rcu_dereference(conf->disks[i].replacement);
18b9837e
N
3697 if (rdev
3698 && !test_bit(Faulty, &rdev->flags)
3699 && !test_bit(In_sync, &rdev->flags)
3700 && !rdev_set_badblocks(rdev, sh->sector,
c911c46c 3701 RAID5_STRIPE_SECTORS(conf), 0))
18b9837e
N
3702 abort = 1;
3703 }
e50d3992 3704 rcu_read_unlock();
18b9837e
N
3705 if (abort)
3706 conf->recovery_disabled =
3707 conf->mddev->recovery_disabled;
7f0da59b 3708 }
c911c46c 3709 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
7f0da59b
N
3710}
3711
9a3e1101
N
3712static int want_replace(struct stripe_head *sh, int disk_idx)
3713{
3714 struct md_rdev *rdev;
3715 int rv = 0;
3f232d6a
N
3716
3717 rcu_read_lock();
3718 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
9a3e1101
N
3719 if (rdev
3720 && !test_bit(Faulty, &rdev->flags)
3721 && !test_bit(In_sync, &rdev->flags)
3722 && (rdev->recovery_offset <= sh->sector
3723 || rdev->mddev->recovery_cp <= sh->sector))
3724 rv = 1;
3f232d6a 3725 rcu_read_unlock();
9a3e1101
N
3726 return rv;
3727}
3728
2c58f06e
N
3729static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3730 int disk_idx, int disks)
a4456856 3731{
5599becc 3732 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3733 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3734 &sh->dev[s->failed_num[1]] };
ea664c82 3735 int i;
45a4d8fd 3736 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
5599becc 3737
a79cfe12
N
3738
3739 if (test_bit(R5_LOCKED, &dev->flags) ||
3740 test_bit(R5_UPTODATE, &dev->flags))
3741 /* No point reading this as we already have it or have
3742 * decided to get it.
3743 */
3744 return 0;
3745
3746 if (dev->toread ||
3747 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3748 /* We need this block to directly satisfy a request */
3749 return 1;
3750
3751 if (s->syncing || s->expanding ||
3752 (s->replacing && want_replace(sh, disk_idx)))
3753 /* When syncing, or expanding we read everything.
3754 * When replacing, we need the replaced block.
3755 */
3756 return 1;
3757
3758 if ((s->failed >= 1 && fdev[0]->toread) ||
3759 (s->failed >= 2 && fdev[1]->toread))
3760 /* If we want to read from a failed device, then
3761 * we need to actually read every other device.
3762 */
3763 return 1;
3764
a9d56950
N
3765 /* Sometimes neither read-modify-write nor reconstruct-write
3766 * cycles can work. In those cases we read every block we
3767 * can. Then the parity-update is certain to have enough to
3768 * work with.
3769 * This can only be a problem when we need to write something,
3770 * and some device has failed. If either of those tests
3771 * fail we need look no further.
3772 */
3773 if (!s->failed || !s->to_write)
3774 return 0;
3775
3776 if (test_bit(R5_Insync, &dev->flags) &&
3777 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3778 /* Pre-reads at not permitted until after short delay
3779 * to gather multiple requests. However if this
3560741e 3780 * device is no Insync, the block could only be computed
a9d56950
N
3781 * and there is no need to delay that.
3782 */
3783 return 0;
ea664c82 3784
36707bb2 3785 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3786 if (fdev[i]->towrite &&
3787 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3788 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3789 /* If we have a partial write to a failed
3790 * device, then we will need to reconstruct
3791 * the content of that device, so all other
3792 * devices must be read.
3793 */
3794 return 1;
45a4d8fd
CP
3795
3796 if (s->failed >= 2 &&
3797 (fdev[i]->towrite ||
3798 s->failed_num[i] == sh->pd_idx ||
3799 s->failed_num[i] == sh->qd_idx) &&
3800 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3801 /* In max degraded raid6, If the failed disk is P, Q,
3802 * or we want to read the failed disk, we need to do
3803 * reconstruct-write.
3804 */
3805 force_rcw = true;
ea664c82
N
3806 }
3807
45a4d8fd
CP
3808 /* If we are forced to do a reconstruct-write, because parity
3809 * cannot be trusted and we are currently recovering it, there
3810 * is extra need to be careful.
ea664c82
N
3811 * If one of the devices that we would need to read, because
3812 * it is not being overwritten (and maybe not written at all)
3813 * is missing/faulty, then we need to read everything we can.
3814 */
45a4d8fd 3815 if (!force_rcw &&
ea664c82
N
3816 sh->sector < sh->raid_conf->mddev->recovery_cp)
3817 /* reconstruct-write isn't being forced */
3818 return 0;
36707bb2 3819 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3820 if (s->failed_num[i] != sh->pd_idx &&
3821 s->failed_num[i] != sh->qd_idx &&
3822 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3823 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3824 return 1;
3825 }
3826
2c58f06e
N
3827 return 0;
3828}
3829
ba02684d
SL
3830/* fetch_block - checks the given member device to see if its data needs
3831 * to be read or computed to satisfy a request.
3832 *
3833 * Returns 1 when no more member devices need to be checked, otherwise returns
3834 * 0 to tell the loop in handle_stripe_fill to continue
3835 */
2c58f06e
N
3836static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3837 int disk_idx, int disks)
3838{
3839 struct r5dev *dev = &sh->dev[disk_idx];
3840
3841 /* is the data in this block needed, and can we get it? */
3842 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3843 /* we would like to get this block, possibly by computing it,
3844 * otherwise read it if the backing disk is insync
3845 */
3846 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3847 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3848 BUG_ON(sh->batch_head);
7471fb77
N
3849
3850 /*
3851 * In the raid6 case if the only non-uptodate disk is P
3852 * then we already trusted P to compute the other failed
3853 * drives. It is safe to compute rather than re-read P.
3854 * In other cases we only compute blocks from failed
3855 * devices, otherwise check/repair might fail to detect
3856 * a real inconsistency.
3857 */
3858
5599becc 3859 if ((s->uptodate == disks - 1) &&
7471fb77 3860 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
f2b3b44d 3861 (s->failed && (disk_idx == s->failed_num[0] ||
7471fb77 3862 disk_idx == s->failed_num[1])))) {
5599becc
YT
3863 /* have disk failed, and we're requested to fetch it;
3864 * do compute it
a4456856 3865 */
5599becc
YT
3866 pr_debug("Computing stripe %llu block %d\n",
3867 (unsigned long long)sh->sector, disk_idx);
3868 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3869 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3870 set_bit(R5_Wantcompute, &dev->flags);
3871 sh->ops.target = disk_idx;
3872 sh->ops.target2 = -1; /* no 2nd target */
3873 s->req_compute = 1;
93b3dbce
N
3874 /* Careful: from this point on 'uptodate' is in the eye
3875 * of raid_run_ops which services 'compute' operations
3876 * before writes. R5_Wantcompute flags a block that will
3877 * be R5_UPTODATE by the time it is needed for a
3878 * subsequent operation.
3879 */
5599becc
YT
3880 s->uptodate++;
3881 return 1;
3882 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3883 /* Computing 2-failure is *very* expensive; only
3884 * do it if failed >= 2
3885 */
3886 int other;
3887 for (other = disks; other--; ) {
3888 if (other == disk_idx)
3889 continue;
3890 if (!test_bit(R5_UPTODATE,
3891 &sh->dev[other].flags))
3892 break;
a4456856 3893 }
5599becc
YT
3894 BUG_ON(other < 0);
3895 pr_debug("Computing stripe %llu blocks %d,%d\n",
3896 (unsigned long long)sh->sector,
3897 disk_idx, other);
3898 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3899 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3900 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3901 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3902 sh->ops.target = disk_idx;
3903 sh->ops.target2 = other;
3904 s->uptodate += 2;
3905 s->req_compute = 1;
3906 return 1;
3907 } else if (test_bit(R5_Insync, &dev->flags)) {
3908 set_bit(R5_LOCKED, &dev->flags);
3909 set_bit(R5_Wantread, &dev->flags);
3910 s->locked++;
3911 pr_debug("Reading block %d (sync=%d)\n",
3912 disk_idx, s->syncing);
a4456856
DW
3913 }
3914 }
5599becc
YT
3915
3916 return 0;
3917}
3918
2aada5b1 3919/*
93b3dbce 3920 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3921 */
93b3dbce
N
3922static void handle_stripe_fill(struct stripe_head *sh,
3923 struct stripe_head_state *s,
3924 int disks)
5599becc
YT
3925{
3926 int i;
3927
3928 /* look for blocks to read/compute, skip this if a compute
3929 * is already in flight, or if the stripe contents are in the
3930 * midst of changing due to a write
3931 */
3932 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
07e83364
SL
3933 !sh->reconstruct_state) {
3934
3935 /*
3936 * For degraded stripe with data in journal, do not handle
3937 * read requests yet, instead, flush the stripe to raid
3938 * disks first, this avoids handling complex rmw of write
3939 * back cache (prexor with orig_page, and then xor with
3940 * page) in the read path
3941 */
3942 if (s->injournal && s->failed) {
3943 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3944 r5c_make_stripe_write_out(sh);
3945 goto out;
3946 }
3947
5599becc 3948 for (i = disks; i--; )
93b3dbce 3949 if (fetch_block(sh, s, i, disks))
5599becc 3950 break;
07e83364
SL
3951 }
3952out:
a4456856
DW
3953 set_bit(STRIPE_HANDLE, &sh->state);
3954}
3955
787b76fa
N
3956static void break_stripe_batch_list(struct stripe_head *head_sh,
3957 unsigned long handle_flags);
1fe797e6 3958/* handle_stripe_clean_event
a4456856
DW
3959 * any written block on an uptodate or failed drive can be returned.
3960 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3961 * never LOCKED, so we don't need to test 'failed' directly.
3962 */
d1688a6d 3963static void handle_stripe_clean_event(struct r5conf *conf,
bd83d0a2 3964 struct stripe_head *sh, int disks)
a4456856
DW
3965{
3966 int i;
3967 struct r5dev *dev;
f8dfcffd 3968 int discard_pending = 0;
59fc630b 3969 struct stripe_head *head_sh = sh;
3970 bool do_endio = false;
a4456856
DW
3971
3972 for (i = disks; i--; )
3973 if (sh->dev[i].written) {
3974 dev = &sh->dev[i];
3975 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3976 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3977 test_bit(R5_Discard, &dev->flags) ||
3978 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3979 /* We can return any write requests */
3980 struct bio *wbi, *wbi2;
45b4233c 3981 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3982 if (test_and_clear_bit(R5_Discard, &dev->flags))
3983 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3984 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3985 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3986 }
59fc630b 3987 do_endio = true;
3988
3989returnbi:
3990 dev->page = dev->orig_page;
a4456856
DW
3991 wbi = dev->written;
3992 dev->written = NULL;
4f024f37 3993 while (wbi && wbi->bi_iter.bi_sector <
c911c46c
YY
3994 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
3995 wbi2 = r5_next_bio(conf, wbi, dev->sector);
49728050 3996 md_write_end(conf->mddev);
016c76ac 3997 bio_endio(wbi);
a4456856
DW
3998 wbi = wbi2;
3999 }
e64e4018 4000 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
c911c46c 4001 RAID5_STRIPE_SECTORS(conf),
e64e4018
AS
4002 !test_bit(STRIPE_DEGRADED, &sh->state),
4003 0);
59fc630b 4004 if (head_sh->batch_head) {
4005 sh = list_first_entry(&sh->batch_list,
4006 struct stripe_head,
4007 batch_list);
4008 if (sh != head_sh) {
4009 dev = &sh->dev[i];
4010 goto returnbi;
4011 }
4012 }
4013 sh = head_sh;
4014 dev = &sh->dev[i];
f8dfcffd
N
4015 } else if (test_bit(R5_Discard, &dev->flags))
4016 discard_pending = 1;
4017 }
f6bed0ef 4018
ff875738 4019 log_stripe_write_finished(sh);
0576b1c6 4020
f8dfcffd
N
4021 if (!discard_pending &&
4022 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
b8a9d66d 4023 int hash;
f8dfcffd
N
4024 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4025 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4026 if (sh->qd_idx >= 0) {
4027 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4028 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4029 }
4030 /* now that discard is done we can proceed with any sync */
4031 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
4032 /*
4033 * SCSI discard will change some bio fields and the stripe has
4034 * no updated data, so remove it from hash list and the stripe
4035 * will be reinitialized
4036 */
59fc630b 4037unhash:
b8a9d66d
RG
4038 hash = sh->hash_lock_index;
4039 spin_lock_irq(conf->hash_locks + hash);
d47648fc 4040 remove_hash(sh);
b8a9d66d 4041 spin_unlock_irq(conf->hash_locks + hash);
59fc630b 4042 if (head_sh->batch_head) {
4043 sh = list_first_entry(&sh->batch_list,
4044 struct stripe_head, batch_list);
4045 if (sh != head_sh)
4046 goto unhash;
4047 }
59fc630b 4048 sh = head_sh;
4049
f8dfcffd
N
4050 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4051 set_bit(STRIPE_HANDLE, &sh->state);
4052
4053 }
8b3e6cdc
DW
4054
4055 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4056 if (atomic_dec_and_test(&conf->pending_full_writes))
4057 md_wakeup_thread(conf->mddev->thread);
59fc630b 4058
787b76fa
N
4059 if (head_sh->batch_head && do_endio)
4060 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
4061}
4062
86aa1397
SL
4063/*
4064 * For RMW in write back cache, we need extra page in prexor to store the
4065 * old data. This page is stored in dev->orig_page.
4066 *
4067 * This function checks whether we have data for prexor. The exact logic
4068 * is:
4069 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4070 */
4071static inline bool uptodate_for_rmw(struct r5dev *dev)
4072{
4073 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4074 (!test_bit(R5_InJournal, &dev->flags) ||
4075 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4076}
4077
d7bd398e
SL
4078static int handle_stripe_dirtying(struct r5conf *conf,
4079 struct stripe_head *sh,
4080 struct stripe_head_state *s,
4081 int disks)
a4456856
DW
4082{
4083 int rmw = 0, rcw = 0, i;
a7854487
AL
4084 sector_t recovery_cp = conf->mddev->recovery_cp;
4085
584acdd4 4086 /* Check whether resync is now happening or should start.
a7854487
AL
4087 * If yes, then the array is dirty (after unclean shutdown or
4088 * initial creation), so parity in some stripes might be inconsistent.
4089 * In this case, we need to always do reconstruct-write, to ensure
4090 * that in case of drive failure or read-error correction, we
4091 * generate correct data from the parity.
4092 */
584acdd4 4093 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
4094 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4095 s->failed == 0)) {
a7854487 4096 /* Calculate the real rcw later - for now make it
c8ac1803
N
4097 * look like rcw is cheaper
4098 */
4099 rcw = 1; rmw = 2;
584acdd4
MS
4100 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4101 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 4102 (unsigned long long)sh->sector);
c8ac1803 4103 } else for (i = disks; i--; ) {
a4456856
DW
4104 /* would I have to read this buffer for read_modify_write */
4105 struct r5dev *dev = &sh->dev[i];
39b99586 4106 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
07e83364 4107 i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b 4108 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 4109 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 4110 !(uptodate_for_rmw(dev) ||
f38e1219 4111 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
4112 if (test_bit(R5_Insync, &dev->flags))
4113 rmw++;
4114 else
4115 rmw += 2*disks; /* cannot read it */
4116 }
4117 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
4118 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4119 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 4120 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 4121 !(test_bit(R5_UPTODATE, &dev->flags) ||
1e6d690b 4122 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
4123 if (test_bit(R5_Insync, &dev->flags))
4124 rcw++;
a4456856
DW
4125 else
4126 rcw += 2*disks;
4127 }
4128 }
1e6d690b 4129
39b99586
SL
4130 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4131 (unsigned long long)sh->sector, sh->state, rmw, rcw);
a4456856 4132 set_bit(STRIPE_HANDLE, &sh->state);
41257580 4133 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
a4456856 4134 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
4135 if (conf->mddev->queue)
4136 blk_add_trace_msg(conf->mddev->queue,
4137 "raid5 rmw %llu %d",
4138 (unsigned long long)sh->sector, rmw);
a4456856
DW
4139 for (i = disks; i--; ) {
4140 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
4141 if (test_bit(R5_InJournal, &dev->flags) &&
4142 dev->page == dev->orig_page &&
4143 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4144 /* alloc page for prexor */
d7bd398e
SL
4145 struct page *p = alloc_page(GFP_NOIO);
4146
4147 if (p) {
4148 dev->orig_page = p;
4149 continue;
4150 }
4151
4152 /*
4153 * alloc_page() failed, try use
4154 * disk_info->extra_page
4155 */
4156 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4157 &conf->cache_state)) {
4158 r5c_use_extra_page(sh);
4159 break;
4160 }
1e6d690b 4161
d7bd398e
SL
4162 /* extra_page in use, add to delayed_list */
4163 set_bit(STRIPE_DELAYED, &sh->state);
4164 s->waiting_extra_page = 1;
4165 return -EAGAIN;
1e6d690b 4166 }
d7bd398e 4167 }
1e6d690b 4168
d7bd398e
SL
4169 for (i = disks; i--; ) {
4170 struct r5dev *dev = &sh->dev[i];
39b99586 4171 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
1e6d690b
SL
4172 i == sh->pd_idx || i == sh->qd_idx ||
4173 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 4174 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 4175 !(uptodate_for_rmw(dev) ||
1e6d690b 4176 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 4177 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
4178 if (test_bit(STRIPE_PREREAD_ACTIVE,
4179 &sh->state)) {
4180 pr_debug("Read_old block %d for r-m-w\n",
4181 i);
a4456856
DW
4182 set_bit(R5_LOCKED, &dev->flags);
4183 set_bit(R5_Wantread, &dev->flags);
4184 s->locked++;
e3914d59 4185 } else
a4456856 4186 set_bit(STRIPE_DELAYED, &sh->state);
a4456856
DW
4187 }
4188 }
a9add5d9 4189 }
41257580 4190 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
a4456856 4191 /* want reconstruct write, but need to get some data */
a9add5d9 4192 int qread =0;
c8ac1803 4193 rcw = 0;
a4456856
DW
4194 for (i = disks; i--; ) {
4195 struct r5dev *dev = &sh->dev[i];
4196 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 4197 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 4198 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 4199 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
4200 test_bit(R5_Wantcompute, &dev->flags))) {
4201 rcw++;
67f45548
N
4202 if (test_bit(R5_Insync, &dev->flags) &&
4203 test_bit(STRIPE_PREREAD_ACTIVE,
4204 &sh->state)) {
45b4233c 4205 pr_debug("Read_old block "
a4456856
DW
4206 "%d for Reconstruct\n", i);
4207 set_bit(R5_LOCKED, &dev->flags);
4208 set_bit(R5_Wantread, &dev->flags);
4209 s->locked++;
a9add5d9 4210 qread++;
e3914d59 4211 } else
a4456856 4212 set_bit(STRIPE_DELAYED, &sh->state);
a4456856
DW
4213 }
4214 }
e3620a3a 4215 if (rcw && conf->mddev->queue)
a9add5d9
N
4216 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4217 (unsigned long long)sh->sector,
4218 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 4219 }
b1b02fe9
N
4220
4221 if (rcw > disks && rmw > disks &&
4222 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4223 set_bit(STRIPE_DELAYED, &sh->state);
4224
a4456856
DW
4225 /* now if nothing is locked, and if we have enough data,
4226 * we can start a write request
4227 */
f38e1219
DW
4228 /* since handle_stripe can be called at any time we need to handle the
4229 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
4230 * subsequent call wants to start a write request. raid_run_ops only
4231 * handles the case where compute block and reconstruct are requested
f38e1219
DW
4232 * simultaneously. If this is not the case then new writes need to be
4233 * held off until the compute completes.
4234 */
976ea8d4
DW
4235 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4236 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
1e6d690b 4237 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 4238 schedule_reconstruction(sh, s, rcw == 0, 0);
d7bd398e 4239 return 0;
a4456856
DW
4240}
4241
d1688a6d 4242static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
4243 struct stripe_head_state *s, int disks)
4244{
ecc65c9b 4245 struct r5dev *dev = NULL;
bd2ab670 4246
59fc630b 4247 BUG_ON(sh->batch_head);
a4456856 4248 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 4249
ecc65c9b
DW
4250 switch (sh->check_state) {
4251 case check_state_idle:
4252 /* start a new check operation if there are no failures */
bd2ab670 4253 if (s->failed == 0) {
bd2ab670 4254 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
4255 sh->check_state = check_state_run;
4256 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 4257 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 4258 s->uptodate--;
ecc65c9b 4259 break;
bd2ab670 4260 }
f2b3b44d 4261 dev = &sh->dev[s->failed_num[0]];
df561f66 4262 fallthrough;
ecc65c9b
DW
4263 case check_state_compute_result:
4264 sh->check_state = check_state_idle;
4265 if (!dev)
4266 dev = &sh->dev[sh->pd_idx];
4267
4268 /* check that a write has not made the stripe insync */
4269 if (test_bit(STRIPE_INSYNC, &sh->state))
4270 break;
c8894419 4271
a4456856 4272 /* either failed parity check, or recovery is happening */
a4456856
DW
4273 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4274 BUG_ON(s->uptodate != disks);
4275
4276 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 4277 s->locked++;
a4456856 4278 set_bit(R5_Wantwrite, &dev->flags);
830ea016 4279
a4456856 4280 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 4281 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
4282 break;
4283 case check_state_run:
4284 break; /* we will be called again upon completion */
4285 case check_state_check_result:
4286 sh->check_state = check_state_idle;
4287
4288 /* if a failure occurred during the check operation, leave
4289 * STRIPE_INSYNC not set and let the stripe be handled again
4290 */
4291 if (s->failed)
4292 break;
4293
4294 /* handle a successful check operation, if parity is correct
4295 * we are done. Otherwise update the mismatch count and repair
4296 * parity if !MD_RECOVERY_CHECK
4297 */
ad283ea4 4298 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
4299 /* parity is correct (on disc,
4300 * not in buffer any more)
4301 */
4302 set_bit(STRIPE_INSYNC, &sh->state);
4303 else {
c911c46c 4304 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
e1539036 4305 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
ecc65c9b
DW
4306 /* don't try to repair!! */
4307 set_bit(STRIPE_INSYNC, &sh->state);
e1539036
N
4308 pr_warn_ratelimited("%s: mismatch sector in range "
4309 "%llu-%llu\n", mdname(conf->mddev),
4310 (unsigned long long) sh->sector,
4311 (unsigned long long) sh->sector +
c911c46c 4312 RAID5_STRIPE_SECTORS(conf));
e1539036 4313 } else {
ecc65c9b 4314 sh->check_state = check_state_compute_run;
976ea8d4 4315 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
4316 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4317 set_bit(R5_Wantcompute,
4318 &sh->dev[sh->pd_idx].flags);
4319 sh->ops.target = sh->pd_idx;
ac6b53b6 4320 sh->ops.target2 = -1;
ecc65c9b
DW
4321 s->uptodate++;
4322 }
4323 }
4324 break;
4325 case check_state_compute_run:
4326 break;
4327 default:
cc6167b4 4328 pr_err("%s: unknown check_state: %d sector: %llu\n",
ecc65c9b
DW
4329 __func__, sh->check_state,
4330 (unsigned long long) sh->sector);
4331 BUG();
a4456856
DW
4332 }
4333}
4334
d1688a6d 4335static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 4336 struct stripe_head_state *s,
f2b3b44d 4337 int disks)
a4456856 4338{
a4456856 4339 int pd_idx = sh->pd_idx;
34e04e87 4340 int qd_idx = sh->qd_idx;
d82dfee0 4341 struct r5dev *dev;
a4456856 4342
59fc630b 4343 BUG_ON(sh->batch_head);
a4456856
DW
4344 set_bit(STRIPE_HANDLE, &sh->state);
4345
4346 BUG_ON(s->failed > 2);
d82dfee0 4347
a4456856
DW
4348 /* Want to check and possibly repair P and Q.
4349 * However there could be one 'failed' device, in which
4350 * case we can only check one of them, possibly using the
4351 * other to generate missing data
4352 */
4353
d82dfee0
DW
4354 switch (sh->check_state) {
4355 case check_state_idle:
4356 /* start a new check operation if there are < 2 failures */
f2b3b44d 4357 if (s->failed == s->q_failed) {
d82dfee0 4358 /* The only possible failed device holds Q, so it
a4456856
DW
4359 * makes sense to check P (If anything else were failed,
4360 * we would have used P to recreate it).
4361 */
d82dfee0 4362 sh->check_state = check_state_run;
a4456856 4363 }
f2b3b44d 4364 if (!s->q_failed && s->failed < 2) {
d82dfee0 4365 /* Q is not failed, and we didn't use it to generate
a4456856
DW
4366 * anything, so it makes sense to check it
4367 */
d82dfee0
DW
4368 if (sh->check_state == check_state_run)
4369 sh->check_state = check_state_run_pq;
4370 else
4371 sh->check_state = check_state_run_q;
a4456856 4372 }
a4456856 4373
d82dfee0
DW
4374 /* discard potentially stale zero_sum_result */
4375 sh->ops.zero_sum_result = 0;
a4456856 4376
d82dfee0
DW
4377 if (sh->check_state == check_state_run) {
4378 /* async_xor_zero_sum destroys the contents of P */
4379 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4380 s->uptodate--;
a4456856 4381 }
d82dfee0
DW
4382 if (sh->check_state >= check_state_run &&
4383 sh->check_state <= check_state_run_pq) {
4384 /* async_syndrome_zero_sum preserves P and Q, so
4385 * no need to mark them !uptodate here
4386 */
4387 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4388 break;
a4456856
DW
4389 }
4390
d82dfee0
DW
4391 /* we have 2-disk failure */
4392 BUG_ON(s->failed != 2);
df561f66 4393 fallthrough;
d82dfee0
DW
4394 case check_state_compute_result:
4395 sh->check_state = check_state_idle;
a4456856 4396
d82dfee0
DW
4397 /* check that a write has not made the stripe insync */
4398 if (test_bit(STRIPE_INSYNC, &sh->state))
4399 break;
a4456856
DW
4400
4401 /* now write out any block on a failed drive,
d82dfee0 4402 * or P or Q if they were recomputed
a4456856 4403 */
b2176a1d 4404 dev = NULL;
a4456856 4405 if (s->failed == 2) {
f2b3b44d 4406 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
4407 s->locked++;
4408 set_bit(R5_LOCKED, &dev->flags);
4409 set_bit(R5_Wantwrite, &dev->flags);
4410 }
4411 if (s->failed >= 1) {
f2b3b44d 4412 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
4413 s->locked++;
4414 set_bit(R5_LOCKED, &dev->flags);
4415 set_bit(R5_Wantwrite, &dev->flags);
4416 }
d82dfee0 4417 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
4418 dev = &sh->dev[pd_idx];
4419 s->locked++;
4420 set_bit(R5_LOCKED, &dev->flags);
4421 set_bit(R5_Wantwrite, &dev->flags);
4422 }
d82dfee0 4423 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
4424 dev = &sh->dev[qd_idx];
4425 s->locked++;
4426 set_bit(R5_LOCKED, &dev->flags);
4427 set_bit(R5_Wantwrite, &dev->flags);
4428 }
b2176a1d
NC
4429 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4430 "%s: disk%td not up to date\n",
4431 mdname(conf->mddev),
4432 dev - (struct r5dev *) &sh->dev)) {
4433 clear_bit(R5_LOCKED, &dev->flags);
4434 clear_bit(R5_Wantwrite, &dev->flags);
4435 s->locked--;
4436 }
a4456856
DW
4437 clear_bit(STRIPE_DEGRADED, &sh->state);
4438
4439 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
4440 break;
4441 case check_state_run:
4442 case check_state_run_q:
4443 case check_state_run_pq:
4444 break; /* we will be called again upon completion */
4445 case check_state_check_result:
4446 sh->check_state = check_state_idle;
4447
4448 /* handle a successful check operation, if parity is correct
4449 * we are done. Otherwise update the mismatch count and repair
4450 * parity if !MD_RECOVERY_CHECK
4451 */
4452 if (sh->ops.zero_sum_result == 0) {
a25d8c32
SL
4453 /* both parities are correct */
4454 if (!s->failed)
4455 set_bit(STRIPE_INSYNC, &sh->state);
4456 else {
4457 /* in contrast to the raid5 case we can validate
4458 * parity, but still have a failure to write
4459 * back
4460 */
4461 sh->check_state = check_state_compute_result;
4462 /* Returning at this point means that we may go
4463 * off and bring p and/or q uptodate again so
4464 * we make sure to check zero_sum_result again
4465 * to verify if p or q need writeback
4466 */
4467 }
d82dfee0 4468 } else {
c911c46c 4469 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
e1539036 4470 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
d82dfee0
DW
4471 /* don't try to repair!! */
4472 set_bit(STRIPE_INSYNC, &sh->state);
e1539036
N
4473 pr_warn_ratelimited("%s: mismatch sector in range "
4474 "%llu-%llu\n", mdname(conf->mddev),
4475 (unsigned long long) sh->sector,
4476 (unsigned long long) sh->sector +
c911c46c 4477 RAID5_STRIPE_SECTORS(conf));
e1539036 4478 } else {
d82dfee0
DW
4479 int *target = &sh->ops.target;
4480
4481 sh->ops.target = -1;
4482 sh->ops.target2 = -1;
4483 sh->check_state = check_state_compute_run;
4484 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4485 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4486 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4487 set_bit(R5_Wantcompute,
4488 &sh->dev[pd_idx].flags);
4489 *target = pd_idx;
4490 target = &sh->ops.target2;
4491 s->uptodate++;
4492 }
4493 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4494 set_bit(R5_Wantcompute,
4495 &sh->dev[qd_idx].flags);
4496 *target = qd_idx;
4497 s->uptodate++;
4498 }
4499 }
4500 }
4501 break;
4502 case check_state_compute_run:
4503 break;
4504 default:
cc6167b4
N
4505 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4506 __func__, sh->check_state,
4507 (unsigned long long) sh->sector);
d82dfee0 4508 BUG();
a4456856
DW
4509 }
4510}
4511
d1688a6d 4512static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
4513{
4514 int i;
4515
4516 /* We have read all the blocks in this stripe and now we need to
4517 * copy some of them into a target stripe for expand.
4518 */
f0a50d37 4519 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 4520 BUG_ON(sh->batch_head);
a4456856
DW
4521 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4522 for (i = 0; i < sh->disks; i++)
34e04e87 4523 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 4524 int dd_idx, j;
a4456856 4525 struct stripe_head *sh2;
a08abd8c 4526 struct async_submit_ctl submit;
a4456856 4527
6d036f7d 4528 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
4529 sector_t s = raid5_compute_sector(conf, bn, 0,
4530 &dd_idx, NULL);
6d036f7d 4531 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
4532 if (sh2 == NULL)
4533 /* so far only the early blocks of this stripe
4534 * have been requested. When later blocks
4535 * get requested, we will try again
4536 */
4537 continue;
4538 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4539 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4540 /* must have already done this block */
6d036f7d 4541 raid5_release_stripe(sh2);
a4456856
DW
4542 continue;
4543 }
f0a50d37
DW
4544
4545 /* place all the copies on one channel */
a08abd8c 4546 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 4547 tx = async_memcpy(sh2->dev[dd_idx].page,
7aba13b7
YY
4548 sh->dev[i].page, sh2->dev[dd_idx].offset,
4549 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
a08abd8c 4550 &submit);
f0a50d37 4551
a4456856
DW
4552 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4553 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4554 for (j = 0; j < conf->raid_disks; j++)
4555 if (j != sh2->pd_idx &&
86c374ba 4556 j != sh2->qd_idx &&
a4456856
DW
4557 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4558 break;
4559 if (j == conf->raid_disks) {
4560 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4561 set_bit(STRIPE_HANDLE, &sh2->state);
4562 }
6d036f7d 4563 raid5_release_stripe(sh2);
f0a50d37 4564
a4456856 4565 }
a2e08551 4566 /* done submitting copies, wait for them to complete */
749586b7 4567 async_tx_quiesce(&tx);
a4456856 4568}
1da177e4
LT
4569
4570/*
4571 * handle_stripe - do things to a stripe.
4572 *
9a3e1101
N
4573 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4574 * state of various bits to see what needs to be done.
1da177e4 4575 * Possible results:
9a3e1101
N
4576 * return some read requests which now have data
4577 * return some write requests which are safely on storage
1da177e4
LT
4578 * schedule a read on some buffers
4579 * schedule a write of some buffers
4580 * return confirmation of parity correctness
4581 *
1da177e4 4582 */
a4456856 4583
acfe726b 4584static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4585{
d1688a6d 4586 struct r5conf *conf = sh->raid_conf;
f416885e 4587 int disks = sh->disks;
474af965
N
4588 struct r5dev *dev;
4589 int i;
9a3e1101 4590 int do_recovery = 0;
1da177e4 4591
acfe726b
N
4592 memset(s, 0, sizeof(*s));
4593
dabc4ec6 4594 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4595 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4596 s->failed_num[0] = -1;
4597 s->failed_num[1] = -1;
6e74a9cf 4598 s->log_failed = r5l_log_disk_error(conf);
1da177e4 4599
acfe726b 4600 /* Now to look around and see what can be done */
1da177e4 4601 rcu_read_lock();
16a53ecc 4602 for (i=disks; i--; ) {
3cb03002 4603 struct md_rdev *rdev;
31c176ec
N
4604 sector_t first_bad;
4605 int bad_sectors;
4606 int is_bad = 0;
acfe726b 4607
16a53ecc 4608 dev = &sh->dev[i];
1da177e4 4609
45b4233c 4610 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4611 i, dev->flags,
4612 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4613 /* maybe we can reply to a read
4614 *
4615 * new wantfill requests are only permitted while
4616 * ops_complete_biofill is guaranteed to be inactive
4617 */
4618 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4619 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4620 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4621
16a53ecc 4622 /* now count some things */
cc94015a
N
4623 if (test_bit(R5_LOCKED, &dev->flags))
4624 s->locked++;
4625 if (test_bit(R5_UPTODATE, &dev->flags))
4626 s->uptodate++;
2d6e4ecc 4627 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4628 s->compute++;
4629 BUG_ON(s->compute > 2);
2d6e4ecc 4630 }
1da177e4 4631
acfe726b 4632 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4633 s->to_fill++;
acfe726b 4634 else if (dev->toread)
cc94015a 4635 s->to_read++;
16a53ecc 4636 if (dev->towrite) {
cc94015a 4637 s->to_write++;
16a53ecc 4638 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4639 s->non_overwrite++;
16a53ecc 4640 }
a4456856 4641 if (dev->written)
cc94015a 4642 s->written++;
14a75d3e
N
4643 /* Prefer to use the replacement for reads, but only
4644 * if it is recovered enough and has no bad blocks.
4645 */
4646 rdev = rcu_dereference(conf->disks[i].replacement);
4647 if (rdev && !test_bit(Faulty, &rdev->flags) &&
c911c46c
YY
4648 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4649 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
14a75d3e
N
4650 &first_bad, &bad_sectors))
4651 set_bit(R5_ReadRepl, &dev->flags);
4652 else {
e6030cb0 4653 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4654 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4655 else
4656 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4657 rdev = rcu_dereference(conf->disks[i].rdev);
4658 clear_bit(R5_ReadRepl, &dev->flags);
4659 }
9283d8c5
N
4660 if (rdev && test_bit(Faulty, &rdev->flags))
4661 rdev = NULL;
31c176ec 4662 if (rdev) {
c911c46c 4663 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
31c176ec
N
4664 &first_bad, &bad_sectors);
4665 if (s->blocked_rdev == NULL
4666 && (test_bit(Blocked, &rdev->flags)
4667 || is_bad < 0)) {
4668 if (is_bad < 0)
4669 set_bit(BlockedBadBlocks,
4670 &rdev->flags);
4671 s->blocked_rdev = rdev;
4672 atomic_inc(&rdev->nr_pending);
4673 }
6bfe0b49 4674 }
415e72d0
N
4675 clear_bit(R5_Insync, &dev->flags);
4676 if (!rdev)
4677 /* Not in-sync */;
31c176ec
N
4678 else if (is_bad) {
4679 /* also not in-sync */
18b9837e
N
4680 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4681 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4682 /* treat as in-sync, but with a read error
4683 * which we can now try to correct
4684 */
4685 set_bit(R5_Insync, &dev->flags);
4686 set_bit(R5_ReadError, &dev->flags);
4687 }
4688 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4689 set_bit(R5_Insync, &dev->flags);
c911c46c 4690 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
415e72d0 4691 /* in sync if before recovery_offset */
30d7a483
N
4692 set_bit(R5_Insync, &dev->flags);
4693 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4694 test_bit(R5_Expanded, &dev->flags))
4695 /* If we've reshaped into here, we assume it is Insync.
4696 * We will shortly update recovery_offset to make
4697 * it official.
4698 */
4699 set_bit(R5_Insync, &dev->flags);
4700
1cc03eb9 4701 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4702 /* This flag does not apply to '.replacement'
4703 * only to .rdev, so make sure to check that*/
4704 struct md_rdev *rdev2 = rcu_dereference(
4705 conf->disks[i].rdev);
4706 if (rdev2 == rdev)
4707 clear_bit(R5_Insync, &dev->flags);
4708 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4709 s->handle_bad_blocks = 1;
14a75d3e 4710 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4711 } else
4712 clear_bit(R5_WriteError, &dev->flags);
4713 }
1cc03eb9 4714 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4715 /* This flag does not apply to '.replacement'
4716 * only to .rdev, so make sure to check that*/
4717 struct md_rdev *rdev2 = rcu_dereference(
4718 conf->disks[i].rdev);
4719 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4720 s->handle_bad_blocks = 1;
14a75d3e 4721 atomic_inc(&rdev2->nr_pending);
b84db560
N
4722 } else
4723 clear_bit(R5_MadeGood, &dev->flags);
4724 }
977df362
N
4725 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4726 struct md_rdev *rdev2 = rcu_dereference(
4727 conf->disks[i].replacement);
4728 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4729 s->handle_bad_blocks = 1;
4730 atomic_inc(&rdev2->nr_pending);
4731 } else
4732 clear_bit(R5_MadeGoodRepl, &dev->flags);
4733 }
415e72d0 4734 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4735 /* The ReadError flag will just be confusing now */
4736 clear_bit(R5_ReadError, &dev->flags);
4737 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4738 }
415e72d0
N
4739 if (test_bit(R5_ReadError, &dev->flags))
4740 clear_bit(R5_Insync, &dev->flags);
4741 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4742 if (s->failed < 2)
4743 s->failed_num[s->failed] = i;
4744 s->failed++;
9a3e1101
N
4745 if (rdev && !test_bit(Faulty, &rdev->flags))
4746 do_recovery = 1;
d63e2fc8
BC
4747 else if (!rdev) {
4748 rdev = rcu_dereference(
4749 conf->disks[i].replacement);
4750 if (rdev && !test_bit(Faulty, &rdev->flags))
4751 do_recovery = 1;
4752 }
415e72d0 4753 }
2ded3703
SL
4754
4755 if (test_bit(R5_InJournal, &dev->flags))
4756 s->injournal++;
1e6d690b
SL
4757 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4758 s->just_cached++;
1da177e4 4759 }
9a3e1101
N
4760 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4761 /* If there is a failed device being replaced,
4762 * we must be recovering.
4763 * else if we are after recovery_cp, we must be syncing
c6d2e084 4764 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4765 * else we can only be replacing
4766 * sync and recovery both need to read all devices, and so
4767 * use the same flag.
4768 */
4769 if (do_recovery ||
c6d2e084 4770 sh->sector >= conf->mddev->recovery_cp ||
4771 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4772 s->syncing = 1;
4773 else
4774 s->replacing = 1;
4775 }
1da177e4 4776 rcu_read_unlock();
cc94015a
N
4777}
4778
cb9902db
GJ
4779/*
4780 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4781 * a head which can now be handled.
4782 */
59fc630b 4783static int clear_batch_ready(struct stripe_head *sh)
4784{
4785 struct stripe_head *tmp;
4786 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4787 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4788 spin_lock(&sh->stripe_lock);
4789 if (!sh->batch_head) {
4790 spin_unlock(&sh->stripe_lock);
4791 return 0;
4792 }
4793
4794 /*
4795 * this stripe could be added to a batch list before we check
4796 * BATCH_READY, skips it
4797 */
4798 if (sh->batch_head != sh) {
4799 spin_unlock(&sh->stripe_lock);
4800 return 1;
4801 }
4802 spin_lock(&sh->batch_lock);
4803 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4804 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4805 spin_unlock(&sh->batch_lock);
4806 spin_unlock(&sh->stripe_lock);
4807
4808 /*
4809 * BATCH_READY is cleared, no new stripes can be added.
4810 * batch_list can be accessed without lock
4811 */
4812 return 0;
4813}
4814
3960ce79
N
4815static void break_stripe_batch_list(struct stripe_head *head_sh,
4816 unsigned long handle_flags)
72ac7330 4817{
4e3d62ff 4818 struct stripe_head *sh, *next;
72ac7330 4819 int i;
fb642b92 4820 int do_wakeup = 0;
72ac7330 4821
bb27051f
N
4822 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4823
72ac7330 4824 list_del_init(&sh->batch_list);
4825
fb3229d5 4826 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
1b956f7a
N
4827 (1 << STRIPE_SYNCING) |
4828 (1 << STRIPE_REPLACED) |
1b956f7a
N
4829 (1 << STRIPE_DELAYED) |
4830 (1 << STRIPE_BIT_DELAY) |
4831 (1 << STRIPE_FULL_WRITE) |
4832 (1 << STRIPE_BIOFILL_RUN) |
4833 (1 << STRIPE_COMPUTE_RUN) |
1b956f7a
N
4834 (1 << STRIPE_DISCARD) |
4835 (1 << STRIPE_BATCH_READY) |
4836 (1 << STRIPE_BATCH_ERR) |
fb3229d5
SL
4837 (1 << STRIPE_BITMAP_PENDING)),
4838 "stripe state: %lx\n", sh->state);
4839 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4840 (1 << STRIPE_REPLACED)),
4841 "head stripe state: %lx\n", head_sh->state);
1b956f7a
N
4842
4843 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
550da24f 4844 (1 << STRIPE_PREREAD_ACTIVE) |
184a09eb
DY
4845 (1 << STRIPE_DEGRADED) |
4846 (1 << STRIPE_ON_UNPLUG_LIST)),
1b956f7a
N
4847 head_sh->state & (1 << STRIPE_INSYNC));
4848
72ac7330 4849 sh->check_state = head_sh->check_state;
4850 sh->reconstruct_state = head_sh->reconstruct_state;
448ec638
AC
4851 spin_lock_irq(&sh->stripe_lock);
4852 sh->batch_head = NULL;
4853 spin_unlock_irq(&sh->stripe_lock);
fb642b92
N
4854 for (i = 0; i < sh->disks; i++) {
4855 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4856 do_wakeup = 1;
72ac7330 4857 sh->dev[i].flags = head_sh->dev[i].flags &
4858 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4859 }
3960ce79
N
4860 if (handle_flags == 0 ||
4861 sh->state & handle_flags)
4862 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4863 raid5_release_stripe(sh);
72ac7330 4864 }
fb642b92
N
4865 spin_lock_irq(&head_sh->stripe_lock);
4866 head_sh->batch_head = NULL;
4867 spin_unlock_irq(&head_sh->stripe_lock);
4868 for (i = 0; i < head_sh->disks; i++)
4869 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4870 do_wakeup = 1;
3960ce79
N
4871 if (head_sh->state & handle_flags)
4872 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4873
4874 if (do_wakeup)
4875 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4876}
4877
cc94015a
N
4878static void handle_stripe(struct stripe_head *sh)
4879{
4880 struct stripe_head_state s;
d1688a6d 4881 struct r5conf *conf = sh->raid_conf;
3687c061 4882 int i;
84789554
N
4883 int prexor;
4884 int disks = sh->disks;
474af965 4885 struct r5dev *pdev, *qdev;
cc94015a
N
4886
4887 clear_bit(STRIPE_HANDLE, &sh->state);
a377a472
GJ
4888
4889 /*
4890 * handle_stripe should not continue handle the batched stripe, only
4891 * the head of batch list or lone stripe can continue. Otherwise we
4892 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4893 * is set for the batched stripe.
4894 */
4895 if (clear_batch_ready(sh))
4896 return;
4897
257a4b42 4898 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4899 /* already being handled, ensure it gets handled
4900 * again when current action finishes */
4901 set_bit(STRIPE_HANDLE, &sh->state);
4902 return;
4903 }
4904
4e3d62ff 4905 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4906 break_stripe_batch_list(sh, 0);
72ac7330 4907
dabc4ec6 4908 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd 4909 spin_lock(&sh->stripe_lock);
5ddf0440
SL
4910 /*
4911 * Cannot process 'sync' concurrently with 'discard'.
4912 * Flush data in r5cache before 'sync'.
4913 */
4914 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4915 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4916 !test_bit(STRIPE_DISCARD, &sh->state) &&
f8dfcffd
N
4917 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4918 set_bit(STRIPE_SYNCING, &sh->state);
4919 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4920 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4921 }
4922 spin_unlock(&sh->stripe_lock);
cc94015a
N
4923 }
4924 clear_bit(STRIPE_DELAYED, &sh->state);
4925
4926 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4927 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4928 (unsigned long long)sh->sector, sh->state,
4929 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4930 sh->check_state, sh->reconstruct_state);
3687c061 4931
acfe726b 4932 analyse_stripe(sh, &s);
c5a31000 4933
b70abcb2
SL
4934 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4935 goto finish;
4936
16d997b7
N
4937 if (s.handle_bad_blocks ||
4938 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
bc2607f3
N
4939 set_bit(STRIPE_HANDLE, &sh->state);
4940 goto finish;
4941 }
4942
474af965
N
4943 if (unlikely(s.blocked_rdev)) {
4944 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4945 s.replacing || s.to_write || s.written) {
474af965
N
4946 set_bit(STRIPE_HANDLE, &sh->state);
4947 goto finish;
4948 }
4949 /* There is nothing for the blocked_rdev to block */
4950 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4951 s.blocked_rdev = NULL;
4952 }
4953
4954 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4955 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4956 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4957 }
4958
4959 pr_debug("locked=%d uptodate=%d to_read=%d"
4960 " to_write=%d failed=%d failed_num=%d,%d\n",
4961 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4962 s.failed_num[0], s.failed_num[1]);
70d466f7
SL
4963 /*
4964 * check if the array has lost more than max_degraded devices and,
474af965 4965 * if so, some requests might need to be failed.
70d466f7
SL
4966 *
4967 * When journal device failed (log_failed), we will only process
4968 * the stripe if there is data need write to raid disks
474af965 4969 */
70d466f7
SL
4970 if (s.failed > conf->max_degraded ||
4971 (s.log_failed && s.injournal == 0)) {
9a3f530f
N
4972 sh->check_state = 0;
4973 sh->reconstruct_state = 0;
626f2092 4974 break_stripe_batch_list(sh, 0);
9a3f530f 4975 if (s.to_read+s.to_write+s.written)
bd83d0a2 4976 handle_failed_stripe(conf, sh, &s, disks);
9a3e1101 4977 if (s.syncing + s.replacing)
9a3f530f
N
4978 handle_failed_sync(conf, sh, &s);
4979 }
474af965 4980
84789554
N
4981 /* Now we check to see if any write operations have recently
4982 * completed
4983 */
4984 prexor = 0;
4985 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4986 prexor = 1;
4987 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4988 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4989 sh->reconstruct_state = reconstruct_state_idle;
4990
4991 /* All the 'written' buffers and the parity block are ready to
4992 * be written back to disk
4993 */
9e444768
SL
4994 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4995 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4996 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4997 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4998 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4999 for (i = disks; i--; ) {
5000 struct r5dev *dev = &sh->dev[i];
5001 if (test_bit(R5_LOCKED, &dev->flags) &&
5002 (i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b
SL
5003 dev->written || test_bit(R5_InJournal,
5004 &dev->flags))) {
84789554
N
5005 pr_debug("Writing block %d\n", i);
5006 set_bit(R5_Wantwrite, &dev->flags);
5007 if (prexor)
5008 continue;
9c4bdf69
N
5009 if (s.failed > 1)
5010 continue;
84789554
N
5011 if (!test_bit(R5_Insync, &dev->flags) ||
5012 ((i == sh->pd_idx || i == sh->qd_idx) &&
5013 s.failed == 0))
5014 set_bit(STRIPE_INSYNC, &sh->state);
5015 }
5016 }
5017 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5018 s.dec_preread_active = 1;
5019 }
5020
ef5b7c69
N
5021 /*
5022 * might be able to return some write requests if the parity blocks
5023 * are safe, or on a failed drive
5024 */
5025 pdev = &sh->dev[sh->pd_idx];
5026 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5027 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5028 qdev = &sh->dev[sh->qd_idx];
5029 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5030 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5031 || conf->level < 6;
5032
5033 if (s.written &&
5034 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5035 && !test_bit(R5_LOCKED, &pdev->flags)
5036 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5037 test_bit(R5_Discard, &pdev->flags))))) &&
5038 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5039 && !test_bit(R5_LOCKED, &qdev->flags)
5040 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5041 test_bit(R5_Discard, &qdev->flags))))))
bd83d0a2 5042 handle_stripe_clean_event(conf, sh, disks);
ef5b7c69 5043
1e6d690b 5044 if (s.just_cached)
bd83d0a2 5045 r5c_handle_cached_data_endio(conf, sh, disks);
ff875738 5046 log_stripe_write_finished(sh);
1e6d690b 5047
ef5b7c69
N
5048 /* Now we might consider reading some blocks, either to check/generate
5049 * parity, or to satisfy requests
5050 * or to load a block that is being partially written.
5051 */
5052 if (s.to_read || s.non_overwrite
a1c6ae3d 5053 || (s.to_write && s.failed)
ef5b7c69
N
5054 || (s.syncing && (s.uptodate + s.compute < disks))
5055 || s.replacing
5056 || s.expanding)
5057 handle_stripe_fill(sh, &s, disks);
5058
2ded3703
SL
5059 /*
5060 * When the stripe finishes full journal write cycle (write to journal
5061 * and raid disk), this is the clean up procedure so it is ready for
5062 * next operation.
5063 */
5064 r5c_finish_stripe_write_out(conf, sh, &s);
5065
5066 /*
5067 * Now to consider new write requests, cache write back and what else,
5068 * if anything should be read. We do not handle new writes when:
84789554
N
5069 * 1/ A 'write' operation (copy+xor) is already in flight.
5070 * 2/ A 'check' operation is in flight, as it may clobber the parity
5071 * block.
2ded3703 5072 * 3/ A r5c cache log write is in flight.
84789554 5073 */
2ded3703
SL
5074
5075 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5076 if (!r5c_is_writeback(conf->log)) {
5077 if (s.to_write)
5078 handle_stripe_dirtying(conf, sh, &s, disks);
5079 } else { /* write back cache */
5080 int ret = 0;
5081
5082 /* First, try handle writes in caching phase */
5083 if (s.to_write)
5084 ret = r5c_try_caching_write(conf, sh, &s,
5085 disks);
5086 /*
5087 * If caching phase failed: ret == -EAGAIN
5088 * OR
5089 * stripe under reclaim: !caching && injournal
5090 *
5091 * fall back to handle_stripe_dirtying()
5092 */
5093 if (ret == -EAGAIN ||
5094 /* stripe under reclaim: !caching && injournal */
5095 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
d7bd398e
SL
5096 s.injournal > 0)) {
5097 ret = handle_stripe_dirtying(conf, sh, &s,
5098 disks);
5099 if (ret == -EAGAIN)
5100 goto finish;
5101 }
2ded3703
SL
5102 }
5103 }
84789554
N
5104
5105 /* maybe we need to check and possibly fix the parity for this stripe
5106 * Any reads will already have been scheduled, so we just see if enough
5107 * data is available. The parity check is held off while parity
5108 * dependent operations are in flight.
5109 */
5110 if (sh->check_state ||
5111 (s.syncing && s.locked == 0 &&
5112 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5113 !test_bit(STRIPE_INSYNC, &sh->state))) {
5114 if (conf->level == 6)
5115 handle_parity_checks6(conf, sh, &s, disks);
5116 else
5117 handle_parity_checks5(conf, sh, &s, disks);
5118 }
c5a31000 5119
f94c0b66
N
5120 if ((s.replacing || s.syncing) && s.locked == 0
5121 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5122 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
5123 /* Write out to replacement devices where possible */
5124 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
5125 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5126 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
5127 set_bit(R5_WantReplace, &sh->dev[i].flags);
5128 set_bit(R5_LOCKED, &sh->dev[i].flags);
5129 s.locked++;
5130 }
f94c0b66
N
5131 if (s.replacing)
5132 set_bit(STRIPE_INSYNC, &sh->state);
5133 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
5134 }
5135 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 5136 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 5137 test_bit(STRIPE_INSYNC, &sh->state)) {
c911c46c 5138 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
c5a31000 5139 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
5140 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5141 wake_up(&conf->wait_for_overlap);
c5a31000
N
5142 }
5143
5144 /* If the failed drives are just a ReadError, then we might need
5145 * to progress the repair/check process
5146 */
5147 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5148 for (i = 0; i < s.failed; i++) {
5149 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5150 if (test_bit(R5_ReadError, &dev->flags)
5151 && !test_bit(R5_LOCKED, &dev->flags)
5152 && test_bit(R5_UPTODATE, &dev->flags)
5153 ) {
5154 if (!test_bit(R5_ReWrite, &dev->flags)) {
5155 set_bit(R5_Wantwrite, &dev->flags);
5156 set_bit(R5_ReWrite, &dev->flags);
3a31cf3d 5157 } else
c5a31000
N
5158 /* let's read it back */
5159 set_bit(R5_Wantread, &dev->flags);
3a31cf3d
GJ
5160 set_bit(R5_LOCKED, &dev->flags);
5161 s.locked++;
c5a31000
N
5162 }
5163 }
5164
3687c061
N
5165 /* Finish reconstruct operations initiated by the expansion process */
5166 if (sh->reconstruct_state == reconstruct_state_result) {
5167 struct stripe_head *sh_src
6d036f7d 5168 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
3687c061
N
5169 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5170 /* sh cannot be written until sh_src has been read.
5171 * so arrange for sh to be delayed a little
5172 */
5173 set_bit(STRIPE_DELAYED, &sh->state);
5174 set_bit(STRIPE_HANDLE, &sh->state);
5175 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5176 &sh_src->state))
5177 atomic_inc(&conf->preread_active_stripes);
6d036f7d 5178 raid5_release_stripe(sh_src);
3687c061
N
5179 goto finish;
5180 }
5181 if (sh_src)
6d036f7d 5182 raid5_release_stripe(sh_src);
3687c061
N
5183
5184 sh->reconstruct_state = reconstruct_state_idle;
5185 clear_bit(STRIPE_EXPANDING, &sh->state);
5186 for (i = conf->raid_disks; i--; ) {
5187 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5188 set_bit(R5_LOCKED, &sh->dev[i].flags);
5189 s.locked++;
5190 }
5191 }
f416885e 5192
3687c061
N
5193 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5194 !sh->reconstruct_state) {
5195 /* Need to write out all blocks after computing parity */
5196 sh->disks = conf->raid_disks;
5197 stripe_set_idx(sh->sector, conf, 0, sh);
5198 schedule_reconstruction(sh, &s, 1, 1);
5199 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5200 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5201 atomic_dec(&conf->reshape_stripes);
5202 wake_up(&conf->wait_for_overlap);
c911c46c 5203 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
3687c061
N
5204 }
5205
5206 if (s.expanding && s.locked == 0 &&
5207 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5208 handle_stripe_expansion(conf, sh);
16a53ecc 5209
3687c061 5210finish:
6bfe0b49 5211 /* wait for this device to become unblocked */
5f066c63
N
5212 if (unlikely(s.blocked_rdev)) {
5213 if (conf->mddev->external)
5214 md_wait_for_blocked_rdev(s.blocked_rdev,
5215 conf->mddev);
5216 else
5217 /* Internal metadata will immediately
5218 * be written by raid5d, so we don't
5219 * need to wait here.
5220 */
5221 rdev_dec_pending(s.blocked_rdev,
5222 conf->mddev);
5223 }
6bfe0b49 5224
bc2607f3
N
5225 if (s.handle_bad_blocks)
5226 for (i = disks; i--; ) {
3cb03002 5227 struct md_rdev *rdev;
bc2607f3
N
5228 struct r5dev *dev = &sh->dev[i];
5229 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5230 /* We own a safe reference to the rdev */
5231 rdev = conf->disks[i].rdev;
5232 if (!rdev_set_badblocks(rdev, sh->sector,
c911c46c 5233 RAID5_STRIPE_SECTORS(conf), 0))
bc2607f3
N
5234 md_error(conf->mddev, rdev);
5235 rdev_dec_pending(rdev, conf->mddev);
5236 }
b84db560
N
5237 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5238 rdev = conf->disks[i].rdev;
5239 rdev_clear_badblocks(rdev, sh->sector,
c911c46c 5240 RAID5_STRIPE_SECTORS(conf), 0);
b84db560
N
5241 rdev_dec_pending(rdev, conf->mddev);
5242 }
977df362
N
5243 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5244 rdev = conf->disks[i].replacement;
dd054fce
N
5245 if (!rdev)
5246 /* rdev have been moved down */
5247 rdev = conf->disks[i].rdev;
977df362 5248 rdev_clear_badblocks(rdev, sh->sector,
c911c46c 5249 RAID5_STRIPE_SECTORS(conf), 0);
977df362
N
5250 rdev_dec_pending(rdev, conf->mddev);
5251 }
bc2607f3
N
5252 }
5253
6c0069c0
YT
5254 if (s.ops_request)
5255 raid_run_ops(sh, s.ops_request);
5256
f0e43bcd 5257 ops_run_io(sh, &s);
16a53ecc 5258
c5709ef6 5259 if (s.dec_preread_active) {
729a1866 5260 /* We delay this until after ops_run_io so that if make_request
e9c7469b 5261 * is waiting on a flush, it won't continue until the writes
729a1866
N
5262 * have actually been submitted.
5263 */
5264 atomic_dec(&conf->preread_active_stripes);
5265 if (atomic_read(&conf->preread_active_stripes) <
5266 IO_THRESHOLD)
5267 md_wakeup_thread(conf->mddev->thread);
5268 }
5269
257a4b42 5270 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
5271}
5272
d1688a6d 5273static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
5274{
5275 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5276 while (!list_empty(&conf->delayed_list)) {
5277 struct list_head *l = conf->delayed_list.next;
5278 struct stripe_head *sh;
5279 sh = list_entry(l, struct stripe_head, lru);
5280 list_del_init(l);
5281 clear_bit(STRIPE_DELAYED, &sh->state);
5282 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5283 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 5284 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 5285 raid5_wakeup_stripe_thread(sh);
16a53ecc 5286 }
482c0834 5287 }
16a53ecc
N
5288}
5289
566c09c5
SL
5290static void activate_bit_delay(struct r5conf *conf,
5291 struct list_head *temp_inactive_list)
16a53ecc
N
5292{
5293 /* device_lock is held */
5294 struct list_head head;
5295 list_add(&head, &conf->bitmap_list);
5296 list_del_init(&conf->bitmap_list);
5297 while (!list_empty(&head)) {
5298 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 5299 int hash;
16a53ecc
N
5300 list_del_init(&sh->lru);
5301 atomic_inc(&sh->count);
566c09c5
SL
5302 hash = sh->hash_lock_index;
5303 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
5304 }
5305}
5306
fd01b88c 5307static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 5308{
3cb5edf4 5309 struct r5conf *conf = mddev->private;
10433d04 5310 sector_t sector = bio->bi_iter.bi_sector;
3cb5edf4 5311 unsigned int chunk_sectors;
aa8b57aa 5312 unsigned int bio_sectors = bio_sectors(bio);
f679623f 5313
309dca30 5314 WARN_ON_ONCE(bio->bi_bdev->bd_partno);
10433d04 5315
3cb5edf4 5316 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
5317 return chunk_sectors >=
5318 ((sector & (chunk_sectors - 1)) + bio_sectors);
5319}
5320
46031f9a
RBJ
5321/*
5322 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5323 * later sampled by raid5d.
5324 */
d1688a6d 5325static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
5326{
5327 unsigned long flags;
5328
5329 spin_lock_irqsave(&conf->device_lock, flags);
5330
5331 bi->bi_next = conf->retry_read_aligned_list;
5332 conf->retry_read_aligned_list = bi;
5333
5334 spin_unlock_irqrestore(&conf->device_lock, flags);
5335 md_wakeup_thread(conf->mddev->thread);
5336}
5337
0472a42b
N
5338static struct bio *remove_bio_from_retry(struct r5conf *conf,
5339 unsigned int *offset)
46031f9a
RBJ
5340{
5341 struct bio *bi;
5342
5343 bi = conf->retry_read_aligned;
5344 if (bi) {
0472a42b 5345 *offset = conf->retry_read_offset;
46031f9a
RBJ
5346 conf->retry_read_aligned = NULL;
5347 return bi;
5348 }
5349 bi = conf->retry_read_aligned_list;
5350 if(bi) {
387bb173 5351 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 5352 bi->bi_next = NULL;
0472a42b 5353 *offset = 0;
46031f9a
RBJ
5354 }
5355
5356 return bi;
5357}
5358
f679623f
RBJ
5359/*
5360 * The "raid5_align_endio" should check if the read succeeded and if it
5361 * did, call bio_endio on the original bio (having bio_put the new bio
5362 * first).
5363 * If the read failed..
5364 */
4246a0b6 5365static void raid5_align_endio(struct bio *bi)
f679623f
RBJ
5366{
5367 struct bio* raid_bi = bi->bi_private;
fd01b88c 5368 struct mddev *mddev;
d1688a6d 5369 struct r5conf *conf;
3cb03002 5370 struct md_rdev *rdev;
4e4cbee9 5371 blk_status_t error = bi->bi_status;
46031f9a 5372
f679623f 5373 bio_put(bi);
46031f9a 5374
46031f9a
RBJ
5375 rdev = (void*)raid_bi->bi_next;
5376 raid_bi->bi_next = NULL;
2b7f2228
N
5377 mddev = rdev->mddev;
5378 conf = mddev->private;
46031f9a
RBJ
5379
5380 rdev_dec_pending(rdev, conf->mddev);
5381
9b81c842 5382 if (!error) {
4246a0b6 5383 bio_endio(raid_bi);
46031f9a 5384 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5385 wake_up(&conf->wait_for_quiescent);
6712ecf8 5386 return;
46031f9a
RBJ
5387 }
5388
45b4233c 5389 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
5390
5391 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
5392}
5393
7ef6b12a 5394static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 5395{
d1688a6d 5396 struct r5conf *conf = mddev->private;
e82ed3a4 5397 struct bio *align_bio;
3cb03002 5398 struct md_rdev *rdev;
e82ed3a4
CH
5399 sector_t sector, end_sector, first_bad;
5400 int bad_sectors, dd_idx;
f679623f
RBJ
5401
5402 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 5403 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
5404 return 0;
5405 }
f679623f 5406
e82ed3a4
CH
5407 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5408 &dd_idx, NULL);
5409 end_sector = bio_end_sector(raid_bio);
5410
f679623f 5411 rcu_read_lock();
e82ed3a4
CH
5412 if (r5c_big_stripe_cached(conf, sector))
5413 goto out_rcu_unlock;
5414
671488cc
N
5415 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5416 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5417 rdev->recovery_offset < end_sector) {
5418 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
e82ed3a4
CH
5419 if (!rdev)
5420 goto out_rcu_unlock;
5421 if (test_bit(Faulty, &rdev->flags) ||
671488cc 5422 !(test_bit(In_sync, &rdev->flags) ||
e82ed3a4
CH
5423 rdev->recovery_offset >= end_sector))
5424 goto out_rcu_unlock;
671488cc 5425 }
03b047f4 5426
e82ed3a4
CH
5427 atomic_inc(&rdev->nr_pending);
5428 rcu_read_unlock();
5429
5430 align_bio = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5431 bio_set_dev(align_bio, rdev->bdev);
5432 align_bio->bi_end_io = raid5_align_endio;
5433 align_bio->bi_private = raid_bio;
5434 align_bio->bi_iter.bi_sector = sector;
5435
5436 raid_bio->bi_next = (void *)rdev;
5437
5438 if (is_badblock(rdev, sector, bio_sectors(align_bio), &first_bad,
5439 &bad_sectors)) {
5440 bio_put(align_bio);
5441 rdev_dec_pending(rdev, mddev);
03b047f4
SL
5442 return 0;
5443 }
5444
e82ed3a4
CH
5445 /* No reshape active, so we can trust rdev->data_offset */
5446 align_bio->bi_iter.bi_sector += rdev->data_offset;
31c176ec 5447
e82ed3a4
CH
5448 spin_lock_irq(&conf->device_lock);
5449 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5450 conf->device_lock);
5451 atomic_inc(&conf->active_aligned_reads);
5452 spin_unlock_irq(&conf->device_lock);
387bb173 5453
e82ed3a4
CH
5454 if (mddev->gendisk)
5455 trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5456 raid_bio->bi_iter.bi_sector);
5457 submit_bio_noacct(align_bio);
5458 return 1;
6c0544e2 5459
e82ed3a4
CH
5460out_rcu_unlock:
5461 rcu_read_unlock();
5462 return 0;
f679623f
RBJ
5463}
5464
7ef6b12a
ML
5465static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5466{
5467 struct bio *split;
dd7a8f5d
N
5468 sector_t sector = raid_bio->bi_iter.bi_sector;
5469 unsigned chunk_sects = mddev->chunk_sectors;
5470 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
10764815 5471 struct r5conf *conf = mddev->private;
7ef6b12a 5472
dd7a8f5d
N
5473 if (sectors < bio_sectors(raid_bio)) {
5474 struct r5conf *conf = mddev->private;
afeee514 5475 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
dd7a8f5d 5476 bio_chain(split, raid_bio);
ed00aabd 5477 submit_bio_noacct(raid_bio);
dd7a8f5d
N
5478 raid_bio = split;
5479 }
7ef6b12a 5480
10764815
GJ
5481 if (raid_bio->bi_pool != &conf->bio_split)
5482 md_account_bio(mddev, &raid_bio);
5483
dd7a8f5d
N
5484 if (!raid5_read_one_chunk(mddev, raid_bio))
5485 return raid_bio;
7ef6b12a
ML
5486
5487 return NULL;
5488}
5489
8b3e6cdc
DW
5490/* __get_priority_stripe - get the next stripe to process
5491 *
5492 * Full stripe writes are allowed to pass preread active stripes up until
5493 * the bypass_threshold is exceeded. In general the bypass_count
5494 * increments when the handle_list is handled before the hold_list; however, it
5495 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5496 * stripe with in flight i/o. The bypass_count will be reset when the
5497 * head of the hold_list has changed, i.e. the head was promoted to the
5498 * handle_list.
5499 */
851c30c9 5500static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 5501{
535ae4eb 5502 struct stripe_head *sh, *tmp;
851c30c9 5503 struct list_head *handle_list = NULL;
535ae4eb 5504 struct r5worker_group *wg;
70d466f7
SL
5505 bool second_try = !r5c_is_writeback(conf->log) &&
5506 !r5l_log_disk_error(conf);
5507 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5508 r5l_log_disk_error(conf);
851c30c9 5509
535ae4eb
SL
5510again:
5511 wg = NULL;
5512 sh = NULL;
851c30c9 5513 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
5514 handle_list = try_loprio ? &conf->loprio_list :
5515 &conf->handle_list;
851c30c9 5516 } else if (group != ANY_GROUP) {
535ae4eb
SL
5517 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5518 &conf->worker_groups[group].handle_list;
bfc90cb0 5519 wg = &conf->worker_groups[group];
851c30c9
SL
5520 } else {
5521 int i;
5522 for (i = 0; i < conf->group_cnt; i++) {
535ae4eb
SL
5523 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5524 &conf->worker_groups[i].handle_list;
bfc90cb0 5525 wg = &conf->worker_groups[i];
851c30c9
SL
5526 if (!list_empty(handle_list))
5527 break;
5528 }
5529 }
8b3e6cdc
DW
5530
5531 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5532 __func__,
851c30c9 5533 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
5534 list_empty(&conf->hold_list) ? "empty" : "busy",
5535 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5536
851c30c9
SL
5537 if (!list_empty(handle_list)) {
5538 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
5539
5540 if (list_empty(&conf->hold_list))
5541 conf->bypass_count = 0;
5542 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5543 if (conf->hold_list.next == conf->last_hold)
5544 conf->bypass_count++;
5545 else {
5546 conf->last_hold = conf->hold_list.next;
5547 conf->bypass_count -= conf->bypass_threshold;
5548 if (conf->bypass_count < 0)
5549 conf->bypass_count = 0;
5550 }
5551 }
5552 } else if (!list_empty(&conf->hold_list) &&
5553 ((conf->bypass_threshold &&
5554 conf->bypass_count > conf->bypass_threshold) ||
5555 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
5556
5557 list_for_each_entry(tmp, &conf->hold_list, lru) {
5558 if (conf->worker_cnt_per_group == 0 ||
5559 group == ANY_GROUP ||
5560 !cpu_online(tmp->cpu) ||
5561 cpu_to_group(tmp->cpu) == group) {
5562 sh = tmp;
5563 break;
5564 }
5565 }
5566
5567 if (sh) {
5568 conf->bypass_count -= conf->bypass_threshold;
5569 if (conf->bypass_count < 0)
5570 conf->bypass_count = 0;
5571 }
bfc90cb0 5572 wg = NULL;
851c30c9
SL
5573 }
5574
535ae4eb
SL
5575 if (!sh) {
5576 if (second_try)
5577 return NULL;
5578 second_try = true;
5579 try_loprio = !try_loprio;
5580 goto again;
5581 }
8b3e6cdc 5582
bfc90cb0
SL
5583 if (wg) {
5584 wg->stripes_cnt--;
5585 sh->group = NULL;
5586 }
8b3e6cdc 5587 list_del_init(&sh->lru);
c7a6d35e 5588 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
5589 return sh;
5590}
f679623f 5591
8811b596
SL
5592struct raid5_plug_cb {
5593 struct blk_plug_cb cb;
5594 struct list_head list;
566c09c5 5595 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
5596};
5597
5598static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5599{
5600 struct raid5_plug_cb *cb = container_of(
5601 blk_cb, struct raid5_plug_cb, cb);
5602 struct stripe_head *sh;
5603 struct mddev *mddev = cb->cb.data;
5604 struct r5conf *conf = mddev->private;
a9add5d9 5605 int cnt = 0;
566c09c5 5606 int hash;
8811b596
SL
5607
5608 if (cb->list.next && !list_empty(&cb->list)) {
5609 spin_lock_irq(&conf->device_lock);
5610 while (!list_empty(&cb->list)) {
5611 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5612 list_del_init(&sh->lru);
5613 /*
5614 * avoid race release_stripe_plug() sees
5615 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5616 * is still in our list
5617 */
4e857c58 5618 smp_mb__before_atomic();
8811b596 5619 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
5620 /*
5621 * STRIPE_ON_RELEASE_LIST could be set here. In that
5622 * case, the count is always > 1 here
5623 */
566c09c5
SL
5624 hash = sh->hash_lock_index;
5625 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5626 cnt++;
8811b596
SL
5627 }
5628 spin_unlock_irq(&conf->device_lock);
5629 }
566c09c5
SL
5630 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5631 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5632 if (mddev->queue)
5633 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5634 kfree(cb);
5635}
5636
5637static void release_stripe_plug(struct mddev *mddev,
5638 struct stripe_head *sh)
5639{
5640 struct blk_plug_cb *blk_cb = blk_check_plugged(
5641 raid5_unplug, mddev,
5642 sizeof(struct raid5_plug_cb));
5643 struct raid5_plug_cb *cb;
5644
5645 if (!blk_cb) {
6d036f7d 5646 raid5_release_stripe(sh);
8811b596
SL
5647 return;
5648 }
5649
5650 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5651
566c09c5
SL
5652 if (cb->list.next == NULL) {
5653 int i;
8811b596 5654 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5655 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5656 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5657 }
8811b596
SL
5658
5659 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5660 list_add_tail(&sh->lru, &cb->list);
5661 else
6d036f7d 5662 raid5_release_stripe(sh);
8811b596
SL
5663}
5664
620125f2
SL
5665static void make_discard_request(struct mddev *mddev, struct bio *bi)
5666{
5667 struct r5conf *conf = mddev->private;
5668 sector_t logical_sector, last_sector;
5669 struct stripe_head *sh;
620125f2
SL
5670 int stripe_sectors;
5671
5672 if (mddev->reshape_position != MaxSector)
5673 /* Skip discard while reshape is happening */
5674 return;
5675
c911c46c 5676 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
b0f01ecf 5677 last_sector = bio_end_sector(bi);
620125f2
SL
5678
5679 bi->bi_next = NULL;
620125f2
SL
5680
5681 stripe_sectors = conf->chunk_sectors *
5682 (conf->raid_disks - conf->max_degraded);
5683 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5684 stripe_sectors);
5685 sector_div(last_sector, stripe_sectors);
5686
5687 logical_sector *= conf->chunk_sectors;
5688 last_sector *= conf->chunk_sectors;
5689
5690 for (; logical_sector < last_sector;
c911c46c 5691 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
620125f2
SL
5692 DEFINE_WAIT(w);
5693 int d;
5694 again:
6d036f7d 5695 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
620125f2
SL
5696 prepare_to_wait(&conf->wait_for_overlap, &w,
5697 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5698 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5699 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5700 raid5_release_stripe(sh);
f8dfcffd
N
5701 schedule();
5702 goto again;
5703 }
5704 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5705 spin_lock_irq(&sh->stripe_lock);
5706 for (d = 0; d < conf->raid_disks; d++) {
5707 if (d == sh->pd_idx || d == sh->qd_idx)
5708 continue;
5709 if (sh->dev[d].towrite || sh->dev[d].toread) {
5710 set_bit(R5_Overlap, &sh->dev[d].flags);
5711 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5712 raid5_release_stripe(sh);
620125f2
SL
5713 schedule();
5714 goto again;
5715 }
5716 }
f8dfcffd 5717 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5718 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5719 sh->overwrite_disks = 0;
620125f2
SL
5720 for (d = 0; d < conf->raid_disks; d++) {
5721 if (d == sh->pd_idx || d == sh->qd_idx)
5722 continue;
5723 sh->dev[d].towrite = bi;
5724 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
016c76ac 5725 bio_inc_remaining(bi);
49728050 5726 md_write_inc(mddev, bi);
7a87f434 5727 sh->overwrite_disks++;
620125f2
SL
5728 }
5729 spin_unlock_irq(&sh->stripe_lock);
5730 if (conf->mddev->bitmap) {
5731 for (d = 0;
5732 d < conf->raid_disks - conf->max_degraded;
5733 d++)
e64e4018
AS
5734 md_bitmap_startwrite(mddev->bitmap,
5735 sh->sector,
c911c46c 5736 RAID5_STRIPE_SECTORS(conf),
e64e4018 5737 0);
620125f2
SL
5738 sh->bm_seq = conf->seq_flush + 1;
5739 set_bit(STRIPE_BIT_DELAY, &sh->state);
5740 }
5741
5742 set_bit(STRIPE_HANDLE, &sh->state);
5743 clear_bit(STRIPE_DELAYED, &sh->state);
5744 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5745 atomic_inc(&conf->preread_active_stripes);
5746 release_stripe_plug(mddev, sh);
5747 }
5748
016c76ac 5749 bio_endio(bi);
620125f2
SL
5750}
5751
cc27b0c7 5752static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5753{
d1688a6d 5754 struct r5conf *conf = mddev->private;
911d4ee8 5755 int dd_idx;
1da177e4
LT
5756 sector_t new_sector;
5757 sector_t logical_sector, last_sector;
5758 struct stripe_head *sh;
a362357b 5759 const int rw = bio_data_dir(bi);
27c0f68f
SL
5760 DEFINE_WAIT(w);
5761 bool do_prepare;
3bddb7f8 5762 bool do_flush = false;
10764815 5763 bool do_clone = false;
1da177e4 5764
1eff9d32 5765 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
1532d9e8 5766 int ret = log_handle_flush_request(conf, bi);
828cbe98
SL
5767
5768 if (ret == 0)
cc27b0c7 5769 return true;
828cbe98 5770 if (ret == -ENODEV) {
775d7831
DJ
5771 if (md_flush_request(mddev, bi))
5772 return true;
828cbe98
SL
5773 }
5774 /* ret == -EAGAIN, fallback */
3bddb7f8
SL
5775 /*
5776 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5777 * we need to flush journal device
5778 */
5779 do_flush = bi->bi_opf & REQ_PREFLUSH;
e5dcdd80
N
5780 }
5781
cc27b0c7
N
5782 if (!md_write_start(mddev, bi))
5783 return false;
9ffc8f7c
EM
5784 /*
5785 * If array is degraded, better not do chunk aligned read because
5786 * later we might have to read it again in order to reconstruct
5787 * data on failed drives.
5788 */
5789 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
5790 mddev->reshape_position == MaxSector) {
5791 bi = chunk_aligned_read(mddev, bi);
10764815 5792 do_clone = true;
7ef6b12a 5793 if (!bi)
cc27b0c7 5794 return true;
7ef6b12a 5795 }
52488615 5796
796a5cf0 5797 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
620125f2 5798 make_discard_request(mddev, bi);
cc27b0c7
N
5799 md_write_end(mddev);
5800 return true;
620125f2
SL
5801 }
5802
c911c46c 5803 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
f73a1c7d 5804 last_sector = bio_end_sector(bi);
1da177e4 5805 bi->bi_next = NULL;
06d91a5f 5806
10764815
GJ
5807 if (!do_clone)
5808 md_account_bio(mddev, &bi);
5809
27c0f68f 5810 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
c911c46c 5811 for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) {
b5663ba4 5812 int previous;
c46501b2 5813 int seq;
b578d55f 5814
27c0f68f 5815 do_prepare = false;
7ecaa1e6 5816 retry:
c46501b2 5817 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5818 previous = 0;
27c0f68f
SL
5819 if (do_prepare)
5820 prepare_to_wait(&conf->wait_for_overlap, &w,
5821 TASK_UNINTERRUPTIBLE);
b0f9ec04 5822 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5823 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5824 * 64bit on a 32bit platform, and so it might be
5825 * possible to see a half-updated value
aeb878b0 5826 * Of course reshape_progress could change after
df8e7f76
N
5827 * the lock is dropped, so once we get a reference
5828 * to the stripe that we think it is, we will have
5829 * to check again.
5830 */
7ecaa1e6 5831 spin_lock_irq(&conf->device_lock);
2c810cdd 5832 if (mddev->reshape_backwards
fef9c61f
N
5833 ? logical_sector < conf->reshape_progress
5834 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5835 previous = 1;
5836 } else {
2c810cdd 5837 if (mddev->reshape_backwards
fef9c61f
N
5838 ? logical_sector < conf->reshape_safe
5839 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5840 spin_unlock_irq(&conf->device_lock);
5841 schedule();
27c0f68f 5842 do_prepare = true;
b578d55f
N
5843 goto retry;
5844 }
5845 }
7ecaa1e6
N
5846 spin_unlock_irq(&conf->device_lock);
5847 }
16a53ecc 5848
112bf897
N
5849 new_sector = raid5_compute_sector(conf, logical_sector,
5850 previous,
911d4ee8 5851 &dd_idx, NULL);
849674e4 5852 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
c46501b2 5853 (unsigned long long)new_sector,
1da177e4
LT
5854 (unsigned long long)logical_sector);
5855
6d036f7d 5856 sh = raid5_get_active_stripe(conf, new_sector, previous,
1eff9d32 5857 (bi->bi_opf & REQ_RAHEAD), 0);
1da177e4 5858 if (sh) {
b0f9ec04 5859 if (unlikely(previous)) {
7ecaa1e6 5860 /* expansion might have moved on while waiting for a
df8e7f76
N
5861 * stripe, so we must do the range check again.
5862 * Expansion could still move past after this
5863 * test, but as we are holding a reference to
5864 * 'sh', we know that if that happens,
5865 * STRIPE_EXPANDING will get set and the expansion
5866 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5867 */
5868 int must_retry = 0;
5869 spin_lock_irq(&conf->device_lock);
2c810cdd 5870 if (mddev->reshape_backwards
b0f9ec04
N
5871 ? logical_sector >= conf->reshape_progress
5872 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5873 /* mismatch, need to try again */
5874 must_retry = 1;
5875 spin_unlock_irq(&conf->device_lock);
5876 if (must_retry) {
6d036f7d 5877 raid5_release_stripe(sh);
7a3ab908 5878 schedule();
27c0f68f 5879 do_prepare = true;
7ecaa1e6
N
5880 goto retry;
5881 }
5882 }
c46501b2
N
5883 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5884 /* Might have got the wrong stripe_head
5885 * by accident
5886 */
6d036f7d 5887 raid5_release_stripe(sh);
c46501b2
N
5888 goto retry;
5889 }
e62e58a5 5890
7ecaa1e6 5891 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5892 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5893 /* Stripe is busy expanding or
5894 * add failed due to overlap. Flush everything
1da177e4
LT
5895 * and wait a while
5896 */
482c0834 5897 md_wakeup_thread(mddev->thread);
6d036f7d 5898 raid5_release_stripe(sh);
1da177e4 5899 schedule();
27c0f68f 5900 do_prepare = true;
1da177e4
LT
5901 goto retry;
5902 }
3bddb7f8
SL
5903 if (do_flush) {
5904 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5905 /* we only need flush for one stripe */
5906 do_flush = false;
5907 }
5908
1684e975 5909 set_bit(STRIPE_HANDLE, &sh->state);
6ed3003c 5910 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5911 if ((!sh->batch_head || sh == sh->batch_head) &&
1eff9d32 5912 (bi->bi_opf & REQ_SYNC) &&
729a1866
N
5913 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5914 atomic_inc(&conf->preread_active_stripes);
8811b596 5915 release_stripe_plug(mddev, sh);
1da177e4
LT
5916 } else {
5917 /* cannot get stripe for read-ahead, just give-up */
4e4cbee9 5918 bi->bi_status = BLK_STS_IOERR;
1da177e4
LT
5919 break;
5920 }
1da177e4 5921 }
27c0f68f 5922 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5923
49728050
N
5924 if (rw == WRITE)
5925 md_write_end(mddev);
016c76ac 5926 bio_endio(bi);
cc27b0c7 5927 return true;
1da177e4
LT
5928}
5929
fd01b88c 5930static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5931
fd01b88c 5932static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5933{
52c03291
N
5934 /* reshaping is quite different to recovery/resync so it is
5935 * handled quite separately ... here.
5936 *
5937 * On each call to sync_request, we gather one chunk worth of
5938 * destination stripes and flag them as expanding.
5939 * Then we find all the source stripes and request reads.
5940 * As the reads complete, handle_stripe will copy the data
5941 * into the destination stripe and release that stripe.
5942 */
d1688a6d 5943 struct r5conf *conf = mddev->private;
1da177e4 5944 struct stripe_head *sh;
db0505d3 5945 struct md_rdev *rdev;
ccfcc3c1 5946 sector_t first_sector, last_sector;
f416885e
N
5947 int raid_disks = conf->previous_raid_disks;
5948 int data_disks = raid_disks - conf->max_degraded;
5949 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5950 int i;
5951 int dd_idx;
c8f517c4 5952 sector_t writepos, readpos, safepos;
ec32a2bd 5953 sector_t stripe_addr;
7a661381 5954 int reshape_sectors;
ab69ae12 5955 struct list_head stripes;
92140480 5956 sector_t retn;
52c03291 5957
fef9c61f
N
5958 if (sector_nr == 0) {
5959 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5960 if (mddev->reshape_backwards &&
fef9c61f
N
5961 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5962 sector_nr = raid5_size(mddev, 0, 0)
5963 - conf->reshape_progress;
6cbd8148
N
5964 } else if (mddev->reshape_backwards &&
5965 conf->reshape_progress == MaxSector) {
5966 /* shouldn't happen, but just in case, finish up.*/
5967 sector_nr = MaxSector;
2c810cdd 5968 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5969 conf->reshape_progress > 0)
5970 sector_nr = conf->reshape_progress;
f416885e 5971 sector_div(sector_nr, new_data_disks);
fef9c61f 5972 if (sector_nr) {
8dee7211 5973 mddev->curr_resync_completed = sector_nr;
e1a86dbb 5974 sysfs_notify_dirent_safe(mddev->sysfs_completed);
fef9c61f 5975 *skipped = 1;
92140480
N
5976 retn = sector_nr;
5977 goto finish;
fef9c61f 5978 }
52c03291
N
5979 }
5980
7a661381
N
5981 /* We need to process a full chunk at a time.
5982 * If old and new chunk sizes differ, we need to process the
5983 * largest of these
5984 */
3cb5edf4
N
5985
5986 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 5987
b5254dd5
N
5988 /* We update the metadata at least every 10 seconds, or when
5989 * the data about to be copied would over-write the source of
5990 * the data at the front of the range. i.e. one new_stripe
5991 * along from reshape_progress new_maps to after where
5992 * reshape_safe old_maps to
52c03291 5993 */
fef9c61f 5994 writepos = conf->reshape_progress;
f416885e 5995 sector_div(writepos, new_data_disks);
c8f517c4
N
5996 readpos = conf->reshape_progress;
5997 sector_div(readpos, data_disks);
fef9c61f 5998 safepos = conf->reshape_safe;
f416885e 5999 sector_div(safepos, data_disks);
2c810cdd 6000 if (mddev->reshape_backwards) {
c74c0d76
N
6001 BUG_ON(writepos < reshape_sectors);
6002 writepos -= reshape_sectors;
c8f517c4 6003 readpos += reshape_sectors;
7a661381 6004 safepos += reshape_sectors;
fef9c61f 6005 } else {
7a661381 6006 writepos += reshape_sectors;
c74c0d76
N
6007 /* readpos and safepos are worst-case calculations.
6008 * A negative number is overly pessimistic, and causes
6009 * obvious problems for unsigned storage. So clip to 0.
6010 */
ed37d83e
N
6011 readpos -= min_t(sector_t, reshape_sectors, readpos);
6012 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 6013 }
52c03291 6014
b5254dd5
N
6015 /* Having calculated the 'writepos' possibly use it
6016 * to set 'stripe_addr' which is where we will write to.
6017 */
6018 if (mddev->reshape_backwards) {
6019 BUG_ON(conf->reshape_progress == 0);
6020 stripe_addr = writepos;
6021 BUG_ON((mddev->dev_sectors &
6022 ~((sector_t)reshape_sectors - 1))
6023 - reshape_sectors - stripe_addr
6024 != sector_nr);
6025 } else {
6026 BUG_ON(writepos != sector_nr + reshape_sectors);
6027 stripe_addr = sector_nr;
6028 }
6029
c8f517c4
N
6030 /* 'writepos' is the most advanced device address we might write.
6031 * 'readpos' is the least advanced device address we might read.
6032 * 'safepos' is the least address recorded in the metadata as having
6033 * been reshaped.
b5254dd5
N
6034 * If there is a min_offset_diff, these are adjusted either by
6035 * increasing the safepos/readpos if diff is negative, or
6036 * increasing writepos if diff is positive.
6037 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
6038 * ensure safety in the face of a crash - that must be done by userspace
6039 * making a backup of the data. So in that case there is no particular
6040 * rush to update metadata.
6041 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6042 * update the metadata to advance 'safepos' to match 'readpos' so that
6043 * we can be safe in the event of a crash.
6044 * So we insist on updating metadata if safepos is behind writepos and
6045 * readpos is beyond writepos.
6046 * In any case, update the metadata every 10 seconds.
6047 * Maybe that number should be configurable, but I'm not sure it is
6048 * worth it.... maybe it could be a multiple of safemode_delay???
6049 */
b5254dd5
N
6050 if (conf->min_offset_diff < 0) {
6051 safepos += -conf->min_offset_diff;
6052 readpos += -conf->min_offset_diff;
6053 } else
6054 writepos += conf->min_offset_diff;
6055
2c810cdd 6056 if ((mddev->reshape_backwards
c8f517c4
N
6057 ? (safepos > writepos && readpos < writepos)
6058 : (safepos < writepos && readpos > writepos)) ||
6059 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
6060 /* Cannot proceed until we've updated the superblock... */
6061 wait_event(conf->wait_for_overlap,
c91abf5a
N
6062 atomic_read(&conf->reshape_stripes)==0
6063 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6064 if (atomic_read(&conf->reshape_stripes) != 0)
6065 return 0;
fef9c61f 6066 mddev->reshape_position = conf->reshape_progress;
75d3da43 6067 mddev->curr_resync_completed = sector_nr;
db0505d3
N
6068 if (!mddev->reshape_backwards)
6069 /* Can update recovery_offset */
6070 rdev_for_each(rdev, mddev)
6071 if (rdev->raid_disk >= 0 &&
6072 !test_bit(Journal, &rdev->flags) &&
6073 !test_bit(In_sync, &rdev->flags) &&
6074 rdev->recovery_offset < sector_nr)
6075 rdev->recovery_offset = sector_nr;
6076
c8f517c4 6077 conf->reshape_checkpoint = jiffies;
2953079c 6078 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
52c03291 6079 md_wakeup_thread(mddev->thread);
2953079c 6080 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
6081 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6082 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6083 return 0;
52c03291 6084 spin_lock_irq(&conf->device_lock);
fef9c61f 6085 conf->reshape_safe = mddev->reshape_position;
52c03291
N
6086 spin_unlock_irq(&conf->device_lock);
6087 wake_up(&conf->wait_for_overlap);
e1a86dbb 6088 sysfs_notify_dirent_safe(mddev->sysfs_completed);
52c03291
N
6089 }
6090
ab69ae12 6091 INIT_LIST_HEAD(&stripes);
c911c46c 6092 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
52c03291 6093 int j;
a9f326eb 6094 int skipped_disk = 0;
6d036f7d 6095 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
6096 set_bit(STRIPE_EXPANDING, &sh->state);
6097 atomic_inc(&conf->reshape_stripes);
6098 /* If any of this stripe is beyond the end of the old
6099 * array, then we need to zero those blocks
6100 */
6101 for (j=sh->disks; j--;) {
6102 sector_t s;
6103 if (j == sh->pd_idx)
6104 continue;
f416885e 6105 if (conf->level == 6 &&
d0dabf7e 6106 j == sh->qd_idx)
f416885e 6107 continue;
6d036f7d 6108 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 6109 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 6110 skipped_disk = 1;
52c03291
N
6111 continue;
6112 }
c911c46c 6113 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
52c03291
N
6114 set_bit(R5_Expanded, &sh->dev[j].flags);
6115 set_bit(R5_UPTODATE, &sh->dev[j].flags);
6116 }
a9f326eb 6117 if (!skipped_disk) {
52c03291
N
6118 set_bit(STRIPE_EXPAND_READY, &sh->state);
6119 set_bit(STRIPE_HANDLE, &sh->state);
6120 }
ab69ae12 6121 list_add(&sh->lru, &stripes);
52c03291
N
6122 }
6123 spin_lock_irq(&conf->device_lock);
2c810cdd 6124 if (mddev->reshape_backwards)
7a661381 6125 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 6126 else
7a661381 6127 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
6128 spin_unlock_irq(&conf->device_lock);
6129 /* Ok, those stripe are ready. We can start scheduling
6130 * reads on the source stripes.
6131 * The source stripes are determined by mapping the first and last
6132 * block on the destination stripes.
6133 */
52c03291 6134 first_sector =
ec32a2bd 6135 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 6136 1, &dd_idx, NULL);
52c03291 6137 last_sector =
0e6e0271 6138 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 6139 * new_data_disks - 1),
911d4ee8 6140 1, &dd_idx, NULL);
58c0fed4
AN
6141 if (last_sector >= mddev->dev_sectors)
6142 last_sector = mddev->dev_sectors - 1;
52c03291 6143 while (first_sector <= last_sector) {
6d036f7d 6144 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
6145 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6146 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 6147 raid5_release_stripe(sh);
c911c46c 6148 first_sector += RAID5_STRIPE_SECTORS(conf);
52c03291 6149 }
ab69ae12
N
6150 /* Now that the sources are clearly marked, we can release
6151 * the destination stripes
6152 */
6153 while (!list_empty(&stripes)) {
6154 sh = list_entry(stripes.next, struct stripe_head, lru);
6155 list_del_init(&sh->lru);
6d036f7d 6156 raid5_release_stripe(sh);
ab69ae12 6157 }
c6207277
N
6158 /* If this takes us to the resync_max point where we have to pause,
6159 * then we need to write out the superblock.
6160 */
7a661381 6161 sector_nr += reshape_sectors;
92140480
N
6162 retn = reshape_sectors;
6163finish:
c5e19d90
N
6164 if (mddev->curr_resync_completed > mddev->resync_max ||
6165 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 6166 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
6167 /* Cannot proceed until we've updated the superblock... */
6168 wait_event(conf->wait_for_overlap,
c91abf5a
N
6169 atomic_read(&conf->reshape_stripes) == 0
6170 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6171 if (atomic_read(&conf->reshape_stripes) != 0)
6172 goto ret;
fef9c61f 6173 mddev->reshape_position = conf->reshape_progress;
75d3da43 6174 mddev->curr_resync_completed = sector_nr;
db0505d3
N
6175 if (!mddev->reshape_backwards)
6176 /* Can update recovery_offset */
6177 rdev_for_each(rdev, mddev)
6178 if (rdev->raid_disk >= 0 &&
6179 !test_bit(Journal, &rdev->flags) &&
6180 !test_bit(In_sync, &rdev->flags) &&
6181 rdev->recovery_offset < sector_nr)
6182 rdev->recovery_offset = sector_nr;
c8f517c4 6183 conf->reshape_checkpoint = jiffies;
2953079c 6184 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
c6207277
N
6185 md_wakeup_thread(mddev->thread);
6186 wait_event(mddev->sb_wait,
2953079c 6187 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
c91abf5a
N
6188 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6189 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6190 goto ret;
c6207277 6191 spin_lock_irq(&conf->device_lock);
fef9c61f 6192 conf->reshape_safe = mddev->reshape_position;
c6207277
N
6193 spin_unlock_irq(&conf->device_lock);
6194 wake_up(&conf->wait_for_overlap);
e1a86dbb 6195 sysfs_notify_dirent_safe(mddev->sysfs_completed);
c6207277 6196 }
c91abf5a 6197ret:
92140480 6198 return retn;
52c03291
N
6199}
6200
849674e4
SL
6201static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6202 int *skipped)
52c03291 6203{
d1688a6d 6204 struct r5conf *conf = mddev->private;
52c03291 6205 struct stripe_head *sh;
58c0fed4 6206 sector_t max_sector = mddev->dev_sectors;
57dab0bd 6207 sector_t sync_blocks;
16a53ecc
N
6208 int still_degraded = 0;
6209 int i;
1da177e4 6210
72626685 6211 if (sector_nr >= max_sector) {
1da177e4 6212 /* just being told to finish up .. nothing much to do */
cea9c228 6213
29269553
N
6214 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6215 end_reshape(conf);
6216 return 0;
6217 }
72626685
N
6218
6219 if (mddev->curr_resync < max_sector) /* aborted */
e64e4018
AS
6220 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6221 &sync_blocks, 1);
16a53ecc 6222 else /* completed sync */
72626685 6223 conf->fullsync = 0;
e64e4018 6224 md_bitmap_close_sync(mddev->bitmap);
72626685 6225
1da177e4
LT
6226 return 0;
6227 }
ccfcc3c1 6228
64bd660b
N
6229 /* Allow raid5_quiesce to complete */
6230 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6231
52c03291
N
6232 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6233 return reshape_request(mddev, sector_nr, skipped);
f6705578 6234
c6207277
N
6235 /* No need to check resync_max as we never do more than one
6236 * stripe, and as resync_max will always be on a chunk boundary,
6237 * if the check in md_do_sync didn't fire, there is no chance
6238 * of overstepping resync_max here
6239 */
6240
16a53ecc 6241 /* if there is too many failed drives and we are trying
1da177e4
LT
6242 * to resync, then assert that we are finished, because there is
6243 * nothing we can do.
6244 */
3285edf1 6245 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 6246 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 6247 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 6248 *skipped = 1;
1da177e4
LT
6249 return rv;
6250 }
6f608040 6251 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6252 !conf->fullsync &&
e64e4018 6253 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
c911c46c 6254 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
72626685 6255 /* we can skip this block, and probably more */
83c3e5e1 6256 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
72626685 6257 *skipped = 1;
c911c46c
YY
6258 /* keep things rounded to whole stripes */
6259 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
72626685 6260 }
1da177e4 6261
e64e4018 6262 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
b47490c9 6263
6d036f7d 6264 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 6265 if (sh == NULL) {
6d036f7d 6266 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 6267 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 6268 * is trying to get access
1da177e4 6269 */
66c006a5 6270 schedule_timeout_uninterruptible(1);
1da177e4 6271 }
16a53ecc 6272 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
6273 * Note in case of > 1 drive failures it's possible we're rebuilding
6274 * one drive while leaving another faulty drive in array.
16a53ecc 6275 */
16d9cfab
EM
6276 rcu_read_lock();
6277 for (i = 0; i < conf->raid_disks; i++) {
6aa7de05 6278 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
16d9cfab
EM
6279
6280 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 6281 still_degraded = 1;
16d9cfab
EM
6282 }
6283 rcu_read_unlock();
16a53ecc 6284
e64e4018 6285 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
16a53ecc 6286
83206d66 6287 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 6288 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 6289
6d036f7d 6290 raid5_release_stripe(sh);
1da177e4 6291
c911c46c 6292 return RAID5_STRIPE_SECTORS(conf);
1da177e4
LT
6293}
6294
0472a42b
N
6295static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6296 unsigned int offset)
46031f9a
RBJ
6297{
6298 /* We may not be able to submit a whole bio at once as there
6299 * may not be enough stripe_heads available.
6300 * We cannot pre-allocate enough stripe_heads as we may need
6301 * more than exist in the cache (if we allow ever large chunks).
6302 * So we do one stripe head at a time and record in
6303 * ->bi_hw_segments how many have been done.
6304 *
6305 * We *know* that this entire raid_bio is in one chunk, so
6306 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6307 */
6308 struct stripe_head *sh;
911d4ee8 6309 int dd_idx;
46031f9a
RBJ
6310 sector_t sector, logical_sector, last_sector;
6311 int scnt = 0;
46031f9a
RBJ
6312 int handled = 0;
6313
4f024f37 6314 logical_sector = raid_bio->bi_iter.bi_sector &
c911c46c 6315 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
112bf897 6316 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 6317 0, &dd_idx, NULL);
f73a1c7d 6318 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
6319
6320 for (; logical_sector < last_sector;
c911c46c
YY
6321 logical_sector += RAID5_STRIPE_SECTORS(conf),
6322 sector += RAID5_STRIPE_SECTORS(conf),
387bb173 6323 scnt++) {
46031f9a 6324
0472a42b 6325 if (scnt < offset)
46031f9a
RBJ
6326 /* already done this stripe */
6327 continue;
6328
6d036f7d 6329 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
6330
6331 if (!sh) {
6332 /* failed to get a stripe - must wait */
46031f9a 6333 conf->retry_read_aligned = raid_bio;
0472a42b 6334 conf->retry_read_offset = scnt;
46031f9a
RBJ
6335 return handled;
6336 }
6337
da41ba65 6338 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 6339 raid5_release_stripe(sh);
387bb173 6340 conf->retry_read_aligned = raid_bio;
0472a42b 6341 conf->retry_read_offset = scnt;
387bb173
NB
6342 return handled;
6343 }
6344
3f9e7c14 6345 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 6346 handle_stripe(sh);
6d036f7d 6347 raid5_release_stripe(sh);
46031f9a
RBJ
6348 handled++;
6349 }
016c76ac
N
6350
6351 bio_endio(raid_bio);
6352
46031f9a 6353 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 6354 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
6355 return handled;
6356}
6357
bfc90cb0 6358static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
6359 struct r5worker *worker,
6360 struct list_head *temp_inactive_list)
efcd487c
CH
6361 __releases(&conf->device_lock)
6362 __acquires(&conf->device_lock)
46a06401
SL
6363{
6364 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
6365 int i, batch_size = 0, hash;
6366 bool release_inactive = false;
46a06401
SL
6367
6368 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 6369 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
6370 batch[batch_size++] = sh;
6371
566c09c5
SL
6372 if (batch_size == 0) {
6373 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6374 if (!list_empty(temp_inactive_list + i))
6375 break;
a8c34f91
SL
6376 if (i == NR_STRIPE_HASH_LOCKS) {
6377 spin_unlock_irq(&conf->device_lock);
1532d9e8 6378 log_flush_stripe_to_raid(conf);
a8c34f91 6379 spin_lock_irq(&conf->device_lock);
566c09c5 6380 return batch_size;
a8c34f91 6381 }
566c09c5
SL
6382 release_inactive = true;
6383 }
46a06401
SL
6384 spin_unlock_irq(&conf->device_lock);
6385
566c09c5
SL
6386 release_inactive_stripe_list(conf, temp_inactive_list,
6387 NR_STRIPE_HASH_LOCKS);
6388
a8c34f91 6389 r5l_flush_stripe_to_raid(conf->log);
566c09c5
SL
6390 if (release_inactive) {
6391 spin_lock_irq(&conf->device_lock);
6392 return 0;
6393 }
6394
46a06401
SL
6395 for (i = 0; i < batch_size; i++)
6396 handle_stripe(batch[i]);
ff875738 6397 log_write_stripe_run(conf);
46a06401
SL
6398
6399 cond_resched();
6400
6401 spin_lock_irq(&conf->device_lock);
566c09c5
SL
6402 for (i = 0; i < batch_size; i++) {
6403 hash = batch[i]->hash_lock_index;
6404 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6405 }
46a06401
SL
6406 return batch_size;
6407}
46031f9a 6408
851c30c9
SL
6409static void raid5_do_work(struct work_struct *work)
6410{
6411 struct r5worker *worker = container_of(work, struct r5worker, work);
6412 struct r5worker_group *group = worker->group;
6413 struct r5conf *conf = group->conf;
16d997b7 6414 struct mddev *mddev = conf->mddev;
851c30c9
SL
6415 int group_id = group - conf->worker_groups;
6416 int handled;
6417 struct blk_plug plug;
6418
6419 pr_debug("+++ raid5worker active\n");
6420
6421 blk_start_plug(&plug);
6422 handled = 0;
6423 spin_lock_irq(&conf->device_lock);
6424 while (1) {
6425 int batch_size, released;
6426
566c09c5 6427 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 6428
566c09c5
SL
6429 batch_size = handle_active_stripes(conf, group_id, worker,
6430 worker->temp_inactive_list);
bfc90cb0 6431 worker->working = false;
851c30c9
SL
6432 if (!batch_size && !released)
6433 break;
6434 handled += batch_size;
16d997b7
N
6435 wait_event_lock_irq(mddev->sb_wait,
6436 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6437 conf->device_lock);
851c30c9
SL
6438 }
6439 pr_debug("%d stripes handled\n", handled);
6440
6441 spin_unlock_irq(&conf->device_lock);
7e96d559 6442
9c72a18e
SL
6443 flush_deferred_bios(conf);
6444
6445 r5l_flush_stripe_to_raid(conf->log);
6446
7e96d559 6447 async_tx_issue_pending_all();
851c30c9
SL
6448 blk_finish_plug(&plug);
6449
6450 pr_debug("--- raid5worker inactive\n");
6451}
6452
1da177e4
LT
6453/*
6454 * This is our raid5 kernel thread.
6455 *
6456 * We scan the hash table for stripes which can be handled now.
6457 * During the scan, completed stripes are saved for us by the interrupt
6458 * handler, so that they will not have to wait for our next wakeup.
6459 */
4ed8731d 6460static void raid5d(struct md_thread *thread)
1da177e4 6461{
4ed8731d 6462 struct mddev *mddev = thread->mddev;
d1688a6d 6463 struct r5conf *conf = mddev->private;
1da177e4 6464 int handled;
e1dfa0a2 6465 struct blk_plug plug;
1da177e4 6466
45b4233c 6467 pr_debug("+++ raid5d active\n");
1da177e4
LT
6468
6469 md_check_recovery(mddev);
1da177e4 6470
e1dfa0a2 6471 blk_start_plug(&plug);
1da177e4
LT
6472 handled = 0;
6473 spin_lock_irq(&conf->device_lock);
6474 while (1) {
46031f9a 6475 struct bio *bio;
773ca82f 6476 int batch_size, released;
0472a42b 6477 unsigned int offset;
773ca82f 6478
566c09c5 6479 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
6480 if (released)
6481 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 6482
0021b7bc 6483 if (
7c13edc8
N
6484 !list_empty(&conf->bitmap_list)) {
6485 /* Now is a good time to flush some bitmap updates */
6486 conf->seq_flush++;
700e432d 6487 spin_unlock_irq(&conf->device_lock);
e64e4018 6488 md_bitmap_unplug(mddev->bitmap);
700e432d 6489 spin_lock_irq(&conf->device_lock);
7c13edc8 6490 conf->seq_write = conf->seq_flush;
566c09c5 6491 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 6492 }
0021b7bc 6493 raid5_activate_delayed(conf);
72626685 6494
0472a42b 6495 while ((bio = remove_bio_from_retry(conf, &offset))) {
46031f9a
RBJ
6496 int ok;
6497 spin_unlock_irq(&conf->device_lock);
0472a42b 6498 ok = retry_aligned_read(conf, bio, offset);
46031f9a
RBJ
6499 spin_lock_irq(&conf->device_lock);
6500 if (!ok)
6501 break;
6502 handled++;
6503 }
6504
566c09c5
SL
6505 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6506 conf->temp_inactive_list);
773ca82f 6507 if (!batch_size && !released)
1da177e4 6508 break;
46a06401 6509 handled += batch_size;
1da177e4 6510
2953079c 6511 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
46a06401 6512 spin_unlock_irq(&conf->device_lock);
de393cde 6513 md_check_recovery(mddev);
46a06401
SL
6514 spin_lock_irq(&conf->device_lock);
6515 }
1da177e4 6516 }
45b4233c 6517 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
6518
6519 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
6520 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6521 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
6522 grow_one_stripe(conf, __GFP_NOWARN);
6523 /* Set flag even if allocation failed. This helps
6524 * slow down allocation requests when mem is short
6525 */
6526 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 6527 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 6528 }
1da177e4 6529
765d704d
SL
6530 flush_deferred_bios(conf);
6531
0576b1c6
SL
6532 r5l_flush_stripe_to_raid(conf->log);
6533
c9f21aaf 6534 async_tx_issue_pending_all();
e1dfa0a2 6535 blk_finish_plug(&plug);
1da177e4 6536
45b4233c 6537 pr_debug("--- raid5d inactive\n");
1da177e4
LT
6538}
6539
3f294f4f 6540static ssize_t
fd01b88c 6541raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 6542{
7b1485ba
N
6543 struct r5conf *conf;
6544 int ret = 0;
6545 spin_lock(&mddev->lock);
6546 conf = mddev->private;
96de1e66 6547 if (conf)
edbe83ab 6548 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
6549 spin_unlock(&mddev->lock);
6550 return ret;
3f294f4f
N
6551}
6552
c41d4ac4 6553int
fd01b88c 6554raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 6555{
483cbbed 6556 int result = 0;
d1688a6d 6557 struct r5conf *conf = mddev->private;
b5470dc5 6558
c41d4ac4 6559 if (size <= 16 || size > 32768)
3f294f4f 6560 return -EINVAL;
486f0644 6561
edbe83ab 6562 conf->min_nr_stripes = size;
2d5b569b 6563 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6564 while (size < conf->max_nr_stripes &&
6565 drop_one_stripe(conf))
6566 ;
2d5b569b 6567 mutex_unlock(&conf->cache_size_mutex);
486f0644 6568
2214c260 6569 md_allow_write(mddev);
486f0644 6570
2d5b569b 6571 mutex_lock(&conf->cache_size_mutex);
486f0644 6572 while (size > conf->max_nr_stripes)
483cbbed
AN
6573 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6574 conf->min_nr_stripes = conf->max_nr_stripes;
6575 result = -ENOMEM;
486f0644 6576 break;
483cbbed 6577 }
2d5b569b 6578 mutex_unlock(&conf->cache_size_mutex);
486f0644 6579
483cbbed 6580 return result;
c41d4ac4
N
6581}
6582EXPORT_SYMBOL(raid5_set_cache_size);
6583
6584static ssize_t
fd01b88c 6585raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 6586{
6791875e 6587 struct r5conf *conf;
c41d4ac4
N
6588 unsigned long new;
6589 int err;
6590
6591 if (len >= PAGE_SIZE)
6592 return -EINVAL;
b29bebd6 6593 if (kstrtoul(page, 10, &new))
c41d4ac4 6594 return -EINVAL;
6791875e 6595 err = mddev_lock(mddev);
c41d4ac4
N
6596 if (err)
6597 return err;
6791875e
N
6598 conf = mddev->private;
6599 if (!conf)
6600 err = -ENODEV;
6601 else
6602 err = raid5_set_cache_size(mddev, new);
6603 mddev_unlock(mddev);
6604
6605 return err ?: len;
3f294f4f 6606}
007583c9 6607
96de1e66
N
6608static struct md_sysfs_entry
6609raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6610 raid5_show_stripe_cache_size,
6611 raid5_store_stripe_cache_size);
3f294f4f 6612
d06f191f
MS
6613static ssize_t
6614raid5_show_rmw_level(struct mddev *mddev, char *page)
6615{
6616 struct r5conf *conf = mddev->private;
6617 if (conf)
6618 return sprintf(page, "%d\n", conf->rmw_level);
6619 else
6620 return 0;
6621}
6622
6623static ssize_t
6624raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6625{
6626 struct r5conf *conf = mddev->private;
6627 unsigned long new;
6628
6629 if (!conf)
6630 return -ENODEV;
6631
6632 if (len >= PAGE_SIZE)
6633 return -EINVAL;
6634
6635 if (kstrtoul(page, 10, &new))
6636 return -EINVAL;
6637
6638 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6639 return -EINVAL;
6640
6641 if (new != PARITY_DISABLE_RMW &&
6642 new != PARITY_ENABLE_RMW &&
6643 new != PARITY_PREFER_RMW)
6644 return -EINVAL;
6645
6646 conf->rmw_level = new;
6647 return len;
6648}
6649
6650static struct md_sysfs_entry
6651raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6652 raid5_show_rmw_level,
6653 raid5_store_rmw_level);
6654
3b5408b9
YY
6655static ssize_t
6656raid5_show_stripe_size(struct mddev *mddev, char *page)
6657{
6658 struct r5conf *conf;
6659 int ret = 0;
6660
6661 spin_lock(&mddev->lock);
6662 conf = mddev->private;
6663 if (conf)
6664 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6665 spin_unlock(&mddev->lock);
6666 return ret;
6667}
6668
6669#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6670static ssize_t
6671raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6672{
6673 struct r5conf *conf;
6674 unsigned long new;
6675 int err;
38912584 6676 int size;
3b5408b9
YY
6677
6678 if (len >= PAGE_SIZE)
6679 return -EINVAL;
6680 if (kstrtoul(page, 10, &new))
6681 return -EINVAL;
6682
6683 /*
6684 * The value should not be bigger than PAGE_SIZE. It requires to
6af10a33
YY
6685 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6686 * of two.
3b5408b9 6687 */
6af10a33
YY
6688 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6689 new > PAGE_SIZE || new == 0 ||
6690 new != roundup_pow_of_two(new))
3b5408b9
YY
6691 return -EINVAL;
6692
6693 err = mddev_lock(mddev);
6694 if (err)
6695 return err;
6696
6697 conf = mddev->private;
6698 if (!conf) {
6699 err = -ENODEV;
6700 goto out_unlock;
6701 }
6702
6703 if (new == conf->stripe_size)
6704 goto out_unlock;
6705
6706 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6707 conf->stripe_size, new);
6708
38912584
YY
6709 if (mddev->sync_thread ||
6710 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6711 mddev->reshape_position != MaxSector ||
6712 mddev->sysfs_active) {
6713 err = -EBUSY;
6714 goto out_unlock;
6715 }
6716
3b5408b9 6717 mddev_suspend(mddev);
38912584
YY
6718 mutex_lock(&conf->cache_size_mutex);
6719 size = conf->max_nr_stripes;
6720
6721 shrink_stripes(conf);
6722
3b5408b9
YY
6723 conf->stripe_size = new;
6724 conf->stripe_shift = ilog2(new) - 9;
6725 conf->stripe_sectors = new >> 9;
38912584
YY
6726 if (grow_stripes(conf, size)) {
6727 pr_warn("md/raid:%s: couldn't allocate buffers\n",
6728 mdname(mddev));
6729 err = -ENOMEM;
6730 }
6731 mutex_unlock(&conf->cache_size_mutex);
3b5408b9
YY
6732 mddev_resume(mddev);
6733
6734out_unlock:
6735 mddev_unlock(mddev);
6736 return err ?: len;
6737}
6738
6739static struct md_sysfs_entry
6740raid5_stripe_size = __ATTR(stripe_size, 0644,
6741 raid5_show_stripe_size,
6742 raid5_store_stripe_size);
6743#else
6744static struct md_sysfs_entry
6745raid5_stripe_size = __ATTR(stripe_size, 0444,
6746 raid5_show_stripe_size,
6747 NULL);
6748#endif
d06f191f 6749
8b3e6cdc 6750static ssize_t
fd01b88c 6751raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 6752{
7b1485ba
N
6753 struct r5conf *conf;
6754 int ret = 0;
6755 spin_lock(&mddev->lock);
6756 conf = mddev->private;
8b3e6cdc 6757 if (conf)
7b1485ba
N
6758 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6759 spin_unlock(&mddev->lock);
6760 return ret;
8b3e6cdc
DW
6761}
6762
6763static ssize_t
fd01b88c 6764raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6765{
6791875e 6766 struct r5conf *conf;
4ef197d8 6767 unsigned long new;
6791875e
N
6768 int err;
6769
8b3e6cdc
DW
6770 if (len >= PAGE_SIZE)
6771 return -EINVAL;
b29bebd6 6772 if (kstrtoul(page, 10, &new))
8b3e6cdc 6773 return -EINVAL;
6791875e
N
6774
6775 err = mddev_lock(mddev);
6776 if (err)
6777 return err;
6778 conf = mddev->private;
6779 if (!conf)
6780 err = -ENODEV;
edbe83ab 6781 else if (new > conf->min_nr_stripes)
6791875e
N
6782 err = -EINVAL;
6783 else
6784 conf->bypass_threshold = new;
6785 mddev_unlock(mddev);
6786 return err ?: len;
8b3e6cdc
DW
6787}
6788
6789static struct md_sysfs_entry
6790raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6791 S_IRUGO | S_IWUSR,
6792 raid5_show_preread_threshold,
6793 raid5_store_preread_threshold);
6794
d592a996
SL
6795static ssize_t
6796raid5_show_skip_copy(struct mddev *mddev, char *page)
6797{
7b1485ba
N
6798 struct r5conf *conf;
6799 int ret = 0;
6800 spin_lock(&mddev->lock);
6801 conf = mddev->private;
d592a996 6802 if (conf)
7b1485ba
N
6803 ret = sprintf(page, "%d\n", conf->skip_copy);
6804 spin_unlock(&mddev->lock);
6805 return ret;
d592a996
SL
6806}
6807
6808static ssize_t
6809raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6810{
6791875e 6811 struct r5conf *conf;
d592a996 6812 unsigned long new;
6791875e
N
6813 int err;
6814
d592a996
SL
6815 if (len >= PAGE_SIZE)
6816 return -EINVAL;
d592a996
SL
6817 if (kstrtoul(page, 10, &new))
6818 return -EINVAL;
6819 new = !!new;
6791875e
N
6820
6821 err = mddev_lock(mddev);
6822 if (err)
6823 return err;
6824 conf = mddev->private;
6825 if (!conf)
6826 err = -ENODEV;
6827 else if (new != conf->skip_copy) {
1cb039f3
CH
6828 struct request_queue *q = mddev->queue;
6829
6791875e
N
6830 mddev_suspend(mddev);
6831 conf->skip_copy = new;
6832 if (new)
1cb039f3 6833 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
6791875e 6834 else
1cb039f3 6835 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
6791875e
N
6836 mddev_resume(mddev);
6837 }
6838 mddev_unlock(mddev);
6839 return err ?: len;
d592a996
SL
6840}
6841
6842static struct md_sysfs_entry
6843raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6844 raid5_show_skip_copy,
6845 raid5_store_skip_copy);
6846
3f294f4f 6847static ssize_t
fd01b88c 6848stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6849{
d1688a6d 6850 struct r5conf *conf = mddev->private;
96de1e66
N
6851 if (conf)
6852 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6853 else
6854 return 0;
3f294f4f
N
6855}
6856
96de1e66
N
6857static struct md_sysfs_entry
6858raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6859
b721420e
SL
6860static ssize_t
6861raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6862{
7b1485ba
N
6863 struct r5conf *conf;
6864 int ret = 0;
6865 spin_lock(&mddev->lock);
6866 conf = mddev->private;
b721420e 6867 if (conf)
7b1485ba
N
6868 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6869 spin_unlock(&mddev->lock);
6870 return ret;
b721420e
SL
6871}
6872
60aaf933 6873static int alloc_thread_groups(struct r5conf *conf, int cnt,
6874 int *group_cnt,
60aaf933 6875 struct r5worker_group **worker_groups);
b721420e
SL
6876static ssize_t
6877raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6878{
6791875e 6879 struct r5conf *conf;
7d5d7b50 6880 unsigned int new;
b721420e 6881 int err;
60aaf933 6882 struct r5worker_group *new_groups, *old_groups;
d2c9ad41 6883 int group_cnt;
b721420e
SL
6884
6885 if (len >= PAGE_SIZE)
6886 return -EINVAL;
7d5d7b50
SL
6887 if (kstrtouint(page, 10, &new))
6888 return -EINVAL;
6889 /* 8192 should be big enough */
6890 if (new > 8192)
b721420e
SL
6891 return -EINVAL;
6892
6791875e
N
6893 err = mddev_lock(mddev);
6894 if (err)
6895 return err;
6896 conf = mddev->private;
6897 if (!conf)
6898 err = -ENODEV;
6899 else if (new != conf->worker_cnt_per_group) {
6900 mddev_suspend(mddev);
b721420e 6901
6791875e
N
6902 old_groups = conf->worker_groups;
6903 if (old_groups)
6904 flush_workqueue(raid5_wq);
d206dcfa 6905
d2c9ad41 6906 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6791875e
N
6907 if (!err) {
6908 spin_lock_irq(&conf->device_lock);
6909 conf->group_cnt = group_cnt;
d2c9ad41 6910 conf->worker_cnt_per_group = new;
6791875e
N
6911 conf->worker_groups = new_groups;
6912 spin_unlock_irq(&conf->device_lock);
b721420e 6913
6791875e
N
6914 if (old_groups)
6915 kfree(old_groups[0].workers);
6916 kfree(old_groups);
6917 }
6918 mddev_resume(mddev);
b721420e 6919 }
6791875e 6920 mddev_unlock(mddev);
b721420e 6921
6791875e 6922 return err ?: len;
b721420e
SL
6923}
6924
6925static struct md_sysfs_entry
6926raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6927 raid5_show_group_thread_cnt,
6928 raid5_store_group_thread_cnt);
6929
007583c9 6930static struct attribute *raid5_attrs[] = {
3f294f4f
N
6931 &raid5_stripecache_size.attr,
6932 &raid5_stripecache_active.attr,
8b3e6cdc 6933 &raid5_preread_bypass_threshold.attr,
b721420e 6934 &raid5_group_thread_cnt.attr,
d592a996 6935 &raid5_skip_copy.attr,
d06f191f 6936 &raid5_rmw_level.attr,
3b5408b9 6937 &raid5_stripe_size.attr,
2c7da14b 6938 &r5c_journal_mode.attr,
a596d086 6939 &ppl_write_hint.attr,
3f294f4f
N
6940 NULL,
6941};
007583c9
N
6942static struct attribute_group raid5_attrs_group = {
6943 .name = NULL,
6944 .attrs = raid5_attrs,
3f294f4f
N
6945};
6946
d2c9ad41 6947static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
60aaf933 6948 struct r5worker_group **worker_groups)
851c30c9 6949{
566c09c5 6950 int i, j, k;
851c30c9
SL
6951 ssize_t size;
6952 struct r5worker *workers;
6953
851c30c9 6954 if (cnt == 0) {
60aaf933 6955 *group_cnt = 0;
6956 *worker_groups = NULL;
851c30c9
SL
6957 return 0;
6958 }
60aaf933 6959 *group_cnt = num_possible_nodes();
851c30c9 6960 size = sizeof(struct r5worker) * cnt;
6396bb22
KC
6961 workers = kcalloc(size, *group_cnt, GFP_NOIO);
6962 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6963 GFP_NOIO);
60aaf933 6964 if (!*worker_groups || !workers) {
851c30c9 6965 kfree(workers);
60aaf933 6966 kfree(*worker_groups);
851c30c9
SL
6967 return -ENOMEM;
6968 }
6969
60aaf933 6970 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6971 struct r5worker_group *group;
6972
0c775d52 6973 group = &(*worker_groups)[i];
851c30c9 6974 INIT_LIST_HEAD(&group->handle_list);
535ae4eb 6975 INIT_LIST_HEAD(&group->loprio_list);
851c30c9
SL
6976 group->conf = conf;
6977 group->workers = workers + i * cnt;
6978
6979 for (j = 0; j < cnt; j++) {
566c09c5
SL
6980 struct r5worker *worker = group->workers + j;
6981 worker->group = group;
6982 INIT_WORK(&worker->work, raid5_do_work);
6983
6984 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6985 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6986 }
6987 }
6988
6989 return 0;
6990}
6991
6992static void free_thread_groups(struct r5conf *conf)
6993{
6994 if (conf->worker_groups)
6995 kfree(conf->worker_groups[0].workers);
6996 kfree(conf->worker_groups);
6997 conf->worker_groups = NULL;
6998}
6999
80c3a6ce 7000static sector_t
fd01b88c 7001raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 7002{
d1688a6d 7003 struct r5conf *conf = mddev->private;
80c3a6ce
DW
7004
7005 if (!sectors)
7006 sectors = mddev->dev_sectors;
5e5e3e78 7007 if (!raid_disks)
7ec05478 7008 /* size is defined by the smallest of previous and new size */
5e5e3e78 7009 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 7010
3cb5edf4
N
7011 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7012 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
7013 return sectors * (raid_disks - conf->max_degraded);
7014}
7015
789b5e03
ON
7016static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7017{
7018 safe_put_page(percpu->spare_page);
789b5e03 7019 percpu->spare_page = NULL;
b330e6a4 7020 kvfree(percpu->scribble);
789b5e03
ON
7021 percpu->scribble = NULL;
7022}
7023
7024static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7025{
b330e6a4 7026 if (conf->level == 6 && !percpu->spare_page) {
789b5e03 7027 percpu->spare_page = alloc_page(GFP_KERNEL);
b330e6a4
KO
7028 if (!percpu->spare_page)
7029 return -ENOMEM;
7030 }
7031
7032 if (scribble_alloc(percpu,
7033 max(conf->raid_disks,
7034 conf->previous_raid_disks),
7035 max(conf->chunk_sectors,
7036 conf->prev_chunk_sectors)
c911c46c 7037 / RAID5_STRIPE_SECTORS(conf))) {
789b5e03
ON
7038 free_scratch_buffer(conf, percpu);
7039 return -ENOMEM;
7040 }
7041
7042 return 0;
7043}
7044
29c6d1bb 7045static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
36d1c647 7046{
29c6d1bb
SAS
7047 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7048
7049 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7050 return 0;
7051}
36d1c647 7052
29c6d1bb
SAS
7053static void raid5_free_percpu(struct r5conf *conf)
7054{
36d1c647
DW
7055 if (!conf->percpu)
7056 return;
7057
29c6d1bb 7058 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
36d1c647
DW
7059 free_percpu(conf->percpu);
7060}
7061
d1688a6d 7062static void free_conf(struct r5conf *conf)
95fc17aa 7063{
d7bd398e
SL
7064 int i;
7065
ff875738
AP
7066 log_exit(conf);
7067
565e0450 7068 unregister_shrinker(&conf->shrinker);
851c30c9 7069 free_thread_groups(conf);
95fc17aa 7070 shrink_stripes(conf);
36d1c647 7071 raid5_free_percpu(conf);
d7bd398e
SL
7072 for (i = 0; i < conf->pool_size; i++)
7073 if (conf->disks[i].extra_page)
7074 put_page(conf->disks[i].extra_page);
95fc17aa 7075 kfree(conf->disks);
afeee514 7076 bioset_exit(&conf->bio_split);
95fc17aa 7077 kfree(conf->stripe_hashtbl);
aaf9f12e 7078 kfree(conf->pending_data);
95fc17aa
DW
7079 kfree(conf);
7080}
7081
29c6d1bb 7082static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
36d1c647 7083{
29c6d1bb 7084 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
36d1c647
DW
7085 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7086
29c6d1bb 7087 if (alloc_scratch_buffer(conf, percpu)) {
cc6167b4
N
7088 pr_warn("%s: failed memory allocation for cpu%u\n",
7089 __func__, cpu);
29c6d1bb 7090 return -ENOMEM;
36d1c647 7091 }
29c6d1bb 7092 return 0;
36d1c647 7093}
36d1c647 7094
d1688a6d 7095static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647 7096{
789b5e03 7097 int err = 0;
36d1c647 7098
789b5e03
ON
7099 conf->percpu = alloc_percpu(struct raid5_percpu);
7100 if (!conf->percpu)
36d1c647 7101 return -ENOMEM;
789b5e03 7102
29c6d1bb 7103 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
27a353c0
SL
7104 if (!err) {
7105 conf->scribble_disks = max(conf->raid_disks,
7106 conf->previous_raid_disks);
7107 conf->scribble_sectors = max(conf->chunk_sectors,
7108 conf->prev_chunk_sectors);
7109 }
36d1c647
DW
7110 return err;
7111}
7112
edbe83ab
N
7113static unsigned long raid5_cache_scan(struct shrinker *shrink,
7114 struct shrink_control *sc)
7115{
7116 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
7117 unsigned long ret = SHRINK_STOP;
7118
7119 if (mutex_trylock(&conf->cache_size_mutex)) {
7120 ret= 0;
49895bcc
N
7121 while (ret < sc->nr_to_scan &&
7122 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
7123 if (drop_one_stripe(conf) == 0) {
7124 ret = SHRINK_STOP;
7125 break;
7126 }
7127 ret++;
7128 }
7129 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
7130 }
7131 return ret;
7132}
7133
7134static unsigned long raid5_cache_count(struct shrinker *shrink,
7135 struct shrink_control *sc)
7136{
7137 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7138
7139 if (conf->max_nr_stripes < conf->min_nr_stripes)
7140 /* unlikely, but not impossible */
7141 return 0;
7142 return conf->max_nr_stripes - conf->min_nr_stripes;
7143}
7144
d1688a6d 7145static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 7146{
d1688a6d 7147 struct r5conf *conf;
5e5e3e78 7148 int raid_disk, memory, max_disks;
3cb03002 7149 struct md_rdev *rdev;
1da177e4 7150 struct disk_info *disk;
0232605d 7151 char pers_name[6];
566c09c5 7152 int i;
d2c9ad41 7153 int group_cnt;
60aaf933 7154 struct r5worker_group *new_group;
afeee514 7155 int ret;
1da177e4 7156
91adb564
N
7157 if (mddev->new_level != 5
7158 && mddev->new_level != 4
7159 && mddev->new_level != 6) {
cc6167b4
N
7160 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7161 mdname(mddev), mddev->new_level);
91adb564 7162 return ERR_PTR(-EIO);
1da177e4 7163 }
91adb564
N
7164 if ((mddev->new_level == 5
7165 && !algorithm_valid_raid5(mddev->new_layout)) ||
7166 (mddev->new_level == 6
7167 && !algorithm_valid_raid6(mddev->new_layout))) {
cc6167b4
N
7168 pr_warn("md/raid:%s: layout %d not supported\n",
7169 mdname(mddev), mddev->new_layout);
91adb564 7170 return ERR_PTR(-EIO);
99c0fb5f 7171 }
91adb564 7172 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
cc6167b4
N
7173 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7174 mdname(mddev), mddev->raid_disks);
91adb564 7175 return ERR_PTR(-EINVAL);
4bbf3771
N
7176 }
7177
664e7c41
AN
7178 if (!mddev->new_chunk_sectors ||
7179 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7180 !is_power_of_2(mddev->new_chunk_sectors)) {
cc6167b4
N
7181 pr_warn("md/raid:%s: invalid chunk size %d\n",
7182 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 7183 return ERR_PTR(-EINVAL);
f6705578
N
7184 }
7185
d1688a6d 7186 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 7187 if (conf == NULL)
1da177e4 7188 goto abort;
c911c46c 7189
e2368582
YY
7190#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7191 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7192 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7193 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7194#endif
aaf9f12e
SL
7195 INIT_LIST_HEAD(&conf->free_list);
7196 INIT_LIST_HEAD(&conf->pending_list);
6396bb22
KC
7197 conf->pending_data = kcalloc(PENDING_IO_MAX,
7198 sizeof(struct r5pending_data),
7199 GFP_KERNEL);
aaf9f12e
SL
7200 if (!conf->pending_data)
7201 goto abort;
7202 for (i = 0; i < PENDING_IO_MAX; i++)
7203 list_add(&conf->pending_data[i].sibling, &conf->free_list);
851c30c9 7204 /* Don't enable multi-threading by default*/
d2c9ad41 7205 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
60aaf933 7206 conf->group_cnt = group_cnt;
d2c9ad41 7207 conf->worker_cnt_per_group = 0;
60aaf933 7208 conf->worker_groups = new_group;
7209 } else
851c30c9 7210 goto abort;
f5efd45a 7211 spin_lock_init(&conf->device_lock);
0a87b25f 7212 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
2d5b569b 7213 mutex_init(&conf->cache_size_mutex);
b1b46486 7214 init_waitqueue_head(&conf->wait_for_quiescent);
6ab2a4b8 7215 init_waitqueue_head(&conf->wait_for_stripe);
f5efd45a
DW
7216 init_waitqueue_head(&conf->wait_for_overlap);
7217 INIT_LIST_HEAD(&conf->handle_list);
535ae4eb 7218 INIT_LIST_HEAD(&conf->loprio_list);
f5efd45a
DW
7219 INIT_LIST_HEAD(&conf->hold_list);
7220 INIT_LIST_HEAD(&conf->delayed_list);
7221 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 7222 init_llist_head(&conf->released_stripes);
f5efd45a
DW
7223 atomic_set(&conf->active_stripes, 0);
7224 atomic_set(&conf->preread_active_stripes, 0);
7225 atomic_set(&conf->active_aligned_reads, 0);
765d704d
SL
7226 spin_lock_init(&conf->pending_bios_lock);
7227 conf->batch_bio_dispatch = true;
7228 rdev_for_each(rdev, mddev) {
7229 if (test_bit(Journal, &rdev->flags))
7230 continue;
7231 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
7232 conf->batch_bio_dispatch = false;
7233 break;
7234 }
7235 }
7236
f5efd45a 7237 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 7238 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
7239
7240 conf->raid_disks = mddev->raid_disks;
7241 if (mddev->reshape_position == MaxSector)
7242 conf->previous_raid_disks = mddev->raid_disks;
7243 else
f6705578 7244 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 7245 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 7246
6396bb22 7247 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
b55e6bfc 7248 GFP_KERNEL);
d7bd398e 7249
b55e6bfc
N
7250 if (!conf->disks)
7251 goto abort;
9ffae0cf 7252
d7bd398e
SL
7253 for (i = 0; i < max_disks; i++) {
7254 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7255 if (!conf->disks[i].extra_page)
7256 goto abort;
7257 }
7258
afeee514
KO
7259 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7260 if (ret)
dd7a8f5d 7261 goto abort;
1da177e4
LT
7262 conf->mddev = mddev;
7263
fccddba0 7264 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 7265 goto abort;
1da177e4 7266
566c09c5
SL
7267 /* We init hash_locks[0] separately to that it can be used
7268 * as the reference lock in the spin_lock_nest_lock() call
7269 * in lock_all_device_hash_locks_irq in order to convince
7270 * lockdep that we know what we are doing.
7271 */
7272 spin_lock_init(conf->hash_locks);
7273 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7274 spin_lock_init(conf->hash_locks + i);
7275
7276 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7277 INIT_LIST_HEAD(conf->inactive_list + i);
7278
7279 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7280 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7281
1e6d690b
SL
7282 atomic_set(&conf->r5c_cached_full_stripes, 0);
7283 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7284 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7285 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
e33fbb9c
SL
7286 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7287 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
1e6d690b 7288
36d1c647 7289 conf->level = mddev->new_level;
46d5b785 7290 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
7291 if (raid5_alloc_percpu(conf) != 0)
7292 goto abort;
7293
0c55e022 7294 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 7295
dafb20fa 7296 rdev_for_each(rdev, mddev) {
1da177e4 7297 raid_disk = rdev->raid_disk;
5e5e3e78 7298 if (raid_disk >= max_disks
f2076e7d 7299 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
1da177e4
LT
7300 continue;
7301 disk = conf->disks + raid_disk;
7302
17045f52
N
7303 if (test_bit(Replacement, &rdev->flags)) {
7304 if (disk->replacement)
7305 goto abort;
7306 disk->replacement = rdev;
7307 } else {
7308 if (disk->rdev)
7309 goto abort;
7310 disk->rdev = rdev;
7311 }
1da177e4 7312
b2d444d7 7313 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 7314 char b[BDEVNAME_SIZE];
cc6167b4
N
7315 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7316 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 7317 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
7318 /* Cannot rely on bitmap to complete recovery */
7319 conf->fullsync = 1;
1da177e4
LT
7320 }
7321
91adb564 7322 conf->level = mddev->new_level;
584acdd4 7323 if (conf->level == 6) {
16a53ecc 7324 conf->max_degraded = 2;
584acdd4
MS
7325 if (raid6_call.xor_syndrome)
7326 conf->rmw_level = PARITY_ENABLE_RMW;
7327 else
7328 conf->rmw_level = PARITY_DISABLE_RMW;
7329 } else {
16a53ecc 7330 conf->max_degraded = 1;
584acdd4
MS
7331 conf->rmw_level = PARITY_ENABLE_RMW;
7332 }
91adb564 7333 conf->algorithm = mddev->new_layout;
fef9c61f 7334 conf->reshape_progress = mddev->reshape_position;
e183eaed 7335 if (conf->reshape_progress != MaxSector) {
09c9e5fa 7336 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 7337 conf->prev_algo = mddev->layout;
5cac6bcb
N
7338 } else {
7339 conf->prev_chunk_sectors = conf->chunk_sectors;
7340 conf->prev_algo = conf->algorithm;
e183eaed 7341 }
1da177e4 7342
edbe83ab 7343 conf->min_nr_stripes = NR_STRIPES;
ad5b0f76
SL
7344 if (mddev->reshape_position != MaxSector) {
7345 int stripes = max_t(int,
c911c46c
YY
7346 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7347 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
ad5b0f76
SL
7348 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7349 if (conf->min_nr_stripes != NR_STRIPES)
cc6167b4 7350 pr_info("md/raid:%s: force stripe size %d for reshape\n",
ad5b0f76
SL
7351 mdname(mddev), conf->min_nr_stripes);
7352 }
edbe83ab 7353 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 7354 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 7355 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 7356 if (grow_stripes(conf, conf->min_nr_stripes)) {
cc6167b4
N
7357 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7358 mdname(mddev), memory);
91adb564
N
7359 goto abort;
7360 } else
cc6167b4 7361 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
edbe83ab
N
7362 /*
7363 * Losing a stripe head costs more than the time to refill it,
7364 * it reduces the queue depth and so can hurt throughput.
7365 * So set it rather large, scaled by number of devices.
7366 */
7367 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7368 conf->shrinker.scan_objects = raid5_cache_scan;
7369 conf->shrinker.count_objects = raid5_cache_count;
7370 conf->shrinker.batch = 128;
7371 conf->shrinker.flags = 0;
6a0f53ff 7372 if (register_shrinker(&conf->shrinker)) {
cc6167b4
N
7373 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7374 mdname(mddev));
6a0f53ff
CY
7375 goto abort;
7376 }
1da177e4 7377
0232605d
N
7378 sprintf(pers_name, "raid%d", mddev->new_level);
7379 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564 7380 if (!conf->thread) {
cc6167b4
N
7381 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7382 mdname(mddev));
16a53ecc
N
7383 goto abort;
7384 }
91adb564
N
7385
7386 return conf;
7387
7388 abort:
7389 if (conf) {
95fc17aa 7390 free_conf(conf);
91adb564
N
7391 return ERR_PTR(-EIO);
7392 } else
7393 return ERR_PTR(-ENOMEM);
7394}
7395
c148ffdc
N
7396static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7397{
7398 switch (algo) {
7399 case ALGORITHM_PARITY_0:
7400 if (raid_disk < max_degraded)
7401 return 1;
7402 break;
7403 case ALGORITHM_PARITY_N:
7404 if (raid_disk >= raid_disks - max_degraded)
7405 return 1;
7406 break;
7407 case ALGORITHM_PARITY_0_6:
f72ffdd6 7408 if (raid_disk == 0 ||
c148ffdc
N
7409 raid_disk == raid_disks - 1)
7410 return 1;
7411 break;
7412 case ALGORITHM_LEFT_ASYMMETRIC_6:
7413 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7414 case ALGORITHM_LEFT_SYMMETRIC_6:
7415 case ALGORITHM_RIGHT_SYMMETRIC_6:
7416 if (raid_disk == raid_disks - 1)
7417 return 1;
7418 }
7419 return 0;
7420}
7421
16ef5101
CH
7422static void raid5_set_io_opt(struct r5conf *conf)
7423{
7424 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7425 (conf->raid_disks - conf->max_degraded));
7426}
7427
849674e4 7428static int raid5_run(struct mddev *mddev)
91adb564 7429{
d1688a6d 7430 struct r5conf *conf;
9f7c2220 7431 int working_disks = 0;
c148ffdc 7432 int dirty_parity_disks = 0;
3cb03002 7433 struct md_rdev *rdev;
713cf5a6 7434 struct md_rdev *journal_dev = NULL;
c148ffdc 7435 sector_t reshape_offset = 0;
17045f52 7436 int i;
b5254dd5
N
7437 long long min_offset_diff = 0;
7438 int first = 1;
91adb564 7439
a415c0f1
N
7440 if (mddev_init_writes_pending(mddev) < 0)
7441 return -ENOMEM;
7442
8c6ac868 7443 if (mddev->recovery_cp != MaxSector)
cc6167b4
N
7444 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7445 mdname(mddev));
b5254dd5
N
7446
7447 rdev_for_each(rdev, mddev) {
7448 long long diff;
713cf5a6 7449
f2076e7d 7450 if (test_bit(Journal, &rdev->flags)) {
713cf5a6 7451 journal_dev = rdev;
f2076e7d
SL
7452 continue;
7453 }
b5254dd5
N
7454 if (rdev->raid_disk < 0)
7455 continue;
7456 diff = (rdev->new_data_offset - rdev->data_offset);
7457 if (first) {
7458 min_offset_diff = diff;
7459 first = 0;
7460 } else if (mddev->reshape_backwards &&
7461 diff < min_offset_diff)
7462 min_offset_diff = diff;
7463 else if (!mddev->reshape_backwards &&
7464 diff > min_offset_diff)
7465 min_offset_diff = diff;
7466 }
7467
230b55fa
N
7468 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7469 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7470 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7471 mdname(mddev));
7472 return -EINVAL;
7473 }
7474
91adb564
N
7475 if (mddev->reshape_position != MaxSector) {
7476 /* Check that we can continue the reshape.
b5254dd5
N
7477 * Difficulties arise if the stripe we would write to
7478 * next is at or after the stripe we would read from next.
7479 * For a reshape that changes the number of devices, this
7480 * is only possible for a very short time, and mdadm makes
7481 * sure that time appears to have past before assembling
7482 * the array. So we fail if that time hasn't passed.
7483 * For a reshape that keeps the number of devices the same
7484 * mdadm must be monitoring the reshape can keeping the
7485 * critical areas read-only and backed up. It will start
7486 * the array in read-only mode, so we check for that.
91adb564
N
7487 */
7488 sector_t here_new, here_old;
7489 int old_disks;
18b00334 7490 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
7491 int chunk_sectors;
7492 int new_data_disks;
91adb564 7493
713cf5a6 7494 if (journal_dev) {
cc6167b4
N
7495 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7496 mdname(mddev));
713cf5a6
SL
7497 return -EINVAL;
7498 }
7499
88ce4930 7500 if (mddev->new_level != mddev->level) {
cc6167b4
N
7501 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7502 mdname(mddev));
91adb564
N
7503 return -EINVAL;
7504 }
91adb564
N
7505 old_disks = mddev->raid_disks - mddev->delta_disks;
7506 /* reshape_position must be on a new-stripe boundary, and one
7507 * further up in new geometry must map after here in old
7508 * geometry.
05256d98
N
7509 * If the chunk sizes are different, then as we perform reshape
7510 * in units of the largest of the two, reshape_position needs
7511 * be a multiple of the largest chunk size times new data disks.
91adb564
N
7512 */
7513 here_new = mddev->reshape_position;
05256d98
N
7514 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7515 new_data_disks = mddev->raid_disks - max_degraded;
7516 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
cc6167b4
N
7517 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7518 mdname(mddev));
91adb564
N
7519 return -EINVAL;
7520 }
05256d98 7521 reshape_offset = here_new * chunk_sectors;
91adb564
N
7522 /* here_new is the stripe we will write to */
7523 here_old = mddev->reshape_position;
05256d98 7524 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
7525 /* here_old is the first stripe that we might need to read
7526 * from */
67ac6011
N
7527 if (mddev->delta_disks == 0) {
7528 /* We cannot be sure it is safe to start an in-place
b5254dd5 7529 * reshape. It is only safe if user-space is monitoring
67ac6011
N
7530 * and taking constant backups.
7531 * mdadm always starts a situation like this in
7532 * readonly mode so it can take control before
7533 * allowing any writes. So just check for that.
7534 */
b5254dd5
N
7535 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7536 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7537 /* not really in-place - so OK */;
7538 else if (mddev->ro == 0) {
cc6167b4
N
7539 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7540 mdname(mddev));
67ac6011
N
7541 return -EINVAL;
7542 }
2c810cdd 7543 } else if (mddev->reshape_backwards
05256d98
N
7544 ? (here_new * chunk_sectors + min_offset_diff <=
7545 here_old * chunk_sectors)
7546 : (here_new * chunk_sectors >=
7547 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 7548 /* Reading from the same stripe as writing to - bad */
cc6167b4
N
7549 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7550 mdname(mddev));
91adb564
N
7551 return -EINVAL;
7552 }
cc6167b4 7553 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
91adb564
N
7554 /* OK, we should be able to continue; */
7555 } else {
7556 BUG_ON(mddev->level != mddev->new_level);
7557 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 7558 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 7559 BUG_ON(mddev->delta_disks != 0);
1da177e4 7560 }
91adb564 7561
3418d036
AP
7562 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7563 test_bit(MD_HAS_PPL, &mddev->flags)) {
7564 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7565 mdname(mddev));
7566 clear_bit(MD_HAS_PPL, &mddev->flags);
ddc08823 7567 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
3418d036
AP
7568 }
7569
245f46c2
N
7570 if (mddev->private == NULL)
7571 conf = setup_conf(mddev);
7572 else
7573 conf = mddev->private;
7574
91adb564
N
7575 if (IS_ERR(conf))
7576 return PTR_ERR(conf);
7577
486b0f7b
SL
7578 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7579 if (!journal_dev) {
cc6167b4
N
7580 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7581 mdname(mddev));
486b0f7b
SL
7582 mddev->ro = 1;
7583 set_disk_ro(mddev->gendisk, 1);
7584 } else if (mddev->recovery_cp == MaxSector)
7585 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7dde2ad3
SL
7586 }
7587
b5254dd5 7588 conf->min_offset_diff = min_offset_diff;
91adb564
N
7589 mddev->thread = conf->thread;
7590 conf->thread = NULL;
7591 mddev->private = conf;
7592
17045f52
N
7593 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7594 i++) {
7595 rdev = conf->disks[i].rdev;
7596 if (!rdev && conf->disks[i].replacement) {
7597 /* The replacement is all we have yet */
7598 rdev = conf->disks[i].replacement;
7599 conf->disks[i].replacement = NULL;
7600 clear_bit(Replacement, &rdev->flags);
7601 conf->disks[i].rdev = rdev;
7602 }
7603 if (!rdev)
c148ffdc 7604 continue;
17045f52
N
7605 if (conf->disks[i].replacement &&
7606 conf->reshape_progress != MaxSector) {
7607 /* replacements and reshape simply do not mix. */
cc6167b4 7608 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
17045f52
N
7609 goto abort;
7610 }
2f115882 7611 if (test_bit(In_sync, &rdev->flags)) {
91adb564 7612 working_disks++;
2f115882
N
7613 continue;
7614 }
c148ffdc
N
7615 /* This disc is not fully in-sync. However if it
7616 * just stored parity (beyond the recovery_offset),
7617 * when we don't need to be concerned about the
7618 * array being dirty.
7619 * When reshape goes 'backwards', we never have
7620 * partially completed devices, so we only need
7621 * to worry about reshape going forwards.
7622 */
7623 /* Hack because v0.91 doesn't store recovery_offset properly. */
7624 if (mddev->major_version == 0 &&
7625 mddev->minor_version > 90)
7626 rdev->recovery_offset = reshape_offset;
5026d7a9 7627
c148ffdc
N
7628 if (rdev->recovery_offset < reshape_offset) {
7629 /* We need to check old and new layout */
7630 if (!only_parity(rdev->raid_disk,
7631 conf->algorithm,
7632 conf->raid_disks,
7633 conf->max_degraded))
7634 continue;
7635 }
7636 if (!only_parity(rdev->raid_disk,
7637 conf->prev_algo,
7638 conf->previous_raid_disks,
7639 conf->max_degraded))
7640 continue;
7641 dirty_parity_disks++;
7642 }
91adb564 7643
17045f52
N
7644 /*
7645 * 0 for a fully functional array, 1 or 2 for a degraded array.
7646 */
2e38a37f 7647 mddev->degraded = raid5_calc_degraded(conf);
91adb564 7648
674806d6 7649 if (has_failed(conf)) {
cc6167b4 7650 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
02c2de8c 7651 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
7652 goto abort;
7653 }
7654
91adb564 7655 /* device size must be a multiple of chunk size */
c5eec74f 7656 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
91adb564
N
7657 mddev->resync_max_sectors = mddev->dev_sectors;
7658
c148ffdc 7659 if (mddev->degraded > dirty_parity_disks &&
1da177e4 7660 mddev->recovery_cp != MaxSector) {
4536bf9b
AP
7661 if (test_bit(MD_HAS_PPL, &mddev->flags))
7662 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7663 mdname(mddev));
7664 else if (mddev->ok_start_degraded)
cc6167b4
N
7665 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7666 mdname(mddev));
6ff8d8ec 7667 else {
cc6167b4
N
7668 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7669 mdname(mddev));
6ff8d8ec
N
7670 goto abort;
7671 }
1da177e4
LT
7672 }
7673
cc6167b4
N
7674 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7675 mdname(mddev), conf->level,
7676 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7677 mddev->new_layout);
1da177e4
LT
7678
7679 print_raid5_conf(conf);
7680
fef9c61f 7681 if (conf->reshape_progress != MaxSector) {
fef9c61f 7682 conf->reshape_safe = conf->reshape_progress;
f6705578
N
7683 atomic_set(&conf->reshape_stripes, 0);
7684 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7685 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7686 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7687 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7688 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7689 "reshape");
e406f12d
AP
7690 if (!mddev->sync_thread)
7691 goto abort;
f6705578
N
7692 }
7693
1da177e4 7694 /* Ok, everything is just fine now */
a64c876f
N
7695 if (mddev->to_remove == &raid5_attrs_group)
7696 mddev->to_remove = NULL;
00bcb4ac
N
7697 else if (mddev->kobj.sd &&
7698 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
cc6167b4
N
7699 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7700 mdname(mddev));
4a5add49 7701 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 7702
4a5add49 7703 if (mddev->queue) {
9f7c2220 7704 int chunk_size;
4a5add49
N
7705 /* read-ahead size must cover two whole stripes, which
7706 * is 2 * (datadisks) * chunksize where 'n' is the
7707 * number of raid devices
7708 */
7709 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7710 int stripe = data_disks *
7711 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
91adb564 7712
9f7c2220
N
7713 chunk_size = mddev->chunk_sectors << 9;
7714 blk_queue_io_min(mddev->queue, chunk_size);
16ef5101 7715 raid5_set_io_opt(conf);
c78afc62 7716 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
7717 /*
7718 * We can only discard a whole stripe. It doesn't make sense to
7719 * discard data disk but write parity disk
7720 */
7721 stripe = stripe * PAGE_SIZE;
4ac6875e
N
7722 /* Round up to power of 2, as discard handling
7723 * currently assumes that */
7724 while ((stripe-1) & stripe)
7725 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
7726 mddev->queue->limits.discard_alignment = stripe;
7727 mddev->queue->limits.discard_granularity = stripe;
e8d7c332 7728
5026d7a9 7729 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7 7730 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
5026d7a9 7731
05616be5 7732 rdev_for_each(rdev, mddev) {
9f7c2220
N
7733 disk_stack_limits(mddev->gendisk, rdev->bdev,
7734 rdev->data_offset << 9);
05616be5
N
7735 disk_stack_limits(mddev->gendisk, rdev->bdev,
7736 rdev->new_data_offset << 9);
7737 }
620125f2 7738
48920ff2
CH
7739 /*
7740 * zeroing is required, otherwise data
7741 * could be lost. Consider a scenario: discard a stripe
7742 * (the stripe could be inconsistent if
7743 * discard_zeroes_data is 0); write one disk of the
7744 * stripe (the stripe could be inconsistent again
7745 * depending on which disks are used to calculate
7746 * parity); the disk is broken; The stripe data of this
7747 * disk is lost.
7748 *
7749 * We only allow DISCARD if the sysadmin has confirmed that
7750 * only safe devices are in use by setting a module parameter.
7751 * A better idea might be to turn DISCARD into WRITE_ZEROES
7752 * requests, as that is required to be safe.
7753 */
7754 if (devices_handle_discard_safely &&
e7597e69
JS
7755 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7756 mddev->queue->limits.discard_granularity >= stripe)
8b904b5b 7757 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
620125f2
SL
7758 mddev->queue);
7759 else
8b904b5b 7760 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
620125f2 7761 mddev->queue);
1dffdddd
SL
7762
7763 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
9f7c2220 7764 }
23032a0e 7765
845b9e22 7766 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
ff875738 7767 goto abort;
5c7e81c3 7768
1da177e4
LT
7769 return 0;
7770abort:
01f96c0a 7771 md_unregister_thread(&mddev->thread);
e4f869d9
N
7772 print_raid5_conf(conf);
7773 free_conf(conf);
1da177e4 7774 mddev->private = NULL;
cc6167b4 7775 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
7776 return -EIO;
7777}
7778
afa0f557 7779static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 7780{
afa0f557 7781 struct r5conf *conf = priv;
1da177e4 7782
95fc17aa 7783 free_conf(conf);
a64c876f 7784 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
7785}
7786
849674e4 7787static void raid5_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 7788{
d1688a6d 7789 struct r5conf *conf = mddev->private;
1da177e4
LT
7790 int i;
7791
9d8f0363 7792 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 7793 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 7794 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5fd13351
N
7795 rcu_read_lock();
7796 for (i = 0; i < conf->raid_disks; i++) {
7797 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7798 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7799 }
7800 rcu_read_unlock();
1da177e4 7801 seq_printf (seq, "]");
1da177e4
LT
7802}
7803
d1688a6d 7804static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
7805{
7806 int i;
7807 struct disk_info *tmp;
7808
cc6167b4 7809 pr_debug("RAID conf printout:\n");
1da177e4 7810 if (!conf) {
cc6167b4 7811 pr_debug("(conf==NULL)\n");
1da177e4
LT
7812 return;
7813 }
cc6167b4 7814 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
0c55e022
N
7815 conf->raid_disks,
7816 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
7817
7818 for (i = 0; i < conf->raid_disks; i++) {
7819 char b[BDEVNAME_SIZE];
7820 tmp = conf->disks + i;
7821 if (tmp->rdev)
cc6167b4 7822 pr_debug(" disk %d, o:%d, dev:%s\n",
0c55e022
N
7823 i, !test_bit(Faulty, &tmp->rdev->flags),
7824 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7825 }
7826}
7827
fd01b88c 7828static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7829{
7830 int i;
d1688a6d 7831 struct r5conf *conf = mddev->private;
1da177e4 7832 struct disk_info *tmp;
6b965620
N
7833 int count = 0;
7834 unsigned long flags;
1da177e4
LT
7835
7836 for (i = 0; i < conf->raid_disks; i++) {
7837 tmp = conf->disks + i;
dd054fce
N
7838 if (tmp->replacement
7839 && tmp->replacement->recovery_offset == MaxSector
7840 && !test_bit(Faulty, &tmp->replacement->flags)
7841 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7842 /* Replacement has just become active. */
7843 if (!tmp->rdev
7844 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7845 count++;
7846 if (tmp->rdev) {
7847 /* Replaced device not technically faulty,
7848 * but we need to be sure it gets removed
7849 * and never re-added.
7850 */
7851 set_bit(Faulty, &tmp->rdev->flags);
7852 sysfs_notify_dirent_safe(
7853 tmp->rdev->sysfs_state);
7854 }
7855 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7856 } else if (tmp->rdev
70fffd0b 7857 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7858 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7859 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7860 count++;
43c73ca4 7861 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7862 }
7863 }
6b965620 7864 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7865 mddev->degraded = raid5_calc_degraded(conf);
6b965620 7866 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7867 print_raid5_conf(conf);
6b965620 7868 return count;
1da177e4
LT
7869}
7870
b8321b68 7871static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7872{
d1688a6d 7873 struct r5conf *conf = mddev->private;
1da177e4 7874 int err = 0;
b8321b68 7875 int number = rdev->raid_disk;
657e3e4d 7876 struct md_rdev **rdevp;
1da177e4
LT
7877 struct disk_info *p = conf->disks + number;
7878
7879 print_raid5_conf(conf);
f6b6ec5c 7880 if (test_bit(Journal, &rdev->flags) && conf->log) {
c2bb6242 7881 /*
f6b6ec5c
SL
7882 * we can't wait pending write here, as this is called in
7883 * raid5d, wait will deadlock.
84dd97a6
N
7884 * neilb: there is no locking about new writes here,
7885 * so this cannot be safe.
c2bb6242 7886 */
70d466f7
SL
7887 if (atomic_read(&conf->active_stripes) ||
7888 atomic_read(&conf->r5c_cached_full_stripes) ||
7889 atomic_read(&conf->r5c_cached_partial_stripes)) {
f6b6ec5c 7890 return -EBUSY;
84dd97a6 7891 }
ff875738 7892 log_exit(conf);
f6b6ec5c 7893 return 0;
c2bb6242 7894 }
657e3e4d
N
7895 if (rdev == p->rdev)
7896 rdevp = &p->rdev;
7897 else if (rdev == p->replacement)
7898 rdevp = &p->replacement;
7899 else
7900 return 0;
7901
7902 if (number >= conf->raid_disks &&
7903 conf->reshape_progress == MaxSector)
7904 clear_bit(In_sync, &rdev->flags);
7905
7906 if (test_bit(In_sync, &rdev->flags) ||
7907 atomic_read(&rdev->nr_pending)) {
7908 err = -EBUSY;
7909 goto abort;
7910 }
7911 /* Only remove non-faulty devices if recovery
7912 * isn't possible.
7913 */
7914 if (!test_bit(Faulty, &rdev->flags) &&
7915 mddev->recovery_disabled != conf->recovery_disabled &&
7916 !has_failed(conf) &&
dd054fce 7917 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7918 number < conf->raid_disks) {
7919 err = -EBUSY;
7920 goto abort;
7921 }
7922 *rdevp = NULL;
d787be40
N
7923 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7924 synchronize_rcu();
7925 if (atomic_read(&rdev->nr_pending)) {
7926 /* lost the race, try later */
7927 err = -EBUSY;
7928 *rdevp = rdev;
7929 }
7930 }
6358c239
AP
7931 if (!err) {
7932 err = log_modify(conf, rdev, false);
7933 if (err)
7934 goto abort;
7935 }
d787be40 7936 if (p->replacement) {
dd054fce
N
7937 /* We must have just cleared 'rdev' */
7938 p->rdev = p->replacement;
7939 clear_bit(Replacement, &p->replacement->flags);
7940 smp_mb(); /* Make sure other CPUs may see both as identical
7941 * but will never see neither - if they are careful
7942 */
7943 p->replacement = NULL;
6358c239
AP
7944
7945 if (!err)
7946 err = log_modify(conf, p->rdev, true);
e5bc9c3c
GJ
7947 }
7948
7949 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7950abort:
7951
7952 print_raid5_conf(conf);
7953 return err;
7954}
7955
fd01b88c 7956static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7957{
d1688a6d 7958 struct r5conf *conf = mddev->private;
d9771f5e 7959 int ret, err = -EEXIST;
1da177e4
LT
7960 int disk;
7961 struct disk_info *p;
6c2fce2e
NB
7962 int first = 0;
7963 int last = conf->raid_disks - 1;
1da177e4 7964
f6b6ec5c 7965 if (test_bit(Journal, &rdev->flags)) {
f6b6ec5c
SL
7966 if (conf->log)
7967 return -EBUSY;
7968
7969 rdev->raid_disk = 0;
7970 /*
7971 * The array is in readonly mode if journal is missing, so no
7972 * write requests running. We should be safe
7973 */
d9771f5e
XN
7974 ret = log_init(conf, rdev, false);
7975 if (ret)
7976 return ret;
7977
7978 ret = r5l_start(conf->log);
7979 if (ret)
7980 return ret;
7981
f6b6ec5c
SL
7982 return 0;
7983 }
7f0da59b
N
7984 if (mddev->recovery_disabled == conf->recovery_disabled)
7985 return -EBUSY;
7986
dc10c643 7987 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7988 /* no point adding a device */
199050ea 7989 return -EINVAL;
1da177e4 7990
6c2fce2e
NB
7991 if (rdev->raid_disk >= 0)
7992 first = last = rdev->raid_disk;
1da177e4
LT
7993
7994 /*
16a53ecc
N
7995 * find the disk ... but prefer rdev->saved_raid_disk
7996 * if possible.
1da177e4 7997 */
16a53ecc 7998 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7999 rdev->saved_raid_disk >= first &&
16a53ecc 8000 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
8001 first = rdev->saved_raid_disk;
8002
8003 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
8004 p = conf->disks + disk;
8005 if (p->rdev == NULL) {
b2d444d7 8006 clear_bit(In_sync, &rdev->flags);
1da177e4 8007 rdev->raid_disk = disk;
72626685
N
8008 if (rdev->saved_raid_disk != disk)
8009 conf->fullsync = 1;
d6065f7b 8010 rcu_assign_pointer(p->rdev, rdev);
6358c239
AP
8011
8012 err = log_modify(conf, rdev, true);
8013
5cfb22a1 8014 goto out;
1da177e4 8015 }
5cfb22a1
N
8016 }
8017 for (disk = first; disk <= last; disk++) {
8018 p = conf->disks + disk;
7bfec5f3
N
8019 if (test_bit(WantReplacement, &p->rdev->flags) &&
8020 p->replacement == NULL) {
8021 clear_bit(In_sync, &rdev->flags);
8022 set_bit(Replacement, &rdev->flags);
8023 rdev->raid_disk = disk;
8024 err = 0;
8025 conf->fullsync = 1;
8026 rcu_assign_pointer(p->replacement, rdev);
8027 break;
8028 }
8029 }
5cfb22a1 8030out:
1da177e4 8031 print_raid5_conf(conf);
199050ea 8032 return err;
1da177e4
LT
8033}
8034
fd01b88c 8035static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
8036{
8037 /* no resync is happening, and there is enough space
8038 * on all devices, so we can resize.
8039 * We need to make sure resync covers any new space.
8040 * If the array is shrinking we should possibly wait until
8041 * any io in the removed space completes, but it hardly seems
8042 * worth it.
8043 */
a4a6125a 8044 sector_t newsize;
3cb5edf4
N
8045 struct r5conf *conf = mddev->private;
8046
e254de6b 8047 if (raid5_has_log(conf) || raid5_has_ppl(conf))
713cf5a6 8048 return -EINVAL;
3cb5edf4 8049 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
8050 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8051 if (mddev->external_size &&
8052 mddev->array_sectors > newsize)
b522adcd 8053 return -EINVAL;
a4a6125a 8054 if (mddev->bitmap) {
e64e4018 8055 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
a4a6125a
N
8056 if (ret)
8057 return ret;
8058 }
8059 md_set_array_sectors(mddev, newsize);
b098636c
N
8060 if (sectors > mddev->dev_sectors &&
8061 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 8062 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
8063 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8064 }
58c0fed4 8065 mddev->dev_sectors = sectors;
4b5c7ae8 8066 mddev->resync_max_sectors = sectors;
1da177e4
LT
8067 return 0;
8068}
8069
fd01b88c 8070static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
8071{
8072 /* Can only proceed if there are plenty of stripe_heads.
8073 * We need a minimum of one full stripe,, and for sensible progress
8074 * it is best to have about 4 times that.
8075 * If we require 4 times, then the default 256 4K stripe_heads will
8076 * allow for chunk sizes up to 256K, which is probably OK.
8077 * If the chunk size is greater, user-space should request more
8078 * stripe_heads first.
8079 */
d1688a6d 8080 struct r5conf *conf = mddev->private;
c911c46c 8081 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
edbe83ab 8082 > conf->min_nr_stripes ||
c911c46c 8083 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
edbe83ab 8084 > conf->min_nr_stripes) {
cc6167b4
N
8085 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8086 mdname(mddev),
8087 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
c911c46c 8088 / RAID5_STRIPE_SIZE(conf))*4);
01ee22b4
N
8089 return 0;
8090 }
8091 return 1;
8092}
8093
fd01b88c 8094static int check_reshape(struct mddev *mddev)
29269553 8095{
d1688a6d 8096 struct r5conf *conf = mddev->private;
29269553 8097
e254de6b 8098 if (raid5_has_log(conf) || raid5_has_ppl(conf))
713cf5a6 8099 return -EINVAL;
88ce4930
N
8100 if (mddev->delta_disks == 0 &&
8101 mddev->new_layout == mddev->layout &&
664e7c41 8102 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 8103 return 0; /* nothing to do */
674806d6 8104 if (has_failed(conf))
ec32a2bd 8105 return -EINVAL;
fdcfbbb6 8106 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
8107 /* We might be able to shrink, but the devices must
8108 * be made bigger first.
8109 * For raid6, 4 is the minimum size.
8110 * Otherwise 2 is the minimum
8111 */
8112 int min = 2;
8113 if (mddev->level == 6)
8114 min = 4;
8115 if (mddev->raid_disks + mddev->delta_disks < min)
8116 return -EINVAL;
8117 }
29269553 8118
01ee22b4 8119 if (!check_stripe_cache(mddev))
29269553 8120 return -ENOSPC;
29269553 8121
738a2738
N
8122 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8123 mddev->delta_disks > 0)
8124 if (resize_chunks(conf,
8125 conf->previous_raid_disks
8126 + max(0, mddev->delta_disks),
8127 max(mddev->new_chunk_sectors,
8128 mddev->chunk_sectors)
8129 ) < 0)
8130 return -ENOMEM;
845b9e22
AP
8131
8132 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8133 return 0; /* never bother to shrink */
e56108d6
N
8134 return resize_stripes(conf, (conf->previous_raid_disks
8135 + mddev->delta_disks));
63c70c4f
N
8136}
8137
fd01b88c 8138static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 8139{
d1688a6d 8140 struct r5conf *conf = mddev->private;
3cb03002 8141 struct md_rdev *rdev;
63c70c4f 8142 int spares = 0;
c04be0aa 8143 unsigned long flags;
63c70c4f 8144
f416885e 8145 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
8146 return -EBUSY;
8147
01ee22b4
N
8148 if (!check_stripe_cache(mddev))
8149 return -ENOSPC;
8150
30b67645
N
8151 if (has_failed(conf))
8152 return -EINVAL;
8153
c6563a8c 8154 rdev_for_each(rdev, mddev) {
469518a3
N
8155 if (!test_bit(In_sync, &rdev->flags)
8156 && !test_bit(Faulty, &rdev->flags))
29269553 8157 spares++;
c6563a8c 8158 }
63c70c4f 8159
f416885e 8160 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
8161 /* Not enough devices even to make a degraded array
8162 * of that size
8163 */
8164 return -EINVAL;
8165
ec32a2bd
N
8166 /* Refuse to reduce size of the array. Any reductions in
8167 * array size must be through explicit setting of array_size
8168 * attribute.
8169 */
8170 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8171 < mddev->array_sectors) {
cc6167b4
N
8172 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8173 mdname(mddev));
ec32a2bd
N
8174 return -EINVAL;
8175 }
8176
f6705578 8177 atomic_set(&conf->reshape_stripes, 0);
29269553 8178 spin_lock_irq(&conf->device_lock);
c46501b2 8179 write_seqcount_begin(&conf->gen_lock);
29269553 8180 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 8181 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
8182 conf->prev_chunk_sectors = conf->chunk_sectors;
8183 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
8184 conf->prev_algo = conf->algorithm;
8185 conf->algorithm = mddev->new_layout;
05616be5
N
8186 conf->generation++;
8187 /* Code that selects data_offset needs to see the generation update
8188 * if reshape_progress has been set - so a memory barrier needed.
8189 */
8190 smp_mb();
2c810cdd 8191 if (mddev->reshape_backwards)
fef9c61f
N
8192 conf->reshape_progress = raid5_size(mddev, 0, 0);
8193 else
8194 conf->reshape_progress = 0;
8195 conf->reshape_safe = conf->reshape_progress;
c46501b2 8196 write_seqcount_end(&conf->gen_lock);
29269553
N
8197 spin_unlock_irq(&conf->device_lock);
8198
4d77e3ba
N
8199 /* Now make sure any requests that proceeded on the assumption
8200 * the reshape wasn't running - like Discard or Read - have
8201 * completed.
8202 */
8203 mddev_suspend(mddev);
8204 mddev_resume(mddev);
8205
29269553
N
8206 /* Add some new drives, as many as will fit.
8207 * We know there are enough to make the newly sized array work.
3424bf6a
N
8208 * Don't add devices if we are reducing the number of
8209 * devices in the array. This is because it is not possible
8210 * to correctly record the "partially reconstructed" state of
8211 * such devices during the reshape and confusion could result.
29269553 8212 */
87a8dec9 8213 if (mddev->delta_disks >= 0) {
dafb20fa 8214 rdev_for_each(rdev, mddev)
87a8dec9
N
8215 if (rdev->raid_disk < 0 &&
8216 !test_bit(Faulty, &rdev->flags)) {
8217 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 8218 if (rdev->raid_disk
9d4c7d87 8219 >= conf->previous_raid_disks)
87a8dec9 8220 set_bit(In_sync, &rdev->flags);
9d4c7d87 8221 else
87a8dec9 8222 rdev->recovery_offset = 0;
36fad858 8223
2aada5b1
DLM
8224 /* Failure here is OK */
8225 sysfs_link_rdev(mddev, rdev);
50da0840 8226 }
87a8dec9
N
8227 } else if (rdev->raid_disk >= conf->previous_raid_disks
8228 && !test_bit(Faulty, &rdev->flags)) {
8229 /* This is a spare that was manually added */
8230 set_bit(In_sync, &rdev->flags);
87a8dec9 8231 }
29269553 8232
87a8dec9
N
8233 /* When a reshape changes the number of devices,
8234 * ->degraded is measured against the larger of the
8235 * pre and post number of devices.
8236 */
ec32a2bd 8237 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 8238 mddev->degraded = raid5_calc_degraded(conf);
ec32a2bd
N
8239 spin_unlock_irqrestore(&conf->device_lock, flags);
8240 }
63c70c4f 8241 mddev->raid_disks = conf->raid_disks;
e516402c 8242 mddev->reshape_position = conf->reshape_progress;
2953079c 8243 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
f6705578 8244
29269553
N
8245 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8246 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 8247 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
8248 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8249 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8250 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 8251 "reshape");
29269553
N
8252 if (!mddev->sync_thread) {
8253 mddev->recovery = 0;
8254 spin_lock_irq(&conf->device_lock);
ba8805b9 8255 write_seqcount_begin(&conf->gen_lock);
29269553 8256 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
8257 mddev->new_chunk_sectors =
8258 conf->chunk_sectors = conf->prev_chunk_sectors;
8259 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
8260 rdev_for_each(rdev, mddev)
8261 rdev->new_data_offset = rdev->data_offset;
8262 smp_wmb();
ba8805b9 8263 conf->generation --;
fef9c61f 8264 conf->reshape_progress = MaxSector;
1e3fa9bd 8265 mddev->reshape_position = MaxSector;
ba8805b9 8266 write_seqcount_end(&conf->gen_lock);
29269553
N
8267 spin_unlock_irq(&conf->device_lock);
8268 return -EAGAIN;
8269 }
c8f517c4 8270 conf->reshape_checkpoint = jiffies;
29269553
N
8271 md_wakeup_thread(mddev->sync_thread);
8272 md_new_event(mddev);
8273 return 0;
8274}
29269553 8275
ec32a2bd
N
8276/* This is called from the reshape thread and should make any
8277 * changes needed in 'conf'
8278 */
d1688a6d 8279static void end_reshape(struct r5conf *conf)
29269553 8280{
29269553 8281
f6705578 8282 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
db0505d3 8283 struct md_rdev *rdev;
f6705578 8284
f6705578 8285 spin_lock_irq(&conf->device_lock);
cea9c228 8286 conf->previous_raid_disks = conf->raid_disks;
b5d27718 8287 md_finish_reshape(conf->mddev);
05616be5 8288 smp_wmb();
fef9c61f 8289 conf->reshape_progress = MaxSector;
6cbd8148 8290 conf->mddev->reshape_position = MaxSector;
db0505d3
N
8291 rdev_for_each(rdev, conf->mddev)
8292 if (rdev->raid_disk >= 0 &&
8293 !test_bit(Journal, &rdev->flags) &&
8294 !test_bit(In_sync, &rdev->flags))
8295 rdev->recovery_offset = MaxSector;
f6705578 8296 spin_unlock_irq(&conf->device_lock);
b0f9ec04 8297 wake_up(&conf->wait_for_overlap);
16a53ecc 8298
c2e4cd57 8299 if (conf->mddev->queue)
16ef5101 8300 raid5_set_io_opt(conf);
29269553 8301 }
29269553
N
8302}
8303
ec32a2bd
N
8304/* This is called from the raid5d thread with mddev_lock held.
8305 * It makes config changes to the device.
8306 */
fd01b88c 8307static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 8308{
d1688a6d 8309 struct r5conf *conf = mddev->private;
cea9c228
N
8310
8311 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8312
8876391e 8313 if (mddev->delta_disks <= 0) {
ec32a2bd 8314 int d;
908f4fbd 8315 spin_lock_irq(&conf->device_lock);
2e38a37f 8316 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd 8317 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
8318 for (d = conf->raid_disks ;
8319 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 8320 d++) {
3cb03002 8321 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
8322 if (rdev)
8323 clear_bit(In_sync, &rdev->flags);
8324 rdev = conf->disks[d].replacement;
8325 if (rdev)
8326 clear_bit(In_sync, &rdev->flags);
1a67dde0 8327 }
cea9c228 8328 }
88ce4930 8329 mddev->layout = conf->algorithm;
09c9e5fa 8330 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
8331 mddev->reshape_position = MaxSector;
8332 mddev->delta_disks = 0;
2c810cdd 8333 mddev->reshape_backwards = 0;
cea9c228
N
8334 }
8335}
8336
b03e0ccb 8337static void raid5_quiesce(struct mddev *mddev, int quiesce)
72626685 8338{
d1688a6d 8339 struct r5conf *conf = mddev->private;
72626685 8340
b03e0ccb
N
8341 if (quiesce) {
8342 /* stop all writes */
566c09c5 8343 lock_all_device_hash_locks_irq(conf);
64bd660b
N
8344 /* '2' tells resync/reshape to pause so that all
8345 * active stripes can drain
8346 */
a39f7afd 8347 r5c_flush_cache(conf, INT_MAX);
64bd660b 8348 conf->quiesce = 2;
b1b46486 8349 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
8350 atomic_read(&conf->active_stripes) == 0 &&
8351 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
8352 unlock_all_device_hash_locks_irq(conf),
8353 lock_all_device_hash_locks_irq(conf));
64bd660b 8354 conf->quiesce = 1;
566c09c5 8355 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
8356 /* allow reshape to continue */
8357 wake_up(&conf->wait_for_overlap);
b03e0ccb
N
8358 } else {
8359 /* re-enable writes */
566c09c5 8360 lock_all_device_hash_locks_irq(conf);
72626685 8361 conf->quiesce = 0;
b1b46486 8362 wake_up(&conf->wait_for_quiescent);
e464eafd 8363 wake_up(&conf->wait_for_overlap);
566c09c5 8364 unlock_all_device_hash_locks_irq(conf);
72626685 8365 }
1532d9e8 8366 log_quiesce(conf, quiesce);
72626685 8367}
b15c2e57 8368
fd01b88c 8369static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 8370{
e373ab10 8371 struct r0conf *raid0_conf = mddev->private;
d76c8420 8372 sector_t sectors;
54071b38 8373
f1b29bca 8374 /* for raid0 takeover only one zone is supported */
e373ab10 8375 if (raid0_conf->nr_strip_zones > 1) {
cc6167b4
N
8376 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8377 mdname(mddev));
f1b29bca
DW
8378 return ERR_PTR(-EINVAL);
8379 }
8380
e373ab10
N
8381 sectors = raid0_conf->strip_zone[0].zone_end;
8382 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 8383 mddev->dev_sectors = sectors;
f1b29bca 8384 mddev->new_level = level;
54071b38
TM
8385 mddev->new_layout = ALGORITHM_PARITY_N;
8386 mddev->new_chunk_sectors = mddev->chunk_sectors;
8387 mddev->raid_disks += 1;
8388 mddev->delta_disks = 1;
8389 /* make sure it will be not marked as dirty */
8390 mddev->recovery_cp = MaxSector;
8391
8392 return setup_conf(mddev);
8393}
8394
fd01b88c 8395static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
8396{
8397 int chunksect;
6995f0b2 8398 void *ret;
d562b0c4
N
8399
8400 if (mddev->raid_disks != 2 ||
8401 mddev->degraded > 1)
8402 return ERR_PTR(-EINVAL);
8403
8404 /* Should check if there are write-behind devices? */
8405
8406 chunksect = 64*2; /* 64K by default */
8407
8408 /* The array must be an exact multiple of chunksize */
8409 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8410 chunksect >>= 1;
8411
c911c46c 8412 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
d562b0c4
N
8413 /* array size does not allow a suitable chunk size */
8414 return ERR_PTR(-EINVAL);
8415
8416 mddev->new_level = 5;
8417 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 8418 mddev->new_chunk_sectors = chunksect;
d562b0c4 8419
6995f0b2 8420 ret = setup_conf(mddev);
32cd7cbb 8421 if (!IS_ERR(ret))
394ed8e4
SL
8422 mddev_clear_unsupported_flags(mddev,
8423 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 8424 return ret;
d562b0c4
N
8425}
8426
fd01b88c 8427static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
8428{
8429 int new_layout;
8430
8431 switch (mddev->layout) {
8432 case ALGORITHM_LEFT_ASYMMETRIC_6:
8433 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8434 break;
8435 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8436 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8437 break;
8438 case ALGORITHM_LEFT_SYMMETRIC_6:
8439 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8440 break;
8441 case ALGORITHM_RIGHT_SYMMETRIC_6:
8442 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8443 break;
8444 case ALGORITHM_PARITY_0_6:
8445 new_layout = ALGORITHM_PARITY_0;
8446 break;
8447 case ALGORITHM_PARITY_N:
8448 new_layout = ALGORITHM_PARITY_N;
8449 break;
8450 default:
8451 return ERR_PTR(-EINVAL);
8452 }
8453 mddev->new_level = 5;
8454 mddev->new_layout = new_layout;
8455 mddev->delta_disks = -1;
8456 mddev->raid_disks -= 1;
8457 return setup_conf(mddev);
8458}
8459
fd01b88c 8460static int raid5_check_reshape(struct mddev *mddev)
b3546035 8461{
88ce4930
N
8462 /* For a 2-drive array, the layout and chunk size can be changed
8463 * immediately as not restriping is needed.
8464 * For larger arrays we record the new value - after validation
8465 * to be used by a reshape pass.
b3546035 8466 */
d1688a6d 8467 struct r5conf *conf = mddev->private;
597a711b 8468 int new_chunk = mddev->new_chunk_sectors;
b3546035 8469
597a711b 8470 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
8471 return -EINVAL;
8472 if (new_chunk > 0) {
0ba459d2 8473 if (!is_power_of_2(new_chunk))
b3546035 8474 return -EINVAL;
597a711b 8475 if (new_chunk < (PAGE_SIZE>>9))
b3546035 8476 return -EINVAL;
597a711b 8477 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
8478 /* not factor of array size */
8479 return -EINVAL;
8480 }
8481
8482 /* They look valid */
8483
88ce4930 8484 if (mddev->raid_disks == 2) {
597a711b
N
8485 /* can make the change immediately */
8486 if (mddev->new_layout >= 0) {
8487 conf->algorithm = mddev->new_layout;
8488 mddev->layout = mddev->new_layout;
88ce4930
N
8489 }
8490 if (new_chunk > 0) {
597a711b
N
8491 conf->chunk_sectors = new_chunk ;
8492 mddev->chunk_sectors = new_chunk;
88ce4930 8493 }
2953079c 8494 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
88ce4930 8495 md_wakeup_thread(mddev->thread);
b3546035 8496 }
50ac168a 8497 return check_reshape(mddev);
88ce4930
N
8498}
8499
fd01b88c 8500static int raid6_check_reshape(struct mddev *mddev)
88ce4930 8501{
597a711b 8502 int new_chunk = mddev->new_chunk_sectors;
50ac168a 8503
597a711b 8504 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 8505 return -EINVAL;
b3546035 8506 if (new_chunk > 0) {
0ba459d2 8507 if (!is_power_of_2(new_chunk))
88ce4930 8508 return -EINVAL;
597a711b 8509 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 8510 return -EINVAL;
597a711b 8511 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
8512 /* not factor of array size */
8513 return -EINVAL;
b3546035 8514 }
88ce4930
N
8515
8516 /* They look valid */
50ac168a 8517 return check_reshape(mddev);
b3546035
N
8518}
8519
fd01b88c 8520static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
8521{
8522 /* raid5 can take over:
f1b29bca 8523 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
8524 * raid1 - if there are two drives. We need to know the chunk size
8525 * raid4 - trivial - just use a raid4 layout.
8526 * raid6 - Providing it is a *_6 layout
d562b0c4 8527 */
f1b29bca
DW
8528 if (mddev->level == 0)
8529 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
8530 if (mddev->level == 1)
8531 return raid5_takeover_raid1(mddev);
e9d4758f
N
8532 if (mddev->level == 4) {
8533 mddev->new_layout = ALGORITHM_PARITY_N;
8534 mddev->new_level = 5;
8535 return setup_conf(mddev);
8536 }
fc9739c6
N
8537 if (mddev->level == 6)
8538 return raid5_takeover_raid6(mddev);
d562b0c4
N
8539
8540 return ERR_PTR(-EINVAL);
8541}
8542
fd01b88c 8543static void *raid4_takeover(struct mddev *mddev)
a78d38a1 8544{
f1b29bca
DW
8545 /* raid4 can take over:
8546 * raid0 - if there is only one strip zone
8547 * raid5 - if layout is right
a78d38a1 8548 */
f1b29bca
DW
8549 if (mddev->level == 0)
8550 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
8551 if (mddev->level == 5 &&
8552 mddev->layout == ALGORITHM_PARITY_N) {
8553 mddev->new_layout = 0;
8554 mddev->new_level = 4;
8555 return setup_conf(mddev);
8556 }
8557 return ERR_PTR(-EINVAL);
8558}
d562b0c4 8559
84fc4b56 8560static struct md_personality raid5_personality;
245f46c2 8561
fd01b88c 8562static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
8563{
8564 /* Currently can only take over a raid5. We map the
8565 * personality to an equivalent raid6 personality
8566 * with the Q block at the end.
8567 */
8568 int new_layout;
8569
8570 if (mddev->pers != &raid5_personality)
8571 return ERR_PTR(-EINVAL);
8572 if (mddev->degraded > 1)
8573 return ERR_PTR(-EINVAL);
8574 if (mddev->raid_disks > 253)
8575 return ERR_PTR(-EINVAL);
8576 if (mddev->raid_disks < 3)
8577 return ERR_PTR(-EINVAL);
8578
8579 switch (mddev->layout) {
8580 case ALGORITHM_LEFT_ASYMMETRIC:
8581 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8582 break;
8583 case ALGORITHM_RIGHT_ASYMMETRIC:
8584 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8585 break;
8586 case ALGORITHM_LEFT_SYMMETRIC:
8587 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8588 break;
8589 case ALGORITHM_RIGHT_SYMMETRIC:
8590 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8591 break;
8592 case ALGORITHM_PARITY_0:
8593 new_layout = ALGORITHM_PARITY_0_6;
8594 break;
8595 case ALGORITHM_PARITY_N:
8596 new_layout = ALGORITHM_PARITY_N;
8597 break;
8598 default:
8599 return ERR_PTR(-EINVAL);
8600 }
8601 mddev->new_level = 6;
8602 mddev->new_layout = new_layout;
8603 mddev->delta_disks = 1;
8604 mddev->raid_disks += 1;
8605 return setup_conf(mddev);
8606}
8607
ba903a3e
AP
8608static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8609{
8610 struct r5conf *conf;
8611 int err;
8612
8613 err = mddev_lock(mddev);
8614 if (err)
8615 return err;
8616 conf = mddev->private;
8617 if (!conf) {
8618 mddev_unlock(mddev);
8619 return -ENODEV;
8620 }
8621
845b9e22 8622 if (strncmp(buf, "ppl", 3) == 0) {
0bb0c105 8623 /* ppl only works with RAID 5 */
845b9e22
AP
8624 if (!raid5_has_ppl(conf) && conf->level == 5) {
8625 err = log_init(conf, NULL, true);
8626 if (!err) {
8627 err = resize_stripes(conf, conf->pool_size);
8628 if (err)
8629 log_exit(conf);
8630 }
0bb0c105
SL
8631 } else
8632 err = -EINVAL;
8633 } else if (strncmp(buf, "resync", 6) == 0) {
8634 if (raid5_has_ppl(conf)) {
8635 mddev_suspend(mddev);
8636 log_exit(conf);
0bb0c105 8637 mddev_resume(mddev);
845b9e22 8638 err = resize_stripes(conf, conf->pool_size);
0bb0c105
SL
8639 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8640 r5l_log_disk_error(conf)) {
8641 bool journal_dev_exists = false;
8642 struct md_rdev *rdev;
8643
8644 rdev_for_each(rdev, mddev)
8645 if (test_bit(Journal, &rdev->flags)) {
8646 journal_dev_exists = true;
8647 break;
8648 }
8649
8650 if (!journal_dev_exists) {
8651 mddev_suspend(mddev);
8652 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8653 mddev_resume(mddev);
8654 } else /* need remove journal device first */
8655 err = -EBUSY;
8656 } else
8657 err = -EINVAL;
ba903a3e
AP
8658 } else {
8659 err = -EINVAL;
8660 }
8661
8662 if (!err)
8663 md_update_sb(mddev, 1);
8664
8665 mddev_unlock(mddev);
8666
8667 return err;
8668}
8669
d5d885fd
SL
8670static int raid5_start(struct mddev *mddev)
8671{
8672 struct r5conf *conf = mddev->private;
8673
8674 return r5l_start(conf->log);
8675}
8676
84fc4b56 8677static struct md_personality raid6_personality =
16a53ecc
N
8678{
8679 .name = "raid6",
8680 .level = 6,
8681 .owner = THIS_MODULE,
849674e4
SL
8682 .make_request = raid5_make_request,
8683 .run = raid5_run,
d5d885fd 8684 .start = raid5_start,
afa0f557 8685 .free = raid5_free,
849674e4
SL
8686 .status = raid5_status,
8687 .error_handler = raid5_error,
16a53ecc
N
8688 .hot_add_disk = raid5_add_disk,
8689 .hot_remove_disk= raid5_remove_disk,
8690 .spare_active = raid5_spare_active,
849674e4 8691 .sync_request = raid5_sync_request,
16a53ecc 8692 .resize = raid5_resize,
80c3a6ce 8693 .size = raid5_size,
50ac168a 8694 .check_reshape = raid6_check_reshape,
f416885e 8695 .start_reshape = raid5_start_reshape,
cea9c228 8696 .finish_reshape = raid5_finish_reshape,
16a53ecc 8697 .quiesce = raid5_quiesce,
245f46c2 8698 .takeover = raid6_takeover,
0bb0c105 8699 .change_consistency_policy = raid5_change_consistency_policy,
16a53ecc 8700};
84fc4b56 8701static struct md_personality raid5_personality =
1da177e4
LT
8702{
8703 .name = "raid5",
2604b703 8704 .level = 5,
1da177e4 8705 .owner = THIS_MODULE,
849674e4
SL
8706 .make_request = raid5_make_request,
8707 .run = raid5_run,
d5d885fd 8708 .start = raid5_start,
afa0f557 8709 .free = raid5_free,
849674e4
SL
8710 .status = raid5_status,
8711 .error_handler = raid5_error,
1da177e4
LT
8712 .hot_add_disk = raid5_add_disk,
8713 .hot_remove_disk= raid5_remove_disk,
8714 .spare_active = raid5_spare_active,
849674e4 8715 .sync_request = raid5_sync_request,
1da177e4 8716 .resize = raid5_resize,
80c3a6ce 8717 .size = raid5_size,
63c70c4f
N
8718 .check_reshape = raid5_check_reshape,
8719 .start_reshape = raid5_start_reshape,
cea9c228 8720 .finish_reshape = raid5_finish_reshape,
72626685 8721 .quiesce = raid5_quiesce,
d562b0c4 8722 .takeover = raid5_takeover,
ba903a3e 8723 .change_consistency_policy = raid5_change_consistency_policy,
1da177e4
LT
8724};
8725
84fc4b56 8726static struct md_personality raid4_personality =
1da177e4 8727{
2604b703
N
8728 .name = "raid4",
8729 .level = 4,
8730 .owner = THIS_MODULE,
849674e4
SL
8731 .make_request = raid5_make_request,
8732 .run = raid5_run,
d5d885fd 8733 .start = raid5_start,
afa0f557 8734 .free = raid5_free,
849674e4
SL
8735 .status = raid5_status,
8736 .error_handler = raid5_error,
2604b703
N
8737 .hot_add_disk = raid5_add_disk,
8738 .hot_remove_disk= raid5_remove_disk,
8739 .spare_active = raid5_spare_active,
849674e4 8740 .sync_request = raid5_sync_request,
2604b703 8741 .resize = raid5_resize,
80c3a6ce 8742 .size = raid5_size,
3d37890b
N
8743 .check_reshape = raid5_check_reshape,
8744 .start_reshape = raid5_start_reshape,
cea9c228 8745 .finish_reshape = raid5_finish_reshape,
2604b703 8746 .quiesce = raid5_quiesce,
a78d38a1 8747 .takeover = raid4_takeover,
0bb0c105 8748 .change_consistency_policy = raid5_change_consistency_policy,
2604b703
N
8749};
8750
8751static int __init raid5_init(void)
8752{
29c6d1bb
SAS
8753 int ret;
8754
851c30c9
SL
8755 raid5_wq = alloc_workqueue("raid5wq",
8756 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8757 if (!raid5_wq)
8758 return -ENOMEM;
29c6d1bb
SAS
8759
8760 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8761 "md/raid5:prepare",
8762 raid456_cpu_up_prepare,
8763 raid456_cpu_dead);
8764 if (ret) {
8765 destroy_workqueue(raid5_wq);
8766 return ret;
8767 }
16a53ecc 8768 register_md_personality(&raid6_personality);
2604b703
N
8769 register_md_personality(&raid5_personality);
8770 register_md_personality(&raid4_personality);
8771 return 0;
1da177e4
LT
8772}
8773
2604b703 8774static void raid5_exit(void)
1da177e4 8775{
16a53ecc 8776 unregister_md_personality(&raid6_personality);
2604b703
N
8777 unregister_md_personality(&raid5_personality);
8778 unregister_md_personality(&raid4_personality);
29c6d1bb 8779 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
851c30c9 8780 destroy_workqueue(raid5_wq);
1da177e4
LT
8781}
8782
8783module_init(raid5_init);
8784module_exit(raid5_exit);
8785MODULE_LICENSE("GPL");
0efb9e61 8786MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 8787MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
8788MODULE_ALIAS("md-raid5");
8789MODULE_ALIAS("md-raid4");
2604b703
N
8790MODULE_ALIAS("md-level-5");
8791MODULE_ALIAS("md-level-4");
16a53ecc
N
8792MODULE_ALIAS("md-personality-8"); /* RAID6 */
8793MODULE_ALIAS("md-raid6");
8794MODULE_ALIAS("md-level-6");
8795
8796/* This used to be two separate modules, they were: */
8797MODULE_ALIAS("raid5");
8798MODULE_ALIAS("raid6");