]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid5.c
md: Prevent IO hold during accessing to faulty raid5 array
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
a9add5d9
N
58#include <trace/events/block.h>
59
43b2e5d8 60#include "md.h"
bff61975 61#include "raid5.h"
54071b38 62#include "raid0.h"
ef740c37 63#include "bitmap.h"
72626685 64
851c30c9
SL
65#define cpu_to_group(cpu) cpu_to_node(cpu)
66#define ANY_GROUP NUMA_NO_NODE
67
8e0e99ba
N
68static bool devices_handle_discard_safely = false;
69module_param(devices_handle_discard_safely, bool, 0644);
70MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 72static struct workqueue_struct *raid5_wq;
1da177e4
LT
73/*
74 * Stripe cache
75 */
76
77#define NR_STRIPES 256
78#define STRIPE_SIZE PAGE_SIZE
79#define STRIPE_SHIFT (PAGE_SHIFT - 9)
80#define STRIPE_SECTORS (STRIPE_SIZE>>9)
81#define IO_THRESHOLD 1
8b3e6cdc 82#define BYPASS_THRESHOLD 1
fccddba0 83#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4 84#define HASH_MASK (NR_HASH - 1)
bfc90cb0 85#define MAX_STRIPE_BATCH 8
1da177e4 86
d1688a6d 87static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
88{
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91}
1da177e4 92
566c09c5
SL
93static inline int stripe_hash_locks_hash(sector_t sect)
94{
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96}
97
98static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99{
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102}
103
104static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105{
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108}
109
110static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111{
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118}
119
120static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121{
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127}
128
1da177e4
LT
129/* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
db298e19 135 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
136 * of the current stripe+device
137 */
db298e19
N
138static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139{
aa8b57aa 140 int sectors = bio_sectors(bio);
4f024f37 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
db298e19
N
142 return bio->bi_next;
143 else
144 return NULL;
145}
1da177e4 146
960e739d 147/*
5b99c2ff
JA
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 150 */
e7836bd6 151static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 152{
e7836bd6
SL
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
155}
156
e7836bd6 157static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 158{
e7836bd6
SL
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
161}
162
e7836bd6 163static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 164{
e7836bd6
SL
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
960e739d
JA
167}
168
e7836bd6
SL
169static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
960e739d 171{
e7836bd6
SL
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
960e739d 174
e7836bd6
SL
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
179}
180
e7836bd6 181static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 182{
e7836bd6
SL
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
960e739d
JA
185}
186
d0dabf7e
N
187/* Find first data disk in a raid6 stripe */
188static inline int raid6_d0(struct stripe_head *sh)
189{
67cc2b81
N
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
d0dabf7e
N
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198}
16a53ecc
N
199static inline int raid6_next_disk(int disk, int raid_disks)
200{
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203}
a4456856 204
d0dabf7e
N
205/* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
67cc2b81
N
210static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
d0dabf7e 212{
6629542e 213 int slot = *count;
67cc2b81 214
e4424fee 215 if (sh->ddf_layout)
6629542e 216 (*count)++;
d0dabf7e 217 if (idx == sh->pd_idx)
67cc2b81 218 return syndrome_disks;
d0dabf7e 219 if (idx == sh->qd_idx)
67cc2b81 220 return syndrome_disks + 1;
e4424fee 221 if (!sh->ddf_layout)
6629542e 222 (*count)++;
d0dabf7e
N
223 return slot;
224}
225
34a6f80e 226static void return_io(struct bio_list *return_bi)
a4456856 227{
34a6f80e
N
228 struct bio *bi;
229 while ((bi = bio_list_pop(return_bi)) != NULL) {
4f024f37 230 bi->bi_iter.bi_size = 0;
0a82a8d1
LT
231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 bi, 0);
4246a0b6 233 bio_endio(bi);
a4456856
DW
234 }
235}
236
d1688a6d 237static void print_raid5_conf (struct r5conf *conf);
1da177e4 238
600aa109
DW
239static int stripe_operations_active(struct stripe_head *sh)
240{
241 return sh->check_state || sh->reconstruct_state ||
242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244}
245
851c30c9
SL
246static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247{
248 struct r5conf *conf = sh->raid_conf;
249 struct r5worker_group *group;
bfc90cb0 250 int thread_cnt;
851c30c9
SL
251 int i, cpu = sh->cpu;
252
253 if (!cpu_online(cpu)) {
254 cpu = cpumask_any(cpu_online_mask);
255 sh->cpu = cpu;
256 }
257
258 if (list_empty(&sh->lru)) {
259 struct r5worker_group *group;
260 group = conf->worker_groups + cpu_to_group(cpu);
261 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
262 group->stripes_cnt++;
263 sh->group = group;
851c30c9
SL
264 }
265
266 if (conf->worker_cnt_per_group == 0) {
267 md_wakeup_thread(conf->mddev->thread);
268 return;
269 }
270
271 group = conf->worker_groups + cpu_to_group(sh->cpu);
272
bfc90cb0
SL
273 group->workers[0].working = true;
274 /* at least one worker should run to avoid race */
275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 /* wakeup more workers */
279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 if (group->workers[i].working == false) {
281 group->workers[i].working = true;
282 queue_work_on(sh->cpu, raid5_wq,
283 &group->workers[i].work);
284 thread_cnt--;
285 }
286 }
851c30c9
SL
287}
288
566c09c5
SL
289static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 struct list_head *temp_inactive_list)
1da177e4 291{
4eb788df
SL
292 BUG_ON(!list_empty(&sh->lru));
293 BUG_ON(atomic_read(&conf->active_stripes)==0);
294 if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 297 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
299 sh->bm_seq - conf->seq_write > 0)
300 list_add_tail(&sh->lru, &conf->bitmap_list);
301 else {
302 clear_bit(STRIPE_DELAYED, &sh->state);
303 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9
SL
304 if (conf->worker_cnt_per_group == 0) {
305 list_add_tail(&sh->lru, &conf->handle_list);
306 } else {
307 raid5_wakeup_stripe_thread(sh);
308 return;
309 }
4eb788df
SL
310 }
311 md_wakeup_thread(conf->mddev->thread);
312 } else {
313 BUG_ON(stripe_operations_active(sh));
314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 if (atomic_dec_return(&conf->preread_active_stripes)
316 < IO_THRESHOLD)
317 md_wakeup_thread(conf->mddev->thread);
318 atomic_dec(&conf->active_stripes);
566c09c5
SL
319 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 list_add_tail(&sh->lru, temp_inactive_list);
1da177e4
LT
321 }
322}
d0dabf7e 323
566c09c5
SL
324static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 struct list_head *temp_inactive_list)
4eb788df
SL
326{
327 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
328 do_release_stripe(conf, sh, temp_inactive_list);
329}
330
331/*
332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333 *
334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335 * given time. Adding stripes only takes device lock, while deleting stripes
336 * only takes hash lock.
337 */
338static void release_inactive_stripe_list(struct r5conf *conf,
339 struct list_head *temp_inactive_list,
340 int hash)
341{
342 int size;
6ab2a4b8 343 bool do_wakeup = false;
566c09c5
SL
344 unsigned long flags;
345
346 if (hash == NR_STRIPE_HASH_LOCKS) {
347 size = NR_STRIPE_HASH_LOCKS;
348 hash = NR_STRIPE_HASH_LOCKS - 1;
349 } else
350 size = 1;
351 while (size) {
352 struct list_head *list = &temp_inactive_list[size - 1];
353
354 /*
6d036f7d 355 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
356 * remove stripes from the list
357 */
358 if (!list_empty_careful(list)) {
359 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
360 if (list_empty(conf->inactive_list + hash) &&
361 !list_empty(list))
362 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 363 list_splice_tail_init(list, conf->inactive_list + hash);
6ab2a4b8 364 do_wakeup = true;
566c09c5
SL
365 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
366 }
367 size--;
368 hash--;
369 }
370
371 if (do_wakeup) {
6ab2a4b8 372 wake_up(&conf->wait_for_stripe);
b1b46486
YL
373 if (atomic_read(&conf->active_stripes) == 0)
374 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
375 if (conf->retry_read_aligned)
376 md_wakeup_thread(conf->mddev->thread);
377 }
4eb788df
SL
378}
379
773ca82f 380/* should hold conf->device_lock already */
566c09c5
SL
381static int release_stripe_list(struct r5conf *conf,
382 struct list_head *temp_inactive_list)
773ca82f
SL
383{
384 struct stripe_head *sh;
385 int count = 0;
386 struct llist_node *head;
387
388 head = llist_del_all(&conf->released_stripes);
d265d9dc 389 head = llist_reverse_order(head);
773ca82f 390 while (head) {
566c09c5
SL
391 int hash;
392
773ca82f
SL
393 sh = llist_entry(head, struct stripe_head, release_list);
394 head = llist_next(head);
395 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396 smp_mb();
397 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398 /*
399 * Don't worry the bit is set here, because if the bit is set
400 * again, the count is always > 1. This is true for
401 * STRIPE_ON_UNPLUG_LIST bit too.
402 */
566c09c5
SL
403 hash = sh->hash_lock_index;
404 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
405 count++;
406 }
407
408 return count;
409}
410
6d036f7d 411void raid5_release_stripe(struct stripe_head *sh)
1da177e4 412{
d1688a6d 413 struct r5conf *conf = sh->raid_conf;
1da177e4 414 unsigned long flags;
566c09c5
SL
415 struct list_head list;
416 int hash;
773ca82f 417 bool wakeup;
16a53ecc 418
cf170f3f
ES
419 /* Avoid release_list until the last reference.
420 */
421 if (atomic_add_unless(&sh->count, -1, 1))
422 return;
423
ad4068de 424 if (unlikely(!conf->mddev->thread) ||
425 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
426 goto slow_path;
427 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428 if (wakeup)
429 md_wakeup_thread(conf->mddev->thread);
430 return;
431slow_path:
4eb788df 432 local_irq_save(flags);
773ca82f 433 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 434 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
435 INIT_LIST_HEAD(&list);
436 hash = sh->hash_lock_index;
437 do_release_stripe(conf, sh, &list);
4eb788df 438 spin_unlock(&conf->device_lock);
566c09c5 439 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
440 }
441 local_irq_restore(flags);
1da177e4
LT
442}
443
fccddba0 444static inline void remove_hash(struct stripe_head *sh)
1da177e4 445{
45b4233c
DW
446 pr_debug("remove_hash(), stripe %llu\n",
447 (unsigned long long)sh->sector);
1da177e4 448
fccddba0 449 hlist_del_init(&sh->hash);
1da177e4
LT
450}
451
d1688a6d 452static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 453{
fccddba0 454 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 455
45b4233c
DW
456 pr_debug("insert_hash(), stripe %llu\n",
457 (unsigned long long)sh->sector);
1da177e4 458
fccddba0 459 hlist_add_head(&sh->hash, hp);
1da177e4
LT
460}
461
1da177e4 462/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 463static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
464{
465 struct stripe_head *sh = NULL;
466 struct list_head *first;
467
566c09c5 468 if (list_empty(conf->inactive_list + hash))
1da177e4 469 goto out;
566c09c5 470 first = (conf->inactive_list + hash)->next;
1da177e4
LT
471 sh = list_entry(first, struct stripe_head, lru);
472 list_del_init(first);
473 remove_hash(sh);
474 atomic_inc(&conf->active_stripes);
566c09c5 475 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
476 if (list_empty(conf->inactive_list + hash))
477 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
478out:
479 return sh;
480}
481
e4e11e38 482static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
483{
484 struct page *p;
485 int i;
e4e11e38 486 int num = sh->raid_conf->pool_size;
1da177e4 487
e4e11e38 488 for (i = 0; i < num ; i++) {
d592a996 489 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
490 p = sh->dev[i].page;
491 if (!p)
492 continue;
493 sh->dev[i].page = NULL;
2d1f3b5d 494 put_page(p);
1da177e4
LT
495 }
496}
497
a9683a79 498static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
499{
500 int i;
e4e11e38 501 int num = sh->raid_conf->pool_size;
1da177e4 502
e4e11e38 503 for (i = 0; i < num; i++) {
1da177e4
LT
504 struct page *page;
505
a9683a79 506 if (!(page = alloc_page(gfp))) {
1da177e4
LT
507 return 1;
508 }
509 sh->dev[i].page = page;
d592a996 510 sh->dev[i].orig_page = page;
1da177e4
LT
511 }
512 return 0;
513}
514
784052ec 515static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 516static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 517 struct stripe_head *sh);
1da177e4 518
b5663ba4 519static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 520{
d1688a6d 521 struct r5conf *conf = sh->raid_conf;
566c09c5 522 int i, seq;
1da177e4 523
78bafebd
ES
524 BUG_ON(atomic_read(&sh->count) != 0);
525 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 526 BUG_ON(stripe_operations_active(sh));
59fc630b 527 BUG_ON(sh->batch_head);
d84e0f10 528
45b4233c 529 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 530 (unsigned long long)sector);
566c09c5
SL
531retry:
532 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 533 sh->generation = conf->generation - previous;
b5663ba4 534 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 535 sh->sector = sector;
911d4ee8 536 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
537 sh->state = 0;
538
7ecaa1e6 539 for (i = sh->disks; i--; ) {
1da177e4
LT
540 struct r5dev *dev = &sh->dev[i];
541
d84e0f10 542 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 543 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 544 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 545 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 546 dev->read, dev->towrite, dev->written,
1da177e4 547 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 548 WARN_ON(1);
1da177e4
LT
549 }
550 dev->flags = 0;
784052ec 551 raid5_build_block(sh, i, previous);
1da177e4 552 }
566c09c5
SL
553 if (read_seqcount_retry(&conf->gen_lock, seq))
554 goto retry;
7a87f434 555 sh->overwrite_disks = 0;
1da177e4 556 insert_hash(conf, sh);
851c30c9 557 sh->cpu = smp_processor_id();
da41ba65 558 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
559}
560
d1688a6d 561static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 562 short generation)
1da177e4
LT
563{
564 struct stripe_head *sh;
565
45b4233c 566 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 567 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 568 if (sh->sector == sector && sh->generation == generation)
1da177e4 569 return sh;
45b4233c 570 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
571 return NULL;
572}
573
674806d6
N
574/*
575 * Need to check if array has failed when deciding whether to:
576 * - start an array
577 * - remove non-faulty devices
578 * - add a spare
579 * - allow a reshape
580 * This determination is simple when no reshape is happening.
581 * However if there is a reshape, we need to carefully check
582 * both the before and after sections.
583 * This is because some failed devices may only affect one
584 * of the two sections, and some non-in_sync devices may
585 * be insync in the section most affected by failed devices.
586 */
908f4fbd 587static int calc_degraded(struct r5conf *conf)
674806d6 588{
908f4fbd 589 int degraded, degraded2;
674806d6 590 int i;
674806d6
N
591
592 rcu_read_lock();
593 degraded = 0;
594 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 595 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
596 if (rdev && test_bit(Faulty, &rdev->flags))
597 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
598 if (!rdev || test_bit(Faulty, &rdev->flags))
599 degraded++;
600 else if (test_bit(In_sync, &rdev->flags))
601 ;
602 else
603 /* not in-sync or faulty.
604 * If the reshape increases the number of devices,
605 * this is being recovered by the reshape, so
606 * this 'previous' section is not in_sync.
607 * If the number of devices is being reduced however,
608 * the device can only be part of the array if
609 * we are reverting a reshape, so this section will
610 * be in-sync.
611 */
612 if (conf->raid_disks >= conf->previous_raid_disks)
613 degraded++;
614 }
615 rcu_read_unlock();
908f4fbd
N
616 if (conf->raid_disks == conf->previous_raid_disks)
617 return degraded;
674806d6 618 rcu_read_lock();
908f4fbd 619 degraded2 = 0;
674806d6 620 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 621 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
622 if (rdev && test_bit(Faulty, &rdev->flags))
623 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 624 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 625 degraded2++;
674806d6
N
626 else if (test_bit(In_sync, &rdev->flags))
627 ;
628 else
629 /* not in-sync or faulty.
630 * If reshape increases the number of devices, this
631 * section has already been recovered, else it
632 * almost certainly hasn't.
633 */
634 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 635 degraded2++;
674806d6
N
636 }
637 rcu_read_unlock();
908f4fbd
N
638 if (degraded2 > degraded)
639 return degraded2;
640 return degraded;
641}
642
643static int has_failed(struct r5conf *conf)
644{
645 int degraded;
646
647 if (conf->mddev->reshape_position == MaxSector)
648 return conf->mddev->degraded > conf->max_degraded;
649
650 degraded = calc_degraded(conf);
674806d6
N
651 if (degraded > conf->max_degraded)
652 return 1;
653 return 0;
654}
655
6d036f7d
SL
656struct stripe_head *
657raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
658 int previous, int noblock, int noquiesce)
1da177e4
LT
659{
660 struct stripe_head *sh;
566c09c5 661 int hash = stripe_hash_locks_hash(sector);
ff00d3b4 662 int inc_empty_inactive_list_flag;
1da177e4 663
45b4233c 664 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 665
566c09c5 666 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
667
668 do {
b1b46486 669 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 670 conf->quiesce == 0 || noquiesce,
566c09c5 671 *(conf->hash_locks + hash));
86b42c71 672 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 673 if (!sh) {
edbe83ab 674 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 675 sh = get_free_stripe(conf, hash);
713bc5c2
SL
676 if (!sh && !test_bit(R5_DID_ALLOC,
677 &conf->cache_state))
edbe83ab
N
678 set_bit(R5_ALLOC_MORE,
679 &conf->cache_state);
680 }
1da177e4
LT
681 if (noblock && sh == NULL)
682 break;
683 if (!sh) {
5423399a
N
684 set_bit(R5_INACTIVE_BLOCKED,
685 &conf->cache_state);
6ab2a4b8
SL
686 wait_event_lock_irq(
687 conf->wait_for_stripe,
566c09c5
SL
688 !list_empty(conf->inactive_list + hash) &&
689 (atomic_read(&conf->active_stripes)
690 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
691 || !test_bit(R5_INACTIVE_BLOCKED,
692 &conf->cache_state)),
6ab2a4b8 693 *(conf->hash_locks + hash));
5423399a
N
694 clear_bit(R5_INACTIVE_BLOCKED,
695 &conf->cache_state);
7da9d450 696 } else {
b5663ba4 697 init_stripe(sh, sector, previous);
7da9d450
N
698 atomic_inc(&sh->count);
699 }
e240c183 700 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 701 spin_lock(&conf->device_lock);
e240c183 702 if (!atomic_read(&sh->count)) {
1da177e4
LT
703 if (!test_bit(STRIPE_HANDLE, &sh->state))
704 atomic_inc(&conf->active_stripes);
5af9bef7
N
705 BUG_ON(list_empty(&sh->lru) &&
706 !test_bit(STRIPE_EXPANDING, &sh->state));
ff00d3b4
ZL
707 inc_empty_inactive_list_flag = 0;
708 if (!list_empty(conf->inactive_list + hash))
709 inc_empty_inactive_list_flag = 1;
16a53ecc 710 list_del_init(&sh->lru);
ff00d3b4
ZL
711 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
712 atomic_inc(&conf->empty_inactive_list_nr);
bfc90cb0
SL
713 if (sh->group) {
714 sh->group->stripes_cnt--;
715 sh->group = NULL;
716 }
1da177e4 717 }
7da9d450 718 atomic_inc(&sh->count);
6d183de4 719 spin_unlock(&conf->device_lock);
1da177e4
LT
720 }
721 } while (sh == NULL);
722
566c09c5 723 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
724 return sh;
725}
726
7a87f434 727static bool is_full_stripe_write(struct stripe_head *sh)
728{
729 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
730 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
731}
732
59fc630b 733static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
734{
735 local_irq_disable();
736 if (sh1 > sh2) {
737 spin_lock(&sh2->stripe_lock);
738 spin_lock_nested(&sh1->stripe_lock, 1);
739 } else {
740 spin_lock(&sh1->stripe_lock);
741 spin_lock_nested(&sh2->stripe_lock, 1);
742 }
743}
744
745static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
746{
747 spin_unlock(&sh1->stripe_lock);
748 spin_unlock(&sh2->stripe_lock);
749 local_irq_enable();
750}
751
752/* Only freshly new full stripe normal write stripe can be added to a batch list */
753static bool stripe_can_batch(struct stripe_head *sh)
754{
9c3e333d
SL
755 struct r5conf *conf = sh->raid_conf;
756
757 if (conf->log)
758 return false;
59fc630b 759 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 760 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 761 is_full_stripe_write(sh);
762}
763
764/* we only do back search */
765static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
766{
767 struct stripe_head *head;
768 sector_t head_sector, tmp_sec;
769 int hash;
770 int dd_idx;
ff00d3b4 771 int inc_empty_inactive_list_flag;
59fc630b 772
59fc630b 773 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
774 tmp_sec = sh->sector;
775 if (!sector_div(tmp_sec, conf->chunk_sectors))
776 return;
777 head_sector = sh->sector - STRIPE_SECTORS;
778
779 hash = stripe_hash_locks_hash(head_sector);
780 spin_lock_irq(conf->hash_locks + hash);
781 head = __find_stripe(conf, head_sector, conf->generation);
782 if (head && !atomic_inc_not_zero(&head->count)) {
783 spin_lock(&conf->device_lock);
784 if (!atomic_read(&head->count)) {
785 if (!test_bit(STRIPE_HANDLE, &head->state))
786 atomic_inc(&conf->active_stripes);
787 BUG_ON(list_empty(&head->lru) &&
788 !test_bit(STRIPE_EXPANDING, &head->state));
ff00d3b4
ZL
789 inc_empty_inactive_list_flag = 0;
790 if (!list_empty(conf->inactive_list + hash))
791 inc_empty_inactive_list_flag = 1;
59fc630b 792 list_del_init(&head->lru);
ff00d3b4
ZL
793 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
794 atomic_inc(&conf->empty_inactive_list_nr);
59fc630b 795 if (head->group) {
796 head->group->stripes_cnt--;
797 head->group = NULL;
798 }
799 }
800 atomic_inc(&head->count);
801 spin_unlock(&conf->device_lock);
802 }
803 spin_unlock_irq(conf->hash_locks + hash);
804
805 if (!head)
806 return;
807 if (!stripe_can_batch(head))
808 goto out;
809
810 lock_two_stripes(head, sh);
811 /* clear_batch_ready clear the flag */
812 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
813 goto unlock_out;
814
815 if (sh->batch_head)
816 goto unlock_out;
817
818 dd_idx = 0;
819 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
820 dd_idx++;
796a5cf0
MC
821 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw ||
822 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
59fc630b 823 goto unlock_out;
824
825 if (head->batch_head) {
826 spin_lock(&head->batch_head->batch_lock);
827 /* This batch list is already running */
828 if (!stripe_can_batch(head)) {
829 spin_unlock(&head->batch_head->batch_lock);
830 goto unlock_out;
831 }
832
833 /*
834 * at this point, head's BATCH_READY could be cleared, but we
835 * can still add the stripe to batch list
836 */
837 list_add(&sh->batch_list, &head->batch_list);
838 spin_unlock(&head->batch_head->batch_lock);
839
840 sh->batch_head = head->batch_head;
841 } else {
842 head->batch_head = head;
843 sh->batch_head = head->batch_head;
844 spin_lock(&head->batch_lock);
845 list_add_tail(&sh->batch_list, &head->batch_list);
846 spin_unlock(&head->batch_lock);
847 }
848
849 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
850 if (atomic_dec_return(&conf->preread_active_stripes)
851 < IO_THRESHOLD)
852 md_wakeup_thread(conf->mddev->thread);
853
2b6b2457
N
854 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
855 int seq = sh->bm_seq;
856 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
857 sh->batch_head->bm_seq > seq)
858 seq = sh->batch_head->bm_seq;
859 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
860 sh->batch_head->bm_seq = seq;
861 }
862
59fc630b 863 atomic_inc(&sh->count);
864unlock_out:
865 unlock_two_stripes(head, sh);
866out:
6d036f7d 867 raid5_release_stripe(head);
59fc630b 868}
869
05616be5
N
870/* Determine if 'data_offset' or 'new_data_offset' should be used
871 * in this stripe_head.
872 */
873static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
874{
875 sector_t progress = conf->reshape_progress;
876 /* Need a memory barrier to make sure we see the value
877 * of conf->generation, or ->data_offset that was set before
878 * reshape_progress was updated.
879 */
880 smp_rmb();
881 if (progress == MaxSector)
882 return 0;
883 if (sh->generation == conf->generation - 1)
884 return 0;
885 /* We are in a reshape, and this is a new-generation stripe,
886 * so use new_data_offset.
887 */
888 return 1;
889}
890
6712ecf8 891static void
4246a0b6 892raid5_end_read_request(struct bio *bi);
6712ecf8 893static void
4246a0b6 894raid5_end_write_request(struct bio *bi);
91c00924 895
c4e5ac0a 896static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 897{
d1688a6d 898 struct r5conf *conf = sh->raid_conf;
91c00924 899 int i, disks = sh->disks;
59fc630b 900 struct stripe_head *head_sh = sh;
91c00924
DW
901
902 might_sleep();
903
f6bed0ef
SL
904 if (r5l_write_stripe(conf->log, sh) == 0)
905 return;
91c00924 906 for (i = disks; i--; ) {
796a5cf0 907 int op, op_flags = 0;
9a3e1101 908 int replace_only = 0;
977df362
N
909 struct bio *bi, *rbi;
910 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 911
912 sh = head_sh;
e9c7469b 913 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
796a5cf0 914 op = REQ_OP_WRITE;
e9c7469b 915 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
796a5cf0 916 op_flags = WRITE_FUA;
9e444768 917 if (test_bit(R5_Discard, &sh->dev[i].flags))
796a5cf0 918 op = REQ_OP_DISCARD;
e9c7469b 919 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
796a5cf0 920 op = REQ_OP_READ;
9a3e1101
N
921 else if (test_and_clear_bit(R5_WantReplace,
922 &sh->dev[i].flags)) {
796a5cf0 923 op = REQ_OP_WRITE;
9a3e1101
N
924 replace_only = 1;
925 } else
91c00924 926 continue;
bc0934f0 927 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
796a5cf0 928 op_flags |= REQ_SYNC;
91c00924 929
59fc630b 930again:
91c00924 931 bi = &sh->dev[i].req;
977df362 932 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 933
91c00924 934 rcu_read_lock();
9a3e1101 935 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
936 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
937 rdev = rcu_dereference(conf->disks[i].rdev);
938 if (!rdev) {
939 rdev = rrdev;
940 rrdev = NULL;
941 }
796a5cf0 942 if (op_is_write(op)) {
9a3e1101
N
943 if (replace_only)
944 rdev = NULL;
dd054fce
N
945 if (rdev == rrdev)
946 /* We raced and saw duplicates */
947 rrdev = NULL;
9a3e1101 948 } else {
59fc630b 949 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
950 rdev = rrdev;
951 rrdev = NULL;
952 }
977df362 953
91c00924
DW
954 if (rdev && test_bit(Faulty, &rdev->flags))
955 rdev = NULL;
956 if (rdev)
957 atomic_inc(&rdev->nr_pending);
977df362
N
958 if (rrdev && test_bit(Faulty, &rrdev->flags))
959 rrdev = NULL;
960 if (rrdev)
961 atomic_inc(&rrdev->nr_pending);
91c00924
DW
962 rcu_read_unlock();
963
73e92e51 964 /* We have already checked bad blocks for reads. Now
977df362
N
965 * need to check for writes. We never accept write errors
966 * on the replacement, so we don't to check rrdev.
73e92e51 967 */
796a5cf0 968 while (op_is_write(op) && rdev &&
73e92e51
N
969 test_bit(WriteErrorSeen, &rdev->flags)) {
970 sector_t first_bad;
971 int bad_sectors;
972 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
973 &first_bad, &bad_sectors);
974 if (!bad)
975 break;
976
977 if (bad < 0) {
978 set_bit(BlockedBadBlocks, &rdev->flags);
979 if (!conf->mddev->external &&
980 conf->mddev->flags) {
981 /* It is very unlikely, but we might
982 * still need to write out the
983 * bad block log - better give it
984 * a chance*/
985 md_check_recovery(conf->mddev);
986 }
1850753d 987 /*
988 * Because md_wait_for_blocked_rdev
989 * will dec nr_pending, we must
990 * increment it first.
991 */
992 atomic_inc(&rdev->nr_pending);
73e92e51
N
993 md_wait_for_blocked_rdev(rdev, conf->mddev);
994 } else {
995 /* Acknowledged bad block - skip the write */
996 rdev_dec_pending(rdev, conf->mddev);
997 rdev = NULL;
998 }
999 }
1000
91c00924 1001 if (rdev) {
9a3e1101
N
1002 if (s->syncing || s->expanding || s->expanded
1003 || s->replacing)
91c00924
DW
1004 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1005
2b7497f0
DW
1006 set_bit(STRIPE_IO_STARTED, &sh->state);
1007
2f6db2a7 1008 bio_reset(bi);
91c00924 1009 bi->bi_bdev = rdev->bdev;
796a5cf0
MC
1010 bio_set_op_attrs(bi, op, op_flags);
1011 bi->bi_end_io = op_is_write(op)
2f6db2a7
KO
1012 ? raid5_end_write_request
1013 : raid5_end_read_request;
1014 bi->bi_private = sh;
1015
6296b960 1016 pr_debug("%s: for %llu schedule op %d on disc %d\n",
e46b272b 1017 __func__, (unsigned long long)sh->sector,
91c00924
DW
1018 bi->bi_rw, i);
1019 atomic_inc(&sh->count);
59fc630b 1020 if (sh != head_sh)
1021 atomic_inc(&head_sh->count);
05616be5 1022 if (use_new_offset(conf, sh))
4f024f37 1023 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1024 + rdev->new_data_offset);
1025 else
4f024f37 1026 bi->bi_iter.bi_sector = (sh->sector
05616be5 1027 + rdev->data_offset);
59fc630b 1028 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
e59aa23f 1029 bi->bi_rw |= REQ_NOMERGE;
3f9e7c14 1030
d592a996
SL
1031 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1032 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1033 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1034 bi->bi_vcnt = 1;
91c00924
DW
1035 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1036 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1037 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1038 /*
1039 * If this is discard request, set bi_vcnt 0. We don't
1040 * want to confuse SCSI because SCSI will replace payload
1041 */
796a5cf0 1042 if (op == REQ_OP_DISCARD)
37c61ff3 1043 bi->bi_vcnt = 0;
977df362
N
1044 if (rrdev)
1045 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1046
1047 if (conf->mddev->gendisk)
1048 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1049 bi, disk_devt(conf->mddev->gendisk),
1050 sh->dev[i].sector);
91c00924 1051 generic_make_request(bi);
977df362
N
1052 }
1053 if (rrdev) {
9a3e1101
N
1054 if (s->syncing || s->expanding || s->expanded
1055 || s->replacing)
977df362
N
1056 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1057
1058 set_bit(STRIPE_IO_STARTED, &sh->state);
1059
2f6db2a7 1060 bio_reset(rbi);
977df362 1061 rbi->bi_bdev = rrdev->bdev;
796a5cf0
MC
1062 bio_set_op_attrs(rbi, op, op_flags);
1063 BUG_ON(!op_is_write(op));
2f6db2a7
KO
1064 rbi->bi_end_io = raid5_end_write_request;
1065 rbi->bi_private = sh;
1066
6296b960 1067 pr_debug("%s: for %llu schedule op %d on "
977df362
N
1068 "replacement disc %d\n",
1069 __func__, (unsigned long long)sh->sector,
1070 rbi->bi_rw, i);
1071 atomic_inc(&sh->count);
59fc630b 1072 if (sh != head_sh)
1073 atomic_inc(&head_sh->count);
05616be5 1074 if (use_new_offset(conf, sh))
4f024f37 1075 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1076 + rrdev->new_data_offset);
1077 else
4f024f37 1078 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1079 + rrdev->data_offset);
d592a996
SL
1080 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1081 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1082 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1083 rbi->bi_vcnt = 1;
977df362
N
1084 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1085 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1086 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1087 /*
1088 * If this is discard request, set bi_vcnt 0. We don't
1089 * want to confuse SCSI because SCSI will replace payload
1090 */
796a5cf0 1091 if (op == REQ_OP_DISCARD)
37c61ff3 1092 rbi->bi_vcnt = 0;
e3620a3a
JB
1093 if (conf->mddev->gendisk)
1094 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1095 rbi, disk_devt(conf->mddev->gendisk),
1096 sh->dev[i].sector);
977df362
N
1097 generic_make_request(rbi);
1098 }
1099 if (!rdev && !rrdev) {
796a5cf0 1100 if (op_is_write(op))
91c00924 1101 set_bit(STRIPE_DEGRADED, &sh->state);
6296b960 1102 pr_debug("skip op %d on disc %d for sector %llu\n",
91c00924
DW
1103 bi->bi_rw, i, (unsigned long long)sh->sector);
1104 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1105 set_bit(STRIPE_HANDLE, &sh->state);
1106 }
59fc630b 1107
1108 if (!head_sh->batch_head)
1109 continue;
1110 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1111 batch_list);
1112 if (sh != head_sh)
1113 goto again;
91c00924
DW
1114 }
1115}
1116
1117static struct dma_async_tx_descriptor *
d592a996
SL
1118async_copy_data(int frombio, struct bio *bio, struct page **page,
1119 sector_t sector, struct dma_async_tx_descriptor *tx,
1120 struct stripe_head *sh)
91c00924 1121{
7988613b
KO
1122 struct bio_vec bvl;
1123 struct bvec_iter iter;
91c00924 1124 struct page *bio_page;
91c00924 1125 int page_offset;
a08abd8c 1126 struct async_submit_ctl submit;
0403e382 1127 enum async_tx_flags flags = 0;
91c00924 1128
4f024f37
KO
1129 if (bio->bi_iter.bi_sector >= sector)
1130 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1131 else
4f024f37 1132 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1133
0403e382
DW
1134 if (frombio)
1135 flags |= ASYNC_TX_FENCE;
1136 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1137
7988613b
KO
1138 bio_for_each_segment(bvl, bio, iter) {
1139 int len = bvl.bv_len;
91c00924
DW
1140 int clen;
1141 int b_offset = 0;
1142
1143 if (page_offset < 0) {
1144 b_offset = -page_offset;
1145 page_offset += b_offset;
1146 len -= b_offset;
1147 }
1148
1149 if (len > 0 && page_offset + len > STRIPE_SIZE)
1150 clen = STRIPE_SIZE - page_offset;
1151 else
1152 clen = len;
1153
1154 if (clen > 0) {
7988613b
KO
1155 b_offset += bvl.bv_offset;
1156 bio_page = bvl.bv_page;
d592a996
SL
1157 if (frombio) {
1158 if (sh->raid_conf->skip_copy &&
1159 b_offset == 0 && page_offset == 0 &&
1160 clen == STRIPE_SIZE)
1161 *page = bio_page;
1162 else
1163 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1164 b_offset, clen, &submit);
d592a996
SL
1165 } else
1166 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1167 page_offset, clen, &submit);
91c00924 1168 }
a08abd8c
DW
1169 /* chain the operations */
1170 submit.depend_tx = tx;
1171
91c00924
DW
1172 if (clen < len) /* hit end of page */
1173 break;
1174 page_offset += len;
1175 }
1176
1177 return tx;
1178}
1179
1180static void ops_complete_biofill(void *stripe_head_ref)
1181{
1182 struct stripe_head *sh = stripe_head_ref;
34a6f80e 1183 struct bio_list return_bi = BIO_EMPTY_LIST;
e4d84909 1184 int i;
91c00924 1185
e46b272b 1186 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1187 (unsigned long long)sh->sector);
1188
1189 /* clear completed biofills */
1190 for (i = sh->disks; i--; ) {
1191 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1192
1193 /* acknowledge completion of a biofill operation */
e4d84909
DW
1194 /* and check if we need to reply to a read request,
1195 * new R5_Wantfill requests are held off until
83de75cc 1196 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1197 */
1198 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1199 struct bio *rbi, *rbi2;
91c00924 1200
91c00924
DW
1201 BUG_ON(!dev->read);
1202 rbi = dev->read;
1203 dev->read = NULL;
4f024f37 1204 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1205 dev->sector + STRIPE_SECTORS) {
1206 rbi2 = r5_next_bio(rbi, dev->sector);
34a6f80e
N
1207 if (!raid5_dec_bi_active_stripes(rbi))
1208 bio_list_add(&return_bi, rbi);
91c00924
DW
1209 rbi = rbi2;
1210 }
1211 }
1212 }
83de75cc 1213 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1214
34a6f80e 1215 return_io(&return_bi);
91c00924 1216
e4d84909 1217 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1218 raid5_release_stripe(sh);
91c00924
DW
1219}
1220
1221static void ops_run_biofill(struct stripe_head *sh)
1222{
1223 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1224 struct async_submit_ctl submit;
91c00924
DW
1225 int i;
1226
59fc630b 1227 BUG_ON(sh->batch_head);
e46b272b 1228 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1229 (unsigned long long)sh->sector);
1230
1231 for (i = sh->disks; i--; ) {
1232 struct r5dev *dev = &sh->dev[i];
1233 if (test_bit(R5_Wantfill, &dev->flags)) {
1234 struct bio *rbi;
b17459c0 1235 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1236 dev->read = rbi = dev->toread;
1237 dev->toread = NULL;
b17459c0 1238 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1239 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1240 dev->sector + STRIPE_SECTORS) {
d592a996
SL
1241 tx = async_copy_data(0, rbi, &dev->page,
1242 dev->sector, tx, sh);
91c00924
DW
1243 rbi = r5_next_bio(rbi, dev->sector);
1244 }
1245 }
1246 }
1247
1248 atomic_inc(&sh->count);
a08abd8c
DW
1249 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1250 async_trigger_callback(&submit);
91c00924
DW
1251}
1252
4e7d2c0a 1253static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1254{
4e7d2c0a 1255 struct r5dev *tgt;
91c00924 1256
4e7d2c0a
DW
1257 if (target < 0)
1258 return;
91c00924 1259
4e7d2c0a 1260 tgt = &sh->dev[target];
91c00924
DW
1261 set_bit(R5_UPTODATE, &tgt->flags);
1262 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1263 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1264}
1265
ac6b53b6 1266static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1267{
1268 struct stripe_head *sh = stripe_head_ref;
91c00924 1269
e46b272b 1270 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1271 (unsigned long long)sh->sector);
1272
ac6b53b6 1273 /* mark the computed target(s) as uptodate */
4e7d2c0a 1274 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1275 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1276
ecc65c9b
DW
1277 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1278 if (sh->check_state == check_state_compute_run)
1279 sh->check_state = check_state_compute_result;
91c00924 1280 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1281 raid5_release_stripe(sh);
91c00924
DW
1282}
1283
d6f38f31
DW
1284/* return a pointer to the address conversion region of the scribble buffer */
1285static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1286 struct raid5_percpu *percpu, int i)
d6f38f31 1287{
46d5b785 1288 void *addr;
1289
1290 addr = flex_array_get(percpu->scribble, i);
1291 return addr + sizeof(struct page *) * (sh->disks + 2);
1292}
1293
1294/* return a pointer to the address conversion region of the scribble buffer */
1295static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1296{
1297 void *addr;
1298
1299 addr = flex_array_get(percpu->scribble, i);
1300 return addr;
d6f38f31
DW
1301}
1302
1303static struct dma_async_tx_descriptor *
1304ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1305{
91c00924 1306 int disks = sh->disks;
46d5b785 1307 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1308 int target = sh->ops.target;
1309 struct r5dev *tgt = &sh->dev[target];
1310 struct page *xor_dest = tgt->page;
1311 int count = 0;
1312 struct dma_async_tx_descriptor *tx;
a08abd8c 1313 struct async_submit_ctl submit;
91c00924
DW
1314 int i;
1315
59fc630b 1316 BUG_ON(sh->batch_head);
1317
91c00924 1318 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1319 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1320 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1321
1322 for (i = disks; i--; )
1323 if (i != target)
1324 xor_srcs[count++] = sh->dev[i].page;
1325
1326 atomic_inc(&sh->count);
1327
0403e382 1328 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1329 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1330 if (unlikely(count == 1))
a08abd8c 1331 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1332 else
a08abd8c 1333 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1334
91c00924
DW
1335 return tx;
1336}
1337
ac6b53b6
DW
1338/* set_syndrome_sources - populate source buffers for gen_syndrome
1339 * @srcs - (struct page *) array of size sh->disks
1340 * @sh - stripe_head to parse
1341 *
1342 * Populates srcs in proper layout order for the stripe and returns the
1343 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1344 * destination buffer is recorded in srcs[count] and the Q destination
1345 * is recorded in srcs[count+1]].
1346 */
584acdd4
MS
1347static int set_syndrome_sources(struct page **srcs,
1348 struct stripe_head *sh,
1349 int srctype)
ac6b53b6
DW
1350{
1351 int disks = sh->disks;
1352 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1353 int d0_idx = raid6_d0(sh);
1354 int count;
1355 int i;
1356
1357 for (i = 0; i < disks; i++)
5dd33c9a 1358 srcs[i] = NULL;
ac6b53b6
DW
1359
1360 count = 0;
1361 i = d0_idx;
1362 do {
1363 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1364 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1365
584acdd4
MS
1366 if (i == sh->qd_idx || i == sh->pd_idx ||
1367 (srctype == SYNDROME_SRC_ALL) ||
1368 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1369 test_bit(R5_Wantdrain, &dev->flags)) ||
1370 (srctype == SYNDROME_SRC_WRITTEN &&
1371 dev->written))
1372 srcs[slot] = sh->dev[i].page;
ac6b53b6
DW
1373 i = raid6_next_disk(i, disks);
1374 } while (i != d0_idx);
ac6b53b6 1375
e4424fee 1376 return syndrome_disks;
ac6b53b6
DW
1377}
1378
1379static struct dma_async_tx_descriptor *
1380ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1381{
1382 int disks = sh->disks;
46d5b785 1383 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1384 int target;
1385 int qd_idx = sh->qd_idx;
1386 struct dma_async_tx_descriptor *tx;
1387 struct async_submit_ctl submit;
1388 struct r5dev *tgt;
1389 struct page *dest;
1390 int i;
1391 int count;
1392
59fc630b 1393 BUG_ON(sh->batch_head);
ac6b53b6
DW
1394 if (sh->ops.target < 0)
1395 target = sh->ops.target2;
1396 else if (sh->ops.target2 < 0)
1397 target = sh->ops.target;
91c00924 1398 else
ac6b53b6
DW
1399 /* we should only have one valid target */
1400 BUG();
1401 BUG_ON(target < 0);
1402 pr_debug("%s: stripe %llu block: %d\n",
1403 __func__, (unsigned long long)sh->sector, target);
1404
1405 tgt = &sh->dev[target];
1406 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1407 dest = tgt->page;
1408
1409 atomic_inc(&sh->count);
1410
1411 if (target == qd_idx) {
584acdd4 1412 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1413 blocks[count] = NULL; /* regenerating p is not necessary */
1414 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1415 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1416 ops_complete_compute, sh,
46d5b785 1417 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1418 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1419 } else {
1420 /* Compute any data- or p-drive using XOR */
1421 count = 0;
1422 for (i = disks; i-- ; ) {
1423 if (i == target || i == qd_idx)
1424 continue;
1425 blocks[count++] = sh->dev[i].page;
1426 }
1427
0403e382
DW
1428 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1429 NULL, ops_complete_compute, sh,
46d5b785 1430 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1431 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1432 }
91c00924 1433
91c00924
DW
1434 return tx;
1435}
1436
ac6b53b6
DW
1437static struct dma_async_tx_descriptor *
1438ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1439{
1440 int i, count, disks = sh->disks;
1441 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1442 int d0_idx = raid6_d0(sh);
1443 int faila = -1, failb = -1;
1444 int target = sh->ops.target;
1445 int target2 = sh->ops.target2;
1446 struct r5dev *tgt = &sh->dev[target];
1447 struct r5dev *tgt2 = &sh->dev[target2];
1448 struct dma_async_tx_descriptor *tx;
46d5b785 1449 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1450 struct async_submit_ctl submit;
1451
59fc630b 1452 BUG_ON(sh->batch_head);
ac6b53b6
DW
1453 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1454 __func__, (unsigned long long)sh->sector, target, target2);
1455 BUG_ON(target < 0 || target2 < 0);
1456 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1457 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1458
6c910a78 1459 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1460 * slot number conversion for 'faila' and 'failb'
1461 */
1462 for (i = 0; i < disks ; i++)
5dd33c9a 1463 blocks[i] = NULL;
ac6b53b6
DW
1464 count = 0;
1465 i = d0_idx;
1466 do {
1467 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1468
1469 blocks[slot] = sh->dev[i].page;
1470
1471 if (i == target)
1472 faila = slot;
1473 if (i == target2)
1474 failb = slot;
1475 i = raid6_next_disk(i, disks);
1476 } while (i != d0_idx);
ac6b53b6
DW
1477
1478 BUG_ON(faila == failb);
1479 if (failb < faila)
1480 swap(faila, failb);
1481 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1482 __func__, (unsigned long long)sh->sector, faila, failb);
1483
1484 atomic_inc(&sh->count);
1485
1486 if (failb == syndrome_disks+1) {
1487 /* Q disk is one of the missing disks */
1488 if (faila == syndrome_disks) {
1489 /* Missing P+Q, just recompute */
0403e382
DW
1490 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1491 ops_complete_compute, sh,
46d5b785 1492 to_addr_conv(sh, percpu, 0));
e4424fee 1493 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1494 STRIPE_SIZE, &submit);
1495 } else {
1496 struct page *dest;
1497 int data_target;
1498 int qd_idx = sh->qd_idx;
1499
1500 /* Missing D+Q: recompute D from P, then recompute Q */
1501 if (target == qd_idx)
1502 data_target = target2;
1503 else
1504 data_target = target;
1505
1506 count = 0;
1507 for (i = disks; i-- ; ) {
1508 if (i == data_target || i == qd_idx)
1509 continue;
1510 blocks[count++] = sh->dev[i].page;
1511 }
1512 dest = sh->dev[data_target].page;
0403e382
DW
1513 init_async_submit(&submit,
1514 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1515 NULL, NULL, NULL,
46d5b785 1516 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1517 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1518 &submit);
1519
584acdd4 1520 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1521 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1522 ops_complete_compute, sh,
46d5b785 1523 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1524 return async_gen_syndrome(blocks, 0, count+2,
1525 STRIPE_SIZE, &submit);
1526 }
ac6b53b6 1527 } else {
6c910a78
DW
1528 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1529 ops_complete_compute, sh,
46d5b785 1530 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1531 if (failb == syndrome_disks) {
1532 /* We're missing D+P. */
1533 return async_raid6_datap_recov(syndrome_disks+2,
1534 STRIPE_SIZE, faila,
1535 blocks, &submit);
1536 } else {
1537 /* We're missing D+D. */
1538 return async_raid6_2data_recov(syndrome_disks+2,
1539 STRIPE_SIZE, faila, failb,
1540 blocks, &submit);
1541 }
ac6b53b6
DW
1542 }
1543}
1544
91c00924
DW
1545static void ops_complete_prexor(void *stripe_head_ref)
1546{
1547 struct stripe_head *sh = stripe_head_ref;
1548
e46b272b 1549 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1550 (unsigned long long)sh->sector);
91c00924
DW
1551}
1552
1553static struct dma_async_tx_descriptor *
584acdd4
MS
1554ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1555 struct dma_async_tx_descriptor *tx)
91c00924 1556{
91c00924 1557 int disks = sh->disks;
46d5b785 1558 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1559 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1560 struct async_submit_ctl submit;
91c00924
DW
1561
1562 /* existing parity data subtracted */
1563 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1564
59fc630b 1565 BUG_ON(sh->batch_head);
e46b272b 1566 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1567 (unsigned long long)sh->sector);
1568
1569 for (i = disks; i--; ) {
1570 struct r5dev *dev = &sh->dev[i];
1571 /* Only process blocks that are known to be uptodate */
d8ee0728 1572 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1573 xor_srcs[count++] = dev->page;
1574 }
1575
0403e382 1576 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1577 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1578 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1579
1580 return tx;
1581}
1582
584acdd4
MS
1583static struct dma_async_tx_descriptor *
1584ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1585 struct dma_async_tx_descriptor *tx)
1586{
1587 struct page **blocks = to_addr_page(percpu, 0);
1588 int count;
1589 struct async_submit_ctl submit;
1590
1591 pr_debug("%s: stripe %llu\n", __func__,
1592 (unsigned long long)sh->sector);
1593
1594 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1595
1596 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1597 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1598 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1599
1600 return tx;
1601}
1602
91c00924 1603static struct dma_async_tx_descriptor *
d8ee0728 1604ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1605{
1606 int disks = sh->disks;
d8ee0728 1607 int i;
59fc630b 1608 struct stripe_head *head_sh = sh;
91c00924 1609
e46b272b 1610 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1611 (unsigned long long)sh->sector);
1612
1613 for (i = disks; i--; ) {
59fc630b 1614 struct r5dev *dev;
91c00924 1615 struct bio *chosen;
91c00924 1616
59fc630b 1617 sh = head_sh;
1618 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1619 struct bio *wbi;
1620
59fc630b 1621again:
1622 dev = &sh->dev[i];
b17459c0 1623 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1624 chosen = dev->towrite;
1625 dev->towrite = NULL;
7a87f434 1626 sh->overwrite_disks = 0;
91c00924
DW
1627 BUG_ON(dev->written);
1628 wbi = dev->written = chosen;
b17459c0 1629 spin_unlock_irq(&sh->stripe_lock);
d592a996 1630 WARN_ON(dev->page != dev->orig_page);
91c00924 1631
4f024f37 1632 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1633 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1634 if (wbi->bi_rw & REQ_FUA)
1635 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1636 if (wbi->bi_rw & REQ_SYNC)
1637 set_bit(R5_SyncIO, &dev->flags);
796a5cf0 1638 if (bio_op(wbi) == REQ_OP_DISCARD)
620125f2 1639 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1640 else {
1641 tx = async_copy_data(1, wbi, &dev->page,
1642 dev->sector, tx, sh);
1643 if (dev->page != dev->orig_page) {
1644 set_bit(R5_SkipCopy, &dev->flags);
1645 clear_bit(R5_UPTODATE, &dev->flags);
1646 clear_bit(R5_OVERWRITE, &dev->flags);
1647 }
1648 }
91c00924
DW
1649 wbi = r5_next_bio(wbi, dev->sector);
1650 }
59fc630b 1651
1652 if (head_sh->batch_head) {
1653 sh = list_first_entry(&sh->batch_list,
1654 struct stripe_head,
1655 batch_list);
1656 if (sh == head_sh)
1657 continue;
1658 goto again;
1659 }
91c00924
DW
1660 }
1661 }
1662
1663 return tx;
1664}
1665
ac6b53b6 1666static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1667{
1668 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1669 int disks = sh->disks;
1670 int pd_idx = sh->pd_idx;
1671 int qd_idx = sh->qd_idx;
1672 int i;
9e444768 1673 bool fua = false, sync = false, discard = false;
91c00924 1674
e46b272b 1675 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1676 (unsigned long long)sh->sector);
1677
bc0934f0 1678 for (i = disks; i--; ) {
e9c7469b 1679 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1680 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1681 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1682 }
e9c7469b 1683
91c00924
DW
1684 for (i = disks; i--; ) {
1685 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1686
e9c7469b 1687 if (dev->written || i == pd_idx || i == qd_idx) {
d592a996 1688 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
9e444768 1689 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1690 if (fua)
1691 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1692 if (sync)
1693 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1694 }
91c00924
DW
1695 }
1696
d8ee0728
DW
1697 if (sh->reconstruct_state == reconstruct_state_drain_run)
1698 sh->reconstruct_state = reconstruct_state_drain_result;
1699 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1700 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1701 else {
1702 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1703 sh->reconstruct_state = reconstruct_state_result;
1704 }
91c00924
DW
1705
1706 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1707 raid5_release_stripe(sh);
91c00924
DW
1708}
1709
1710static void
ac6b53b6
DW
1711ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1712 struct dma_async_tx_descriptor *tx)
91c00924 1713{
91c00924 1714 int disks = sh->disks;
59fc630b 1715 struct page **xor_srcs;
a08abd8c 1716 struct async_submit_ctl submit;
59fc630b 1717 int count, pd_idx = sh->pd_idx, i;
91c00924 1718 struct page *xor_dest;
d8ee0728 1719 int prexor = 0;
91c00924 1720 unsigned long flags;
59fc630b 1721 int j = 0;
1722 struct stripe_head *head_sh = sh;
1723 int last_stripe;
91c00924 1724
e46b272b 1725 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1726 (unsigned long long)sh->sector);
1727
620125f2
SL
1728 for (i = 0; i < sh->disks; i++) {
1729 if (pd_idx == i)
1730 continue;
1731 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1732 break;
1733 }
1734 if (i >= sh->disks) {
1735 atomic_inc(&sh->count);
620125f2
SL
1736 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1737 ops_complete_reconstruct(sh);
1738 return;
1739 }
59fc630b 1740again:
1741 count = 0;
1742 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1743 /* check if prexor is active which means only process blocks
1744 * that are part of a read-modify-write (written)
1745 */
59fc630b 1746 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1747 prexor = 1;
91c00924
DW
1748 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1749 for (i = disks; i--; ) {
1750 struct r5dev *dev = &sh->dev[i];
59fc630b 1751 if (head_sh->dev[i].written)
91c00924
DW
1752 xor_srcs[count++] = dev->page;
1753 }
1754 } else {
1755 xor_dest = sh->dev[pd_idx].page;
1756 for (i = disks; i--; ) {
1757 struct r5dev *dev = &sh->dev[i];
1758 if (i != pd_idx)
1759 xor_srcs[count++] = dev->page;
1760 }
1761 }
1762
91c00924
DW
1763 /* 1/ if we prexor'd then the dest is reused as a source
1764 * 2/ if we did not prexor then we are redoing the parity
1765 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1766 * for the synchronous xor case
1767 */
59fc630b 1768 last_stripe = !head_sh->batch_head ||
1769 list_first_entry(&sh->batch_list,
1770 struct stripe_head, batch_list) == head_sh;
1771 if (last_stripe) {
1772 flags = ASYNC_TX_ACK |
1773 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1774
1775 atomic_inc(&head_sh->count);
1776 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1777 to_addr_conv(sh, percpu, j));
1778 } else {
1779 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1780 init_async_submit(&submit, flags, tx, NULL, NULL,
1781 to_addr_conv(sh, percpu, j));
1782 }
91c00924 1783
a08abd8c
DW
1784 if (unlikely(count == 1))
1785 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1786 else
1787 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1788 if (!last_stripe) {
1789 j++;
1790 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1791 batch_list);
1792 goto again;
1793 }
91c00924
DW
1794}
1795
ac6b53b6
DW
1796static void
1797ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1798 struct dma_async_tx_descriptor *tx)
1799{
1800 struct async_submit_ctl submit;
59fc630b 1801 struct page **blocks;
1802 int count, i, j = 0;
1803 struct stripe_head *head_sh = sh;
1804 int last_stripe;
584acdd4
MS
1805 int synflags;
1806 unsigned long txflags;
ac6b53b6
DW
1807
1808 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1809
620125f2
SL
1810 for (i = 0; i < sh->disks; i++) {
1811 if (sh->pd_idx == i || sh->qd_idx == i)
1812 continue;
1813 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1814 break;
1815 }
1816 if (i >= sh->disks) {
1817 atomic_inc(&sh->count);
620125f2
SL
1818 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1819 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1820 ops_complete_reconstruct(sh);
1821 return;
1822 }
1823
59fc630b 1824again:
1825 blocks = to_addr_page(percpu, j);
584acdd4
MS
1826
1827 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1828 synflags = SYNDROME_SRC_WRITTEN;
1829 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1830 } else {
1831 synflags = SYNDROME_SRC_ALL;
1832 txflags = ASYNC_TX_ACK;
1833 }
1834
1835 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1836 last_stripe = !head_sh->batch_head ||
1837 list_first_entry(&sh->batch_list,
1838 struct stripe_head, batch_list) == head_sh;
1839
1840 if (last_stripe) {
1841 atomic_inc(&head_sh->count);
584acdd4 1842 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1843 head_sh, to_addr_conv(sh, percpu, j));
1844 } else
1845 init_async_submit(&submit, 0, tx, NULL, NULL,
1846 to_addr_conv(sh, percpu, j));
48769695 1847 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1848 if (!last_stripe) {
1849 j++;
1850 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1851 batch_list);
1852 goto again;
1853 }
91c00924
DW
1854}
1855
1856static void ops_complete_check(void *stripe_head_ref)
1857{
1858 struct stripe_head *sh = stripe_head_ref;
91c00924 1859
e46b272b 1860 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1861 (unsigned long long)sh->sector);
1862
ecc65c9b 1863 sh->check_state = check_state_check_result;
91c00924 1864 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1865 raid5_release_stripe(sh);
91c00924
DW
1866}
1867
ac6b53b6 1868static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1869{
91c00924 1870 int disks = sh->disks;
ac6b53b6
DW
1871 int pd_idx = sh->pd_idx;
1872 int qd_idx = sh->qd_idx;
1873 struct page *xor_dest;
46d5b785 1874 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1875 struct dma_async_tx_descriptor *tx;
a08abd8c 1876 struct async_submit_ctl submit;
ac6b53b6
DW
1877 int count;
1878 int i;
91c00924 1879
e46b272b 1880 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1881 (unsigned long long)sh->sector);
1882
59fc630b 1883 BUG_ON(sh->batch_head);
ac6b53b6
DW
1884 count = 0;
1885 xor_dest = sh->dev[pd_idx].page;
1886 xor_srcs[count++] = xor_dest;
91c00924 1887 for (i = disks; i--; ) {
ac6b53b6
DW
1888 if (i == pd_idx || i == qd_idx)
1889 continue;
1890 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1891 }
1892
d6f38f31 1893 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 1894 to_addr_conv(sh, percpu, 0));
099f53cb 1895 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1896 &sh->ops.zero_sum_result, &submit);
91c00924 1897
91c00924 1898 atomic_inc(&sh->count);
a08abd8c
DW
1899 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1900 tx = async_trigger_callback(&submit);
91c00924
DW
1901}
1902
ac6b53b6
DW
1903static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1904{
46d5b785 1905 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
1906 struct async_submit_ctl submit;
1907 int count;
1908
1909 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1910 (unsigned long long)sh->sector, checkp);
1911
59fc630b 1912 BUG_ON(sh->batch_head);
584acdd4 1913 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1914 if (!checkp)
1915 srcs[count] = NULL;
91c00924 1916
91c00924 1917 atomic_inc(&sh->count);
ac6b53b6 1918 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 1919 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1920 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1921 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1922}
1923
51acbcec 1924static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1925{
1926 int overlap_clear = 0, i, disks = sh->disks;
1927 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1928 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1929 int level = conf->level;
d6f38f31
DW
1930 struct raid5_percpu *percpu;
1931 unsigned long cpu;
91c00924 1932
d6f38f31
DW
1933 cpu = get_cpu();
1934 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1935 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1936 ops_run_biofill(sh);
1937 overlap_clear++;
1938 }
1939
7b3a871e 1940 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1941 if (level < 6)
1942 tx = ops_run_compute5(sh, percpu);
1943 else {
1944 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1945 tx = ops_run_compute6_1(sh, percpu);
1946 else
1947 tx = ops_run_compute6_2(sh, percpu);
1948 }
1949 /* terminate the chain if reconstruct is not set to be run */
1950 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1951 async_tx_ack(tx);
1952 }
91c00924 1953
584acdd4
MS
1954 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1955 if (level < 6)
1956 tx = ops_run_prexor5(sh, percpu, tx);
1957 else
1958 tx = ops_run_prexor6(sh, percpu, tx);
1959 }
91c00924 1960
600aa109 1961 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1962 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1963 overlap_clear++;
1964 }
1965
ac6b53b6
DW
1966 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1967 if (level < 6)
1968 ops_run_reconstruct5(sh, percpu, tx);
1969 else
1970 ops_run_reconstruct6(sh, percpu, tx);
1971 }
91c00924 1972
ac6b53b6
DW
1973 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1974 if (sh->check_state == check_state_run)
1975 ops_run_check_p(sh, percpu);
1976 else if (sh->check_state == check_state_run_q)
1977 ops_run_check_pq(sh, percpu, 0);
1978 else if (sh->check_state == check_state_run_pq)
1979 ops_run_check_pq(sh, percpu, 1);
1980 else
1981 BUG();
1982 }
91c00924 1983
59fc630b 1984 if (overlap_clear && !sh->batch_head)
91c00924
DW
1985 for (i = disks; i--; ) {
1986 struct r5dev *dev = &sh->dev[i];
1987 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1988 wake_up(&sh->raid_conf->wait_for_overlap);
1989 }
d6f38f31 1990 put_cpu();
91c00924
DW
1991}
1992
f18c1a35
N
1993static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1994{
1995 struct stripe_head *sh;
1996
1997 sh = kmem_cache_zalloc(sc, gfp);
1998 if (sh) {
1999 spin_lock_init(&sh->stripe_lock);
2000 spin_lock_init(&sh->batch_lock);
2001 INIT_LIST_HEAD(&sh->batch_list);
2002 INIT_LIST_HEAD(&sh->lru);
2003 atomic_set(&sh->count, 1);
2004 }
2005 return sh;
2006}
486f0644 2007static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2008{
2009 struct stripe_head *sh;
f18c1a35
N
2010
2011 sh = alloc_stripe(conf->slab_cache, gfp);
3f294f4f
N
2012 if (!sh)
2013 return 0;
6ce32846 2014
3f294f4f 2015 sh->raid_conf = conf;
3f294f4f 2016
a9683a79 2017 if (grow_buffers(sh, gfp)) {
e4e11e38 2018 shrink_buffers(sh);
3f294f4f
N
2019 kmem_cache_free(conf->slab_cache, sh);
2020 return 0;
2021 }
486f0644
N
2022 sh->hash_lock_index =
2023 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2024 /* we just created an active stripe so... */
3f294f4f 2025 atomic_inc(&conf->active_stripes);
59fc630b 2026
6d036f7d 2027 raid5_release_stripe(sh);
486f0644 2028 conf->max_nr_stripes++;
3f294f4f
N
2029 return 1;
2030}
2031
d1688a6d 2032static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2033{
e18b890b 2034 struct kmem_cache *sc;
5e5e3e78 2035 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2036
f4be6b43
N
2037 if (conf->mddev->gendisk)
2038 sprintf(conf->cache_name[0],
2039 "raid%d-%s", conf->level, mdname(conf->mddev));
2040 else
2041 sprintf(conf->cache_name[0],
2042 "raid%d-%p", conf->level, conf->mddev);
2043 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2044
ad01c9e3
N
2045 conf->active_name = 0;
2046 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2047 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2048 0, 0, NULL);
1da177e4
LT
2049 if (!sc)
2050 return 1;
2051 conf->slab_cache = sc;
ad01c9e3 2052 conf->pool_size = devs;
486f0644
N
2053 while (num--)
2054 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2055 return 1;
486f0644 2056
1da177e4
LT
2057 return 0;
2058}
29269553 2059
d6f38f31
DW
2060/**
2061 * scribble_len - return the required size of the scribble region
2062 * @num - total number of disks in the array
2063 *
2064 * The size must be enough to contain:
2065 * 1/ a struct page pointer for each device in the array +2
2066 * 2/ room to convert each entry in (1) to its corresponding dma
2067 * (dma_map_page()) or page (page_address()) address.
2068 *
2069 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2070 * calculate over all devices (not just the data blocks), using zeros in place
2071 * of the P and Q blocks.
2072 */
46d5b785 2073static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2074{
46d5b785 2075 struct flex_array *ret;
d6f38f31
DW
2076 size_t len;
2077
2078 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2079 ret = flex_array_alloc(len, cnt, flags);
2080 if (!ret)
2081 return NULL;
2082 /* always prealloc all elements, so no locking is required */
2083 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2084 flex_array_free(ret);
2085 return NULL;
2086 }
2087 return ret;
d6f38f31
DW
2088}
2089
738a2738
N
2090static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2091{
2092 unsigned long cpu;
2093 int err = 0;
2094
27a353c0
SL
2095 /*
2096 * Never shrink. And mddev_suspend() could deadlock if this is called
2097 * from raid5d. In that case, scribble_disks and scribble_sectors
2098 * should equal to new_disks and new_sectors
2099 */
2100 if (conf->scribble_disks >= new_disks &&
2101 conf->scribble_sectors >= new_sectors)
2102 return 0;
738a2738
N
2103 mddev_suspend(conf->mddev);
2104 get_online_cpus();
2105 for_each_present_cpu(cpu) {
2106 struct raid5_percpu *percpu;
2107 struct flex_array *scribble;
2108
2109 percpu = per_cpu_ptr(conf->percpu, cpu);
2110 scribble = scribble_alloc(new_disks,
2111 new_sectors / STRIPE_SECTORS,
2112 GFP_NOIO);
2113
2114 if (scribble) {
2115 flex_array_free(percpu->scribble);
2116 percpu->scribble = scribble;
2117 } else {
2118 err = -ENOMEM;
2119 break;
2120 }
2121 }
2122 put_online_cpus();
2123 mddev_resume(conf->mddev);
27a353c0
SL
2124 if (!err) {
2125 conf->scribble_disks = new_disks;
2126 conf->scribble_sectors = new_sectors;
2127 }
738a2738
N
2128 return err;
2129}
2130
d1688a6d 2131static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2132{
2133 /* Make all the stripes able to hold 'newsize' devices.
2134 * New slots in each stripe get 'page' set to a new page.
2135 *
2136 * This happens in stages:
2137 * 1/ create a new kmem_cache and allocate the required number of
2138 * stripe_heads.
83f0d77a 2139 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2140 * to the new stripe_heads. This will have the side effect of
2141 * freezing the array as once all stripe_heads have been collected,
2142 * no IO will be possible. Old stripe heads are freed once their
2143 * pages have been transferred over, and the old kmem_cache is
2144 * freed when all stripes are done.
2145 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2146 * we simple return a failre status - no need to clean anything up.
2147 * 4/ allocate new pages for the new slots in the new stripe_heads.
2148 * If this fails, we don't bother trying the shrink the
2149 * stripe_heads down again, we just leave them as they are.
2150 * As each stripe_head is processed the new one is released into
2151 * active service.
2152 *
2153 * Once step2 is started, we cannot afford to wait for a write,
2154 * so we use GFP_NOIO allocations.
2155 */
2156 struct stripe_head *osh, *nsh;
2157 LIST_HEAD(newstripes);
2158 struct disk_info *ndisks;
b5470dc5 2159 int err;
e18b890b 2160 struct kmem_cache *sc;
ad01c9e3 2161 int i;
566c09c5 2162 int hash, cnt;
ad01c9e3
N
2163
2164 if (newsize <= conf->pool_size)
2165 return 0; /* never bother to shrink */
2166
b5470dc5
DW
2167 err = md_allow_write(conf->mddev);
2168 if (err)
2169 return err;
2a2275d6 2170
ad01c9e3
N
2171 /* Step 1 */
2172 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2173 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2174 0, 0, NULL);
ad01c9e3
N
2175 if (!sc)
2176 return -ENOMEM;
2177
2d5b569b
N
2178 /* Need to ensure auto-resizing doesn't interfere */
2179 mutex_lock(&conf->cache_size_mutex);
2180
ad01c9e3 2181 for (i = conf->max_nr_stripes; i; i--) {
f18c1a35 2182 nsh = alloc_stripe(sc, GFP_KERNEL);
ad01c9e3
N
2183 if (!nsh)
2184 break;
2185
ad01c9e3 2186 nsh->raid_conf = conf;
ad01c9e3
N
2187 list_add(&nsh->lru, &newstripes);
2188 }
2189 if (i) {
2190 /* didn't get enough, give up */
2191 while (!list_empty(&newstripes)) {
2192 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2193 list_del(&nsh->lru);
2194 kmem_cache_free(sc, nsh);
2195 }
2196 kmem_cache_destroy(sc);
2d5b569b 2197 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2198 return -ENOMEM;
2199 }
2200 /* Step 2 - Must use GFP_NOIO now.
2201 * OK, we have enough stripes, start collecting inactive
2202 * stripes and copying them over
2203 */
566c09c5
SL
2204 hash = 0;
2205 cnt = 0;
ad01c9e3 2206 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2207 lock_device_hash_lock(conf, hash);
6ab2a4b8 2208 wait_event_cmd(conf->wait_for_stripe,
566c09c5
SL
2209 !list_empty(conf->inactive_list + hash),
2210 unlock_device_hash_lock(conf, hash),
2211 lock_device_hash_lock(conf, hash));
2212 osh = get_free_stripe(conf, hash);
2213 unlock_device_hash_lock(conf, hash);
f18c1a35 2214
d592a996 2215 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2216 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2217 nsh->dev[i].orig_page = osh->dev[i].page;
2218 }
566c09c5 2219 nsh->hash_lock_index = hash;
ad01c9e3 2220 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
2221 cnt++;
2222 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2223 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2224 hash++;
2225 cnt = 0;
2226 }
ad01c9e3
N
2227 }
2228 kmem_cache_destroy(conf->slab_cache);
2229
2230 /* Step 3.
2231 * At this point, we are holding all the stripes so the array
2232 * is completely stalled, so now is a good time to resize
d6f38f31 2233 * conf->disks and the scribble region
ad01c9e3
N
2234 */
2235 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2236 if (ndisks) {
2237 for (i=0; i<conf->raid_disks; i++)
2238 ndisks[i] = conf->disks[i];
2239 kfree(conf->disks);
2240 conf->disks = ndisks;
2241 } else
2242 err = -ENOMEM;
2243
2d5b569b 2244 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2245 /* Step 4, return new stripes to service */
2246 while(!list_empty(&newstripes)) {
2247 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2248 list_del_init(&nsh->lru);
d6f38f31 2249
ad01c9e3
N
2250 for (i=conf->raid_disks; i < newsize; i++)
2251 if (nsh->dev[i].page == NULL) {
2252 struct page *p = alloc_page(GFP_NOIO);
2253 nsh->dev[i].page = p;
d592a996 2254 nsh->dev[i].orig_page = p;
ad01c9e3
N
2255 if (!p)
2256 err = -ENOMEM;
2257 }
6d036f7d 2258 raid5_release_stripe(nsh);
ad01c9e3
N
2259 }
2260 /* critical section pass, GFP_NOIO no longer needed */
2261
2262 conf->slab_cache = sc;
2263 conf->active_name = 1-conf->active_name;
6e9eac2d
N
2264 if (!err)
2265 conf->pool_size = newsize;
ad01c9e3
N
2266 return err;
2267}
1da177e4 2268
486f0644 2269static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2270{
2271 struct stripe_head *sh;
49895bcc 2272 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2273
566c09c5
SL
2274 spin_lock_irq(conf->hash_locks + hash);
2275 sh = get_free_stripe(conf, hash);
2276 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2277 if (!sh)
2278 return 0;
78bafebd 2279 BUG_ON(atomic_read(&sh->count));
e4e11e38 2280 shrink_buffers(sh);
3f294f4f
N
2281 kmem_cache_free(conf->slab_cache, sh);
2282 atomic_dec(&conf->active_stripes);
486f0644 2283 conf->max_nr_stripes--;
3f294f4f
N
2284 return 1;
2285}
2286
d1688a6d 2287static void shrink_stripes(struct r5conf *conf)
3f294f4f 2288{
486f0644
N
2289 while (conf->max_nr_stripes &&
2290 drop_one_stripe(conf))
2291 ;
3f294f4f 2292
644df1a8 2293 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2294 conf->slab_cache = NULL;
2295}
2296
4246a0b6 2297static void raid5_end_read_request(struct bio * bi)
1da177e4 2298{
99c0fb5f 2299 struct stripe_head *sh = bi->bi_private;
d1688a6d 2300 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2301 int disks = sh->disks, i;
d6950432 2302 char b[BDEVNAME_SIZE];
dd054fce 2303 struct md_rdev *rdev = NULL;
05616be5 2304 sector_t s;
1da177e4
LT
2305
2306 for (i=0 ; i<disks; i++)
2307 if (bi == &sh->dev[i].req)
2308 break;
2309
4246a0b6 2310 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2311 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2312 bi->bi_error);
1da177e4
LT
2313 if (i == disks) {
2314 BUG();
6712ecf8 2315 return;
1da177e4 2316 }
14a75d3e 2317 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2318 /* If replacement finished while this request was outstanding,
2319 * 'replacement' might be NULL already.
2320 * In that case it moved down to 'rdev'.
2321 * rdev is not removed until all requests are finished.
2322 */
14a75d3e 2323 rdev = conf->disks[i].replacement;
dd054fce 2324 if (!rdev)
14a75d3e 2325 rdev = conf->disks[i].rdev;
1da177e4 2326
05616be5
N
2327 if (use_new_offset(conf, sh))
2328 s = sh->sector + rdev->new_data_offset;
2329 else
2330 s = sh->sector + rdev->data_offset;
4246a0b6 2331 if (!bi->bi_error) {
1da177e4 2332 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2333 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2334 /* Note that this cannot happen on a
2335 * replacement device. We just fail those on
2336 * any error
2337 */
8bda470e
CD
2338 printk_ratelimited(
2339 KERN_INFO
2340 "md/raid:%s: read error corrected"
2341 " (%lu sectors at %llu on %s)\n",
2342 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2343 (unsigned long long)s,
8bda470e 2344 bdevname(rdev->bdev, b));
ddd5115f 2345 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2346 clear_bit(R5_ReadError, &sh->dev[i].flags);
2347 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2348 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2349 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2350
14a75d3e
N
2351 if (atomic_read(&rdev->read_errors))
2352 atomic_set(&rdev->read_errors, 0);
1da177e4 2353 } else {
14a75d3e 2354 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2355 int retry = 0;
2e8ac303 2356 int set_bad = 0;
d6950432 2357
1da177e4 2358 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2359 atomic_inc(&rdev->read_errors);
14a75d3e
N
2360 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2361 printk_ratelimited(
2362 KERN_WARNING
2363 "md/raid:%s: read error on replacement device "
2364 "(sector %llu on %s).\n",
2365 mdname(conf->mddev),
05616be5 2366 (unsigned long long)s,
14a75d3e 2367 bdn);
2e8ac303 2368 else if (conf->mddev->degraded >= conf->max_degraded) {
2369 set_bad = 1;
8bda470e
CD
2370 printk_ratelimited(
2371 KERN_WARNING
2372 "md/raid:%s: read error not correctable "
2373 "(sector %llu on %s).\n",
2374 mdname(conf->mddev),
05616be5 2375 (unsigned long long)s,
8bda470e 2376 bdn);
2e8ac303 2377 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2378 /* Oh, no!!! */
2e8ac303 2379 set_bad = 1;
8bda470e
CD
2380 printk_ratelimited(
2381 KERN_WARNING
2382 "md/raid:%s: read error NOT corrected!! "
2383 "(sector %llu on %s).\n",
2384 mdname(conf->mddev),
05616be5 2385 (unsigned long long)s,
8bda470e 2386 bdn);
2e8ac303 2387 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2388 > conf->max_nr_stripes)
14f8d26b 2389 printk(KERN_WARNING
0c55e022 2390 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2391 mdname(conf->mddev), bdn);
ba22dcbf
N
2392 else
2393 retry = 1;
edfa1f65
BY
2394 if (set_bad && test_bit(In_sync, &rdev->flags)
2395 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2396 retry = 1;
ba22dcbf 2397 if (retry)
3f9e7c14 2398 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2399 set_bit(R5_ReadError, &sh->dev[i].flags);
2400 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2401 } else
2402 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2403 else {
4e5314b5
N
2404 clear_bit(R5_ReadError, &sh->dev[i].flags);
2405 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2406 if (!(set_bad
2407 && test_bit(In_sync, &rdev->flags)
2408 && rdev_set_badblocks(
2409 rdev, sh->sector, STRIPE_SECTORS, 0)))
2410 md_error(conf->mddev, rdev);
ba22dcbf 2411 }
1da177e4 2412 }
14a75d3e 2413 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
2414 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2415 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2416 raid5_release_stripe(sh);
1da177e4
LT
2417}
2418
4246a0b6 2419static void raid5_end_write_request(struct bio *bi)
1da177e4 2420{
99c0fb5f 2421 struct stripe_head *sh = bi->bi_private;
d1688a6d 2422 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2423 int disks = sh->disks, i;
977df362 2424 struct md_rdev *uninitialized_var(rdev);
b84db560
N
2425 sector_t first_bad;
2426 int bad_sectors;
977df362 2427 int replacement = 0;
1da177e4 2428
977df362
N
2429 for (i = 0 ; i < disks; i++) {
2430 if (bi == &sh->dev[i].req) {
2431 rdev = conf->disks[i].rdev;
1da177e4 2432 break;
977df362
N
2433 }
2434 if (bi == &sh->dev[i].rreq) {
2435 rdev = conf->disks[i].replacement;
dd054fce
N
2436 if (rdev)
2437 replacement = 1;
2438 else
2439 /* rdev was removed and 'replacement'
2440 * replaced it. rdev is not removed
2441 * until all requests are finished.
2442 */
2443 rdev = conf->disks[i].rdev;
977df362
N
2444 break;
2445 }
2446 }
4246a0b6 2447 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2448 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2449 bi->bi_error);
1da177e4
LT
2450 if (i == disks) {
2451 BUG();
6712ecf8 2452 return;
1da177e4
LT
2453 }
2454
977df362 2455 if (replacement) {
4246a0b6 2456 if (bi->bi_error)
977df362
N
2457 md_error(conf->mddev, rdev);
2458 else if (is_badblock(rdev, sh->sector,
2459 STRIPE_SECTORS,
2460 &first_bad, &bad_sectors))
2461 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2462 } else {
4246a0b6 2463 if (bi->bi_error) {
9f97e4b1 2464 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2465 set_bit(WriteErrorSeen, &rdev->flags);
2466 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2467 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2468 set_bit(MD_RECOVERY_NEEDED,
2469 &rdev->mddev->recovery);
977df362
N
2470 } else if (is_badblock(rdev, sh->sector,
2471 STRIPE_SECTORS,
c0b32972 2472 &first_bad, &bad_sectors)) {
977df362 2473 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2474 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2475 /* That was a successful write so make
2476 * sure it looks like we already did
2477 * a re-write.
2478 */
2479 set_bit(R5_ReWrite, &sh->dev[i].flags);
2480 }
977df362
N
2481 }
2482 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2483
4246a0b6 2484 if (sh->batch_head && bi->bi_error && !replacement)
72ac7330 2485 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2486
977df362
N
2487 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2488 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2489 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2490 raid5_release_stripe(sh);
59fc630b 2491
2492 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2493 raid5_release_stripe(sh->batch_head);
1da177e4
LT
2494}
2495
784052ec 2496static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2497{
2498 struct r5dev *dev = &sh->dev[i];
2499
2500 bio_init(&dev->req);
2501 dev->req.bi_io_vec = &dev->vec;
d592a996 2502 dev->req.bi_max_vecs = 1;
1da177e4
LT
2503 dev->req.bi_private = sh;
2504
977df362
N
2505 bio_init(&dev->rreq);
2506 dev->rreq.bi_io_vec = &dev->rvec;
d592a996 2507 dev->rreq.bi_max_vecs = 1;
977df362 2508 dev->rreq.bi_private = sh;
977df362 2509
1da177e4 2510 dev->flags = 0;
6d036f7d 2511 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4
LT
2512}
2513
849674e4 2514static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2515{
2516 char b[BDEVNAME_SIZE];
d1688a6d 2517 struct r5conf *conf = mddev->private;
908f4fbd 2518 unsigned long flags;
0c55e022 2519 pr_debug("raid456: error called\n");
1da177e4 2520
908f4fbd
N
2521 spin_lock_irqsave(&conf->device_lock, flags);
2522 clear_bit(In_sync, &rdev->flags);
2523 mddev->degraded = calc_degraded(conf);
2524 spin_unlock_irqrestore(&conf->device_lock, flags);
2525 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2526
de393cde 2527 set_bit(Blocked, &rdev->flags);
6f8d0c77 2528 set_bit(Faulty, &rdev->flags);
85ad1d13
GJ
2529 set_mask_bits(&mddev->flags, 0,
2530 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
6f8d0c77
N
2531 printk(KERN_ALERT
2532 "md/raid:%s: Disk failure on %s, disabling device.\n"
2533 "md/raid:%s: Operation continuing on %d devices.\n",
2534 mdname(mddev),
2535 bdevname(rdev->bdev, b),
2536 mdname(mddev),
2537 conf->raid_disks - mddev->degraded);
16a53ecc 2538}
1da177e4
LT
2539
2540/*
2541 * Input: a 'big' sector number,
2542 * Output: index of the data and parity disk, and the sector # in them.
2543 */
6d036f7d
SL
2544sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2545 int previous, int *dd_idx,
2546 struct stripe_head *sh)
1da177e4 2547{
6e3b96ed 2548 sector_t stripe, stripe2;
35f2a591 2549 sector_t chunk_number;
1da177e4 2550 unsigned int chunk_offset;
911d4ee8 2551 int pd_idx, qd_idx;
67cc2b81 2552 int ddf_layout = 0;
1da177e4 2553 sector_t new_sector;
e183eaed
N
2554 int algorithm = previous ? conf->prev_algo
2555 : conf->algorithm;
09c9e5fa
AN
2556 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2557 : conf->chunk_sectors;
112bf897
N
2558 int raid_disks = previous ? conf->previous_raid_disks
2559 : conf->raid_disks;
2560 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2561
2562 /* First compute the information on this sector */
2563
2564 /*
2565 * Compute the chunk number and the sector offset inside the chunk
2566 */
2567 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2568 chunk_number = r_sector;
1da177e4
LT
2569
2570 /*
2571 * Compute the stripe number
2572 */
35f2a591
N
2573 stripe = chunk_number;
2574 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2575 stripe2 = stripe;
1da177e4
LT
2576 /*
2577 * Select the parity disk based on the user selected algorithm.
2578 */
84789554 2579 pd_idx = qd_idx = -1;
16a53ecc
N
2580 switch(conf->level) {
2581 case 4:
911d4ee8 2582 pd_idx = data_disks;
16a53ecc
N
2583 break;
2584 case 5:
e183eaed 2585 switch (algorithm) {
1da177e4 2586 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2587 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2588 if (*dd_idx >= pd_idx)
1da177e4
LT
2589 (*dd_idx)++;
2590 break;
2591 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2592 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2593 if (*dd_idx >= pd_idx)
1da177e4
LT
2594 (*dd_idx)++;
2595 break;
2596 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2597 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2598 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2599 break;
2600 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2601 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2602 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2603 break;
99c0fb5f
N
2604 case ALGORITHM_PARITY_0:
2605 pd_idx = 0;
2606 (*dd_idx)++;
2607 break;
2608 case ALGORITHM_PARITY_N:
2609 pd_idx = data_disks;
2610 break;
1da177e4 2611 default:
99c0fb5f 2612 BUG();
16a53ecc
N
2613 }
2614 break;
2615 case 6:
2616
e183eaed 2617 switch (algorithm) {
16a53ecc 2618 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2619 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2620 qd_idx = pd_idx + 1;
2621 if (pd_idx == raid_disks-1) {
99c0fb5f 2622 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2623 qd_idx = 0;
2624 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2625 (*dd_idx) += 2; /* D D P Q D */
2626 break;
2627 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2628 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2629 qd_idx = pd_idx + 1;
2630 if (pd_idx == raid_disks-1) {
99c0fb5f 2631 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2632 qd_idx = 0;
2633 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2634 (*dd_idx) += 2; /* D D P Q D */
2635 break;
2636 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2637 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2638 qd_idx = (pd_idx + 1) % raid_disks;
2639 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2640 break;
2641 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2642 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2643 qd_idx = (pd_idx + 1) % raid_disks;
2644 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2645 break;
99c0fb5f
N
2646
2647 case ALGORITHM_PARITY_0:
2648 pd_idx = 0;
2649 qd_idx = 1;
2650 (*dd_idx) += 2;
2651 break;
2652 case ALGORITHM_PARITY_N:
2653 pd_idx = data_disks;
2654 qd_idx = data_disks + 1;
2655 break;
2656
2657 case ALGORITHM_ROTATING_ZERO_RESTART:
2658 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2659 * of blocks for computing Q is different.
2660 */
6e3b96ed 2661 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2662 qd_idx = pd_idx + 1;
2663 if (pd_idx == raid_disks-1) {
2664 (*dd_idx)++; /* Q D D D P */
2665 qd_idx = 0;
2666 } else if (*dd_idx >= pd_idx)
2667 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2668 ddf_layout = 1;
99c0fb5f
N
2669 break;
2670
2671 case ALGORITHM_ROTATING_N_RESTART:
2672 /* Same a left_asymmetric, by first stripe is
2673 * D D D P Q rather than
2674 * Q D D D P
2675 */
6e3b96ed
N
2676 stripe2 += 1;
2677 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2678 qd_idx = pd_idx + 1;
2679 if (pd_idx == raid_disks-1) {
2680 (*dd_idx)++; /* Q D D D P */
2681 qd_idx = 0;
2682 } else if (*dd_idx >= pd_idx)
2683 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2684 ddf_layout = 1;
99c0fb5f
N
2685 break;
2686
2687 case ALGORITHM_ROTATING_N_CONTINUE:
2688 /* Same as left_symmetric but Q is before P */
6e3b96ed 2689 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2690 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2691 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2692 ddf_layout = 1;
99c0fb5f
N
2693 break;
2694
2695 case ALGORITHM_LEFT_ASYMMETRIC_6:
2696 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2697 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2698 if (*dd_idx >= pd_idx)
2699 (*dd_idx)++;
2700 qd_idx = raid_disks - 1;
2701 break;
2702
2703 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2704 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2705 if (*dd_idx >= pd_idx)
2706 (*dd_idx)++;
2707 qd_idx = raid_disks - 1;
2708 break;
2709
2710 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2711 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2712 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2713 qd_idx = raid_disks - 1;
2714 break;
2715
2716 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2717 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2718 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2719 qd_idx = raid_disks - 1;
2720 break;
2721
2722 case ALGORITHM_PARITY_0_6:
2723 pd_idx = 0;
2724 (*dd_idx)++;
2725 qd_idx = raid_disks - 1;
2726 break;
2727
16a53ecc 2728 default:
99c0fb5f 2729 BUG();
16a53ecc
N
2730 }
2731 break;
1da177e4
LT
2732 }
2733
911d4ee8
N
2734 if (sh) {
2735 sh->pd_idx = pd_idx;
2736 sh->qd_idx = qd_idx;
67cc2b81 2737 sh->ddf_layout = ddf_layout;
911d4ee8 2738 }
1da177e4
LT
2739 /*
2740 * Finally, compute the new sector number
2741 */
2742 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2743 return new_sector;
2744}
2745
6d036f7d 2746sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2747{
d1688a6d 2748 struct r5conf *conf = sh->raid_conf;
b875e531
N
2749 int raid_disks = sh->disks;
2750 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2751 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2752 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2753 : conf->chunk_sectors;
e183eaed
N
2754 int algorithm = previous ? conf->prev_algo
2755 : conf->algorithm;
1da177e4
LT
2756 sector_t stripe;
2757 int chunk_offset;
35f2a591
N
2758 sector_t chunk_number;
2759 int dummy1, dd_idx = i;
1da177e4 2760 sector_t r_sector;
911d4ee8 2761 struct stripe_head sh2;
1da177e4
LT
2762
2763 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2764 stripe = new_sector;
1da177e4 2765
16a53ecc
N
2766 if (i == sh->pd_idx)
2767 return 0;
2768 switch(conf->level) {
2769 case 4: break;
2770 case 5:
e183eaed 2771 switch (algorithm) {
1da177e4
LT
2772 case ALGORITHM_LEFT_ASYMMETRIC:
2773 case ALGORITHM_RIGHT_ASYMMETRIC:
2774 if (i > sh->pd_idx)
2775 i--;
2776 break;
2777 case ALGORITHM_LEFT_SYMMETRIC:
2778 case ALGORITHM_RIGHT_SYMMETRIC:
2779 if (i < sh->pd_idx)
2780 i += raid_disks;
2781 i -= (sh->pd_idx + 1);
2782 break;
99c0fb5f
N
2783 case ALGORITHM_PARITY_0:
2784 i -= 1;
2785 break;
2786 case ALGORITHM_PARITY_N:
2787 break;
1da177e4 2788 default:
99c0fb5f 2789 BUG();
16a53ecc
N
2790 }
2791 break;
2792 case 6:
d0dabf7e 2793 if (i == sh->qd_idx)
16a53ecc 2794 return 0; /* It is the Q disk */
e183eaed 2795 switch (algorithm) {
16a53ecc
N
2796 case ALGORITHM_LEFT_ASYMMETRIC:
2797 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2798 case ALGORITHM_ROTATING_ZERO_RESTART:
2799 case ALGORITHM_ROTATING_N_RESTART:
2800 if (sh->pd_idx == raid_disks-1)
2801 i--; /* Q D D D P */
16a53ecc
N
2802 else if (i > sh->pd_idx)
2803 i -= 2; /* D D P Q D */
2804 break;
2805 case ALGORITHM_LEFT_SYMMETRIC:
2806 case ALGORITHM_RIGHT_SYMMETRIC:
2807 if (sh->pd_idx == raid_disks-1)
2808 i--; /* Q D D D P */
2809 else {
2810 /* D D P Q D */
2811 if (i < sh->pd_idx)
2812 i += raid_disks;
2813 i -= (sh->pd_idx + 2);
2814 }
2815 break;
99c0fb5f
N
2816 case ALGORITHM_PARITY_0:
2817 i -= 2;
2818 break;
2819 case ALGORITHM_PARITY_N:
2820 break;
2821 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2822 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2823 if (sh->pd_idx == 0)
2824 i--; /* P D D D Q */
e4424fee
N
2825 else {
2826 /* D D Q P D */
2827 if (i < sh->pd_idx)
2828 i += raid_disks;
2829 i -= (sh->pd_idx + 1);
2830 }
99c0fb5f
N
2831 break;
2832 case ALGORITHM_LEFT_ASYMMETRIC_6:
2833 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2834 if (i > sh->pd_idx)
2835 i--;
2836 break;
2837 case ALGORITHM_LEFT_SYMMETRIC_6:
2838 case ALGORITHM_RIGHT_SYMMETRIC_6:
2839 if (i < sh->pd_idx)
2840 i += data_disks + 1;
2841 i -= (sh->pd_idx + 1);
2842 break;
2843 case ALGORITHM_PARITY_0_6:
2844 i -= 1;
2845 break;
16a53ecc 2846 default:
99c0fb5f 2847 BUG();
16a53ecc
N
2848 }
2849 break;
1da177e4
LT
2850 }
2851
2852 chunk_number = stripe * data_disks + i;
35f2a591 2853 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2854
112bf897 2855 check = raid5_compute_sector(conf, r_sector,
784052ec 2856 previous, &dummy1, &sh2);
911d4ee8
N
2857 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2858 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2859 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2860 mdname(conf->mddev));
1da177e4
LT
2861 return 0;
2862 }
2863 return r_sector;
2864}
2865
600aa109 2866static void
c0f7bddb 2867schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2868 int rcw, int expand)
e33129d8 2869{
584acdd4 2870 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 2871 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2872 int level = conf->level;
e33129d8
DW
2873
2874 if (rcw) {
e33129d8
DW
2875
2876 for (i = disks; i--; ) {
2877 struct r5dev *dev = &sh->dev[i];
2878
2879 if (dev->towrite) {
2880 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2881 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2882 if (!expand)
2883 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2884 s->locked++;
e33129d8
DW
2885 }
2886 }
ce7d363a
N
2887 /* if we are not expanding this is a proper write request, and
2888 * there will be bios with new data to be drained into the
2889 * stripe cache
2890 */
2891 if (!expand) {
2892 if (!s->locked)
2893 /* False alarm, nothing to do */
2894 return;
2895 sh->reconstruct_state = reconstruct_state_drain_run;
2896 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2897 } else
2898 sh->reconstruct_state = reconstruct_state_run;
2899
2900 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2901
c0f7bddb 2902 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2903 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2904 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
2905 } else {
2906 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2907 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
2908 BUG_ON(level == 6 &&
2909 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2910 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 2911
e33129d8
DW
2912 for (i = disks; i--; ) {
2913 struct r5dev *dev = &sh->dev[i];
584acdd4 2914 if (i == pd_idx || i == qd_idx)
e33129d8
DW
2915 continue;
2916
e33129d8
DW
2917 if (dev->towrite &&
2918 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2919 test_bit(R5_Wantcompute, &dev->flags))) {
2920 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2921 set_bit(R5_LOCKED, &dev->flags);
2922 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2923 s->locked++;
e33129d8
DW
2924 }
2925 }
ce7d363a
N
2926 if (!s->locked)
2927 /* False alarm - nothing to do */
2928 return;
2929 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2930 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2931 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2932 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2933 }
2934
c0f7bddb 2935 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2936 * are in flight
2937 */
2938 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2939 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2940 s->locked++;
e33129d8 2941
c0f7bddb
YT
2942 if (level == 6) {
2943 int qd_idx = sh->qd_idx;
2944 struct r5dev *dev = &sh->dev[qd_idx];
2945
2946 set_bit(R5_LOCKED, &dev->flags);
2947 clear_bit(R5_UPTODATE, &dev->flags);
2948 s->locked++;
2949 }
2950
600aa109 2951 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2952 __func__, (unsigned long long)sh->sector,
600aa109 2953 s->locked, s->ops_request);
e33129d8 2954}
16a53ecc 2955
1da177e4
LT
2956/*
2957 * Each stripe/dev can have one or more bion attached.
16a53ecc 2958 * toread/towrite point to the first in a chain.
1da177e4
LT
2959 * The bi_next chain must be in order.
2960 */
da41ba65 2961static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2962 int forwrite, int previous)
1da177e4
LT
2963{
2964 struct bio **bip;
d1688a6d 2965 struct r5conf *conf = sh->raid_conf;
72626685 2966 int firstwrite=0;
1da177e4 2967
cbe47ec5 2968 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 2969 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
2970 (unsigned long long)sh->sector);
2971
b17459c0
SL
2972 /*
2973 * If several bio share a stripe. The bio bi_phys_segments acts as a
2974 * reference count to avoid race. The reference count should already be
2975 * increased before this function is called (for example, in
849674e4 2976 * raid5_make_request()), so other bio sharing this stripe will not free the
b17459c0
SL
2977 * stripe. If a stripe is owned by one stripe, the stripe lock will
2978 * protect it.
2979 */
2980 spin_lock_irq(&sh->stripe_lock);
59fc630b 2981 /* Don't allow new IO added to stripes in batch list */
2982 if (sh->batch_head)
2983 goto overlap;
72626685 2984 if (forwrite) {
1da177e4 2985 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2986 if (*bip == NULL)
72626685
N
2987 firstwrite = 1;
2988 } else
1da177e4 2989 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
2990 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2991 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
2992 goto overlap;
2993 bip = & (*bip)->bi_next;
2994 }
4f024f37 2995 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
2996 goto overlap;
2997
da41ba65 2998 if (!forwrite || previous)
2999 clear_bit(STRIPE_BATCH_READY, &sh->state);
3000
78bafebd 3001 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
3002 if (*bip)
3003 bi->bi_next = *bip;
3004 *bip = bi;
e7836bd6 3005 raid5_inc_bi_active_stripes(bi);
72626685 3006
1da177e4
LT
3007 if (forwrite) {
3008 /* check if page is covered */
3009 sector_t sector = sh->dev[dd_idx].sector;
3010 for (bi=sh->dev[dd_idx].towrite;
3011 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 3012 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 3013 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
3014 if (bio_end_sector(bi) >= sector)
3015 sector = bio_end_sector(bi);
1da177e4
LT
3016 }
3017 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 3018 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3019 sh->overwrite_disks++;
1da177e4 3020 }
cbe47ec5
N
3021
3022 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3023 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3024 (unsigned long long)sh->sector, dd_idx);
3025
3026 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3027 /* Cannot hold spinlock over bitmap_startwrite,
3028 * but must ensure this isn't added to a batch until
3029 * we have added to the bitmap and set bm_seq.
3030 * So set STRIPE_BITMAP_PENDING to prevent
3031 * batching.
3032 * If multiple add_stripe_bio() calls race here they
3033 * much all set STRIPE_BITMAP_PENDING. So only the first one
3034 * to complete "bitmap_startwrite" gets to set
3035 * STRIPE_BIT_DELAY. This is important as once a stripe
3036 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3037 * any more.
3038 */
3039 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3040 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
3041 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3042 STRIPE_SECTORS, 0);
d0852df5
N
3043 spin_lock_irq(&sh->stripe_lock);
3044 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3045 if (!sh->batch_head) {
3046 sh->bm_seq = conf->seq_flush+1;
3047 set_bit(STRIPE_BIT_DELAY, &sh->state);
3048 }
cbe47ec5 3049 }
d0852df5 3050 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3051
3052 if (stripe_can_batch(sh))
3053 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3054 return 1;
3055
3056 overlap:
3057 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3058 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3059 return 0;
3060}
3061
d1688a6d 3062static void end_reshape(struct r5conf *conf);
29269553 3063
d1688a6d 3064static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3065 struct stripe_head *sh)
ccfcc3c1 3066{
784052ec 3067 int sectors_per_chunk =
09c9e5fa 3068 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3069 int dd_idx;
2d2063ce 3070 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3071 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3072
112bf897
N
3073 raid5_compute_sector(conf,
3074 stripe * (disks - conf->max_degraded)
b875e531 3075 *sectors_per_chunk + chunk_offset,
112bf897 3076 previous,
911d4ee8 3077 &dd_idx, sh);
ccfcc3c1
N
3078}
3079
a4456856 3080static void
d1688a6d 3081handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856 3082 struct stripe_head_state *s, int disks,
34a6f80e 3083 struct bio_list *return_bi)
a4456856
DW
3084{
3085 int i;
59fc630b 3086 BUG_ON(sh->batch_head);
a4456856
DW
3087 for (i = disks; i--; ) {
3088 struct bio *bi;
3089 int bitmap_end = 0;
3090
3091 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3092 struct md_rdev *rdev;
a4456856
DW
3093 rcu_read_lock();
3094 rdev = rcu_dereference(conf->disks[i].rdev);
f5b67ae8
N
3095 if (rdev && test_bit(In_sync, &rdev->flags) &&
3096 !test_bit(Faulty, &rdev->flags))
7f0da59b
N
3097 atomic_inc(&rdev->nr_pending);
3098 else
3099 rdev = NULL;
a4456856 3100 rcu_read_unlock();
7f0da59b
N
3101 if (rdev) {
3102 if (!rdev_set_badblocks(
3103 rdev,
3104 sh->sector,
3105 STRIPE_SECTORS, 0))
3106 md_error(conf->mddev, rdev);
3107 rdev_dec_pending(rdev, conf->mddev);
3108 }
a4456856 3109 }
b17459c0 3110 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3111 /* fail all writes first */
3112 bi = sh->dev[i].towrite;
3113 sh->dev[i].towrite = NULL;
7a87f434 3114 sh->overwrite_disks = 0;
b17459c0 3115 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3116 if (bi)
a4456856 3117 bitmap_end = 1;
a4456856 3118
0576b1c6
SL
3119 r5l_stripe_write_finished(sh);
3120
a4456856
DW
3121 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3122 wake_up(&conf->wait_for_overlap);
3123
4f024f37 3124 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3125 sh->dev[i].sector + STRIPE_SECTORS) {
3126 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3127
3128 bi->bi_error = -EIO;
e7836bd6 3129 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856 3130 md_write_end(conf->mddev);
34a6f80e 3131 bio_list_add(return_bi, bi);
a4456856
DW
3132 }
3133 bi = nextbi;
3134 }
7eaf7e8e
SL
3135 if (bitmap_end)
3136 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3137 STRIPE_SECTORS, 0, 0);
3138 bitmap_end = 0;
a4456856
DW
3139 /* and fail all 'written' */
3140 bi = sh->dev[i].written;
3141 sh->dev[i].written = NULL;
d592a996
SL
3142 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3143 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3144 sh->dev[i].page = sh->dev[i].orig_page;
3145 }
3146
a4456856 3147 if (bi) bitmap_end = 1;
4f024f37 3148 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3149 sh->dev[i].sector + STRIPE_SECTORS) {
3150 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3151
3152 bi->bi_error = -EIO;
e7836bd6 3153 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856 3154 md_write_end(conf->mddev);
34a6f80e 3155 bio_list_add(return_bi, bi);
a4456856
DW
3156 }
3157 bi = bi2;
3158 }
3159
b5e98d65
DW
3160 /* fail any reads if this device is non-operational and
3161 * the data has not reached the cache yet.
3162 */
3163 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
6e74a9cf 3164 s->failed > conf->max_degraded &&
b5e98d65
DW
3165 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3166 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3167 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3168 bi = sh->dev[i].toread;
3169 sh->dev[i].toread = NULL;
143c4d05 3170 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3171 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3172 wake_up(&conf->wait_for_overlap);
ebda780b
SL
3173 if (bi)
3174 s->to_read--;
4f024f37 3175 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3176 sh->dev[i].sector + STRIPE_SECTORS) {
3177 struct bio *nextbi =
3178 r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3179
3180 bi->bi_error = -EIO;
34a6f80e
N
3181 if (!raid5_dec_bi_active_stripes(bi))
3182 bio_list_add(return_bi, bi);
a4456856
DW
3183 bi = nextbi;
3184 }
3185 }
a4456856
DW
3186 if (bitmap_end)
3187 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3188 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3189 /* If we were in the middle of a write the parity block might
3190 * still be locked - so just clear all R5_LOCKED flags
3191 */
3192 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3193 }
ebda780b
SL
3194 s->to_write = 0;
3195 s->written = 0;
a4456856 3196
8b3e6cdc
DW
3197 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3198 if (atomic_dec_and_test(&conf->pending_full_writes))
3199 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3200}
3201
7f0da59b 3202static void
d1688a6d 3203handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3204 struct stripe_head_state *s)
3205{
3206 int abort = 0;
3207 int i;
3208
59fc630b 3209 BUG_ON(sh->batch_head);
7f0da59b 3210 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3211 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3212 wake_up(&conf->wait_for_overlap);
7f0da59b 3213 s->syncing = 0;
9a3e1101 3214 s->replacing = 0;
7f0da59b 3215 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3216 * Don't even need to abort as that is handled elsewhere
3217 * if needed, and not always wanted e.g. if there is a known
3218 * bad block here.
9a3e1101 3219 * For recover/replace we need to record a bad block on all
7f0da59b
N
3220 * non-sync devices, or abort the recovery
3221 */
18b9837e
N
3222 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3223 /* During recovery devices cannot be removed, so
3224 * locking and refcounting of rdevs is not needed
3225 */
e50d3992 3226 rcu_read_lock();
18b9837e 3227 for (i = 0; i < conf->raid_disks; i++) {
e50d3992 3228 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
18b9837e
N
3229 if (rdev
3230 && !test_bit(Faulty, &rdev->flags)
3231 && !test_bit(In_sync, &rdev->flags)
3232 && !rdev_set_badblocks(rdev, sh->sector,
3233 STRIPE_SECTORS, 0))
3234 abort = 1;
e50d3992 3235 rdev = rcu_dereference(conf->disks[i].replacement);
18b9837e
N
3236 if (rdev
3237 && !test_bit(Faulty, &rdev->flags)
3238 && !test_bit(In_sync, &rdev->flags)
3239 && !rdev_set_badblocks(rdev, sh->sector,
3240 STRIPE_SECTORS, 0))
3241 abort = 1;
3242 }
e50d3992 3243 rcu_read_unlock();
18b9837e
N
3244 if (abort)
3245 conf->recovery_disabled =
3246 conf->mddev->recovery_disabled;
7f0da59b 3247 }
18b9837e 3248 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3249}
3250
9a3e1101
N
3251static int want_replace(struct stripe_head *sh, int disk_idx)
3252{
3253 struct md_rdev *rdev;
3254 int rv = 0;
3f232d6a
N
3255
3256 rcu_read_lock();
3257 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
9a3e1101
N
3258 if (rdev
3259 && !test_bit(Faulty, &rdev->flags)
3260 && !test_bit(In_sync, &rdev->flags)
3261 && (rdev->recovery_offset <= sh->sector
3262 || rdev->mddev->recovery_cp <= sh->sector))
3263 rv = 1;
3f232d6a 3264 rcu_read_unlock();
9a3e1101
N
3265 return rv;
3266}
3267
93b3dbce 3268/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
3269 * to be read or computed to satisfy a request.
3270 *
3271 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 3272 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 3273 */
2c58f06e
N
3274
3275static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3276 int disk_idx, int disks)
a4456856 3277{
5599becc 3278 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3279 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3280 &sh->dev[s->failed_num[1]] };
ea664c82 3281 int i;
5599becc 3282
a79cfe12
N
3283
3284 if (test_bit(R5_LOCKED, &dev->flags) ||
3285 test_bit(R5_UPTODATE, &dev->flags))
3286 /* No point reading this as we already have it or have
3287 * decided to get it.
3288 */
3289 return 0;
3290
3291 if (dev->toread ||
3292 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3293 /* We need this block to directly satisfy a request */
3294 return 1;
3295
3296 if (s->syncing || s->expanding ||
3297 (s->replacing && want_replace(sh, disk_idx)))
3298 /* When syncing, or expanding we read everything.
3299 * When replacing, we need the replaced block.
3300 */
3301 return 1;
3302
3303 if ((s->failed >= 1 && fdev[0]->toread) ||
3304 (s->failed >= 2 && fdev[1]->toread))
3305 /* If we want to read from a failed device, then
3306 * we need to actually read every other device.
3307 */
3308 return 1;
3309
a9d56950
N
3310 /* Sometimes neither read-modify-write nor reconstruct-write
3311 * cycles can work. In those cases we read every block we
3312 * can. Then the parity-update is certain to have enough to
3313 * work with.
3314 * This can only be a problem when we need to write something,
3315 * and some device has failed. If either of those tests
3316 * fail we need look no further.
3317 */
3318 if (!s->failed || !s->to_write)
3319 return 0;
3320
3321 if (test_bit(R5_Insync, &dev->flags) &&
3322 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3323 /* Pre-reads at not permitted until after short delay
3324 * to gather multiple requests. However if this
3325 * device is no Insync, the block could only be be computed
3326 * and there is no need to delay that.
3327 */
3328 return 0;
ea664c82 3329
36707bb2 3330 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3331 if (fdev[i]->towrite &&
3332 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3333 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3334 /* If we have a partial write to a failed
3335 * device, then we will need to reconstruct
3336 * the content of that device, so all other
3337 * devices must be read.
3338 */
3339 return 1;
3340 }
3341
3342 /* If we are forced to do a reconstruct-write, either because
3343 * the current RAID6 implementation only supports that, or
3344 * or because parity cannot be trusted and we are currently
3345 * recovering it, there is extra need to be careful.
3346 * If one of the devices that we would need to read, because
3347 * it is not being overwritten (and maybe not written at all)
3348 * is missing/faulty, then we need to read everything we can.
3349 */
3350 if (sh->raid_conf->level != 6 &&
3351 sh->sector < sh->raid_conf->mddev->recovery_cp)
3352 /* reconstruct-write isn't being forced */
3353 return 0;
36707bb2 3354 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3355 if (s->failed_num[i] != sh->pd_idx &&
3356 s->failed_num[i] != sh->qd_idx &&
3357 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3358 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3359 return 1;
3360 }
3361
2c58f06e
N
3362 return 0;
3363}
3364
3365static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3366 int disk_idx, int disks)
3367{
3368 struct r5dev *dev = &sh->dev[disk_idx];
3369
3370 /* is the data in this block needed, and can we get it? */
3371 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3372 /* we would like to get this block, possibly by computing it,
3373 * otherwise read it if the backing disk is insync
3374 */
3375 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3376 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3377 BUG_ON(sh->batch_head);
5599becc 3378 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
3379 (s->failed && (disk_idx == s->failed_num[0] ||
3380 disk_idx == s->failed_num[1]))) {
5599becc
YT
3381 /* have disk failed, and we're requested to fetch it;
3382 * do compute it
a4456856 3383 */
5599becc
YT
3384 pr_debug("Computing stripe %llu block %d\n",
3385 (unsigned long long)sh->sector, disk_idx);
3386 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3387 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3388 set_bit(R5_Wantcompute, &dev->flags);
3389 sh->ops.target = disk_idx;
3390 sh->ops.target2 = -1; /* no 2nd target */
3391 s->req_compute = 1;
93b3dbce
N
3392 /* Careful: from this point on 'uptodate' is in the eye
3393 * of raid_run_ops which services 'compute' operations
3394 * before writes. R5_Wantcompute flags a block that will
3395 * be R5_UPTODATE by the time it is needed for a
3396 * subsequent operation.
3397 */
5599becc
YT
3398 s->uptodate++;
3399 return 1;
3400 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3401 /* Computing 2-failure is *very* expensive; only
3402 * do it if failed >= 2
3403 */
3404 int other;
3405 for (other = disks; other--; ) {
3406 if (other == disk_idx)
3407 continue;
3408 if (!test_bit(R5_UPTODATE,
3409 &sh->dev[other].flags))
3410 break;
a4456856 3411 }
5599becc
YT
3412 BUG_ON(other < 0);
3413 pr_debug("Computing stripe %llu blocks %d,%d\n",
3414 (unsigned long long)sh->sector,
3415 disk_idx, other);
3416 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3417 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3418 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3419 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3420 sh->ops.target = disk_idx;
3421 sh->ops.target2 = other;
3422 s->uptodate += 2;
3423 s->req_compute = 1;
3424 return 1;
3425 } else if (test_bit(R5_Insync, &dev->flags)) {
3426 set_bit(R5_LOCKED, &dev->flags);
3427 set_bit(R5_Wantread, &dev->flags);
3428 s->locked++;
3429 pr_debug("Reading block %d (sync=%d)\n",
3430 disk_idx, s->syncing);
a4456856
DW
3431 }
3432 }
5599becc
YT
3433
3434 return 0;
3435}
3436
3437/**
93b3dbce 3438 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3439 */
93b3dbce
N
3440static void handle_stripe_fill(struct stripe_head *sh,
3441 struct stripe_head_state *s,
3442 int disks)
5599becc
YT
3443{
3444 int i;
3445
3446 /* look for blocks to read/compute, skip this if a compute
3447 * is already in flight, or if the stripe contents are in the
3448 * midst of changing due to a write
3449 */
3450 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3451 !sh->reconstruct_state)
3452 for (i = disks; i--; )
93b3dbce 3453 if (fetch_block(sh, s, i, disks))
5599becc 3454 break;
a4456856
DW
3455 set_bit(STRIPE_HANDLE, &sh->state);
3456}
3457
787b76fa
N
3458static void break_stripe_batch_list(struct stripe_head *head_sh,
3459 unsigned long handle_flags);
1fe797e6 3460/* handle_stripe_clean_event
a4456856
DW
3461 * any written block on an uptodate or failed drive can be returned.
3462 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3463 * never LOCKED, so we don't need to test 'failed' directly.
3464 */
d1688a6d 3465static void handle_stripe_clean_event(struct r5conf *conf,
34a6f80e 3466 struct stripe_head *sh, int disks, struct bio_list *return_bi)
a4456856
DW
3467{
3468 int i;
3469 struct r5dev *dev;
f8dfcffd 3470 int discard_pending = 0;
59fc630b 3471 struct stripe_head *head_sh = sh;
3472 bool do_endio = false;
a4456856
DW
3473
3474 for (i = disks; i--; )
3475 if (sh->dev[i].written) {
3476 dev = &sh->dev[i];
3477 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3478 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3479 test_bit(R5_Discard, &dev->flags) ||
3480 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3481 /* We can return any write requests */
3482 struct bio *wbi, *wbi2;
45b4233c 3483 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3484 if (test_and_clear_bit(R5_Discard, &dev->flags))
3485 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3486 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3487 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3488 }
59fc630b 3489 do_endio = true;
3490
3491returnbi:
3492 dev->page = dev->orig_page;
a4456856
DW
3493 wbi = dev->written;
3494 dev->written = NULL;
4f024f37 3495 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3496 dev->sector + STRIPE_SECTORS) {
3497 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 3498 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856 3499 md_write_end(conf->mddev);
34a6f80e 3500 bio_list_add(return_bi, wbi);
a4456856
DW
3501 }
3502 wbi = wbi2;
3503 }
7eaf7e8e
SL
3504 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3505 STRIPE_SECTORS,
a4456856 3506 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3507 0);
59fc630b 3508 if (head_sh->batch_head) {
3509 sh = list_first_entry(&sh->batch_list,
3510 struct stripe_head,
3511 batch_list);
3512 if (sh != head_sh) {
3513 dev = &sh->dev[i];
3514 goto returnbi;
3515 }
3516 }
3517 sh = head_sh;
3518 dev = &sh->dev[i];
f8dfcffd
N
3519 } else if (test_bit(R5_Discard, &dev->flags))
3520 discard_pending = 1;
3521 }
f6bed0ef 3522
0576b1c6
SL
3523 r5l_stripe_write_finished(sh);
3524
f8dfcffd
N
3525 if (!discard_pending &&
3526 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
b8a9d66d 3527 int hash;
f8dfcffd
N
3528 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3529 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3530 if (sh->qd_idx >= 0) {
3531 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3532 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3533 }
3534 /* now that discard is done we can proceed with any sync */
3535 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3536 /*
3537 * SCSI discard will change some bio fields and the stripe has
3538 * no updated data, so remove it from hash list and the stripe
3539 * will be reinitialized
3540 */
59fc630b 3541unhash:
b8a9d66d
RG
3542 hash = sh->hash_lock_index;
3543 spin_lock_irq(conf->hash_locks + hash);
d47648fc 3544 remove_hash(sh);
b8a9d66d 3545 spin_unlock_irq(conf->hash_locks + hash);
59fc630b 3546 if (head_sh->batch_head) {
3547 sh = list_first_entry(&sh->batch_list,
3548 struct stripe_head, batch_list);
3549 if (sh != head_sh)
3550 goto unhash;
3551 }
59fc630b 3552 sh = head_sh;
3553
f8dfcffd
N
3554 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3555 set_bit(STRIPE_HANDLE, &sh->state);
3556
3557 }
8b3e6cdc
DW
3558
3559 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3560 if (atomic_dec_and_test(&conf->pending_full_writes))
3561 md_wakeup_thread(conf->mddev->thread);
59fc630b 3562
787b76fa
N
3563 if (head_sh->batch_head && do_endio)
3564 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3565}
3566
d1688a6d 3567static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
3568 struct stripe_head *sh,
3569 struct stripe_head_state *s,
3570 int disks)
a4456856
DW
3571{
3572 int rmw = 0, rcw = 0, i;
a7854487
AL
3573 sector_t recovery_cp = conf->mddev->recovery_cp;
3574
584acdd4 3575 /* Check whether resync is now happening or should start.
a7854487
AL
3576 * If yes, then the array is dirty (after unclean shutdown or
3577 * initial creation), so parity in some stripes might be inconsistent.
3578 * In this case, we need to always do reconstruct-write, to ensure
3579 * that in case of drive failure or read-error correction, we
3580 * generate correct data from the parity.
3581 */
584acdd4 3582 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3583 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3584 s->failed == 0)) {
a7854487 3585 /* Calculate the real rcw later - for now make it
c8ac1803
N
3586 * look like rcw is cheaper
3587 */
3588 rcw = 1; rmw = 2;
584acdd4
MS
3589 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3590 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3591 (unsigned long long)sh->sector);
c8ac1803 3592 } else for (i = disks; i--; ) {
a4456856
DW
3593 /* would I have to read this buffer for read_modify_write */
3594 struct r5dev *dev = &sh->dev[i];
584acdd4 3595 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3596 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3597 !(test_bit(R5_UPTODATE, &dev->flags) ||
3598 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3599 if (test_bit(R5_Insync, &dev->flags))
3600 rmw++;
3601 else
3602 rmw += 2*disks; /* cannot read it */
3603 }
3604 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3605 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3606 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3607 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3608 !(test_bit(R5_UPTODATE, &dev->flags) ||
3609 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3610 if (test_bit(R5_Insync, &dev->flags))
3611 rcw++;
a4456856
DW
3612 else
3613 rcw += 2*disks;
3614 }
3615 }
45b4233c 3616 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
3617 (unsigned long long)sh->sector, rmw, rcw);
3618 set_bit(STRIPE_HANDLE, &sh->state);
41257580 3619 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
a4456856 3620 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3621 if (conf->mddev->queue)
3622 blk_add_trace_msg(conf->mddev->queue,
3623 "raid5 rmw %llu %d",
3624 (unsigned long long)sh->sector, rmw);
a4456856
DW
3625 for (i = disks; i--; ) {
3626 struct r5dev *dev = &sh->dev[i];
584acdd4 3627 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3628 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3629 !(test_bit(R5_UPTODATE, &dev->flags) ||
3630 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3631 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3632 if (test_bit(STRIPE_PREREAD_ACTIVE,
3633 &sh->state)) {
3634 pr_debug("Read_old block %d for r-m-w\n",
3635 i);
a4456856
DW
3636 set_bit(R5_LOCKED, &dev->flags);
3637 set_bit(R5_Wantread, &dev->flags);
3638 s->locked++;
3639 } else {
3640 set_bit(STRIPE_DELAYED, &sh->state);
3641 set_bit(STRIPE_HANDLE, &sh->state);
3642 }
3643 }
3644 }
a9add5d9 3645 }
41257580 3646 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
a4456856 3647 /* want reconstruct write, but need to get some data */
a9add5d9 3648 int qread =0;
c8ac1803 3649 rcw = 0;
a4456856
DW
3650 for (i = disks; i--; ) {
3651 struct r5dev *dev = &sh->dev[i];
3652 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3653 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3654 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3655 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3656 test_bit(R5_Wantcompute, &dev->flags))) {
3657 rcw++;
67f45548
N
3658 if (test_bit(R5_Insync, &dev->flags) &&
3659 test_bit(STRIPE_PREREAD_ACTIVE,
3660 &sh->state)) {
45b4233c 3661 pr_debug("Read_old block "
a4456856
DW
3662 "%d for Reconstruct\n", i);
3663 set_bit(R5_LOCKED, &dev->flags);
3664 set_bit(R5_Wantread, &dev->flags);
3665 s->locked++;
a9add5d9 3666 qread++;
a4456856
DW
3667 } else {
3668 set_bit(STRIPE_DELAYED, &sh->state);
3669 set_bit(STRIPE_HANDLE, &sh->state);
3670 }
3671 }
3672 }
e3620a3a 3673 if (rcw && conf->mddev->queue)
a9add5d9
N
3674 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3675 (unsigned long long)sh->sector,
3676 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3677 }
b1b02fe9
N
3678
3679 if (rcw > disks && rmw > disks &&
3680 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3681 set_bit(STRIPE_DELAYED, &sh->state);
3682
a4456856
DW
3683 /* now if nothing is locked, and if we have enough data,
3684 * we can start a write request
3685 */
f38e1219
DW
3686 /* since handle_stripe can be called at any time we need to handle the
3687 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
3688 * subsequent call wants to start a write request. raid_run_ops only
3689 * handles the case where compute block and reconstruct are requested
f38e1219
DW
3690 * simultaneously. If this is not the case then new writes need to be
3691 * held off until the compute completes.
3692 */
976ea8d4
DW
3693 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3694 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3695 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 3696 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
3697}
3698
d1688a6d 3699static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3700 struct stripe_head_state *s, int disks)
3701{
ecc65c9b 3702 struct r5dev *dev = NULL;
bd2ab670 3703
59fc630b 3704 BUG_ON(sh->batch_head);
a4456856 3705 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 3706
ecc65c9b
DW
3707 switch (sh->check_state) {
3708 case check_state_idle:
3709 /* start a new check operation if there are no failures */
bd2ab670 3710 if (s->failed == 0) {
bd2ab670 3711 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
3712 sh->check_state = check_state_run;
3713 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 3714 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 3715 s->uptodate--;
ecc65c9b 3716 break;
bd2ab670 3717 }
f2b3b44d 3718 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
3719 /* fall through */
3720 case check_state_compute_result:
3721 sh->check_state = check_state_idle;
3722 if (!dev)
3723 dev = &sh->dev[sh->pd_idx];
3724
3725 /* check that a write has not made the stripe insync */
3726 if (test_bit(STRIPE_INSYNC, &sh->state))
3727 break;
c8894419 3728
a4456856 3729 /* either failed parity check, or recovery is happening */
a4456856
DW
3730 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3731 BUG_ON(s->uptodate != disks);
3732
3733 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 3734 s->locked++;
a4456856 3735 set_bit(R5_Wantwrite, &dev->flags);
830ea016 3736
a4456856 3737 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 3738 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
3739 break;
3740 case check_state_run:
3741 break; /* we will be called again upon completion */
3742 case check_state_check_result:
3743 sh->check_state = check_state_idle;
3744
3745 /* if a failure occurred during the check operation, leave
3746 * STRIPE_INSYNC not set and let the stripe be handled again
3747 */
3748 if (s->failed)
3749 break;
3750
3751 /* handle a successful check operation, if parity is correct
3752 * we are done. Otherwise update the mismatch count and repair
3753 * parity if !MD_RECOVERY_CHECK
3754 */
ad283ea4 3755 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
3756 /* parity is correct (on disc,
3757 * not in buffer any more)
3758 */
3759 set_bit(STRIPE_INSYNC, &sh->state);
3760 else {
7f7583d4 3761 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
3762 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3763 /* don't try to repair!! */
3764 set_bit(STRIPE_INSYNC, &sh->state);
3765 else {
3766 sh->check_state = check_state_compute_run;
976ea8d4 3767 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3768 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3769 set_bit(R5_Wantcompute,
3770 &sh->dev[sh->pd_idx].flags);
3771 sh->ops.target = sh->pd_idx;
ac6b53b6 3772 sh->ops.target2 = -1;
ecc65c9b
DW
3773 s->uptodate++;
3774 }
3775 }
3776 break;
3777 case check_state_compute_run:
3778 break;
3779 default:
3780 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3781 __func__, sh->check_state,
3782 (unsigned long long) sh->sector);
3783 BUG();
a4456856
DW
3784 }
3785}
3786
d1688a6d 3787static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3788 struct stripe_head_state *s,
f2b3b44d 3789 int disks)
a4456856 3790{
a4456856 3791 int pd_idx = sh->pd_idx;
34e04e87 3792 int qd_idx = sh->qd_idx;
d82dfee0 3793 struct r5dev *dev;
a4456856 3794
59fc630b 3795 BUG_ON(sh->batch_head);
a4456856
DW
3796 set_bit(STRIPE_HANDLE, &sh->state);
3797
3798 BUG_ON(s->failed > 2);
d82dfee0 3799
a4456856
DW
3800 /* Want to check and possibly repair P and Q.
3801 * However there could be one 'failed' device, in which
3802 * case we can only check one of them, possibly using the
3803 * other to generate missing data
3804 */
3805
d82dfee0
DW
3806 switch (sh->check_state) {
3807 case check_state_idle:
3808 /* start a new check operation if there are < 2 failures */
f2b3b44d 3809 if (s->failed == s->q_failed) {
d82dfee0 3810 /* The only possible failed device holds Q, so it
a4456856
DW
3811 * makes sense to check P (If anything else were failed,
3812 * we would have used P to recreate it).
3813 */
d82dfee0 3814 sh->check_state = check_state_run;
a4456856 3815 }
f2b3b44d 3816 if (!s->q_failed && s->failed < 2) {
d82dfee0 3817 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3818 * anything, so it makes sense to check it
3819 */
d82dfee0
DW
3820 if (sh->check_state == check_state_run)
3821 sh->check_state = check_state_run_pq;
3822 else
3823 sh->check_state = check_state_run_q;
a4456856 3824 }
a4456856 3825
d82dfee0
DW
3826 /* discard potentially stale zero_sum_result */
3827 sh->ops.zero_sum_result = 0;
a4456856 3828
d82dfee0
DW
3829 if (sh->check_state == check_state_run) {
3830 /* async_xor_zero_sum destroys the contents of P */
3831 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3832 s->uptodate--;
a4456856 3833 }
d82dfee0
DW
3834 if (sh->check_state >= check_state_run &&
3835 sh->check_state <= check_state_run_pq) {
3836 /* async_syndrome_zero_sum preserves P and Q, so
3837 * no need to mark them !uptodate here
3838 */
3839 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3840 break;
a4456856
DW
3841 }
3842
d82dfee0
DW
3843 /* we have 2-disk failure */
3844 BUG_ON(s->failed != 2);
3845 /* fall through */
3846 case check_state_compute_result:
3847 sh->check_state = check_state_idle;
a4456856 3848
d82dfee0
DW
3849 /* check that a write has not made the stripe insync */
3850 if (test_bit(STRIPE_INSYNC, &sh->state))
3851 break;
a4456856
DW
3852
3853 /* now write out any block on a failed drive,
d82dfee0 3854 * or P or Q if they were recomputed
a4456856 3855 */
d82dfee0 3856 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3857 if (s->failed == 2) {
f2b3b44d 3858 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3859 s->locked++;
3860 set_bit(R5_LOCKED, &dev->flags);
3861 set_bit(R5_Wantwrite, &dev->flags);
3862 }
3863 if (s->failed >= 1) {
f2b3b44d 3864 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3865 s->locked++;
3866 set_bit(R5_LOCKED, &dev->flags);
3867 set_bit(R5_Wantwrite, &dev->flags);
3868 }
d82dfee0 3869 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3870 dev = &sh->dev[pd_idx];
3871 s->locked++;
3872 set_bit(R5_LOCKED, &dev->flags);
3873 set_bit(R5_Wantwrite, &dev->flags);
3874 }
d82dfee0 3875 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3876 dev = &sh->dev[qd_idx];
3877 s->locked++;
3878 set_bit(R5_LOCKED, &dev->flags);
3879 set_bit(R5_Wantwrite, &dev->flags);
3880 }
3881 clear_bit(STRIPE_DEGRADED, &sh->state);
3882
3883 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3884 break;
3885 case check_state_run:
3886 case check_state_run_q:
3887 case check_state_run_pq:
3888 break; /* we will be called again upon completion */
3889 case check_state_check_result:
3890 sh->check_state = check_state_idle;
3891
3892 /* handle a successful check operation, if parity is correct
3893 * we are done. Otherwise update the mismatch count and repair
3894 * parity if !MD_RECOVERY_CHECK
3895 */
3896 if (sh->ops.zero_sum_result == 0) {
3897 /* both parities are correct */
3898 if (!s->failed)
3899 set_bit(STRIPE_INSYNC, &sh->state);
3900 else {
3901 /* in contrast to the raid5 case we can validate
3902 * parity, but still have a failure to write
3903 * back
3904 */
3905 sh->check_state = check_state_compute_result;
3906 /* Returning at this point means that we may go
3907 * off and bring p and/or q uptodate again so
3908 * we make sure to check zero_sum_result again
3909 * to verify if p or q need writeback
3910 */
3911 }
3912 } else {
7f7583d4 3913 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3914 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3915 /* don't try to repair!! */
3916 set_bit(STRIPE_INSYNC, &sh->state);
3917 else {
3918 int *target = &sh->ops.target;
3919
3920 sh->ops.target = -1;
3921 sh->ops.target2 = -1;
3922 sh->check_state = check_state_compute_run;
3923 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3924 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3925 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3926 set_bit(R5_Wantcompute,
3927 &sh->dev[pd_idx].flags);
3928 *target = pd_idx;
3929 target = &sh->ops.target2;
3930 s->uptodate++;
3931 }
3932 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3933 set_bit(R5_Wantcompute,
3934 &sh->dev[qd_idx].flags);
3935 *target = qd_idx;
3936 s->uptodate++;
3937 }
3938 }
3939 }
3940 break;
3941 case check_state_compute_run:
3942 break;
3943 default:
3944 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3945 __func__, sh->check_state,
3946 (unsigned long long) sh->sector);
3947 BUG();
a4456856
DW
3948 }
3949}
3950
d1688a6d 3951static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3952{
3953 int i;
3954
3955 /* We have read all the blocks in this stripe and now we need to
3956 * copy some of them into a target stripe for expand.
3957 */
f0a50d37 3958 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 3959 BUG_ON(sh->batch_head);
a4456856
DW
3960 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3961 for (i = 0; i < sh->disks; i++)
34e04e87 3962 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3963 int dd_idx, j;
a4456856 3964 struct stripe_head *sh2;
a08abd8c 3965 struct async_submit_ctl submit;
a4456856 3966
6d036f7d 3967 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
3968 sector_t s = raid5_compute_sector(conf, bn, 0,
3969 &dd_idx, NULL);
6d036f7d 3970 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3971 if (sh2 == NULL)
3972 /* so far only the early blocks of this stripe
3973 * have been requested. When later blocks
3974 * get requested, we will try again
3975 */
3976 continue;
3977 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3978 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3979 /* must have already done this block */
6d036f7d 3980 raid5_release_stripe(sh2);
a4456856
DW
3981 continue;
3982 }
f0a50d37
DW
3983
3984 /* place all the copies on one channel */
a08abd8c 3985 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3986 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3987 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3988 &submit);
f0a50d37 3989
a4456856
DW
3990 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3991 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3992 for (j = 0; j < conf->raid_disks; j++)
3993 if (j != sh2->pd_idx &&
86c374ba 3994 j != sh2->qd_idx &&
a4456856
DW
3995 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3996 break;
3997 if (j == conf->raid_disks) {
3998 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3999 set_bit(STRIPE_HANDLE, &sh2->state);
4000 }
6d036f7d 4001 raid5_release_stripe(sh2);
f0a50d37 4002
a4456856 4003 }
a2e08551 4004 /* done submitting copies, wait for them to complete */
749586b7 4005 async_tx_quiesce(&tx);
a4456856 4006}
1da177e4
LT
4007
4008/*
4009 * handle_stripe - do things to a stripe.
4010 *
9a3e1101
N
4011 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4012 * state of various bits to see what needs to be done.
1da177e4 4013 * Possible results:
9a3e1101
N
4014 * return some read requests which now have data
4015 * return some write requests which are safely on storage
1da177e4
LT
4016 * schedule a read on some buffers
4017 * schedule a write of some buffers
4018 * return confirmation of parity correctness
4019 *
1da177e4 4020 */
a4456856 4021
acfe726b 4022static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4023{
d1688a6d 4024 struct r5conf *conf = sh->raid_conf;
f416885e 4025 int disks = sh->disks;
474af965
N
4026 struct r5dev *dev;
4027 int i;
9a3e1101 4028 int do_recovery = 0;
1da177e4 4029
acfe726b
N
4030 memset(s, 0, sizeof(*s));
4031
dabc4ec6 4032 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4033 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4034 s->failed_num[0] = -1;
4035 s->failed_num[1] = -1;
6e74a9cf 4036 s->log_failed = r5l_log_disk_error(conf);
1da177e4 4037
acfe726b 4038 /* Now to look around and see what can be done */
1da177e4 4039 rcu_read_lock();
16a53ecc 4040 for (i=disks; i--; ) {
3cb03002 4041 struct md_rdev *rdev;
31c176ec
N
4042 sector_t first_bad;
4043 int bad_sectors;
4044 int is_bad = 0;
acfe726b 4045
16a53ecc 4046 dev = &sh->dev[i];
1da177e4 4047
45b4233c 4048 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4049 i, dev->flags,
4050 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4051 /* maybe we can reply to a read
4052 *
4053 * new wantfill requests are only permitted while
4054 * ops_complete_biofill is guaranteed to be inactive
4055 */
4056 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4057 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4058 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4059
16a53ecc 4060 /* now count some things */
cc94015a
N
4061 if (test_bit(R5_LOCKED, &dev->flags))
4062 s->locked++;
4063 if (test_bit(R5_UPTODATE, &dev->flags))
4064 s->uptodate++;
2d6e4ecc 4065 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4066 s->compute++;
4067 BUG_ON(s->compute > 2);
2d6e4ecc 4068 }
1da177e4 4069
acfe726b 4070 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4071 s->to_fill++;
acfe726b 4072 else if (dev->toread)
cc94015a 4073 s->to_read++;
16a53ecc 4074 if (dev->towrite) {
cc94015a 4075 s->to_write++;
16a53ecc 4076 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4077 s->non_overwrite++;
16a53ecc 4078 }
a4456856 4079 if (dev->written)
cc94015a 4080 s->written++;
14a75d3e
N
4081 /* Prefer to use the replacement for reads, but only
4082 * if it is recovered enough and has no bad blocks.
4083 */
4084 rdev = rcu_dereference(conf->disks[i].replacement);
4085 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4086 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4087 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4088 &first_bad, &bad_sectors))
4089 set_bit(R5_ReadRepl, &dev->flags);
4090 else {
e6030cb0 4091 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4092 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4093 else
4094 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4095 rdev = rcu_dereference(conf->disks[i].rdev);
4096 clear_bit(R5_ReadRepl, &dev->flags);
4097 }
9283d8c5
N
4098 if (rdev && test_bit(Faulty, &rdev->flags))
4099 rdev = NULL;
31c176ec
N
4100 if (rdev) {
4101 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4102 &first_bad, &bad_sectors);
4103 if (s->blocked_rdev == NULL
4104 && (test_bit(Blocked, &rdev->flags)
4105 || is_bad < 0)) {
4106 if (is_bad < 0)
4107 set_bit(BlockedBadBlocks,
4108 &rdev->flags);
4109 s->blocked_rdev = rdev;
4110 atomic_inc(&rdev->nr_pending);
4111 }
6bfe0b49 4112 }
415e72d0
N
4113 clear_bit(R5_Insync, &dev->flags);
4114 if (!rdev)
4115 /* Not in-sync */;
31c176ec
N
4116 else if (is_bad) {
4117 /* also not in-sync */
18b9837e
N
4118 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4119 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4120 /* treat as in-sync, but with a read error
4121 * which we can now try to correct
4122 */
4123 set_bit(R5_Insync, &dev->flags);
4124 set_bit(R5_ReadError, &dev->flags);
4125 }
4126 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4127 set_bit(R5_Insync, &dev->flags);
30d7a483 4128 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4129 /* in sync if before recovery_offset */
30d7a483
N
4130 set_bit(R5_Insync, &dev->flags);
4131 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4132 test_bit(R5_Expanded, &dev->flags))
4133 /* If we've reshaped into here, we assume it is Insync.
4134 * We will shortly update recovery_offset to make
4135 * it official.
4136 */
4137 set_bit(R5_Insync, &dev->flags);
4138
1cc03eb9 4139 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4140 /* This flag does not apply to '.replacement'
4141 * only to .rdev, so make sure to check that*/
4142 struct md_rdev *rdev2 = rcu_dereference(
4143 conf->disks[i].rdev);
4144 if (rdev2 == rdev)
4145 clear_bit(R5_Insync, &dev->flags);
4146 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4147 s->handle_bad_blocks = 1;
14a75d3e 4148 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4149 } else
4150 clear_bit(R5_WriteError, &dev->flags);
4151 }
1cc03eb9 4152 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4153 /* This flag does not apply to '.replacement'
4154 * only to .rdev, so make sure to check that*/
4155 struct md_rdev *rdev2 = rcu_dereference(
4156 conf->disks[i].rdev);
4157 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4158 s->handle_bad_blocks = 1;
14a75d3e 4159 atomic_inc(&rdev2->nr_pending);
b84db560
N
4160 } else
4161 clear_bit(R5_MadeGood, &dev->flags);
4162 }
977df362
N
4163 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4164 struct md_rdev *rdev2 = rcu_dereference(
4165 conf->disks[i].replacement);
4166 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4167 s->handle_bad_blocks = 1;
4168 atomic_inc(&rdev2->nr_pending);
4169 } else
4170 clear_bit(R5_MadeGoodRepl, &dev->flags);
4171 }
415e72d0 4172 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4173 /* The ReadError flag will just be confusing now */
4174 clear_bit(R5_ReadError, &dev->flags);
4175 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4176 }
415e72d0
N
4177 if (test_bit(R5_ReadError, &dev->flags))
4178 clear_bit(R5_Insync, &dev->flags);
4179 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4180 if (s->failed < 2)
4181 s->failed_num[s->failed] = i;
4182 s->failed++;
9a3e1101
N
4183 if (rdev && !test_bit(Faulty, &rdev->flags))
4184 do_recovery = 1;
415e72d0 4185 }
1da177e4 4186 }
9a3e1101
N
4187 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4188 /* If there is a failed device being replaced,
4189 * we must be recovering.
4190 * else if we are after recovery_cp, we must be syncing
c6d2e084 4191 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4192 * else we can only be replacing
4193 * sync and recovery both need to read all devices, and so
4194 * use the same flag.
4195 */
4196 if (do_recovery ||
c6d2e084 4197 sh->sector >= conf->mddev->recovery_cp ||
4198 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4199 s->syncing = 1;
4200 else
4201 s->replacing = 1;
4202 }
1da177e4 4203 rcu_read_unlock();
cc94015a
N
4204}
4205
59fc630b 4206static int clear_batch_ready(struct stripe_head *sh)
4207{
b15a9dbd
N
4208 /* Return '1' if this is a member of batch, or
4209 * '0' if it is a lone stripe or a head which can now be
4210 * handled.
4211 */
59fc630b 4212 struct stripe_head *tmp;
4213 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4214 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4215 spin_lock(&sh->stripe_lock);
4216 if (!sh->batch_head) {
4217 spin_unlock(&sh->stripe_lock);
4218 return 0;
4219 }
4220
4221 /*
4222 * this stripe could be added to a batch list before we check
4223 * BATCH_READY, skips it
4224 */
4225 if (sh->batch_head != sh) {
4226 spin_unlock(&sh->stripe_lock);
4227 return 1;
4228 }
4229 spin_lock(&sh->batch_lock);
4230 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4231 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4232 spin_unlock(&sh->batch_lock);
4233 spin_unlock(&sh->stripe_lock);
4234
4235 /*
4236 * BATCH_READY is cleared, no new stripes can be added.
4237 * batch_list can be accessed without lock
4238 */
4239 return 0;
4240}
4241
3960ce79
N
4242static void break_stripe_batch_list(struct stripe_head *head_sh,
4243 unsigned long handle_flags)
72ac7330 4244{
4e3d62ff 4245 struct stripe_head *sh, *next;
72ac7330 4246 int i;
fb642b92 4247 int do_wakeup = 0;
72ac7330 4248
bb27051f
N
4249 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4250
72ac7330 4251 list_del_init(&sh->batch_list);
4252
fb3229d5 4253 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
1b956f7a
N
4254 (1 << STRIPE_SYNCING) |
4255 (1 << STRIPE_REPLACED) |
1b956f7a
N
4256 (1 << STRIPE_DELAYED) |
4257 (1 << STRIPE_BIT_DELAY) |
4258 (1 << STRIPE_FULL_WRITE) |
4259 (1 << STRIPE_BIOFILL_RUN) |
4260 (1 << STRIPE_COMPUTE_RUN) |
4261 (1 << STRIPE_OPS_REQ_PENDING) |
4262 (1 << STRIPE_DISCARD) |
4263 (1 << STRIPE_BATCH_READY) |
4264 (1 << STRIPE_BATCH_ERR) |
fb3229d5
SL
4265 (1 << STRIPE_BITMAP_PENDING)),
4266 "stripe state: %lx\n", sh->state);
4267 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4268 (1 << STRIPE_REPLACED)),
4269 "head stripe state: %lx\n", head_sh->state);
1b956f7a
N
4270
4271 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
550da24f 4272 (1 << STRIPE_PREREAD_ACTIVE) |
1b956f7a
N
4273 (1 << STRIPE_DEGRADED)),
4274 head_sh->state & (1 << STRIPE_INSYNC));
4275
72ac7330 4276 sh->check_state = head_sh->check_state;
4277 sh->reconstruct_state = head_sh->reconstruct_state;
fb642b92
N
4278 for (i = 0; i < sh->disks; i++) {
4279 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4280 do_wakeup = 1;
72ac7330 4281 sh->dev[i].flags = head_sh->dev[i].flags &
4282 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4283 }
72ac7330 4284 spin_lock_irq(&sh->stripe_lock);
4285 sh->batch_head = NULL;
4286 spin_unlock_irq(&sh->stripe_lock);
3960ce79
N
4287 if (handle_flags == 0 ||
4288 sh->state & handle_flags)
4289 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4290 raid5_release_stripe(sh);
72ac7330 4291 }
fb642b92
N
4292 spin_lock_irq(&head_sh->stripe_lock);
4293 head_sh->batch_head = NULL;
4294 spin_unlock_irq(&head_sh->stripe_lock);
4295 for (i = 0; i < head_sh->disks; i++)
4296 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4297 do_wakeup = 1;
3960ce79
N
4298 if (head_sh->state & handle_flags)
4299 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4300
4301 if (do_wakeup)
4302 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4303}
4304
cc94015a
N
4305static void handle_stripe(struct stripe_head *sh)
4306{
4307 struct stripe_head_state s;
d1688a6d 4308 struct r5conf *conf = sh->raid_conf;
3687c061 4309 int i;
84789554
N
4310 int prexor;
4311 int disks = sh->disks;
474af965 4312 struct r5dev *pdev, *qdev;
cc94015a
N
4313
4314 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4315 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4316 /* already being handled, ensure it gets handled
4317 * again when current action finishes */
4318 set_bit(STRIPE_HANDLE, &sh->state);
4319 return;
4320 }
4321
59fc630b 4322 if (clear_batch_ready(sh) ) {
4323 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4324 return;
4325 }
4326
4e3d62ff 4327 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4328 break_stripe_batch_list(sh, 0);
72ac7330 4329
dabc4ec6 4330 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd
N
4331 spin_lock(&sh->stripe_lock);
4332 /* Cannot process 'sync' concurrently with 'discard' */
4333 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4334 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4335 set_bit(STRIPE_SYNCING, &sh->state);
4336 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4337 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4338 }
4339 spin_unlock(&sh->stripe_lock);
cc94015a
N
4340 }
4341 clear_bit(STRIPE_DELAYED, &sh->state);
4342
4343 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4344 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4345 (unsigned long long)sh->sector, sh->state,
4346 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4347 sh->check_state, sh->reconstruct_state);
3687c061 4348
acfe726b 4349 analyse_stripe(sh, &s);
c5a31000 4350
b70abcb2
SL
4351 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4352 goto finish;
4353
bc2607f3
N
4354 if (s.handle_bad_blocks) {
4355 set_bit(STRIPE_HANDLE, &sh->state);
4356 goto finish;
4357 }
4358
474af965
N
4359 if (unlikely(s.blocked_rdev)) {
4360 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4361 s.replacing || s.to_write || s.written) {
474af965
N
4362 set_bit(STRIPE_HANDLE, &sh->state);
4363 goto finish;
4364 }
4365 /* There is nothing for the blocked_rdev to block */
4366 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4367 s.blocked_rdev = NULL;
4368 }
4369
4370 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4371 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4372 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4373 }
4374
4375 pr_debug("locked=%d uptodate=%d to_read=%d"
4376 " to_write=%d failed=%d failed_num=%d,%d\n",
4377 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4378 s.failed_num[0], s.failed_num[1]);
4379 /* check if the array has lost more than max_degraded devices and,
4380 * if so, some requests might need to be failed.
4381 */
6e74a9cf 4382 if (s.failed > conf->max_degraded || s.log_failed) {
9a3f530f
N
4383 sh->check_state = 0;
4384 sh->reconstruct_state = 0;
626f2092 4385 break_stripe_batch_list(sh, 0);
9a3f530f
N
4386 if (s.to_read+s.to_write+s.written)
4387 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 4388 if (s.syncing + s.replacing)
9a3f530f
N
4389 handle_failed_sync(conf, sh, &s);
4390 }
474af965 4391
84789554
N
4392 /* Now we check to see if any write operations have recently
4393 * completed
4394 */
4395 prexor = 0;
4396 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4397 prexor = 1;
4398 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4399 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4400 sh->reconstruct_state = reconstruct_state_idle;
4401
4402 /* All the 'written' buffers and the parity block are ready to
4403 * be written back to disk
4404 */
9e444768
SL
4405 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4406 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4407 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4408 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4409 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4410 for (i = disks; i--; ) {
4411 struct r5dev *dev = &sh->dev[i];
4412 if (test_bit(R5_LOCKED, &dev->flags) &&
4413 (i == sh->pd_idx || i == sh->qd_idx ||
4414 dev->written)) {
4415 pr_debug("Writing block %d\n", i);
4416 set_bit(R5_Wantwrite, &dev->flags);
4417 if (prexor)
4418 continue;
9c4bdf69
N
4419 if (s.failed > 1)
4420 continue;
84789554
N
4421 if (!test_bit(R5_Insync, &dev->flags) ||
4422 ((i == sh->pd_idx || i == sh->qd_idx) &&
4423 s.failed == 0))
4424 set_bit(STRIPE_INSYNC, &sh->state);
4425 }
4426 }
4427 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4428 s.dec_preread_active = 1;
4429 }
4430
ef5b7c69
N
4431 /*
4432 * might be able to return some write requests if the parity blocks
4433 * are safe, or on a failed drive
4434 */
4435 pdev = &sh->dev[sh->pd_idx];
4436 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4437 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4438 qdev = &sh->dev[sh->qd_idx];
4439 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4440 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4441 || conf->level < 6;
4442
4443 if (s.written &&
4444 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4445 && !test_bit(R5_LOCKED, &pdev->flags)
4446 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4447 test_bit(R5_Discard, &pdev->flags))))) &&
4448 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4449 && !test_bit(R5_LOCKED, &qdev->flags)
4450 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4451 test_bit(R5_Discard, &qdev->flags))))))
4452 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4453
4454 /* Now we might consider reading some blocks, either to check/generate
4455 * parity, or to satisfy requests
4456 * or to load a block that is being partially written.
4457 */
4458 if (s.to_read || s.non_overwrite
4459 || (conf->level == 6 && s.to_write && s.failed)
4460 || (s.syncing && (s.uptodate + s.compute < disks))
4461 || s.replacing
4462 || s.expanding)
4463 handle_stripe_fill(sh, &s, disks);
4464
84789554
N
4465 /* Now to consider new write requests and what else, if anything
4466 * should be read. We do not handle new writes when:
4467 * 1/ A 'write' operation (copy+xor) is already in flight.
4468 * 2/ A 'check' operation is in flight, as it may clobber the parity
4469 * block.
4470 */
4471 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4472 handle_stripe_dirtying(conf, sh, &s, disks);
4473
4474 /* maybe we need to check and possibly fix the parity for this stripe
4475 * Any reads will already have been scheduled, so we just see if enough
4476 * data is available. The parity check is held off while parity
4477 * dependent operations are in flight.
4478 */
4479 if (sh->check_state ||
4480 (s.syncing && s.locked == 0 &&
4481 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4482 !test_bit(STRIPE_INSYNC, &sh->state))) {
4483 if (conf->level == 6)
4484 handle_parity_checks6(conf, sh, &s, disks);
4485 else
4486 handle_parity_checks5(conf, sh, &s, disks);
4487 }
c5a31000 4488
f94c0b66
N
4489 if ((s.replacing || s.syncing) && s.locked == 0
4490 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4491 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4492 /* Write out to replacement devices where possible */
4493 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4494 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4495 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4496 set_bit(R5_WantReplace, &sh->dev[i].flags);
4497 set_bit(R5_LOCKED, &sh->dev[i].flags);
4498 s.locked++;
4499 }
f94c0b66
N
4500 if (s.replacing)
4501 set_bit(STRIPE_INSYNC, &sh->state);
4502 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4503 }
4504 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4505 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4506 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4507 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4508 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4509 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4510 wake_up(&conf->wait_for_overlap);
c5a31000
N
4511 }
4512
4513 /* If the failed drives are just a ReadError, then we might need
4514 * to progress the repair/check process
4515 */
4516 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4517 for (i = 0; i < s.failed; i++) {
4518 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4519 if (test_bit(R5_ReadError, &dev->flags)
4520 && !test_bit(R5_LOCKED, &dev->flags)
4521 && test_bit(R5_UPTODATE, &dev->flags)
4522 ) {
4523 if (!test_bit(R5_ReWrite, &dev->flags)) {
4524 set_bit(R5_Wantwrite, &dev->flags);
4525 set_bit(R5_ReWrite, &dev->flags);
4526 set_bit(R5_LOCKED, &dev->flags);
4527 s.locked++;
4528 } else {
4529 /* let's read it back */
4530 set_bit(R5_Wantread, &dev->flags);
4531 set_bit(R5_LOCKED, &dev->flags);
4532 s.locked++;
4533 }
4534 }
4535 }
4536
3687c061
N
4537 /* Finish reconstruct operations initiated by the expansion process */
4538 if (sh->reconstruct_state == reconstruct_state_result) {
4539 struct stripe_head *sh_src
6d036f7d 4540 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
3687c061
N
4541 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4542 /* sh cannot be written until sh_src has been read.
4543 * so arrange for sh to be delayed a little
4544 */
4545 set_bit(STRIPE_DELAYED, &sh->state);
4546 set_bit(STRIPE_HANDLE, &sh->state);
4547 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4548 &sh_src->state))
4549 atomic_inc(&conf->preread_active_stripes);
6d036f7d 4550 raid5_release_stripe(sh_src);
3687c061
N
4551 goto finish;
4552 }
4553 if (sh_src)
6d036f7d 4554 raid5_release_stripe(sh_src);
3687c061
N
4555
4556 sh->reconstruct_state = reconstruct_state_idle;
4557 clear_bit(STRIPE_EXPANDING, &sh->state);
4558 for (i = conf->raid_disks; i--; ) {
4559 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4560 set_bit(R5_LOCKED, &sh->dev[i].flags);
4561 s.locked++;
4562 }
4563 }
f416885e 4564
3687c061
N
4565 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4566 !sh->reconstruct_state) {
4567 /* Need to write out all blocks after computing parity */
4568 sh->disks = conf->raid_disks;
4569 stripe_set_idx(sh->sector, conf, 0, sh);
4570 schedule_reconstruction(sh, &s, 1, 1);
4571 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4572 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4573 atomic_dec(&conf->reshape_stripes);
4574 wake_up(&conf->wait_for_overlap);
4575 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4576 }
4577
4578 if (s.expanding && s.locked == 0 &&
4579 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4580 handle_stripe_expansion(conf, sh);
16a53ecc 4581
3687c061 4582finish:
6bfe0b49 4583 /* wait for this device to become unblocked */
5f066c63
N
4584 if (unlikely(s.blocked_rdev)) {
4585 if (conf->mddev->external)
4586 md_wait_for_blocked_rdev(s.blocked_rdev,
4587 conf->mddev);
4588 else
4589 /* Internal metadata will immediately
4590 * be written by raid5d, so we don't
4591 * need to wait here.
4592 */
4593 rdev_dec_pending(s.blocked_rdev,
4594 conf->mddev);
4595 }
6bfe0b49 4596
bc2607f3
N
4597 if (s.handle_bad_blocks)
4598 for (i = disks; i--; ) {
3cb03002 4599 struct md_rdev *rdev;
bc2607f3
N
4600 struct r5dev *dev = &sh->dev[i];
4601 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4602 /* We own a safe reference to the rdev */
4603 rdev = conf->disks[i].rdev;
4604 if (!rdev_set_badblocks(rdev, sh->sector,
4605 STRIPE_SECTORS, 0))
4606 md_error(conf->mddev, rdev);
4607 rdev_dec_pending(rdev, conf->mddev);
4608 }
b84db560
N
4609 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4610 rdev = conf->disks[i].rdev;
4611 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4612 STRIPE_SECTORS, 0);
b84db560
N
4613 rdev_dec_pending(rdev, conf->mddev);
4614 }
977df362
N
4615 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4616 rdev = conf->disks[i].replacement;
dd054fce
N
4617 if (!rdev)
4618 /* rdev have been moved down */
4619 rdev = conf->disks[i].rdev;
977df362 4620 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4621 STRIPE_SECTORS, 0);
977df362
N
4622 rdev_dec_pending(rdev, conf->mddev);
4623 }
bc2607f3
N
4624 }
4625
6c0069c0
YT
4626 if (s.ops_request)
4627 raid_run_ops(sh, s.ops_request);
4628
f0e43bcd 4629 ops_run_io(sh, &s);
16a53ecc 4630
c5709ef6 4631 if (s.dec_preread_active) {
729a1866 4632 /* We delay this until after ops_run_io so that if make_request
e9c7469b 4633 * is waiting on a flush, it won't continue until the writes
729a1866
N
4634 * have actually been submitted.
4635 */
4636 atomic_dec(&conf->preread_active_stripes);
4637 if (atomic_read(&conf->preread_active_stripes) <
4638 IO_THRESHOLD)
4639 md_wakeup_thread(conf->mddev->thread);
4640 }
4641
c3cce6cd 4642 if (!bio_list_empty(&s.return_bi)) {
11367799
AO
4643 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags) &&
4644 (s.failed <= conf->max_degraded ||
4645 conf->mddev->external == 0)) {
c3cce6cd
N
4646 spin_lock_irq(&conf->device_lock);
4647 bio_list_merge(&conf->return_bi, &s.return_bi);
4648 spin_unlock_irq(&conf->device_lock);
4649 md_wakeup_thread(conf->mddev->thread);
4650 } else
4651 return_io(&s.return_bi);
4652 }
16a53ecc 4653
257a4b42 4654 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
4655}
4656
d1688a6d 4657static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
4658{
4659 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4660 while (!list_empty(&conf->delayed_list)) {
4661 struct list_head *l = conf->delayed_list.next;
4662 struct stripe_head *sh;
4663 sh = list_entry(l, struct stripe_head, lru);
4664 list_del_init(l);
4665 clear_bit(STRIPE_DELAYED, &sh->state);
4666 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4667 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 4668 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 4669 raid5_wakeup_stripe_thread(sh);
16a53ecc 4670 }
482c0834 4671 }
16a53ecc
N
4672}
4673
566c09c5
SL
4674static void activate_bit_delay(struct r5conf *conf,
4675 struct list_head *temp_inactive_list)
16a53ecc
N
4676{
4677 /* device_lock is held */
4678 struct list_head head;
4679 list_add(&head, &conf->bitmap_list);
4680 list_del_init(&conf->bitmap_list);
4681 while (!list_empty(&head)) {
4682 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 4683 int hash;
16a53ecc
N
4684 list_del_init(&sh->lru);
4685 atomic_inc(&sh->count);
566c09c5
SL
4686 hash = sh->hash_lock_index;
4687 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
4688 }
4689}
4690
5c675f83 4691static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 4692{
d1688a6d 4693 struct r5conf *conf = mddev->private;
f022b2fd
N
4694
4695 /* No difference between reads and writes. Just check
4696 * how busy the stripe_cache is
4697 */
3fa841d7 4698
5423399a 4699 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd
N
4700 return 1;
4701 if (conf->quiesce)
4702 return 1;
4bda556a 4703 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
4704 return 1;
4705
4706 return 0;
4707}
4708
fd01b88c 4709static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 4710{
3cb5edf4 4711 struct r5conf *conf = mddev->private;
4f024f37 4712 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
3cb5edf4 4713 unsigned int chunk_sectors;
aa8b57aa 4714 unsigned int bio_sectors = bio_sectors(bio);
f679623f 4715
3cb5edf4 4716 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
4717 return chunk_sectors >=
4718 ((sector & (chunk_sectors - 1)) + bio_sectors);
4719}
4720
46031f9a
RBJ
4721/*
4722 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4723 * later sampled by raid5d.
4724 */
d1688a6d 4725static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
4726{
4727 unsigned long flags;
4728
4729 spin_lock_irqsave(&conf->device_lock, flags);
4730
4731 bi->bi_next = conf->retry_read_aligned_list;
4732 conf->retry_read_aligned_list = bi;
4733
4734 spin_unlock_irqrestore(&conf->device_lock, flags);
4735 md_wakeup_thread(conf->mddev->thread);
4736}
4737
d1688a6d 4738static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
4739{
4740 struct bio *bi;
4741
4742 bi = conf->retry_read_aligned;
4743 if (bi) {
4744 conf->retry_read_aligned = NULL;
4745 return bi;
4746 }
4747 bi = conf->retry_read_aligned_list;
4748 if(bi) {
387bb173 4749 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 4750 bi->bi_next = NULL;
960e739d
JA
4751 /*
4752 * this sets the active strip count to 1 and the processed
4753 * strip count to zero (upper 8 bits)
4754 */
e7836bd6 4755 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
4756 }
4757
4758 return bi;
4759}
4760
f679623f
RBJ
4761/*
4762 * The "raid5_align_endio" should check if the read succeeded and if it
4763 * did, call bio_endio on the original bio (having bio_put the new bio
4764 * first).
4765 * If the read failed..
4766 */
4246a0b6 4767static void raid5_align_endio(struct bio *bi)
f679623f
RBJ
4768{
4769 struct bio* raid_bi = bi->bi_private;
fd01b88c 4770 struct mddev *mddev;
d1688a6d 4771 struct r5conf *conf;
3cb03002 4772 struct md_rdev *rdev;
9b81c842 4773 int error = bi->bi_error;
46031f9a 4774
f679623f 4775 bio_put(bi);
46031f9a 4776
46031f9a
RBJ
4777 rdev = (void*)raid_bi->bi_next;
4778 raid_bi->bi_next = NULL;
2b7f2228
N
4779 mddev = rdev->mddev;
4780 conf = mddev->private;
46031f9a
RBJ
4781
4782 rdev_dec_pending(rdev, conf->mddev);
4783
9b81c842 4784 if (!error) {
0a82a8d1
LT
4785 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4786 raid_bi, 0);
4246a0b6 4787 bio_endio(raid_bi);
46031f9a 4788 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 4789 wake_up(&conf->wait_for_quiescent);
6712ecf8 4790 return;
46031f9a
RBJ
4791 }
4792
45b4233c 4793 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
4794
4795 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
4796}
4797
7ef6b12a 4798static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 4799{
d1688a6d 4800 struct r5conf *conf = mddev->private;
8553fe7e 4801 int dd_idx;
f679623f 4802 struct bio* align_bi;
3cb03002 4803 struct md_rdev *rdev;
671488cc 4804 sector_t end_sector;
f679623f
RBJ
4805
4806 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 4807 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
4808 return 0;
4809 }
4810 /*
a167f663 4811 * use bio_clone_mddev to make a copy of the bio
f679623f 4812 */
a167f663 4813 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
4814 if (!align_bi)
4815 return 0;
4816 /*
4817 * set bi_end_io to a new function, and set bi_private to the
4818 * original bio.
4819 */
4820 align_bi->bi_end_io = raid5_align_endio;
4821 align_bi->bi_private = raid_bio;
4822 /*
4823 * compute position
4824 */
4f024f37
KO
4825 align_bi->bi_iter.bi_sector =
4826 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4827 0, &dd_idx, NULL);
f679623f 4828
f73a1c7d 4829 end_sector = bio_end_sector(align_bi);
f679623f 4830 rcu_read_lock();
671488cc
N
4831 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4832 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4833 rdev->recovery_offset < end_sector) {
4834 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4835 if (rdev &&
4836 (test_bit(Faulty, &rdev->flags) ||
4837 !(test_bit(In_sync, &rdev->flags) ||
4838 rdev->recovery_offset >= end_sector)))
4839 rdev = NULL;
4840 }
4841 if (rdev) {
31c176ec
N
4842 sector_t first_bad;
4843 int bad_sectors;
4844
f679623f
RBJ
4845 atomic_inc(&rdev->nr_pending);
4846 rcu_read_unlock();
46031f9a
RBJ
4847 raid_bio->bi_next = (void*)rdev;
4848 align_bi->bi_bdev = rdev->bdev;
b7c44ed9 4849 bio_clear_flag(align_bi, BIO_SEG_VALID);
46031f9a 4850
7140aafc 4851 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4f024f37 4852 bio_sectors(align_bi),
31c176ec 4853 &first_bad, &bad_sectors)) {
387bb173
NB
4854 bio_put(align_bi);
4855 rdev_dec_pending(rdev, mddev);
4856 return 0;
4857 }
4858
6c0544e2 4859 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 4860 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 4861
46031f9a 4862 spin_lock_irq(&conf->device_lock);
b1b46486 4863 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 4864 conf->quiesce == 0,
eed8c02e 4865 conf->device_lock);
46031f9a
RBJ
4866 atomic_inc(&conf->active_aligned_reads);
4867 spin_unlock_irq(&conf->device_lock);
4868
e3620a3a
JB
4869 if (mddev->gendisk)
4870 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4871 align_bi, disk_devt(mddev->gendisk),
4f024f37 4872 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
4873 generic_make_request(align_bi);
4874 return 1;
4875 } else {
4876 rcu_read_unlock();
46031f9a 4877 bio_put(align_bi);
f679623f
RBJ
4878 return 0;
4879 }
4880}
4881
7ef6b12a
ML
4882static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4883{
4884 struct bio *split;
4885
4886 do {
4887 sector_t sector = raid_bio->bi_iter.bi_sector;
4888 unsigned chunk_sects = mddev->chunk_sectors;
4889 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4890
4891 if (sectors < bio_sectors(raid_bio)) {
4892 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4893 bio_chain(split, raid_bio);
4894 } else
4895 split = raid_bio;
4896
4897 if (!raid5_read_one_chunk(mddev, split)) {
4898 if (split != raid_bio)
4899 generic_make_request(raid_bio);
4900 return split;
4901 }
4902 } while (split != raid_bio);
4903
4904 return NULL;
4905}
4906
8b3e6cdc
DW
4907/* __get_priority_stripe - get the next stripe to process
4908 *
4909 * Full stripe writes are allowed to pass preread active stripes up until
4910 * the bypass_threshold is exceeded. In general the bypass_count
4911 * increments when the handle_list is handled before the hold_list; however, it
4912 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4913 * stripe with in flight i/o. The bypass_count will be reset when the
4914 * head of the hold_list has changed, i.e. the head was promoted to the
4915 * handle_list.
4916 */
851c30c9 4917static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 4918{
851c30c9
SL
4919 struct stripe_head *sh = NULL, *tmp;
4920 struct list_head *handle_list = NULL;
bfc90cb0 4921 struct r5worker_group *wg = NULL;
851c30c9
SL
4922
4923 if (conf->worker_cnt_per_group == 0) {
4924 handle_list = &conf->handle_list;
4925 } else if (group != ANY_GROUP) {
4926 handle_list = &conf->worker_groups[group].handle_list;
bfc90cb0 4927 wg = &conf->worker_groups[group];
851c30c9
SL
4928 } else {
4929 int i;
4930 for (i = 0; i < conf->group_cnt; i++) {
4931 handle_list = &conf->worker_groups[i].handle_list;
bfc90cb0 4932 wg = &conf->worker_groups[i];
851c30c9
SL
4933 if (!list_empty(handle_list))
4934 break;
4935 }
4936 }
8b3e6cdc
DW
4937
4938 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4939 __func__,
851c30c9 4940 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
4941 list_empty(&conf->hold_list) ? "empty" : "busy",
4942 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4943
851c30c9
SL
4944 if (!list_empty(handle_list)) {
4945 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
4946
4947 if (list_empty(&conf->hold_list))
4948 conf->bypass_count = 0;
4949 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4950 if (conf->hold_list.next == conf->last_hold)
4951 conf->bypass_count++;
4952 else {
4953 conf->last_hold = conf->hold_list.next;
4954 conf->bypass_count -= conf->bypass_threshold;
4955 if (conf->bypass_count < 0)
4956 conf->bypass_count = 0;
4957 }
4958 }
4959 } else if (!list_empty(&conf->hold_list) &&
4960 ((conf->bypass_threshold &&
4961 conf->bypass_count > conf->bypass_threshold) ||
4962 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
4963
4964 list_for_each_entry(tmp, &conf->hold_list, lru) {
4965 if (conf->worker_cnt_per_group == 0 ||
4966 group == ANY_GROUP ||
4967 !cpu_online(tmp->cpu) ||
4968 cpu_to_group(tmp->cpu) == group) {
4969 sh = tmp;
4970 break;
4971 }
4972 }
4973
4974 if (sh) {
4975 conf->bypass_count -= conf->bypass_threshold;
4976 if (conf->bypass_count < 0)
4977 conf->bypass_count = 0;
4978 }
bfc90cb0 4979 wg = NULL;
851c30c9
SL
4980 }
4981
4982 if (!sh)
8b3e6cdc
DW
4983 return NULL;
4984
bfc90cb0
SL
4985 if (wg) {
4986 wg->stripes_cnt--;
4987 sh->group = NULL;
4988 }
8b3e6cdc 4989 list_del_init(&sh->lru);
c7a6d35e 4990 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
4991 return sh;
4992}
f679623f 4993
8811b596
SL
4994struct raid5_plug_cb {
4995 struct blk_plug_cb cb;
4996 struct list_head list;
566c09c5 4997 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
4998};
4999
5000static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5001{
5002 struct raid5_plug_cb *cb = container_of(
5003 blk_cb, struct raid5_plug_cb, cb);
5004 struct stripe_head *sh;
5005 struct mddev *mddev = cb->cb.data;
5006 struct r5conf *conf = mddev->private;
a9add5d9 5007 int cnt = 0;
566c09c5 5008 int hash;
8811b596
SL
5009
5010 if (cb->list.next && !list_empty(&cb->list)) {
5011 spin_lock_irq(&conf->device_lock);
5012 while (!list_empty(&cb->list)) {
5013 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5014 list_del_init(&sh->lru);
5015 /*
5016 * avoid race release_stripe_plug() sees
5017 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5018 * is still in our list
5019 */
4e857c58 5020 smp_mb__before_atomic();
8811b596 5021 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
5022 /*
5023 * STRIPE_ON_RELEASE_LIST could be set here. In that
5024 * case, the count is always > 1 here
5025 */
566c09c5
SL
5026 hash = sh->hash_lock_index;
5027 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5028 cnt++;
8811b596
SL
5029 }
5030 spin_unlock_irq(&conf->device_lock);
5031 }
566c09c5
SL
5032 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5033 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5034 if (mddev->queue)
5035 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5036 kfree(cb);
5037}
5038
5039static void release_stripe_plug(struct mddev *mddev,
5040 struct stripe_head *sh)
5041{
5042 struct blk_plug_cb *blk_cb = blk_check_plugged(
5043 raid5_unplug, mddev,
5044 sizeof(struct raid5_plug_cb));
5045 struct raid5_plug_cb *cb;
5046
5047 if (!blk_cb) {
6d036f7d 5048 raid5_release_stripe(sh);
8811b596
SL
5049 return;
5050 }
5051
5052 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5053
566c09c5
SL
5054 if (cb->list.next == NULL) {
5055 int i;
8811b596 5056 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5057 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5058 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5059 }
8811b596
SL
5060
5061 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5062 list_add_tail(&sh->lru, &cb->list);
5063 else
6d036f7d 5064 raid5_release_stripe(sh);
8811b596
SL
5065}
5066
620125f2
SL
5067static void make_discard_request(struct mddev *mddev, struct bio *bi)
5068{
5069 struct r5conf *conf = mddev->private;
5070 sector_t logical_sector, last_sector;
5071 struct stripe_head *sh;
5072 int remaining;
5073 int stripe_sectors;
5074
5075 if (mddev->reshape_position != MaxSector)
5076 /* Skip discard while reshape is happening */
5077 return;
5078
4f024f37
KO
5079 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5080 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5081
5082 bi->bi_next = NULL;
5083 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5084
5085 stripe_sectors = conf->chunk_sectors *
5086 (conf->raid_disks - conf->max_degraded);
5087 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5088 stripe_sectors);
5089 sector_div(last_sector, stripe_sectors);
5090
5091 logical_sector *= conf->chunk_sectors;
5092 last_sector *= conf->chunk_sectors;
5093
5094 for (; logical_sector < last_sector;
5095 logical_sector += STRIPE_SECTORS) {
5096 DEFINE_WAIT(w);
5097 int d;
5098 again:
6d036f7d 5099 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
620125f2
SL
5100 prepare_to_wait(&conf->wait_for_overlap, &w,
5101 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5102 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5103 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5104 raid5_release_stripe(sh);
f8dfcffd
N
5105 schedule();
5106 goto again;
5107 }
5108 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5109 spin_lock_irq(&sh->stripe_lock);
5110 for (d = 0; d < conf->raid_disks; d++) {
5111 if (d == sh->pd_idx || d == sh->qd_idx)
5112 continue;
5113 if (sh->dev[d].towrite || sh->dev[d].toread) {
5114 set_bit(R5_Overlap, &sh->dev[d].flags);
5115 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5116 raid5_release_stripe(sh);
620125f2
SL
5117 schedule();
5118 goto again;
5119 }
5120 }
f8dfcffd 5121 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5122 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5123 sh->overwrite_disks = 0;
620125f2
SL
5124 for (d = 0; d < conf->raid_disks; d++) {
5125 if (d == sh->pd_idx || d == sh->qd_idx)
5126 continue;
5127 sh->dev[d].towrite = bi;
5128 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5129 raid5_inc_bi_active_stripes(bi);
7a87f434 5130 sh->overwrite_disks++;
620125f2
SL
5131 }
5132 spin_unlock_irq(&sh->stripe_lock);
5133 if (conf->mddev->bitmap) {
5134 for (d = 0;
5135 d < conf->raid_disks - conf->max_degraded;
5136 d++)
5137 bitmap_startwrite(mddev->bitmap,
5138 sh->sector,
5139 STRIPE_SECTORS,
5140 0);
5141 sh->bm_seq = conf->seq_flush + 1;
5142 set_bit(STRIPE_BIT_DELAY, &sh->state);
5143 }
5144
5145 set_bit(STRIPE_HANDLE, &sh->state);
5146 clear_bit(STRIPE_DELAYED, &sh->state);
5147 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5148 atomic_inc(&conf->preread_active_stripes);
5149 release_stripe_plug(mddev, sh);
5150 }
5151
5152 remaining = raid5_dec_bi_active_stripes(bi);
5153 if (remaining == 0) {
5154 md_write_end(mddev);
4246a0b6 5155 bio_endio(bi);
620125f2
SL
5156 }
5157}
5158
849674e4 5159static void raid5_make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5160{
d1688a6d 5161 struct r5conf *conf = mddev->private;
911d4ee8 5162 int dd_idx;
1da177e4
LT
5163 sector_t new_sector;
5164 sector_t logical_sector, last_sector;
5165 struct stripe_head *sh;
a362357b 5166 const int rw = bio_data_dir(bi);
49077326 5167 int remaining;
27c0f68f
SL
5168 DEFINE_WAIT(w);
5169 bool do_prepare;
1da177e4 5170
28a8f0d3 5171 if (unlikely(bi->bi_rw & REQ_PREFLUSH)) {
828cbe98
SL
5172 int ret = r5l_handle_flush_request(conf->log, bi);
5173
5174 if (ret == 0)
5175 return;
5176 if (ret == -ENODEV) {
5177 md_flush_request(mddev, bi);
5178 return;
5179 }
5180 /* ret == -EAGAIN, fallback */
e5dcdd80
N
5181 }
5182
3d310eb7 5183 md_write_start(mddev, bi);
06d91a5f 5184
9ffc8f7c
EM
5185 /*
5186 * If array is degraded, better not do chunk aligned read because
5187 * later we might have to read it again in order to reconstruct
5188 * data on failed drives.
5189 */
5190 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
5191 mddev->reshape_position == MaxSector) {
5192 bi = chunk_aligned_read(mddev, bi);
5193 if (!bi)
5194 return;
5195 }
52488615 5196
796a5cf0 5197 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
620125f2
SL
5198 make_discard_request(mddev, bi);
5199 return;
5200 }
5201
4f024f37 5202 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5203 last_sector = bio_end_sector(bi);
1da177e4
LT
5204 bi->bi_next = NULL;
5205 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 5206
27c0f68f 5207 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5208 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5209 int previous;
c46501b2 5210 int seq;
b578d55f 5211
27c0f68f 5212 do_prepare = false;
7ecaa1e6 5213 retry:
c46501b2 5214 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5215 previous = 0;
27c0f68f
SL
5216 if (do_prepare)
5217 prepare_to_wait(&conf->wait_for_overlap, &w,
5218 TASK_UNINTERRUPTIBLE);
b0f9ec04 5219 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5220 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5221 * 64bit on a 32bit platform, and so it might be
5222 * possible to see a half-updated value
aeb878b0 5223 * Of course reshape_progress could change after
df8e7f76
N
5224 * the lock is dropped, so once we get a reference
5225 * to the stripe that we think it is, we will have
5226 * to check again.
5227 */
7ecaa1e6 5228 spin_lock_irq(&conf->device_lock);
2c810cdd 5229 if (mddev->reshape_backwards
fef9c61f
N
5230 ? logical_sector < conf->reshape_progress
5231 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5232 previous = 1;
5233 } else {
2c810cdd 5234 if (mddev->reshape_backwards
fef9c61f
N
5235 ? logical_sector < conf->reshape_safe
5236 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5237 spin_unlock_irq(&conf->device_lock);
5238 schedule();
27c0f68f 5239 do_prepare = true;
b578d55f
N
5240 goto retry;
5241 }
5242 }
7ecaa1e6
N
5243 spin_unlock_irq(&conf->device_lock);
5244 }
16a53ecc 5245
112bf897
N
5246 new_sector = raid5_compute_sector(conf, logical_sector,
5247 previous,
911d4ee8 5248 &dd_idx, NULL);
849674e4 5249 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
c46501b2 5250 (unsigned long long)new_sector,
1da177e4
LT
5251 (unsigned long long)logical_sector);
5252
6d036f7d 5253 sh = raid5_get_active_stripe(conf, new_sector, previous,
70246286 5254 (bi->bi_rw & REQ_RAHEAD), 0);
1da177e4 5255 if (sh) {
b0f9ec04 5256 if (unlikely(previous)) {
7ecaa1e6 5257 /* expansion might have moved on while waiting for a
df8e7f76
N
5258 * stripe, so we must do the range check again.
5259 * Expansion could still move past after this
5260 * test, but as we are holding a reference to
5261 * 'sh', we know that if that happens,
5262 * STRIPE_EXPANDING will get set and the expansion
5263 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5264 */
5265 int must_retry = 0;
5266 spin_lock_irq(&conf->device_lock);
2c810cdd 5267 if (mddev->reshape_backwards
b0f9ec04
N
5268 ? logical_sector >= conf->reshape_progress
5269 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5270 /* mismatch, need to try again */
5271 must_retry = 1;
5272 spin_unlock_irq(&conf->device_lock);
5273 if (must_retry) {
6d036f7d 5274 raid5_release_stripe(sh);
7a3ab908 5275 schedule();
27c0f68f 5276 do_prepare = true;
7ecaa1e6
N
5277 goto retry;
5278 }
5279 }
c46501b2
N
5280 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5281 /* Might have got the wrong stripe_head
5282 * by accident
5283 */
6d036f7d 5284 raid5_release_stripe(sh);
c46501b2
N
5285 goto retry;
5286 }
e62e58a5 5287
ffd96e35 5288 if (rw == WRITE &&
a5c308d4 5289 logical_sector >= mddev->suspend_lo &&
e464eafd 5290 logical_sector < mddev->suspend_hi) {
6d036f7d 5291 raid5_release_stripe(sh);
e62e58a5
N
5292 /* As the suspend_* range is controlled by
5293 * userspace, we want an interruptible
5294 * wait.
5295 */
5296 flush_signals(current);
5297 prepare_to_wait(&conf->wait_for_overlap,
5298 &w, TASK_INTERRUPTIBLE);
5299 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5300 logical_sector < mddev->suspend_hi) {
e62e58a5 5301 schedule();
27c0f68f
SL
5302 do_prepare = true;
5303 }
e464eafd
N
5304 goto retry;
5305 }
7ecaa1e6
N
5306
5307 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5308 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5309 /* Stripe is busy expanding or
5310 * add failed due to overlap. Flush everything
1da177e4
LT
5311 * and wait a while
5312 */
482c0834 5313 md_wakeup_thread(mddev->thread);
6d036f7d 5314 raid5_release_stripe(sh);
1da177e4 5315 schedule();
27c0f68f 5316 do_prepare = true;
1da177e4
LT
5317 goto retry;
5318 }
6ed3003c
N
5319 set_bit(STRIPE_HANDLE, &sh->state);
5320 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5321 if ((!sh->batch_head || sh == sh->batch_head) &&
5322 (bi->bi_rw & REQ_SYNC) &&
729a1866
N
5323 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5324 atomic_inc(&conf->preread_active_stripes);
8811b596 5325 release_stripe_plug(mddev, sh);
1da177e4
LT
5326 } else {
5327 /* cannot get stripe for read-ahead, just give-up */
4246a0b6 5328 bi->bi_error = -EIO;
1da177e4
LT
5329 break;
5330 }
1da177e4 5331 }
27c0f68f 5332 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5333
e7836bd6 5334 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 5335 if (remaining == 0) {
1da177e4 5336
16a53ecc 5337 if ( rw == WRITE )
1da177e4 5338 md_write_end(mddev);
6712ecf8 5339
0a82a8d1
LT
5340 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5341 bi, 0);
4246a0b6 5342 bio_endio(bi);
1da177e4 5343 }
1da177e4
LT
5344}
5345
fd01b88c 5346static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5347
fd01b88c 5348static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5349{
52c03291
N
5350 /* reshaping is quite different to recovery/resync so it is
5351 * handled quite separately ... here.
5352 *
5353 * On each call to sync_request, we gather one chunk worth of
5354 * destination stripes and flag them as expanding.
5355 * Then we find all the source stripes and request reads.
5356 * As the reads complete, handle_stripe will copy the data
5357 * into the destination stripe and release that stripe.
5358 */
d1688a6d 5359 struct r5conf *conf = mddev->private;
1da177e4 5360 struct stripe_head *sh;
ccfcc3c1 5361 sector_t first_sector, last_sector;
f416885e
N
5362 int raid_disks = conf->previous_raid_disks;
5363 int data_disks = raid_disks - conf->max_degraded;
5364 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5365 int i;
5366 int dd_idx;
c8f517c4 5367 sector_t writepos, readpos, safepos;
ec32a2bd 5368 sector_t stripe_addr;
7a661381 5369 int reshape_sectors;
ab69ae12 5370 struct list_head stripes;
92140480 5371 sector_t retn;
52c03291 5372
fef9c61f
N
5373 if (sector_nr == 0) {
5374 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5375 if (mddev->reshape_backwards &&
fef9c61f
N
5376 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5377 sector_nr = raid5_size(mddev, 0, 0)
5378 - conf->reshape_progress;
6cbd8148
N
5379 } else if (mddev->reshape_backwards &&
5380 conf->reshape_progress == MaxSector) {
5381 /* shouldn't happen, but just in case, finish up.*/
5382 sector_nr = MaxSector;
2c810cdd 5383 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5384 conf->reshape_progress > 0)
5385 sector_nr = conf->reshape_progress;
f416885e 5386 sector_div(sector_nr, new_data_disks);
fef9c61f 5387 if (sector_nr) {
8dee7211
N
5388 mddev->curr_resync_completed = sector_nr;
5389 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f 5390 *skipped = 1;
92140480
N
5391 retn = sector_nr;
5392 goto finish;
fef9c61f 5393 }
52c03291
N
5394 }
5395
7a661381
N
5396 /* We need to process a full chunk at a time.
5397 * If old and new chunk sizes differ, we need to process the
5398 * largest of these
5399 */
3cb5edf4
N
5400
5401 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 5402
b5254dd5
N
5403 /* We update the metadata at least every 10 seconds, or when
5404 * the data about to be copied would over-write the source of
5405 * the data at the front of the range. i.e. one new_stripe
5406 * along from reshape_progress new_maps to after where
5407 * reshape_safe old_maps to
52c03291 5408 */
fef9c61f 5409 writepos = conf->reshape_progress;
f416885e 5410 sector_div(writepos, new_data_disks);
c8f517c4
N
5411 readpos = conf->reshape_progress;
5412 sector_div(readpos, data_disks);
fef9c61f 5413 safepos = conf->reshape_safe;
f416885e 5414 sector_div(safepos, data_disks);
2c810cdd 5415 if (mddev->reshape_backwards) {
c74c0d76
N
5416 BUG_ON(writepos < reshape_sectors);
5417 writepos -= reshape_sectors;
c8f517c4 5418 readpos += reshape_sectors;
7a661381 5419 safepos += reshape_sectors;
fef9c61f 5420 } else {
7a661381 5421 writepos += reshape_sectors;
c74c0d76
N
5422 /* readpos and safepos are worst-case calculations.
5423 * A negative number is overly pessimistic, and causes
5424 * obvious problems for unsigned storage. So clip to 0.
5425 */
ed37d83e
N
5426 readpos -= min_t(sector_t, reshape_sectors, readpos);
5427 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5428 }
52c03291 5429
b5254dd5
N
5430 /* Having calculated the 'writepos' possibly use it
5431 * to set 'stripe_addr' which is where we will write to.
5432 */
5433 if (mddev->reshape_backwards) {
5434 BUG_ON(conf->reshape_progress == 0);
5435 stripe_addr = writepos;
5436 BUG_ON((mddev->dev_sectors &
5437 ~((sector_t)reshape_sectors - 1))
5438 - reshape_sectors - stripe_addr
5439 != sector_nr);
5440 } else {
5441 BUG_ON(writepos != sector_nr + reshape_sectors);
5442 stripe_addr = sector_nr;
5443 }
5444
c8f517c4
N
5445 /* 'writepos' is the most advanced device address we might write.
5446 * 'readpos' is the least advanced device address we might read.
5447 * 'safepos' is the least address recorded in the metadata as having
5448 * been reshaped.
b5254dd5
N
5449 * If there is a min_offset_diff, these are adjusted either by
5450 * increasing the safepos/readpos if diff is negative, or
5451 * increasing writepos if diff is positive.
5452 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5453 * ensure safety in the face of a crash - that must be done by userspace
5454 * making a backup of the data. So in that case there is no particular
5455 * rush to update metadata.
5456 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5457 * update the metadata to advance 'safepos' to match 'readpos' so that
5458 * we can be safe in the event of a crash.
5459 * So we insist on updating metadata if safepos is behind writepos and
5460 * readpos is beyond writepos.
5461 * In any case, update the metadata every 10 seconds.
5462 * Maybe that number should be configurable, but I'm not sure it is
5463 * worth it.... maybe it could be a multiple of safemode_delay???
5464 */
b5254dd5
N
5465 if (conf->min_offset_diff < 0) {
5466 safepos += -conf->min_offset_diff;
5467 readpos += -conf->min_offset_diff;
5468 } else
5469 writepos += conf->min_offset_diff;
5470
2c810cdd 5471 if ((mddev->reshape_backwards
c8f517c4
N
5472 ? (safepos > writepos && readpos < writepos)
5473 : (safepos < writepos && readpos > writepos)) ||
5474 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5475 /* Cannot proceed until we've updated the superblock... */
5476 wait_event(conf->wait_for_overlap,
c91abf5a
N
5477 atomic_read(&conf->reshape_stripes)==0
5478 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5479 if (atomic_read(&conf->reshape_stripes) != 0)
5480 return 0;
fef9c61f 5481 mddev->reshape_position = conf->reshape_progress;
75d3da43 5482 mddev->curr_resync_completed = sector_nr;
c8f517c4 5483 conf->reshape_checkpoint = jiffies;
850b2b42 5484 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 5485 md_wakeup_thread(mddev->thread);
850b2b42 5486 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
5487 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5488 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5489 return 0;
52c03291 5490 spin_lock_irq(&conf->device_lock);
fef9c61f 5491 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5492 spin_unlock_irq(&conf->device_lock);
5493 wake_up(&conf->wait_for_overlap);
acb180b0 5494 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5495 }
5496
ab69ae12 5497 INIT_LIST_HEAD(&stripes);
7a661381 5498 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5499 int j;
a9f326eb 5500 int skipped_disk = 0;
6d036f7d 5501 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5502 set_bit(STRIPE_EXPANDING, &sh->state);
5503 atomic_inc(&conf->reshape_stripes);
5504 /* If any of this stripe is beyond the end of the old
5505 * array, then we need to zero those blocks
5506 */
5507 for (j=sh->disks; j--;) {
5508 sector_t s;
5509 if (j == sh->pd_idx)
5510 continue;
f416885e 5511 if (conf->level == 6 &&
d0dabf7e 5512 j == sh->qd_idx)
f416885e 5513 continue;
6d036f7d 5514 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 5515 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5516 skipped_disk = 1;
52c03291
N
5517 continue;
5518 }
5519 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5520 set_bit(R5_Expanded, &sh->dev[j].flags);
5521 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5522 }
a9f326eb 5523 if (!skipped_disk) {
52c03291
N
5524 set_bit(STRIPE_EXPAND_READY, &sh->state);
5525 set_bit(STRIPE_HANDLE, &sh->state);
5526 }
ab69ae12 5527 list_add(&sh->lru, &stripes);
52c03291
N
5528 }
5529 spin_lock_irq(&conf->device_lock);
2c810cdd 5530 if (mddev->reshape_backwards)
7a661381 5531 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5532 else
7a661381 5533 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5534 spin_unlock_irq(&conf->device_lock);
5535 /* Ok, those stripe are ready. We can start scheduling
5536 * reads on the source stripes.
5537 * The source stripes are determined by mapping the first and last
5538 * block on the destination stripes.
5539 */
52c03291 5540 first_sector =
ec32a2bd 5541 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5542 1, &dd_idx, NULL);
52c03291 5543 last_sector =
0e6e0271 5544 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5545 * new_data_disks - 1),
911d4ee8 5546 1, &dd_idx, NULL);
58c0fed4
AN
5547 if (last_sector >= mddev->dev_sectors)
5548 last_sector = mddev->dev_sectors - 1;
52c03291 5549 while (first_sector <= last_sector) {
6d036f7d 5550 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5551 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5552 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 5553 raid5_release_stripe(sh);
52c03291
N
5554 first_sector += STRIPE_SECTORS;
5555 }
ab69ae12
N
5556 /* Now that the sources are clearly marked, we can release
5557 * the destination stripes
5558 */
5559 while (!list_empty(&stripes)) {
5560 sh = list_entry(stripes.next, struct stripe_head, lru);
5561 list_del_init(&sh->lru);
6d036f7d 5562 raid5_release_stripe(sh);
ab69ae12 5563 }
c6207277
N
5564 /* If this takes us to the resync_max point where we have to pause,
5565 * then we need to write out the superblock.
5566 */
7a661381 5567 sector_nr += reshape_sectors;
92140480
N
5568 retn = reshape_sectors;
5569finish:
c5e19d90
N
5570 if (mddev->curr_resync_completed > mddev->resync_max ||
5571 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 5572 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5573 /* Cannot proceed until we've updated the superblock... */
5574 wait_event(conf->wait_for_overlap,
c91abf5a
N
5575 atomic_read(&conf->reshape_stripes) == 0
5576 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5577 if (atomic_read(&conf->reshape_stripes) != 0)
5578 goto ret;
fef9c61f 5579 mddev->reshape_position = conf->reshape_progress;
75d3da43 5580 mddev->curr_resync_completed = sector_nr;
c8f517c4 5581 conf->reshape_checkpoint = jiffies;
c6207277
N
5582 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5583 md_wakeup_thread(mddev->thread);
5584 wait_event(mddev->sb_wait,
5585 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
c91abf5a
N
5586 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5587 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5588 goto ret;
c6207277 5589 spin_lock_irq(&conf->device_lock);
fef9c61f 5590 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5591 spin_unlock_irq(&conf->device_lock);
5592 wake_up(&conf->wait_for_overlap);
acb180b0 5593 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5594 }
c91abf5a 5595ret:
92140480 5596 return retn;
52c03291
N
5597}
5598
849674e4
SL
5599static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5600 int *skipped)
52c03291 5601{
d1688a6d 5602 struct r5conf *conf = mddev->private;
52c03291 5603 struct stripe_head *sh;
58c0fed4 5604 sector_t max_sector = mddev->dev_sectors;
57dab0bd 5605 sector_t sync_blocks;
16a53ecc
N
5606 int still_degraded = 0;
5607 int i;
1da177e4 5608
72626685 5609 if (sector_nr >= max_sector) {
1da177e4 5610 /* just being told to finish up .. nothing much to do */
cea9c228 5611
29269553
N
5612 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5613 end_reshape(conf);
5614 return 0;
5615 }
72626685
N
5616
5617 if (mddev->curr_resync < max_sector) /* aborted */
5618 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5619 &sync_blocks, 1);
16a53ecc 5620 else /* completed sync */
72626685
N
5621 conf->fullsync = 0;
5622 bitmap_close_sync(mddev->bitmap);
5623
1da177e4
LT
5624 return 0;
5625 }
ccfcc3c1 5626
64bd660b
N
5627 /* Allow raid5_quiesce to complete */
5628 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5629
52c03291
N
5630 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5631 return reshape_request(mddev, sector_nr, skipped);
f6705578 5632
c6207277
N
5633 /* No need to check resync_max as we never do more than one
5634 * stripe, and as resync_max will always be on a chunk boundary,
5635 * if the check in md_do_sync didn't fire, there is no chance
5636 * of overstepping resync_max here
5637 */
5638
16a53ecc 5639 /* if there is too many failed drives and we are trying
1da177e4
LT
5640 * to resync, then assert that we are finished, because there is
5641 * nothing we can do.
5642 */
3285edf1 5643 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 5644 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 5645 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 5646 *skipped = 1;
1da177e4
LT
5647 return rv;
5648 }
6f608040 5649 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5650 !conf->fullsync &&
5651 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5652 sync_blocks >= STRIPE_SECTORS) {
72626685
N
5653 /* we can skip this block, and probably more */
5654 sync_blocks /= STRIPE_SECTORS;
5655 *skipped = 1;
5656 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5657 }
1da177e4 5658
c40f341f 5659 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
b47490c9 5660
6d036f7d 5661 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 5662 if (sh == NULL) {
6d036f7d 5663 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 5664 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 5665 * is trying to get access
1da177e4 5666 */
66c006a5 5667 schedule_timeout_uninterruptible(1);
1da177e4 5668 }
16a53ecc 5669 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
5670 * Note in case of > 1 drive failures it's possible we're rebuilding
5671 * one drive while leaving another faulty drive in array.
16a53ecc 5672 */
16d9cfab
EM
5673 rcu_read_lock();
5674 for (i = 0; i < conf->raid_disks; i++) {
5675 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5676
5677 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 5678 still_degraded = 1;
16d9cfab
EM
5679 }
5680 rcu_read_unlock();
16a53ecc
N
5681
5682 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5683
83206d66 5684 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 5685 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 5686
6d036f7d 5687 raid5_release_stripe(sh);
1da177e4
LT
5688
5689 return STRIPE_SECTORS;
5690}
5691
d1688a6d 5692static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
5693{
5694 /* We may not be able to submit a whole bio at once as there
5695 * may not be enough stripe_heads available.
5696 * We cannot pre-allocate enough stripe_heads as we may need
5697 * more than exist in the cache (if we allow ever large chunks).
5698 * So we do one stripe head at a time and record in
5699 * ->bi_hw_segments how many have been done.
5700 *
5701 * We *know* that this entire raid_bio is in one chunk, so
5702 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5703 */
5704 struct stripe_head *sh;
911d4ee8 5705 int dd_idx;
46031f9a
RBJ
5706 sector_t sector, logical_sector, last_sector;
5707 int scnt = 0;
5708 int remaining;
5709 int handled = 0;
5710
4f024f37
KO
5711 logical_sector = raid_bio->bi_iter.bi_sector &
5712 ~((sector_t)STRIPE_SECTORS-1);
112bf897 5713 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 5714 0, &dd_idx, NULL);
f73a1c7d 5715 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
5716
5717 for (; logical_sector < last_sector;
387bb173
NB
5718 logical_sector += STRIPE_SECTORS,
5719 sector += STRIPE_SECTORS,
5720 scnt++) {
46031f9a 5721
e7836bd6 5722 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
5723 /* already done this stripe */
5724 continue;
5725
6d036f7d 5726 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
5727
5728 if (!sh) {
5729 /* failed to get a stripe - must wait */
e7836bd6 5730 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
5731 conf->retry_read_aligned = raid_bio;
5732 return handled;
5733 }
5734
da41ba65 5735 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 5736 raid5_release_stripe(sh);
e7836bd6 5737 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
5738 conf->retry_read_aligned = raid_bio;
5739 return handled;
5740 }
5741
3f9e7c14 5742 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 5743 handle_stripe(sh);
6d036f7d 5744 raid5_release_stripe(sh);
46031f9a
RBJ
5745 handled++;
5746 }
e7836bd6 5747 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
5748 if (remaining == 0) {
5749 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5750 raid_bio, 0);
4246a0b6 5751 bio_endio(raid_bio);
0a82a8d1 5752 }
46031f9a 5753 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5754 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
5755 return handled;
5756}
5757
bfc90cb0 5758static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
5759 struct r5worker *worker,
5760 struct list_head *temp_inactive_list)
46a06401
SL
5761{
5762 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
5763 int i, batch_size = 0, hash;
5764 bool release_inactive = false;
46a06401
SL
5765
5766 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 5767 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
5768 batch[batch_size++] = sh;
5769
566c09c5
SL
5770 if (batch_size == 0) {
5771 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5772 if (!list_empty(temp_inactive_list + i))
5773 break;
a8c34f91
SL
5774 if (i == NR_STRIPE_HASH_LOCKS) {
5775 spin_unlock_irq(&conf->device_lock);
5776 r5l_flush_stripe_to_raid(conf->log);
5777 spin_lock_irq(&conf->device_lock);
566c09c5 5778 return batch_size;
a8c34f91 5779 }
566c09c5
SL
5780 release_inactive = true;
5781 }
46a06401
SL
5782 spin_unlock_irq(&conf->device_lock);
5783
566c09c5
SL
5784 release_inactive_stripe_list(conf, temp_inactive_list,
5785 NR_STRIPE_HASH_LOCKS);
5786
a8c34f91 5787 r5l_flush_stripe_to_raid(conf->log);
566c09c5
SL
5788 if (release_inactive) {
5789 spin_lock_irq(&conf->device_lock);
5790 return 0;
5791 }
5792
46a06401
SL
5793 for (i = 0; i < batch_size; i++)
5794 handle_stripe(batch[i]);
f6bed0ef 5795 r5l_write_stripe_run(conf->log);
46a06401
SL
5796
5797 cond_resched();
5798
5799 spin_lock_irq(&conf->device_lock);
566c09c5
SL
5800 for (i = 0; i < batch_size; i++) {
5801 hash = batch[i]->hash_lock_index;
5802 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5803 }
46a06401
SL
5804 return batch_size;
5805}
46031f9a 5806
851c30c9
SL
5807static void raid5_do_work(struct work_struct *work)
5808{
5809 struct r5worker *worker = container_of(work, struct r5worker, work);
5810 struct r5worker_group *group = worker->group;
5811 struct r5conf *conf = group->conf;
5812 int group_id = group - conf->worker_groups;
5813 int handled;
5814 struct blk_plug plug;
5815
5816 pr_debug("+++ raid5worker active\n");
5817
5818 blk_start_plug(&plug);
5819 handled = 0;
5820 spin_lock_irq(&conf->device_lock);
5821 while (1) {
5822 int batch_size, released;
5823
566c09c5 5824 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 5825
566c09c5
SL
5826 batch_size = handle_active_stripes(conf, group_id, worker,
5827 worker->temp_inactive_list);
bfc90cb0 5828 worker->working = false;
851c30c9
SL
5829 if (!batch_size && !released)
5830 break;
5831 handled += batch_size;
5832 }
5833 pr_debug("%d stripes handled\n", handled);
5834
5835 spin_unlock_irq(&conf->device_lock);
5836 blk_finish_plug(&plug);
5837
5838 pr_debug("--- raid5worker inactive\n");
5839}
5840
1da177e4
LT
5841/*
5842 * This is our raid5 kernel thread.
5843 *
5844 * We scan the hash table for stripes which can be handled now.
5845 * During the scan, completed stripes are saved for us by the interrupt
5846 * handler, so that they will not have to wait for our next wakeup.
5847 */
4ed8731d 5848static void raid5d(struct md_thread *thread)
1da177e4 5849{
4ed8731d 5850 struct mddev *mddev = thread->mddev;
d1688a6d 5851 struct r5conf *conf = mddev->private;
1da177e4 5852 int handled;
e1dfa0a2 5853 struct blk_plug plug;
1da177e4 5854
45b4233c 5855 pr_debug("+++ raid5d active\n");
1da177e4
LT
5856
5857 md_check_recovery(mddev);
1da177e4 5858
c3cce6cd
N
5859 if (!bio_list_empty(&conf->return_bi) &&
5860 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5861 struct bio_list tmp = BIO_EMPTY_LIST;
5862 spin_lock_irq(&conf->device_lock);
5863 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5864 bio_list_merge(&tmp, &conf->return_bi);
5865 bio_list_init(&conf->return_bi);
5866 }
5867 spin_unlock_irq(&conf->device_lock);
5868 return_io(&tmp);
5869 }
5870
e1dfa0a2 5871 blk_start_plug(&plug);
1da177e4
LT
5872 handled = 0;
5873 spin_lock_irq(&conf->device_lock);
5874 while (1) {
46031f9a 5875 struct bio *bio;
773ca82f
SL
5876 int batch_size, released;
5877
566c09c5 5878 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
5879 if (released)
5880 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 5881
0021b7bc 5882 if (
7c13edc8
N
5883 !list_empty(&conf->bitmap_list)) {
5884 /* Now is a good time to flush some bitmap updates */
5885 conf->seq_flush++;
700e432d 5886 spin_unlock_irq(&conf->device_lock);
72626685 5887 bitmap_unplug(mddev->bitmap);
700e432d 5888 spin_lock_irq(&conf->device_lock);
7c13edc8 5889 conf->seq_write = conf->seq_flush;
566c09c5 5890 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 5891 }
0021b7bc 5892 raid5_activate_delayed(conf);
72626685 5893
46031f9a
RBJ
5894 while ((bio = remove_bio_from_retry(conf))) {
5895 int ok;
5896 spin_unlock_irq(&conf->device_lock);
5897 ok = retry_aligned_read(conf, bio);
5898 spin_lock_irq(&conf->device_lock);
5899 if (!ok)
5900 break;
5901 handled++;
5902 }
5903
566c09c5
SL
5904 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5905 conf->temp_inactive_list);
773ca82f 5906 if (!batch_size && !released)
1da177e4 5907 break;
46a06401 5908 handled += batch_size;
1da177e4 5909
46a06401
SL
5910 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5911 spin_unlock_irq(&conf->device_lock);
de393cde 5912 md_check_recovery(mddev);
46a06401
SL
5913 spin_lock_irq(&conf->device_lock);
5914 }
1da177e4 5915 }
45b4233c 5916 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
5917
5918 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
5919 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5920 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
5921 grow_one_stripe(conf, __GFP_NOWARN);
5922 /* Set flag even if allocation failed. This helps
5923 * slow down allocation requests when mem is short
5924 */
5925 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 5926 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 5927 }
1da177e4 5928
0576b1c6
SL
5929 r5l_flush_stripe_to_raid(conf->log);
5930
c9f21aaf 5931 async_tx_issue_pending_all();
e1dfa0a2 5932 blk_finish_plug(&plug);
1da177e4 5933
45b4233c 5934 pr_debug("--- raid5d inactive\n");
1da177e4
LT
5935}
5936
3f294f4f 5937static ssize_t
fd01b88c 5938raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 5939{
7b1485ba
N
5940 struct r5conf *conf;
5941 int ret = 0;
5942 spin_lock(&mddev->lock);
5943 conf = mddev->private;
96de1e66 5944 if (conf)
edbe83ab 5945 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
5946 spin_unlock(&mddev->lock);
5947 return ret;
3f294f4f
N
5948}
5949
c41d4ac4 5950int
fd01b88c 5951raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 5952{
d1688a6d 5953 struct r5conf *conf = mddev->private;
b5470dc5
DW
5954 int err;
5955
c41d4ac4 5956 if (size <= 16 || size > 32768)
3f294f4f 5957 return -EINVAL;
486f0644 5958
edbe83ab 5959 conf->min_nr_stripes = size;
2d5b569b 5960 mutex_lock(&conf->cache_size_mutex);
486f0644
N
5961 while (size < conf->max_nr_stripes &&
5962 drop_one_stripe(conf))
5963 ;
2d5b569b 5964 mutex_unlock(&conf->cache_size_mutex);
486f0644 5965
edbe83ab 5966
b5470dc5
DW
5967 err = md_allow_write(mddev);
5968 if (err)
5969 return err;
486f0644 5970
2d5b569b 5971 mutex_lock(&conf->cache_size_mutex);
486f0644
N
5972 while (size > conf->max_nr_stripes)
5973 if (!grow_one_stripe(conf, GFP_KERNEL))
5974 break;
2d5b569b 5975 mutex_unlock(&conf->cache_size_mutex);
486f0644 5976
c41d4ac4
N
5977 return 0;
5978}
5979EXPORT_SYMBOL(raid5_set_cache_size);
5980
5981static ssize_t
fd01b88c 5982raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 5983{
6791875e 5984 struct r5conf *conf;
c41d4ac4
N
5985 unsigned long new;
5986 int err;
5987
5988 if (len >= PAGE_SIZE)
5989 return -EINVAL;
b29bebd6 5990 if (kstrtoul(page, 10, &new))
c41d4ac4 5991 return -EINVAL;
6791875e 5992 err = mddev_lock(mddev);
c41d4ac4
N
5993 if (err)
5994 return err;
6791875e
N
5995 conf = mddev->private;
5996 if (!conf)
5997 err = -ENODEV;
5998 else
5999 err = raid5_set_cache_size(mddev, new);
6000 mddev_unlock(mddev);
6001
6002 return err ?: len;
3f294f4f 6003}
007583c9 6004
96de1e66
N
6005static struct md_sysfs_entry
6006raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6007 raid5_show_stripe_cache_size,
6008 raid5_store_stripe_cache_size);
3f294f4f 6009
d06f191f
MS
6010static ssize_t
6011raid5_show_rmw_level(struct mddev *mddev, char *page)
6012{
6013 struct r5conf *conf = mddev->private;
6014 if (conf)
6015 return sprintf(page, "%d\n", conf->rmw_level);
6016 else
6017 return 0;
6018}
6019
6020static ssize_t
6021raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6022{
6023 struct r5conf *conf = mddev->private;
6024 unsigned long new;
6025
6026 if (!conf)
6027 return -ENODEV;
6028
6029 if (len >= PAGE_SIZE)
6030 return -EINVAL;
6031
6032 if (kstrtoul(page, 10, &new))
6033 return -EINVAL;
6034
6035 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6036 return -EINVAL;
6037
6038 if (new != PARITY_DISABLE_RMW &&
6039 new != PARITY_ENABLE_RMW &&
6040 new != PARITY_PREFER_RMW)
6041 return -EINVAL;
6042
6043 conf->rmw_level = new;
6044 return len;
6045}
6046
6047static struct md_sysfs_entry
6048raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6049 raid5_show_rmw_level,
6050 raid5_store_rmw_level);
6051
6052
8b3e6cdc 6053static ssize_t
fd01b88c 6054raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 6055{
7b1485ba
N
6056 struct r5conf *conf;
6057 int ret = 0;
6058 spin_lock(&mddev->lock);
6059 conf = mddev->private;
8b3e6cdc 6060 if (conf)
7b1485ba
N
6061 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6062 spin_unlock(&mddev->lock);
6063 return ret;
8b3e6cdc
DW
6064}
6065
6066static ssize_t
fd01b88c 6067raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6068{
6791875e 6069 struct r5conf *conf;
4ef197d8 6070 unsigned long new;
6791875e
N
6071 int err;
6072
8b3e6cdc
DW
6073 if (len >= PAGE_SIZE)
6074 return -EINVAL;
b29bebd6 6075 if (kstrtoul(page, 10, &new))
8b3e6cdc 6076 return -EINVAL;
6791875e
N
6077
6078 err = mddev_lock(mddev);
6079 if (err)
6080 return err;
6081 conf = mddev->private;
6082 if (!conf)
6083 err = -ENODEV;
edbe83ab 6084 else if (new > conf->min_nr_stripes)
6791875e
N
6085 err = -EINVAL;
6086 else
6087 conf->bypass_threshold = new;
6088 mddev_unlock(mddev);
6089 return err ?: len;
8b3e6cdc
DW
6090}
6091
6092static struct md_sysfs_entry
6093raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6094 S_IRUGO | S_IWUSR,
6095 raid5_show_preread_threshold,
6096 raid5_store_preread_threshold);
6097
d592a996
SL
6098static ssize_t
6099raid5_show_skip_copy(struct mddev *mddev, char *page)
6100{
7b1485ba
N
6101 struct r5conf *conf;
6102 int ret = 0;
6103 spin_lock(&mddev->lock);
6104 conf = mddev->private;
d592a996 6105 if (conf)
7b1485ba
N
6106 ret = sprintf(page, "%d\n", conf->skip_copy);
6107 spin_unlock(&mddev->lock);
6108 return ret;
d592a996
SL
6109}
6110
6111static ssize_t
6112raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6113{
6791875e 6114 struct r5conf *conf;
d592a996 6115 unsigned long new;
6791875e
N
6116 int err;
6117
d592a996
SL
6118 if (len >= PAGE_SIZE)
6119 return -EINVAL;
d592a996
SL
6120 if (kstrtoul(page, 10, &new))
6121 return -EINVAL;
6122 new = !!new;
6791875e
N
6123
6124 err = mddev_lock(mddev);
6125 if (err)
6126 return err;
6127 conf = mddev->private;
6128 if (!conf)
6129 err = -ENODEV;
6130 else if (new != conf->skip_copy) {
6131 mddev_suspend(mddev);
6132 conf->skip_copy = new;
6133 if (new)
6134 mddev->queue->backing_dev_info.capabilities |=
6135 BDI_CAP_STABLE_WRITES;
6136 else
6137 mddev->queue->backing_dev_info.capabilities &=
6138 ~BDI_CAP_STABLE_WRITES;
6139 mddev_resume(mddev);
6140 }
6141 mddev_unlock(mddev);
6142 return err ?: len;
d592a996
SL
6143}
6144
6145static struct md_sysfs_entry
6146raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6147 raid5_show_skip_copy,
6148 raid5_store_skip_copy);
6149
3f294f4f 6150static ssize_t
fd01b88c 6151stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6152{
d1688a6d 6153 struct r5conf *conf = mddev->private;
96de1e66
N
6154 if (conf)
6155 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6156 else
6157 return 0;
3f294f4f
N
6158}
6159
96de1e66
N
6160static struct md_sysfs_entry
6161raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6162
b721420e
SL
6163static ssize_t
6164raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6165{
7b1485ba
N
6166 struct r5conf *conf;
6167 int ret = 0;
6168 spin_lock(&mddev->lock);
6169 conf = mddev->private;
b721420e 6170 if (conf)
7b1485ba
N
6171 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6172 spin_unlock(&mddev->lock);
6173 return ret;
b721420e
SL
6174}
6175
60aaf933 6176static int alloc_thread_groups(struct r5conf *conf, int cnt,
6177 int *group_cnt,
6178 int *worker_cnt_per_group,
6179 struct r5worker_group **worker_groups);
b721420e
SL
6180static ssize_t
6181raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6182{
6791875e 6183 struct r5conf *conf;
b721420e
SL
6184 unsigned long new;
6185 int err;
60aaf933 6186 struct r5worker_group *new_groups, *old_groups;
6187 int group_cnt, worker_cnt_per_group;
b721420e
SL
6188
6189 if (len >= PAGE_SIZE)
6190 return -EINVAL;
b721420e
SL
6191 if (kstrtoul(page, 10, &new))
6192 return -EINVAL;
6193
6791875e
N
6194 err = mddev_lock(mddev);
6195 if (err)
6196 return err;
6197 conf = mddev->private;
6198 if (!conf)
6199 err = -ENODEV;
6200 else if (new != conf->worker_cnt_per_group) {
6201 mddev_suspend(mddev);
b721420e 6202
6791875e
N
6203 old_groups = conf->worker_groups;
6204 if (old_groups)
6205 flush_workqueue(raid5_wq);
d206dcfa 6206
6791875e
N
6207 err = alloc_thread_groups(conf, new,
6208 &group_cnt, &worker_cnt_per_group,
6209 &new_groups);
6210 if (!err) {
6211 spin_lock_irq(&conf->device_lock);
6212 conf->group_cnt = group_cnt;
6213 conf->worker_cnt_per_group = worker_cnt_per_group;
6214 conf->worker_groups = new_groups;
6215 spin_unlock_irq(&conf->device_lock);
b721420e 6216
6791875e
N
6217 if (old_groups)
6218 kfree(old_groups[0].workers);
6219 kfree(old_groups);
6220 }
6221 mddev_resume(mddev);
b721420e 6222 }
6791875e 6223 mddev_unlock(mddev);
b721420e 6224
6791875e 6225 return err ?: len;
b721420e
SL
6226}
6227
6228static struct md_sysfs_entry
6229raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6230 raid5_show_group_thread_cnt,
6231 raid5_store_group_thread_cnt);
6232
007583c9 6233static struct attribute *raid5_attrs[] = {
3f294f4f
N
6234 &raid5_stripecache_size.attr,
6235 &raid5_stripecache_active.attr,
8b3e6cdc 6236 &raid5_preread_bypass_threshold.attr,
b721420e 6237 &raid5_group_thread_cnt.attr,
d592a996 6238 &raid5_skip_copy.attr,
d06f191f 6239 &raid5_rmw_level.attr,
3f294f4f
N
6240 NULL,
6241};
007583c9
N
6242static struct attribute_group raid5_attrs_group = {
6243 .name = NULL,
6244 .attrs = raid5_attrs,
3f294f4f
N
6245};
6246
60aaf933 6247static int alloc_thread_groups(struct r5conf *conf, int cnt,
6248 int *group_cnt,
6249 int *worker_cnt_per_group,
6250 struct r5worker_group **worker_groups)
851c30c9 6251{
566c09c5 6252 int i, j, k;
851c30c9
SL
6253 ssize_t size;
6254 struct r5worker *workers;
6255
60aaf933 6256 *worker_cnt_per_group = cnt;
851c30c9 6257 if (cnt == 0) {
60aaf933 6258 *group_cnt = 0;
6259 *worker_groups = NULL;
851c30c9
SL
6260 return 0;
6261 }
60aaf933 6262 *group_cnt = num_possible_nodes();
851c30c9 6263 size = sizeof(struct r5worker) * cnt;
60aaf933 6264 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6265 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6266 *group_cnt, GFP_NOIO);
6267 if (!*worker_groups || !workers) {
851c30c9 6268 kfree(workers);
60aaf933 6269 kfree(*worker_groups);
851c30c9
SL
6270 return -ENOMEM;
6271 }
6272
60aaf933 6273 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6274 struct r5worker_group *group;
6275
0c775d52 6276 group = &(*worker_groups)[i];
851c30c9
SL
6277 INIT_LIST_HEAD(&group->handle_list);
6278 group->conf = conf;
6279 group->workers = workers + i * cnt;
6280
6281 for (j = 0; j < cnt; j++) {
566c09c5
SL
6282 struct r5worker *worker = group->workers + j;
6283 worker->group = group;
6284 INIT_WORK(&worker->work, raid5_do_work);
6285
6286 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6287 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6288 }
6289 }
6290
6291 return 0;
6292}
6293
6294static void free_thread_groups(struct r5conf *conf)
6295{
6296 if (conf->worker_groups)
6297 kfree(conf->worker_groups[0].workers);
6298 kfree(conf->worker_groups);
6299 conf->worker_groups = NULL;
6300}
6301
80c3a6ce 6302static sector_t
fd01b88c 6303raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6304{
d1688a6d 6305 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6306
6307 if (!sectors)
6308 sectors = mddev->dev_sectors;
5e5e3e78 6309 if (!raid_disks)
7ec05478 6310 /* size is defined by the smallest of previous and new size */
5e5e3e78 6311 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6312
3cb5edf4
N
6313 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6314 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
6315 return sectors * (raid_disks - conf->max_degraded);
6316}
6317
789b5e03
ON
6318static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6319{
6320 safe_put_page(percpu->spare_page);
46d5b785 6321 if (percpu->scribble)
6322 flex_array_free(percpu->scribble);
789b5e03
ON
6323 percpu->spare_page = NULL;
6324 percpu->scribble = NULL;
6325}
6326
6327static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6328{
6329 if (conf->level == 6 && !percpu->spare_page)
6330 percpu->spare_page = alloc_page(GFP_KERNEL);
6331 if (!percpu->scribble)
46d5b785 6332 percpu->scribble = scribble_alloc(max(conf->raid_disks,
738a2738
N
6333 conf->previous_raid_disks),
6334 max(conf->chunk_sectors,
6335 conf->prev_chunk_sectors)
6336 / STRIPE_SECTORS,
6337 GFP_KERNEL);
789b5e03
ON
6338
6339 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6340 free_scratch_buffer(conf, percpu);
6341 return -ENOMEM;
6342 }
6343
6344 return 0;
6345}
6346
d1688a6d 6347static void raid5_free_percpu(struct r5conf *conf)
36d1c647 6348{
36d1c647
DW
6349 unsigned long cpu;
6350
6351 if (!conf->percpu)
6352 return;
6353
36d1c647
DW
6354#ifdef CONFIG_HOTPLUG_CPU
6355 unregister_cpu_notifier(&conf->cpu_notify);
6356#endif
789b5e03
ON
6357
6358 get_online_cpus();
6359 for_each_possible_cpu(cpu)
6360 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6361 put_online_cpus();
6362
6363 free_percpu(conf->percpu);
6364}
6365
d1688a6d 6366static void free_conf(struct r5conf *conf)
95fc17aa 6367{
5c7e81c3
SL
6368 if (conf->log)
6369 r5l_exit_log(conf->log);
edbe83ab
N
6370 if (conf->shrinker.seeks)
6371 unregister_shrinker(&conf->shrinker);
5c7e81c3 6372
851c30c9 6373 free_thread_groups(conf);
95fc17aa 6374 shrink_stripes(conf);
36d1c647 6375 raid5_free_percpu(conf);
95fc17aa
DW
6376 kfree(conf->disks);
6377 kfree(conf->stripe_hashtbl);
6378 kfree(conf);
6379}
6380
36d1c647
DW
6381#ifdef CONFIG_HOTPLUG_CPU
6382static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6383 void *hcpu)
6384{
d1688a6d 6385 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
6386 long cpu = (long)hcpu;
6387 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6388
6389 switch (action) {
6390 case CPU_UP_PREPARE:
6391 case CPU_UP_PREPARE_FROZEN:
789b5e03 6392 if (alloc_scratch_buffer(conf, percpu)) {
36d1c647
DW
6393 pr_err("%s: failed memory allocation for cpu%ld\n",
6394 __func__, cpu);
55af6bb5 6395 return notifier_from_errno(-ENOMEM);
36d1c647
DW
6396 }
6397 break;
6398 case CPU_DEAD:
6399 case CPU_DEAD_FROZEN:
1d034e68
AMG
6400 case CPU_UP_CANCELED:
6401 case CPU_UP_CANCELED_FROZEN:
789b5e03 6402 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6403 break;
6404 default:
6405 break;
6406 }
6407 return NOTIFY_OK;
6408}
6409#endif
6410
d1688a6d 6411static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
6412{
6413 unsigned long cpu;
789b5e03 6414 int err = 0;
36d1c647 6415
789b5e03
ON
6416 conf->percpu = alloc_percpu(struct raid5_percpu);
6417 if (!conf->percpu)
36d1c647 6418 return -ENOMEM;
789b5e03
ON
6419
6420#ifdef CONFIG_HOTPLUG_CPU
6421 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6422 conf->cpu_notify.priority = 0;
6423 err = register_cpu_notifier(&conf->cpu_notify);
6424 if (err)
6425 return err;
6426#endif
36d1c647
DW
6427
6428 get_online_cpus();
36d1c647 6429 for_each_present_cpu(cpu) {
789b5e03
ON
6430 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6431 if (err) {
6432 pr_err("%s: failed memory allocation for cpu%ld\n",
6433 __func__, cpu);
36d1c647
DW
6434 break;
6435 }
36d1c647 6436 }
36d1c647
DW
6437 put_online_cpus();
6438
27a353c0
SL
6439 if (!err) {
6440 conf->scribble_disks = max(conf->raid_disks,
6441 conf->previous_raid_disks);
6442 conf->scribble_sectors = max(conf->chunk_sectors,
6443 conf->prev_chunk_sectors);
6444 }
36d1c647
DW
6445 return err;
6446}
6447
edbe83ab
N
6448static unsigned long raid5_cache_scan(struct shrinker *shrink,
6449 struct shrink_control *sc)
6450{
6451 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
6452 unsigned long ret = SHRINK_STOP;
6453
6454 if (mutex_trylock(&conf->cache_size_mutex)) {
6455 ret= 0;
49895bcc
N
6456 while (ret < sc->nr_to_scan &&
6457 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
6458 if (drop_one_stripe(conf) == 0) {
6459 ret = SHRINK_STOP;
6460 break;
6461 }
6462 ret++;
6463 }
6464 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
6465 }
6466 return ret;
6467}
6468
6469static unsigned long raid5_cache_count(struct shrinker *shrink,
6470 struct shrink_control *sc)
6471{
6472 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6473
6474 if (conf->max_nr_stripes < conf->min_nr_stripes)
6475 /* unlikely, but not impossible */
6476 return 0;
6477 return conf->max_nr_stripes - conf->min_nr_stripes;
6478}
6479
d1688a6d 6480static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6481{
d1688a6d 6482 struct r5conf *conf;
5e5e3e78 6483 int raid_disk, memory, max_disks;
3cb03002 6484 struct md_rdev *rdev;
1da177e4 6485 struct disk_info *disk;
0232605d 6486 char pers_name[6];
566c09c5 6487 int i;
60aaf933 6488 int group_cnt, worker_cnt_per_group;
6489 struct r5worker_group *new_group;
1da177e4 6490
91adb564
N
6491 if (mddev->new_level != 5
6492 && mddev->new_level != 4
6493 && mddev->new_level != 6) {
0c55e022 6494 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
6495 mdname(mddev), mddev->new_level);
6496 return ERR_PTR(-EIO);
1da177e4 6497 }
91adb564
N
6498 if ((mddev->new_level == 5
6499 && !algorithm_valid_raid5(mddev->new_layout)) ||
6500 (mddev->new_level == 6
6501 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 6502 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
6503 mdname(mddev), mddev->new_layout);
6504 return ERR_PTR(-EIO);
99c0fb5f 6505 }
91adb564 6506 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 6507 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
6508 mdname(mddev), mddev->raid_disks);
6509 return ERR_PTR(-EINVAL);
4bbf3771
N
6510 }
6511
664e7c41
AN
6512 if (!mddev->new_chunk_sectors ||
6513 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6514 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
6515 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6516 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6517 return ERR_PTR(-EINVAL);
f6705578
N
6518 }
6519
d1688a6d 6520 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6521 if (conf == NULL)
1da177e4 6522 goto abort;
851c30c9 6523 /* Don't enable multi-threading by default*/
60aaf933 6524 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6525 &new_group)) {
6526 conf->group_cnt = group_cnt;
6527 conf->worker_cnt_per_group = worker_cnt_per_group;
6528 conf->worker_groups = new_group;
6529 } else
851c30c9 6530 goto abort;
f5efd45a 6531 spin_lock_init(&conf->device_lock);
c46501b2 6532 seqcount_init(&conf->gen_lock);
2d5b569b 6533 mutex_init(&conf->cache_size_mutex);
b1b46486 6534 init_waitqueue_head(&conf->wait_for_quiescent);
6ab2a4b8 6535 init_waitqueue_head(&conf->wait_for_stripe);
f5efd45a
DW
6536 init_waitqueue_head(&conf->wait_for_overlap);
6537 INIT_LIST_HEAD(&conf->handle_list);
6538 INIT_LIST_HEAD(&conf->hold_list);
6539 INIT_LIST_HEAD(&conf->delayed_list);
6540 INIT_LIST_HEAD(&conf->bitmap_list);
c3cce6cd 6541 bio_list_init(&conf->return_bi);
773ca82f 6542 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6543 atomic_set(&conf->active_stripes, 0);
6544 atomic_set(&conf->preread_active_stripes, 0);
6545 atomic_set(&conf->active_aligned_reads, 0);
6546 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6547 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6548
6549 conf->raid_disks = mddev->raid_disks;
6550 if (mddev->reshape_position == MaxSector)
6551 conf->previous_raid_disks = mddev->raid_disks;
6552 else
f6705578 6553 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6554 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6555
5e5e3e78 6556 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
6557 GFP_KERNEL);
6558 if (!conf->disks)
6559 goto abort;
9ffae0cf 6560
1da177e4
LT
6561 conf->mddev = mddev;
6562
fccddba0 6563 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6564 goto abort;
1da177e4 6565
566c09c5
SL
6566 /* We init hash_locks[0] separately to that it can be used
6567 * as the reference lock in the spin_lock_nest_lock() call
6568 * in lock_all_device_hash_locks_irq in order to convince
6569 * lockdep that we know what we are doing.
6570 */
6571 spin_lock_init(conf->hash_locks);
6572 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6573 spin_lock_init(conf->hash_locks + i);
6574
6575 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6576 INIT_LIST_HEAD(conf->inactive_list + i);
6577
6578 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6579 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6580
36d1c647 6581 conf->level = mddev->new_level;
46d5b785 6582 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6583 if (raid5_alloc_percpu(conf) != 0)
6584 goto abort;
6585
0c55e022 6586 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6587
dafb20fa 6588 rdev_for_each(rdev, mddev) {
1da177e4 6589 raid_disk = rdev->raid_disk;
5e5e3e78 6590 if (raid_disk >= max_disks
f2076e7d 6591 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
1da177e4
LT
6592 continue;
6593 disk = conf->disks + raid_disk;
6594
17045f52
N
6595 if (test_bit(Replacement, &rdev->flags)) {
6596 if (disk->replacement)
6597 goto abort;
6598 disk->replacement = rdev;
6599 } else {
6600 if (disk->rdev)
6601 goto abort;
6602 disk->rdev = rdev;
6603 }
1da177e4 6604
b2d444d7 6605 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 6606 char b[BDEVNAME_SIZE];
0c55e022
N
6607 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6608 " disk %d\n",
6609 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 6610 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
6611 /* Cannot rely on bitmap to complete recovery */
6612 conf->fullsync = 1;
1da177e4
LT
6613 }
6614
91adb564 6615 conf->level = mddev->new_level;
584acdd4 6616 if (conf->level == 6) {
16a53ecc 6617 conf->max_degraded = 2;
584acdd4
MS
6618 if (raid6_call.xor_syndrome)
6619 conf->rmw_level = PARITY_ENABLE_RMW;
6620 else
6621 conf->rmw_level = PARITY_DISABLE_RMW;
6622 } else {
16a53ecc 6623 conf->max_degraded = 1;
584acdd4
MS
6624 conf->rmw_level = PARITY_ENABLE_RMW;
6625 }
91adb564 6626 conf->algorithm = mddev->new_layout;
fef9c61f 6627 conf->reshape_progress = mddev->reshape_position;
e183eaed 6628 if (conf->reshape_progress != MaxSector) {
09c9e5fa 6629 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 6630 conf->prev_algo = mddev->layout;
5cac6bcb
N
6631 } else {
6632 conf->prev_chunk_sectors = conf->chunk_sectors;
6633 conf->prev_algo = conf->algorithm;
e183eaed 6634 }
1da177e4 6635
edbe83ab
N
6636 conf->min_nr_stripes = NR_STRIPES;
6637 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 6638 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 6639 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 6640 if (grow_stripes(conf, conf->min_nr_stripes)) {
91adb564 6641 printk(KERN_ERR
0c55e022
N
6642 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6643 mdname(mddev), memory);
91adb564
N
6644 goto abort;
6645 } else
0c55e022
N
6646 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6647 mdname(mddev), memory);
edbe83ab
N
6648 /*
6649 * Losing a stripe head costs more than the time to refill it,
6650 * it reduces the queue depth and so can hurt throughput.
6651 * So set it rather large, scaled by number of devices.
6652 */
6653 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6654 conf->shrinker.scan_objects = raid5_cache_scan;
6655 conf->shrinker.count_objects = raid5_cache_count;
6656 conf->shrinker.batch = 128;
6657 conf->shrinker.flags = 0;
6658 register_shrinker(&conf->shrinker);
1da177e4 6659
0232605d
N
6660 sprintf(pers_name, "raid%d", mddev->new_level);
6661 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
6662 if (!conf->thread) {
6663 printk(KERN_ERR
0c55e022 6664 "md/raid:%s: couldn't allocate thread.\n",
91adb564 6665 mdname(mddev));
16a53ecc
N
6666 goto abort;
6667 }
91adb564
N
6668
6669 return conf;
6670
6671 abort:
6672 if (conf) {
95fc17aa 6673 free_conf(conf);
91adb564
N
6674 return ERR_PTR(-EIO);
6675 } else
6676 return ERR_PTR(-ENOMEM);
6677}
6678
c148ffdc
N
6679static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6680{
6681 switch (algo) {
6682 case ALGORITHM_PARITY_0:
6683 if (raid_disk < max_degraded)
6684 return 1;
6685 break;
6686 case ALGORITHM_PARITY_N:
6687 if (raid_disk >= raid_disks - max_degraded)
6688 return 1;
6689 break;
6690 case ALGORITHM_PARITY_0_6:
f72ffdd6 6691 if (raid_disk == 0 ||
c148ffdc
N
6692 raid_disk == raid_disks - 1)
6693 return 1;
6694 break;
6695 case ALGORITHM_LEFT_ASYMMETRIC_6:
6696 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6697 case ALGORITHM_LEFT_SYMMETRIC_6:
6698 case ALGORITHM_RIGHT_SYMMETRIC_6:
6699 if (raid_disk == raid_disks - 1)
6700 return 1;
6701 }
6702 return 0;
6703}
6704
849674e4 6705static int raid5_run(struct mddev *mddev)
91adb564 6706{
d1688a6d 6707 struct r5conf *conf;
9f7c2220 6708 int working_disks = 0;
c148ffdc 6709 int dirty_parity_disks = 0;
3cb03002 6710 struct md_rdev *rdev;
713cf5a6 6711 struct md_rdev *journal_dev = NULL;
c148ffdc 6712 sector_t reshape_offset = 0;
17045f52 6713 int i;
b5254dd5
N
6714 long long min_offset_diff = 0;
6715 int first = 1;
91adb564 6716
8c6ac868 6717 if (mddev->recovery_cp != MaxSector)
0c55e022 6718 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
6719 " -- starting background reconstruction\n",
6720 mdname(mddev));
b5254dd5
N
6721
6722 rdev_for_each(rdev, mddev) {
6723 long long diff;
713cf5a6 6724
f2076e7d 6725 if (test_bit(Journal, &rdev->flags)) {
713cf5a6 6726 journal_dev = rdev;
f2076e7d
SL
6727 continue;
6728 }
b5254dd5
N
6729 if (rdev->raid_disk < 0)
6730 continue;
6731 diff = (rdev->new_data_offset - rdev->data_offset);
6732 if (first) {
6733 min_offset_diff = diff;
6734 first = 0;
6735 } else if (mddev->reshape_backwards &&
6736 diff < min_offset_diff)
6737 min_offset_diff = diff;
6738 else if (!mddev->reshape_backwards &&
6739 diff > min_offset_diff)
6740 min_offset_diff = diff;
6741 }
6742
91adb564
N
6743 if (mddev->reshape_position != MaxSector) {
6744 /* Check that we can continue the reshape.
b5254dd5
N
6745 * Difficulties arise if the stripe we would write to
6746 * next is at or after the stripe we would read from next.
6747 * For a reshape that changes the number of devices, this
6748 * is only possible for a very short time, and mdadm makes
6749 * sure that time appears to have past before assembling
6750 * the array. So we fail if that time hasn't passed.
6751 * For a reshape that keeps the number of devices the same
6752 * mdadm must be monitoring the reshape can keeping the
6753 * critical areas read-only and backed up. It will start
6754 * the array in read-only mode, so we check for that.
91adb564
N
6755 */
6756 sector_t here_new, here_old;
6757 int old_disks;
18b00334 6758 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
6759 int chunk_sectors;
6760 int new_data_disks;
91adb564 6761
713cf5a6
SL
6762 if (journal_dev) {
6763 printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6764 mdname(mddev));
6765 return -EINVAL;
6766 }
6767
88ce4930 6768 if (mddev->new_level != mddev->level) {
0c55e022 6769 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
6770 "required - aborting.\n",
6771 mdname(mddev));
6772 return -EINVAL;
6773 }
91adb564
N
6774 old_disks = mddev->raid_disks - mddev->delta_disks;
6775 /* reshape_position must be on a new-stripe boundary, and one
6776 * further up in new geometry must map after here in old
6777 * geometry.
05256d98
N
6778 * If the chunk sizes are different, then as we perform reshape
6779 * in units of the largest of the two, reshape_position needs
6780 * be a multiple of the largest chunk size times new data disks.
91adb564
N
6781 */
6782 here_new = mddev->reshape_position;
05256d98
N
6783 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6784 new_data_disks = mddev->raid_disks - max_degraded;
6785 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
0c55e022
N
6786 printk(KERN_ERR "md/raid:%s: reshape_position not "
6787 "on a stripe boundary\n", mdname(mddev));
91adb564
N
6788 return -EINVAL;
6789 }
05256d98 6790 reshape_offset = here_new * chunk_sectors;
91adb564
N
6791 /* here_new is the stripe we will write to */
6792 here_old = mddev->reshape_position;
05256d98 6793 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
6794 /* here_old is the first stripe that we might need to read
6795 * from */
67ac6011
N
6796 if (mddev->delta_disks == 0) {
6797 /* We cannot be sure it is safe to start an in-place
b5254dd5 6798 * reshape. It is only safe if user-space is monitoring
67ac6011
N
6799 * and taking constant backups.
6800 * mdadm always starts a situation like this in
6801 * readonly mode so it can take control before
6802 * allowing any writes. So just check for that.
6803 */
b5254dd5
N
6804 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6805 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6806 /* not really in-place - so OK */;
6807 else if (mddev->ro == 0) {
6808 printk(KERN_ERR "md/raid:%s: in-place reshape "
6809 "must be started in read-only mode "
6810 "- aborting\n",
0c55e022 6811 mdname(mddev));
67ac6011
N
6812 return -EINVAL;
6813 }
2c810cdd 6814 } else if (mddev->reshape_backwards
05256d98
N
6815 ? (here_new * chunk_sectors + min_offset_diff <=
6816 here_old * chunk_sectors)
6817 : (here_new * chunk_sectors >=
6818 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 6819 /* Reading from the same stripe as writing to - bad */
0c55e022
N
6820 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6821 "auto-recovery - aborting.\n",
6822 mdname(mddev));
91adb564
N
6823 return -EINVAL;
6824 }
0c55e022
N
6825 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6826 mdname(mddev));
91adb564
N
6827 /* OK, we should be able to continue; */
6828 } else {
6829 BUG_ON(mddev->level != mddev->new_level);
6830 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 6831 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 6832 BUG_ON(mddev->delta_disks != 0);
1da177e4 6833 }
91adb564 6834
245f46c2
N
6835 if (mddev->private == NULL)
6836 conf = setup_conf(mddev);
6837 else
6838 conf = mddev->private;
6839
91adb564
N
6840 if (IS_ERR(conf))
6841 return PTR_ERR(conf);
6842
7dde2ad3
SL
6843 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) {
6844 printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n",
6845 mdname(mddev));
6846 mddev->ro = 1;
6847 set_disk_ro(mddev->gendisk, 1);
6848 }
6849
b5254dd5 6850 conf->min_offset_diff = min_offset_diff;
91adb564
N
6851 mddev->thread = conf->thread;
6852 conf->thread = NULL;
6853 mddev->private = conf;
6854
17045f52
N
6855 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6856 i++) {
6857 rdev = conf->disks[i].rdev;
6858 if (!rdev && conf->disks[i].replacement) {
6859 /* The replacement is all we have yet */
6860 rdev = conf->disks[i].replacement;
6861 conf->disks[i].replacement = NULL;
6862 clear_bit(Replacement, &rdev->flags);
6863 conf->disks[i].rdev = rdev;
6864 }
6865 if (!rdev)
c148ffdc 6866 continue;
17045f52
N
6867 if (conf->disks[i].replacement &&
6868 conf->reshape_progress != MaxSector) {
6869 /* replacements and reshape simply do not mix. */
6870 printk(KERN_ERR "md: cannot handle concurrent "
6871 "replacement and reshape.\n");
6872 goto abort;
6873 }
2f115882 6874 if (test_bit(In_sync, &rdev->flags)) {
91adb564 6875 working_disks++;
2f115882
N
6876 continue;
6877 }
c148ffdc
N
6878 /* This disc is not fully in-sync. However if it
6879 * just stored parity (beyond the recovery_offset),
6880 * when we don't need to be concerned about the
6881 * array being dirty.
6882 * When reshape goes 'backwards', we never have
6883 * partially completed devices, so we only need
6884 * to worry about reshape going forwards.
6885 */
6886 /* Hack because v0.91 doesn't store recovery_offset properly. */
6887 if (mddev->major_version == 0 &&
6888 mddev->minor_version > 90)
6889 rdev->recovery_offset = reshape_offset;
5026d7a9 6890
c148ffdc
N
6891 if (rdev->recovery_offset < reshape_offset) {
6892 /* We need to check old and new layout */
6893 if (!only_parity(rdev->raid_disk,
6894 conf->algorithm,
6895 conf->raid_disks,
6896 conf->max_degraded))
6897 continue;
6898 }
6899 if (!only_parity(rdev->raid_disk,
6900 conf->prev_algo,
6901 conf->previous_raid_disks,
6902 conf->max_degraded))
6903 continue;
6904 dirty_parity_disks++;
6905 }
91adb564 6906
17045f52
N
6907 /*
6908 * 0 for a fully functional array, 1 or 2 for a degraded array.
6909 */
908f4fbd 6910 mddev->degraded = calc_degraded(conf);
91adb564 6911
674806d6 6912 if (has_failed(conf)) {
0c55e022 6913 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 6914 " (%d/%d failed)\n",
02c2de8c 6915 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
6916 goto abort;
6917 }
6918
91adb564 6919 /* device size must be a multiple of chunk size */
9d8f0363 6920 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
6921 mddev->resync_max_sectors = mddev->dev_sectors;
6922
c148ffdc 6923 if (mddev->degraded > dirty_parity_disks &&
1da177e4 6924 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
6925 if (mddev->ok_start_degraded)
6926 printk(KERN_WARNING
0c55e022
N
6927 "md/raid:%s: starting dirty degraded array"
6928 " - data corruption possible.\n",
6ff8d8ec
N
6929 mdname(mddev));
6930 else {
6931 printk(KERN_ERR
0c55e022 6932 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
6933 mdname(mddev));
6934 goto abort;
6935 }
1da177e4
LT
6936 }
6937
1da177e4 6938 if (mddev->degraded == 0)
0c55e022
N
6939 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6940 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
6941 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6942 mddev->new_layout);
1da177e4 6943 else
0c55e022
N
6944 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6945 " out of %d devices, algorithm %d\n",
6946 mdname(mddev), conf->level,
6947 mddev->raid_disks - mddev->degraded,
6948 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
6949
6950 print_raid5_conf(conf);
6951
fef9c61f 6952 if (conf->reshape_progress != MaxSector) {
fef9c61f 6953 conf->reshape_safe = conf->reshape_progress;
f6705578
N
6954 atomic_set(&conf->reshape_stripes, 0);
6955 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6956 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6957 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6958 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6959 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6960 "reshape");
f6705578
N
6961 }
6962
1da177e4 6963 /* Ok, everything is just fine now */
a64c876f
N
6964 if (mddev->to_remove == &raid5_attrs_group)
6965 mddev->to_remove = NULL;
00bcb4ac
N
6966 else if (mddev->kobj.sd &&
6967 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 6968 printk(KERN_WARNING
4a5add49 6969 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 6970 mdname(mddev));
4a5add49 6971 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 6972
4a5add49 6973 if (mddev->queue) {
9f7c2220 6974 int chunk_size;
620125f2 6975 bool discard_supported = true;
4a5add49
N
6976 /* read-ahead size must cover two whole stripes, which
6977 * is 2 * (datadisks) * chunksize where 'n' is the
6978 * number of raid devices
6979 */
6980 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6981 int stripe = data_disks *
6982 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6983 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6984 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 6985
9f7c2220
N
6986 chunk_size = mddev->chunk_sectors << 9;
6987 blk_queue_io_min(mddev->queue, chunk_size);
6988 blk_queue_io_opt(mddev->queue, chunk_size *
6989 (conf->raid_disks - conf->max_degraded));
c78afc62 6990 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
6991 /*
6992 * We can only discard a whole stripe. It doesn't make sense to
6993 * discard data disk but write parity disk
6994 */
6995 stripe = stripe * PAGE_SIZE;
4ac6875e
N
6996 /* Round up to power of 2, as discard handling
6997 * currently assumes that */
6998 while ((stripe-1) & stripe)
6999 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
7000 mddev->queue->limits.discard_alignment = stripe;
7001 mddev->queue->limits.discard_granularity = stripe;
7002 /*
7003 * unaligned part of discard request will be ignored, so can't
8e0e99ba 7004 * guarantee discard_zeroes_data
620125f2
SL
7005 */
7006 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 7007
5026d7a9
PA
7008 blk_queue_max_write_same_sectors(mddev->queue, 0);
7009
05616be5 7010 rdev_for_each(rdev, mddev) {
9f7c2220
N
7011 disk_stack_limits(mddev->gendisk, rdev->bdev,
7012 rdev->data_offset << 9);
05616be5
N
7013 disk_stack_limits(mddev->gendisk, rdev->bdev,
7014 rdev->new_data_offset << 9);
620125f2
SL
7015 /*
7016 * discard_zeroes_data is required, otherwise data
7017 * could be lost. Consider a scenario: discard a stripe
7018 * (the stripe could be inconsistent if
7019 * discard_zeroes_data is 0); write one disk of the
7020 * stripe (the stripe could be inconsistent again
7021 * depending on which disks are used to calculate
7022 * parity); the disk is broken; The stripe data of this
7023 * disk is lost.
7024 */
7025 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7026 !bdev_get_queue(rdev->bdev)->
7027 limits.discard_zeroes_data)
7028 discard_supported = false;
8e0e99ba
N
7029 /* Unfortunately, discard_zeroes_data is not currently
7030 * a guarantee - just a hint. So we only allow DISCARD
7031 * if the sysadmin has confirmed that only safe devices
7032 * are in use by setting a module parameter.
7033 */
7034 if (!devices_handle_discard_safely) {
7035 if (discard_supported) {
7036 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7037 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7038 }
7039 discard_supported = false;
7040 }
05616be5 7041 }
620125f2
SL
7042
7043 if (discard_supported &&
e7597e69
JS
7044 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7045 mddev->queue->limits.discard_granularity >= stripe)
620125f2
SL
7046 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7047 mddev->queue);
7048 else
7049 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7050 mddev->queue);
9f7c2220 7051 }
23032a0e 7052
5c7e81c3
SL
7053 if (journal_dev) {
7054 char b[BDEVNAME_SIZE];
7055
7056 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7057 mdname(mddev), bdevname(journal_dev->bdev, b));
7058 r5l_init_log(conf, journal_dev);
7059 }
7060
1da177e4
LT
7061 return 0;
7062abort:
01f96c0a 7063 md_unregister_thread(&mddev->thread);
e4f869d9
N
7064 print_raid5_conf(conf);
7065 free_conf(conf);
1da177e4 7066 mddev->private = NULL;
0c55e022 7067 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
7068 return -EIO;
7069}
7070
afa0f557 7071static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 7072{
afa0f557 7073 struct r5conf *conf = priv;
1da177e4 7074
95fc17aa 7075 free_conf(conf);
a64c876f 7076 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
7077}
7078
849674e4 7079static void raid5_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 7080{
d1688a6d 7081 struct r5conf *conf = mddev->private;
1da177e4
LT
7082 int i;
7083
9d8f0363 7084 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 7085 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 7086 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5fd13351
N
7087 rcu_read_lock();
7088 for (i = 0; i < conf->raid_disks; i++) {
7089 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7090 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7091 }
7092 rcu_read_unlock();
1da177e4 7093 seq_printf (seq, "]");
1da177e4
LT
7094}
7095
d1688a6d 7096static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
7097{
7098 int i;
7099 struct disk_info *tmp;
7100
0c55e022 7101 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
7102 if (!conf) {
7103 printk("(conf==NULL)\n");
7104 return;
7105 }
0c55e022
N
7106 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7107 conf->raid_disks,
7108 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
7109
7110 for (i = 0; i < conf->raid_disks; i++) {
7111 char b[BDEVNAME_SIZE];
7112 tmp = conf->disks + i;
7113 if (tmp->rdev)
0c55e022
N
7114 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7115 i, !test_bit(Faulty, &tmp->rdev->flags),
7116 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7117 }
7118}
7119
fd01b88c 7120static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7121{
7122 int i;
d1688a6d 7123 struct r5conf *conf = mddev->private;
1da177e4 7124 struct disk_info *tmp;
6b965620
N
7125 int count = 0;
7126 unsigned long flags;
1da177e4
LT
7127
7128 for (i = 0; i < conf->raid_disks; i++) {
7129 tmp = conf->disks + i;
dd054fce
N
7130 if (tmp->replacement
7131 && tmp->replacement->recovery_offset == MaxSector
7132 && !test_bit(Faulty, &tmp->replacement->flags)
7133 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7134 /* Replacement has just become active. */
7135 if (!tmp->rdev
7136 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7137 count++;
7138 if (tmp->rdev) {
7139 /* Replaced device not technically faulty,
7140 * but we need to be sure it gets removed
7141 * and never re-added.
7142 */
7143 set_bit(Faulty, &tmp->rdev->flags);
7144 sysfs_notify_dirent_safe(
7145 tmp->rdev->sysfs_state);
7146 }
7147 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7148 } else if (tmp->rdev
70fffd0b 7149 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7150 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7151 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7152 count++;
43c73ca4 7153 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7154 }
7155 }
6b965620 7156 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7157 mddev->degraded = calc_degraded(conf);
6b965620 7158 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7159 print_raid5_conf(conf);
6b965620 7160 return count;
1da177e4
LT
7161}
7162
b8321b68 7163static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7164{
d1688a6d 7165 struct r5conf *conf = mddev->private;
1da177e4 7166 int err = 0;
b8321b68 7167 int number = rdev->raid_disk;
657e3e4d 7168 struct md_rdev **rdevp;
1da177e4
LT
7169 struct disk_info *p = conf->disks + number;
7170
7171 print_raid5_conf(conf);
f6b6ec5c
SL
7172 if (test_bit(Journal, &rdev->flags) && conf->log) {
7173 struct r5l_log *log;
c2bb6242 7174 /*
f6b6ec5c
SL
7175 * we can't wait pending write here, as this is called in
7176 * raid5d, wait will deadlock.
c2bb6242 7177 */
f6b6ec5c
SL
7178 if (atomic_read(&mddev->writes_pending))
7179 return -EBUSY;
7180 log = conf->log;
7181 conf->log = NULL;
7182 synchronize_rcu();
7183 r5l_exit_log(log);
7184 return 0;
c2bb6242 7185 }
657e3e4d
N
7186 if (rdev == p->rdev)
7187 rdevp = &p->rdev;
7188 else if (rdev == p->replacement)
7189 rdevp = &p->replacement;
7190 else
7191 return 0;
7192
7193 if (number >= conf->raid_disks &&
7194 conf->reshape_progress == MaxSector)
7195 clear_bit(In_sync, &rdev->flags);
7196
7197 if (test_bit(In_sync, &rdev->flags) ||
7198 atomic_read(&rdev->nr_pending)) {
7199 err = -EBUSY;
7200 goto abort;
7201 }
7202 /* Only remove non-faulty devices if recovery
7203 * isn't possible.
7204 */
7205 if (!test_bit(Faulty, &rdev->flags) &&
7206 mddev->recovery_disabled != conf->recovery_disabled &&
7207 !has_failed(conf) &&
dd054fce 7208 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7209 number < conf->raid_disks) {
7210 err = -EBUSY;
7211 goto abort;
7212 }
7213 *rdevp = NULL;
d787be40
N
7214 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7215 synchronize_rcu();
7216 if (atomic_read(&rdev->nr_pending)) {
7217 /* lost the race, try later */
7218 err = -EBUSY;
7219 *rdevp = rdev;
7220 }
7221 }
7222 if (p->replacement) {
dd054fce
N
7223 /* We must have just cleared 'rdev' */
7224 p->rdev = p->replacement;
7225 clear_bit(Replacement, &p->replacement->flags);
7226 smp_mb(); /* Make sure other CPUs may see both as identical
7227 * but will never see neither - if they are careful
7228 */
7229 p->replacement = NULL;
7230 clear_bit(WantReplacement, &rdev->flags);
7231 } else
7232 /* We might have just removed the Replacement as faulty-
7233 * clear the bit just in case
7234 */
7235 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7236abort:
7237
7238 print_raid5_conf(conf);
7239 return err;
7240}
7241
fd01b88c 7242static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7243{
d1688a6d 7244 struct r5conf *conf = mddev->private;
199050ea 7245 int err = -EEXIST;
1da177e4
LT
7246 int disk;
7247 struct disk_info *p;
6c2fce2e
NB
7248 int first = 0;
7249 int last = conf->raid_disks - 1;
1da177e4 7250
f6b6ec5c
SL
7251 if (test_bit(Journal, &rdev->flags)) {
7252 char b[BDEVNAME_SIZE];
7253 if (conf->log)
7254 return -EBUSY;
7255
7256 rdev->raid_disk = 0;
7257 /*
7258 * The array is in readonly mode if journal is missing, so no
7259 * write requests running. We should be safe
7260 */
7261 r5l_init_log(conf, rdev);
7262 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7263 mdname(mddev), bdevname(rdev->bdev, b));
7264 return 0;
7265 }
7f0da59b
N
7266 if (mddev->recovery_disabled == conf->recovery_disabled)
7267 return -EBUSY;
7268
dc10c643 7269 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7270 /* no point adding a device */
199050ea 7271 return -EINVAL;
1da177e4 7272
6c2fce2e
NB
7273 if (rdev->raid_disk >= 0)
7274 first = last = rdev->raid_disk;
1da177e4
LT
7275
7276 /*
16a53ecc
N
7277 * find the disk ... but prefer rdev->saved_raid_disk
7278 * if possible.
1da177e4 7279 */
16a53ecc 7280 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7281 rdev->saved_raid_disk >= first &&
16a53ecc 7282 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7283 first = rdev->saved_raid_disk;
7284
7285 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7286 p = conf->disks + disk;
7287 if (p->rdev == NULL) {
b2d444d7 7288 clear_bit(In_sync, &rdev->flags);
1da177e4 7289 rdev->raid_disk = disk;
199050ea 7290 err = 0;
72626685
N
7291 if (rdev->saved_raid_disk != disk)
7292 conf->fullsync = 1;
d6065f7b 7293 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 7294 goto out;
1da177e4 7295 }
5cfb22a1
N
7296 }
7297 for (disk = first; disk <= last; disk++) {
7298 p = conf->disks + disk;
7bfec5f3
N
7299 if (test_bit(WantReplacement, &p->rdev->flags) &&
7300 p->replacement == NULL) {
7301 clear_bit(In_sync, &rdev->flags);
7302 set_bit(Replacement, &rdev->flags);
7303 rdev->raid_disk = disk;
7304 err = 0;
7305 conf->fullsync = 1;
7306 rcu_assign_pointer(p->replacement, rdev);
7307 break;
7308 }
7309 }
5cfb22a1 7310out:
1da177e4 7311 print_raid5_conf(conf);
199050ea 7312 return err;
1da177e4
LT
7313}
7314
fd01b88c 7315static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7316{
7317 /* no resync is happening, and there is enough space
7318 * on all devices, so we can resize.
7319 * We need to make sure resync covers any new space.
7320 * If the array is shrinking we should possibly wait until
7321 * any io in the removed space completes, but it hardly seems
7322 * worth it.
7323 */
a4a6125a 7324 sector_t newsize;
3cb5edf4
N
7325 struct r5conf *conf = mddev->private;
7326
713cf5a6
SL
7327 if (conf->log)
7328 return -EINVAL;
3cb5edf4 7329 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
7330 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7331 if (mddev->external_size &&
7332 mddev->array_sectors > newsize)
b522adcd 7333 return -EINVAL;
a4a6125a
N
7334 if (mddev->bitmap) {
7335 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7336 if (ret)
7337 return ret;
7338 }
7339 md_set_array_sectors(mddev, newsize);
f233ea5c 7340 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7341 revalidate_disk(mddev->gendisk);
b098636c
N
7342 if (sectors > mddev->dev_sectors &&
7343 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7344 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7345 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7346 }
58c0fed4 7347 mddev->dev_sectors = sectors;
4b5c7ae8 7348 mddev->resync_max_sectors = sectors;
1da177e4
LT
7349 return 0;
7350}
7351
fd01b88c 7352static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7353{
7354 /* Can only proceed if there are plenty of stripe_heads.
7355 * We need a minimum of one full stripe,, and for sensible progress
7356 * it is best to have about 4 times that.
7357 * If we require 4 times, then the default 256 4K stripe_heads will
7358 * allow for chunk sizes up to 256K, which is probably OK.
7359 * If the chunk size is greater, user-space should request more
7360 * stripe_heads first.
7361 */
d1688a6d 7362 struct r5conf *conf = mddev->private;
01ee22b4 7363 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7364 > conf->min_nr_stripes ||
01ee22b4 7365 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7366 > conf->min_nr_stripes) {
0c55e022
N
7367 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7368 mdname(mddev),
01ee22b4
N
7369 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7370 / STRIPE_SIZE)*4);
7371 return 0;
7372 }
7373 return 1;
7374}
7375
fd01b88c 7376static int check_reshape(struct mddev *mddev)
29269553 7377{
d1688a6d 7378 struct r5conf *conf = mddev->private;
29269553 7379
713cf5a6
SL
7380 if (conf->log)
7381 return -EINVAL;
88ce4930
N
7382 if (mddev->delta_disks == 0 &&
7383 mddev->new_layout == mddev->layout &&
664e7c41 7384 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7385 return 0; /* nothing to do */
674806d6 7386 if (has_failed(conf))
ec32a2bd 7387 return -EINVAL;
fdcfbbb6 7388 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7389 /* We might be able to shrink, but the devices must
7390 * be made bigger first.
7391 * For raid6, 4 is the minimum size.
7392 * Otherwise 2 is the minimum
7393 */
7394 int min = 2;
7395 if (mddev->level == 6)
7396 min = 4;
7397 if (mddev->raid_disks + mddev->delta_disks < min)
7398 return -EINVAL;
7399 }
29269553 7400
01ee22b4 7401 if (!check_stripe_cache(mddev))
29269553 7402 return -ENOSPC;
29269553 7403
738a2738
N
7404 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7405 mddev->delta_disks > 0)
7406 if (resize_chunks(conf,
7407 conf->previous_raid_disks
7408 + max(0, mddev->delta_disks),
7409 max(mddev->new_chunk_sectors,
7410 mddev->chunk_sectors)
7411 ) < 0)
7412 return -ENOMEM;
e56108d6
N
7413 return resize_stripes(conf, (conf->previous_raid_disks
7414 + mddev->delta_disks));
63c70c4f
N
7415}
7416
fd01b88c 7417static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7418{
d1688a6d 7419 struct r5conf *conf = mddev->private;
3cb03002 7420 struct md_rdev *rdev;
63c70c4f 7421 int spares = 0;
c04be0aa 7422 unsigned long flags;
63c70c4f 7423
f416885e 7424 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7425 return -EBUSY;
7426
01ee22b4
N
7427 if (!check_stripe_cache(mddev))
7428 return -ENOSPC;
7429
30b67645
N
7430 if (has_failed(conf))
7431 return -EINVAL;
7432
c6563a8c 7433 rdev_for_each(rdev, mddev) {
469518a3
N
7434 if (!test_bit(In_sync, &rdev->flags)
7435 && !test_bit(Faulty, &rdev->flags))
29269553 7436 spares++;
c6563a8c 7437 }
63c70c4f 7438
f416885e 7439 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7440 /* Not enough devices even to make a degraded array
7441 * of that size
7442 */
7443 return -EINVAL;
7444
ec32a2bd
N
7445 /* Refuse to reduce size of the array. Any reductions in
7446 * array size must be through explicit setting of array_size
7447 * attribute.
7448 */
7449 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7450 < mddev->array_sectors) {
0c55e022 7451 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
7452 "before number of disks\n", mdname(mddev));
7453 return -EINVAL;
7454 }
7455
f6705578 7456 atomic_set(&conf->reshape_stripes, 0);
29269553 7457 spin_lock_irq(&conf->device_lock);
c46501b2 7458 write_seqcount_begin(&conf->gen_lock);
29269553 7459 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7460 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7461 conf->prev_chunk_sectors = conf->chunk_sectors;
7462 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7463 conf->prev_algo = conf->algorithm;
7464 conf->algorithm = mddev->new_layout;
05616be5
N
7465 conf->generation++;
7466 /* Code that selects data_offset needs to see the generation update
7467 * if reshape_progress has been set - so a memory barrier needed.
7468 */
7469 smp_mb();
2c810cdd 7470 if (mddev->reshape_backwards)
fef9c61f
N
7471 conf->reshape_progress = raid5_size(mddev, 0, 0);
7472 else
7473 conf->reshape_progress = 0;
7474 conf->reshape_safe = conf->reshape_progress;
c46501b2 7475 write_seqcount_end(&conf->gen_lock);
29269553
N
7476 spin_unlock_irq(&conf->device_lock);
7477
4d77e3ba
N
7478 /* Now make sure any requests that proceeded on the assumption
7479 * the reshape wasn't running - like Discard or Read - have
7480 * completed.
7481 */
7482 mddev_suspend(mddev);
7483 mddev_resume(mddev);
7484
29269553
N
7485 /* Add some new drives, as many as will fit.
7486 * We know there are enough to make the newly sized array work.
3424bf6a
N
7487 * Don't add devices if we are reducing the number of
7488 * devices in the array. This is because it is not possible
7489 * to correctly record the "partially reconstructed" state of
7490 * such devices during the reshape and confusion could result.
29269553 7491 */
87a8dec9 7492 if (mddev->delta_disks >= 0) {
dafb20fa 7493 rdev_for_each(rdev, mddev)
87a8dec9
N
7494 if (rdev->raid_disk < 0 &&
7495 !test_bit(Faulty, &rdev->flags)) {
7496 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7497 if (rdev->raid_disk
9d4c7d87 7498 >= conf->previous_raid_disks)
87a8dec9 7499 set_bit(In_sync, &rdev->flags);
9d4c7d87 7500 else
87a8dec9 7501 rdev->recovery_offset = 0;
36fad858
NK
7502
7503 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7504 /* Failure here is OK */;
50da0840 7505 }
87a8dec9
N
7506 } else if (rdev->raid_disk >= conf->previous_raid_disks
7507 && !test_bit(Faulty, &rdev->flags)) {
7508 /* This is a spare that was manually added */
7509 set_bit(In_sync, &rdev->flags);
87a8dec9 7510 }
29269553 7511
87a8dec9
N
7512 /* When a reshape changes the number of devices,
7513 * ->degraded is measured against the larger of the
7514 * pre and post number of devices.
7515 */
ec32a2bd 7516 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7517 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
7518 spin_unlock_irqrestore(&conf->device_lock, flags);
7519 }
63c70c4f 7520 mddev->raid_disks = conf->raid_disks;
e516402c 7521 mddev->reshape_position = conf->reshape_progress;
850b2b42 7522 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 7523
29269553
N
7524 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7525 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 7526 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
7527 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7528 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7529 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7530 "reshape");
29269553
N
7531 if (!mddev->sync_thread) {
7532 mddev->recovery = 0;
7533 spin_lock_irq(&conf->device_lock);
ba8805b9 7534 write_seqcount_begin(&conf->gen_lock);
29269553 7535 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7536 mddev->new_chunk_sectors =
7537 conf->chunk_sectors = conf->prev_chunk_sectors;
7538 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7539 rdev_for_each(rdev, mddev)
7540 rdev->new_data_offset = rdev->data_offset;
7541 smp_wmb();
ba8805b9 7542 conf->generation --;
fef9c61f 7543 conf->reshape_progress = MaxSector;
1e3fa9bd 7544 mddev->reshape_position = MaxSector;
ba8805b9 7545 write_seqcount_end(&conf->gen_lock);
29269553
N
7546 spin_unlock_irq(&conf->device_lock);
7547 return -EAGAIN;
7548 }
c8f517c4 7549 conf->reshape_checkpoint = jiffies;
29269553
N
7550 md_wakeup_thread(mddev->sync_thread);
7551 md_new_event(mddev);
7552 return 0;
7553}
29269553 7554
ec32a2bd
N
7555/* This is called from the reshape thread and should make any
7556 * changes needed in 'conf'
7557 */
d1688a6d 7558static void end_reshape(struct r5conf *conf)
29269553 7559{
29269553 7560
f6705578 7561 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 7562 struct md_rdev *rdev;
f6705578 7563
f6705578 7564 spin_lock_irq(&conf->device_lock);
cea9c228 7565 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
7566 rdev_for_each(rdev, conf->mddev)
7567 rdev->data_offset = rdev->new_data_offset;
7568 smp_wmb();
fef9c61f 7569 conf->reshape_progress = MaxSector;
6cbd8148 7570 conf->mddev->reshape_position = MaxSector;
f6705578 7571 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7572 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7573
7574 /* read-ahead size must cover two whole stripes, which is
7575 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7576 */
4a5add49 7577 if (conf->mddev->queue) {
cea9c228 7578 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7579 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7580 / PAGE_SIZE);
16a53ecc
N
7581 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7582 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7583 }
29269553 7584 }
29269553
N
7585}
7586
ec32a2bd
N
7587/* This is called from the raid5d thread with mddev_lock held.
7588 * It makes config changes to the device.
7589 */
fd01b88c 7590static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7591{
d1688a6d 7592 struct r5conf *conf = mddev->private;
cea9c228
N
7593
7594 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7595
ec32a2bd
N
7596 if (mddev->delta_disks > 0) {
7597 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
fe67d19a
HM
7598 if (mddev->queue) {
7599 set_capacity(mddev->gendisk, mddev->array_sectors);
7600 revalidate_disk(mddev->gendisk);
7601 }
ec32a2bd
N
7602 } else {
7603 int d;
908f4fbd
N
7604 spin_lock_irq(&conf->device_lock);
7605 mddev->degraded = calc_degraded(conf);
7606 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
7607 for (d = conf->raid_disks ;
7608 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 7609 d++) {
3cb03002 7610 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
7611 if (rdev)
7612 clear_bit(In_sync, &rdev->flags);
7613 rdev = conf->disks[d].replacement;
7614 if (rdev)
7615 clear_bit(In_sync, &rdev->flags);
1a67dde0 7616 }
cea9c228 7617 }
88ce4930 7618 mddev->layout = conf->algorithm;
09c9e5fa 7619 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
7620 mddev->reshape_position = MaxSector;
7621 mddev->delta_disks = 0;
2c810cdd 7622 mddev->reshape_backwards = 0;
cea9c228
N
7623 }
7624}
7625
fd01b88c 7626static void raid5_quiesce(struct mddev *mddev, int state)
72626685 7627{
d1688a6d 7628 struct r5conf *conf = mddev->private;
72626685
N
7629
7630 switch(state) {
e464eafd
N
7631 case 2: /* resume for a suspend */
7632 wake_up(&conf->wait_for_overlap);
7633 break;
7634
72626685 7635 case 1: /* stop all writes */
566c09c5 7636 lock_all_device_hash_locks_irq(conf);
64bd660b
N
7637 /* '2' tells resync/reshape to pause so that all
7638 * active stripes can drain
7639 */
7640 conf->quiesce = 2;
b1b46486 7641 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
7642 atomic_read(&conf->active_stripes) == 0 &&
7643 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
7644 unlock_all_device_hash_locks_irq(conf),
7645 lock_all_device_hash_locks_irq(conf));
64bd660b 7646 conf->quiesce = 1;
566c09c5 7647 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
7648 /* allow reshape to continue */
7649 wake_up(&conf->wait_for_overlap);
72626685
N
7650 break;
7651
7652 case 0: /* re-enable writes */
566c09c5 7653 lock_all_device_hash_locks_irq(conf);
72626685 7654 conf->quiesce = 0;
b1b46486 7655 wake_up(&conf->wait_for_quiescent);
e464eafd 7656 wake_up(&conf->wait_for_overlap);
566c09c5 7657 unlock_all_device_hash_locks_irq(conf);
72626685
N
7658 break;
7659 }
e6c033f7 7660 r5l_quiesce(conf->log, state);
72626685 7661}
b15c2e57 7662
fd01b88c 7663static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 7664{
e373ab10 7665 struct r0conf *raid0_conf = mddev->private;
d76c8420 7666 sector_t sectors;
54071b38 7667
f1b29bca 7668 /* for raid0 takeover only one zone is supported */
e373ab10 7669 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
7670 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7671 mdname(mddev));
f1b29bca
DW
7672 return ERR_PTR(-EINVAL);
7673 }
7674
e373ab10
N
7675 sectors = raid0_conf->strip_zone[0].zone_end;
7676 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 7677 mddev->dev_sectors = sectors;
f1b29bca 7678 mddev->new_level = level;
54071b38
TM
7679 mddev->new_layout = ALGORITHM_PARITY_N;
7680 mddev->new_chunk_sectors = mddev->chunk_sectors;
7681 mddev->raid_disks += 1;
7682 mddev->delta_disks = 1;
7683 /* make sure it will be not marked as dirty */
7684 mddev->recovery_cp = MaxSector;
7685
7686 return setup_conf(mddev);
7687}
7688
fd01b88c 7689static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
7690{
7691 int chunksect;
7692
7693 if (mddev->raid_disks != 2 ||
7694 mddev->degraded > 1)
7695 return ERR_PTR(-EINVAL);
7696
7697 /* Should check if there are write-behind devices? */
7698
7699 chunksect = 64*2; /* 64K by default */
7700
7701 /* The array must be an exact multiple of chunksize */
7702 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7703 chunksect >>= 1;
7704
7705 if ((chunksect<<9) < STRIPE_SIZE)
7706 /* array size does not allow a suitable chunk size */
7707 return ERR_PTR(-EINVAL);
7708
7709 mddev->new_level = 5;
7710 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 7711 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
7712
7713 return setup_conf(mddev);
7714}
7715
fd01b88c 7716static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
7717{
7718 int new_layout;
7719
7720 switch (mddev->layout) {
7721 case ALGORITHM_LEFT_ASYMMETRIC_6:
7722 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7723 break;
7724 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7725 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7726 break;
7727 case ALGORITHM_LEFT_SYMMETRIC_6:
7728 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7729 break;
7730 case ALGORITHM_RIGHT_SYMMETRIC_6:
7731 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7732 break;
7733 case ALGORITHM_PARITY_0_6:
7734 new_layout = ALGORITHM_PARITY_0;
7735 break;
7736 case ALGORITHM_PARITY_N:
7737 new_layout = ALGORITHM_PARITY_N;
7738 break;
7739 default:
7740 return ERR_PTR(-EINVAL);
7741 }
7742 mddev->new_level = 5;
7743 mddev->new_layout = new_layout;
7744 mddev->delta_disks = -1;
7745 mddev->raid_disks -= 1;
7746 return setup_conf(mddev);
7747}
7748
fd01b88c 7749static int raid5_check_reshape(struct mddev *mddev)
b3546035 7750{
88ce4930
N
7751 /* For a 2-drive array, the layout and chunk size can be changed
7752 * immediately as not restriping is needed.
7753 * For larger arrays we record the new value - after validation
7754 * to be used by a reshape pass.
b3546035 7755 */
d1688a6d 7756 struct r5conf *conf = mddev->private;
597a711b 7757 int new_chunk = mddev->new_chunk_sectors;
b3546035 7758
597a711b 7759 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
7760 return -EINVAL;
7761 if (new_chunk > 0) {
0ba459d2 7762 if (!is_power_of_2(new_chunk))
b3546035 7763 return -EINVAL;
597a711b 7764 if (new_chunk < (PAGE_SIZE>>9))
b3546035 7765 return -EINVAL;
597a711b 7766 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
7767 /* not factor of array size */
7768 return -EINVAL;
7769 }
7770
7771 /* They look valid */
7772
88ce4930 7773 if (mddev->raid_disks == 2) {
597a711b
N
7774 /* can make the change immediately */
7775 if (mddev->new_layout >= 0) {
7776 conf->algorithm = mddev->new_layout;
7777 mddev->layout = mddev->new_layout;
88ce4930
N
7778 }
7779 if (new_chunk > 0) {
597a711b
N
7780 conf->chunk_sectors = new_chunk ;
7781 mddev->chunk_sectors = new_chunk;
88ce4930
N
7782 }
7783 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7784 md_wakeup_thread(mddev->thread);
b3546035 7785 }
50ac168a 7786 return check_reshape(mddev);
88ce4930
N
7787}
7788
fd01b88c 7789static int raid6_check_reshape(struct mddev *mddev)
88ce4930 7790{
597a711b 7791 int new_chunk = mddev->new_chunk_sectors;
50ac168a 7792
597a711b 7793 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 7794 return -EINVAL;
b3546035 7795 if (new_chunk > 0) {
0ba459d2 7796 if (!is_power_of_2(new_chunk))
88ce4930 7797 return -EINVAL;
597a711b 7798 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 7799 return -EINVAL;
597a711b 7800 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
7801 /* not factor of array size */
7802 return -EINVAL;
b3546035 7803 }
88ce4930
N
7804
7805 /* They look valid */
50ac168a 7806 return check_reshape(mddev);
b3546035
N
7807}
7808
fd01b88c 7809static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
7810{
7811 /* raid5 can take over:
f1b29bca 7812 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
7813 * raid1 - if there are two drives. We need to know the chunk size
7814 * raid4 - trivial - just use a raid4 layout.
7815 * raid6 - Providing it is a *_6 layout
d562b0c4 7816 */
f1b29bca
DW
7817 if (mddev->level == 0)
7818 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
7819 if (mddev->level == 1)
7820 return raid5_takeover_raid1(mddev);
e9d4758f
N
7821 if (mddev->level == 4) {
7822 mddev->new_layout = ALGORITHM_PARITY_N;
7823 mddev->new_level = 5;
7824 return setup_conf(mddev);
7825 }
fc9739c6
N
7826 if (mddev->level == 6)
7827 return raid5_takeover_raid6(mddev);
d562b0c4
N
7828
7829 return ERR_PTR(-EINVAL);
7830}
7831
fd01b88c 7832static void *raid4_takeover(struct mddev *mddev)
a78d38a1 7833{
f1b29bca
DW
7834 /* raid4 can take over:
7835 * raid0 - if there is only one strip zone
7836 * raid5 - if layout is right
a78d38a1 7837 */
f1b29bca
DW
7838 if (mddev->level == 0)
7839 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
7840 if (mddev->level == 5 &&
7841 mddev->layout == ALGORITHM_PARITY_N) {
7842 mddev->new_layout = 0;
7843 mddev->new_level = 4;
7844 return setup_conf(mddev);
7845 }
7846 return ERR_PTR(-EINVAL);
7847}
d562b0c4 7848
84fc4b56 7849static struct md_personality raid5_personality;
245f46c2 7850
fd01b88c 7851static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
7852{
7853 /* Currently can only take over a raid5. We map the
7854 * personality to an equivalent raid6 personality
7855 * with the Q block at the end.
7856 */
7857 int new_layout;
7858
7859 if (mddev->pers != &raid5_personality)
7860 return ERR_PTR(-EINVAL);
7861 if (mddev->degraded > 1)
7862 return ERR_PTR(-EINVAL);
7863 if (mddev->raid_disks > 253)
7864 return ERR_PTR(-EINVAL);
7865 if (mddev->raid_disks < 3)
7866 return ERR_PTR(-EINVAL);
7867
7868 switch (mddev->layout) {
7869 case ALGORITHM_LEFT_ASYMMETRIC:
7870 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7871 break;
7872 case ALGORITHM_RIGHT_ASYMMETRIC:
7873 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7874 break;
7875 case ALGORITHM_LEFT_SYMMETRIC:
7876 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7877 break;
7878 case ALGORITHM_RIGHT_SYMMETRIC:
7879 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7880 break;
7881 case ALGORITHM_PARITY_0:
7882 new_layout = ALGORITHM_PARITY_0_6;
7883 break;
7884 case ALGORITHM_PARITY_N:
7885 new_layout = ALGORITHM_PARITY_N;
7886 break;
7887 default:
7888 return ERR_PTR(-EINVAL);
7889 }
7890 mddev->new_level = 6;
7891 mddev->new_layout = new_layout;
7892 mddev->delta_disks = 1;
7893 mddev->raid_disks += 1;
7894 return setup_conf(mddev);
7895}
7896
84fc4b56 7897static struct md_personality raid6_personality =
16a53ecc
N
7898{
7899 .name = "raid6",
7900 .level = 6,
7901 .owner = THIS_MODULE,
849674e4
SL
7902 .make_request = raid5_make_request,
7903 .run = raid5_run,
afa0f557 7904 .free = raid5_free,
849674e4
SL
7905 .status = raid5_status,
7906 .error_handler = raid5_error,
16a53ecc
N
7907 .hot_add_disk = raid5_add_disk,
7908 .hot_remove_disk= raid5_remove_disk,
7909 .spare_active = raid5_spare_active,
849674e4 7910 .sync_request = raid5_sync_request,
16a53ecc 7911 .resize = raid5_resize,
80c3a6ce 7912 .size = raid5_size,
50ac168a 7913 .check_reshape = raid6_check_reshape,
f416885e 7914 .start_reshape = raid5_start_reshape,
cea9c228 7915 .finish_reshape = raid5_finish_reshape,
16a53ecc 7916 .quiesce = raid5_quiesce,
245f46c2 7917 .takeover = raid6_takeover,
5c675f83 7918 .congested = raid5_congested,
16a53ecc 7919};
84fc4b56 7920static struct md_personality raid5_personality =
1da177e4
LT
7921{
7922 .name = "raid5",
2604b703 7923 .level = 5,
1da177e4 7924 .owner = THIS_MODULE,
849674e4
SL
7925 .make_request = raid5_make_request,
7926 .run = raid5_run,
afa0f557 7927 .free = raid5_free,
849674e4
SL
7928 .status = raid5_status,
7929 .error_handler = raid5_error,
1da177e4
LT
7930 .hot_add_disk = raid5_add_disk,
7931 .hot_remove_disk= raid5_remove_disk,
7932 .spare_active = raid5_spare_active,
849674e4 7933 .sync_request = raid5_sync_request,
1da177e4 7934 .resize = raid5_resize,
80c3a6ce 7935 .size = raid5_size,
63c70c4f
N
7936 .check_reshape = raid5_check_reshape,
7937 .start_reshape = raid5_start_reshape,
cea9c228 7938 .finish_reshape = raid5_finish_reshape,
72626685 7939 .quiesce = raid5_quiesce,
d562b0c4 7940 .takeover = raid5_takeover,
5c675f83 7941 .congested = raid5_congested,
1da177e4
LT
7942};
7943
84fc4b56 7944static struct md_personality raid4_personality =
1da177e4 7945{
2604b703
N
7946 .name = "raid4",
7947 .level = 4,
7948 .owner = THIS_MODULE,
849674e4
SL
7949 .make_request = raid5_make_request,
7950 .run = raid5_run,
afa0f557 7951 .free = raid5_free,
849674e4
SL
7952 .status = raid5_status,
7953 .error_handler = raid5_error,
2604b703
N
7954 .hot_add_disk = raid5_add_disk,
7955 .hot_remove_disk= raid5_remove_disk,
7956 .spare_active = raid5_spare_active,
849674e4 7957 .sync_request = raid5_sync_request,
2604b703 7958 .resize = raid5_resize,
80c3a6ce 7959 .size = raid5_size,
3d37890b
N
7960 .check_reshape = raid5_check_reshape,
7961 .start_reshape = raid5_start_reshape,
cea9c228 7962 .finish_reshape = raid5_finish_reshape,
2604b703 7963 .quiesce = raid5_quiesce,
a78d38a1 7964 .takeover = raid4_takeover,
5c675f83 7965 .congested = raid5_congested,
2604b703
N
7966};
7967
7968static int __init raid5_init(void)
7969{
851c30c9
SL
7970 raid5_wq = alloc_workqueue("raid5wq",
7971 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7972 if (!raid5_wq)
7973 return -ENOMEM;
16a53ecc 7974 register_md_personality(&raid6_personality);
2604b703
N
7975 register_md_personality(&raid5_personality);
7976 register_md_personality(&raid4_personality);
7977 return 0;
1da177e4
LT
7978}
7979
2604b703 7980static void raid5_exit(void)
1da177e4 7981{
16a53ecc 7982 unregister_md_personality(&raid6_personality);
2604b703
N
7983 unregister_md_personality(&raid5_personality);
7984 unregister_md_personality(&raid4_personality);
851c30c9 7985 destroy_workqueue(raid5_wq);
1da177e4
LT
7986}
7987
7988module_init(raid5_init);
7989module_exit(raid5_exit);
7990MODULE_LICENSE("GPL");
0efb9e61 7991MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 7992MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
7993MODULE_ALIAS("md-raid5");
7994MODULE_ALIAS("md-raid4");
2604b703
N
7995MODULE_ALIAS("md-level-5");
7996MODULE_ALIAS("md-level-4");
16a53ecc
N
7997MODULE_ALIAS("md-personality-8"); /* RAID6 */
7998MODULE_ALIAS("md-raid6");
7999MODULE_ALIAS("md-level-6");
8000
8001/* This used to be two separate modules, they were: */
8002MODULE_ALIAS("raid5");
8003MODULE_ALIAS("raid6");