]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/md/raid5.c
raid5: remove the meaningless check in raid5_make_request
[mirror_ubuntu-jammy-kernel.git] / drivers / md / raid5.c
CommitLineData
af1a8899 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 6 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 7 *
16a53ecc
N
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
1da177e4
LT
11 */
12
ae3c20cc
N
13/*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 27 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
1da177e4 37
bff61975 38#include <linux/blkdev.h>
f6705578 39#include <linux/kthread.h>
f701d589 40#include <linux/raid/pq.h>
91c00924 41#include <linux/async_tx.h>
056075c7 42#include <linux/module.h>
07a3b417 43#include <linux/async.h>
bff61975 44#include <linux/seq_file.h>
36d1c647 45#include <linux/cpu.h>
5a0e3ad6 46#include <linux/slab.h>
8bda470e 47#include <linux/ratelimit.h>
851c30c9 48#include <linux/nodemask.h>
3f07c014 49
a9add5d9 50#include <trace/events/block.h>
aaf9f12e 51#include <linux/list_sort.h>
a9add5d9 52
43b2e5d8 53#include "md.h"
bff61975 54#include "raid5.h"
54071b38 55#include "raid0.h"
935fe098 56#include "md-bitmap.h"
ff875738 57#include "raid5-log.h"
72626685 58
394ed8e4
SL
59#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
60
851c30c9
SL
61#define cpu_to_group(cpu) cpu_to_node(cpu)
62#define ANY_GROUP NUMA_NO_NODE
63
8e0e99ba
N
64static bool devices_handle_discard_safely = false;
65module_param(devices_handle_discard_safely, bool, 0644);
66MODULE_PARM_DESC(devices_handle_discard_safely,
67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 68static struct workqueue_struct *raid5_wq;
1da177e4 69
d1688a6d 70static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
71{
72 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
73 return &conf->stripe_hashtbl[hash];
74}
1da177e4 75
566c09c5
SL
76static inline int stripe_hash_locks_hash(sector_t sect)
77{
78 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
79}
80
81static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82{
83 spin_lock_irq(conf->hash_locks + hash);
84 spin_lock(&conf->device_lock);
85}
86
87static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
88{
89 spin_unlock(&conf->device_lock);
90 spin_unlock_irq(conf->hash_locks + hash);
91}
92
93static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
94{
95 int i;
3d05f3ae 96 spin_lock_irq(conf->hash_locks);
566c09c5
SL
97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99 spin_lock(&conf->device_lock);
100}
101
102static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
103{
104 int i;
105 spin_unlock(&conf->device_lock);
3d05f3ae
JC
106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107 spin_unlock(conf->hash_locks + i);
108 spin_unlock_irq(conf->hash_locks);
566c09c5
SL
109}
110
d0dabf7e
N
111/* Find first data disk in a raid6 stripe */
112static inline int raid6_d0(struct stripe_head *sh)
113{
67cc2b81
N
114 if (sh->ddf_layout)
115 /* ddf always start from first device */
116 return 0;
117 /* md starts just after Q block */
d0dabf7e
N
118 if (sh->qd_idx == sh->disks - 1)
119 return 0;
120 else
121 return sh->qd_idx + 1;
122}
16a53ecc
N
123static inline int raid6_next_disk(int disk, int raid_disks)
124{
125 disk++;
126 return (disk < raid_disks) ? disk : 0;
127}
a4456856 128
d0dabf7e
N
129/* When walking through the disks in a raid5, starting at raid6_d0,
130 * We need to map each disk to a 'slot', where the data disks are slot
131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132 * is raid_disks-1. This help does that mapping.
133 */
67cc2b81
N
134static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135 int *count, int syndrome_disks)
d0dabf7e 136{
6629542e 137 int slot = *count;
67cc2b81 138
e4424fee 139 if (sh->ddf_layout)
6629542e 140 (*count)++;
d0dabf7e 141 if (idx == sh->pd_idx)
67cc2b81 142 return syndrome_disks;
d0dabf7e 143 if (idx == sh->qd_idx)
67cc2b81 144 return syndrome_disks + 1;
e4424fee 145 if (!sh->ddf_layout)
6629542e 146 (*count)++;
d0dabf7e
N
147 return slot;
148}
149
d1688a6d 150static void print_raid5_conf (struct r5conf *conf);
1da177e4 151
600aa109
DW
152static int stripe_operations_active(struct stripe_head *sh)
153{
154 return sh->check_state || sh->reconstruct_state ||
155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
157}
158
535ae4eb
SL
159static bool stripe_is_lowprio(struct stripe_head *sh)
160{
161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163 !test_bit(STRIPE_R5C_CACHING, &sh->state);
164}
165
851c30c9
SL
166static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
167{
168 struct r5conf *conf = sh->raid_conf;
169 struct r5worker_group *group;
bfc90cb0 170 int thread_cnt;
851c30c9
SL
171 int i, cpu = sh->cpu;
172
173 if (!cpu_online(cpu)) {
174 cpu = cpumask_any(cpu_online_mask);
175 sh->cpu = cpu;
176 }
177
178 if (list_empty(&sh->lru)) {
179 struct r5worker_group *group;
180 group = conf->worker_groups + cpu_to_group(cpu);
535ae4eb
SL
181 if (stripe_is_lowprio(sh))
182 list_add_tail(&sh->lru, &group->loprio_list);
183 else
184 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
185 group->stripes_cnt++;
186 sh->group = group;
851c30c9
SL
187 }
188
189 if (conf->worker_cnt_per_group == 0) {
190 md_wakeup_thread(conf->mddev->thread);
191 return;
192 }
193
194 group = conf->worker_groups + cpu_to_group(sh->cpu);
195
bfc90cb0
SL
196 group->workers[0].working = true;
197 /* at least one worker should run to avoid race */
198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
199
200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201 /* wakeup more workers */
202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203 if (group->workers[i].working == false) {
204 group->workers[i].working = true;
205 queue_work_on(sh->cpu, raid5_wq,
206 &group->workers[i].work);
207 thread_cnt--;
208 }
209 }
851c30c9
SL
210}
211
566c09c5
SL
212static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213 struct list_head *temp_inactive_list)
1da177e4 214{
1e6d690b
SL
215 int i;
216 int injournal = 0; /* number of date pages with R5_InJournal */
217
4eb788df
SL
218 BUG_ON(!list_empty(&sh->lru));
219 BUG_ON(atomic_read(&conf->active_stripes)==0);
1e6d690b
SL
220
221 if (r5c_is_writeback(conf->log))
222 for (i = sh->disks; i--; )
223 if (test_bit(R5_InJournal, &sh->dev[i].flags))
224 injournal++;
a39f7afd 225 /*
5ddf0440
SL
226 * In the following cases, the stripe cannot be released to cached
227 * lists. Therefore, we make the stripe write out and set
228 * STRIPE_HANDLE:
229 * 1. when quiesce in r5c write back;
230 * 2. when resync is requested fot the stripe.
a39f7afd 231 */
5ddf0440
SL
232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233 (conf->quiesce && r5c_is_writeback(conf->log) &&
234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
a39f7afd
SL
235 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236 r5c_make_stripe_write_out(sh);
237 set_bit(STRIPE_HANDLE, &sh->state);
238 }
1e6d690b 239
4eb788df
SL
240 if (test_bit(STRIPE_HANDLE, &sh->state)) {
241 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 243 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
245 sh->bm_seq - conf->seq_write > 0)
246 list_add_tail(&sh->lru, &conf->bitmap_list);
247 else {
248 clear_bit(STRIPE_DELAYED, &sh->state);
249 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9 250 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
251 if (stripe_is_lowprio(sh))
252 list_add_tail(&sh->lru,
253 &conf->loprio_list);
254 else
255 list_add_tail(&sh->lru,
256 &conf->handle_list);
851c30c9
SL
257 } else {
258 raid5_wakeup_stripe_thread(sh);
259 return;
260 }
4eb788df
SL
261 }
262 md_wakeup_thread(conf->mddev->thread);
263 } else {
264 BUG_ON(stripe_operations_active(sh));
265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266 if (atomic_dec_return(&conf->preread_active_stripes)
267 < IO_THRESHOLD)
268 md_wakeup_thread(conf->mddev->thread);
269 atomic_dec(&conf->active_stripes);
1e6d690b
SL
270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271 if (!r5c_is_writeback(conf->log))
272 list_add_tail(&sh->lru, temp_inactive_list);
273 else {
274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
275 if (injournal == 0)
276 list_add_tail(&sh->lru, temp_inactive_list);
277 else if (injournal == conf->raid_disks - conf->max_degraded) {
278 /* full stripe */
279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280 atomic_inc(&conf->r5c_cached_full_stripes);
281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282 atomic_dec(&conf->r5c_cached_partial_stripes);
283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
a39f7afd 284 r5c_check_cached_full_stripe(conf);
03b047f4
SL
285 } else
286 /*
287 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 * r5c_try_caching_write(). No need to
289 * set it again.
290 */
1e6d690b 291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
1e6d690b
SL
292 }
293 }
1da177e4
LT
294 }
295}
d0dabf7e 296
566c09c5
SL
297static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298 struct list_head *temp_inactive_list)
4eb788df
SL
299{
300 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
301 do_release_stripe(conf, sh, temp_inactive_list);
302}
303
304/*
305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
306 *
307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308 * given time. Adding stripes only takes device lock, while deleting stripes
309 * only takes hash lock.
310 */
311static void release_inactive_stripe_list(struct r5conf *conf,
312 struct list_head *temp_inactive_list,
313 int hash)
314{
315 int size;
6ab2a4b8 316 bool do_wakeup = false;
566c09c5
SL
317 unsigned long flags;
318
319 if (hash == NR_STRIPE_HASH_LOCKS) {
320 size = NR_STRIPE_HASH_LOCKS;
321 hash = NR_STRIPE_HASH_LOCKS - 1;
322 } else
323 size = 1;
324 while (size) {
325 struct list_head *list = &temp_inactive_list[size - 1];
326
327 /*
6d036f7d 328 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
329 * remove stripes from the list
330 */
331 if (!list_empty_careful(list)) {
332 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
333 if (list_empty(conf->inactive_list + hash) &&
334 !list_empty(list))
335 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 336 list_splice_tail_init(list, conf->inactive_list + hash);
6ab2a4b8 337 do_wakeup = true;
566c09c5
SL
338 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
339 }
340 size--;
341 hash--;
342 }
343
344 if (do_wakeup) {
6ab2a4b8 345 wake_up(&conf->wait_for_stripe);
b1b46486
YL
346 if (atomic_read(&conf->active_stripes) == 0)
347 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
348 if (conf->retry_read_aligned)
349 md_wakeup_thread(conf->mddev->thread);
350 }
4eb788df
SL
351}
352
773ca82f 353/* should hold conf->device_lock already */
566c09c5
SL
354static int release_stripe_list(struct r5conf *conf,
355 struct list_head *temp_inactive_list)
773ca82f 356{
eae8263f 357 struct stripe_head *sh, *t;
773ca82f
SL
358 int count = 0;
359 struct llist_node *head;
360
361 head = llist_del_all(&conf->released_stripes);
d265d9dc 362 head = llist_reverse_order(head);
eae8263f 363 llist_for_each_entry_safe(sh, t, head, release_list) {
566c09c5
SL
364 int hash;
365
773ca82f
SL
366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367 smp_mb();
368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
369 /*
370 * Don't worry the bit is set here, because if the bit is set
371 * again, the count is always > 1. This is true for
372 * STRIPE_ON_UNPLUG_LIST bit too.
373 */
566c09c5
SL
374 hash = sh->hash_lock_index;
375 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
376 count++;
377 }
378
379 return count;
380}
381
6d036f7d 382void raid5_release_stripe(struct stripe_head *sh)
1da177e4 383{
d1688a6d 384 struct r5conf *conf = sh->raid_conf;
1da177e4 385 unsigned long flags;
566c09c5
SL
386 struct list_head list;
387 int hash;
773ca82f 388 bool wakeup;
16a53ecc 389
cf170f3f
ES
390 /* Avoid release_list until the last reference.
391 */
392 if (atomic_add_unless(&sh->count, -1, 1))
393 return;
394
ad4068de 395 if (unlikely(!conf->mddev->thread) ||
396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
397 goto slow_path;
398 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
399 if (wakeup)
400 md_wakeup_thread(conf->mddev->thread);
401 return;
402slow_path:
773ca82f 403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
685dbcaa 404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
566c09c5
SL
405 INIT_LIST_HEAD(&list);
406 hash = sh->hash_lock_index;
407 do_release_stripe(conf, sh, &list);
08edaaa6 408 spin_unlock_irqrestore(&conf->device_lock, flags);
566c09c5 409 release_inactive_stripe_list(conf, &list, hash);
4eb788df 410 }
1da177e4
LT
411}
412
fccddba0 413static inline void remove_hash(struct stripe_head *sh)
1da177e4 414{
45b4233c
DW
415 pr_debug("remove_hash(), stripe %llu\n",
416 (unsigned long long)sh->sector);
1da177e4 417
fccddba0 418 hlist_del_init(&sh->hash);
1da177e4
LT
419}
420
d1688a6d 421static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 422{
fccddba0 423 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 424
45b4233c
DW
425 pr_debug("insert_hash(), stripe %llu\n",
426 (unsigned long long)sh->sector);
1da177e4 427
fccddba0 428 hlist_add_head(&sh->hash, hp);
1da177e4
LT
429}
430
1da177e4 431/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 432static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
433{
434 struct stripe_head *sh = NULL;
435 struct list_head *first;
436
566c09c5 437 if (list_empty(conf->inactive_list + hash))
1da177e4 438 goto out;
566c09c5 439 first = (conf->inactive_list + hash)->next;
1da177e4
LT
440 sh = list_entry(first, struct stripe_head, lru);
441 list_del_init(first);
442 remove_hash(sh);
443 atomic_inc(&conf->active_stripes);
566c09c5 444 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
445 if (list_empty(conf->inactive_list + hash))
446 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
447out:
448 return sh;
449}
450
e4e11e38 451static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
452{
453 struct page *p;
454 int i;
e4e11e38 455 int num = sh->raid_conf->pool_size;
1da177e4 456
e4e11e38 457 for (i = 0; i < num ; i++) {
d592a996 458 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
459 p = sh->dev[i].page;
460 if (!p)
461 continue;
462 sh->dev[i].page = NULL;
2d1f3b5d 463 put_page(p);
1da177e4
LT
464 }
465}
466
a9683a79 467static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
468{
469 int i;
e4e11e38 470 int num = sh->raid_conf->pool_size;
1da177e4 471
e4e11e38 472 for (i = 0; i < num; i++) {
1da177e4
LT
473 struct page *page;
474
a9683a79 475 if (!(page = alloc_page(gfp))) {
1da177e4
LT
476 return 1;
477 }
478 sh->dev[i].page = page;
d592a996 479 sh->dev[i].orig_page = page;
1da177e4 480 }
3418d036 481
1da177e4
LT
482 return 0;
483}
484
d1688a6d 485static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 486 struct stripe_head *sh);
1da177e4 487
b5663ba4 488static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 489{
d1688a6d 490 struct r5conf *conf = sh->raid_conf;
566c09c5 491 int i, seq;
1da177e4 492
78bafebd
ES
493 BUG_ON(atomic_read(&sh->count) != 0);
494 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 495 BUG_ON(stripe_operations_active(sh));
59fc630b 496 BUG_ON(sh->batch_head);
d84e0f10 497
45b4233c 498 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 499 (unsigned long long)sector);
566c09c5
SL
500retry:
501 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 502 sh->generation = conf->generation - previous;
b5663ba4 503 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 504 sh->sector = sector;
911d4ee8 505 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
506 sh->state = 0;
507
7ecaa1e6 508 for (i = sh->disks; i--; ) {
1da177e4
LT
509 struct r5dev *dev = &sh->dev[i];
510
d84e0f10 511 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 512 test_bit(R5_LOCKED, &dev->flags)) {
cc6167b4 513 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 514 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 515 dev->read, dev->towrite, dev->written,
1da177e4 516 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 517 WARN_ON(1);
1da177e4
LT
518 }
519 dev->flags = 0;
27a4ff8f 520 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4 521 }
566c09c5
SL
522 if (read_seqcount_retry(&conf->gen_lock, seq))
523 goto retry;
7a87f434 524 sh->overwrite_disks = 0;
1da177e4 525 insert_hash(conf, sh);
851c30c9 526 sh->cpu = smp_processor_id();
da41ba65 527 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
528}
529
d1688a6d 530static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 531 short generation)
1da177e4
LT
532{
533 struct stripe_head *sh;
534
45b4233c 535 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 536 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 537 if (sh->sector == sector && sh->generation == generation)
1da177e4 538 return sh;
45b4233c 539 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
540 return NULL;
541}
542
674806d6
N
543/*
544 * Need to check if array has failed when deciding whether to:
545 * - start an array
546 * - remove non-faulty devices
547 * - add a spare
548 * - allow a reshape
549 * This determination is simple when no reshape is happening.
550 * However if there is a reshape, we need to carefully check
551 * both the before and after sections.
552 * This is because some failed devices may only affect one
553 * of the two sections, and some non-in_sync devices may
554 * be insync in the section most affected by failed devices.
555 */
2e38a37f 556int raid5_calc_degraded(struct r5conf *conf)
674806d6 557{
908f4fbd 558 int degraded, degraded2;
674806d6 559 int i;
674806d6
N
560
561 rcu_read_lock();
562 degraded = 0;
563 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 564 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
565 if (rdev && test_bit(Faulty, &rdev->flags))
566 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
567 if (!rdev || test_bit(Faulty, &rdev->flags))
568 degraded++;
569 else if (test_bit(In_sync, &rdev->flags))
570 ;
571 else
572 /* not in-sync or faulty.
573 * If the reshape increases the number of devices,
574 * this is being recovered by the reshape, so
575 * this 'previous' section is not in_sync.
576 * If the number of devices is being reduced however,
577 * the device can only be part of the array if
578 * we are reverting a reshape, so this section will
579 * be in-sync.
580 */
581 if (conf->raid_disks >= conf->previous_raid_disks)
582 degraded++;
583 }
584 rcu_read_unlock();
908f4fbd
N
585 if (conf->raid_disks == conf->previous_raid_disks)
586 return degraded;
674806d6 587 rcu_read_lock();
908f4fbd 588 degraded2 = 0;
674806d6 589 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 590 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
591 if (rdev && test_bit(Faulty, &rdev->flags))
592 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 593 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 594 degraded2++;
674806d6
N
595 else if (test_bit(In_sync, &rdev->flags))
596 ;
597 else
598 /* not in-sync or faulty.
599 * If reshape increases the number of devices, this
600 * section has already been recovered, else it
601 * almost certainly hasn't.
602 */
603 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 604 degraded2++;
674806d6
N
605 }
606 rcu_read_unlock();
908f4fbd
N
607 if (degraded2 > degraded)
608 return degraded2;
609 return degraded;
610}
611
612static int has_failed(struct r5conf *conf)
613{
614 int degraded;
615
616 if (conf->mddev->reshape_position == MaxSector)
617 return conf->mddev->degraded > conf->max_degraded;
618
2e38a37f 619 degraded = raid5_calc_degraded(conf);
674806d6
N
620 if (degraded > conf->max_degraded)
621 return 1;
622 return 0;
623}
624
6d036f7d
SL
625struct stripe_head *
626raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
627 int previous, int noblock, int noquiesce)
1da177e4
LT
628{
629 struct stripe_head *sh;
566c09c5 630 int hash = stripe_hash_locks_hash(sector);
ff00d3b4 631 int inc_empty_inactive_list_flag;
1da177e4 632
45b4233c 633 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 634
566c09c5 635 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
636
637 do {
b1b46486 638 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 639 conf->quiesce == 0 || noquiesce,
566c09c5 640 *(conf->hash_locks + hash));
86b42c71 641 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 642 if (!sh) {
edbe83ab 643 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 644 sh = get_free_stripe(conf, hash);
713bc5c2
SL
645 if (!sh && !test_bit(R5_DID_ALLOC,
646 &conf->cache_state))
edbe83ab
N
647 set_bit(R5_ALLOC_MORE,
648 &conf->cache_state);
649 }
1da177e4
LT
650 if (noblock && sh == NULL)
651 break;
a39f7afd
SL
652
653 r5c_check_stripe_cache_usage(conf);
1da177e4 654 if (!sh) {
5423399a
N
655 set_bit(R5_INACTIVE_BLOCKED,
656 &conf->cache_state);
a39f7afd 657 r5l_wake_reclaim(conf->log, 0);
6ab2a4b8
SL
658 wait_event_lock_irq(
659 conf->wait_for_stripe,
566c09c5
SL
660 !list_empty(conf->inactive_list + hash) &&
661 (atomic_read(&conf->active_stripes)
662 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
663 || !test_bit(R5_INACTIVE_BLOCKED,
664 &conf->cache_state)),
6ab2a4b8 665 *(conf->hash_locks + hash));
5423399a
N
666 clear_bit(R5_INACTIVE_BLOCKED,
667 &conf->cache_state);
7da9d450 668 } else {
b5663ba4 669 init_stripe(sh, sector, previous);
7da9d450
N
670 atomic_inc(&sh->count);
671 }
e240c183 672 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 673 spin_lock(&conf->device_lock);
e240c183 674 if (!atomic_read(&sh->count)) {
1da177e4
LT
675 if (!test_bit(STRIPE_HANDLE, &sh->state))
676 atomic_inc(&conf->active_stripes);
5af9bef7
N
677 BUG_ON(list_empty(&sh->lru) &&
678 !test_bit(STRIPE_EXPANDING, &sh->state));
ff00d3b4
ZL
679 inc_empty_inactive_list_flag = 0;
680 if (!list_empty(conf->inactive_list + hash))
681 inc_empty_inactive_list_flag = 1;
16a53ecc 682 list_del_init(&sh->lru);
ff00d3b4
ZL
683 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
684 atomic_inc(&conf->empty_inactive_list_nr);
bfc90cb0
SL
685 if (sh->group) {
686 sh->group->stripes_cnt--;
687 sh->group = NULL;
688 }
1da177e4 689 }
7da9d450 690 atomic_inc(&sh->count);
6d183de4 691 spin_unlock(&conf->device_lock);
1da177e4
LT
692 }
693 } while (sh == NULL);
694
566c09c5 695 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
696 return sh;
697}
698
7a87f434 699static bool is_full_stripe_write(struct stripe_head *sh)
700{
701 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
702 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
703}
704
59fc630b 705static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
368ecade
CH
706 __acquires(&sh1->stripe_lock)
707 __acquires(&sh2->stripe_lock)
59fc630b 708{
59fc630b 709 if (sh1 > sh2) {
3d05f3ae 710 spin_lock_irq(&sh2->stripe_lock);
59fc630b 711 spin_lock_nested(&sh1->stripe_lock, 1);
712 } else {
3d05f3ae 713 spin_lock_irq(&sh1->stripe_lock);
59fc630b 714 spin_lock_nested(&sh2->stripe_lock, 1);
715 }
716}
717
718static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
368ecade
CH
719 __releases(&sh1->stripe_lock)
720 __releases(&sh2->stripe_lock)
59fc630b 721{
722 spin_unlock(&sh1->stripe_lock);
3d05f3ae 723 spin_unlock_irq(&sh2->stripe_lock);
59fc630b 724}
725
726/* Only freshly new full stripe normal write stripe can be added to a batch list */
727static bool stripe_can_batch(struct stripe_head *sh)
728{
9c3e333d
SL
729 struct r5conf *conf = sh->raid_conf;
730
e254de6b 731 if (raid5_has_log(conf) || raid5_has_ppl(conf))
9c3e333d 732 return false;
59fc630b 733 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 734 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 735 is_full_stripe_write(sh);
736}
737
738/* we only do back search */
739static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
740{
741 struct stripe_head *head;
742 sector_t head_sector, tmp_sec;
743 int hash;
744 int dd_idx;
ff00d3b4 745 int inc_empty_inactive_list_flag;
59fc630b 746
59fc630b 747 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
748 tmp_sec = sh->sector;
749 if (!sector_div(tmp_sec, conf->chunk_sectors))
750 return;
751 head_sector = sh->sector - STRIPE_SECTORS;
752
753 hash = stripe_hash_locks_hash(head_sector);
754 spin_lock_irq(conf->hash_locks + hash);
755 head = __find_stripe(conf, head_sector, conf->generation);
756 if (head && !atomic_inc_not_zero(&head->count)) {
757 spin_lock(&conf->device_lock);
758 if (!atomic_read(&head->count)) {
759 if (!test_bit(STRIPE_HANDLE, &head->state))
760 atomic_inc(&conf->active_stripes);
761 BUG_ON(list_empty(&head->lru) &&
762 !test_bit(STRIPE_EXPANDING, &head->state));
ff00d3b4
ZL
763 inc_empty_inactive_list_flag = 0;
764 if (!list_empty(conf->inactive_list + hash))
765 inc_empty_inactive_list_flag = 1;
59fc630b 766 list_del_init(&head->lru);
ff00d3b4
ZL
767 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
768 atomic_inc(&conf->empty_inactive_list_nr);
59fc630b 769 if (head->group) {
770 head->group->stripes_cnt--;
771 head->group = NULL;
772 }
773 }
774 atomic_inc(&head->count);
775 spin_unlock(&conf->device_lock);
776 }
777 spin_unlock_irq(conf->hash_locks + hash);
778
779 if (!head)
780 return;
781 if (!stripe_can_batch(head))
782 goto out;
783
784 lock_two_stripes(head, sh);
785 /* clear_batch_ready clear the flag */
786 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
787 goto unlock_out;
788
789 if (sh->batch_head)
790 goto unlock_out;
791
792 dd_idx = 0;
793 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
794 dd_idx++;
1eff9d32 795 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796a5cf0 796 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
59fc630b 797 goto unlock_out;
798
799 if (head->batch_head) {
800 spin_lock(&head->batch_head->batch_lock);
801 /* This batch list is already running */
802 if (!stripe_can_batch(head)) {
803 spin_unlock(&head->batch_head->batch_lock);
804 goto unlock_out;
805 }
3664847d
SL
806 /*
807 * We must assign batch_head of this stripe within the
808 * batch_lock, otherwise clear_batch_ready of batch head
809 * stripe could clear BATCH_READY bit of this stripe and
810 * this stripe->batch_head doesn't get assigned, which
811 * could confuse clear_batch_ready for this stripe
812 */
813 sh->batch_head = head->batch_head;
59fc630b 814
815 /*
816 * at this point, head's BATCH_READY could be cleared, but we
817 * can still add the stripe to batch list
818 */
819 list_add(&sh->batch_list, &head->batch_list);
820 spin_unlock(&head->batch_head->batch_lock);
59fc630b 821 } else {
822 head->batch_head = head;
823 sh->batch_head = head->batch_head;
824 spin_lock(&head->batch_lock);
825 list_add_tail(&sh->batch_list, &head->batch_list);
826 spin_unlock(&head->batch_lock);
827 }
828
829 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
830 if (atomic_dec_return(&conf->preread_active_stripes)
831 < IO_THRESHOLD)
832 md_wakeup_thread(conf->mddev->thread);
833
2b6b2457
N
834 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
835 int seq = sh->bm_seq;
836 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
837 sh->batch_head->bm_seq > seq)
838 seq = sh->batch_head->bm_seq;
839 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
840 sh->batch_head->bm_seq = seq;
841 }
842
59fc630b 843 atomic_inc(&sh->count);
844unlock_out:
845 unlock_two_stripes(head, sh);
846out:
6d036f7d 847 raid5_release_stripe(head);
59fc630b 848}
849
05616be5
N
850/* Determine if 'data_offset' or 'new_data_offset' should be used
851 * in this stripe_head.
852 */
853static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
854{
855 sector_t progress = conf->reshape_progress;
856 /* Need a memory barrier to make sure we see the value
857 * of conf->generation, or ->data_offset that was set before
858 * reshape_progress was updated.
859 */
860 smp_rmb();
861 if (progress == MaxSector)
862 return 0;
863 if (sh->generation == conf->generation - 1)
864 return 0;
865 /* We are in a reshape, and this is a new-generation stripe,
866 * so use new_data_offset.
867 */
868 return 1;
869}
870
aaf9f12e 871static void dispatch_bio_list(struct bio_list *tmp)
765d704d 872{
765d704d
SL
873 struct bio *bio;
874
aaf9f12e 875 while ((bio = bio_list_pop(tmp)))
ed00aabd 876 submit_bio_noacct(bio);
aaf9f12e
SL
877}
878
879static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
880{
881 const struct r5pending_data *da = list_entry(a,
882 struct r5pending_data, sibling);
883 const struct r5pending_data *db = list_entry(b,
884 struct r5pending_data, sibling);
885 if (da->sector > db->sector)
886 return 1;
887 if (da->sector < db->sector)
888 return -1;
889 return 0;
890}
891
892static void dispatch_defer_bios(struct r5conf *conf, int target,
893 struct bio_list *list)
894{
895 struct r5pending_data *data;
896 struct list_head *first, *next = NULL;
897 int cnt = 0;
898
899 if (conf->pending_data_cnt == 0)
900 return;
901
902 list_sort(NULL, &conf->pending_list, cmp_stripe);
903
904 first = conf->pending_list.next;
905
906 /* temporarily move the head */
907 if (conf->next_pending_data)
908 list_move_tail(&conf->pending_list,
909 &conf->next_pending_data->sibling);
910
911 while (!list_empty(&conf->pending_list)) {
912 data = list_first_entry(&conf->pending_list,
913 struct r5pending_data, sibling);
914 if (&data->sibling == first)
915 first = data->sibling.next;
916 next = data->sibling.next;
917
918 bio_list_merge(list, &data->bios);
919 list_move(&data->sibling, &conf->free_list);
920 cnt++;
921 if (cnt >= target)
922 break;
923 }
924 conf->pending_data_cnt -= cnt;
925 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
926
927 if (next != &conf->pending_list)
928 conf->next_pending_data = list_entry(next,
929 struct r5pending_data, sibling);
930 else
931 conf->next_pending_data = NULL;
932 /* list isn't empty */
933 if (first != &conf->pending_list)
934 list_move_tail(&conf->pending_list, first);
935}
936
937static void flush_deferred_bios(struct r5conf *conf)
938{
939 struct bio_list tmp = BIO_EMPTY_LIST;
940
941 if (conf->pending_data_cnt == 0)
765d704d
SL
942 return;
943
765d704d 944 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
945 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
946 BUG_ON(conf->pending_data_cnt != 0);
765d704d
SL
947 spin_unlock(&conf->pending_bios_lock);
948
aaf9f12e 949 dispatch_bio_list(&tmp);
765d704d
SL
950}
951
aaf9f12e
SL
952static void defer_issue_bios(struct r5conf *conf, sector_t sector,
953 struct bio_list *bios)
765d704d 954{
aaf9f12e
SL
955 struct bio_list tmp = BIO_EMPTY_LIST;
956 struct r5pending_data *ent;
957
765d704d 958 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
959 ent = list_first_entry(&conf->free_list, struct r5pending_data,
960 sibling);
961 list_move_tail(&ent->sibling, &conf->pending_list);
962 ent->sector = sector;
963 bio_list_init(&ent->bios);
964 bio_list_merge(&ent->bios, bios);
965 conf->pending_data_cnt++;
966 if (conf->pending_data_cnt >= PENDING_IO_MAX)
967 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
968
765d704d 969 spin_unlock(&conf->pending_bios_lock);
aaf9f12e
SL
970
971 dispatch_bio_list(&tmp);
765d704d
SL
972}
973
6712ecf8 974static void
4246a0b6 975raid5_end_read_request(struct bio *bi);
6712ecf8 976static void
4246a0b6 977raid5_end_write_request(struct bio *bi);
91c00924 978
c4e5ac0a 979static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 980{
d1688a6d 981 struct r5conf *conf = sh->raid_conf;
91c00924 982 int i, disks = sh->disks;
59fc630b 983 struct stripe_head *head_sh = sh;
aaf9f12e
SL
984 struct bio_list pending_bios = BIO_EMPTY_LIST;
985 bool should_defer;
91c00924
DW
986
987 might_sleep();
988
ff875738
AP
989 if (log_stripe(sh, s) == 0)
990 return;
1e6d690b 991
aaf9f12e 992 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1e6d690b 993
91c00924 994 for (i = disks; i--; ) {
796a5cf0 995 int op, op_flags = 0;
9a3e1101 996 int replace_only = 0;
977df362
N
997 struct bio *bi, *rbi;
998 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 999
1000 sh = head_sh;
e9c7469b 1001 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
796a5cf0 1002 op = REQ_OP_WRITE;
e9c7469b 1003 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
70fd7614 1004 op_flags = REQ_FUA;
9e444768 1005 if (test_bit(R5_Discard, &sh->dev[i].flags))
796a5cf0 1006 op = REQ_OP_DISCARD;
e9c7469b 1007 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
796a5cf0 1008 op = REQ_OP_READ;
9a3e1101
N
1009 else if (test_and_clear_bit(R5_WantReplace,
1010 &sh->dev[i].flags)) {
796a5cf0 1011 op = REQ_OP_WRITE;
9a3e1101
N
1012 replace_only = 1;
1013 } else
91c00924 1014 continue;
bc0934f0 1015 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
796a5cf0 1016 op_flags |= REQ_SYNC;
91c00924 1017
59fc630b 1018again:
91c00924 1019 bi = &sh->dev[i].req;
977df362 1020 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 1021
91c00924 1022 rcu_read_lock();
9a3e1101 1023 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
1024 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1025 rdev = rcu_dereference(conf->disks[i].rdev);
1026 if (!rdev) {
1027 rdev = rrdev;
1028 rrdev = NULL;
1029 }
796a5cf0 1030 if (op_is_write(op)) {
9a3e1101
N
1031 if (replace_only)
1032 rdev = NULL;
dd054fce
N
1033 if (rdev == rrdev)
1034 /* We raced and saw duplicates */
1035 rrdev = NULL;
9a3e1101 1036 } else {
59fc630b 1037 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
1038 rdev = rrdev;
1039 rrdev = NULL;
1040 }
977df362 1041
91c00924
DW
1042 if (rdev && test_bit(Faulty, &rdev->flags))
1043 rdev = NULL;
1044 if (rdev)
1045 atomic_inc(&rdev->nr_pending);
977df362
N
1046 if (rrdev && test_bit(Faulty, &rrdev->flags))
1047 rrdev = NULL;
1048 if (rrdev)
1049 atomic_inc(&rrdev->nr_pending);
91c00924
DW
1050 rcu_read_unlock();
1051
73e92e51 1052 /* We have already checked bad blocks for reads. Now
977df362
N
1053 * need to check for writes. We never accept write errors
1054 * on the replacement, so we don't to check rrdev.
73e92e51 1055 */
796a5cf0 1056 while (op_is_write(op) && rdev &&
73e92e51
N
1057 test_bit(WriteErrorSeen, &rdev->flags)) {
1058 sector_t first_bad;
1059 int bad_sectors;
1060 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1061 &first_bad, &bad_sectors);
1062 if (!bad)
1063 break;
1064
1065 if (bad < 0) {
1066 set_bit(BlockedBadBlocks, &rdev->flags);
1067 if (!conf->mddev->external &&
2953079c 1068 conf->mddev->sb_flags) {
73e92e51
N
1069 /* It is very unlikely, but we might
1070 * still need to write out the
1071 * bad block log - better give it
1072 * a chance*/
1073 md_check_recovery(conf->mddev);
1074 }
1850753d 1075 /*
1076 * Because md_wait_for_blocked_rdev
1077 * will dec nr_pending, we must
1078 * increment it first.
1079 */
1080 atomic_inc(&rdev->nr_pending);
73e92e51
N
1081 md_wait_for_blocked_rdev(rdev, conf->mddev);
1082 } else {
1083 /* Acknowledged bad block - skip the write */
1084 rdev_dec_pending(rdev, conf->mddev);
1085 rdev = NULL;
1086 }
1087 }
1088
91c00924 1089 if (rdev) {
9a3e1101
N
1090 if (s->syncing || s->expanding || s->expanded
1091 || s->replacing)
91c00924
DW
1092 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1093
2b7497f0
DW
1094 set_bit(STRIPE_IO_STARTED, &sh->state);
1095
74d46992 1096 bio_set_dev(bi, rdev->bdev);
796a5cf0
MC
1097 bio_set_op_attrs(bi, op, op_flags);
1098 bi->bi_end_io = op_is_write(op)
2f6db2a7
KO
1099 ? raid5_end_write_request
1100 : raid5_end_read_request;
1101 bi->bi_private = sh;
1102
6296b960 1103 pr_debug("%s: for %llu schedule op %d on disc %d\n",
e46b272b 1104 __func__, (unsigned long long)sh->sector,
1eff9d32 1105 bi->bi_opf, i);
91c00924 1106 atomic_inc(&sh->count);
59fc630b 1107 if (sh != head_sh)
1108 atomic_inc(&head_sh->count);
05616be5 1109 if (use_new_offset(conf, sh))
4f024f37 1110 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1111 + rdev->new_data_offset);
1112 else
4f024f37 1113 bi->bi_iter.bi_sector = (sh->sector
05616be5 1114 + rdev->data_offset);
59fc630b 1115 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1eff9d32 1116 bi->bi_opf |= REQ_NOMERGE;
3f9e7c14 1117
d592a996
SL
1118 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1119 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
86aa1397
SL
1120
1121 if (!op_is_write(op) &&
1122 test_bit(R5_InJournal, &sh->dev[i].flags))
1123 /*
1124 * issuing read for a page in journal, this
1125 * must be preparing for prexor in rmw; read
1126 * the data into orig_page
1127 */
1128 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1129 else
1130 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1131 bi->bi_vcnt = 1;
91c00924
DW
1132 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1133 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1134 bi->bi_iter.bi_size = STRIPE_SIZE;
2cd259a7
MD
1135 bi->bi_write_hint = sh->dev[i].write_hint;
1136 if (!rrdev)
f1934892 1137 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
37c61ff3
SL
1138 /*
1139 * If this is discard request, set bi_vcnt 0. We don't
1140 * want to confuse SCSI because SCSI will replace payload
1141 */
796a5cf0 1142 if (op == REQ_OP_DISCARD)
37c61ff3 1143 bi->bi_vcnt = 0;
977df362
N
1144 if (rrdev)
1145 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1146
1147 if (conf->mddev->gendisk)
74d46992 1148 trace_block_bio_remap(bi->bi_disk->queue,
e3620a3a
JB
1149 bi, disk_devt(conf->mddev->gendisk),
1150 sh->dev[i].sector);
aaf9f12e
SL
1151 if (should_defer && op_is_write(op))
1152 bio_list_add(&pending_bios, bi);
1153 else
ed00aabd 1154 submit_bio_noacct(bi);
977df362
N
1155 }
1156 if (rrdev) {
9a3e1101
N
1157 if (s->syncing || s->expanding || s->expanded
1158 || s->replacing)
977df362
N
1159 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1160
1161 set_bit(STRIPE_IO_STARTED, &sh->state);
1162
74d46992 1163 bio_set_dev(rbi, rrdev->bdev);
796a5cf0
MC
1164 bio_set_op_attrs(rbi, op, op_flags);
1165 BUG_ON(!op_is_write(op));
2f6db2a7
KO
1166 rbi->bi_end_io = raid5_end_write_request;
1167 rbi->bi_private = sh;
1168
6296b960 1169 pr_debug("%s: for %llu schedule op %d on "
977df362
N
1170 "replacement disc %d\n",
1171 __func__, (unsigned long long)sh->sector,
1eff9d32 1172 rbi->bi_opf, i);
977df362 1173 atomic_inc(&sh->count);
59fc630b 1174 if (sh != head_sh)
1175 atomic_inc(&head_sh->count);
05616be5 1176 if (use_new_offset(conf, sh))
4f024f37 1177 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1178 + rrdev->new_data_offset);
1179 else
4f024f37 1180 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1181 + rrdev->data_offset);
d592a996
SL
1182 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1185 rbi->bi_vcnt = 1;
977df362
N
1186 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1187 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1188 rbi->bi_iter.bi_size = STRIPE_SIZE;
2cd259a7 1189 rbi->bi_write_hint = sh->dev[i].write_hint;
f1934892 1190 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
37c61ff3
SL
1191 /*
1192 * If this is discard request, set bi_vcnt 0. We don't
1193 * want to confuse SCSI because SCSI will replace payload
1194 */
796a5cf0 1195 if (op == REQ_OP_DISCARD)
37c61ff3 1196 rbi->bi_vcnt = 0;
e3620a3a 1197 if (conf->mddev->gendisk)
74d46992 1198 trace_block_bio_remap(rbi->bi_disk->queue,
e3620a3a
JB
1199 rbi, disk_devt(conf->mddev->gendisk),
1200 sh->dev[i].sector);
aaf9f12e
SL
1201 if (should_defer && op_is_write(op))
1202 bio_list_add(&pending_bios, rbi);
1203 else
ed00aabd 1204 submit_bio_noacct(rbi);
977df362
N
1205 }
1206 if (!rdev && !rrdev) {
796a5cf0 1207 if (op_is_write(op))
91c00924 1208 set_bit(STRIPE_DEGRADED, &sh->state);
6296b960 1209 pr_debug("skip op %d on disc %d for sector %llu\n",
1eff9d32 1210 bi->bi_opf, i, (unsigned long long)sh->sector);
91c00924
DW
1211 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1212 set_bit(STRIPE_HANDLE, &sh->state);
1213 }
59fc630b 1214
1215 if (!head_sh->batch_head)
1216 continue;
1217 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1218 batch_list);
1219 if (sh != head_sh)
1220 goto again;
91c00924 1221 }
aaf9f12e
SL
1222
1223 if (should_defer && !bio_list_empty(&pending_bios))
1224 defer_issue_bios(conf, head_sh->sector, &pending_bios);
91c00924
DW
1225}
1226
1227static struct dma_async_tx_descriptor *
d592a996
SL
1228async_copy_data(int frombio, struct bio *bio, struct page **page,
1229 sector_t sector, struct dma_async_tx_descriptor *tx,
1e6d690b 1230 struct stripe_head *sh, int no_skipcopy)
91c00924 1231{
7988613b
KO
1232 struct bio_vec bvl;
1233 struct bvec_iter iter;
91c00924 1234 struct page *bio_page;
91c00924 1235 int page_offset;
a08abd8c 1236 struct async_submit_ctl submit;
0403e382 1237 enum async_tx_flags flags = 0;
91c00924 1238
4f024f37
KO
1239 if (bio->bi_iter.bi_sector >= sector)
1240 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1241 else
4f024f37 1242 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1243
0403e382
DW
1244 if (frombio)
1245 flags |= ASYNC_TX_FENCE;
1246 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1247
7988613b
KO
1248 bio_for_each_segment(bvl, bio, iter) {
1249 int len = bvl.bv_len;
91c00924
DW
1250 int clen;
1251 int b_offset = 0;
1252
1253 if (page_offset < 0) {
1254 b_offset = -page_offset;
1255 page_offset += b_offset;
1256 len -= b_offset;
1257 }
1258
1259 if (len > 0 && page_offset + len > STRIPE_SIZE)
1260 clen = STRIPE_SIZE - page_offset;
1261 else
1262 clen = len;
1263
1264 if (clen > 0) {
7988613b
KO
1265 b_offset += bvl.bv_offset;
1266 bio_page = bvl.bv_page;
d592a996
SL
1267 if (frombio) {
1268 if (sh->raid_conf->skip_copy &&
1269 b_offset == 0 && page_offset == 0 &&
1e6d690b
SL
1270 clen == STRIPE_SIZE &&
1271 !no_skipcopy)
d592a996
SL
1272 *page = bio_page;
1273 else
1274 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1275 b_offset, clen, &submit);
d592a996
SL
1276 } else
1277 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1278 page_offset, clen, &submit);
91c00924 1279 }
a08abd8c
DW
1280 /* chain the operations */
1281 submit.depend_tx = tx;
1282
91c00924
DW
1283 if (clen < len) /* hit end of page */
1284 break;
1285 page_offset += len;
1286 }
1287
1288 return tx;
1289}
1290
1291static void ops_complete_biofill(void *stripe_head_ref)
1292{
1293 struct stripe_head *sh = stripe_head_ref;
e4d84909 1294 int i;
91c00924 1295
e46b272b 1296 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1297 (unsigned long long)sh->sector);
1298
1299 /* clear completed biofills */
1300 for (i = sh->disks; i--; ) {
1301 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1302
1303 /* acknowledge completion of a biofill operation */
e4d84909
DW
1304 /* and check if we need to reply to a read request,
1305 * new R5_Wantfill requests are held off until
83de75cc 1306 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1307 */
1308 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1309 struct bio *rbi, *rbi2;
91c00924 1310
91c00924
DW
1311 BUG_ON(!dev->read);
1312 rbi = dev->read;
1313 dev->read = NULL;
4f024f37 1314 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1315 dev->sector + STRIPE_SECTORS) {
1316 rbi2 = r5_next_bio(rbi, dev->sector);
016c76ac 1317 bio_endio(rbi);
91c00924
DW
1318 rbi = rbi2;
1319 }
1320 }
1321 }
83de75cc 1322 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1323
e4d84909 1324 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1325 raid5_release_stripe(sh);
91c00924
DW
1326}
1327
1328static void ops_run_biofill(struct stripe_head *sh)
1329{
1330 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1331 struct async_submit_ctl submit;
91c00924
DW
1332 int i;
1333
59fc630b 1334 BUG_ON(sh->batch_head);
e46b272b 1335 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1336 (unsigned long long)sh->sector);
1337
1338 for (i = sh->disks; i--; ) {
1339 struct r5dev *dev = &sh->dev[i];
1340 if (test_bit(R5_Wantfill, &dev->flags)) {
1341 struct bio *rbi;
b17459c0 1342 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1343 dev->read = rbi = dev->toread;
1344 dev->toread = NULL;
b17459c0 1345 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1346 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1347 dev->sector + STRIPE_SECTORS) {
d592a996 1348 tx = async_copy_data(0, rbi, &dev->page,
1e6d690b 1349 dev->sector, tx, sh, 0);
91c00924
DW
1350 rbi = r5_next_bio(rbi, dev->sector);
1351 }
1352 }
1353 }
1354
1355 atomic_inc(&sh->count);
a08abd8c
DW
1356 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1357 async_trigger_callback(&submit);
91c00924
DW
1358}
1359
4e7d2c0a 1360static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1361{
4e7d2c0a 1362 struct r5dev *tgt;
91c00924 1363
4e7d2c0a
DW
1364 if (target < 0)
1365 return;
91c00924 1366
4e7d2c0a 1367 tgt = &sh->dev[target];
91c00924
DW
1368 set_bit(R5_UPTODATE, &tgt->flags);
1369 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1370 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1371}
1372
ac6b53b6 1373static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1374{
1375 struct stripe_head *sh = stripe_head_ref;
91c00924 1376
e46b272b 1377 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1378 (unsigned long long)sh->sector);
1379
ac6b53b6 1380 /* mark the computed target(s) as uptodate */
4e7d2c0a 1381 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1382 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1383
ecc65c9b
DW
1384 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1385 if (sh->check_state == check_state_compute_run)
1386 sh->check_state = check_state_compute_result;
91c00924 1387 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1388 raid5_release_stripe(sh);
91c00924
DW
1389}
1390
d6f38f31 1391/* return a pointer to the address conversion region of the scribble buffer */
b330e6a4 1392static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
d6f38f31 1393{
b330e6a4 1394 return percpu->scribble + i * percpu->scribble_obj_size;
46d5b785 1395}
1396
1397/* return a pointer to the address conversion region of the scribble buffer */
b330e6a4
KO
1398static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1399 struct raid5_percpu *percpu, int i)
46d5b785 1400{
b330e6a4 1401 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
d6f38f31
DW
1402}
1403
1404static struct dma_async_tx_descriptor *
1405ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1406{
91c00924 1407 int disks = sh->disks;
46d5b785 1408 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1409 int target = sh->ops.target;
1410 struct r5dev *tgt = &sh->dev[target];
1411 struct page *xor_dest = tgt->page;
1412 int count = 0;
1413 struct dma_async_tx_descriptor *tx;
a08abd8c 1414 struct async_submit_ctl submit;
91c00924
DW
1415 int i;
1416
59fc630b 1417 BUG_ON(sh->batch_head);
1418
91c00924 1419 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1420 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1421 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1422
1423 for (i = disks; i--; )
1424 if (i != target)
1425 xor_srcs[count++] = sh->dev[i].page;
1426
1427 atomic_inc(&sh->count);
1428
0403e382 1429 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1430 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1431 if (unlikely(count == 1))
a08abd8c 1432 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1433 else
a08abd8c 1434 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1435
91c00924
DW
1436 return tx;
1437}
1438
ac6b53b6
DW
1439/* set_syndrome_sources - populate source buffers for gen_syndrome
1440 * @srcs - (struct page *) array of size sh->disks
1441 * @sh - stripe_head to parse
1442 *
1443 * Populates srcs in proper layout order for the stripe and returns the
1444 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1445 * destination buffer is recorded in srcs[count] and the Q destination
1446 * is recorded in srcs[count+1]].
1447 */
584acdd4
MS
1448static int set_syndrome_sources(struct page **srcs,
1449 struct stripe_head *sh,
1450 int srctype)
ac6b53b6
DW
1451{
1452 int disks = sh->disks;
1453 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1454 int d0_idx = raid6_d0(sh);
1455 int count;
1456 int i;
1457
1458 for (i = 0; i < disks; i++)
5dd33c9a 1459 srcs[i] = NULL;
ac6b53b6
DW
1460
1461 count = 0;
1462 i = d0_idx;
1463 do {
1464 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1465 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1466
584acdd4
MS
1467 if (i == sh->qd_idx || i == sh->pd_idx ||
1468 (srctype == SYNDROME_SRC_ALL) ||
1469 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1e6d690b
SL
1470 (test_bit(R5_Wantdrain, &dev->flags) ||
1471 test_bit(R5_InJournal, &dev->flags))) ||
584acdd4 1472 (srctype == SYNDROME_SRC_WRITTEN &&
0977762f
SL
1473 (dev->written ||
1474 test_bit(R5_InJournal, &dev->flags)))) {
1e6d690b
SL
1475 if (test_bit(R5_InJournal, &dev->flags))
1476 srcs[slot] = sh->dev[i].orig_page;
1477 else
1478 srcs[slot] = sh->dev[i].page;
1479 }
ac6b53b6
DW
1480 i = raid6_next_disk(i, disks);
1481 } while (i != d0_idx);
ac6b53b6 1482
e4424fee 1483 return syndrome_disks;
ac6b53b6
DW
1484}
1485
1486static struct dma_async_tx_descriptor *
1487ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1488{
1489 int disks = sh->disks;
46d5b785 1490 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1491 int target;
1492 int qd_idx = sh->qd_idx;
1493 struct dma_async_tx_descriptor *tx;
1494 struct async_submit_ctl submit;
1495 struct r5dev *tgt;
1496 struct page *dest;
1497 int i;
1498 int count;
1499
59fc630b 1500 BUG_ON(sh->batch_head);
ac6b53b6
DW
1501 if (sh->ops.target < 0)
1502 target = sh->ops.target2;
1503 else if (sh->ops.target2 < 0)
1504 target = sh->ops.target;
91c00924 1505 else
ac6b53b6
DW
1506 /* we should only have one valid target */
1507 BUG();
1508 BUG_ON(target < 0);
1509 pr_debug("%s: stripe %llu block: %d\n",
1510 __func__, (unsigned long long)sh->sector, target);
1511
1512 tgt = &sh->dev[target];
1513 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1514 dest = tgt->page;
1515
1516 atomic_inc(&sh->count);
1517
1518 if (target == qd_idx) {
584acdd4 1519 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1520 blocks[count] = NULL; /* regenerating p is not necessary */
1521 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1522 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1523 ops_complete_compute, sh,
46d5b785 1524 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1525 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1526 } else {
1527 /* Compute any data- or p-drive using XOR */
1528 count = 0;
1529 for (i = disks; i-- ; ) {
1530 if (i == target || i == qd_idx)
1531 continue;
1532 blocks[count++] = sh->dev[i].page;
1533 }
1534
0403e382
DW
1535 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1536 NULL, ops_complete_compute, sh,
46d5b785 1537 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1538 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1539 }
91c00924 1540
91c00924
DW
1541 return tx;
1542}
1543
ac6b53b6
DW
1544static struct dma_async_tx_descriptor *
1545ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1546{
1547 int i, count, disks = sh->disks;
1548 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1549 int d0_idx = raid6_d0(sh);
1550 int faila = -1, failb = -1;
1551 int target = sh->ops.target;
1552 int target2 = sh->ops.target2;
1553 struct r5dev *tgt = &sh->dev[target];
1554 struct r5dev *tgt2 = &sh->dev[target2];
1555 struct dma_async_tx_descriptor *tx;
46d5b785 1556 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1557 struct async_submit_ctl submit;
1558
59fc630b 1559 BUG_ON(sh->batch_head);
ac6b53b6
DW
1560 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1561 __func__, (unsigned long long)sh->sector, target, target2);
1562 BUG_ON(target < 0 || target2 < 0);
1563 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1564 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1565
6c910a78 1566 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1567 * slot number conversion for 'faila' and 'failb'
1568 */
1569 for (i = 0; i < disks ; i++)
5dd33c9a 1570 blocks[i] = NULL;
ac6b53b6
DW
1571 count = 0;
1572 i = d0_idx;
1573 do {
1574 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1575
1576 blocks[slot] = sh->dev[i].page;
1577
1578 if (i == target)
1579 faila = slot;
1580 if (i == target2)
1581 failb = slot;
1582 i = raid6_next_disk(i, disks);
1583 } while (i != d0_idx);
ac6b53b6
DW
1584
1585 BUG_ON(faila == failb);
1586 if (failb < faila)
1587 swap(faila, failb);
1588 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1589 __func__, (unsigned long long)sh->sector, faila, failb);
1590
1591 atomic_inc(&sh->count);
1592
1593 if (failb == syndrome_disks+1) {
1594 /* Q disk is one of the missing disks */
1595 if (faila == syndrome_disks) {
1596 /* Missing P+Q, just recompute */
0403e382
DW
1597 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1598 ops_complete_compute, sh,
46d5b785 1599 to_addr_conv(sh, percpu, 0));
e4424fee 1600 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1601 STRIPE_SIZE, &submit);
1602 } else {
1603 struct page *dest;
1604 int data_target;
1605 int qd_idx = sh->qd_idx;
1606
1607 /* Missing D+Q: recompute D from P, then recompute Q */
1608 if (target == qd_idx)
1609 data_target = target2;
1610 else
1611 data_target = target;
1612
1613 count = 0;
1614 for (i = disks; i-- ; ) {
1615 if (i == data_target || i == qd_idx)
1616 continue;
1617 blocks[count++] = sh->dev[i].page;
1618 }
1619 dest = sh->dev[data_target].page;
0403e382
DW
1620 init_async_submit(&submit,
1621 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1622 NULL, NULL, NULL,
46d5b785 1623 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1624 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1625 &submit);
1626
584acdd4 1627 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1628 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1629 ops_complete_compute, sh,
46d5b785 1630 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1631 return async_gen_syndrome(blocks, 0, count+2,
1632 STRIPE_SIZE, &submit);
1633 }
ac6b53b6 1634 } else {
6c910a78
DW
1635 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1636 ops_complete_compute, sh,
46d5b785 1637 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1638 if (failb == syndrome_disks) {
1639 /* We're missing D+P. */
1640 return async_raid6_datap_recov(syndrome_disks+2,
1641 STRIPE_SIZE, faila,
1642 blocks, &submit);
1643 } else {
1644 /* We're missing D+D. */
1645 return async_raid6_2data_recov(syndrome_disks+2,
1646 STRIPE_SIZE, faila, failb,
1647 blocks, &submit);
1648 }
ac6b53b6
DW
1649 }
1650}
1651
91c00924
DW
1652static void ops_complete_prexor(void *stripe_head_ref)
1653{
1654 struct stripe_head *sh = stripe_head_ref;
1655
e46b272b 1656 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1657 (unsigned long long)sh->sector);
1e6d690b
SL
1658
1659 if (r5c_is_writeback(sh->raid_conf->log))
1660 /*
1661 * raid5-cache write back uses orig_page during prexor.
1662 * After prexor, it is time to free orig_page
1663 */
1664 r5c_release_extra_page(sh);
91c00924
DW
1665}
1666
1667static struct dma_async_tx_descriptor *
584acdd4
MS
1668ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1669 struct dma_async_tx_descriptor *tx)
91c00924 1670{
91c00924 1671 int disks = sh->disks;
46d5b785 1672 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1673 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1674 struct async_submit_ctl submit;
91c00924
DW
1675
1676 /* existing parity data subtracted */
1677 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1678
59fc630b 1679 BUG_ON(sh->batch_head);
e46b272b 1680 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1681 (unsigned long long)sh->sector);
1682
1683 for (i = disks; i--; ) {
1684 struct r5dev *dev = &sh->dev[i];
1685 /* Only process blocks that are known to be uptodate */
1e6d690b
SL
1686 if (test_bit(R5_InJournal, &dev->flags))
1687 xor_srcs[count++] = dev->orig_page;
1688 else if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1689 xor_srcs[count++] = dev->page;
1690 }
1691
0403e382 1692 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1693 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1694 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1695
1696 return tx;
1697}
1698
584acdd4
MS
1699static struct dma_async_tx_descriptor *
1700ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1701 struct dma_async_tx_descriptor *tx)
1702{
1703 struct page **blocks = to_addr_page(percpu, 0);
1704 int count;
1705 struct async_submit_ctl submit;
1706
1707 pr_debug("%s: stripe %llu\n", __func__,
1708 (unsigned long long)sh->sector);
1709
1710 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1711
1712 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1713 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1714 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1715
1716 return tx;
1717}
1718
91c00924 1719static struct dma_async_tx_descriptor *
d8ee0728 1720ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924 1721{
1e6d690b 1722 struct r5conf *conf = sh->raid_conf;
91c00924 1723 int disks = sh->disks;
d8ee0728 1724 int i;
59fc630b 1725 struct stripe_head *head_sh = sh;
91c00924 1726
e46b272b 1727 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1728 (unsigned long long)sh->sector);
1729
1730 for (i = disks; i--; ) {
59fc630b 1731 struct r5dev *dev;
91c00924 1732 struct bio *chosen;
91c00924 1733
59fc630b 1734 sh = head_sh;
1735 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1736 struct bio *wbi;
1737
59fc630b 1738again:
1739 dev = &sh->dev[i];
1e6d690b
SL
1740 /*
1741 * clear R5_InJournal, so when rewriting a page in
1742 * journal, it is not skipped by r5l_log_stripe()
1743 */
1744 clear_bit(R5_InJournal, &dev->flags);
b17459c0 1745 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1746 chosen = dev->towrite;
1747 dev->towrite = NULL;
7a87f434 1748 sh->overwrite_disks = 0;
91c00924
DW
1749 BUG_ON(dev->written);
1750 wbi = dev->written = chosen;
b17459c0 1751 spin_unlock_irq(&sh->stripe_lock);
d592a996 1752 WARN_ON(dev->page != dev->orig_page);
91c00924 1753
4f024f37 1754 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1755 dev->sector + STRIPE_SECTORS) {
1eff9d32 1756 if (wbi->bi_opf & REQ_FUA)
e9c7469b 1757 set_bit(R5_WantFUA, &dev->flags);
1eff9d32 1758 if (wbi->bi_opf & REQ_SYNC)
bc0934f0 1759 set_bit(R5_SyncIO, &dev->flags);
796a5cf0 1760 if (bio_op(wbi) == REQ_OP_DISCARD)
620125f2 1761 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1762 else {
1763 tx = async_copy_data(1, wbi, &dev->page,
1e6d690b
SL
1764 dev->sector, tx, sh,
1765 r5c_is_writeback(conf->log));
1766 if (dev->page != dev->orig_page &&
1767 !r5c_is_writeback(conf->log)) {
d592a996
SL
1768 set_bit(R5_SkipCopy, &dev->flags);
1769 clear_bit(R5_UPTODATE, &dev->flags);
1770 clear_bit(R5_OVERWRITE, &dev->flags);
1771 }
1772 }
91c00924
DW
1773 wbi = r5_next_bio(wbi, dev->sector);
1774 }
59fc630b 1775
1776 if (head_sh->batch_head) {
1777 sh = list_first_entry(&sh->batch_list,
1778 struct stripe_head,
1779 batch_list);
1780 if (sh == head_sh)
1781 continue;
1782 goto again;
1783 }
91c00924
DW
1784 }
1785 }
1786
1787 return tx;
1788}
1789
ac6b53b6 1790static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1791{
1792 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1793 int disks = sh->disks;
1794 int pd_idx = sh->pd_idx;
1795 int qd_idx = sh->qd_idx;
1796 int i;
9e444768 1797 bool fua = false, sync = false, discard = false;
91c00924 1798
e46b272b 1799 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1800 (unsigned long long)sh->sector);
1801
bc0934f0 1802 for (i = disks; i--; ) {
e9c7469b 1803 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1804 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1805 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1806 }
e9c7469b 1807
91c00924
DW
1808 for (i = disks; i--; ) {
1809 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1810
e9c7469b 1811 if (dev->written || i == pd_idx || i == qd_idx) {
235b6003 1812 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
9e444768 1813 set_bit(R5_UPTODATE, &dev->flags);
235b6003
N
1814 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1815 set_bit(R5_Expanded, &dev->flags);
1816 }
e9c7469b
TH
1817 if (fua)
1818 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1819 if (sync)
1820 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1821 }
91c00924
DW
1822 }
1823
d8ee0728
DW
1824 if (sh->reconstruct_state == reconstruct_state_drain_run)
1825 sh->reconstruct_state = reconstruct_state_drain_result;
1826 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1827 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1828 else {
1829 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1830 sh->reconstruct_state = reconstruct_state_result;
1831 }
91c00924
DW
1832
1833 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1834 raid5_release_stripe(sh);
91c00924
DW
1835}
1836
1837static void
ac6b53b6
DW
1838ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1839 struct dma_async_tx_descriptor *tx)
91c00924 1840{
91c00924 1841 int disks = sh->disks;
59fc630b 1842 struct page **xor_srcs;
a08abd8c 1843 struct async_submit_ctl submit;
59fc630b 1844 int count, pd_idx = sh->pd_idx, i;
91c00924 1845 struct page *xor_dest;
d8ee0728 1846 int prexor = 0;
91c00924 1847 unsigned long flags;
59fc630b 1848 int j = 0;
1849 struct stripe_head *head_sh = sh;
1850 int last_stripe;
91c00924 1851
e46b272b 1852 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1853 (unsigned long long)sh->sector);
1854
620125f2
SL
1855 for (i = 0; i < sh->disks; i++) {
1856 if (pd_idx == i)
1857 continue;
1858 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1859 break;
1860 }
1861 if (i >= sh->disks) {
1862 atomic_inc(&sh->count);
620125f2
SL
1863 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1864 ops_complete_reconstruct(sh);
1865 return;
1866 }
59fc630b 1867again:
1868 count = 0;
1869 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1870 /* check if prexor is active which means only process blocks
1871 * that are part of a read-modify-write (written)
1872 */
59fc630b 1873 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1874 prexor = 1;
91c00924
DW
1875 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1876 for (i = disks; i--; ) {
1877 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
1878 if (head_sh->dev[i].written ||
1879 test_bit(R5_InJournal, &head_sh->dev[i].flags))
91c00924
DW
1880 xor_srcs[count++] = dev->page;
1881 }
1882 } else {
1883 xor_dest = sh->dev[pd_idx].page;
1884 for (i = disks; i--; ) {
1885 struct r5dev *dev = &sh->dev[i];
1886 if (i != pd_idx)
1887 xor_srcs[count++] = dev->page;
1888 }
1889 }
1890
91c00924
DW
1891 /* 1/ if we prexor'd then the dest is reused as a source
1892 * 2/ if we did not prexor then we are redoing the parity
1893 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1894 * for the synchronous xor case
1895 */
59fc630b 1896 last_stripe = !head_sh->batch_head ||
1897 list_first_entry(&sh->batch_list,
1898 struct stripe_head, batch_list) == head_sh;
1899 if (last_stripe) {
1900 flags = ASYNC_TX_ACK |
1901 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1902
1903 atomic_inc(&head_sh->count);
1904 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1905 to_addr_conv(sh, percpu, j));
1906 } else {
1907 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1908 init_async_submit(&submit, flags, tx, NULL, NULL,
1909 to_addr_conv(sh, percpu, j));
1910 }
91c00924 1911
a08abd8c
DW
1912 if (unlikely(count == 1))
1913 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1914 else
1915 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1916 if (!last_stripe) {
1917 j++;
1918 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1919 batch_list);
1920 goto again;
1921 }
91c00924
DW
1922}
1923
ac6b53b6
DW
1924static void
1925ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1926 struct dma_async_tx_descriptor *tx)
1927{
1928 struct async_submit_ctl submit;
59fc630b 1929 struct page **blocks;
1930 int count, i, j = 0;
1931 struct stripe_head *head_sh = sh;
1932 int last_stripe;
584acdd4
MS
1933 int synflags;
1934 unsigned long txflags;
ac6b53b6
DW
1935
1936 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1937
620125f2
SL
1938 for (i = 0; i < sh->disks; i++) {
1939 if (sh->pd_idx == i || sh->qd_idx == i)
1940 continue;
1941 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1942 break;
1943 }
1944 if (i >= sh->disks) {
1945 atomic_inc(&sh->count);
620125f2
SL
1946 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1947 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1948 ops_complete_reconstruct(sh);
1949 return;
1950 }
1951
59fc630b 1952again:
1953 blocks = to_addr_page(percpu, j);
584acdd4
MS
1954
1955 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1956 synflags = SYNDROME_SRC_WRITTEN;
1957 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1958 } else {
1959 synflags = SYNDROME_SRC_ALL;
1960 txflags = ASYNC_TX_ACK;
1961 }
1962
1963 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1964 last_stripe = !head_sh->batch_head ||
1965 list_first_entry(&sh->batch_list,
1966 struct stripe_head, batch_list) == head_sh;
1967
1968 if (last_stripe) {
1969 atomic_inc(&head_sh->count);
584acdd4 1970 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1971 head_sh, to_addr_conv(sh, percpu, j));
1972 } else
1973 init_async_submit(&submit, 0, tx, NULL, NULL,
1974 to_addr_conv(sh, percpu, j));
48769695 1975 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1976 if (!last_stripe) {
1977 j++;
1978 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1979 batch_list);
1980 goto again;
1981 }
91c00924
DW
1982}
1983
1984static void ops_complete_check(void *stripe_head_ref)
1985{
1986 struct stripe_head *sh = stripe_head_ref;
91c00924 1987
e46b272b 1988 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1989 (unsigned long long)sh->sector);
1990
ecc65c9b 1991 sh->check_state = check_state_check_result;
91c00924 1992 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1993 raid5_release_stripe(sh);
91c00924
DW
1994}
1995
ac6b53b6 1996static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1997{
91c00924 1998 int disks = sh->disks;
ac6b53b6
DW
1999 int pd_idx = sh->pd_idx;
2000 int qd_idx = sh->qd_idx;
2001 struct page *xor_dest;
46d5b785 2002 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 2003 struct dma_async_tx_descriptor *tx;
a08abd8c 2004 struct async_submit_ctl submit;
ac6b53b6
DW
2005 int count;
2006 int i;
91c00924 2007
e46b272b 2008 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2009 (unsigned long long)sh->sector);
2010
59fc630b 2011 BUG_ON(sh->batch_head);
ac6b53b6
DW
2012 count = 0;
2013 xor_dest = sh->dev[pd_idx].page;
2014 xor_srcs[count++] = xor_dest;
91c00924 2015 for (i = disks; i--; ) {
ac6b53b6
DW
2016 if (i == pd_idx || i == qd_idx)
2017 continue;
2018 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
2019 }
2020
d6f38f31 2021 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 2022 to_addr_conv(sh, percpu, 0));
099f53cb 2023 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 2024 &sh->ops.zero_sum_result, &submit);
91c00924 2025
91c00924 2026 atomic_inc(&sh->count);
a08abd8c
DW
2027 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2028 tx = async_trigger_callback(&submit);
91c00924
DW
2029}
2030
ac6b53b6
DW
2031static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2032{
46d5b785 2033 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
2034 struct async_submit_ctl submit;
2035 int count;
2036
2037 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2038 (unsigned long long)sh->sector, checkp);
2039
59fc630b 2040 BUG_ON(sh->batch_head);
584acdd4 2041 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
2042 if (!checkp)
2043 srcs[count] = NULL;
91c00924 2044
91c00924 2045 atomic_inc(&sh->count);
ac6b53b6 2046 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 2047 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
2048 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2049 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
2050}
2051
51acbcec 2052static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
2053{
2054 int overlap_clear = 0, i, disks = sh->disks;
2055 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 2056 struct r5conf *conf = sh->raid_conf;
ac6b53b6 2057 int level = conf->level;
d6f38f31
DW
2058 struct raid5_percpu *percpu;
2059 unsigned long cpu;
91c00924 2060
d6f38f31
DW
2061 cpu = get_cpu();
2062 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 2063 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
2064 ops_run_biofill(sh);
2065 overlap_clear++;
2066 }
2067
7b3a871e 2068 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
2069 if (level < 6)
2070 tx = ops_run_compute5(sh, percpu);
2071 else {
2072 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2073 tx = ops_run_compute6_1(sh, percpu);
2074 else
2075 tx = ops_run_compute6_2(sh, percpu);
2076 }
2077 /* terminate the chain if reconstruct is not set to be run */
2078 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
2079 async_tx_ack(tx);
2080 }
91c00924 2081
584acdd4
MS
2082 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2083 if (level < 6)
2084 tx = ops_run_prexor5(sh, percpu, tx);
2085 else
2086 tx = ops_run_prexor6(sh, percpu, tx);
2087 }
91c00924 2088
ae1713e2
AP
2089 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2090 tx = ops_run_partial_parity(sh, percpu, tx);
2091
600aa109 2092 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 2093 tx = ops_run_biodrain(sh, tx);
91c00924
DW
2094 overlap_clear++;
2095 }
2096
ac6b53b6
DW
2097 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2098 if (level < 6)
2099 ops_run_reconstruct5(sh, percpu, tx);
2100 else
2101 ops_run_reconstruct6(sh, percpu, tx);
2102 }
91c00924 2103
ac6b53b6
DW
2104 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2105 if (sh->check_state == check_state_run)
2106 ops_run_check_p(sh, percpu);
2107 else if (sh->check_state == check_state_run_q)
2108 ops_run_check_pq(sh, percpu, 0);
2109 else if (sh->check_state == check_state_run_pq)
2110 ops_run_check_pq(sh, percpu, 1);
2111 else
2112 BUG();
2113 }
91c00924 2114
59fc630b 2115 if (overlap_clear && !sh->batch_head)
91c00924
DW
2116 for (i = disks; i--; ) {
2117 struct r5dev *dev = &sh->dev[i];
2118 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2119 wake_up(&sh->raid_conf->wait_for_overlap);
2120 }
d6f38f31 2121 put_cpu();
91c00924
DW
2122}
2123
845b9e22
AP
2124static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2125{
2126 if (sh->ppl_page)
2127 __free_page(sh->ppl_page);
2128 kmem_cache_free(sc, sh);
2129}
2130
5f9d1fde 2131static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
845b9e22 2132 int disks, struct r5conf *conf)
f18c1a35
N
2133{
2134 struct stripe_head *sh;
5f9d1fde 2135 int i;
f18c1a35
N
2136
2137 sh = kmem_cache_zalloc(sc, gfp);
2138 if (sh) {
2139 spin_lock_init(&sh->stripe_lock);
2140 spin_lock_init(&sh->batch_lock);
2141 INIT_LIST_HEAD(&sh->batch_list);
2142 INIT_LIST_HEAD(&sh->lru);
a39f7afd 2143 INIT_LIST_HEAD(&sh->r5c);
d7bd398e 2144 INIT_LIST_HEAD(&sh->log_list);
f18c1a35 2145 atomic_set(&sh->count, 1);
845b9e22 2146 sh->raid_conf = conf;
a39f7afd 2147 sh->log_start = MaxSector;
5f9d1fde
SL
2148 for (i = 0; i < disks; i++) {
2149 struct r5dev *dev = &sh->dev[i];
2150
3a83f467
ML
2151 bio_init(&dev->req, &dev->vec, 1);
2152 bio_init(&dev->rreq, &dev->rvec, 1);
5f9d1fde 2153 }
845b9e22
AP
2154
2155 if (raid5_has_ppl(conf)) {
2156 sh->ppl_page = alloc_page(gfp);
2157 if (!sh->ppl_page) {
2158 free_stripe(sc, sh);
2159 sh = NULL;
2160 }
2161 }
f18c1a35
N
2162 }
2163 return sh;
2164}
486f0644 2165static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2166{
2167 struct stripe_head *sh;
f18c1a35 2168
845b9e22 2169 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
3f294f4f
N
2170 if (!sh)
2171 return 0;
6ce32846 2172
a9683a79 2173 if (grow_buffers(sh, gfp)) {
e4e11e38 2174 shrink_buffers(sh);
845b9e22 2175 free_stripe(conf->slab_cache, sh);
3f294f4f
N
2176 return 0;
2177 }
486f0644
N
2178 sh->hash_lock_index =
2179 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2180 /* we just created an active stripe so... */
3f294f4f 2181 atomic_inc(&conf->active_stripes);
59fc630b 2182
6d036f7d 2183 raid5_release_stripe(sh);
486f0644 2184 conf->max_nr_stripes++;
3f294f4f
N
2185 return 1;
2186}
2187
d1688a6d 2188static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2189{
e18b890b 2190 struct kmem_cache *sc;
53b8d89d 2191 size_t namelen = sizeof(conf->cache_name[0]);
5e5e3e78 2192 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2193
f4be6b43 2194 if (conf->mddev->gendisk)
53b8d89d 2195 snprintf(conf->cache_name[0], namelen,
f4be6b43
N
2196 "raid%d-%s", conf->level, mdname(conf->mddev));
2197 else
53b8d89d 2198 snprintf(conf->cache_name[0], namelen,
f4be6b43 2199 "raid%d-%p", conf->level, conf->mddev);
53b8d89d 2200 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
f4be6b43 2201
ad01c9e3
N
2202 conf->active_name = 0;
2203 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2204 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2205 0, 0, NULL);
1da177e4
LT
2206 if (!sc)
2207 return 1;
2208 conf->slab_cache = sc;
ad01c9e3 2209 conf->pool_size = devs;
486f0644
N
2210 while (num--)
2211 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2212 return 1;
486f0644 2213
1da177e4
LT
2214 return 0;
2215}
29269553 2216
d6f38f31 2217/**
7f8a30e5
CL
2218 * scribble_alloc - allocate percpu scribble buffer for required size
2219 * of the scribble region
2aada5b1
DLM
2220 * @percpu: from for_each_present_cpu() of the caller
2221 * @num: total number of disks in the array
2222 * @cnt: scribble objs count for required size of the scribble region
d6f38f31 2223 *
7f8a30e5 2224 * The scribble buffer size must be enough to contain:
d6f38f31
DW
2225 * 1/ a struct page pointer for each device in the array +2
2226 * 2/ room to convert each entry in (1) to its corresponding dma
2227 * (dma_map_page()) or page (page_address()) address.
2228 *
2229 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2230 * calculate over all devices (not just the data blocks), using zeros in place
2231 * of the P and Q blocks.
2232 */
b330e6a4 2233static int scribble_alloc(struct raid5_percpu *percpu,
ba54d4d4 2234 int num, int cnt)
d6f38f31 2235{
b330e6a4
KO
2236 size_t obj_size =
2237 sizeof(struct page *) * (num+2) +
2238 sizeof(addr_conv_t) * (num+2);
2239 void *scribble;
d6f38f31 2240
ba54d4d4
CL
2241 /*
2242 * If here is in raid array suspend context, it is in memalloc noio
2243 * context as well, there is no potential recursive memory reclaim
2244 * I/Os with the GFP_KERNEL flag.
2245 */
2246 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
b330e6a4
KO
2247 if (!scribble)
2248 return -ENOMEM;
2249
2250 kvfree(percpu->scribble);
2251
2252 percpu->scribble = scribble;
2253 percpu->scribble_obj_size = obj_size;
2254 return 0;
d6f38f31
DW
2255}
2256
738a2738
N
2257static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2258{
2259 unsigned long cpu;
2260 int err = 0;
2261
27a353c0
SL
2262 /*
2263 * Never shrink. And mddev_suspend() could deadlock if this is called
2264 * from raid5d. In that case, scribble_disks and scribble_sectors
2265 * should equal to new_disks and new_sectors
2266 */
2267 if (conf->scribble_disks >= new_disks &&
2268 conf->scribble_sectors >= new_sectors)
2269 return 0;
738a2738
N
2270 mddev_suspend(conf->mddev);
2271 get_online_cpus();
b330e6a4 2272
738a2738
N
2273 for_each_present_cpu(cpu) {
2274 struct raid5_percpu *percpu;
738a2738
N
2275
2276 percpu = per_cpu_ptr(conf->percpu, cpu);
b330e6a4 2277 err = scribble_alloc(percpu, new_disks,
ba54d4d4 2278 new_sectors / STRIPE_SECTORS);
b330e6a4 2279 if (err)
738a2738 2280 break;
738a2738 2281 }
b330e6a4 2282
738a2738
N
2283 put_online_cpus();
2284 mddev_resume(conf->mddev);
27a353c0
SL
2285 if (!err) {
2286 conf->scribble_disks = new_disks;
2287 conf->scribble_sectors = new_sectors;
2288 }
738a2738
N
2289 return err;
2290}
2291
d1688a6d 2292static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2293{
2294 /* Make all the stripes able to hold 'newsize' devices.
2295 * New slots in each stripe get 'page' set to a new page.
2296 *
2297 * This happens in stages:
2298 * 1/ create a new kmem_cache and allocate the required number of
2299 * stripe_heads.
83f0d77a 2300 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2301 * to the new stripe_heads. This will have the side effect of
2302 * freezing the array as once all stripe_heads have been collected,
2303 * no IO will be possible. Old stripe heads are freed once their
2304 * pages have been transferred over, and the old kmem_cache is
2305 * freed when all stripes are done.
2306 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
3560741e 2307 * we simple return a failure status - no need to clean anything up.
ad01c9e3
N
2308 * 4/ allocate new pages for the new slots in the new stripe_heads.
2309 * If this fails, we don't bother trying the shrink the
2310 * stripe_heads down again, we just leave them as they are.
2311 * As each stripe_head is processed the new one is released into
2312 * active service.
2313 *
2314 * Once step2 is started, we cannot afford to wait for a write,
2315 * so we use GFP_NOIO allocations.
2316 */
2317 struct stripe_head *osh, *nsh;
2318 LIST_HEAD(newstripes);
2319 struct disk_info *ndisks;
2214c260 2320 int err = 0;
e18b890b 2321 struct kmem_cache *sc;
ad01c9e3 2322 int i;
566c09c5 2323 int hash, cnt;
ad01c9e3 2324
2214c260 2325 md_allow_write(conf->mddev);
2a2275d6 2326
ad01c9e3
N
2327 /* Step 1 */
2328 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2329 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2330 0, 0, NULL);
ad01c9e3
N
2331 if (!sc)
2332 return -ENOMEM;
2333
2d5b569b
N
2334 /* Need to ensure auto-resizing doesn't interfere */
2335 mutex_lock(&conf->cache_size_mutex);
2336
ad01c9e3 2337 for (i = conf->max_nr_stripes; i; i--) {
845b9e22 2338 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
ad01c9e3
N
2339 if (!nsh)
2340 break;
2341
ad01c9e3
N
2342 list_add(&nsh->lru, &newstripes);
2343 }
2344 if (i) {
2345 /* didn't get enough, give up */
2346 while (!list_empty(&newstripes)) {
2347 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2348 list_del(&nsh->lru);
845b9e22 2349 free_stripe(sc, nsh);
ad01c9e3
N
2350 }
2351 kmem_cache_destroy(sc);
2d5b569b 2352 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2353 return -ENOMEM;
2354 }
2355 /* Step 2 - Must use GFP_NOIO now.
2356 * OK, we have enough stripes, start collecting inactive
2357 * stripes and copying them over
2358 */
566c09c5
SL
2359 hash = 0;
2360 cnt = 0;
ad01c9e3 2361 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2362 lock_device_hash_lock(conf, hash);
6ab2a4b8 2363 wait_event_cmd(conf->wait_for_stripe,
566c09c5
SL
2364 !list_empty(conf->inactive_list + hash),
2365 unlock_device_hash_lock(conf, hash),
2366 lock_device_hash_lock(conf, hash));
2367 osh = get_free_stripe(conf, hash);
2368 unlock_device_hash_lock(conf, hash);
f18c1a35 2369
d592a996 2370 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2371 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2372 nsh->dev[i].orig_page = osh->dev[i].page;
2373 }
566c09c5 2374 nsh->hash_lock_index = hash;
845b9e22 2375 free_stripe(conf->slab_cache, osh);
566c09c5
SL
2376 cnt++;
2377 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2378 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2379 hash++;
2380 cnt = 0;
2381 }
ad01c9e3
N
2382 }
2383 kmem_cache_destroy(conf->slab_cache);
2384
2385 /* Step 3.
2386 * At this point, we are holding all the stripes so the array
2387 * is completely stalled, so now is a good time to resize
d6f38f31 2388 * conf->disks and the scribble region
ad01c9e3 2389 */
6396bb22 2390 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
ad01c9e3 2391 if (ndisks) {
d7bd398e 2392 for (i = 0; i < conf->pool_size; i++)
ad01c9e3 2393 ndisks[i] = conf->disks[i];
d7bd398e
SL
2394
2395 for (i = conf->pool_size; i < newsize; i++) {
2396 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2397 if (!ndisks[i].extra_page)
2398 err = -ENOMEM;
2399 }
2400
2401 if (err) {
2402 for (i = conf->pool_size; i < newsize; i++)
2403 if (ndisks[i].extra_page)
2404 put_page(ndisks[i].extra_page);
2405 kfree(ndisks);
2406 } else {
2407 kfree(conf->disks);
2408 conf->disks = ndisks;
2409 }
ad01c9e3
N
2410 } else
2411 err = -ENOMEM;
2412
2d5b569b 2413 mutex_unlock(&conf->cache_size_mutex);
583da48e
DY
2414
2415 conf->slab_cache = sc;
2416 conf->active_name = 1-conf->active_name;
2417
ad01c9e3
N
2418 /* Step 4, return new stripes to service */
2419 while(!list_empty(&newstripes)) {
2420 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2421 list_del_init(&nsh->lru);
d6f38f31 2422
ad01c9e3
N
2423 for (i=conf->raid_disks; i < newsize; i++)
2424 if (nsh->dev[i].page == NULL) {
2425 struct page *p = alloc_page(GFP_NOIO);
2426 nsh->dev[i].page = p;
d592a996 2427 nsh->dev[i].orig_page = p;
ad01c9e3
N
2428 if (!p)
2429 err = -ENOMEM;
2430 }
6d036f7d 2431 raid5_release_stripe(nsh);
ad01c9e3
N
2432 }
2433 /* critical section pass, GFP_NOIO no longer needed */
2434
6e9eac2d
N
2435 if (!err)
2436 conf->pool_size = newsize;
ad01c9e3
N
2437 return err;
2438}
1da177e4 2439
486f0644 2440static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2441{
2442 struct stripe_head *sh;
49895bcc 2443 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2444
566c09c5
SL
2445 spin_lock_irq(conf->hash_locks + hash);
2446 sh = get_free_stripe(conf, hash);
2447 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2448 if (!sh)
2449 return 0;
78bafebd 2450 BUG_ON(atomic_read(&sh->count));
e4e11e38 2451 shrink_buffers(sh);
845b9e22 2452 free_stripe(conf->slab_cache, sh);
3f294f4f 2453 atomic_dec(&conf->active_stripes);
486f0644 2454 conf->max_nr_stripes--;
3f294f4f
N
2455 return 1;
2456}
2457
d1688a6d 2458static void shrink_stripes(struct r5conf *conf)
3f294f4f 2459{
486f0644
N
2460 while (conf->max_nr_stripes &&
2461 drop_one_stripe(conf))
2462 ;
3f294f4f 2463
644df1a8 2464 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2465 conf->slab_cache = NULL;
2466}
2467
4246a0b6 2468static void raid5_end_read_request(struct bio * bi)
1da177e4 2469{
99c0fb5f 2470 struct stripe_head *sh = bi->bi_private;
d1688a6d 2471 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2472 int disks = sh->disks, i;
d6950432 2473 char b[BDEVNAME_SIZE];
dd054fce 2474 struct md_rdev *rdev = NULL;
05616be5 2475 sector_t s;
1da177e4
LT
2476
2477 for (i=0 ; i<disks; i++)
2478 if (bi == &sh->dev[i].req)
2479 break;
2480
4246a0b6 2481 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2482 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4e4cbee9 2483 bi->bi_status);
1da177e4 2484 if (i == disks) {
5f9d1fde 2485 bio_reset(bi);
1da177e4 2486 BUG();
6712ecf8 2487 return;
1da177e4 2488 }
14a75d3e 2489 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2490 /* If replacement finished while this request was outstanding,
2491 * 'replacement' might be NULL already.
2492 * In that case it moved down to 'rdev'.
2493 * rdev is not removed until all requests are finished.
2494 */
14a75d3e 2495 rdev = conf->disks[i].replacement;
dd054fce 2496 if (!rdev)
14a75d3e 2497 rdev = conf->disks[i].rdev;
1da177e4 2498
05616be5
N
2499 if (use_new_offset(conf, sh))
2500 s = sh->sector + rdev->new_data_offset;
2501 else
2502 s = sh->sector + rdev->data_offset;
4e4cbee9 2503 if (!bi->bi_status) {
1da177e4 2504 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2505 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2506 /* Note that this cannot happen on a
2507 * replacement device. We just fail those on
2508 * any error
2509 */
cc6167b4
N
2510 pr_info_ratelimited(
2511 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
8bda470e 2512 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2513 (unsigned long long)s,
8bda470e 2514 bdevname(rdev->bdev, b));
ddd5115f 2515 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2516 clear_bit(R5_ReadError, &sh->dev[i].flags);
2517 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2518 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2519 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2520
86aa1397
SL
2521 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2522 /*
2523 * end read for a page in journal, this
2524 * must be preparing for prexor in rmw
2525 */
2526 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2527
14a75d3e
N
2528 if (atomic_read(&rdev->read_errors))
2529 atomic_set(&rdev->read_errors, 0);
1da177e4 2530 } else {
14a75d3e 2531 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2532 int retry = 0;
2e8ac303 2533 int set_bad = 0;
d6950432 2534
1da177e4 2535 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
b76b4715
NC
2536 if (!(bi->bi_status == BLK_STS_PROTECTION))
2537 atomic_inc(&rdev->read_errors);
14a75d3e 2538 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
cc6167b4
N
2539 pr_warn_ratelimited(
2540 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
14a75d3e 2541 mdname(conf->mddev),
05616be5 2542 (unsigned long long)s,
14a75d3e 2543 bdn);
2e8ac303 2544 else if (conf->mddev->degraded >= conf->max_degraded) {
2545 set_bad = 1;
cc6167b4
N
2546 pr_warn_ratelimited(
2547 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
8bda470e 2548 mdname(conf->mddev),
05616be5 2549 (unsigned long long)s,
8bda470e 2550 bdn);
2e8ac303 2551 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2552 /* Oh, no!!! */
2e8ac303 2553 set_bad = 1;
cc6167b4
N
2554 pr_warn_ratelimited(
2555 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
8bda470e 2556 mdname(conf->mddev),
05616be5 2557 (unsigned long long)s,
8bda470e 2558 bdn);
2e8ac303 2559 } else if (atomic_read(&rdev->read_errors)
0009fad0
NC
2560 > conf->max_nr_stripes) {
2561 if (!test_bit(Faulty, &rdev->flags)) {
2562 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2563 mdname(conf->mddev),
2564 atomic_read(&rdev->read_errors),
2565 conf->max_nr_stripes);
2566 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2567 mdname(conf->mddev), bdn);
2568 }
2569 } else
ba22dcbf 2570 retry = 1;
edfa1f65
BY
2571 if (set_bad && test_bit(In_sync, &rdev->flags)
2572 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2573 retry = 1;
ba22dcbf 2574 if (retry)
143f6e73
XN
2575 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2576 set_bit(R5_ReadError, &sh->dev[i].flags);
2577 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
3f9e7c14 2578 set_bit(R5_ReadError, &sh->dev[i].flags);
2579 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2580 } else
2581 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2582 else {
4e5314b5
N
2583 clear_bit(R5_ReadError, &sh->dev[i].flags);
2584 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2585 if (!(set_bad
2586 && test_bit(In_sync, &rdev->flags)
2587 && rdev_set_badblocks(
2588 rdev, sh->sector, STRIPE_SECTORS, 0)))
2589 md_error(conf->mddev, rdev);
ba22dcbf 2590 }
1da177e4 2591 }
14a75d3e 2592 rdev_dec_pending(rdev, conf->mddev);
c9445555 2593 bio_reset(bi);
1da177e4
LT
2594 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2595 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2596 raid5_release_stripe(sh);
1da177e4
LT
2597}
2598
4246a0b6 2599static void raid5_end_write_request(struct bio *bi)
1da177e4 2600{
99c0fb5f 2601 struct stripe_head *sh = bi->bi_private;
d1688a6d 2602 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2603 int disks = sh->disks, i;
977df362 2604 struct md_rdev *uninitialized_var(rdev);
b84db560
N
2605 sector_t first_bad;
2606 int bad_sectors;
977df362 2607 int replacement = 0;
1da177e4 2608
977df362
N
2609 for (i = 0 ; i < disks; i++) {
2610 if (bi == &sh->dev[i].req) {
2611 rdev = conf->disks[i].rdev;
1da177e4 2612 break;
977df362
N
2613 }
2614 if (bi == &sh->dev[i].rreq) {
2615 rdev = conf->disks[i].replacement;
dd054fce
N
2616 if (rdev)
2617 replacement = 1;
2618 else
2619 /* rdev was removed and 'replacement'
2620 * replaced it. rdev is not removed
2621 * until all requests are finished.
2622 */
2623 rdev = conf->disks[i].rdev;
977df362
N
2624 break;
2625 }
2626 }
4246a0b6 2627 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2628 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4e4cbee9 2629 bi->bi_status);
1da177e4 2630 if (i == disks) {
5f9d1fde 2631 bio_reset(bi);
1da177e4 2632 BUG();
6712ecf8 2633 return;
1da177e4
LT
2634 }
2635
977df362 2636 if (replacement) {
4e4cbee9 2637 if (bi->bi_status)
977df362
N
2638 md_error(conf->mddev, rdev);
2639 else if (is_badblock(rdev, sh->sector,
2640 STRIPE_SECTORS,
2641 &first_bad, &bad_sectors))
2642 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2643 } else {
4e4cbee9 2644 if (bi->bi_status) {
9f97e4b1 2645 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2646 set_bit(WriteErrorSeen, &rdev->flags);
2647 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2648 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2649 set_bit(MD_RECOVERY_NEEDED,
2650 &rdev->mddev->recovery);
977df362
N
2651 } else if (is_badblock(rdev, sh->sector,
2652 STRIPE_SECTORS,
c0b32972 2653 &first_bad, &bad_sectors)) {
977df362 2654 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2655 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2656 /* That was a successful write so make
2657 * sure it looks like we already did
2658 * a re-write.
2659 */
2660 set_bit(R5_ReWrite, &sh->dev[i].flags);
2661 }
977df362
N
2662 }
2663 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2664
4e4cbee9 2665 if (sh->batch_head && bi->bi_status && !replacement)
72ac7330 2666 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2667
c9445555 2668 bio_reset(bi);
977df362
N
2669 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2670 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2671 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2672 raid5_release_stripe(sh);
59fc630b 2673
2674 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2675 raid5_release_stripe(sh->batch_head);
1da177e4
LT
2676}
2677
849674e4 2678static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2679{
2680 char b[BDEVNAME_SIZE];
d1688a6d 2681 struct r5conf *conf = mddev->private;
908f4fbd 2682 unsigned long flags;
0c55e022 2683 pr_debug("raid456: error called\n");
1da177e4 2684
908f4fbd 2685 spin_lock_irqsave(&conf->device_lock, flags);
fb73b357
MT
2686
2687 if (test_bit(In_sync, &rdev->flags) &&
2688 mddev->degraded == conf->max_degraded) {
2689 /*
2690 * Don't allow to achieve failed state
2691 * Don't try to recover this device
2692 */
2693 conf->recovery_disabled = mddev->recovery_disabled;
2694 spin_unlock_irqrestore(&conf->device_lock, flags);
2695 return;
2696 }
2697
aff69d89 2698 set_bit(Faulty, &rdev->flags);
908f4fbd 2699 clear_bit(In_sync, &rdev->flags);
2e38a37f 2700 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd
N
2701 spin_unlock_irqrestore(&conf->device_lock, flags);
2702 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2703
de393cde 2704 set_bit(Blocked, &rdev->flags);
2953079c
SL
2705 set_mask_bits(&mddev->sb_flags, 0,
2706 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
cc6167b4
N
2707 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2708 "md/raid:%s: Operation continuing on %d devices.\n",
2709 mdname(mddev),
2710 bdevname(rdev->bdev, b),
2711 mdname(mddev),
2712 conf->raid_disks - mddev->degraded);
70d466f7 2713 r5c_update_on_rdev_error(mddev, rdev);
16a53ecc 2714}
1da177e4
LT
2715
2716/*
2717 * Input: a 'big' sector number,
2718 * Output: index of the data and parity disk, and the sector # in them.
2719 */
6d036f7d
SL
2720sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2721 int previous, int *dd_idx,
2722 struct stripe_head *sh)
1da177e4 2723{
6e3b96ed 2724 sector_t stripe, stripe2;
35f2a591 2725 sector_t chunk_number;
1da177e4 2726 unsigned int chunk_offset;
911d4ee8 2727 int pd_idx, qd_idx;
67cc2b81 2728 int ddf_layout = 0;
1da177e4 2729 sector_t new_sector;
e183eaed
N
2730 int algorithm = previous ? conf->prev_algo
2731 : conf->algorithm;
09c9e5fa
AN
2732 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2733 : conf->chunk_sectors;
112bf897
N
2734 int raid_disks = previous ? conf->previous_raid_disks
2735 : conf->raid_disks;
2736 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2737
2738 /* First compute the information on this sector */
2739
2740 /*
2741 * Compute the chunk number and the sector offset inside the chunk
2742 */
2743 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2744 chunk_number = r_sector;
1da177e4
LT
2745
2746 /*
2747 * Compute the stripe number
2748 */
35f2a591
N
2749 stripe = chunk_number;
2750 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2751 stripe2 = stripe;
1da177e4
LT
2752 /*
2753 * Select the parity disk based on the user selected algorithm.
2754 */
84789554 2755 pd_idx = qd_idx = -1;
16a53ecc
N
2756 switch(conf->level) {
2757 case 4:
911d4ee8 2758 pd_idx = data_disks;
16a53ecc
N
2759 break;
2760 case 5:
e183eaed 2761 switch (algorithm) {
1da177e4 2762 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2763 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2764 if (*dd_idx >= pd_idx)
1da177e4
LT
2765 (*dd_idx)++;
2766 break;
2767 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2768 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2769 if (*dd_idx >= pd_idx)
1da177e4
LT
2770 (*dd_idx)++;
2771 break;
2772 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2773 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2774 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2775 break;
2776 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2777 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2778 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2779 break;
99c0fb5f
N
2780 case ALGORITHM_PARITY_0:
2781 pd_idx = 0;
2782 (*dd_idx)++;
2783 break;
2784 case ALGORITHM_PARITY_N:
2785 pd_idx = data_disks;
2786 break;
1da177e4 2787 default:
99c0fb5f 2788 BUG();
16a53ecc
N
2789 }
2790 break;
2791 case 6:
2792
e183eaed 2793 switch (algorithm) {
16a53ecc 2794 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2795 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2796 qd_idx = pd_idx + 1;
2797 if (pd_idx == raid_disks-1) {
99c0fb5f 2798 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2799 qd_idx = 0;
2800 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2801 (*dd_idx) += 2; /* D D P Q D */
2802 break;
2803 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2804 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2805 qd_idx = pd_idx + 1;
2806 if (pd_idx == raid_disks-1) {
99c0fb5f 2807 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2808 qd_idx = 0;
2809 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2810 (*dd_idx) += 2; /* D D P Q D */
2811 break;
2812 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2813 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2814 qd_idx = (pd_idx + 1) % raid_disks;
2815 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2816 break;
2817 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2818 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2819 qd_idx = (pd_idx + 1) % raid_disks;
2820 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2821 break;
99c0fb5f
N
2822
2823 case ALGORITHM_PARITY_0:
2824 pd_idx = 0;
2825 qd_idx = 1;
2826 (*dd_idx) += 2;
2827 break;
2828 case ALGORITHM_PARITY_N:
2829 pd_idx = data_disks;
2830 qd_idx = data_disks + 1;
2831 break;
2832
2833 case ALGORITHM_ROTATING_ZERO_RESTART:
2834 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2835 * of blocks for computing Q is different.
2836 */
6e3b96ed 2837 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2838 qd_idx = pd_idx + 1;
2839 if (pd_idx == raid_disks-1) {
2840 (*dd_idx)++; /* Q D D D P */
2841 qd_idx = 0;
2842 } else if (*dd_idx >= pd_idx)
2843 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2844 ddf_layout = 1;
99c0fb5f
N
2845 break;
2846
2847 case ALGORITHM_ROTATING_N_RESTART:
2848 /* Same a left_asymmetric, by first stripe is
2849 * D D D P Q rather than
2850 * Q D D D P
2851 */
6e3b96ed
N
2852 stripe2 += 1;
2853 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2854 qd_idx = pd_idx + 1;
2855 if (pd_idx == raid_disks-1) {
2856 (*dd_idx)++; /* Q D D D P */
2857 qd_idx = 0;
2858 } else if (*dd_idx >= pd_idx)
2859 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2860 ddf_layout = 1;
99c0fb5f
N
2861 break;
2862
2863 case ALGORITHM_ROTATING_N_CONTINUE:
2864 /* Same as left_symmetric but Q is before P */
6e3b96ed 2865 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2866 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2867 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2868 ddf_layout = 1;
99c0fb5f
N
2869 break;
2870
2871 case ALGORITHM_LEFT_ASYMMETRIC_6:
2872 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2873 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2874 if (*dd_idx >= pd_idx)
2875 (*dd_idx)++;
2876 qd_idx = raid_disks - 1;
2877 break;
2878
2879 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2880 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2881 if (*dd_idx >= pd_idx)
2882 (*dd_idx)++;
2883 qd_idx = raid_disks - 1;
2884 break;
2885
2886 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2887 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2888 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2889 qd_idx = raid_disks - 1;
2890 break;
2891
2892 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2893 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2894 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2895 qd_idx = raid_disks - 1;
2896 break;
2897
2898 case ALGORITHM_PARITY_0_6:
2899 pd_idx = 0;
2900 (*dd_idx)++;
2901 qd_idx = raid_disks - 1;
2902 break;
2903
16a53ecc 2904 default:
99c0fb5f 2905 BUG();
16a53ecc
N
2906 }
2907 break;
1da177e4
LT
2908 }
2909
911d4ee8
N
2910 if (sh) {
2911 sh->pd_idx = pd_idx;
2912 sh->qd_idx = qd_idx;
67cc2b81 2913 sh->ddf_layout = ddf_layout;
911d4ee8 2914 }
1da177e4
LT
2915 /*
2916 * Finally, compute the new sector number
2917 */
2918 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2919 return new_sector;
2920}
2921
6d036f7d 2922sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2923{
d1688a6d 2924 struct r5conf *conf = sh->raid_conf;
b875e531
N
2925 int raid_disks = sh->disks;
2926 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2927 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2928 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2929 : conf->chunk_sectors;
e183eaed
N
2930 int algorithm = previous ? conf->prev_algo
2931 : conf->algorithm;
1da177e4
LT
2932 sector_t stripe;
2933 int chunk_offset;
35f2a591
N
2934 sector_t chunk_number;
2935 int dummy1, dd_idx = i;
1da177e4 2936 sector_t r_sector;
911d4ee8 2937 struct stripe_head sh2;
1da177e4
LT
2938
2939 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2940 stripe = new_sector;
1da177e4 2941
16a53ecc
N
2942 if (i == sh->pd_idx)
2943 return 0;
2944 switch(conf->level) {
2945 case 4: break;
2946 case 5:
e183eaed 2947 switch (algorithm) {
1da177e4
LT
2948 case ALGORITHM_LEFT_ASYMMETRIC:
2949 case ALGORITHM_RIGHT_ASYMMETRIC:
2950 if (i > sh->pd_idx)
2951 i--;
2952 break;
2953 case ALGORITHM_LEFT_SYMMETRIC:
2954 case ALGORITHM_RIGHT_SYMMETRIC:
2955 if (i < sh->pd_idx)
2956 i += raid_disks;
2957 i -= (sh->pd_idx + 1);
2958 break;
99c0fb5f
N
2959 case ALGORITHM_PARITY_0:
2960 i -= 1;
2961 break;
2962 case ALGORITHM_PARITY_N:
2963 break;
1da177e4 2964 default:
99c0fb5f 2965 BUG();
16a53ecc
N
2966 }
2967 break;
2968 case 6:
d0dabf7e 2969 if (i == sh->qd_idx)
16a53ecc 2970 return 0; /* It is the Q disk */
e183eaed 2971 switch (algorithm) {
16a53ecc
N
2972 case ALGORITHM_LEFT_ASYMMETRIC:
2973 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2974 case ALGORITHM_ROTATING_ZERO_RESTART:
2975 case ALGORITHM_ROTATING_N_RESTART:
2976 if (sh->pd_idx == raid_disks-1)
2977 i--; /* Q D D D P */
16a53ecc
N
2978 else if (i > sh->pd_idx)
2979 i -= 2; /* D D P Q D */
2980 break;
2981 case ALGORITHM_LEFT_SYMMETRIC:
2982 case ALGORITHM_RIGHT_SYMMETRIC:
2983 if (sh->pd_idx == raid_disks-1)
2984 i--; /* Q D D D P */
2985 else {
2986 /* D D P Q D */
2987 if (i < sh->pd_idx)
2988 i += raid_disks;
2989 i -= (sh->pd_idx + 2);
2990 }
2991 break;
99c0fb5f
N
2992 case ALGORITHM_PARITY_0:
2993 i -= 2;
2994 break;
2995 case ALGORITHM_PARITY_N:
2996 break;
2997 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2998 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2999 if (sh->pd_idx == 0)
3000 i--; /* P D D D Q */
e4424fee
N
3001 else {
3002 /* D D Q P D */
3003 if (i < sh->pd_idx)
3004 i += raid_disks;
3005 i -= (sh->pd_idx + 1);
3006 }
99c0fb5f
N
3007 break;
3008 case ALGORITHM_LEFT_ASYMMETRIC_6:
3009 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3010 if (i > sh->pd_idx)
3011 i--;
3012 break;
3013 case ALGORITHM_LEFT_SYMMETRIC_6:
3014 case ALGORITHM_RIGHT_SYMMETRIC_6:
3015 if (i < sh->pd_idx)
3016 i += data_disks + 1;
3017 i -= (sh->pd_idx + 1);
3018 break;
3019 case ALGORITHM_PARITY_0_6:
3020 i -= 1;
3021 break;
16a53ecc 3022 default:
99c0fb5f 3023 BUG();
16a53ecc
N
3024 }
3025 break;
1da177e4
LT
3026 }
3027
3028 chunk_number = stripe * data_disks + i;
35f2a591 3029 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 3030
112bf897 3031 check = raid5_compute_sector(conf, r_sector,
784052ec 3032 previous, &dummy1, &sh2);
911d4ee8
N
3033 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3034 || sh2.qd_idx != sh->qd_idx) {
cc6167b4
N
3035 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3036 mdname(conf->mddev));
1da177e4
LT
3037 return 0;
3038 }
3039 return r_sector;
3040}
3041
07e83364
SL
3042/*
3043 * There are cases where we want handle_stripe_dirtying() and
3044 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3045 *
3046 * This function checks whether we want to delay the towrite. Specifically,
3047 * we delay the towrite when:
3048 *
3049 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3050 * stripe has data in journal (for other devices).
3051 *
3052 * In this case, when reading data for the non-overwrite dev, it is
3053 * necessary to handle complex rmw of write back cache (prexor with
3054 * orig_page, and xor with page). To keep read path simple, we would
3055 * like to flush data in journal to RAID disks first, so complex rmw
3056 * is handled in the write patch (handle_stripe_dirtying).
3057 *
39b99586
SL
3058 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3059 *
3060 * It is important to be able to flush all stripes in raid5-cache.
3061 * Therefore, we need reserve some space on the journal device for
3062 * these flushes. If flush operation includes pending writes to the
3063 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3064 * for the flush out. If we exclude these pending writes from flush
3065 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3066 * Therefore, excluding pending writes in these cases enables more
3067 * efficient use of the journal device.
3068 *
3069 * Note: To make sure the stripe makes progress, we only delay
3070 * towrite for stripes with data already in journal (injournal > 0).
3071 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3072 * no_space_stripes list.
3073 *
70d466f7
SL
3074 * 3. during journal failure
3075 * In journal failure, we try to flush all cached data to raid disks
3076 * based on data in stripe cache. The array is read-only to upper
3077 * layers, so we would skip all pending writes.
3078 *
07e83364 3079 */
39b99586
SL
3080static inline bool delay_towrite(struct r5conf *conf,
3081 struct r5dev *dev,
3082 struct stripe_head_state *s)
07e83364 3083{
39b99586
SL
3084 /* case 1 above */
3085 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3086 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3087 return true;
3088 /* case 2 above */
3089 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3090 s->injournal > 0)
3091 return true;
70d466f7
SL
3092 /* case 3 above */
3093 if (s->log_failed && s->injournal)
3094 return true;
39b99586 3095 return false;
07e83364
SL
3096}
3097
600aa109 3098static void
c0f7bddb 3099schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 3100 int rcw, int expand)
e33129d8 3101{
584acdd4 3102 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 3103 struct r5conf *conf = sh->raid_conf;
c0f7bddb 3104 int level = conf->level;
e33129d8
DW
3105
3106 if (rcw) {
1e6d690b
SL
3107 /*
3108 * In some cases, handle_stripe_dirtying initially decided to
3109 * run rmw and allocates extra page for prexor. However, rcw is
3110 * cheaper later on. We need to free the extra page now,
3111 * because we won't be able to do that in ops_complete_prexor().
3112 */
3113 r5c_release_extra_page(sh);
e33129d8
DW
3114
3115 for (i = disks; i--; ) {
3116 struct r5dev *dev = &sh->dev[i];
3117
39b99586 3118 if (dev->towrite && !delay_towrite(conf, dev, s)) {
e33129d8 3119 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 3120 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3121 if (!expand)
3122 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3123 s->locked++;
1e6d690b
SL
3124 } else if (test_bit(R5_InJournal, &dev->flags)) {
3125 set_bit(R5_LOCKED, &dev->flags);
3126 s->locked++;
e33129d8
DW
3127 }
3128 }
ce7d363a
N
3129 /* if we are not expanding this is a proper write request, and
3130 * there will be bios with new data to be drained into the
3131 * stripe cache
3132 */
3133 if (!expand) {
3134 if (!s->locked)
3135 /* False alarm, nothing to do */
3136 return;
3137 sh->reconstruct_state = reconstruct_state_drain_run;
3138 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3139 } else
3140 sh->reconstruct_state = reconstruct_state_run;
3141
3142 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3143
c0f7bddb 3144 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 3145 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 3146 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
3147 } else {
3148 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3149 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
3150 BUG_ON(level == 6 &&
3151 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3152 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 3153
e33129d8
DW
3154 for (i = disks; i--; ) {
3155 struct r5dev *dev = &sh->dev[i];
584acdd4 3156 if (i == pd_idx || i == qd_idx)
e33129d8
DW
3157 continue;
3158
e33129d8
DW
3159 if (dev->towrite &&
3160 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
3161 test_bit(R5_Wantcompute, &dev->flags))) {
3162 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3163 set_bit(R5_LOCKED, &dev->flags);
3164 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3165 s->locked++;
1e6d690b
SL
3166 } else if (test_bit(R5_InJournal, &dev->flags)) {
3167 set_bit(R5_LOCKED, &dev->flags);
3168 s->locked++;
e33129d8
DW
3169 }
3170 }
ce7d363a
N
3171 if (!s->locked)
3172 /* False alarm - nothing to do */
3173 return;
3174 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3175 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3176 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3177 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
3178 }
3179
c0f7bddb 3180 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
3181 * are in flight
3182 */
3183 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3184 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 3185 s->locked++;
e33129d8 3186
c0f7bddb
YT
3187 if (level == 6) {
3188 int qd_idx = sh->qd_idx;
3189 struct r5dev *dev = &sh->dev[qd_idx];
3190
3191 set_bit(R5_LOCKED, &dev->flags);
3192 clear_bit(R5_UPTODATE, &dev->flags);
3193 s->locked++;
3194 }
3195
845b9e22 3196 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3418d036
AP
3197 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3198 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3199 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3200 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3201
600aa109 3202 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 3203 __func__, (unsigned long long)sh->sector,
600aa109 3204 s->locked, s->ops_request);
e33129d8 3205}
16a53ecc 3206
1da177e4
LT
3207/*
3208 * Each stripe/dev can have one or more bion attached.
16a53ecc 3209 * toread/towrite point to the first in a chain.
1da177e4
LT
3210 * The bi_next chain must be in order.
3211 */
da41ba65 3212static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3213 int forwrite, int previous)
1da177e4
LT
3214{
3215 struct bio **bip;
d1688a6d 3216 struct r5conf *conf = sh->raid_conf;
72626685 3217 int firstwrite=0;
1da177e4 3218
cbe47ec5 3219 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 3220 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
3221 (unsigned long long)sh->sector);
3222
b17459c0 3223 spin_lock_irq(&sh->stripe_lock);
2cd259a7 3224 sh->dev[dd_idx].write_hint = bi->bi_write_hint;
59fc630b 3225 /* Don't allow new IO added to stripes in batch list */
3226 if (sh->batch_head)
3227 goto overlap;
72626685 3228 if (forwrite) {
1da177e4 3229 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 3230 if (*bip == NULL)
72626685
N
3231 firstwrite = 1;
3232 } else
1da177e4 3233 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
3234 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3235 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
3236 goto overlap;
3237 bip = & (*bip)->bi_next;
3238 }
4f024f37 3239 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
3240 goto overlap;
3241
3418d036
AP
3242 if (forwrite && raid5_has_ppl(conf)) {
3243 /*
3244 * With PPL only writes to consecutive data chunks within a
3245 * stripe are allowed because for a single stripe_head we can
3246 * only have one PPL entry at a time, which describes one data
3247 * range. Not really an overlap, but wait_for_overlap can be
3248 * used to handle this.
3249 */
3250 sector_t sector;
3251 sector_t first = 0;
3252 sector_t last = 0;
3253 int count = 0;
3254 int i;
3255
3256 for (i = 0; i < sh->disks; i++) {
3257 if (i != sh->pd_idx &&
3258 (i == dd_idx || sh->dev[i].towrite)) {
3259 sector = sh->dev[i].sector;
3260 if (count == 0 || sector < first)
3261 first = sector;
3262 if (sector > last)
3263 last = sector;
3264 count++;
3265 }
3266 }
3267
3268 if (first + conf->chunk_sectors * (count - 1) != last)
3269 goto overlap;
3270 }
3271
da41ba65 3272 if (!forwrite || previous)
3273 clear_bit(STRIPE_BATCH_READY, &sh->state);
3274
78bafebd 3275 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
3276 if (*bip)
3277 bi->bi_next = *bip;
3278 *bip = bi;
016c76ac 3279 bio_inc_remaining(bi);
49728050 3280 md_write_inc(conf->mddev, bi);
72626685 3281
1da177e4
LT
3282 if (forwrite) {
3283 /* check if page is covered */
3284 sector_t sector = sh->dev[dd_idx].sector;
3285 for (bi=sh->dev[dd_idx].towrite;
3286 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 3287 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 3288 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
3289 if (bio_end_sector(bi) >= sector)
3290 sector = bio_end_sector(bi);
1da177e4
LT
3291 }
3292 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 3293 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3294 sh->overwrite_disks++;
1da177e4 3295 }
cbe47ec5
N
3296
3297 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3298 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3299 (unsigned long long)sh->sector, dd_idx);
3300
3301 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3302 /* Cannot hold spinlock over bitmap_startwrite,
3303 * but must ensure this isn't added to a batch until
3304 * we have added to the bitmap and set bm_seq.
3305 * So set STRIPE_BITMAP_PENDING to prevent
3306 * batching.
3307 * If multiple add_stripe_bio() calls race here they
3308 * much all set STRIPE_BITMAP_PENDING. So only the first one
3309 * to complete "bitmap_startwrite" gets to set
3310 * STRIPE_BIT_DELAY. This is important as once a stripe
3311 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3312 * any more.
3313 */
3314 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3315 spin_unlock_irq(&sh->stripe_lock);
e64e4018
AS
3316 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3317 STRIPE_SECTORS, 0);
d0852df5
N
3318 spin_lock_irq(&sh->stripe_lock);
3319 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3320 if (!sh->batch_head) {
3321 sh->bm_seq = conf->seq_flush+1;
3322 set_bit(STRIPE_BIT_DELAY, &sh->state);
3323 }
cbe47ec5 3324 }
d0852df5 3325 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3326
3327 if (stripe_can_batch(sh))
3328 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3329 return 1;
3330
3331 overlap:
3332 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3333 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3334 return 0;
3335}
3336
d1688a6d 3337static void end_reshape(struct r5conf *conf);
29269553 3338
d1688a6d 3339static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3340 struct stripe_head *sh)
ccfcc3c1 3341{
784052ec 3342 int sectors_per_chunk =
09c9e5fa 3343 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3344 int dd_idx;
2d2063ce 3345 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3346 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3347
112bf897
N
3348 raid5_compute_sector(conf,
3349 stripe * (disks - conf->max_degraded)
b875e531 3350 *sectors_per_chunk + chunk_offset,
112bf897 3351 previous,
911d4ee8 3352 &dd_idx, sh);
ccfcc3c1
N
3353}
3354
a4456856 3355static void
d1688a6d 3356handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
bd83d0a2 3357 struct stripe_head_state *s, int disks)
a4456856
DW
3358{
3359 int i;
59fc630b 3360 BUG_ON(sh->batch_head);
a4456856
DW
3361 for (i = disks; i--; ) {
3362 struct bio *bi;
3363 int bitmap_end = 0;
3364
3365 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3366 struct md_rdev *rdev;
a4456856
DW
3367 rcu_read_lock();
3368 rdev = rcu_dereference(conf->disks[i].rdev);
f5b67ae8
N
3369 if (rdev && test_bit(In_sync, &rdev->flags) &&
3370 !test_bit(Faulty, &rdev->flags))
7f0da59b
N
3371 atomic_inc(&rdev->nr_pending);
3372 else
3373 rdev = NULL;
a4456856 3374 rcu_read_unlock();
7f0da59b
N
3375 if (rdev) {
3376 if (!rdev_set_badblocks(
3377 rdev,
3378 sh->sector,
3379 STRIPE_SECTORS, 0))
3380 md_error(conf->mddev, rdev);
3381 rdev_dec_pending(rdev, conf->mddev);
3382 }
a4456856 3383 }
b17459c0 3384 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3385 /* fail all writes first */
3386 bi = sh->dev[i].towrite;
3387 sh->dev[i].towrite = NULL;
7a87f434 3388 sh->overwrite_disks = 0;
b17459c0 3389 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3390 if (bi)
a4456856 3391 bitmap_end = 1;
a4456856 3392
ff875738 3393 log_stripe_write_finished(sh);
0576b1c6 3394
a4456856
DW
3395 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3396 wake_up(&conf->wait_for_overlap);
3397
4f024f37 3398 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3399 sh->dev[i].sector + STRIPE_SECTORS) {
3400 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6 3401
49728050 3402 md_write_end(conf->mddev);
6308d8e3 3403 bio_io_error(bi);
a4456856
DW
3404 bi = nextbi;
3405 }
7eaf7e8e 3406 if (bitmap_end)
e64e4018
AS
3407 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3408 STRIPE_SECTORS, 0, 0);
7eaf7e8e 3409 bitmap_end = 0;
a4456856
DW
3410 /* and fail all 'written' */
3411 bi = sh->dev[i].written;
3412 sh->dev[i].written = NULL;
d592a996
SL
3413 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3414 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3415 sh->dev[i].page = sh->dev[i].orig_page;
3416 }
3417
a4456856 3418 if (bi) bitmap_end = 1;
4f024f37 3419 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3420 sh->dev[i].sector + STRIPE_SECTORS) {
3421 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6 3422
49728050 3423 md_write_end(conf->mddev);
6308d8e3 3424 bio_io_error(bi);
a4456856
DW
3425 bi = bi2;
3426 }
3427
b5e98d65
DW
3428 /* fail any reads if this device is non-operational and
3429 * the data has not reached the cache yet.
3430 */
3431 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
6e74a9cf 3432 s->failed > conf->max_degraded &&
b5e98d65
DW
3433 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3434 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3435 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3436 bi = sh->dev[i].toread;
3437 sh->dev[i].toread = NULL;
143c4d05 3438 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3439 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3440 wake_up(&conf->wait_for_overlap);
ebda780b
SL
3441 if (bi)
3442 s->to_read--;
4f024f37 3443 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3444 sh->dev[i].sector + STRIPE_SECTORS) {
3445 struct bio *nextbi =
3446 r5_next_bio(bi, sh->dev[i].sector);
4246a0b6 3447
6308d8e3 3448 bio_io_error(bi);
a4456856
DW
3449 bi = nextbi;
3450 }
3451 }
a4456856 3452 if (bitmap_end)
e64e4018
AS
3453 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3454 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3455 /* If we were in the middle of a write the parity block might
3456 * still be locked - so just clear all R5_LOCKED flags
3457 */
3458 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3459 }
ebda780b
SL
3460 s->to_write = 0;
3461 s->written = 0;
a4456856 3462
8b3e6cdc
DW
3463 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3464 if (atomic_dec_and_test(&conf->pending_full_writes))
3465 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3466}
3467
7f0da59b 3468static void
d1688a6d 3469handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3470 struct stripe_head_state *s)
3471{
3472 int abort = 0;
3473 int i;
3474
59fc630b 3475 BUG_ON(sh->batch_head);
7f0da59b 3476 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3477 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3478 wake_up(&conf->wait_for_overlap);
7f0da59b 3479 s->syncing = 0;
9a3e1101 3480 s->replacing = 0;
7f0da59b 3481 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3482 * Don't even need to abort as that is handled elsewhere
3483 * if needed, and not always wanted e.g. if there is a known
3484 * bad block here.
9a3e1101 3485 * For recover/replace we need to record a bad block on all
7f0da59b
N
3486 * non-sync devices, or abort the recovery
3487 */
18b9837e
N
3488 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3489 /* During recovery devices cannot be removed, so
3490 * locking and refcounting of rdevs is not needed
3491 */
e50d3992 3492 rcu_read_lock();
18b9837e 3493 for (i = 0; i < conf->raid_disks; i++) {
e50d3992 3494 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
18b9837e
N
3495 if (rdev
3496 && !test_bit(Faulty, &rdev->flags)
3497 && !test_bit(In_sync, &rdev->flags)
3498 && !rdev_set_badblocks(rdev, sh->sector,
3499 STRIPE_SECTORS, 0))
3500 abort = 1;
e50d3992 3501 rdev = rcu_dereference(conf->disks[i].replacement);
18b9837e
N
3502 if (rdev
3503 && !test_bit(Faulty, &rdev->flags)
3504 && !test_bit(In_sync, &rdev->flags)
3505 && !rdev_set_badblocks(rdev, sh->sector,
3506 STRIPE_SECTORS, 0))
3507 abort = 1;
3508 }
e50d3992 3509 rcu_read_unlock();
18b9837e
N
3510 if (abort)
3511 conf->recovery_disabled =
3512 conf->mddev->recovery_disabled;
7f0da59b 3513 }
18b9837e 3514 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3515}
3516
9a3e1101
N
3517static int want_replace(struct stripe_head *sh, int disk_idx)
3518{
3519 struct md_rdev *rdev;
3520 int rv = 0;
3f232d6a
N
3521
3522 rcu_read_lock();
3523 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
9a3e1101
N
3524 if (rdev
3525 && !test_bit(Faulty, &rdev->flags)
3526 && !test_bit(In_sync, &rdev->flags)
3527 && (rdev->recovery_offset <= sh->sector
3528 || rdev->mddev->recovery_cp <= sh->sector))
3529 rv = 1;
3f232d6a 3530 rcu_read_unlock();
9a3e1101
N
3531 return rv;
3532}
3533
2c58f06e
N
3534static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3535 int disk_idx, int disks)
a4456856 3536{
5599becc 3537 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3538 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3539 &sh->dev[s->failed_num[1]] };
ea664c82 3540 int i;
5599becc 3541
a79cfe12
N
3542
3543 if (test_bit(R5_LOCKED, &dev->flags) ||
3544 test_bit(R5_UPTODATE, &dev->flags))
3545 /* No point reading this as we already have it or have
3546 * decided to get it.
3547 */
3548 return 0;
3549
3550 if (dev->toread ||
3551 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3552 /* We need this block to directly satisfy a request */
3553 return 1;
3554
3555 if (s->syncing || s->expanding ||
3556 (s->replacing && want_replace(sh, disk_idx)))
3557 /* When syncing, or expanding we read everything.
3558 * When replacing, we need the replaced block.
3559 */
3560 return 1;
3561
3562 if ((s->failed >= 1 && fdev[0]->toread) ||
3563 (s->failed >= 2 && fdev[1]->toread))
3564 /* If we want to read from a failed device, then
3565 * we need to actually read every other device.
3566 */
3567 return 1;
3568
a9d56950
N
3569 /* Sometimes neither read-modify-write nor reconstruct-write
3570 * cycles can work. In those cases we read every block we
3571 * can. Then the parity-update is certain to have enough to
3572 * work with.
3573 * This can only be a problem when we need to write something,
3574 * and some device has failed. If either of those tests
3575 * fail we need look no further.
3576 */
3577 if (!s->failed || !s->to_write)
3578 return 0;
3579
3580 if (test_bit(R5_Insync, &dev->flags) &&
3581 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3582 /* Pre-reads at not permitted until after short delay
3583 * to gather multiple requests. However if this
3560741e 3584 * device is no Insync, the block could only be computed
a9d56950
N
3585 * and there is no need to delay that.
3586 */
3587 return 0;
ea664c82 3588
36707bb2 3589 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3590 if (fdev[i]->towrite &&
3591 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3592 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3593 /* If we have a partial write to a failed
3594 * device, then we will need to reconstruct
3595 * the content of that device, so all other
3596 * devices must be read.
3597 */
3598 return 1;
3599 }
3600
3601 /* If we are forced to do a reconstruct-write, either because
3602 * the current RAID6 implementation only supports that, or
3560741e 3603 * because parity cannot be trusted and we are currently
ea664c82
N
3604 * recovering it, there is extra need to be careful.
3605 * If one of the devices that we would need to read, because
3606 * it is not being overwritten (and maybe not written at all)
3607 * is missing/faulty, then we need to read everything we can.
3608 */
3609 if (sh->raid_conf->level != 6 &&
3610 sh->sector < sh->raid_conf->mddev->recovery_cp)
3611 /* reconstruct-write isn't being forced */
3612 return 0;
36707bb2 3613 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3614 if (s->failed_num[i] != sh->pd_idx &&
3615 s->failed_num[i] != sh->qd_idx &&
3616 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3617 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3618 return 1;
3619 }
3620
2c58f06e
N
3621 return 0;
3622}
3623
ba02684d
SL
3624/* fetch_block - checks the given member device to see if its data needs
3625 * to be read or computed to satisfy a request.
3626 *
3627 * Returns 1 when no more member devices need to be checked, otherwise returns
3628 * 0 to tell the loop in handle_stripe_fill to continue
3629 */
2c58f06e
N
3630static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3631 int disk_idx, int disks)
3632{
3633 struct r5dev *dev = &sh->dev[disk_idx];
3634
3635 /* is the data in this block needed, and can we get it? */
3636 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3637 /* we would like to get this block, possibly by computing it,
3638 * otherwise read it if the backing disk is insync
3639 */
3640 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3641 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3642 BUG_ON(sh->batch_head);
7471fb77
N
3643
3644 /*
3645 * In the raid6 case if the only non-uptodate disk is P
3646 * then we already trusted P to compute the other failed
3647 * drives. It is safe to compute rather than re-read P.
3648 * In other cases we only compute blocks from failed
3649 * devices, otherwise check/repair might fail to detect
3650 * a real inconsistency.
3651 */
3652
5599becc 3653 if ((s->uptodate == disks - 1) &&
7471fb77 3654 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
f2b3b44d 3655 (s->failed && (disk_idx == s->failed_num[0] ||
7471fb77 3656 disk_idx == s->failed_num[1])))) {
5599becc
YT
3657 /* have disk failed, and we're requested to fetch it;
3658 * do compute it
a4456856 3659 */
5599becc
YT
3660 pr_debug("Computing stripe %llu block %d\n",
3661 (unsigned long long)sh->sector, disk_idx);
3662 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3663 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3664 set_bit(R5_Wantcompute, &dev->flags);
3665 sh->ops.target = disk_idx;
3666 sh->ops.target2 = -1; /* no 2nd target */
3667 s->req_compute = 1;
93b3dbce
N
3668 /* Careful: from this point on 'uptodate' is in the eye
3669 * of raid_run_ops which services 'compute' operations
3670 * before writes. R5_Wantcompute flags a block that will
3671 * be R5_UPTODATE by the time it is needed for a
3672 * subsequent operation.
3673 */
5599becc
YT
3674 s->uptodate++;
3675 return 1;
3676 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3677 /* Computing 2-failure is *very* expensive; only
3678 * do it if failed >= 2
3679 */
3680 int other;
3681 for (other = disks; other--; ) {
3682 if (other == disk_idx)
3683 continue;
3684 if (!test_bit(R5_UPTODATE,
3685 &sh->dev[other].flags))
3686 break;
a4456856 3687 }
5599becc
YT
3688 BUG_ON(other < 0);
3689 pr_debug("Computing stripe %llu blocks %d,%d\n",
3690 (unsigned long long)sh->sector,
3691 disk_idx, other);
3692 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3693 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3694 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3695 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3696 sh->ops.target = disk_idx;
3697 sh->ops.target2 = other;
3698 s->uptodate += 2;
3699 s->req_compute = 1;
3700 return 1;
3701 } else if (test_bit(R5_Insync, &dev->flags)) {
3702 set_bit(R5_LOCKED, &dev->flags);
3703 set_bit(R5_Wantread, &dev->flags);
3704 s->locked++;
3705 pr_debug("Reading block %d (sync=%d)\n",
3706 disk_idx, s->syncing);
a4456856
DW
3707 }
3708 }
5599becc
YT
3709
3710 return 0;
3711}
3712
2aada5b1 3713/*
93b3dbce 3714 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3715 */
93b3dbce
N
3716static void handle_stripe_fill(struct stripe_head *sh,
3717 struct stripe_head_state *s,
3718 int disks)
5599becc
YT
3719{
3720 int i;
3721
3722 /* look for blocks to read/compute, skip this if a compute
3723 * is already in flight, or if the stripe contents are in the
3724 * midst of changing due to a write
3725 */
3726 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
07e83364
SL
3727 !sh->reconstruct_state) {
3728
3729 /*
3730 * For degraded stripe with data in journal, do not handle
3731 * read requests yet, instead, flush the stripe to raid
3732 * disks first, this avoids handling complex rmw of write
3733 * back cache (prexor with orig_page, and then xor with
3734 * page) in the read path
3735 */
3736 if (s->injournal && s->failed) {
3737 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3738 r5c_make_stripe_write_out(sh);
3739 goto out;
3740 }
3741
5599becc 3742 for (i = disks; i--; )
93b3dbce 3743 if (fetch_block(sh, s, i, disks))
5599becc 3744 break;
07e83364
SL
3745 }
3746out:
a4456856
DW
3747 set_bit(STRIPE_HANDLE, &sh->state);
3748}
3749
787b76fa
N
3750static void break_stripe_batch_list(struct stripe_head *head_sh,
3751 unsigned long handle_flags);
1fe797e6 3752/* handle_stripe_clean_event
a4456856
DW
3753 * any written block on an uptodate or failed drive can be returned.
3754 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3755 * never LOCKED, so we don't need to test 'failed' directly.
3756 */
d1688a6d 3757static void handle_stripe_clean_event(struct r5conf *conf,
bd83d0a2 3758 struct stripe_head *sh, int disks)
a4456856
DW
3759{
3760 int i;
3761 struct r5dev *dev;
f8dfcffd 3762 int discard_pending = 0;
59fc630b 3763 struct stripe_head *head_sh = sh;
3764 bool do_endio = false;
a4456856
DW
3765
3766 for (i = disks; i--; )
3767 if (sh->dev[i].written) {
3768 dev = &sh->dev[i];
3769 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3770 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3771 test_bit(R5_Discard, &dev->flags) ||
3772 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3773 /* We can return any write requests */
3774 struct bio *wbi, *wbi2;
45b4233c 3775 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3776 if (test_and_clear_bit(R5_Discard, &dev->flags))
3777 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3778 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3779 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3780 }
59fc630b 3781 do_endio = true;
3782
3783returnbi:
3784 dev->page = dev->orig_page;
a4456856
DW
3785 wbi = dev->written;
3786 dev->written = NULL;
4f024f37 3787 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3788 dev->sector + STRIPE_SECTORS) {
3789 wbi2 = r5_next_bio(wbi, dev->sector);
49728050 3790 md_write_end(conf->mddev);
016c76ac 3791 bio_endio(wbi);
a4456856
DW
3792 wbi = wbi2;
3793 }
e64e4018
AS
3794 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3795 STRIPE_SECTORS,
3796 !test_bit(STRIPE_DEGRADED, &sh->state),
3797 0);
59fc630b 3798 if (head_sh->batch_head) {
3799 sh = list_first_entry(&sh->batch_list,
3800 struct stripe_head,
3801 batch_list);
3802 if (sh != head_sh) {
3803 dev = &sh->dev[i];
3804 goto returnbi;
3805 }
3806 }
3807 sh = head_sh;
3808 dev = &sh->dev[i];
f8dfcffd
N
3809 } else if (test_bit(R5_Discard, &dev->flags))
3810 discard_pending = 1;
3811 }
f6bed0ef 3812
ff875738 3813 log_stripe_write_finished(sh);
0576b1c6 3814
f8dfcffd
N
3815 if (!discard_pending &&
3816 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
b8a9d66d 3817 int hash;
f8dfcffd
N
3818 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3819 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3820 if (sh->qd_idx >= 0) {
3821 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3822 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3823 }
3824 /* now that discard is done we can proceed with any sync */
3825 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3826 /*
3827 * SCSI discard will change some bio fields and the stripe has
3828 * no updated data, so remove it from hash list and the stripe
3829 * will be reinitialized
3830 */
59fc630b 3831unhash:
b8a9d66d
RG
3832 hash = sh->hash_lock_index;
3833 spin_lock_irq(conf->hash_locks + hash);
d47648fc 3834 remove_hash(sh);
b8a9d66d 3835 spin_unlock_irq(conf->hash_locks + hash);
59fc630b 3836 if (head_sh->batch_head) {
3837 sh = list_first_entry(&sh->batch_list,
3838 struct stripe_head, batch_list);
3839 if (sh != head_sh)
3840 goto unhash;
3841 }
59fc630b 3842 sh = head_sh;
3843
f8dfcffd
N
3844 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3845 set_bit(STRIPE_HANDLE, &sh->state);
3846
3847 }
8b3e6cdc
DW
3848
3849 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3850 if (atomic_dec_and_test(&conf->pending_full_writes))
3851 md_wakeup_thread(conf->mddev->thread);
59fc630b 3852
787b76fa
N
3853 if (head_sh->batch_head && do_endio)
3854 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3855}
3856
86aa1397
SL
3857/*
3858 * For RMW in write back cache, we need extra page in prexor to store the
3859 * old data. This page is stored in dev->orig_page.
3860 *
3861 * This function checks whether we have data for prexor. The exact logic
3862 * is:
3863 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3864 */
3865static inline bool uptodate_for_rmw(struct r5dev *dev)
3866{
3867 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3868 (!test_bit(R5_InJournal, &dev->flags) ||
3869 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3870}
3871
d7bd398e
SL
3872static int handle_stripe_dirtying(struct r5conf *conf,
3873 struct stripe_head *sh,
3874 struct stripe_head_state *s,
3875 int disks)
a4456856
DW
3876{
3877 int rmw = 0, rcw = 0, i;
a7854487
AL
3878 sector_t recovery_cp = conf->mddev->recovery_cp;
3879
584acdd4 3880 /* Check whether resync is now happening or should start.
a7854487
AL
3881 * If yes, then the array is dirty (after unclean shutdown or
3882 * initial creation), so parity in some stripes might be inconsistent.
3883 * In this case, we need to always do reconstruct-write, to ensure
3884 * that in case of drive failure or read-error correction, we
3885 * generate correct data from the parity.
3886 */
584acdd4 3887 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3888 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3889 s->failed == 0)) {
a7854487 3890 /* Calculate the real rcw later - for now make it
c8ac1803
N
3891 * look like rcw is cheaper
3892 */
3893 rcw = 1; rmw = 2;
584acdd4
MS
3894 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3895 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3896 (unsigned long long)sh->sector);
c8ac1803 3897 } else for (i = disks; i--; ) {
a4456856
DW
3898 /* would I have to read this buffer for read_modify_write */
3899 struct r5dev *dev = &sh->dev[i];
39b99586 3900 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
07e83364 3901 i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b 3902 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3903 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3904 !(uptodate_for_rmw(dev) ||
f38e1219 3905 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3906 if (test_bit(R5_Insync, &dev->flags))
3907 rmw++;
3908 else
3909 rmw += 2*disks; /* cannot read it */
3910 }
3911 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3912 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3913 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3914 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3915 !(test_bit(R5_UPTODATE, &dev->flags) ||
1e6d690b 3916 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3917 if (test_bit(R5_Insync, &dev->flags))
3918 rcw++;
a4456856
DW
3919 else
3920 rcw += 2*disks;
3921 }
3922 }
1e6d690b 3923
39b99586
SL
3924 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3925 (unsigned long long)sh->sector, sh->state, rmw, rcw);
a4456856 3926 set_bit(STRIPE_HANDLE, &sh->state);
41257580 3927 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
a4456856 3928 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3929 if (conf->mddev->queue)
3930 blk_add_trace_msg(conf->mddev->queue,
3931 "raid5 rmw %llu %d",
3932 (unsigned long long)sh->sector, rmw);
a4456856
DW
3933 for (i = disks; i--; ) {
3934 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
3935 if (test_bit(R5_InJournal, &dev->flags) &&
3936 dev->page == dev->orig_page &&
3937 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3938 /* alloc page for prexor */
d7bd398e
SL
3939 struct page *p = alloc_page(GFP_NOIO);
3940
3941 if (p) {
3942 dev->orig_page = p;
3943 continue;
3944 }
3945
3946 /*
3947 * alloc_page() failed, try use
3948 * disk_info->extra_page
3949 */
3950 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3951 &conf->cache_state)) {
3952 r5c_use_extra_page(sh);
3953 break;
3954 }
1e6d690b 3955
d7bd398e
SL
3956 /* extra_page in use, add to delayed_list */
3957 set_bit(STRIPE_DELAYED, &sh->state);
3958 s->waiting_extra_page = 1;
3959 return -EAGAIN;
1e6d690b 3960 }
d7bd398e 3961 }
1e6d690b 3962
d7bd398e
SL
3963 for (i = disks; i--; ) {
3964 struct r5dev *dev = &sh->dev[i];
39b99586 3965 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
1e6d690b
SL
3966 i == sh->pd_idx || i == sh->qd_idx ||
3967 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3968 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3969 !(uptodate_for_rmw(dev) ||
1e6d690b 3970 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3971 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3972 if (test_bit(STRIPE_PREREAD_ACTIVE,
3973 &sh->state)) {
3974 pr_debug("Read_old block %d for r-m-w\n",
3975 i);
a4456856
DW
3976 set_bit(R5_LOCKED, &dev->flags);
3977 set_bit(R5_Wantread, &dev->flags);
3978 s->locked++;
3979 } else {
3980 set_bit(STRIPE_DELAYED, &sh->state);
3981 set_bit(STRIPE_HANDLE, &sh->state);
3982 }
3983 }
3984 }
a9add5d9 3985 }
41257580 3986 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
a4456856 3987 /* want reconstruct write, but need to get some data */
a9add5d9 3988 int qread =0;
c8ac1803 3989 rcw = 0;
a4456856
DW
3990 for (i = disks; i--; ) {
3991 struct r5dev *dev = &sh->dev[i];
3992 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3993 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3994 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3995 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3996 test_bit(R5_Wantcompute, &dev->flags))) {
3997 rcw++;
67f45548
N
3998 if (test_bit(R5_Insync, &dev->flags) &&
3999 test_bit(STRIPE_PREREAD_ACTIVE,
4000 &sh->state)) {
45b4233c 4001 pr_debug("Read_old block "
a4456856
DW
4002 "%d for Reconstruct\n", i);
4003 set_bit(R5_LOCKED, &dev->flags);
4004 set_bit(R5_Wantread, &dev->flags);
4005 s->locked++;
a9add5d9 4006 qread++;
a4456856
DW
4007 } else {
4008 set_bit(STRIPE_DELAYED, &sh->state);
4009 set_bit(STRIPE_HANDLE, &sh->state);
4010 }
4011 }
4012 }
e3620a3a 4013 if (rcw && conf->mddev->queue)
a9add5d9
N
4014 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4015 (unsigned long long)sh->sector,
4016 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 4017 }
b1b02fe9
N
4018
4019 if (rcw > disks && rmw > disks &&
4020 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4021 set_bit(STRIPE_DELAYED, &sh->state);
4022
a4456856
DW
4023 /* now if nothing is locked, and if we have enough data,
4024 * we can start a write request
4025 */
f38e1219
DW
4026 /* since handle_stripe can be called at any time we need to handle the
4027 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
4028 * subsequent call wants to start a write request. raid_run_ops only
4029 * handles the case where compute block and reconstruct are requested
f38e1219
DW
4030 * simultaneously. If this is not the case then new writes need to be
4031 * held off until the compute completes.
4032 */
976ea8d4
DW
4033 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4034 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
1e6d690b 4035 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 4036 schedule_reconstruction(sh, s, rcw == 0, 0);
d7bd398e 4037 return 0;
a4456856
DW
4038}
4039
d1688a6d 4040static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
4041 struct stripe_head_state *s, int disks)
4042{
ecc65c9b 4043 struct r5dev *dev = NULL;
bd2ab670 4044
59fc630b 4045 BUG_ON(sh->batch_head);
a4456856 4046 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 4047
ecc65c9b
DW
4048 switch (sh->check_state) {
4049 case check_state_idle:
4050 /* start a new check operation if there are no failures */
bd2ab670 4051 if (s->failed == 0) {
bd2ab670 4052 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
4053 sh->check_state = check_state_run;
4054 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 4055 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 4056 s->uptodate--;
ecc65c9b 4057 break;
bd2ab670 4058 }
f2b3b44d 4059 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
4060 /* fall through */
4061 case check_state_compute_result:
4062 sh->check_state = check_state_idle;
4063 if (!dev)
4064 dev = &sh->dev[sh->pd_idx];
4065
4066 /* check that a write has not made the stripe insync */
4067 if (test_bit(STRIPE_INSYNC, &sh->state))
4068 break;
c8894419 4069
a4456856 4070 /* either failed parity check, or recovery is happening */
a4456856
DW
4071 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4072 BUG_ON(s->uptodate != disks);
4073
4074 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 4075 s->locked++;
a4456856 4076 set_bit(R5_Wantwrite, &dev->flags);
830ea016 4077
a4456856 4078 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 4079 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
4080 break;
4081 case check_state_run:
4082 break; /* we will be called again upon completion */
4083 case check_state_check_result:
4084 sh->check_state = check_state_idle;
4085
4086 /* if a failure occurred during the check operation, leave
4087 * STRIPE_INSYNC not set and let the stripe be handled again
4088 */
4089 if (s->failed)
4090 break;
4091
4092 /* handle a successful check operation, if parity is correct
4093 * we are done. Otherwise update the mismatch count and repair
4094 * parity if !MD_RECOVERY_CHECK
4095 */
ad283ea4 4096 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
4097 /* parity is correct (on disc,
4098 * not in buffer any more)
4099 */
4100 set_bit(STRIPE_INSYNC, &sh->state);
4101 else {
7f7583d4 4102 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
e1539036 4103 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
ecc65c9b
DW
4104 /* don't try to repair!! */
4105 set_bit(STRIPE_INSYNC, &sh->state);
e1539036
N
4106 pr_warn_ratelimited("%s: mismatch sector in range "
4107 "%llu-%llu\n", mdname(conf->mddev),
4108 (unsigned long long) sh->sector,
4109 (unsigned long long) sh->sector +
4110 STRIPE_SECTORS);
4111 } else {
ecc65c9b 4112 sh->check_state = check_state_compute_run;
976ea8d4 4113 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
4114 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4115 set_bit(R5_Wantcompute,
4116 &sh->dev[sh->pd_idx].flags);
4117 sh->ops.target = sh->pd_idx;
ac6b53b6 4118 sh->ops.target2 = -1;
ecc65c9b
DW
4119 s->uptodate++;
4120 }
4121 }
4122 break;
4123 case check_state_compute_run:
4124 break;
4125 default:
cc6167b4 4126 pr_err("%s: unknown check_state: %d sector: %llu\n",
ecc65c9b
DW
4127 __func__, sh->check_state,
4128 (unsigned long long) sh->sector);
4129 BUG();
a4456856
DW
4130 }
4131}
4132
d1688a6d 4133static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 4134 struct stripe_head_state *s,
f2b3b44d 4135 int disks)
a4456856 4136{
a4456856 4137 int pd_idx = sh->pd_idx;
34e04e87 4138 int qd_idx = sh->qd_idx;
d82dfee0 4139 struct r5dev *dev;
a4456856 4140
59fc630b 4141 BUG_ON(sh->batch_head);
a4456856
DW
4142 set_bit(STRIPE_HANDLE, &sh->state);
4143
4144 BUG_ON(s->failed > 2);
d82dfee0 4145
a4456856
DW
4146 /* Want to check and possibly repair P and Q.
4147 * However there could be one 'failed' device, in which
4148 * case we can only check one of them, possibly using the
4149 * other to generate missing data
4150 */
4151
d82dfee0
DW
4152 switch (sh->check_state) {
4153 case check_state_idle:
4154 /* start a new check operation if there are < 2 failures */
f2b3b44d 4155 if (s->failed == s->q_failed) {
d82dfee0 4156 /* The only possible failed device holds Q, so it
a4456856
DW
4157 * makes sense to check P (If anything else were failed,
4158 * we would have used P to recreate it).
4159 */
d82dfee0 4160 sh->check_state = check_state_run;
a4456856 4161 }
f2b3b44d 4162 if (!s->q_failed && s->failed < 2) {
d82dfee0 4163 /* Q is not failed, and we didn't use it to generate
a4456856
DW
4164 * anything, so it makes sense to check it
4165 */
d82dfee0
DW
4166 if (sh->check_state == check_state_run)
4167 sh->check_state = check_state_run_pq;
4168 else
4169 sh->check_state = check_state_run_q;
a4456856 4170 }
a4456856 4171
d82dfee0
DW
4172 /* discard potentially stale zero_sum_result */
4173 sh->ops.zero_sum_result = 0;
a4456856 4174
d82dfee0
DW
4175 if (sh->check_state == check_state_run) {
4176 /* async_xor_zero_sum destroys the contents of P */
4177 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4178 s->uptodate--;
a4456856 4179 }
d82dfee0
DW
4180 if (sh->check_state >= check_state_run &&
4181 sh->check_state <= check_state_run_pq) {
4182 /* async_syndrome_zero_sum preserves P and Q, so
4183 * no need to mark them !uptodate here
4184 */
4185 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4186 break;
a4456856
DW
4187 }
4188
d82dfee0
DW
4189 /* we have 2-disk failure */
4190 BUG_ON(s->failed != 2);
4191 /* fall through */
4192 case check_state_compute_result:
4193 sh->check_state = check_state_idle;
a4456856 4194
d82dfee0
DW
4195 /* check that a write has not made the stripe insync */
4196 if (test_bit(STRIPE_INSYNC, &sh->state))
4197 break;
a4456856
DW
4198
4199 /* now write out any block on a failed drive,
d82dfee0 4200 * or P or Q if they were recomputed
a4456856 4201 */
b2176a1d 4202 dev = NULL;
a4456856 4203 if (s->failed == 2) {
f2b3b44d 4204 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
4205 s->locked++;
4206 set_bit(R5_LOCKED, &dev->flags);
4207 set_bit(R5_Wantwrite, &dev->flags);
4208 }
4209 if (s->failed >= 1) {
f2b3b44d 4210 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
4211 s->locked++;
4212 set_bit(R5_LOCKED, &dev->flags);
4213 set_bit(R5_Wantwrite, &dev->flags);
4214 }
d82dfee0 4215 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
4216 dev = &sh->dev[pd_idx];
4217 s->locked++;
4218 set_bit(R5_LOCKED, &dev->flags);
4219 set_bit(R5_Wantwrite, &dev->flags);
4220 }
d82dfee0 4221 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
4222 dev = &sh->dev[qd_idx];
4223 s->locked++;
4224 set_bit(R5_LOCKED, &dev->flags);
4225 set_bit(R5_Wantwrite, &dev->flags);
4226 }
b2176a1d
NC
4227 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4228 "%s: disk%td not up to date\n",
4229 mdname(conf->mddev),
4230 dev - (struct r5dev *) &sh->dev)) {
4231 clear_bit(R5_LOCKED, &dev->flags);
4232 clear_bit(R5_Wantwrite, &dev->flags);
4233 s->locked--;
4234 }
a4456856
DW
4235 clear_bit(STRIPE_DEGRADED, &sh->state);
4236
4237 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
4238 break;
4239 case check_state_run:
4240 case check_state_run_q:
4241 case check_state_run_pq:
4242 break; /* we will be called again upon completion */
4243 case check_state_check_result:
4244 sh->check_state = check_state_idle;
4245
4246 /* handle a successful check operation, if parity is correct
4247 * we are done. Otherwise update the mismatch count and repair
4248 * parity if !MD_RECOVERY_CHECK
4249 */
4250 if (sh->ops.zero_sum_result == 0) {
a25d8c32
SL
4251 /* both parities are correct */
4252 if (!s->failed)
4253 set_bit(STRIPE_INSYNC, &sh->state);
4254 else {
4255 /* in contrast to the raid5 case we can validate
4256 * parity, but still have a failure to write
4257 * back
4258 */
4259 sh->check_state = check_state_compute_result;
4260 /* Returning at this point means that we may go
4261 * off and bring p and/or q uptodate again so
4262 * we make sure to check zero_sum_result again
4263 * to verify if p or q need writeback
4264 */
4265 }
d82dfee0 4266 } else {
7f7583d4 4267 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
e1539036 4268 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
d82dfee0
DW
4269 /* don't try to repair!! */
4270 set_bit(STRIPE_INSYNC, &sh->state);
e1539036
N
4271 pr_warn_ratelimited("%s: mismatch sector in range "
4272 "%llu-%llu\n", mdname(conf->mddev),
4273 (unsigned long long) sh->sector,
4274 (unsigned long long) sh->sector +
4275 STRIPE_SECTORS);
4276 } else {
d82dfee0
DW
4277 int *target = &sh->ops.target;
4278
4279 sh->ops.target = -1;
4280 sh->ops.target2 = -1;
4281 sh->check_state = check_state_compute_run;
4282 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4283 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4284 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4285 set_bit(R5_Wantcompute,
4286 &sh->dev[pd_idx].flags);
4287 *target = pd_idx;
4288 target = &sh->ops.target2;
4289 s->uptodate++;
4290 }
4291 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4292 set_bit(R5_Wantcompute,
4293 &sh->dev[qd_idx].flags);
4294 *target = qd_idx;
4295 s->uptodate++;
4296 }
4297 }
4298 }
4299 break;
4300 case check_state_compute_run:
4301 break;
4302 default:
cc6167b4
N
4303 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4304 __func__, sh->check_state,
4305 (unsigned long long) sh->sector);
d82dfee0 4306 BUG();
a4456856
DW
4307 }
4308}
4309
d1688a6d 4310static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
4311{
4312 int i;
4313
4314 /* We have read all the blocks in this stripe and now we need to
4315 * copy some of them into a target stripe for expand.
4316 */
f0a50d37 4317 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 4318 BUG_ON(sh->batch_head);
a4456856
DW
4319 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4320 for (i = 0; i < sh->disks; i++)
34e04e87 4321 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 4322 int dd_idx, j;
a4456856 4323 struct stripe_head *sh2;
a08abd8c 4324 struct async_submit_ctl submit;
a4456856 4325
6d036f7d 4326 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
4327 sector_t s = raid5_compute_sector(conf, bn, 0,
4328 &dd_idx, NULL);
6d036f7d 4329 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
4330 if (sh2 == NULL)
4331 /* so far only the early blocks of this stripe
4332 * have been requested. When later blocks
4333 * get requested, we will try again
4334 */
4335 continue;
4336 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4337 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4338 /* must have already done this block */
6d036f7d 4339 raid5_release_stripe(sh2);
a4456856
DW
4340 continue;
4341 }
f0a50d37
DW
4342
4343 /* place all the copies on one channel */
a08abd8c 4344 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 4345 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 4346 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 4347 &submit);
f0a50d37 4348
a4456856
DW
4349 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4350 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4351 for (j = 0; j < conf->raid_disks; j++)
4352 if (j != sh2->pd_idx &&
86c374ba 4353 j != sh2->qd_idx &&
a4456856
DW
4354 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4355 break;
4356 if (j == conf->raid_disks) {
4357 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4358 set_bit(STRIPE_HANDLE, &sh2->state);
4359 }
6d036f7d 4360 raid5_release_stripe(sh2);
f0a50d37 4361
a4456856 4362 }
a2e08551 4363 /* done submitting copies, wait for them to complete */
749586b7 4364 async_tx_quiesce(&tx);
a4456856 4365}
1da177e4
LT
4366
4367/*
4368 * handle_stripe - do things to a stripe.
4369 *
9a3e1101
N
4370 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4371 * state of various bits to see what needs to be done.
1da177e4 4372 * Possible results:
9a3e1101
N
4373 * return some read requests which now have data
4374 * return some write requests which are safely on storage
1da177e4
LT
4375 * schedule a read on some buffers
4376 * schedule a write of some buffers
4377 * return confirmation of parity correctness
4378 *
1da177e4 4379 */
a4456856 4380
acfe726b 4381static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4382{
d1688a6d 4383 struct r5conf *conf = sh->raid_conf;
f416885e 4384 int disks = sh->disks;
474af965
N
4385 struct r5dev *dev;
4386 int i;
9a3e1101 4387 int do_recovery = 0;
1da177e4 4388
acfe726b
N
4389 memset(s, 0, sizeof(*s));
4390
dabc4ec6 4391 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4392 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4393 s->failed_num[0] = -1;
4394 s->failed_num[1] = -1;
6e74a9cf 4395 s->log_failed = r5l_log_disk_error(conf);
1da177e4 4396
acfe726b 4397 /* Now to look around and see what can be done */
1da177e4 4398 rcu_read_lock();
16a53ecc 4399 for (i=disks; i--; ) {
3cb03002 4400 struct md_rdev *rdev;
31c176ec
N
4401 sector_t first_bad;
4402 int bad_sectors;
4403 int is_bad = 0;
acfe726b 4404
16a53ecc 4405 dev = &sh->dev[i];
1da177e4 4406
45b4233c 4407 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4408 i, dev->flags,
4409 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4410 /* maybe we can reply to a read
4411 *
4412 * new wantfill requests are only permitted while
4413 * ops_complete_biofill is guaranteed to be inactive
4414 */
4415 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4416 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4417 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4418
16a53ecc 4419 /* now count some things */
cc94015a
N
4420 if (test_bit(R5_LOCKED, &dev->flags))
4421 s->locked++;
4422 if (test_bit(R5_UPTODATE, &dev->flags))
4423 s->uptodate++;
2d6e4ecc 4424 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4425 s->compute++;
4426 BUG_ON(s->compute > 2);
2d6e4ecc 4427 }
1da177e4 4428
acfe726b 4429 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4430 s->to_fill++;
acfe726b 4431 else if (dev->toread)
cc94015a 4432 s->to_read++;
16a53ecc 4433 if (dev->towrite) {
cc94015a 4434 s->to_write++;
16a53ecc 4435 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4436 s->non_overwrite++;
16a53ecc 4437 }
a4456856 4438 if (dev->written)
cc94015a 4439 s->written++;
14a75d3e
N
4440 /* Prefer to use the replacement for reads, but only
4441 * if it is recovered enough and has no bad blocks.
4442 */
4443 rdev = rcu_dereference(conf->disks[i].replacement);
4444 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4445 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4446 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4447 &first_bad, &bad_sectors))
4448 set_bit(R5_ReadRepl, &dev->flags);
4449 else {
e6030cb0 4450 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4451 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4452 else
4453 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4454 rdev = rcu_dereference(conf->disks[i].rdev);
4455 clear_bit(R5_ReadRepl, &dev->flags);
4456 }
9283d8c5
N
4457 if (rdev && test_bit(Faulty, &rdev->flags))
4458 rdev = NULL;
31c176ec
N
4459 if (rdev) {
4460 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4461 &first_bad, &bad_sectors);
4462 if (s->blocked_rdev == NULL
4463 && (test_bit(Blocked, &rdev->flags)
4464 || is_bad < 0)) {
4465 if (is_bad < 0)
4466 set_bit(BlockedBadBlocks,
4467 &rdev->flags);
4468 s->blocked_rdev = rdev;
4469 atomic_inc(&rdev->nr_pending);
4470 }
6bfe0b49 4471 }
415e72d0
N
4472 clear_bit(R5_Insync, &dev->flags);
4473 if (!rdev)
4474 /* Not in-sync */;
31c176ec
N
4475 else if (is_bad) {
4476 /* also not in-sync */
18b9837e
N
4477 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4478 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4479 /* treat as in-sync, but with a read error
4480 * which we can now try to correct
4481 */
4482 set_bit(R5_Insync, &dev->flags);
4483 set_bit(R5_ReadError, &dev->flags);
4484 }
4485 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4486 set_bit(R5_Insync, &dev->flags);
30d7a483 4487 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4488 /* in sync if before recovery_offset */
30d7a483
N
4489 set_bit(R5_Insync, &dev->flags);
4490 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4491 test_bit(R5_Expanded, &dev->flags))
4492 /* If we've reshaped into here, we assume it is Insync.
4493 * We will shortly update recovery_offset to make
4494 * it official.
4495 */
4496 set_bit(R5_Insync, &dev->flags);
4497
1cc03eb9 4498 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4499 /* This flag does not apply to '.replacement'
4500 * only to .rdev, so make sure to check that*/
4501 struct md_rdev *rdev2 = rcu_dereference(
4502 conf->disks[i].rdev);
4503 if (rdev2 == rdev)
4504 clear_bit(R5_Insync, &dev->flags);
4505 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4506 s->handle_bad_blocks = 1;
14a75d3e 4507 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4508 } else
4509 clear_bit(R5_WriteError, &dev->flags);
4510 }
1cc03eb9 4511 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4512 /* This flag does not apply to '.replacement'
4513 * only to .rdev, so make sure to check that*/
4514 struct md_rdev *rdev2 = rcu_dereference(
4515 conf->disks[i].rdev);
4516 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4517 s->handle_bad_blocks = 1;
14a75d3e 4518 atomic_inc(&rdev2->nr_pending);
b84db560
N
4519 } else
4520 clear_bit(R5_MadeGood, &dev->flags);
4521 }
977df362
N
4522 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4523 struct md_rdev *rdev2 = rcu_dereference(
4524 conf->disks[i].replacement);
4525 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4526 s->handle_bad_blocks = 1;
4527 atomic_inc(&rdev2->nr_pending);
4528 } else
4529 clear_bit(R5_MadeGoodRepl, &dev->flags);
4530 }
415e72d0 4531 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4532 /* The ReadError flag will just be confusing now */
4533 clear_bit(R5_ReadError, &dev->flags);
4534 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4535 }
415e72d0
N
4536 if (test_bit(R5_ReadError, &dev->flags))
4537 clear_bit(R5_Insync, &dev->flags);
4538 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4539 if (s->failed < 2)
4540 s->failed_num[s->failed] = i;
4541 s->failed++;
9a3e1101
N
4542 if (rdev && !test_bit(Faulty, &rdev->flags))
4543 do_recovery = 1;
d63e2fc8
BC
4544 else if (!rdev) {
4545 rdev = rcu_dereference(
4546 conf->disks[i].replacement);
4547 if (rdev && !test_bit(Faulty, &rdev->flags))
4548 do_recovery = 1;
4549 }
415e72d0 4550 }
2ded3703
SL
4551
4552 if (test_bit(R5_InJournal, &dev->flags))
4553 s->injournal++;
1e6d690b
SL
4554 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4555 s->just_cached++;
1da177e4 4556 }
9a3e1101
N
4557 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4558 /* If there is a failed device being replaced,
4559 * we must be recovering.
4560 * else if we are after recovery_cp, we must be syncing
c6d2e084 4561 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4562 * else we can only be replacing
4563 * sync and recovery both need to read all devices, and so
4564 * use the same flag.
4565 */
4566 if (do_recovery ||
c6d2e084 4567 sh->sector >= conf->mddev->recovery_cp ||
4568 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4569 s->syncing = 1;
4570 else
4571 s->replacing = 1;
4572 }
1da177e4 4573 rcu_read_unlock();
cc94015a
N
4574}
4575
cb9902db
GJ
4576/*
4577 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4578 * a head which can now be handled.
4579 */
59fc630b 4580static int clear_batch_ready(struct stripe_head *sh)
4581{
4582 struct stripe_head *tmp;
4583 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4584 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4585 spin_lock(&sh->stripe_lock);
4586 if (!sh->batch_head) {
4587 spin_unlock(&sh->stripe_lock);
4588 return 0;
4589 }
4590
4591 /*
4592 * this stripe could be added to a batch list before we check
4593 * BATCH_READY, skips it
4594 */
4595 if (sh->batch_head != sh) {
4596 spin_unlock(&sh->stripe_lock);
4597 return 1;
4598 }
4599 spin_lock(&sh->batch_lock);
4600 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4601 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4602 spin_unlock(&sh->batch_lock);
4603 spin_unlock(&sh->stripe_lock);
4604
4605 /*
4606 * BATCH_READY is cleared, no new stripes can be added.
4607 * batch_list can be accessed without lock
4608 */
4609 return 0;
4610}
4611
3960ce79
N
4612static void break_stripe_batch_list(struct stripe_head *head_sh,
4613 unsigned long handle_flags)
72ac7330 4614{
4e3d62ff 4615 struct stripe_head *sh, *next;
72ac7330 4616 int i;
fb642b92 4617 int do_wakeup = 0;
72ac7330 4618
bb27051f
N
4619 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4620
72ac7330 4621 list_del_init(&sh->batch_list);
4622
fb3229d5 4623 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
1b956f7a
N
4624 (1 << STRIPE_SYNCING) |
4625 (1 << STRIPE_REPLACED) |
1b956f7a
N
4626 (1 << STRIPE_DELAYED) |
4627 (1 << STRIPE_BIT_DELAY) |
4628 (1 << STRIPE_FULL_WRITE) |
4629 (1 << STRIPE_BIOFILL_RUN) |
4630 (1 << STRIPE_COMPUTE_RUN) |
1b956f7a
N
4631 (1 << STRIPE_DISCARD) |
4632 (1 << STRIPE_BATCH_READY) |
4633 (1 << STRIPE_BATCH_ERR) |
fb3229d5
SL
4634 (1 << STRIPE_BITMAP_PENDING)),
4635 "stripe state: %lx\n", sh->state);
4636 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4637 (1 << STRIPE_REPLACED)),
4638 "head stripe state: %lx\n", head_sh->state);
1b956f7a
N
4639
4640 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
550da24f 4641 (1 << STRIPE_PREREAD_ACTIVE) |
184a09eb
DY
4642 (1 << STRIPE_DEGRADED) |
4643 (1 << STRIPE_ON_UNPLUG_LIST)),
1b956f7a
N
4644 head_sh->state & (1 << STRIPE_INSYNC));
4645
72ac7330 4646 sh->check_state = head_sh->check_state;
4647 sh->reconstruct_state = head_sh->reconstruct_state;
448ec638
AC
4648 spin_lock_irq(&sh->stripe_lock);
4649 sh->batch_head = NULL;
4650 spin_unlock_irq(&sh->stripe_lock);
fb642b92
N
4651 for (i = 0; i < sh->disks; i++) {
4652 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4653 do_wakeup = 1;
72ac7330 4654 sh->dev[i].flags = head_sh->dev[i].flags &
4655 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4656 }
3960ce79
N
4657 if (handle_flags == 0 ||
4658 sh->state & handle_flags)
4659 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4660 raid5_release_stripe(sh);
72ac7330 4661 }
fb642b92
N
4662 spin_lock_irq(&head_sh->stripe_lock);
4663 head_sh->batch_head = NULL;
4664 spin_unlock_irq(&head_sh->stripe_lock);
4665 for (i = 0; i < head_sh->disks; i++)
4666 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4667 do_wakeup = 1;
3960ce79
N
4668 if (head_sh->state & handle_flags)
4669 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4670
4671 if (do_wakeup)
4672 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4673}
4674
cc94015a
N
4675static void handle_stripe(struct stripe_head *sh)
4676{
4677 struct stripe_head_state s;
d1688a6d 4678 struct r5conf *conf = sh->raid_conf;
3687c061 4679 int i;
84789554
N
4680 int prexor;
4681 int disks = sh->disks;
474af965 4682 struct r5dev *pdev, *qdev;
cc94015a
N
4683
4684 clear_bit(STRIPE_HANDLE, &sh->state);
a377a472
GJ
4685
4686 /*
4687 * handle_stripe should not continue handle the batched stripe, only
4688 * the head of batch list or lone stripe can continue. Otherwise we
4689 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4690 * is set for the batched stripe.
4691 */
4692 if (clear_batch_ready(sh))
4693 return;
4694
257a4b42 4695 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4696 /* already being handled, ensure it gets handled
4697 * again when current action finishes */
4698 set_bit(STRIPE_HANDLE, &sh->state);
4699 return;
4700 }
4701
4e3d62ff 4702 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4703 break_stripe_batch_list(sh, 0);
72ac7330 4704
dabc4ec6 4705 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd 4706 spin_lock(&sh->stripe_lock);
5ddf0440
SL
4707 /*
4708 * Cannot process 'sync' concurrently with 'discard'.
4709 * Flush data in r5cache before 'sync'.
4710 */
4711 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4712 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4713 !test_bit(STRIPE_DISCARD, &sh->state) &&
f8dfcffd
N
4714 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4715 set_bit(STRIPE_SYNCING, &sh->state);
4716 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4717 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4718 }
4719 spin_unlock(&sh->stripe_lock);
cc94015a
N
4720 }
4721 clear_bit(STRIPE_DELAYED, &sh->state);
4722
4723 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4724 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4725 (unsigned long long)sh->sector, sh->state,
4726 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4727 sh->check_state, sh->reconstruct_state);
3687c061 4728
acfe726b 4729 analyse_stripe(sh, &s);
c5a31000 4730
b70abcb2
SL
4731 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4732 goto finish;
4733
16d997b7
N
4734 if (s.handle_bad_blocks ||
4735 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
bc2607f3
N
4736 set_bit(STRIPE_HANDLE, &sh->state);
4737 goto finish;
4738 }
4739
474af965
N
4740 if (unlikely(s.blocked_rdev)) {
4741 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4742 s.replacing || s.to_write || s.written) {
474af965
N
4743 set_bit(STRIPE_HANDLE, &sh->state);
4744 goto finish;
4745 }
4746 /* There is nothing for the blocked_rdev to block */
4747 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4748 s.blocked_rdev = NULL;
4749 }
4750
4751 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4752 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4753 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4754 }
4755
4756 pr_debug("locked=%d uptodate=%d to_read=%d"
4757 " to_write=%d failed=%d failed_num=%d,%d\n",
4758 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4759 s.failed_num[0], s.failed_num[1]);
70d466f7
SL
4760 /*
4761 * check if the array has lost more than max_degraded devices and,
474af965 4762 * if so, some requests might need to be failed.
70d466f7
SL
4763 *
4764 * When journal device failed (log_failed), we will only process
4765 * the stripe if there is data need write to raid disks
474af965 4766 */
70d466f7
SL
4767 if (s.failed > conf->max_degraded ||
4768 (s.log_failed && s.injournal == 0)) {
9a3f530f
N
4769 sh->check_state = 0;
4770 sh->reconstruct_state = 0;
626f2092 4771 break_stripe_batch_list(sh, 0);
9a3f530f 4772 if (s.to_read+s.to_write+s.written)
bd83d0a2 4773 handle_failed_stripe(conf, sh, &s, disks);
9a3e1101 4774 if (s.syncing + s.replacing)
9a3f530f
N
4775 handle_failed_sync(conf, sh, &s);
4776 }
474af965 4777
84789554
N
4778 /* Now we check to see if any write operations have recently
4779 * completed
4780 */
4781 prexor = 0;
4782 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4783 prexor = 1;
4784 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4785 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4786 sh->reconstruct_state = reconstruct_state_idle;
4787
4788 /* All the 'written' buffers and the parity block are ready to
4789 * be written back to disk
4790 */
9e444768
SL
4791 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4792 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4793 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4794 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4795 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4796 for (i = disks; i--; ) {
4797 struct r5dev *dev = &sh->dev[i];
4798 if (test_bit(R5_LOCKED, &dev->flags) &&
4799 (i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b
SL
4800 dev->written || test_bit(R5_InJournal,
4801 &dev->flags))) {
84789554
N
4802 pr_debug("Writing block %d\n", i);
4803 set_bit(R5_Wantwrite, &dev->flags);
4804 if (prexor)
4805 continue;
9c4bdf69
N
4806 if (s.failed > 1)
4807 continue;
84789554
N
4808 if (!test_bit(R5_Insync, &dev->flags) ||
4809 ((i == sh->pd_idx || i == sh->qd_idx) &&
4810 s.failed == 0))
4811 set_bit(STRIPE_INSYNC, &sh->state);
4812 }
4813 }
4814 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4815 s.dec_preread_active = 1;
4816 }
4817
ef5b7c69
N
4818 /*
4819 * might be able to return some write requests if the parity blocks
4820 * are safe, or on a failed drive
4821 */
4822 pdev = &sh->dev[sh->pd_idx];
4823 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4824 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4825 qdev = &sh->dev[sh->qd_idx];
4826 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4827 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4828 || conf->level < 6;
4829
4830 if (s.written &&
4831 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4832 && !test_bit(R5_LOCKED, &pdev->flags)
4833 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4834 test_bit(R5_Discard, &pdev->flags))))) &&
4835 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4836 && !test_bit(R5_LOCKED, &qdev->flags)
4837 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4838 test_bit(R5_Discard, &qdev->flags))))))
bd83d0a2 4839 handle_stripe_clean_event(conf, sh, disks);
ef5b7c69 4840
1e6d690b 4841 if (s.just_cached)
bd83d0a2 4842 r5c_handle_cached_data_endio(conf, sh, disks);
ff875738 4843 log_stripe_write_finished(sh);
1e6d690b 4844
ef5b7c69
N
4845 /* Now we might consider reading some blocks, either to check/generate
4846 * parity, or to satisfy requests
4847 * or to load a block that is being partially written.
4848 */
4849 if (s.to_read || s.non_overwrite
4850 || (conf->level == 6 && s.to_write && s.failed)
4851 || (s.syncing && (s.uptodate + s.compute < disks))
4852 || s.replacing
4853 || s.expanding)
4854 handle_stripe_fill(sh, &s, disks);
4855
2ded3703
SL
4856 /*
4857 * When the stripe finishes full journal write cycle (write to journal
4858 * and raid disk), this is the clean up procedure so it is ready for
4859 * next operation.
4860 */
4861 r5c_finish_stripe_write_out(conf, sh, &s);
4862
4863 /*
4864 * Now to consider new write requests, cache write back and what else,
4865 * if anything should be read. We do not handle new writes when:
84789554
N
4866 * 1/ A 'write' operation (copy+xor) is already in flight.
4867 * 2/ A 'check' operation is in flight, as it may clobber the parity
4868 * block.
2ded3703 4869 * 3/ A r5c cache log write is in flight.
84789554 4870 */
2ded3703
SL
4871
4872 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4873 if (!r5c_is_writeback(conf->log)) {
4874 if (s.to_write)
4875 handle_stripe_dirtying(conf, sh, &s, disks);
4876 } else { /* write back cache */
4877 int ret = 0;
4878
4879 /* First, try handle writes in caching phase */
4880 if (s.to_write)
4881 ret = r5c_try_caching_write(conf, sh, &s,
4882 disks);
4883 /*
4884 * If caching phase failed: ret == -EAGAIN
4885 * OR
4886 * stripe under reclaim: !caching && injournal
4887 *
4888 * fall back to handle_stripe_dirtying()
4889 */
4890 if (ret == -EAGAIN ||
4891 /* stripe under reclaim: !caching && injournal */
4892 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
d7bd398e
SL
4893 s.injournal > 0)) {
4894 ret = handle_stripe_dirtying(conf, sh, &s,
4895 disks);
4896 if (ret == -EAGAIN)
4897 goto finish;
4898 }
2ded3703
SL
4899 }
4900 }
84789554
N
4901
4902 /* maybe we need to check and possibly fix the parity for this stripe
4903 * Any reads will already have been scheduled, so we just see if enough
4904 * data is available. The parity check is held off while parity
4905 * dependent operations are in flight.
4906 */
4907 if (sh->check_state ||
4908 (s.syncing && s.locked == 0 &&
4909 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4910 !test_bit(STRIPE_INSYNC, &sh->state))) {
4911 if (conf->level == 6)
4912 handle_parity_checks6(conf, sh, &s, disks);
4913 else
4914 handle_parity_checks5(conf, sh, &s, disks);
4915 }
c5a31000 4916
f94c0b66
N
4917 if ((s.replacing || s.syncing) && s.locked == 0
4918 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4919 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4920 /* Write out to replacement devices where possible */
4921 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4922 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4923 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4924 set_bit(R5_WantReplace, &sh->dev[i].flags);
4925 set_bit(R5_LOCKED, &sh->dev[i].flags);
4926 s.locked++;
4927 }
f94c0b66
N
4928 if (s.replacing)
4929 set_bit(STRIPE_INSYNC, &sh->state);
4930 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4931 }
4932 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4933 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4934 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4935 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4936 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4937 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4938 wake_up(&conf->wait_for_overlap);
c5a31000
N
4939 }
4940
4941 /* If the failed drives are just a ReadError, then we might need
4942 * to progress the repair/check process
4943 */
4944 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4945 for (i = 0; i < s.failed; i++) {
4946 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4947 if (test_bit(R5_ReadError, &dev->flags)
4948 && !test_bit(R5_LOCKED, &dev->flags)
4949 && test_bit(R5_UPTODATE, &dev->flags)
4950 ) {
4951 if (!test_bit(R5_ReWrite, &dev->flags)) {
4952 set_bit(R5_Wantwrite, &dev->flags);
4953 set_bit(R5_ReWrite, &dev->flags);
4954 set_bit(R5_LOCKED, &dev->flags);
4955 s.locked++;
4956 } else {
4957 /* let's read it back */
4958 set_bit(R5_Wantread, &dev->flags);
4959 set_bit(R5_LOCKED, &dev->flags);
4960 s.locked++;
4961 }
4962 }
4963 }
4964
3687c061
N
4965 /* Finish reconstruct operations initiated by the expansion process */
4966 if (sh->reconstruct_state == reconstruct_state_result) {
4967 struct stripe_head *sh_src
6d036f7d 4968 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
3687c061
N
4969 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4970 /* sh cannot be written until sh_src has been read.
4971 * so arrange for sh to be delayed a little
4972 */
4973 set_bit(STRIPE_DELAYED, &sh->state);
4974 set_bit(STRIPE_HANDLE, &sh->state);
4975 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4976 &sh_src->state))
4977 atomic_inc(&conf->preread_active_stripes);
6d036f7d 4978 raid5_release_stripe(sh_src);
3687c061
N
4979 goto finish;
4980 }
4981 if (sh_src)
6d036f7d 4982 raid5_release_stripe(sh_src);
3687c061
N
4983
4984 sh->reconstruct_state = reconstruct_state_idle;
4985 clear_bit(STRIPE_EXPANDING, &sh->state);
4986 for (i = conf->raid_disks; i--; ) {
4987 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4988 set_bit(R5_LOCKED, &sh->dev[i].flags);
4989 s.locked++;
4990 }
4991 }
f416885e 4992
3687c061
N
4993 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4994 !sh->reconstruct_state) {
4995 /* Need to write out all blocks after computing parity */
4996 sh->disks = conf->raid_disks;
4997 stripe_set_idx(sh->sector, conf, 0, sh);
4998 schedule_reconstruction(sh, &s, 1, 1);
4999 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5000 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5001 atomic_dec(&conf->reshape_stripes);
5002 wake_up(&conf->wait_for_overlap);
5003 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
5004 }
5005
5006 if (s.expanding && s.locked == 0 &&
5007 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5008 handle_stripe_expansion(conf, sh);
16a53ecc 5009
3687c061 5010finish:
6bfe0b49 5011 /* wait for this device to become unblocked */
5f066c63
N
5012 if (unlikely(s.blocked_rdev)) {
5013 if (conf->mddev->external)
5014 md_wait_for_blocked_rdev(s.blocked_rdev,
5015 conf->mddev);
5016 else
5017 /* Internal metadata will immediately
5018 * be written by raid5d, so we don't
5019 * need to wait here.
5020 */
5021 rdev_dec_pending(s.blocked_rdev,
5022 conf->mddev);
5023 }
6bfe0b49 5024
bc2607f3
N
5025 if (s.handle_bad_blocks)
5026 for (i = disks; i--; ) {
3cb03002 5027 struct md_rdev *rdev;
bc2607f3
N
5028 struct r5dev *dev = &sh->dev[i];
5029 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5030 /* We own a safe reference to the rdev */
5031 rdev = conf->disks[i].rdev;
5032 if (!rdev_set_badblocks(rdev, sh->sector,
5033 STRIPE_SECTORS, 0))
5034 md_error(conf->mddev, rdev);
5035 rdev_dec_pending(rdev, conf->mddev);
5036 }
b84db560
N
5037 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5038 rdev = conf->disks[i].rdev;
5039 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 5040 STRIPE_SECTORS, 0);
b84db560
N
5041 rdev_dec_pending(rdev, conf->mddev);
5042 }
977df362
N
5043 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5044 rdev = conf->disks[i].replacement;
dd054fce
N
5045 if (!rdev)
5046 /* rdev have been moved down */
5047 rdev = conf->disks[i].rdev;
977df362 5048 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 5049 STRIPE_SECTORS, 0);
977df362
N
5050 rdev_dec_pending(rdev, conf->mddev);
5051 }
bc2607f3
N
5052 }
5053
6c0069c0
YT
5054 if (s.ops_request)
5055 raid_run_ops(sh, s.ops_request);
5056
f0e43bcd 5057 ops_run_io(sh, &s);
16a53ecc 5058
c5709ef6 5059 if (s.dec_preread_active) {
729a1866 5060 /* We delay this until after ops_run_io so that if make_request
e9c7469b 5061 * is waiting on a flush, it won't continue until the writes
729a1866
N
5062 * have actually been submitted.
5063 */
5064 atomic_dec(&conf->preread_active_stripes);
5065 if (atomic_read(&conf->preread_active_stripes) <
5066 IO_THRESHOLD)
5067 md_wakeup_thread(conf->mddev->thread);
5068 }
5069
257a4b42 5070 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
5071}
5072
d1688a6d 5073static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
5074{
5075 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5076 while (!list_empty(&conf->delayed_list)) {
5077 struct list_head *l = conf->delayed_list.next;
5078 struct stripe_head *sh;
5079 sh = list_entry(l, struct stripe_head, lru);
5080 list_del_init(l);
5081 clear_bit(STRIPE_DELAYED, &sh->state);
5082 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5083 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 5084 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 5085 raid5_wakeup_stripe_thread(sh);
16a53ecc 5086 }
482c0834 5087 }
16a53ecc
N
5088}
5089
566c09c5
SL
5090static void activate_bit_delay(struct r5conf *conf,
5091 struct list_head *temp_inactive_list)
16a53ecc
N
5092{
5093 /* device_lock is held */
5094 struct list_head head;
5095 list_add(&head, &conf->bitmap_list);
5096 list_del_init(&conf->bitmap_list);
5097 while (!list_empty(&head)) {
5098 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 5099 int hash;
16a53ecc
N
5100 list_del_init(&sh->lru);
5101 atomic_inc(&sh->count);
566c09c5
SL
5102 hash = sh->hash_lock_index;
5103 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
5104 }
5105}
5106
5c675f83 5107static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 5108{
d1688a6d 5109 struct r5conf *conf = mddev->private;
f022b2fd
N
5110
5111 /* No difference between reads and writes. Just check
5112 * how busy the stripe_cache is
5113 */
3fa841d7 5114
5423399a 5115 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd 5116 return 1;
a39f7afd
SL
5117
5118 /* Also checks whether there is pressure on r5cache log space */
5119 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5120 return 1;
f022b2fd
N
5121 if (conf->quiesce)
5122 return 1;
4bda556a 5123 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
5124 return 1;
5125
5126 return 0;
5127}
5128
fd01b88c 5129static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 5130{
3cb5edf4 5131 struct r5conf *conf = mddev->private;
10433d04 5132 sector_t sector = bio->bi_iter.bi_sector;
3cb5edf4 5133 unsigned int chunk_sectors;
aa8b57aa 5134 unsigned int bio_sectors = bio_sectors(bio);
f679623f 5135
10433d04
CH
5136 WARN_ON_ONCE(bio->bi_partno);
5137
3cb5edf4 5138 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
5139 return chunk_sectors >=
5140 ((sector & (chunk_sectors - 1)) + bio_sectors);
5141}
5142
46031f9a
RBJ
5143/*
5144 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5145 * later sampled by raid5d.
5146 */
d1688a6d 5147static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
5148{
5149 unsigned long flags;
5150
5151 spin_lock_irqsave(&conf->device_lock, flags);
5152
5153 bi->bi_next = conf->retry_read_aligned_list;
5154 conf->retry_read_aligned_list = bi;
5155
5156 spin_unlock_irqrestore(&conf->device_lock, flags);
5157 md_wakeup_thread(conf->mddev->thread);
5158}
5159
0472a42b
N
5160static struct bio *remove_bio_from_retry(struct r5conf *conf,
5161 unsigned int *offset)
46031f9a
RBJ
5162{
5163 struct bio *bi;
5164
5165 bi = conf->retry_read_aligned;
5166 if (bi) {
0472a42b 5167 *offset = conf->retry_read_offset;
46031f9a
RBJ
5168 conf->retry_read_aligned = NULL;
5169 return bi;
5170 }
5171 bi = conf->retry_read_aligned_list;
5172 if(bi) {
387bb173 5173 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 5174 bi->bi_next = NULL;
0472a42b 5175 *offset = 0;
46031f9a
RBJ
5176 }
5177
5178 return bi;
5179}
5180
f679623f
RBJ
5181/*
5182 * The "raid5_align_endio" should check if the read succeeded and if it
5183 * did, call bio_endio on the original bio (having bio_put the new bio
5184 * first).
5185 * If the read failed..
5186 */
4246a0b6 5187static void raid5_align_endio(struct bio *bi)
f679623f
RBJ
5188{
5189 struct bio* raid_bi = bi->bi_private;
fd01b88c 5190 struct mddev *mddev;
d1688a6d 5191 struct r5conf *conf;
3cb03002 5192 struct md_rdev *rdev;
4e4cbee9 5193 blk_status_t error = bi->bi_status;
46031f9a 5194
f679623f 5195 bio_put(bi);
46031f9a 5196
46031f9a
RBJ
5197 rdev = (void*)raid_bi->bi_next;
5198 raid_bi->bi_next = NULL;
2b7f2228
N
5199 mddev = rdev->mddev;
5200 conf = mddev->private;
46031f9a
RBJ
5201
5202 rdev_dec_pending(rdev, conf->mddev);
5203
9b81c842 5204 if (!error) {
4246a0b6 5205 bio_endio(raid_bi);
46031f9a 5206 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5207 wake_up(&conf->wait_for_quiescent);
6712ecf8 5208 return;
46031f9a
RBJ
5209 }
5210
45b4233c 5211 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
5212
5213 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
5214}
5215
7ef6b12a 5216static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 5217{
d1688a6d 5218 struct r5conf *conf = mddev->private;
8553fe7e 5219 int dd_idx;
f679623f 5220 struct bio* align_bi;
3cb03002 5221 struct md_rdev *rdev;
671488cc 5222 sector_t end_sector;
f679623f
RBJ
5223
5224 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 5225 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
5226 return 0;
5227 }
5228 /*
d7a10308 5229 * use bio_clone_fast to make a copy of the bio
f679623f 5230 */
afeee514 5231 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
f679623f
RBJ
5232 if (!align_bi)
5233 return 0;
5234 /*
5235 * set bi_end_io to a new function, and set bi_private to the
5236 * original bio.
5237 */
5238 align_bi->bi_end_io = raid5_align_endio;
5239 align_bi->bi_private = raid_bio;
5240 /*
5241 * compute position
5242 */
4f024f37
KO
5243 align_bi->bi_iter.bi_sector =
5244 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5245 0, &dd_idx, NULL);
f679623f 5246
f73a1c7d 5247 end_sector = bio_end_sector(align_bi);
f679623f 5248 rcu_read_lock();
671488cc
N
5249 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5250 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5251 rdev->recovery_offset < end_sector) {
5252 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5253 if (rdev &&
5254 (test_bit(Faulty, &rdev->flags) ||
5255 !(test_bit(In_sync, &rdev->flags) ||
5256 rdev->recovery_offset >= end_sector)))
5257 rdev = NULL;
5258 }
03b047f4
SL
5259
5260 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5261 rcu_read_unlock();
5262 bio_put(align_bi);
5263 return 0;
5264 }
5265
671488cc 5266 if (rdev) {
31c176ec
N
5267 sector_t first_bad;
5268 int bad_sectors;
5269
f679623f
RBJ
5270 atomic_inc(&rdev->nr_pending);
5271 rcu_read_unlock();
46031f9a 5272 raid_bio->bi_next = (void*)rdev;
74d46992 5273 bio_set_dev(align_bi, rdev->bdev);
46031f9a 5274
7140aafc 5275 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4f024f37 5276 bio_sectors(align_bi),
31c176ec 5277 &first_bad, &bad_sectors)) {
387bb173
NB
5278 bio_put(align_bi);
5279 rdev_dec_pending(rdev, mddev);
5280 return 0;
5281 }
5282
6c0544e2 5283 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 5284 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 5285
46031f9a 5286 spin_lock_irq(&conf->device_lock);
b1b46486 5287 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 5288 conf->quiesce == 0,
eed8c02e 5289 conf->device_lock);
46031f9a
RBJ
5290 atomic_inc(&conf->active_aligned_reads);
5291 spin_unlock_irq(&conf->device_lock);
5292
e3620a3a 5293 if (mddev->gendisk)
74d46992 5294 trace_block_bio_remap(align_bi->bi_disk->queue,
e3620a3a 5295 align_bi, disk_devt(mddev->gendisk),
4f024f37 5296 raid_bio->bi_iter.bi_sector);
ed00aabd 5297 submit_bio_noacct(align_bi);
f679623f
RBJ
5298 return 1;
5299 } else {
5300 rcu_read_unlock();
46031f9a 5301 bio_put(align_bi);
f679623f
RBJ
5302 return 0;
5303 }
5304}
5305
7ef6b12a
ML
5306static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5307{
5308 struct bio *split;
dd7a8f5d
N
5309 sector_t sector = raid_bio->bi_iter.bi_sector;
5310 unsigned chunk_sects = mddev->chunk_sectors;
5311 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
7ef6b12a 5312
dd7a8f5d
N
5313 if (sectors < bio_sectors(raid_bio)) {
5314 struct r5conf *conf = mddev->private;
afeee514 5315 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
dd7a8f5d 5316 bio_chain(split, raid_bio);
ed00aabd 5317 submit_bio_noacct(raid_bio);
dd7a8f5d
N
5318 raid_bio = split;
5319 }
7ef6b12a 5320
dd7a8f5d
N
5321 if (!raid5_read_one_chunk(mddev, raid_bio))
5322 return raid_bio;
7ef6b12a
ML
5323
5324 return NULL;
5325}
5326
8b3e6cdc
DW
5327/* __get_priority_stripe - get the next stripe to process
5328 *
5329 * Full stripe writes are allowed to pass preread active stripes up until
5330 * the bypass_threshold is exceeded. In general the bypass_count
5331 * increments when the handle_list is handled before the hold_list; however, it
5332 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5333 * stripe with in flight i/o. The bypass_count will be reset when the
5334 * head of the hold_list has changed, i.e. the head was promoted to the
5335 * handle_list.
5336 */
851c30c9 5337static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 5338{
535ae4eb 5339 struct stripe_head *sh, *tmp;
851c30c9 5340 struct list_head *handle_list = NULL;
535ae4eb 5341 struct r5worker_group *wg;
70d466f7
SL
5342 bool second_try = !r5c_is_writeback(conf->log) &&
5343 !r5l_log_disk_error(conf);
5344 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5345 r5l_log_disk_error(conf);
851c30c9 5346
535ae4eb
SL
5347again:
5348 wg = NULL;
5349 sh = NULL;
851c30c9 5350 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
5351 handle_list = try_loprio ? &conf->loprio_list :
5352 &conf->handle_list;
851c30c9 5353 } else if (group != ANY_GROUP) {
535ae4eb
SL
5354 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5355 &conf->worker_groups[group].handle_list;
bfc90cb0 5356 wg = &conf->worker_groups[group];
851c30c9
SL
5357 } else {
5358 int i;
5359 for (i = 0; i < conf->group_cnt; i++) {
535ae4eb
SL
5360 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5361 &conf->worker_groups[i].handle_list;
bfc90cb0 5362 wg = &conf->worker_groups[i];
851c30c9
SL
5363 if (!list_empty(handle_list))
5364 break;
5365 }
5366 }
8b3e6cdc
DW
5367
5368 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5369 __func__,
851c30c9 5370 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
5371 list_empty(&conf->hold_list) ? "empty" : "busy",
5372 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5373
851c30c9
SL
5374 if (!list_empty(handle_list)) {
5375 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
5376
5377 if (list_empty(&conf->hold_list))
5378 conf->bypass_count = 0;
5379 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5380 if (conf->hold_list.next == conf->last_hold)
5381 conf->bypass_count++;
5382 else {
5383 conf->last_hold = conf->hold_list.next;
5384 conf->bypass_count -= conf->bypass_threshold;
5385 if (conf->bypass_count < 0)
5386 conf->bypass_count = 0;
5387 }
5388 }
5389 } else if (!list_empty(&conf->hold_list) &&
5390 ((conf->bypass_threshold &&
5391 conf->bypass_count > conf->bypass_threshold) ||
5392 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
5393
5394 list_for_each_entry(tmp, &conf->hold_list, lru) {
5395 if (conf->worker_cnt_per_group == 0 ||
5396 group == ANY_GROUP ||
5397 !cpu_online(tmp->cpu) ||
5398 cpu_to_group(tmp->cpu) == group) {
5399 sh = tmp;
5400 break;
5401 }
5402 }
5403
5404 if (sh) {
5405 conf->bypass_count -= conf->bypass_threshold;
5406 if (conf->bypass_count < 0)
5407 conf->bypass_count = 0;
5408 }
bfc90cb0 5409 wg = NULL;
851c30c9
SL
5410 }
5411
535ae4eb
SL
5412 if (!sh) {
5413 if (second_try)
5414 return NULL;
5415 second_try = true;
5416 try_loprio = !try_loprio;
5417 goto again;
5418 }
8b3e6cdc 5419
bfc90cb0
SL
5420 if (wg) {
5421 wg->stripes_cnt--;
5422 sh->group = NULL;
5423 }
8b3e6cdc 5424 list_del_init(&sh->lru);
c7a6d35e 5425 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
5426 return sh;
5427}
f679623f 5428
8811b596
SL
5429struct raid5_plug_cb {
5430 struct blk_plug_cb cb;
5431 struct list_head list;
566c09c5 5432 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
5433};
5434
5435static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5436{
5437 struct raid5_plug_cb *cb = container_of(
5438 blk_cb, struct raid5_plug_cb, cb);
5439 struct stripe_head *sh;
5440 struct mddev *mddev = cb->cb.data;
5441 struct r5conf *conf = mddev->private;
a9add5d9 5442 int cnt = 0;
566c09c5 5443 int hash;
8811b596
SL
5444
5445 if (cb->list.next && !list_empty(&cb->list)) {
5446 spin_lock_irq(&conf->device_lock);
5447 while (!list_empty(&cb->list)) {
5448 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5449 list_del_init(&sh->lru);
5450 /*
5451 * avoid race release_stripe_plug() sees
5452 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5453 * is still in our list
5454 */
4e857c58 5455 smp_mb__before_atomic();
8811b596 5456 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
5457 /*
5458 * STRIPE_ON_RELEASE_LIST could be set here. In that
5459 * case, the count is always > 1 here
5460 */
566c09c5
SL
5461 hash = sh->hash_lock_index;
5462 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5463 cnt++;
8811b596
SL
5464 }
5465 spin_unlock_irq(&conf->device_lock);
5466 }
566c09c5
SL
5467 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5468 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5469 if (mddev->queue)
5470 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5471 kfree(cb);
5472}
5473
5474static void release_stripe_plug(struct mddev *mddev,
5475 struct stripe_head *sh)
5476{
5477 struct blk_plug_cb *blk_cb = blk_check_plugged(
5478 raid5_unplug, mddev,
5479 sizeof(struct raid5_plug_cb));
5480 struct raid5_plug_cb *cb;
5481
5482 if (!blk_cb) {
6d036f7d 5483 raid5_release_stripe(sh);
8811b596
SL
5484 return;
5485 }
5486
5487 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5488
566c09c5
SL
5489 if (cb->list.next == NULL) {
5490 int i;
8811b596 5491 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5492 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5493 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5494 }
8811b596
SL
5495
5496 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5497 list_add_tail(&sh->lru, &cb->list);
5498 else
6d036f7d 5499 raid5_release_stripe(sh);
8811b596
SL
5500}
5501
620125f2
SL
5502static void make_discard_request(struct mddev *mddev, struct bio *bi)
5503{
5504 struct r5conf *conf = mddev->private;
5505 sector_t logical_sector, last_sector;
5506 struct stripe_head *sh;
620125f2
SL
5507 int stripe_sectors;
5508
5509 if (mddev->reshape_position != MaxSector)
5510 /* Skip discard while reshape is happening */
5511 return;
5512
4f024f37 5513 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
b0f01ecf 5514 last_sector = bio_end_sector(bi);
620125f2
SL
5515
5516 bi->bi_next = NULL;
620125f2
SL
5517
5518 stripe_sectors = conf->chunk_sectors *
5519 (conf->raid_disks - conf->max_degraded);
5520 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5521 stripe_sectors);
5522 sector_div(last_sector, stripe_sectors);
5523
5524 logical_sector *= conf->chunk_sectors;
5525 last_sector *= conf->chunk_sectors;
5526
5527 for (; logical_sector < last_sector;
5528 logical_sector += STRIPE_SECTORS) {
5529 DEFINE_WAIT(w);
5530 int d;
5531 again:
6d036f7d 5532 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
620125f2
SL
5533 prepare_to_wait(&conf->wait_for_overlap, &w,
5534 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5535 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5536 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5537 raid5_release_stripe(sh);
f8dfcffd
N
5538 schedule();
5539 goto again;
5540 }
5541 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5542 spin_lock_irq(&sh->stripe_lock);
5543 for (d = 0; d < conf->raid_disks; d++) {
5544 if (d == sh->pd_idx || d == sh->qd_idx)
5545 continue;
5546 if (sh->dev[d].towrite || sh->dev[d].toread) {
5547 set_bit(R5_Overlap, &sh->dev[d].flags);
5548 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5549 raid5_release_stripe(sh);
620125f2
SL
5550 schedule();
5551 goto again;
5552 }
5553 }
f8dfcffd 5554 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5555 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5556 sh->overwrite_disks = 0;
620125f2
SL
5557 for (d = 0; d < conf->raid_disks; d++) {
5558 if (d == sh->pd_idx || d == sh->qd_idx)
5559 continue;
5560 sh->dev[d].towrite = bi;
5561 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
016c76ac 5562 bio_inc_remaining(bi);
49728050 5563 md_write_inc(mddev, bi);
7a87f434 5564 sh->overwrite_disks++;
620125f2
SL
5565 }
5566 spin_unlock_irq(&sh->stripe_lock);
5567 if (conf->mddev->bitmap) {
5568 for (d = 0;
5569 d < conf->raid_disks - conf->max_degraded;
5570 d++)
e64e4018
AS
5571 md_bitmap_startwrite(mddev->bitmap,
5572 sh->sector,
5573 STRIPE_SECTORS,
5574 0);
620125f2
SL
5575 sh->bm_seq = conf->seq_flush + 1;
5576 set_bit(STRIPE_BIT_DELAY, &sh->state);
5577 }
5578
5579 set_bit(STRIPE_HANDLE, &sh->state);
5580 clear_bit(STRIPE_DELAYED, &sh->state);
5581 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5582 atomic_inc(&conf->preread_active_stripes);
5583 release_stripe_plug(mddev, sh);
5584 }
5585
016c76ac 5586 bio_endio(bi);
620125f2
SL
5587}
5588
cc27b0c7 5589static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5590{
d1688a6d 5591 struct r5conf *conf = mddev->private;
911d4ee8 5592 int dd_idx;
1da177e4
LT
5593 sector_t new_sector;
5594 sector_t logical_sector, last_sector;
5595 struct stripe_head *sh;
a362357b 5596 const int rw = bio_data_dir(bi);
27c0f68f
SL
5597 DEFINE_WAIT(w);
5598 bool do_prepare;
3bddb7f8 5599 bool do_flush = false;
1da177e4 5600
1eff9d32 5601 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
1532d9e8 5602 int ret = log_handle_flush_request(conf, bi);
828cbe98
SL
5603
5604 if (ret == 0)
cc27b0c7 5605 return true;
828cbe98 5606 if (ret == -ENODEV) {
775d7831
DJ
5607 if (md_flush_request(mddev, bi))
5608 return true;
828cbe98
SL
5609 }
5610 /* ret == -EAGAIN, fallback */
3bddb7f8
SL
5611 /*
5612 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5613 * we need to flush journal device
5614 */
5615 do_flush = bi->bi_opf & REQ_PREFLUSH;
e5dcdd80
N
5616 }
5617
cc27b0c7
N
5618 if (!md_write_start(mddev, bi))
5619 return false;
9ffc8f7c
EM
5620 /*
5621 * If array is degraded, better not do chunk aligned read because
5622 * later we might have to read it again in order to reconstruct
5623 * data on failed drives.
5624 */
5625 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
5626 mddev->reshape_position == MaxSector) {
5627 bi = chunk_aligned_read(mddev, bi);
5628 if (!bi)
cc27b0c7 5629 return true;
7ef6b12a 5630 }
52488615 5631
796a5cf0 5632 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
620125f2 5633 make_discard_request(mddev, bi);
cc27b0c7
N
5634 md_write_end(mddev);
5635 return true;
620125f2
SL
5636 }
5637
4f024f37 5638 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5639 last_sector = bio_end_sector(bi);
1da177e4 5640 bi->bi_next = NULL;
06d91a5f 5641
27c0f68f 5642 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5643 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5644 int previous;
c46501b2 5645 int seq;
b578d55f 5646
27c0f68f 5647 do_prepare = false;
7ecaa1e6 5648 retry:
c46501b2 5649 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5650 previous = 0;
27c0f68f
SL
5651 if (do_prepare)
5652 prepare_to_wait(&conf->wait_for_overlap, &w,
5653 TASK_UNINTERRUPTIBLE);
b0f9ec04 5654 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5655 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5656 * 64bit on a 32bit platform, and so it might be
5657 * possible to see a half-updated value
aeb878b0 5658 * Of course reshape_progress could change after
df8e7f76
N
5659 * the lock is dropped, so once we get a reference
5660 * to the stripe that we think it is, we will have
5661 * to check again.
5662 */
7ecaa1e6 5663 spin_lock_irq(&conf->device_lock);
2c810cdd 5664 if (mddev->reshape_backwards
fef9c61f
N
5665 ? logical_sector < conf->reshape_progress
5666 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5667 previous = 1;
5668 } else {
2c810cdd 5669 if (mddev->reshape_backwards
fef9c61f
N
5670 ? logical_sector < conf->reshape_safe
5671 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5672 spin_unlock_irq(&conf->device_lock);
5673 schedule();
27c0f68f 5674 do_prepare = true;
b578d55f
N
5675 goto retry;
5676 }
5677 }
7ecaa1e6
N
5678 spin_unlock_irq(&conf->device_lock);
5679 }
16a53ecc 5680
112bf897
N
5681 new_sector = raid5_compute_sector(conf, logical_sector,
5682 previous,
911d4ee8 5683 &dd_idx, NULL);
849674e4 5684 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
c46501b2 5685 (unsigned long long)new_sector,
1da177e4
LT
5686 (unsigned long long)logical_sector);
5687
6d036f7d 5688 sh = raid5_get_active_stripe(conf, new_sector, previous,
1eff9d32 5689 (bi->bi_opf & REQ_RAHEAD), 0);
1da177e4 5690 if (sh) {
b0f9ec04 5691 if (unlikely(previous)) {
7ecaa1e6 5692 /* expansion might have moved on while waiting for a
df8e7f76
N
5693 * stripe, so we must do the range check again.
5694 * Expansion could still move past after this
5695 * test, but as we are holding a reference to
5696 * 'sh', we know that if that happens,
5697 * STRIPE_EXPANDING will get set and the expansion
5698 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5699 */
5700 int must_retry = 0;
5701 spin_lock_irq(&conf->device_lock);
2c810cdd 5702 if (mddev->reshape_backwards
b0f9ec04
N
5703 ? logical_sector >= conf->reshape_progress
5704 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5705 /* mismatch, need to try again */
5706 must_retry = 1;
5707 spin_unlock_irq(&conf->device_lock);
5708 if (must_retry) {
6d036f7d 5709 raid5_release_stripe(sh);
7a3ab908 5710 schedule();
27c0f68f 5711 do_prepare = true;
7ecaa1e6
N
5712 goto retry;
5713 }
5714 }
c46501b2
N
5715 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5716 /* Might have got the wrong stripe_head
5717 * by accident
5718 */
6d036f7d 5719 raid5_release_stripe(sh);
c46501b2
N
5720 goto retry;
5721 }
e62e58a5 5722
7ecaa1e6 5723 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5724 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5725 /* Stripe is busy expanding or
5726 * add failed due to overlap. Flush everything
1da177e4
LT
5727 * and wait a while
5728 */
482c0834 5729 md_wakeup_thread(mddev->thread);
6d036f7d 5730 raid5_release_stripe(sh);
1da177e4 5731 schedule();
27c0f68f 5732 do_prepare = true;
1da177e4
LT
5733 goto retry;
5734 }
3bddb7f8
SL
5735 if (do_flush) {
5736 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5737 /* we only need flush for one stripe */
5738 do_flush = false;
5739 }
5740
1684e975 5741 set_bit(STRIPE_HANDLE, &sh->state);
6ed3003c 5742 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5743 if ((!sh->batch_head || sh == sh->batch_head) &&
1eff9d32 5744 (bi->bi_opf & REQ_SYNC) &&
729a1866
N
5745 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5746 atomic_inc(&conf->preread_active_stripes);
8811b596 5747 release_stripe_plug(mddev, sh);
1da177e4
LT
5748 } else {
5749 /* cannot get stripe for read-ahead, just give-up */
4e4cbee9 5750 bi->bi_status = BLK_STS_IOERR;
1da177e4
LT
5751 break;
5752 }
1da177e4 5753 }
27c0f68f 5754 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5755
49728050
N
5756 if (rw == WRITE)
5757 md_write_end(mddev);
016c76ac 5758 bio_endio(bi);
cc27b0c7 5759 return true;
1da177e4
LT
5760}
5761
fd01b88c 5762static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5763
fd01b88c 5764static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5765{
52c03291
N
5766 /* reshaping is quite different to recovery/resync so it is
5767 * handled quite separately ... here.
5768 *
5769 * On each call to sync_request, we gather one chunk worth of
5770 * destination stripes and flag them as expanding.
5771 * Then we find all the source stripes and request reads.
5772 * As the reads complete, handle_stripe will copy the data
5773 * into the destination stripe and release that stripe.
5774 */
d1688a6d 5775 struct r5conf *conf = mddev->private;
1da177e4 5776 struct stripe_head *sh;
db0505d3 5777 struct md_rdev *rdev;
ccfcc3c1 5778 sector_t first_sector, last_sector;
f416885e
N
5779 int raid_disks = conf->previous_raid_disks;
5780 int data_disks = raid_disks - conf->max_degraded;
5781 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5782 int i;
5783 int dd_idx;
c8f517c4 5784 sector_t writepos, readpos, safepos;
ec32a2bd 5785 sector_t stripe_addr;
7a661381 5786 int reshape_sectors;
ab69ae12 5787 struct list_head stripes;
92140480 5788 sector_t retn;
52c03291 5789
fef9c61f
N
5790 if (sector_nr == 0) {
5791 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5792 if (mddev->reshape_backwards &&
fef9c61f
N
5793 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5794 sector_nr = raid5_size(mddev, 0, 0)
5795 - conf->reshape_progress;
6cbd8148
N
5796 } else if (mddev->reshape_backwards &&
5797 conf->reshape_progress == MaxSector) {
5798 /* shouldn't happen, but just in case, finish up.*/
5799 sector_nr = MaxSector;
2c810cdd 5800 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5801 conf->reshape_progress > 0)
5802 sector_nr = conf->reshape_progress;
f416885e 5803 sector_div(sector_nr, new_data_disks);
fef9c61f 5804 if (sector_nr) {
8dee7211 5805 mddev->curr_resync_completed = sector_nr;
e1a86dbb 5806 sysfs_notify_dirent_safe(mddev->sysfs_completed);
fef9c61f 5807 *skipped = 1;
92140480
N
5808 retn = sector_nr;
5809 goto finish;
fef9c61f 5810 }
52c03291
N
5811 }
5812
7a661381
N
5813 /* We need to process a full chunk at a time.
5814 * If old and new chunk sizes differ, we need to process the
5815 * largest of these
5816 */
3cb5edf4
N
5817
5818 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 5819
b5254dd5
N
5820 /* We update the metadata at least every 10 seconds, or when
5821 * the data about to be copied would over-write the source of
5822 * the data at the front of the range. i.e. one new_stripe
5823 * along from reshape_progress new_maps to after where
5824 * reshape_safe old_maps to
52c03291 5825 */
fef9c61f 5826 writepos = conf->reshape_progress;
f416885e 5827 sector_div(writepos, new_data_disks);
c8f517c4
N
5828 readpos = conf->reshape_progress;
5829 sector_div(readpos, data_disks);
fef9c61f 5830 safepos = conf->reshape_safe;
f416885e 5831 sector_div(safepos, data_disks);
2c810cdd 5832 if (mddev->reshape_backwards) {
c74c0d76
N
5833 BUG_ON(writepos < reshape_sectors);
5834 writepos -= reshape_sectors;
c8f517c4 5835 readpos += reshape_sectors;
7a661381 5836 safepos += reshape_sectors;
fef9c61f 5837 } else {
7a661381 5838 writepos += reshape_sectors;
c74c0d76
N
5839 /* readpos and safepos are worst-case calculations.
5840 * A negative number is overly pessimistic, and causes
5841 * obvious problems for unsigned storage. So clip to 0.
5842 */
ed37d83e
N
5843 readpos -= min_t(sector_t, reshape_sectors, readpos);
5844 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5845 }
52c03291 5846
b5254dd5
N
5847 /* Having calculated the 'writepos' possibly use it
5848 * to set 'stripe_addr' which is where we will write to.
5849 */
5850 if (mddev->reshape_backwards) {
5851 BUG_ON(conf->reshape_progress == 0);
5852 stripe_addr = writepos;
5853 BUG_ON((mddev->dev_sectors &
5854 ~((sector_t)reshape_sectors - 1))
5855 - reshape_sectors - stripe_addr
5856 != sector_nr);
5857 } else {
5858 BUG_ON(writepos != sector_nr + reshape_sectors);
5859 stripe_addr = sector_nr;
5860 }
5861
c8f517c4
N
5862 /* 'writepos' is the most advanced device address we might write.
5863 * 'readpos' is the least advanced device address we might read.
5864 * 'safepos' is the least address recorded in the metadata as having
5865 * been reshaped.
b5254dd5
N
5866 * If there is a min_offset_diff, these are adjusted either by
5867 * increasing the safepos/readpos if diff is negative, or
5868 * increasing writepos if diff is positive.
5869 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5870 * ensure safety in the face of a crash - that must be done by userspace
5871 * making a backup of the data. So in that case there is no particular
5872 * rush to update metadata.
5873 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5874 * update the metadata to advance 'safepos' to match 'readpos' so that
5875 * we can be safe in the event of a crash.
5876 * So we insist on updating metadata if safepos is behind writepos and
5877 * readpos is beyond writepos.
5878 * In any case, update the metadata every 10 seconds.
5879 * Maybe that number should be configurable, but I'm not sure it is
5880 * worth it.... maybe it could be a multiple of safemode_delay???
5881 */
b5254dd5
N
5882 if (conf->min_offset_diff < 0) {
5883 safepos += -conf->min_offset_diff;
5884 readpos += -conf->min_offset_diff;
5885 } else
5886 writepos += conf->min_offset_diff;
5887
2c810cdd 5888 if ((mddev->reshape_backwards
c8f517c4
N
5889 ? (safepos > writepos && readpos < writepos)
5890 : (safepos < writepos && readpos > writepos)) ||
5891 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5892 /* Cannot proceed until we've updated the superblock... */
5893 wait_event(conf->wait_for_overlap,
c91abf5a
N
5894 atomic_read(&conf->reshape_stripes)==0
5895 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5896 if (atomic_read(&conf->reshape_stripes) != 0)
5897 return 0;
fef9c61f 5898 mddev->reshape_position = conf->reshape_progress;
75d3da43 5899 mddev->curr_resync_completed = sector_nr;
db0505d3
N
5900 if (!mddev->reshape_backwards)
5901 /* Can update recovery_offset */
5902 rdev_for_each(rdev, mddev)
5903 if (rdev->raid_disk >= 0 &&
5904 !test_bit(Journal, &rdev->flags) &&
5905 !test_bit(In_sync, &rdev->flags) &&
5906 rdev->recovery_offset < sector_nr)
5907 rdev->recovery_offset = sector_nr;
5908
c8f517c4 5909 conf->reshape_checkpoint = jiffies;
2953079c 5910 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
52c03291 5911 md_wakeup_thread(mddev->thread);
2953079c 5912 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
5913 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5914 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5915 return 0;
52c03291 5916 spin_lock_irq(&conf->device_lock);
fef9c61f 5917 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5918 spin_unlock_irq(&conf->device_lock);
5919 wake_up(&conf->wait_for_overlap);
e1a86dbb 5920 sysfs_notify_dirent_safe(mddev->sysfs_completed);
52c03291
N
5921 }
5922
ab69ae12 5923 INIT_LIST_HEAD(&stripes);
7a661381 5924 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5925 int j;
a9f326eb 5926 int skipped_disk = 0;
6d036f7d 5927 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5928 set_bit(STRIPE_EXPANDING, &sh->state);
5929 atomic_inc(&conf->reshape_stripes);
5930 /* If any of this stripe is beyond the end of the old
5931 * array, then we need to zero those blocks
5932 */
5933 for (j=sh->disks; j--;) {
5934 sector_t s;
5935 if (j == sh->pd_idx)
5936 continue;
f416885e 5937 if (conf->level == 6 &&
d0dabf7e 5938 j == sh->qd_idx)
f416885e 5939 continue;
6d036f7d 5940 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 5941 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5942 skipped_disk = 1;
52c03291
N
5943 continue;
5944 }
5945 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5946 set_bit(R5_Expanded, &sh->dev[j].flags);
5947 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5948 }
a9f326eb 5949 if (!skipped_disk) {
52c03291
N
5950 set_bit(STRIPE_EXPAND_READY, &sh->state);
5951 set_bit(STRIPE_HANDLE, &sh->state);
5952 }
ab69ae12 5953 list_add(&sh->lru, &stripes);
52c03291
N
5954 }
5955 spin_lock_irq(&conf->device_lock);
2c810cdd 5956 if (mddev->reshape_backwards)
7a661381 5957 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5958 else
7a661381 5959 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5960 spin_unlock_irq(&conf->device_lock);
5961 /* Ok, those stripe are ready. We can start scheduling
5962 * reads on the source stripes.
5963 * The source stripes are determined by mapping the first and last
5964 * block on the destination stripes.
5965 */
52c03291 5966 first_sector =
ec32a2bd 5967 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5968 1, &dd_idx, NULL);
52c03291 5969 last_sector =
0e6e0271 5970 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5971 * new_data_disks - 1),
911d4ee8 5972 1, &dd_idx, NULL);
58c0fed4
AN
5973 if (last_sector >= mddev->dev_sectors)
5974 last_sector = mddev->dev_sectors - 1;
52c03291 5975 while (first_sector <= last_sector) {
6d036f7d 5976 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5977 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5978 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 5979 raid5_release_stripe(sh);
52c03291
N
5980 first_sector += STRIPE_SECTORS;
5981 }
ab69ae12
N
5982 /* Now that the sources are clearly marked, we can release
5983 * the destination stripes
5984 */
5985 while (!list_empty(&stripes)) {
5986 sh = list_entry(stripes.next, struct stripe_head, lru);
5987 list_del_init(&sh->lru);
6d036f7d 5988 raid5_release_stripe(sh);
ab69ae12 5989 }
c6207277
N
5990 /* If this takes us to the resync_max point where we have to pause,
5991 * then we need to write out the superblock.
5992 */
7a661381 5993 sector_nr += reshape_sectors;
92140480
N
5994 retn = reshape_sectors;
5995finish:
c5e19d90
N
5996 if (mddev->curr_resync_completed > mddev->resync_max ||
5997 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 5998 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5999 /* Cannot proceed until we've updated the superblock... */
6000 wait_event(conf->wait_for_overlap,
c91abf5a
N
6001 atomic_read(&conf->reshape_stripes) == 0
6002 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6003 if (atomic_read(&conf->reshape_stripes) != 0)
6004 goto ret;
fef9c61f 6005 mddev->reshape_position = conf->reshape_progress;
75d3da43 6006 mddev->curr_resync_completed = sector_nr;
db0505d3
N
6007 if (!mddev->reshape_backwards)
6008 /* Can update recovery_offset */
6009 rdev_for_each(rdev, mddev)
6010 if (rdev->raid_disk >= 0 &&
6011 !test_bit(Journal, &rdev->flags) &&
6012 !test_bit(In_sync, &rdev->flags) &&
6013 rdev->recovery_offset < sector_nr)
6014 rdev->recovery_offset = sector_nr;
c8f517c4 6015 conf->reshape_checkpoint = jiffies;
2953079c 6016 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
c6207277
N
6017 md_wakeup_thread(mddev->thread);
6018 wait_event(mddev->sb_wait,
2953079c 6019 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
c91abf5a
N
6020 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6021 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6022 goto ret;
c6207277 6023 spin_lock_irq(&conf->device_lock);
fef9c61f 6024 conf->reshape_safe = mddev->reshape_position;
c6207277
N
6025 spin_unlock_irq(&conf->device_lock);
6026 wake_up(&conf->wait_for_overlap);
e1a86dbb 6027 sysfs_notify_dirent_safe(mddev->sysfs_completed);
c6207277 6028 }
c91abf5a 6029ret:
92140480 6030 return retn;
52c03291
N
6031}
6032
849674e4
SL
6033static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6034 int *skipped)
52c03291 6035{
d1688a6d 6036 struct r5conf *conf = mddev->private;
52c03291 6037 struct stripe_head *sh;
58c0fed4 6038 sector_t max_sector = mddev->dev_sectors;
57dab0bd 6039 sector_t sync_blocks;
16a53ecc
N
6040 int still_degraded = 0;
6041 int i;
1da177e4 6042
72626685 6043 if (sector_nr >= max_sector) {
1da177e4 6044 /* just being told to finish up .. nothing much to do */
cea9c228 6045
29269553
N
6046 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6047 end_reshape(conf);
6048 return 0;
6049 }
72626685
N
6050
6051 if (mddev->curr_resync < max_sector) /* aborted */
e64e4018
AS
6052 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6053 &sync_blocks, 1);
16a53ecc 6054 else /* completed sync */
72626685 6055 conf->fullsync = 0;
e64e4018 6056 md_bitmap_close_sync(mddev->bitmap);
72626685 6057
1da177e4
LT
6058 return 0;
6059 }
ccfcc3c1 6060
64bd660b
N
6061 /* Allow raid5_quiesce to complete */
6062 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6063
52c03291
N
6064 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6065 return reshape_request(mddev, sector_nr, skipped);
f6705578 6066
c6207277
N
6067 /* No need to check resync_max as we never do more than one
6068 * stripe, and as resync_max will always be on a chunk boundary,
6069 * if the check in md_do_sync didn't fire, there is no chance
6070 * of overstepping resync_max here
6071 */
6072
16a53ecc 6073 /* if there is too many failed drives and we are trying
1da177e4
LT
6074 * to resync, then assert that we are finished, because there is
6075 * nothing we can do.
6076 */
3285edf1 6077 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 6078 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 6079 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 6080 *skipped = 1;
1da177e4
LT
6081 return rv;
6082 }
6f608040 6083 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6084 !conf->fullsync &&
e64e4018 6085 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6f608040 6086 sync_blocks >= STRIPE_SECTORS) {
72626685
N
6087 /* we can skip this block, and probably more */
6088 sync_blocks /= STRIPE_SECTORS;
6089 *skipped = 1;
6090 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6091 }
1da177e4 6092
e64e4018 6093 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
b47490c9 6094
6d036f7d 6095 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 6096 if (sh == NULL) {
6d036f7d 6097 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 6098 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 6099 * is trying to get access
1da177e4 6100 */
66c006a5 6101 schedule_timeout_uninterruptible(1);
1da177e4 6102 }
16a53ecc 6103 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
6104 * Note in case of > 1 drive failures it's possible we're rebuilding
6105 * one drive while leaving another faulty drive in array.
16a53ecc 6106 */
16d9cfab
EM
6107 rcu_read_lock();
6108 for (i = 0; i < conf->raid_disks; i++) {
6aa7de05 6109 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
16d9cfab
EM
6110
6111 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 6112 still_degraded = 1;
16d9cfab
EM
6113 }
6114 rcu_read_unlock();
16a53ecc 6115
e64e4018 6116 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
16a53ecc 6117
83206d66 6118 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 6119 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 6120
6d036f7d 6121 raid5_release_stripe(sh);
1da177e4
LT
6122
6123 return STRIPE_SECTORS;
6124}
6125
0472a42b
N
6126static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6127 unsigned int offset)
46031f9a
RBJ
6128{
6129 /* We may not be able to submit a whole bio at once as there
6130 * may not be enough stripe_heads available.
6131 * We cannot pre-allocate enough stripe_heads as we may need
6132 * more than exist in the cache (if we allow ever large chunks).
6133 * So we do one stripe head at a time and record in
6134 * ->bi_hw_segments how many have been done.
6135 *
6136 * We *know* that this entire raid_bio is in one chunk, so
6137 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6138 */
6139 struct stripe_head *sh;
911d4ee8 6140 int dd_idx;
46031f9a
RBJ
6141 sector_t sector, logical_sector, last_sector;
6142 int scnt = 0;
46031f9a
RBJ
6143 int handled = 0;
6144
4f024f37
KO
6145 logical_sector = raid_bio->bi_iter.bi_sector &
6146 ~((sector_t)STRIPE_SECTORS-1);
112bf897 6147 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 6148 0, &dd_idx, NULL);
f73a1c7d 6149 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
6150
6151 for (; logical_sector < last_sector;
387bb173
NB
6152 logical_sector += STRIPE_SECTORS,
6153 sector += STRIPE_SECTORS,
6154 scnt++) {
46031f9a 6155
0472a42b 6156 if (scnt < offset)
46031f9a
RBJ
6157 /* already done this stripe */
6158 continue;
6159
6d036f7d 6160 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
6161
6162 if (!sh) {
6163 /* failed to get a stripe - must wait */
46031f9a 6164 conf->retry_read_aligned = raid_bio;
0472a42b 6165 conf->retry_read_offset = scnt;
46031f9a
RBJ
6166 return handled;
6167 }
6168
da41ba65 6169 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 6170 raid5_release_stripe(sh);
387bb173 6171 conf->retry_read_aligned = raid_bio;
0472a42b 6172 conf->retry_read_offset = scnt;
387bb173
NB
6173 return handled;
6174 }
6175
3f9e7c14 6176 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 6177 handle_stripe(sh);
6d036f7d 6178 raid5_release_stripe(sh);
46031f9a
RBJ
6179 handled++;
6180 }
016c76ac
N
6181
6182 bio_endio(raid_bio);
6183
46031f9a 6184 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 6185 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
6186 return handled;
6187}
6188
bfc90cb0 6189static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
6190 struct r5worker *worker,
6191 struct list_head *temp_inactive_list)
efcd487c
CH
6192 __releases(&conf->device_lock)
6193 __acquires(&conf->device_lock)
46a06401
SL
6194{
6195 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
6196 int i, batch_size = 0, hash;
6197 bool release_inactive = false;
46a06401
SL
6198
6199 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 6200 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
6201 batch[batch_size++] = sh;
6202
566c09c5
SL
6203 if (batch_size == 0) {
6204 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6205 if (!list_empty(temp_inactive_list + i))
6206 break;
a8c34f91
SL
6207 if (i == NR_STRIPE_HASH_LOCKS) {
6208 spin_unlock_irq(&conf->device_lock);
1532d9e8 6209 log_flush_stripe_to_raid(conf);
a8c34f91 6210 spin_lock_irq(&conf->device_lock);
566c09c5 6211 return batch_size;
a8c34f91 6212 }
566c09c5
SL
6213 release_inactive = true;
6214 }
46a06401
SL
6215 spin_unlock_irq(&conf->device_lock);
6216
566c09c5
SL
6217 release_inactive_stripe_list(conf, temp_inactive_list,
6218 NR_STRIPE_HASH_LOCKS);
6219
a8c34f91 6220 r5l_flush_stripe_to_raid(conf->log);
566c09c5
SL
6221 if (release_inactive) {
6222 spin_lock_irq(&conf->device_lock);
6223 return 0;
6224 }
6225
46a06401
SL
6226 for (i = 0; i < batch_size; i++)
6227 handle_stripe(batch[i]);
ff875738 6228 log_write_stripe_run(conf);
46a06401
SL
6229
6230 cond_resched();
6231
6232 spin_lock_irq(&conf->device_lock);
566c09c5
SL
6233 for (i = 0; i < batch_size; i++) {
6234 hash = batch[i]->hash_lock_index;
6235 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6236 }
46a06401
SL
6237 return batch_size;
6238}
46031f9a 6239
851c30c9
SL
6240static void raid5_do_work(struct work_struct *work)
6241{
6242 struct r5worker *worker = container_of(work, struct r5worker, work);
6243 struct r5worker_group *group = worker->group;
6244 struct r5conf *conf = group->conf;
16d997b7 6245 struct mddev *mddev = conf->mddev;
851c30c9
SL
6246 int group_id = group - conf->worker_groups;
6247 int handled;
6248 struct blk_plug plug;
6249
6250 pr_debug("+++ raid5worker active\n");
6251
6252 blk_start_plug(&plug);
6253 handled = 0;
6254 spin_lock_irq(&conf->device_lock);
6255 while (1) {
6256 int batch_size, released;
6257
566c09c5 6258 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 6259
566c09c5
SL
6260 batch_size = handle_active_stripes(conf, group_id, worker,
6261 worker->temp_inactive_list);
bfc90cb0 6262 worker->working = false;
851c30c9
SL
6263 if (!batch_size && !released)
6264 break;
6265 handled += batch_size;
16d997b7
N
6266 wait_event_lock_irq(mddev->sb_wait,
6267 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6268 conf->device_lock);
851c30c9
SL
6269 }
6270 pr_debug("%d stripes handled\n", handled);
6271
6272 spin_unlock_irq(&conf->device_lock);
7e96d559 6273
9c72a18e
SL
6274 flush_deferred_bios(conf);
6275
6276 r5l_flush_stripe_to_raid(conf->log);
6277
7e96d559 6278 async_tx_issue_pending_all();
851c30c9
SL
6279 blk_finish_plug(&plug);
6280
6281 pr_debug("--- raid5worker inactive\n");
6282}
6283
1da177e4
LT
6284/*
6285 * This is our raid5 kernel thread.
6286 *
6287 * We scan the hash table for stripes which can be handled now.
6288 * During the scan, completed stripes are saved for us by the interrupt
6289 * handler, so that they will not have to wait for our next wakeup.
6290 */
4ed8731d 6291static void raid5d(struct md_thread *thread)
1da177e4 6292{
4ed8731d 6293 struct mddev *mddev = thread->mddev;
d1688a6d 6294 struct r5conf *conf = mddev->private;
1da177e4 6295 int handled;
e1dfa0a2 6296 struct blk_plug plug;
1da177e4 6297
45b4233c 6298 pr_debug("+++ raid5d active\n");
1da177e4
LT
6299
6300 md_check_recovery(mddev);
1da177e4 6301
e1dfa0a2 6302 blk_start_plug(&plug);
1da177e4
LT
6303 handled = 0;
6304 spin_lock_irq(&conf->device_lock);
6305 while (1) {
46031f9a 6306 struct bio *bio;
773ca82f 6307 int batch_size, released;
0472a42b 6308 unsigned int offset;
773ca82f 6309
566c09c5 6310 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
6311 if (released)
6312 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 6313
0021b7bc 6314 if (
7c13edc8
N
6315 !list_empty(&conf->bitmap_list)) {
6316 /* Now is a good time to flush some bitmap updates */
6317 conf->seq_flush++;
700e432d 6318 spin_unlock_irq(&conf->device_lock);
e64e4018 6319 md_bitmap_unplug(mddev->bitmap);
700e432d 6320 spin_lock_irq(&conf->device_lock);
7c13edc8 6321 conf->seq_write = conf->seq_flush;
566c09c5 6322 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 6323 }
0021b7bc 6324 raid5_activate_delayed(conf);
72626685 6325
0472a42b 6326 while ((bio = remove_bio_from_retry(conf, &offset))) {
46031f9a
RBJ
6327 int ok;
6328 spin_unlock_irq(&conf->device_lock);
0472a42b 6329 ok = retry_aligned_read(conf, bio, offset);
46031f9a
RBJ
6330 spin_lock_irq(&conf->device_lock);
6331 if (!ok)
6332 break;
6333 handled++;
6334 }
6335
566c09c5
SL
6336 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6337 conf->temp_inactive_list);
773ca82f 6338 if (!batch_size && !released)
1da177e4 6339 break;
46a06401 6340 handled += batch_size;
1da177e4 6341
2953079c 6342 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
46a06401 6343 spin_unlock_irq(&conf->device_lock);
de393cde 6344 md_check_recovery(mddev);
46a06401
SL
6345 spin_lock_irq(&conf->device_lock);
6346 }
1da177e4 6347 }
45b4233c 6348 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
6349
6350 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
6351 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6352 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
6353 grow_one_stripe(conf, __GFP_NOWARN);
6354 /* Set flag even if allocation failed. This helps
6355 * slow down allocation requests when mem is short
6356 */
6357 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 6358 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 6359 }
1da177e4 6360
765d704d
SL
6361 flush_deferred_bios(conf);
6362
0576b1c6
SL
6363 r5l_flush_stripe_to_raid(conf->log);
6364
c9f21aaf 6365 async_tx_issue_pending_all();
e1dfa0a2 6366 blk_finish_plug(&plug);
1da177e4 6367
45b4233c 6368 pr_debug("--- raid5d inactive\n");
1da177e4
LT
6369}
6370
3f294f4f 6371static ssize_t
fd01b88c 6372raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 6373{
7b1485ba
N
6374 struct r5conf *conf;
6375 int ret = 0;
6376 spin_lock(&mddev->lock);
6377 conf = mddev->private;
96de1e66 6378 if (conf)
edbe83ab 6379 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
6380 spin_unlock(&mddev->lock);
6381 return ret;
3f294f4f
N
6382}
6383
c41d4ac4 6384int
fd01b88c 6385raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 6386{
483cbbed 6387 int result = 0;
d1688a6d 6388 struct r5conf *conf = mddev->private;
b5470dc5 6389
c41d4ac4 6390 if (size <= 16 || size > 32768)
3f294f4f 6391 return -EINVAL;
486f0644 6392
edbe83ab 6393 conf->min_nr_stripes = size;
2d5b569b 6394 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6395 while (size < conf->max_nr_stripes &&
6396 drop_one_stripe(conf))
6397 ;
2d5b569b 6398 mutex_unlock(&conf->cache_size_mutex);
486f0644 6399
2214c260 6400 md_allow_write(mddev);
486f0644 6401
2d5b569b 6402 mutex_lock(&conf->cache_size_mutex);
486f0644 6403 while (size > conf->max_nr_stripes)
483cbbed
AN
6404 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6405 conf->min_nr_stripes = conf->max_nr_stripes;
6406 result = -ENOMEM;
486f0644 6407 break;
483cbbed 6408 }
2d5b569b 6409 mutex_unlock(&conf->cache_size_mutex);
486f0644 6410
483cbbed 6411 return result;
c41d4ac4
N
6412}
6413EXPORT_SYMBOL(raid5_set_cache_size);
6414
6415static ssize_t
fd01b88c 6416raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 6417{
6791875e 6418 struct r5conf *conf;
c41d4ac4
N
6419 unsigned long new;
6420 int err;
6421
6422 if (len >= PAGE_SIZE)
6423 return -EINVAL;
b29bebd6 6424 if (kstrtoul(page, 10, &new))
c41d4ac4 6425 return -EINVAL;
6791875e 6426 err = mddev_lock(mddev);
c41d4ac4
N
6427 if (err)
6428 return err;
6791875e
N
6429 conf = mddev->private;
6430 if (!conf)
6431 err = -ENODEV;
6432 else
6433 err = raid5_set_cache_size(mddev, new);
6434 mddev_unlock(mddev);
6435
6436 return err ?: len;
3f294f4f 6437}
007583c9 6438
96de1e66
N
6439static struct md_sysfs_entry
6440raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6441 raid5_show_stripe_cache_size,
6442 raid5_store_stripe_cache_size);
3f294f4f 6443
d06f191f
MS
6444static ssize_t
6445raid5_show_rmw_level(struct mddev *mddev, char *page)
6446{
6447 struct r5conf *conf = mddev->private;
6448 if (conf)
6449 return sprintf(page, "%d\n", conf->rmw_level);
6450 else
6451 return 0;
6452}
6453
6454static ssize_t
6455raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6456{
6457 struct r5conf *conf = mddev->private;
6458 unsigned long new;
6459
6460 if (!conf)
6461 return -ENODEV;
6462
6463 if (len >= PAGE_SIZE)
6464 return -EINVAL;
6465
6466 if (kstrtoul(page, 10, &new))
6467 return -EINVAL;
6468
6469 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6470 return -EINVAL;
6471
6472 if (new != PARITY_DISABLE_RMW &&
6473 new != PARITY_ENABLE_RMW &&
6474 new != PARITY_PREFER_RMW)
6475 return -EINVAL;
6476
6477 conf->rmw_level = new;
6478 return len;
6479}
6480
6481static struct md_sysfs_entry
6482raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6483 raid5_show_rmw_level,
6484 raid5_store_rmw_level);
6485
6486
8b3e6cdc 6487static ssize_t
fd01b88c 6488raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 6489{
7b1485ba
N
6490 struct r5conf *conf;
6491 int ret = 0;
6492 spin_lock(&mddev->lock);
6493 conf = mddev->private;
8b3e6cdc 6494 if (conf)
7b1485ba
N
6495 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6496 spin_unlock(&mddev->lock);
6497 return ret;
8b3e6cdc
DW
6498}
6499
6500static ssize_t
fd01b88c 6501raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6502{
6791875e 6503 struct r5conf *conf;
4ef197d8 6504 unsigned long new;
6791875e
N
6505 int err;
6506
8b3e6cdc
DW
6507 if (len >= PAGE_SIZE)
6508 return -EINVAL;
b29bebd6 6509 if (kstrtoul(page, 10, &new))
8b3e6cdc 6510 return -EINVAL;
6791875e
N
6511
6512 err = mddev_lock(mddev);
6513 if (err)
6514 return err;
6515 conf = mddev->private;
6516 if (!conf)
6517 err = -ENODEV;
edbe83ab 6518 else if (new > conf->min_nr_stripes)
6791875e
N
6519 err = -EINVAL;
6520 else
6521 conf->bypass_threshold = new;
6522 mddev_unlock(mddev);
6523 return err ?: len;
8b3e6cdc
DW
6524}
6525
6526static struct md_sysfs_entry
6527raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6528 S_IRUGO | S_IWUSR,
6529 raid5_show_preread_threshold,
6530 raid5_store_preread_threshold);
6531
d592a996
SL
6532static ssize_t
6533raid5_show_skip_copy(struct mddev *mddev, char *page)
6534{
7b1485ba
N
6535 struct r5conf *conf;
6536 int ret = 0;
6537 spin_lock(&mddev->lock);
6538 conf = mddev->private;
d592a996 6539 if (conf)
7b1485ba
N
6540 ret = sprintf(page, "%d\n", conf->skip_copy);
6541 spin_unlock(&mddev->lock);
6542 return ret;
d592a996
SL
6543}
6544
6545static ssize_t
6546raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6547{
6791875e 6548 struct r5conf *conf;
d592a996 6549 unsigned long new;
6791875e
N
6550 int err;
6551
d592a996
SL
6552 if (len >= PAGE_SIZE)
6553 return -EINVAL;
d592a996
SL
6554 if (kstrtoul(page, 10, &new))
6555 return -EINVAL;
6556 new = !!new;
6791875e
N
6557
6558 err = mddev_lock(mddev);
6559 if (err)
6560 return err;
6561 conf = mddev->private;
6562 if (!conf)
6563 err = -ENODEV;
6564 else if (new != conf->skip_copy) {
6565 mddev_suspend(mddev);
6566 conf->skip_copy = new;
6567 if (new)
dc3b17cc 6568 mddev->queue->backing_dev_info->capabilities |=
6791875e
N
6569 BDI_CAP_STABLE_WRITES;
6570 else
dc3b17cc 6571 mddev->queue->backing_dev_info->capabilities &=
6791875e
N
6572 ~BDI_CAP_STABLE_WRITES;
6573 mddev_resume(mddev);
6574 }
6575 mddev_unlock(mddev);
6576 return err ?: len;
d592a996
SL
6577}
6578
6579static struct md_sysfs_entry
6580raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6581 raid5_show_skip_copy,
6582 raid5_store_skip_copy);
6583
3f294f4f 6584static ssize_t
fd01b88c 6585stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6586{
d1688a6d 6587 struct r5conf *conf = mddev->private;
96de1e66
N
6588 if (conf)
6589 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6590 else
6591 return 0;
3f294f4f
N
6592}
6593
96de1e66
N
6594static struct md_sysfs_entry
6595raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6596
b721420e
SL
6597static ssize_t
6598raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6599{
7b1485ba
N
6600 struct r5conf *conf;
6601 int ret = 0;
6602 spin_lock(&mddev->lock);
6603 conf = mddev->private;
b721420e 6604 if (conf)
7b1485ba
N
6605 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6606 spin_unlock(&mddev->lock);
6607 return ret;
b721420e
SL
6608}
6609
60aaf933 6610static int alloc_thread_groups(struct r5conf *conf, int cnt,
6611 int *group_cnt,
60aaf933 6612 struct r5worker_group **worker_groups);
b721420e
SL
6613static ssize_t
6614raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6615{
6791875e 6616 struct r5conf *conf;
7d5d7b50 6617 unsigned int new;
b721420e 6618 int err;
60aaf933 6619 struct r5worker_group *new_groups, *old_groups;
d2c9ad41 6620 int group_cnt;
b721420e
SL
6621
6622 if (len >= PAGE_SIZE)
6623 return -EINVAL;
7d5d7b50
SL
6624 if (kstrtouint(page, 10, &new))
6625 return -EINVAL;
6626 /* 8192 should be big enough */
6627 if (new > 8192)
b721420e
SL
6628 return -EINVAL;
6629
6791875e
N
6630 err = mddev_lock(mddev);
6631 if (err)
6632 return err;
6633 conf = mddev->private;
6634 if (!conf)
6635 err = -ENODEV;
6636 else if (new != conf->worker_cnt_per_group) {
6637 mddev_suspend(mddev);
b721420e 6638
6791875e
N
6639 old_groups = conf->worker_groups;
6640 if (old_groups)
6641 flush_workqueue(raid5_wq);
d206dcfa 6642
d2c9ad41 6643 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6791875e
N
6644 if (!err) {
6645 spin_lock_irq(&conf->device_lock);
6646 conf->group_cnt = group_cnt;
d2c9ad41 6647 conf->worker_cnt_per_group = new;
6791875e
N
6648 conf->worker_groups = new_groups;
6649 spin_unlock_irq(&conf->device_lock);
b721420e 6650
6791875e
N
6651 if (old_groups)
6652 kfree(old_groups[0].workers);
6653 kfree(old_groups);
6654 }
6655 mddev_resume(mddev);
b721420e 6656 }
6791875e 6657 mddev_unlock(mddev);
b721420e 6658
6791875e 6659 return err ?: len;
b721420e
SL
6660}
6661
6662static struct md_sysfs_entry
6663raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6664 raid5_show_group_thread_cnt,
6665 raid5_store_group_thread_cnt);
6666
007583c9 6667static struct attribute *raid5_attrs[] = {
3f294f4f
N
6668 &raid5_stripecache_size.attr,
6669 &raid5_stripecache_active.attr,
8b3e6cdc 6670 &raid5_preread_bypass_threshold.attr,
b721420e 6671 &raid5_group_thread_cnt.attr,
d592a996 6672 &raid5_skip_copy.attr,
d06f191f 6673 &raid5_rmw_level.attr,
2c7da14b 6674 &r5c_journal_mode.attr,
a596d086 6675 &ppl_write_hint.attr,
3f294f4f
N
6676 NULL,
6677};
007583c9
N
6678static struct attribute_group raid5_attrs_group = {
6679 .name = NULL,
6680 .attrs = raid5_attrs,
3f294f4f
N
6681};
6682
d2c9ad41 6683static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
60aaf933 6684 struct r5worker_group **worker_groups)
851c30c9 6685{
566c09c5 6686 int i, j, k;
851c30c9
SL
6687 ssize_t size;
6688 struct r5worker *workers;
6689
851c30c9 6690 if (cnt == 0) {
60aaf933 6691 *group_cnt = 0;
6692 *worker_groups = NULL;
851c30c9
SL
6693 return 0;
6694 }
60aaf933 6695 *group_cnt = num_possible_nodes();
851c30c9 6696 size = sizeof(struct r5worker) * cnt;
6396bb22
KC
6697 workers = kcalloc(size, *group_cnt, GFP_NOIO);
6698 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6699 GFP_NOIO);
60aaf933 6700 if (!*worker_groups || !workers) {
851c30c9 6701 kfree(workers);
60aaf933 6702 kfree(*worker_groups);
851c30c9
SL
6703 return -ENOMEM;
6704 }
6705
60aaf933 6706 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6707 struct r5worker_group *group;
6708
0c775d52 6709 group = &(*worker_groups)[i];
851c30c9 6710 INIT_LIST_HEAD(&group->handle_list);
535ae4eb 6711 INIT_LIST_HEAD(&group->loprio_list);
851c30c9
SL
6712 group->conf = conf;
6713 group->workers = workers + i * cnt;
6714
6715 for (j = 0; j < cnt; j++) {
566c09c5
SL
6716 struct r5worker *worker = group->workers + j;
6717 worker->group = group;
6718 INIT_WORK(&worker->work, raid5_do_work);
6719
6720 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6721 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6722 }
6723 }
6724
6725 return 0;
6726}
6727
6728static void free_thread_groups(struct r5conf *conf)
6729{
6730 if (conf->worker_groups)
6731 kfree(conf->worker_groups[0].workers);
6732 kfree(conf->worker_groups);
6733 conf->worker_groups = NULL;
6734}
6735
80c3a6ce 6736static sector_t
fd01b88c 6737raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6738{
d1688a6d 6739 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6740
6741 if (!sectors)
6742 sectors = mddev->dev_sectors;
5e5e3e78 6743 if (!raid_disks)
7ec05478 6744 /* size is defined by the smallest of previous and new size */
5e5e3e78 6745 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6746
3cb5edf4
N
6747 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6748 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
6749 return sectors * (raid_disks - conf->max_degraded);
6750}
6751
789b5e03
ON
6752static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6753{
6754 safe_put_page(percpu->spare_page);
789b5e03 6755 percpu->spare_page = NULL;
b330e6a4 6756 kvfree(percpu->scribble);
789b5e03
ON
6757 percpu->scribble = NULL;
6758}
6759
6760static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6761{
b330e6a4 6762 if (conf->level == 6 && !percpu->spare_page) {
789b5e03 6763 percpu->spare_page = alloc_page(GFP_KERNEL);
b330e6a4
KO
6764 if (!percpu->spare_page)
6765 return -ENOMEM;
6766 }
6767
6768 if (scribble_alloc(percpu,
6769 max(conf->raid_disks,
6770 conf->previous_raid_disks),
6771 max(conf->chunk_sectors,
6772 conf->prev_chunk_sectors)
ba54d4d4 6773 / STRIPE_SECTORS)) {
789b5e03
ON
6774 free_scratch_buffer(conf, percpu);
6775 return -ENOMEM;
6776 }
6777
6778 return 0;
6779}
6780
29c6d1bb 6781static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
36d1c647 6782{
29c6d1bb
SAS
6783 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6784
6785 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6786 return 0;
6787}
36d1c647 6788
29c6d1bb
SAS
6789static void raid5_free_percpu(struct r5conf *conf)
6790{
36d1c647
DW
6791 if (!conf->percpu)
6792 return;
6793
29c6d1bb 6794 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
36d1c647
DW
6795 free_percpu(conf->percpu);
6796}
6797
d1688a6d 6798static void free_conf(struct r5conf *conf)
95fc17aa 6799{
d7bd398e
SL
6800 int i;
6801
ff875738
AP
6802 log_exit(conf);
6803
565e0450 6804 unregister_shrinker(&conf->shrinker);
851c30c9 6805 free_thread_groups(conf);
95fc17aa 6806 shrink_stripes(conf);
36d1c647 6807 raid5_free_percpu(conf);
d7bd398e
SL
6808 for (i = 0; i < conf->pool_size; i++)
6809 if (conf->disks[i].extra_page)
6810 put_page(conf->disks[i].extra_page);
95fc17aa 6811 kfree(conf->disks);
afeee514 6812 bioset_exit(&conf->bio_split);
95fc17aa 6813 kfree(conf->stripe_hashtbl);
aaf9f12e 6814 kfree(conf->pending_data);
95fc17aa
DW
6815 kfree(conf);
6816}
6817
29c6d1bb 6818static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
36d1c647 6819{
29c6d1bb 6820 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
36d1c647
DW
6821 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6822
29c6d1bb 6823 if (alloc_scratch_buffer(conf, percpu)) {
cc6167b4
N
6824 pr_warn("%s: failed memory allocation for cpu%u\n",
6825 __func__, cpu);
29c6d1bb 6826 return -ENOMEM;
36d1c647 6827 }
29c6d1bb 6828 return 0;
36d1c647 6829}
36d1c647 6830
d1688a6d 6831static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647 6832{
789b5e03 6833 int err = 0;
36d1c647 6834
789b5e03
ON
6835 conf->percpu = alloc_percpu(struct raid5_percpu);
6836 if (!conf->percpu)
36d1c647 6837 return -ENOMEM;
789b5e03 6838
29c6d1bb 6839 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
27a353c0
SL
6840 if (!err) {
6841 conf->scribble_disks = max(conf->raid_disks,
6842 conf->previous_raid_disks);
6843 conf->scribble_sectors = max(conf->chunk_sectors,
6844 conf->prev_chunk_sectors);
6845 }
36d1c647
DW
6846 return err;
6847}
6848
edbe83ab
N
6849static unsigned long raid5_cache_scan(struct shrinker *shrink,
6850 struct shrink_control *sc)
6851{
6852 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
6853 unsigned long ret = SHRINK_STOP;
6854
6855 if (mutex_trylock(&conf->cache_size_mutex)) {
6856 ret= 0;
49895bcc
N
6857 while (ret < sc->nr_to_scan &&
6858 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
6859 if (drop_one_stripe(conf) == 0) {
6860 ret = SHRINK_STOP;
6861 break;
6862 }
6863 ret++;
6864 }
6865 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
6866 }
6867 return ret;
6868}
6869
6870static unsigned long raid5_cache_count(struct shrinker *shrink,
6871 struct shrink_control *sc)
6872{
6873 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6874
6875 if (conf->max_nr_stripes < conf->min_nr_stripes)
6876 /* unlikely, but not impossible */
6877 return 0;
6878 return conf->max_nr_stripes - conf->min_nr_stripes;
6879}
6880
d1688a6d 6881static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6882{
d1688a6d 6883 struct r5conf *conf;
5e5e3e78 6884 int raid_disk, memory, max_disks;
3cb03002 6885 struct md_rdev *rdev;
1da177e4 6886 struct disk_info *disk;
0232605d 6887 char pers_name[6];
566c09c5 6888 int i;
d2c9ad41 6889 int group_cnt;
60aaf933 6890 struct r5worker_group *new_group;
afeee514 6891 int ret;
1da177e4 6892
91adb564
N
6893 if (mddev->new_level != 5
6894 && mddev->new_level != 4
6895 && mddev->new_level != 6) {
cc6167b4
N
6896 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6897 mdname(mddev), mddev->new_level);
91adb564 6898 return ERR_PTR(-EIO);
1da177e4 6899 }
91adb564
N
6900 if ((mddev->new_level == 5
6901 && !algorithm_valid_raid5(mddev->new_layout)) ||
6902 (mddev->new_level == 6
6903 && !algorithm_valid_raid6(mddev->new_layout))) {
cc6167b4
N
6904 pr_warn("md/raid:%s: layout %d not supported\n",
6905 mdname(mddev), mddev->new_layout);
91adb564 6906 return ERR_PTR(-EIO);
99c0fb5f 6907 }
91adb564 6908 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
cc6167b4
N
6909 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6910 mdname(mddev), mddev->raid_disks);
91adb564 6911 return ERR_PTR(-EINVAL);
4bbf3771
N
6912 }
6913
664e7c41
AN
6914 if (!mddev->new_chunk_sectors ||
6915 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6916 !is_power_of_2(mddev->new_chunk_sectors)) {
cc6167b4
N
6917 pr_warn("md/raid:%s: invalid chunk size %d\n",
6918 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6919 return ERR_PTR(-EINVAL);
f6705578
N
6920 }
6921
d1688a6d 6922 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6923 if (conf == NULL)
1da177e4 6924 goto abort;
aaf9f12e
SL
6925 INIT_LIST_HEAD(&conf->free_list);
6926 INIT_LIST_HEAD(&conf->pending_list);
6396bb22
KC
6927 conf->pending_data = kcalloc(PENDING_IO_MAX,
6928 sizeof(struct r5pending_data),
6929 GFP_KERNEL);
aaf9f12e
SL
6930 if (!conf->pending_data)
6931 goto abort;
6932 for (i = 0; i < PENDING_IO_MAX; i++)
6933 list_add(&conf->pending_data[i].sibling, &conf->free_list);
851c30c9 6934 /* Don't enable multi-threading by default*/
d2c9ad41 6935 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
60aaf933 6936 conf->group_cnt = group_cnt;
d2c9ad41 6937 conf->worker_cnt_per_group = 0;
60aaf933 6938 conf->worker_groups = new_group;
6939 } else
851c30c9 6940 goto abort;
f5efd45a 6941 spin_lock_init(&conf->device_lock);
c46501b2 6942 seqcount_init(&conf->gen_lock);
2d5b569b 6943 mutex_init(&conf->cache_size_mutex);
b1b46486 6944 init_waitqueue_head(&conf->wait_for_quiescent);
6ab2a4b8 6945 init_waitqueue_head(&conf->wait_for_stripe);
f5efd45a
DW
6946 init_waitqueue_head(&conf->wait_for_overlap);
6947 INIT_LIST_HEAD(&conf->handle_list);
535ae4eb 6948 INIT_LIST_HEAD(&conf->loprio_list);
f5efd45a
DW
6949 INIT_LIST_HEAD(&conf->hold_list);
6950 INIT_LIST_HEAD(&conf->delayed_list);
6951 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 6952 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6953 atomic_set(&conf->active_stripes, 0);
6954 atomic_set(&conf->preread_active_stripes, 0);
6955 atomic_set(&conf->active_aligned_reads, 0);
765d704d
SL
6956 spin_lock_init(&conf->pending_bios_lock);
6957 conf->batch_bio_dispatch = true;
6958 rdev_for_each(rdev, mddev) {
6959 if (test_bit(Journal, &rdev->flags))
6960 continue;
6961 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6962 conf->batch_bio_dispatch = false;
6963 break;
6964 }
6965 }
6966
f5efd45a 6967 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6968 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6969
6970 conf->raid_disks = mddev->raid_disks;
6971 if (mddev->reshape_position == MaxSector)
6972 conf->previous_raid_disks = mddev->raid_disks;
6973 else
f6705578 6974 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6975 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6976
6396bb22 6977 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
b55e6bfc 6978 GFP_KERNEL);
d7bd398e 6979
b55e6bfc
N
6980 if (!conf->disks)
6981 goto abort;
9ffae0cf 6982
d7bd398e
SL
6983 for (i = 0; i < max_disks; i++) {
6984 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6985 if (!conf->disks[i].extra_page)
6986 goto abort;
6987 }
6988
afeee514
KO
6989 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6990 if (ret)
dd7a8f5d 6991 goto abort;
1da177e4
LT
6992 conf->mddev = mddev;
6993
fccddba0 6994 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6995 goto abort;
1da177e4 6996
566c09c5
SL
6997 /* We init hash_locks[0] separately to that it can be used
6998 * as the reference lock in the spin_lock_nest_lock() call
6999 * in lock_all_device_hash_locks_irq in order to convince
7000 * lockdep that we know what we are doing.
7001 */
7002 spin_lock_init(conf->hash_locks);
7003 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7004 spin_lock_init(conf->hash_locks + i);
7005
7006 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7007 INIT_LIST_HEAD(conf->inactive_list + i);
7008
7009 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7010 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7011
1e6d690b
SL
7012 atomic_set(&conf->r5c_cached_full_stripes, 0);
7013 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7014 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7015 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
e33fbb9c
SL
7016 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7017 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
1e6d690b 7018
36d1c647 7019 conf->level = mddev->new_level;
46d5b785 7020 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
7021 if (raid5_alloc_percpu(conf) != 0)
7022 goto abort;
7023
0c55e022 7024 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 7025
dafb20fa 7026 rdev_for_each(rdev, mddev) {
1da177e4 7027 raid_disk = rdev->raid_disk;
5e5e3e78 7028 if (raid_disk >= max_disks
f2076e7d 7029 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
1da177e4
LT
7030 continue;
7031 disk = conf->disks + raid_disk;
7032
17045f52
N
7033 if (test_bit(Replacement, &rdev->flags)) {
7034 if (disk->replacement)
7035 goto abort;
7036 disk->replacement = rdev;
7037 } else {
7038 if (disk->rdev)
7039 goto abort;
7040 disk->rdev = rdev;
7041 }
1da177e4 7042
b2d444d7 7043 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 7044 char b[BDEVNAME_SIZE];
cc6167b4
N
7045 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7046 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 7047 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
7048 /* Cannot rely on bitmap to complete recovery */
7049 conf->fullsync = 1;
1da177e4
LT
7050 }
7051
91adb564 7052 conf->level = mddev->new_level;
584acdd4 7053 if (conf->level == 6) {
16a53ecc 7054 conf->max_degraded = 2;
584acdd4
MS
7055 if (raid6_call.xor_syndrome)
7056 conf->rmw_level = PARITY_ENABLE_RMW;
7057 else
7058 conf->rmw_level = PARITY_DISABLE_RMW;
7059 } else {
16a53ecc 7060 conf->max_degraded = 1;
584acdd4
MS
7061 conf->rmw_level = PARITY_ENABLE_RMW;
7062 }
91adb564 7063 conf->algorithm = mddev->new_layout;
fef9c61f 7064 conf->reshape_progress = mddev->reshape_position;
e183eaed 7065 if (conf->reshape_progress != MaxSector) {
09c9e5fa 7066 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 7067 conf->prev_algo = mddev->layout;
5cac6bcb
N
7068 } else {
7069 conf->prev_chunk_sectors = conf->chunk_sectors;
7070 conf->prev_algo = conf->algorithm;
e183eaed 7071 }
1da177e4 7072
edbe83ab 7073 conf->min_nr_stripes = NR_STRIPES;
ad5b0f76
SL
7074 if (mddev->reshape_position != MaxSector) {
7075 int stripes = max_t(int,
7076 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7077 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7078 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7079 if (conf->min_nr_stripes != NR_STRIPES)
cc6167b4 7080 pr_info("md/raid:%s: force stripe size %d for reshape\n",
ad5b0f76
SL
7081 mdname(mddev), conf->min_nr_stripes);
7082 }
edbe83ab 7083 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 7084 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 7085 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 7086 if (grow_stripes(conf, conf->min_nr_stripes)) {
cc6167b4
N
7087 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7088 mdname(mddev), memory);
91adb564
N
7089 goto abort;
7090 } else
cc6167b4 7091 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
edbe83ab
N
7092 /*
7093 * Losing a stripe head costs more than the time to refill it,
7094 * it reduces the queue depth and so can hurt throughput.
7095 * So set it rather large, scaled by number of devices.
7096 */
7097 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7098 conf->shrinker.scan_objects = raid5_cache_scan;
7099 conf->shrinker.count_objects = raid5_cache_count;
7100 conf->shrinker.batch = 128;
7101 conf->shrinker.flags = 0;
6a0f53ff 7102 if (register_shrinker(&conf->shrinker)) {
cc6167b4
N
7103 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7104 mdname(mddev));
6a0f53ff
CY
7105 goto abort;
7106 }
1da177e4 7107
0232605d
N
7108 sprintf(pers_name, "raid%d", mddev->new_level);
7109 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564 7110 if (!conf->thread) {
cc6167b4
N
7111 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7112 mdname(mddev));
16a53ecc
N
7113 goto abort;
7114 }
91adb564
N
7115
7116 return conf;
7117
7118 abort:
7119 if (conf) {
95fc17aa 7120 free_conf(conf);
91adb564
N
7121 return ERR_PTR(-EIO);
7122 } else
7123 return ERR_PTR(-ENOMEM);
7124}
7125
c148ffdc
N
7126static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7127{
7128 switch (algo) {
7129 case ALGORITHM_PARITY_0:
7130 if (raid_disk < max_degraded)
7131 return 1;
7132 break;
7133 case ALGORITHM_PARITY_N:
7134 if (raid_disk >= raid_disks - max_degraded)
7135 return 1;
7136 break;
7137 case ALGORITHM_PARITY_0_6:
f72ffdd6 7138 if (raid_disk == 0 ||
c148ffdc
N
7139 raid_disk == raid_disks - 1)
7140 return 1;
7141 break;
7142 case ALGORITHM_LEFT_ASYMMETRIC_6:
7143 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7144 case ALGORITHM_LEFT_SYMMETRIC_6:
7145 case ALGORITHM_RIGHT_SYMMETRIC_6:
7146 if (raid_disk == raid_disks - 1)
7147 return 1;
7148 }
7149 return 0;
7150}
7151
849674e4 7152static int raid5_run(struct mddev *mddev)
91adb564 7153{
d1688a6d 7154 struct r5conf *conf;
9f7c2220 7155 int working_disks = 0;
c148ffdc 7156 int dirty_parity_disks = 0;
3cb03002 7157 struct md_rdev *rdev;
713cf5a6 7158 struct md_rdev *journal_dev = NULL;
c148ffdc 7159 sector_t reshape_offset = 0;
17045f52 7160 int i;
b5254dd5
N
7161 long long min_offset_diff = 0;
7162 int first = 1;
91adb564 7163
a415c0f1
N
7164 if (mddev_init_writes_pending(mddev) < 0)
7165 return -ENOMEM;
7166
8c6ac868 7167 if (mddev->recovery_cp != MaxSector)
cc6167b4
N
7168 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7169 mdname(mddev));
b5254dd5
N
7170
7171 rdev_for_each(rdev, mddev) {
7172 long long diff;
713cf5a6 7173
f2076e7d 7174 if (test_bit(Journal, &rdev->flags)) {
713cf5a6 7175 journal_dev = rdev;
f2076e7d
SL
7176 continue;
7177 }
b5254dd5
N
7178 if (rdev->raid_disk < 0)
7179 continue;
7180 diff = (rdev->new_data_offset - rdev->data_offset);
7181 if (first) {
7182 min_offset_diff = diff;
7183 first = 0;
7184 } else if (mddev->reshape_backwards &&
7185 diff < min_offset_diff)
7186 min_offset_diff = diff;
7187 else if (!mddev->reshape_backwards &&
7188 diff > min_offset_diff)
7189 min_offset_diff = diff;
7190 }
7191
230b55fa
N
7192 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7193 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7194 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7195 mdname(mddev));
7196 return -EINVAL;
7197 }
7198
91adb564
N
7199 if (mddev->reshape_position != MaxSector) {
7200 /* Check that we can continue the reshape.
b5254dd5
N
7201 * Difficulties arise if the stripe we would write to
7202 * next is at or after the stripe we would read from next.
7203 * For a reshape that changes the number of devices, this
7204 * is only possible for a very short time, and mdadm makes
7205 * sure that time appears to have past before assembling
7206 * the array. So we fail if that time hasn't passed.
7207 * For a reshape that keeps the number of devices the same
7208 * mdadm must be monitoring the reshape can keeping the
7209 * critical areas read-only and backed up. It will start
7210 * the array in read-only mode, so we check for that.
91adb564
N
7211 */
7212 sector_t here_new, here_old;
7213 int old_disks;
18b00334 7214 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
7215 int chunk_sectors;
7216 int new_data_disks;
91adb564 7217
713cf5a6 7218 if (journal_dev) {
cc6167b4
N
7219 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7220 mdname(mddev));
713cf5a6
SL
7221 return -EINVAL;
7222 }
7223
88ce4930 7224 if (mddev->new_level != mddev->level) {
cc6167b4
N
7225 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7226 mdname(mddev));
91adb564
N
7227 return -EINVAL;
7228 }
91adb564
N
7229 old_disks = mddev->raid_disks - mddev->delta_disks;
7230 /* reshape_position must be on a new-stripe boundary, and one
7231 * further up in new geometry must map after here in old
7232 * geometry.
05256d98
N
7233 * If the chunk sizes are different, then as we perform reshape
7234 * in units of the largest of the two, reshape_position needs
7235 * be a multiple of the largest chunk size times new data disks.
91adb564
N
7236 */
7237 here_new = mddev->reshape_position;
05256d98
N
7238 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7239 new_data_disks = mddev->raid_disks - max_degraded;
7240 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
cc6167b4
N
7241 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7242 mdname(mddev));
91adb564
N
7243 return -EINVAL;
7244 }
05256d98 7245 reshape_offset = here_new * chunk_sectors;
91adb564
N
7246 /* here_new is the stripe we will write to */
7247 here_old = mddev->reshape_position;
05256d98 7248 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
7249 /* here_old is the first stripe that we might need to read
7250 * from */
67ac6011
N
7251 if (mddev->delta_disks == 0) {
7252 /* We cannot be sure it is safe to start an in-place
b5254dd5 7253 * reshape. It is only safe if user-space is monitoring
67ac6011
N
7254 * and taking constant backups.
7255 * mdadm always starts a situation like this in
7256 * readonly mode so it can take control before
7257 * allowing any writes. So just check for that.
7258 */
b5254dd5
N
7259 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7260 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7261 /* not really in-place - so OK */;
7262 else if (mddev->ro == 0) {
cc6167b4
N
7263 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7264 mdname(mddev));
67ac6011
N
7265 return -EINVAL;
7266 }
2c810cdd 7267 } else if (mddev->reshape_backwards
05256d98
N
7268 ? (here_new * chunk_sectors + min_offset_diff <=
7269 here_old * chunk_sectors)
7270 : (here_new * chunk_sectors >=
7271 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 7272 /* Reading from the same stripe as writing to - bad */
cc6167b4
N
7273 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7274 mdname(mddev));
91adb564
N
7275 return -EINVAL;
7276 }
cc6167b4 7277 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
91adb564
N
7278 /* OK, we should be able to continue; */
7279 } else {
7280 BUG_ON(mddev->level != mddev->new_level);
7281 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 7282 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 7283 BUG_ON(mddev->delta_disks != 0);
1da177e4 7284 }
91adb564 7285
3418d036
AP
7286 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7287 test_bit(MD_HAS_PPL, &mddev->flags)) {
7288 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7289 mdname(mddev));
7290 clear_bit(MD_HAS_PPL, &mddev->flags);
ddc08823 7291 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
3418d036
AP
7292 }
7293
245f46c2
N
7294 if (mddev->private == NULL)
7295 conf = setup_conf(mddev);
7296 else
7297 conf = mddev->private;
7298
91adb564
N
7299 if (IS_ERR(conf))
7300 return PTR_ERR(conf);
7301
486b0f7b
SL
7302 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7303 if (!journal_dev) {
cc6167b4
N
7304 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7305 mdname(mddev));
486b0f7b
SL
7306 mddev->ro = 1;
7307 set_disk_ro(mddev->gendisk, 1);
7308 } else if (mddev->recovery_cp == MaxSector)
7309 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7dde2ad3
SL
7310 }
7311
b5254dd5 7312 conf->min_offset_diff = min_offset_diff;
91adb564
N
7313 mddev->thread = conf->thread;
7314 conf->thread = NULL;
7315 mddev->private = conf;
7316
17045f52
N
7317 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7318 i++) {
7319 rdev = conf->disks[i].rdev;
7320 if (!rdev && conf->disks[i].replacement) {
7321 /* The replacement is all we have yet */
7322 rdev = conf->disks[i].replacement;
7323 conf->disks[i].replacement = NULL;
7324 clear_bit(Replacement, &rdev->flags);
7325 conf->disks[i].rdev = rdev;
7326 }
7327 if (!rdev)
c148ffdc 7328 continue;
17045f52
N
7329 if (conf->disks[i].replacement &&
7330 conf->reshape_progress != MaxSector) {
7331 /* replacements and reshape simply do not mix. */
cc6167b4 7332 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
17045f52
N
7333 goto abort;
7334 }
2f115882 7335 if (test_bit(In_sync, &rdev->flags)) {
91adb564 7336 working_disks++;
2f115882
N
7337 continue;
7338 }
c148ffdc
N
7339 /* This disc is not fully in-sync. However if it
7340 * just stored parity (beyond the recovery_offset),
7341 * when we don't need to be concerned about the
7342 * array being dirty.
7343 * When reshape goes 'backwards', we never have
7344 * partially completed devices, so we only need
7345 * to worry about reshape going forwards.
7346 */
7347 /* Hack because v0.91 doesn't store recovery_offset properly. */
7348 if (mddev->major_version == 0 &&
7349 mddev->minor_version > 90)
7350 rdev->recovery_offset = reshape_offset;
5026d7a9 7351
c148ffdc
N
7352 if (rdev->recovery_offset < reshape_offset) {
7353 /* We need to check old and new layout */
7354 if (!only_parity(rdev->raid_disk,
7355 conf->algorithm,
7356 conf->raid_disks,
7357 conf->max_degraded))
7358 continue;
7359 }
7360 if (!only_parity(rdev->raid_disk,
7361 conf->prev_algo,
7362 conf->previous_raid_disks,
7363 conf->max_degraded))
7364 continue;
7365 dirty_parity_disks++;
7366 }
91adb564 7367
17045f52
N
7368 /*
7369 * 0 for a fully functional array, 1 or 2 for a degraded array.
7370 */
2e38a37f 7371 mddev->degraded = raid5_calc_degraded(conf);
91adb564 7372
674806d6 7373 if (has_failed(conf)) {
cc6167b4 7374 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
02c2de8c 7375 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
7376 goto abort;
7377 }
7378
91adb564 7379 /* device size must be a multiple of chunk size */
9d8f0363 7380 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
7381 mddev->resync_max_sectors = mddev->dev_sectors;
7382
c148ffdc 7383 if (mddev->degraded > dirty_parity_disks &&
1da177e4 7384 mddev->recovery_cp != MaxSector) {
4536bf9b
AP
7385 if (test_bit(MD_HAS_PPL, &mddev->flags))
7386 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7387 mdname(mddev));
7388 else if (mddev->ok_start_degraded)
cc6167b4
N
7389 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7390 mdname(mddev));
6ff8d8ec 7391 else {
cc6167b4
N
7392 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7393 mdname(mddev));
6ff8d8ec
N
7394 goto abort;
7395 }
1da177e4
LT
7396 }
7397
cc6167b4
N
7398 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7399 mdname(mddev), conf->level,
7400 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7401 mddev->new_layout);
1da177e4
LT
7402
7403 print_raid5_conf(conf);
7404
fef9c61f 7405 if (conf->reshape_progress != MaxSector) {
fef9c61f 7406 conf->reshape_safe = conf->reshape_progress;
f6705578
N
7407 atomic_set(&conf->reshape_stripes, 0);
7408 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7409 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7410 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7411 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7412 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7413 "reshape");
e406f12d
AP
7414 if (!mddev->sync_thread)
7415 goto abort;
f6705578
N
7416 }
7417
1da177e4 7418 /* Ok, everything is just fine now */
a64c876f
N
7419 if (mddev->to_remove == &raid5_attrs_group)
7420 mddev->to_remove = NULL;
00bcb4ac
N
7421 else if (mddev->kobj.sd &&
7422 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
cc6167b4
N
7423 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7424 mdname(mddev));
4a5add49 7425 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 7426
4a5add49 7427 if (mddev->queue) {
9f7c2220 7428 int chunk_size;
4a5add49
N
7429 /* read-ahead size must cover two whole stripes, which
7430 * is 2 * (datadisks) * chunksize where 'n' is the
7431 * number of raid devices
7432 */
7433 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7434 int stripe = data_disks *
7435 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
dc3b17cc
JK
7436 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7437 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
91adb564 7438
9f7c2220
N
7439 chunk_size = mddev->chunk_sectors << 9;
7440 blk_queue_io_min(mddev->queue, chunk_size);
7441 blk_queue_io_opt(mddev->queue, chunk_size *
7442 (conf->raid_disks - conf->max_degraded));
c78afc62 7443 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
7444 /*
7445 * We can only discard a whole stripe. It doesn't make sense to
7446 * discard data disk but write parity disk
7447 */
7448 stripe = stripe * PAGE_SIZE;
4ac6875e
N
7449 /* Round up to power of 2, as discard handling
7450 * currently assumes that */
7451 while ((stripe-1) & stripe)
7452 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
7453 mddev->queue->limits.discard_alignment = stripe;
7454 mddev->queue->limits.discard_granularity = stripe;
e8d7c332 7455
5026d7a9 7456 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7 7457 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
5026d7a9 7458
05616be5 7459 rdev_for_each(rdev, mddev) {
9f7c2220
N
7460 disk_stack_limits(mddev->gendisk, rdev->bdev,
7461 rdev->data_offset << 9);
05616be5
N
7462 disk_stack_limits(mddev->gendisk, rdev->bdev,
7463 rdev->new_data_offset << 9);
7464 }
620125f2 7465
48920ff2
CH
7466 /*
7467 * zeroing is required, otherwise data
7468 * could be lost. Consider a scenario: discard a stripe
7469 * (the stripe could be inconsistent if
7470 * discard_zeroes_data is 0); write one disk of the
7471 * stripe (the stripe could be inconsistent again
7472 * depending on which disks are used to calculate
7473 * parity); the disk is broken; The stripe data of this
7474 * disk is lost.
7475 *
7476 * We only allow DISCARD if the sysadmin has confirmed that
7477 * only safe devices are in use by setting a module parameter.
7478 * A better idea might be to turn DISCARD into WRITE_ZEROES
7479 * requests, as that is required to be safe.
7480 */
7481 if (devices_handle_discard_safely &&
e7597e69
JS
7482 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7483 mddev->queue->limits.discard_granularity >= stripe)
8b904b5b 7484 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
620125f2
SL
7485 mddev->queue);
7486 else
8b904b5b 7487 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
620125f2 7488 mddev->queue);
1dffdddd
SL
7489
7490 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
9f7c2220 7491 }
23032a0e 7492
845b9e22 7493 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
ff875738 7494 goto abort;
5c7e81c3 7495
1da177e4
LT
7496 return 0;
7497abort:
01f96c0a 7498 md_unregister_thread(&mddev->thread);
e4f869d9
N
7499 print_raid5_conf(conf);
7500 free_conf(conf);
1da177e4 7501 mddev->private = NULL;
cc6167b4 7502 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
7503 return -EIO;
7504}
7505
afa0f557 7506static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 7507{
afa0f557 7508 struct r5conf *conf = priv;
1da177e4 7509
95fc17aa 7510 free_conf(conf);
a64c876f 7511 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
7512}
7513
849674e4 7514static void raid5_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 7515{
d1688a6d 7516 struct r5conf *conf = mddev->private;
1da177e4
LT
7517 int i;
7518
9d8f0363 7519 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 7520 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 7521 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5fd13351
N
7522 rcu_read_lock();
7523 for (i = 0; i < conf->raid_disks; i++) {
7524 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7525 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7526 }
7527 rcu_read_unlock();
1da177e4 7528 seq_printf (seq, "]");
1da177e4
LT
7529}
7530
d1688a6d 7531static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
7532{
7533 int i;
7534 struct disk_info *tmp;
7535
cc6167b4 7536 pr_debug("RAID conf printout:\n");
1da177e4 7537 if (!conf) {
cc6167b4 7538 pr_debug("(conf==NULL)\n");
1da177e4
LT
7539 return;
7540 }
cc6167b4 7541 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
0c55e022
N
7542 conf->raid_disks,
7543 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
7544
7545 for (i = 0; i < conf->raid_disks; i++) {
7546 char b[BDEVNAME_SIZE];
7547 tmp = conf->disks + i;
7548 if (tmp->rdev)
cc6167b4 7549 pr_debug(" disk %d, o:%d, dev:%s\n",
0c55e022
N
7550 i, !test_bit(Faulty, &tmp->rdev->flags),
7551 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7552 }
7553}
7554
fd01b88c 7555static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7556{
7557 int i;
d1688a6d 7558 struct r5conf *conf = mddev->private;
1da177e4 7559 struct disk_info *tmp;
6b965620
N
7560 int count = 0;
7561 unsigned long flags;
1da177e4
LT
7562
7563 for (i = 0; i < conf->raid_disks; i++) {
7564 tmp = conf->disks + i;
dd054fce
N
7565 if (tmp->replacement
7566 && tmp->replacement->recovery_offset == MaxSector
7567 && !test_bit(Faulty, &tmp->replacement->flags)
7568 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7569 /* Replacement has just become active. */
7570 if (!tmp->rdev
7571 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7572 count++;
7573 if (tmp->rdev) {
7574 /* Replaced device not technically faulty,
7575 * but we need to be sure it gets removed
7576 * and never re-added.
7577 */
7578 set_bit(Faulty, &tmp->rdev->flags);
7579 sysfs_notify_dirent_safe(
7580 tmp->rdev->sysfs_state);
7581 }
7582 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7583 } else if (tmp->rdev
70fffd0b 7584 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7585 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7586 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7587 count++;
43c73ca4 7588 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7589 }
7590 }
6b965620 7591 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7592 mddev->degraded = raid5_calc_degraded(conf);
6b965620 7593 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7594 print_raid5_conf(conf);
6b965620 7595 return count;
1da177e4
LT
7596}
7597
b8321b68 7598static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7599{
d1688a6d 7600 struct r5conf *conf = mddev->private;
1da177e4 7601 int err = 0;
b8321b68 7602 int number = rdev->raid_disk;
657e3e4d 7603 struct md_rdev **rdevp;
1da177e4
LT
7604 struct disk_info *p = conf->disks + number;
7605
7606 print_raid5_conf(conf);
f6b6ec5c 7607 if (test_bit(Journal, &rdev->flags) && conf->log) {
c2bb6242 7608 /*
f6b6ec5c
SL
7609 * we can't wait pending write here, as this is called in
7610 * raid5d, wait will deadlock.
84dd97a6
N
7611 * neilb: there is no locking about new writes here,
7612 * so this cannot be safe.
c2bb6242 7613 */
70d466f7
SL
7614 if (atomic_read(&conf->active_stripes) ||
7615 atomic_read(&conf->r5c_cached_full_stripes) ||
7616 atomic_read(&conf->r5c_cached_partial_stripes)) {
f6b6ec5c 7617 return -EBUSY;
84dd97a6 7618 }
ff875738 7619 log_exit(conf);
f6b6ec5c 7620 return 0;
c2bb6242 7621 }
657e3e4d
N
7622 if (rdev == p->rdev)
7623 rdevp = &p->rdev;
7624 else if (rdev == p->replacement)
7625 rdevp = &p->replacement;
7626 else
7627 return 0;
7628
7629 if (number >= conf->raid_disks &&
7630 conf->reshape_progress == MaxSector)
7631 clear_bit(In_sync, &rdev->flags);
7632
7633 if (test_bit(In_sync, &rdev->flags) ||
7634 atomic_read(&rdev->nr_pending)) {
7635 err = -EBUSY;
7636 goto abort;
7637 }
7638 /* Only remove non-faulty devices if recovery
7639 * isn't possible.
7640 */
7641 if (!test_bit(Faulty, &rdev->flags) &&
7642 mddev->recovery_disabled != conf->recovery_disabled &&
7643 !has_failed(conf) &&
dd054fce 7644 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7645 number < conf->raid_disks) {
7646 err = -EBUSY;
7647 goto abort;
7648 }
7649 *rdevp = NULL;
d787be40
N
7650 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7651 synchronize_rcu();
7652 if (atomic_read(&rdev->nr_pending)) {
7653 /* lost the race, try later */
7654 err = -EBUSY;
7655 *rdevp = rdev;
7656 }
7657 }
6358c239
AP
7658 if (!err) {
7659 err = log_modify(conf, rdev, false);
7660 if (err)
7661 goto abort;
7662 }
d787be40 7663 if (p->replacement) {
dd054fce
N
7664 /* We must have just cleared 'rdev' */
7665 p->rdev = p->replacement;
7666 clear_bit(Replacement, &p->replacement->flags);
7667 smp_mb(); /* Make sure other CPUs may see both as identical
7668 * but will never see neither - if they are careful
7669 */
7670 p->replacement = NULL;
6358c239
AP
7671
7672 if (!err)
7673 err = log_modify(conf, p->rdev, true);
e5bc9c3c
GJ
7674 }
7675
7676 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7677abort:
7678
7679 print_raid5_conf(conf);
7680 return err;
7681}
7682
fd01b88c 7683static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7684{
d1688a6d 7685 struct r5conf *conf = mddev->private;
d9771f5e 7686 int ret, err = -EEXIST;
1da177e4
LT
7687 int disk;
7688 struct disk_info *p;
6c2fce2e
NB
7689 int first = 0;
7690 int last = conf->raid_disks - 1;
1da177e4 7691
f6b6ec5c 7692 if (test_bit(Journal, &rdev->flags)) {
f6b6ec5c
SL
7693 if (conf->log)
7694 return -EBUSY;
7695
7696 rdev->raid_disk = 0;
7697 /*
7698 * The array is in readonly mode if journal is missing, so no
7699 * write requests running. We should be safe
7700 */
d9771f5e
XN
7701 ret = log_init(conf, rdev, false);
7702 if (ret)
7703 return ret;
7704
7705 ret = r5l_start(conf->log);
7706 if (ret)
7707 return ret;
7708
f6b6ec5c
SL
7709 return 0;
7710 }
7f0da59b
N
7711 if (mddev->recovery_disabled == conf->recovery_disabled)
7712 return -EBUSY;
7713
dc10c643 7714 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7715 /* no point adding a device */
199050ea 7716 return -EINVAL;
1da177e4 7717
6c2fce2e
NB
7718 if (rdev->raid_disk >= 0)
7719 first = last = rdev->raid_disk;
1da177e4
LT
7720
7721 /*
16a53ecc
N
7722 * find the disk ... but prefer rdev->saved_raid_disk
7723 * if possible.
1da177e4 7724 */
16a53ecc 7725 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7726 rdev->saved_raid_disk >= first &&
16a53ecc 7727 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7728 first = rdev->saved_raid_disk;
7729
7730 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7731 p = conf->disks + disk;
7732 if (p->rdev == NULL) {
b2d444d7 7733 clear_bit(In_sync, &rdev->flags);
1da177e4 7734 rdev->raid_disk = disk;
72626685
N
7735 if (rdev->saved_raid_disk != disk)
7736 conf->fullsync = 1;
d6065f7b 7737 rcu_assign_pointer(p->rdev, rdev);
6358c239
AP
7738
7739 err = log_modify(conf, rdev, true);
7740
5cfb22a1 7741 goto out;
1da177e4 7742 }
5cfb22a1
N
7743 }
7744 for (disk = first; disk <= last; disk++) {
7745 p = conf->disks + disk;
7bfec5f3
N
7746 if (test_bit(WantReplacement, &p->rdev->flags) &&
7747 p->replacement == NULL) {
7748 clear_bit(In_sync, &rdev->flags);
7749 set_bit(Replacement, &rdev->flags);
7750 rdev->raid_disk = disk;
7751 err = 0;
7752 conf->fullsync = 1;
7753 rcu_assign_pointer(p->replacement, rdev);
7754 break;
7755 }
7756 }
5cfb22a1 7757out:
1da177e4 7758 print_raid5_conf(conf);
199050ea 7759 return err;
1da177e4
LT
7760}
7761
fd01b88c 7762static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7763{
7764 /* no resync is happening, and there is enough space
7765 * on all devices, so we can resize.
7766 * We need to make sure resync covers any new space.
7767 * If the array is shrinking we should possibly wait until
7768 * any io in the removed space completes, but it hardly seems
7769 * worth it.
7770 */
a4a6125a 7771 sector_t newsize;
3cb5edf4
N
7772 struct r5conf *conf = mddev->private;
7773
e254de6b 7774 if (raid5_has_log(conf) || raid5_has_ppl(conf))
713cf5a6 7775 return -EINVAL;
3cb5edf4 7776 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
7777 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7778 if (mddev->external_size &&
7779 mddev->array_sectors > newsize)
b522adcd 7780 return -EINVAL;
a4a6125a 7781 if (mddev->bitmap) {
e64e4018 7782 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
a4a6125a
N
7783 if (ret)
7784 return ret;
7785 }
7786 md_set_array_sectors(mddev, newsize);
b098636c
N
7787 if (sectors > mddev->dev_sectors &&
7788 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7789 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7790 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7791 }
58c0fed4 7792 mddev->dev_sectors = sectors;
4b5c7ae8 7793 mddev->resync_max_sectors = sectors;
1da177e4
LT
7794 return 0;
7795}
7796
fd01b88c 7797static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7798{
7799 /* Can only proceed if there are plenty of stripe_heads.
7800 * We need a minimum of one full stripe,, and for sensible progress
7801 * it is best to have about 4 times that.
7802 * If we require 4 times, then the default 256 4K stripe_heads will
7803 * allow for chunk sizes up to 256K, which is probably OK.
7804 * If the chunk size is greater, user-space should request more
7805 * stripe_heads first.
7806 */
d1688a6d 7807 struct r5conf *conf = mddev->private;
01ee22b4 7808 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7809 > conf->min_nr_stripes ||
01ee22b4 7810 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7811 > conf->min_nr_stripes) {
cc6167b4
N
7812 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7813 mdname(mddev),
7814 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7815 / STRIPE_SIZE)*4);
01ee22b4
N
7816 return 0;
7817 }
7818 return 1;
7819}
7820
fd01b88c 7821static int check_reshape(struct mddev *mddev)
29269553 7822{
d1688a6d 7823 struct r5conf *conf = mddev->private;
29269553 7824
e254de6b 7825 if (raid5_has_log(conf) || raid5_has_ppl(conf))
713cf5a6 7826 return -EINVAL;
88ce4930
N
7827 if (mddev->delta_disks == 0 &&
7828 mddev->new_layout == mddev->layout &&
664e7c41 7829 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7830 return 0; /* nothing to do */
674806d6 7831 if (has_failed(conf))
ec32a2bd 7832 return -EINVAL;
fdcfbbb6 7833 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7834 /* We might be able to shrink, but the devices must
7835 * be made bigger first.
7836 * For raid6, 4 is the minimum size.
7837 * Otherwise 2 is the minimum
7838 */
7839 int min = 2;
7840 if (mddev->level == 6)
7841 min = 4;
7842 if (mddev->raid_disks + mddev->delta_disks < min)
7843 return -EINVAL;
7844 }
29269553 7845
01ee22b4 7846 if (!check_stripe_cache(mddev))
29269553 7847 return -ENOSPC;
29269553 7848
738a2738
N
7849 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7850 mddev->delta_disks > 0)
7851 if (resize_chunks(conf,
7852 conf->previous_raid_disks
7853 + max(0, mddev->delta_disks),
7854 max(mddev->new_chunk_sectors,
7855 mddev->chunk_sectors)
7856 ) < 0)
7857 return -ENOMEM;
845b9e22
AP
7858
7859 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7860 return 0; /* never bother to shrink */
e56108d6
N
7861 return resize_stripes(conf, (conf->previous_raid_disks
7862 + mddev->delta_disks));
63c70c4f
N
7863}
7864
fd01b88c 7865static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7866{
d1688a6d 7867 struct r5conf *conf = mddev->private;
3cb03002 7868 struct md_rdev *rdev;
63c70c4f 7869 int spares = 0;
c04be0aa 7870 unsigned long flags;
63c70c4f 7871
f416885e 7872 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7873 return -EBUSY;
7874
01ee22b4
N
7875 if (!check_stripe_cache(mddev))
7876 return -ENOSPC;
7877
30b67645
N
7878 if (has_failed(conf))
7879 return -EINVAL;
7880
c6563a8c 7881 rdev_for_each(rdev, mddev) {
469518a3
N
7882 if (!test_bit(In_sync, &rdev->flags)
7883 && !test_bit(Faulty, &rdev->flags))
29269553 7884 spares++;
c6563a8c 7885 }
63c70c4f 7886
f416885e 7887 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7888 /* Not enough devices even to make a degraded array
7889 * of that size
7890 */
7891 return -EINVAL;
7892
ec32a2bd
N
7893 /* Refuse to reduce size of the array. Any reductions in
7894 * array size must be through explicit setting of array_size
7895 * attribute.
7896 */
7897 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7898 < mddev->array_sectors) {
cc6167b4
N
7899 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7900 mdname(mddev));
ec32a2bd
N
7901 return -EINVAL;
7902 }
7903
f6705578 7904 atomic_set(&conf->reshape_stripes, 0);
29269553 7905 spin_lock_irq(&conf->device_lock);
c46501b2 7906 write_seqcount_begin(&conf->gen_lock);
29269553 7907 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7908 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7909 conf->prev_chunk_sectors = conf->chunk_sectors;
7910 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7911 conf->prev_algo = conf->algorithm;
7912 conf->algorithm = mddev->new_layout;
05616be5
N
7913 conf->generation++;
7914 /* Code that selects data_offset needs to see the generation update
7915 * if reshape_progress has been set - so a memory barrier needed.
7916 */
7917 smp_mb();
2c810cdd 7918 if (mddev->reshape_backwards)
fef9c61f
N
7919 conf->reshape_progress = raid5_size(mddev, 0, 0);
7920 else
7921 conf->reshape_progress = 0;
7922 conf->reshape_safe = conf->reshape_progress;
c46501b2 7923 write_seqcount_end(&conf->gen_lock);
29269553
N
7924 spin_unlock_irq(&conf->device_lock);
7925
4d77e3ba
N
7926 /* Now make sure any requests that proceeded on the assumption
7927 * the reshape wasn't running - like Discard or Read - have
7928 * completed.
7929 */
7930 mddev_suspend(mddev);
7931 mddev_resume(mddev);
7932
29269553
N
7933 /* Add some new drives, as many as will fit.
7934 * We know there are enough to make the newly sized array work.
3424bf6a
N
7935 * Don't add devices if we are reducing the number of
7936 * devices in the array. This is because it is not possible
7937 * to correctly record the "partially reconstructed" state of
7938 * such devices during the reshape and confusion could result.
29269553 7939 */
87a8dec9 7940 if (mddev->delta_disks >= 0) {
dafb20fa 7941 rdev_for_each(rdev, mddev)
87a8dec9
N
7942 if (rdev->raid_disk < 0 &&
7943 !test_bit(Faulty, &rdev->flags)) {
7944 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7945 if (rdev->raid_disk
9d4c7d87 7946 >= conf->previous_raid_disks)
87a8dec9 7947 set_bit(In_sync, &rdev->flags);
9d4c7d87 7948 else
87a8dec9 7949 rdev->recovery_offset = 0;
36fad858 7950
2aada5b1
DLM
7951 /* Failure here is OK */
7952 sysfs_link_rdev(mddev, rdev);
50da0840 7953 }
87a8dec9
N
7954 } else if (rdev->raid_disk >= conf->previous_raid_disks
7955 && !test_bit(Faulty, &rdev->flags)) {
7956 /* This is a spare that was manually added */
7957 set_bit(In_sync, &rdev->flags);
87a8dec9 7958 }
29269553 7959
87a8dec9
N
7960 /* When a reshape changes the number of devices,
7961 * ->degraded is measured against the larger of the
7962 * pre and post number of devices.
7963 */
ec32a2bd 7964 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7965 mddev->degraded = raid5_calc_degraded(conf);
ec32a2bd
N
7966 spin_unlock_irqrestore(&conf->device_lock, flags);
7967 }
63c70c4f 7968 mddev->raid_disks = conf->raid_disks;
e516402c 7969 mddev->reshape_position = conf->reshape_progress;
2953079c 7970 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
f6705578 7971
29269553
N
7972 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7973 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 7974 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
7975 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7976 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7977 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7978 "reshape");
29269553
N
7979 if (!mddev->sync_thread) {
7980 mddev->recovery = 0;
7981 spin_lock_irq(&conf->device_lock);
ba8805b9 7982 write_seqcount_begin(&conf->gen_lock);
29269553 7983 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7984 mddev->new_chunk_sectors =
7985 conf->chunk_sectors = conf->prev_chunk_sectors;
7986 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7987 rdev_for_each(rdev, mddev)
7988 rdev->new_data_offset = rdev->data_offset;
7989 smp_wmb();
ba8805b9 7990 conf->generation --;
fef9c61f 7991 conf->reshape_progress = MaxSector;
1e3fa9bd 7992 mddev->reshape_position = MaxSector;
ba8805b9 7993 write_seqcount_end(&conf->gen_lock);
29269553
N
7994 spin_unlock_irq(&conf->device_lock);
7995 return -EAGAIN;
7996 }
c8f517c4 7997 conf->reshape_checkpoint = jiffies;
29269553
N
7998 md_wakeup_thread(mddev->sync_thread);
7999 md_new_event(mddev);
8000 return 0;
8001}
29269553 8002
ec32a2bd
N
8003/* This is called from the reshape thread and should make any
8004 * changes needed in 'conf'
8005 */
d1688a6d 8006static void end_reshape(struct r5conf *conf)
29269553 8007{
29269553 8008
f6705578 8009 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
db0505d3 8010 struct md_rdev *rdev;
f6705578 8011
f6705578 8012 spin_lock_irq(&conf->device_lock);
cea9c228 8013 conf->previous_raid_disks = conf->raid_disks;
b5d27718 8014 md_finish_reshape(conf->mddev);
05616be5 8015 smp_wmb();
fef9c61f 8016 conf->reshape_progress = MaxSector;
6cbd8148 8017 conf->mddev->reshape_position = MaxSector;
db0505d3
N
8018 rdev_for_each(rdev, conf->mddev)
8019 if (rdev->raid_disk >= 0 &&
8020 !test_bit(Journal, &rdev->flags) &&
8021 !test_bit(In_sync, &rdev->flags))
8022 rdev->recovery_offset = MaxSector;
f6705578 8023 spin_unlock_irq(&conf->device_lock);
b0f9ec04 8024 wake_up(&conf->wait_for_overlap);
16a53ecc
N
8025
8026 /* read-ahead size must cover two whole stripes, which is
8027 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8028 */
4a5add49 8029 if (conf->mddev->queue) {
cea9c228 8030 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 8031 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 8032 / PAGE_SIZE);
dc3b17cc
JK
8033 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8034 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
16a53ecc 8035 }
29269553 8036 }
29269553
N
8037}
8038
ec32a2bd
N
8039/* This is called from the raid5d thread with mddev_lock held.
8040 * It makes config changes to the device.
8041 */
fd01b88c 8042static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 8043{
d1688a6d 8044 struct r5conf *conf = mddev->private;
cea9c228
N
8045
8046 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8047
8876391e 8048 if (mddev->delta_disks <= 0) {
ec32a2bd 8049 int d;
908f4fbd 8050 spin_lock_irq(&conf->device_lock);
2e38a37f 8051 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd 8052 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
8053 for (d = conf->raid_disks ;
8054 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 8055 d++) {
3cb03002 8056 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
8057 if (rdev)
8058 clear_bit(In_sync, &rdev->flags);
8059 rdev = conf->disks[d].replacement;
8060 if (rdev)
8061 clear_bit(In_sync, &rdev->flags);
1a67dde0 8062 }
cea9c228 8063 }
88ce4930 8064 mddev->layout = conf->algorithm;
09c9e5fa 8065 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
8066 mddev->reshape_position = MaxSector;
8067 mddev->delta_disks = 0;
2c810cdd 8068 mddev->reshape_backwards = 0;
cea9c228
N
8069 }
8070}
8071
b03e0ccb 8072static void raid5_quiesce(struct mddev *mddev, int quiesce)
72626685 8073{
d1688a6d 8074 struct r5conf *conf = mddev->private;
72626685 8075
b03e0ccb
N
8076 if (quiesce) {
8077 /* stop all writes */
566c09c5 8078 lock_all_device_hash_locks_irq(conf);
64bd660b
N
8079 /* '2' tells resync/reshape to pause so that all
8080 * active stripes can drain
8081 */
a39f7afd 8082 r5c_flush_cache(conf, INT_MAX);
64bd660b 8083 conf->quiesce = 2;
b1b46486 8084 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
8085 atomic_read(&conf->active_stripes) == 0 &&
8086 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
8087 unlock_all_device_hash_locks_irq(conf),
8088 lock_all_device_hash_locks_irq(conf));
64bd660b 8089 conf->quiesce = 1;
566c09c5 8090 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
8091 /* allow reshape to continue */
8092 wake_up(&conf->wait_for_overlap);
b03e0ccb
N
8093 } else {
8094 /* re-enable writes */
566c09c5 8095 lock_all_device_hash_locks_irq(conf);
72626685 8096 conf->quiesce = 0;
b1b46486 8097 wake_up(&conf->wait_for_quiescent);
e464eafd 8098 wake_up(&conf->wait_for_overlap);
566c09c5 8099 unlock_all_device_hash_locks_irq(conf);
72626685 8100 }
1532d9e8 8101 log_quiesce(conf, quiesce);
72626685 8102}
b15c2e57 8103
fd01b88c 8104static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 8105{
e373ab10 8106 struct r0conf *raid0_conf = mddev->private;
d76c8420 8107 sector_t sectors;
54071b38 8108
f1b29bca 8109 /* for raid0 takeover only one zone is supported */
e373ab10 8110 if (raid0_conf->nr_strip_zones > 1) {
cc6167b4
N
8111 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8112 mdname(mddev));
f1b29bca
DW
8113 return ERR_PTR(-EINVAL);
8114 }
8115
e373ab10
N
8116 sectors = raid0_conf->strip_zone[0].zone_end;
8117 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 8118 mddev->dev_sectors = sectors;
f1b29bca 8119 mddev->new_level = level;
54071b38
TM
8120 mddev->new_layout = ALGORITHM_PARITY_N;
8121 mddev->new_chunk_sectors = mddev->chunk_sectors;
8122 mddev->raid_disks += 1;
8123 mddev->delta_disks = 1;
8124 /* make sure it will be not marked as dirty */
8125 mddev->recovery_cp = MaxSector;
8126
8127 return setup_conf(mddev);
8128}
8129
fd01b88c 8130static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
8131{
8132 int chunksect;
6995f0b2 8133 void *ret;
d562b0c4
N
8134
8135 if (mddev->raid_disks != 2 ||
8136 mddev->degraded > 1)
8137 return ERR_PTR(-EINVAL);
8138
8139 /* Should check if there are write-behind devices? */
8140
8141 chunksect = 64*2; /* 64K by default */
8142
8143 /* The array must be an exact multiple of chunksize */
8144 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8145 chunksect >>= 1;
8146
8147 if ((chunksect<<9) < STRIPE_SIZE)
8148 /* array size does not allow a suitable chunk size */
8149 return ERR_PTR(-EINVAL);
8150
8151 mddev->new_level = 5;
8152 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 8153 mddev->new_chunk_sectors = chunksect;
d562b0c4 8154
6995f0b2 8155 ret = setup_conf(mddev);
32cd7cbb 8156 if (!IS_ERR(ret))
394ed8e4
SL
8157 mddev_clear_unsupported_flags(mddev,
8158 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 8159 return ret;
d562b0c4
N
8160}
8161
fd01b88c 8162static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
8163{
8164 int new_layout;
8165
8166 switch (mddev->layout) {
8167 case ALGORITHM_LEFT_ASYMMETRIC_6:
8168 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8169 break;
8170 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8171 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8172 break;
8173 case ALGORITHM_LEFT_SYMMETRIC_6:
8174 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8175 break;
8176 case ALGORITHM_RIGHT_SYMMETRIC_6:
8177 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8178 break;
8179 case ALGORITHM_PARITY_0_6:
8180 new_layout = ALGORITHM_PARITY_0;
8181 break;
8182 case ALGORITHM_PARITY_N:
8183 new_layout = ALGORITHM_PARITY_N;
8184 break;
8185 default:
8186 return ERR_PTR(-EINVAL);
8187 }
8188 mddev->new_level = 5;
8189 mddev->new_layout = new_layout;
8190 mddev->delta_disks = -1;
8191 mddev->raid_disks -= 1;
8192 return setup_conf(mddev);
8193}
8194
fd01b88c 8195static int raid5_check_reshape(struct mddev *mddev)
b3546035 8196{
88ce4930
N
8197 /* For a 2-drive array, the layout and chunk size can be changed
8198 * immediately as not restriping is needed.
8199 * For larger arrays we record the new value - after validation
8200 * to be used by a reshape pass.
b3546035 8201 */
d1688a6d 8202 struct r5conf *conf = mddev->private;
597a711b 8203 int new_chunk = mddev->new_chunk_sectors;
b3546035 8204
597a711b 8205 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
8206 return -EINVAL;
8207 if (new_chunk > 0) {
0ba459d2 8208 if (!is_power_of_2(new_chunk))
b3546035 8209 return -EINVAL;
597a711b 8210 if (new_chunk < (PAGE_SIZE>>9))
b3546035 8211 return -EINVAL;
597a711b 8212 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
8213 /* not factor of array size */
8214 return -EINVAL;
8215 }
8216
8217 /* They look valid */
8218
88ce4930 8219 if (mddev->raid_disks == 2) {
597a711b
N
8220 /* can make the change immediately */
8221 if (mddev->new_layout >= 0) {
8222 conf->algorithm = mddev->new_layout;
8223 mddev->layout = mddev->new_layout;
88ce4930
N
8224 }
8225 if (new_chunk > 0) {
597a711b
N
8226 conf->chunk_sectors = new_chunk ;
8227 mddev->chunk_sectors = new_chunk;
88ce4930 8228 }
2953079c 8229 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
88ce4930 8230 md_wakeup_thread(mddev->thread);
b3546035 8231 }
50ac168a 8232 return check_reshape(mddev);
88ce4930
N
8233}
8234
fd01b88c 8235static int raid6_check_reshape(struct mddev *mddev)
88ce4930 8236{
597a711b 8237 int new_chunk = mddev->new_chunk_sectors;
50ac168a 8238
597a711b 8239 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 8240 return -EINVAL;
b3546035 8241 if (new_chunk > 0) {
0ba459d2 8242 if (!is_power_of_2(new_chunk))
88ce4930 8243 return -EINVAL;
597a711b 8244 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 8245 return -EINVAL;
597a711b 8246 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
8247 /* not factor of array size */
8248 return -EINVAL;
b3546035 8249 }
88ce4930
N
8250
8251 /* They look valid */
50ac168a 8252 return check_reshape(mddev);
b3546035
N
8253}
8254
fd01b88c 8255static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
8256{
8257 /* raid5 can take over:
f1b29bca 8258 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
8259 * raid1 - if there are two drives. We need to know the chunk size
8260 * raid4 - trivial - just use a raid4 layout.
8261 * raid6 - Providing it is a *_6 layout
d562b0c4 8262 */
f1b29bca
DW
8263 if (mddev->level == 0)
8264 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
8265 if (mddev->level == 1)
8266 return raid5_takeover_raid1(mddev);
e9d4758f
N
8267 if (mddev->level == 4) {
8268 mddev->new_layout = ALGORITHM_PARITY_N;
8269 mddev->new_level = 5;
8270 return setup_conf(mddev);
8271 }
fc9739c6
N
8272 if (mddev->level == 6)
8273 return raid5_takeover_raid6(mddev);
d562b0c4
N
8274
8275 return ERR_PTR(-EINVAL);
8276}
8277
fd01b88c 8278static void *raid4_takeover(struct mddev *mddev)
a78d38a1 8279{
f1b29bca
DW
8280 /* raid4 can take over:
8281 * raid0 - if there is only one strip zone
8282 * raid5 - if layout is right
a78d38a1 8283 */
f1b29bca
DW
8284 if (mddev->level == 0)
8285 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
8286 if (mddev->level == 5 &&
8287 mddev->layout == ALGORITHM_PARITY_N) {
8288 mddev->new_layout = 0;
8289 mddev->new_level = 4;
8290 return setup_conf(mddev);
8291 }
8292 return ERR_PTR(-EINVAL);
8293}
d562b0c4 8294
84fc4b56 8295static struct md_personality raid5_personality;
245f46c2 8296
fd01b88c 8297static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
8298{
8299 /* Currently can only take over a raid5. We map the
8300 * personality to an equivalent raid6 personality
8301 * with the Q block at the end.
8302 */
8303 int new_layout;
8304
8305 if (mddev->pers != &raid5_personality)
8306 return ERR_PTR(-EINVAL);
8307 if (mddev->degraded > 1)
8308 return ERR_PTR(-EINVAL);
8309 if (mddev->raid_disks > 253)
8310 return ERR_PTR(-EINVAL);
8311 if (mddev->raid_disks < 3)
8312 return ERR_PTR(-EINVAL);
8313
8314 switch (mddev->layout) {
8315 case ALGORITHM_LEFT_ASYMMETRIC:
8316 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8317 break;
8318 case ALGORITHM_RIGHT_ASYMMETRIC:
8319 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8320 break;
8321 case ALGORITHM_LEFT_SYMMETRIC:
8322 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8323 break;
8324 case ALGORITHM_RIGHT_SYMMETRIC:
8325 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8326 break;
8327 case ALGORITHM_PARITY_0:
8328 new_layout = ALGORITHM_PARITY_0_6;
8329 break;
8330 case ALGORITHM_PARITY_N:
8331 new_layout = ALGORITHM_PARITY_N;
8332 break;
8333 default:
8334 return ERR_PTR(-EINVAL);
8335 }
8336 mddev->new_level = 6;
8337 mddev->new_layout = new_layout;
8338 mddev->delta_disks = 1;
8339 mddev->raid_disks += 1;
8340 return setup_conf(mddev);
8341}
8342
ba903a3e
AP
8343static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8344{
8345 struct r5conf *conf;
8346 int err;
8347
8348 err = mddev_lock(mddev);
8349 if (err)
8350 return err;
8351 conf = mddev->private;
8352 if (!conf) {
8353 mddev_unlock(mddev);
8354 return -ENODEV;
8355 }
8356
845b9e22 8357 if (strncmp(buf, "ppl", 3) == 0) {
0bb0c105 8358 /* ppl only works with RAID 5 */
845b9e22
AP
8359 if (!raid5_has_ppl(conf) && conf->level == 5) {
8360 err = log_init(conf, NULL, true);
8361 if (!err) {
8362 err = resize_stripes(conf, conf->pool_size);
8363 if (err)
8364 log_exit(conf);
8365 }
0bb0c105
SL
8366 } else
8367 err = -EINVAL;
8368 } else if (strncmp(buf, "resync", 6) == 0) {
8369 if (raid5_has_ppl(conf)) {
8370 mddev_suspend(mddev);
8371 log_exit(conf);
0bb0c105 8372 mddev_resume(mddev);
845b9e22 8373 err = resize_stripes(conf, conf->pool_size);
0bb0c105
SL
8374 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8375 r5l_log_disk_error(conf)) {
8376 bool journal_dev_exists = false;
8377 struct md_rdev *rdev;
8378
8379 rdev_for_each(rdev, mddev)
8380 if (test_bit(Journal, &rdev->flags)) {
8381 journal_dev_exists = true;
8382 break;
8383 }
8384
8385 if (!journal_dev_exists) {
8386 mddev_suspend(mddev);
8387 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8388 mddev_resume(mddev);
8389 } else /* need remove journal device first */
8390 err = -EBUSY;
8391 } else
8392 err = -EINVAL;
ba903a3e
AP
8393 } else {
8394 err = -EINVAL;
8395 }
8396
8397 if (!err)
8398 md_update_sb(mddev, 1);
8399
8400 mddev_unlock(mddev);
8401
8402 return err;
8403}
8404
d5d885fd
SL
8405static int raid5_start(struct mddev *mddev)
8406{
8407 struct r5conf *conf = mddev->private;
8408
8409 return r5l_start(conf->log);
8410}
8411
84fc4b56 8412static struct md_personality raid6_personality =
16a53ecc
N
8413{
8414 .name = "raid6",
8415 .level = 6,
8416 .owner = THIS_MODULE,
849674e4
SL
8417 .make_request = raid5_make_request,
8418 .run = raid5_run,
d5d885fd 8419 .start = raid5_start,
afa0f557 8420 .free = raid5_free,
849674e4
SL
8421 .status = raid5_status,
8422 .error_handler = raid5_error,
16a53ecc
N
8423 .hot_add_disk = raid5_add_disk,
8424 .hot_remove_disk= raid5_remove_disk,
8425 .spare_active = raid5_spare_active,
849674e4 8426 .sync_request = raid5_sync_request,
16a53ecc 8427 .resize = raid5_resize,
80c3a6ce 8428 .size = raid5_size,
50ac168a 8429 .check_reshape = raid6_check_reshape,
f416885e 8430 .start_reshape = raid5_start_reshape,
cea9c228 8431 .finish_reshape = raid5_finish_reshape,
16a53ecc 8432 .quiesce = raid5_quiesce,
245f46c2 8433 .takeover = raid6_takeover,
5c675f83 8434 .congested = raid5_congested,
0bb0c105 8435 .change_consistency_policy = raid5_change_consistency_policy,
16a53ecc 8436};
84fc4b56 8437static struct md_personality raid5_personality =
1da177e4
LT
8438{
8439 .name = "raid5",
2604b703 8440 .level = 5,
1da177e4 8441 .owner = THIS_MODULE,
849674e4
SL
8442 .make_request = raid5_make_request,
8443 .run = raid5_run,
d5d885fd 8444 .start = raid5_start,
afa0f557 8445 .free = raid5_free,
849674e4
SL
8446 .status = raid5_status,
8447 .error_handler = raid5_error,
1da177e4
LT
8448 .hot_add_disk = raid5_add_disk,
8449 .hot_remove_disk= raid5_remove_disk,
8450 .spare_active = raid5_spare_active,
849674e4 8451 .sync_request = raid5_sync_request,
1da177e4 8452 .resize = raid5_resize,
80c3a6ce 8453 .size = raid5_size,
63c70c4f
N
8454 .check_reshape = raid5_check_reshape,
8455 .start_reshape = raid5_start_reshape,
cea9c228 8456 .finish_reshape = raid5_finish_reshape,
72626685 8457 .quiesce = raid5_quiesce,
d562b0c4 8458 .takeover = raid5_takeover,
5c675f83 8459 .congested = raid5_congested,
ba903a3e 8460 .change_consistency_policy = raid5_change_consistency_policy,
1da177e4
LT
8461};
8462
84fc4b56 8463static struct md_personality raid4_personality =
1da177e4 8464{
2604b703
N
8465 .name = "raid4",
8466 .level = 4,
8467 .owner = THIS_MODULE,
849674e4
SL
8468 .make_request = raid5_make_request,
8469 .run = raid5_run,
d5d885fd 8470 .start = raid5_start,
afa0f557 8471 .free = raid5_free,
849674e4
SL
8472 .status = raid5_status,
8473 .error_handler = raid5_error,
2604b703
N
8474 .hot_add_disk = raid5_add_disk,
8475 .hot_remove_disk= raid5_remove_disk,
8476 .spare_active = raid5_spare_active,
849674e4 8477 .sync_request = raid5_sync_request,
2604b703 8478 .resize = raid5_resize,
80c3a6ce 8479 .size = raid5_size,
3d37890b
N
8480 .check_reshape = raid5_check_reshape,
8481 .start_reshape = raid5_start_reshape,
cea9c228 8482 .finish_reshape = raid5_finish_reshape,
2604b703 8483 .quiesce = raid5_quiesce,
a78d38a1 8484 .takeover = raid4_takeover,
5c675f83 8485 .congested = raid5_congested,
0bb0c105 8486 .change_consistency_policy = raid5_change_consistency_policy,
2604b703
N
8487};
8488
8489static int __init raid5_init(void)
8490{
29c6d1bb
SAS
8491 int ret;
8492
851c30c9
SL
8493 raid5_wq = alloc_workqueue("raid5wq",
8494 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8495 if (!raid5_wq)
8496 return -ENOMEM;
29c6d1bb
SAS
8497
8498 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8499 "md/raid5:prepare",
8500 raid456_cpu_up_prepare,
8501 raid456_cpu_dead);
8502 if (ret) {
8503 destroy_workqueue(raid5_wq);
8504 return ret;
8505 }
16a53ecc 8506 register_md_personality(&raid6_personality);
2604b703
N
8507 register_md_personality(&raid5_personality);
8508 register_md_personality(&raid4_personality);
8509 return 0;
1da177e4
LT
8510}
8511
2604b703 8512static void raid5_exit(void)
1da177e4 8513{
16a53ecc 8514 unregister_md_personality(&raid6_personality);
2604b703
N
8515 unregister_md_personality(&raid5_personality);
8516 unregister_md_personality(&raid4_personality);
29c6d1bb 8517 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
851c30c9 8518 destroy_workqueue(raid5_wq);
1da177e4
LT
8519}
8520
8521module_init(raid5_init);
8522module_exit(raid5_exit);
8523MODULE_LICENSE("GPL");
0efb9e61 8524MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 8525MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
8526MODULE_ALIAS("md-raid5");
8527MODULE_ALIAS("md-raid4");
2604b703
N
8528MODULE_ALIAS("md-level-5");
8529MODULE_ALIAS("md-level-4");
16a53ecc
N
8530MODULE_ALIAS("md-personality-8"); /* RAID6 */
8531MODULE_ALIAS("md-raid6");
8532MODULE_ALIAS("md-level-6");
8533
8534/* This used to be two separate modules, they were: */
8535MODULE_ALIAS("raid5");
8536MODULE_ALIAS("raid6");