]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/md/raid5.c
raid5: relieve lock contention in get_active_stripe()
[mirror_ubuntu-jammy-kernel.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
a9add5d9
N
57#include <trace/events/block.h>
58
43b2e5d8 59#include "md.h"
bff61975 60#include "raid5.h"
54071b38 61#include "raid0.h"
ef740c37 62#include "bitmap.h"
72626685 63
851c30c9
SL
64#define cpu_to_group(cpu) cpu_to_node(cpu)
65#define ANY_GROUP NUMA_NO_NODE
66
67static struct workqueue_struct *raid5_wq;
1da177e4
LT
68/*
69 * Stripe cache
70 */
71
72#define NR_STRIPES 256
73#define STRIPE_SIZE PAGE_SIZE
74#define STRIPE_SHIFT (PAGE_SHIFT - 9)
75#define STRIPE_SECTORS (STRIPE_SIZE>>9)
76#define IO_THRESHOLD 1
8b3e6cdc 77#define BYPASS_THRESHOLD 1
fccddba0 78#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4 79#define HASH_MASK (NR_HASH - 1)
bfc90cb0 80#define MAX_STRIPE_BATCH 8
1da177e4 81
d1688a6d 82static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
83{
84 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85 return &conf->stripe_hashtbl[hash];
86}
1da177e4 87
566c09c5
SL
88static inline int stripe_hash_locks_hash(sector_t sect)
89{
90 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91}
92
93static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
94{
95 spin_lock_irq(conf->hash_locks + hash);
96 spin_lock(&conf->device_lock);
97}
98
99static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
100{
101 spin_unlock(&conf->device_lock);
102 spin_unlock_irq(conf->hash_locks + hash);
103}
104
105static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106{
107 int i;
108 local_irq_disable();
109 spin_lock(conf->hash_locks);
110 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112 spin_lock(&conf->device_lock);
113}
114
115static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
116{
117 int i;
118 spin_unlock(&conf->device_lock);
119 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120 spin_unlock(conf->hash_locks + i - 1);
121 local_irq_enable();
122}
123
1da177e4
LT
124/* bio's attached to a stripe+device for I/O are linked together in bi_sector
125 * order without overlap. There may be several bio's per stripe+device, and
126 * a bio could span several devices.
127 * When walking this list for a particular stripe+device, we must never proceed
128 * beyond a bio that extends past this device, as the next bio might no longer
129 * be valid.
db298e19 130 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
131 * of the current stripe+device
132 */
db298e19
N
133static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
134{
aa8b57aa 135 int sectors = bio_sectors(bio);
db298e19
N
136 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
137 return bio->bi_next;
138 else
139 return NULL;
140}
1da177e4 141
960e739d 142/*
5b99c2ff
JA
143 * We maintain a biased count of active stripes in the bottom 16 bits of
144 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 145 */
e7836bd6 146static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 147{
e7836bd6
SL
148 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
150}
151
e7836bd6 152static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 153{
e7836bd6
SL
154 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
156}
157
e7836bd6 158static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 159{
e7836bd6
SL
160 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161 atomic_inc(segments);
960e739d
JA
162}
163
e7836bd6
SL
164static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165 unsigned int cnt)
960e739d 166{
e7836bd6
SL
167 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168 int old, new;
960e739d 169
e7836bd6
SL
170 do {
171 old = atomic_read(segments);
172 new = (old & 0xffff) | (cnt << 16);
173 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
174}
175
e7836bd6 176static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 177{
e7836bd6
SL
178 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179 atomic_set(segments, cnt);
960e739d
JA
180}
181
d0dabf7e
N
182/* Find first data disk in a raid6 stripe */
183static inline int raid6_d0(struct stripe_head *sh)
184{
67cc2b81
N
185 if (sh->ddf_layout)
186 /* ddf always start from first device */
187 return 0;
188 /* md starts just after Q block */
d0dabf7e
N
189 if (sh->qd_idx == sh->disks - 1)
190 return 0;
191 else
192 return sh->qd_idx + 1;
193}
16a53ecc
N
194static inline int raid6_next_disk(int disk, int raid_disks)
195{
196 disk++;
197 return (disk < raid_disks) ? disk : 0;
198}
a4456856 199
d0dabf7e
N
200/* When walking through the disks in a raid5, starting at raid6_d0,
201 * We need to map each disk to a 'slot', where the data disks are slot
202 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203 * is raid_disks-1. This help does that mapping.
204 */
67cc2b81
N
205static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206 int *count, int syndrome_disks)
d0dabf7e 207{
6629542e 208 int slot = *count;
67cc2b81 209
e4424fee 210 if (sh->ddf_layout)
6629542e 211 (*count)++;
d0dabf7e 212 if (idx == sh->pd_idx)
67cc2b81 213 return syndrome_disks;
d0dabf7e 214 if (idx == sh->qd_idx)
67cc2b81 215 return syndrome_disks + 1;
e4424fee 216 if (!sh->ddf_layout)
6629542e 217 (*count)++;
d0dabf7e
N
218 return slot;
219}
220
a4456856
DW
221static void return_io(struct bio *return_bi)
222{
223 struct bio *bi = return_bi;
224 while (bi) {
a4456856
DW
225
226 return_bi = bi->bi_next;
227 bi->bi_next = NULL;
228 bi->bi_size = 0;
0a82a8d1
LT
229 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230 bi, 0);
0e13fe23 231 bio_endio(bi, 0);
a4456856
DW
232 bi = return_bi;
233 }
234}
235
d1688a6d 236static void print_raid5_conf (struct r5conf *conf);
1da177e4 237
600aa109
DW
238static int stripe_operations_active(struct stripe_head *sh)
239{
240 return sh->check_state || sh->reconstruct_state ||
241 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243}
244
851c30c9
SL
245static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246{
247 struct r5conf *conf = sh->raid_conf;
248 struct r5worker_group *group;
bfc90cb0 249 int thread_cnt;
851c30c9
SL
250 int i, cpu = sh->cpu;
251
252 if (!cpu_online(cpu)) {
253 cpu = cpumask_any(cpu_online_mask);
254 sh->cpu = cpu;
255 }
256
257 if (list_empty(&sh->lru)) {
258 struct r5worker_group *group;
259 group = conf->worker_groups + cpu_to_group(cpu);
260 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
261 group->stripes_cnt++;
262 sh->group = group;
851c30c9
SL
263 }
264
265 if (conf->worker_cnt_per_group == 0) {
266 md_wakeup_thread(conf->mddev->thread);
267 return;
268 }
269
270 group = conf->worker_groups + cpu_to_group(sh->cpu);
271
bfc90cb0
SL
272 group->workers[0].working = true;
273 /* at least one worker should run to avoid race */
274 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275
276 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277 /* wakeup more workers */
278 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279 if (group->workers[i].working == false) {
280 group->workers[i].working = true;
281 queue_work_on(sh->cpu, raid5_wq,
282 &group->workers[i].work);
283 thread_cnt--;
284 }
285 }
851c30c9
SL
286}
287
566c09c5
SL
288static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289 struct list_head *temp_inactive_list)
1da177e4 290{
4eb788df
SL
291 BUG_ON(!list_empty(&sh->lru));
292 BUG_ON(atomic_read(&conf->active_stripes)==0);
293 if (test_bit(STRIPE_HANDLE, &sh->state)) {
294 if (test_bit(STRIPE_DELAYED, &sh->state) &&
295 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
296 list_add_tail(&sh->lru, &conf->delayed_list);
297 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
298 sh->bm_seq - conf->seq_write > 0)
299 list_add_tail(&sh->lru, &conf->bitmap_list);
300 else {
301 clear_bit(STRIPE_DELAYED, &sh->state);
302 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9
SL
303 if (conf->worker_cnt_per_group == 0) {
304 list_add_tail(&sh->lru, &conf->handle_list);
305 } else {
306 raid5_wakeup_stripe_thread(sh);
307 return;
308 }
4eb788df
SL
309 }
310 md_wakeup_thread(conf->mddev->thread);
311 } else {
312 BUG_ON(stripe_operations_active(sh));
313 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
314 if (atomic_dec_return(&conf->preread_active_stripes)
315 < IO_THRESHOLD)
316 md_wakeup_thread(conf->mddev->thread);
317 atomic_dec(&conf->active_stripes);
566c09c5
SL
318 if (!test_bit(STRIPE_EXPANDING, &sh->state))
319 list_add_tail(&sh->lru, temp_inactive_list);
1da177e4
LT
320 }
321}
d0dabf7e 322
566c09c5
SL
323static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
324 struct list_head *temp_inactive_list)
4eb788df
SL
325{
326 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
327 do_release_stripe(conf, sh, temp_inactive_list);
328}
329
330/*
331 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
332 *
333 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
334 * given time. Adding stripes only takes device lock, while deleting stripes
335 * only takes hash lock.
336 */
337static void release_inactive_stripe_list(struct r5conf *conf,
338 struct list_head *temp_inactive_list,
339 int hash)
340{
341 int size;
342 bool do_wakeup = false;
343 unsigned long flags;
344
345 if (hash == NR_STRIPE_HASH_LOCKS) {
346 size = NR_STRIPE_HASH_LOCKS;
347 hash = NR_STRIPE_HASH_LOCKS - 1;
348 } else
349 size = 1;
350 while (size) {
351 struct list_head *list = &temp_inactive_list[size - 1];
352
353 /*
354 * We don't hold any lock here yet, get_active_stripe() might
355 * remove stripes from the list
356 */
357 if (!list_empty_careful(list)) {
358 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
359 if (list_empty(conf->inactive_list + hash) &&
360 !list_empty(list))
361 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5
SL
362 list_splice_tail_init(list, conf->inactive_list + hash);
363 do_wakeup = true;
364 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
365 }
366 size--;
367 hash--;
368 }
369
370 if (do_wakeup) {
371 wake_up(&conf->wait_for_stripe);
372 if (conf->retry_read_aligned)
373 md_wakeup_thread(conf->mddev->thread);
374 }
4eb788df
SL
375}
376
d265d9dc
SL
377static struct llist_node *llist_reverse_order(struct llist_node *head)
378{
379 struct llist_node *new_head = NULL;
380
381 while (head) {
382 struct llist_node *tmp = head;
383 head = head->next;
384 tmp->next = new_head;
385 new_head = tmp;
386 }
387
388 return new_head;
389}
390
773ca82f 391/* should hold conf->device_lock already */
566c09c5
SL
392static int release_stripe_list(struct r5conf *conf,
393 struct list_head *temp_inactive_list)
773ca82f
SL
394{
395 struct stripe_head *sh;
396 int count = 0;
397 struct llist_node *head;
398
399 head = llist_del_all(&conf->released_stripes);
d265d9dc 400 head = llist_reverse_order(head);
773ca82f 401 while (head) {
566c09c5
SL
402 int hash;
403
773ca82f
SL
404 sh = llist_entry(head, struct stripe_head, release_list);
405 head = llist_next(head);
406 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
407 smp_mb();
408 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
409 /*
410 * Don't worry the bit is set here, because if the bit is set
411 * again, the count is always > 1. This is true for
412 * STRIPE_ON_UNPLUG_LIST bit too.
413 */
566c09c5
SL
414 hash = sh->hash_lock_index;
415 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
416 count++;
417 }
418
419 return count;
420}
421
1da177e4
LT
422static void release_stripe(struct stripe_head *sh)
423{
d1688a6d 424 struct r5conf *conf = sh->raid_conf;
1da177e4 425 unsigned long flags;
566c09c5
SL
426 struct list_head list;
427 int hash;
773ca82f 428 bool wakeup;
16a53ecc 429
ad4068de 430 if (unlikely(!conf->mddev->thread) ||
431 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
432 goto slow_path;
433 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
434 if (wakeup)
435 md_wakeup_thread(conf->mddev->thread);
436 return;
437slow_path:
4eb788df 438 local_irq_save(flags);
773ca82f 439 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 440 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
441 INIT_LIST_HEAD(&list);
442 hash = sh->hash_lock_index;
443 do_release_stripe(conf, sh, &list);
4eb788df 444 spin_unlock(&conf->device_lock);
566c09c5 445 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
446 }
447 local_irq_restore(flags);
1da177e4
LT
448}
449
fccddba0 450static inline void remove_hash(struct stripe_head *sh)
1da177e4 451{
45b4233c
DW
452 pr_debug("remove_hash(), stripe %llu\n",
453 (unsigned long long)sh->sector);
1da177e4 454
fccddba0 455 hlist_del_init(&sh->hash);
1da177e4
LT
456}
457
d1688a6d 458static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 459{
fccddba0 460 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 461
45b4233c
DW
462 pr_debug("insert_hash(), stripe %llu\n",
463 (unsigned long long)sh->sector);
1da177e4 464
fccddba0 465 hlist_add_head(&sh->hash, hp);
1da177e4
LT
466}
467
468
469/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 470static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
471{
472 struct stripe_head *sh = NULL;
473 struct list_head *first;
474
566c09c5 475 if (list_empty(conf->inactive_list + hash))
1da177e4 476 goto out;
566c09c5 477 first = (conf->inactive_list + hash)->next;
1da177e4
LT
478 sh = list_entry(first, struct stripe_head, lru);
479 list_del_init(first);
480 remove_hash(sh);
481 atomic_inc(&conf->active_stripes);
566c09c5 482 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
483 if (list_empty(conf->inactive_list + hash))
484 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
485out:
486 return sh;
487}
488
e4e11e38 489static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
490{
491 struct page *p;
492 int i;
e4e11e38 493 int num = sh->raid_conf->pool_size;
1da177e4 494
e4e11e38 495 for (i = 0; i < num ; i++) {
1da177e4
LT
496 p = sh->dev[i].page;
497 if (!p)
498 continue;
499 sh->dev[i].page = NULL;
2d1f3b5d 500 put_page(p);
1da177e4
LT
501 }
502}
503
e4e11e38 504static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
505{
506 int i;
e4e11e38 507 int num = sh->raid_conf->pool_size;
1da177e4 508
e4e11e38 509 for (i = 0; i < num; i++) {
1da177e4
LT
510 struct page *page;
511
512 if (!(page = alloc_page(GFP_KERNEL))) {
513 return 1;
514 }
515 sh->dev[i].page = page;
516 }
517 return 0;
518}
519
784052ec 520static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 521static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 522 struct stripe_head *sh);
1da177e4 523
b5663ba4 524static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 525{
d1688a6d 526 struct r5conf *conf = sh->raid_conf;
566c09c5 527 int i, seq;
1da177e4 528
78bafebd
ES
529 BUG_ON(atomic_read(&sh->count) != 0);
530 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 531 BUG_ON(stripe_operations_active(sh));
d84e0f10 532
45b4233c 533 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
534 (unsigned long long)sh->sector);
535
536 remove_hash(sh);
566c09c5
SL
537retry:
538 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 539 sh->generation = conf->generation - previous;
b5663ba4 540 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 541 sh->sector = sector;
911d4ee8 542 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
543 sh->state = 0;
544
7ecaa1e6
N
545
546 for (i = sh->disks; i--; ) {
1da177e4
LT
547 struct r5dev *dev = &sh->dev[i];
548
d84e0f10 549 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 550 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 551 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 552 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 553 dev->read, dev->towrite, dev->written,
1da177e4 554 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 555 WARN_ON(1);
1da177e4
LT
556 }
557 dev->flags = 0;
784052ec 558 raid5_build_block(sh, i, previous);
1da177e4 559 }
566c09c5
SL
560 if (read_seqcount_retry(&conf->gen_lock, seq))
561 goto retry;
1da177e4 562 insert_hash(conf, sh);
851c30c9 563 sh->cpu = smp_processor_id();
1da177e4
LT
564}
565
d1688a6d 566static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 567 short generation)
1da177e4
LT
568{
569 struct stripe_head *sh;
570
45b4233c 571 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 572 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 573 if (sh->sector == sector && sh->generation == generation)
1da177e4 574 return sh;
45b4233c 575 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
576 return NULL;
577}
578
674806d6
N
579/*
580 * Need to check if array has failed when deciding whether to:
581 * - start an array
582 * - remove non-faulty devices
583 * - add a spare
584 * - allow a reshape
585 * This determination is simple when no reshape is happening.
586 * However if there is a reshape, we need to carefully check
587 * both the before and after sections.
588 * This is because some failed devices may only affect one
589 * of the two sections, and some non-in_sync devices may
590 * be insync in the section most affected by failed devices.
591 */
908f4fbd 592static int calc_degraded(struct r5conf *conf)
674806d6 593{
908f4fbd 594 int degraded, degraded2;
674806d6 595 int i;
674806d6
N
596
597 rcu_read_lock();
598 degraded = 0;
599 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 600 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
601 if (rdev && test_bit(Faulty, &rdev->flags))
602 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
603 if (!rdev || test_bit(Faulty, &rdev->flags))
604 degraded++;
605 else if (test_bit(In_sync, &rdev->flags))
606 ;
607 else
608 /* not in-sync or faulty.
609 * If the reshape increases the number of devices,
610 * this is being recovered by the reshape, so
611 * this 'previous' section is not in_sync.
612 * If the number of devices is being reduced however,
613 * the device can only be part of the array if
614 * we are reverting a reshape, so this section will
615 * be in-sync.
616 */
617 if (conf->raid_disks >= conf->previous_raid_disks)
618 degraded++;
619 }
620 rcu_read_unlock();
908f4fbd
N
621 if (conf->raid_disks == conf->previous_raid_disks)
622 return degraded;
674806d6 623 rcu_read_lock();
908f4fbd 624 degraded2 = 0;
674806d6 625 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 626 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
627 if (rdev && test_bit(Faulty, &rdev->flags))
628 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 629 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 630 degraded2++;
674806d6
N
631 else if (test_bit(In_sync, &rdev->flags))
632 ;
633 else
634 /* not in-sync or faulty.
635 * If reshape increases the number of devices, this
636 * section has already been recovered, else it
637 * almost certainly hasn't.
638 */
639 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 640 degraded2++;
674806d6
N
641 }
642 rcu_read_unlock();
908f4fbd
N
643 if (degraded2 > degraded)
644 return degraded2;
645 return degraded;
646}
647
648static int has_failed(struct r5conf *conf)
649{
650 int degraded;
651
652 if (conf->mddev->reshape_position == MaxSector)
653 return conf->mddev->degraded > conf->max_degraded;
654
655 degraded = calc_degraded(conf);
674806d6
N
656 if (degraded > conf->max_degraded)
657 return 1;
658 return 0;
659}
660
b5663ba4 661static struct stripe_head *
d1688a6d 662get_active_stripe(struct r5conf *conf, sector_t sector,
a8c906ca 663 int previous, int noblock, int noquiesce)
1da177e4
LT
664{
665 struct stripe_head *sh;
566c09c5 666 int hash = stripe_hash_locks_hash(sector);
1da177e4 667
45b4233c 668 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 669
566c09c5 670 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
671
672 do {
72626685 673 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 674 conf->quiesce == 0 || noquiesce,
566c09c5 675 *(conf->hash_locks + hash));
86b42c71 676 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
677 if (!sh) {
678 if (!conf->inactive_blocked)
566c09c5 679 sh = get_free_stripe(conf, hash);
1da177e4
LT
680 if (noblock && sh == NULL)
681 break;
682 if (!sh) {
683 conf->inactive_blocked = 1;
566c09c5
SL
684 wait_event_lock_irq(
685 conf->wait_for_stripe,
686 !list_empty(conf->inactive_list + hash) &&
687 (atomic_read(&conf->active_stripes)
688 < (conf->max_nr_stripes * 3 / 4)
689 || !conf->inactive_blocked),
690 *(conf->hash_locks + hash));
1da177e4
LT
691 conf->inactive_blocked = 0;
692 } else
b5663ba4 693 init_stripe(sh, sector, previous);
1da177e4
LT
694 } else {
695 if (atomic_read(&sh->count)) {
ab69ae12 696 BUG_ON(!list_empty(&sh->lru)
8811b596 697 && !test_bit(STRIPE_EXPANDING, &sh->state)
773ca82f
SL
698 && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)
699 && !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1da177e4 700 } else {
566c09c5 701 spin_lock(&conf->device_lock);
1da177e4
LT
702 if (!test_bit(STRIPE_HANDLE, &sh->state))
703 atomic_inc(&conf->active_stripes);
ff4e8d9a 704 if (list_empty(&sh->lru) &&
566c09c5 705 !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state) &&
ff4e8d9a 706 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
707 BUG();
708 list_del_init(&sh->lru);
bfc90cb0
SL
709 if (sh->group) {
710 sh->group->stripes_cnt--;
711 sh->group = NULL;
712 }
566c09c5 713 spin_unlock(&conf->device_lock);
1da177e4
LT
714 }
715 }
716 } while (sh == NULL);
717
718 if (sh)
719 atomic_inc(&sh->count);
720
566c09c5 721 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
722 return sh;
723}
724
05616be5
N
725/* Determine if 'data_offset' or 'new_data_offset' should be used
726 * in this stripe_head.
727 */
728static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
729{
730 sector_t progress = conf->reshape_progress;
731 /* Need a memory barrier to make sure we see the value
732 * of conf->generation, or ->data_offset that was set before
733 * reshape_progress was updated.
734 */
735 smp_rmb();
736 if (progress == MaxSector)
737 return 0;
738 if (sh->generation == conf->generation - 1)
739 return 0;
740 /* We are in a reshape, and this is a new-generation stripe,
741 * so use new_data_offset.
742 */
743 return 1;
744}
745
6712ecf8
N
746static void
747raid5_end_read_request(struct bio *bi, int error);
748static void
749raid5_end_write_request(struct bio *bi, int error);
91c00924 750
c4e5ac0a 751static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 752{
d1688a6d 753 struct r5conf *conf = sh->raid_conf;
91c00924
DW
754 int i, disks = sh->disks;
755
756 might_sleep();
757
758 for (i = disks; i--; ) {
759 int rw;
9a3e1101 760 int replace_only = 0;
977df362
N
761 struct bio *bi, *rbi;
762 struct md_rdev *rdev, *rrdev = NULL;
e9c7469b
TH
763 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
764 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
765 rw = WRITE_FUA;
766 else
767 rw = WRITE;
9e444768 768 if (test_bit(R5_Discard, &sh->dev[i].flags))
620125f2 769 rw |= REQ_DISCARD;
e9c7469b 770 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 771 rw = READ;
9a3e1101
N
772 else if (test_and_clear_bit(R5_WantReplace,
773 &sh->dev[i].flags)) {
774 rw = WRITE;
775 replace_only = 1;
776 } else
91c00924 777 continue;
bc0934f0
SL
778 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
779 rw |= REQ_SYNC;
91c00924
DW
780
781 bi = &sh->dev[i].req;
977df362 782 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 783
91c00924 784 rcu_read_lock();
9a3e1101 785 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
786 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
787 rdev = rcu_dereference(conf->disks[i].rdev);
788 if (!rdev) {
789 rdev = rrdev;
790 rrdev = NULL;
791 }
9a3e1101
N
792 if (rw & WRITE) {
793 if (replace_only)
794 rdev = NULL;
dd054fce
N
795 if (rdev == rrdev)
796 /* We raced and saw duplicates */
797 rrdev = NULL;
9a3e1101 798 } else {
dd054fce 799 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
9a3e1101
N
800 rdev = rrdev;
801 rrdev = NULL;
802 }
977df362 803
91c00924
DW
804 if (rdev && test_bit(Faulty, &rdev->flags))
805 rdev = NULL;
806 if (rdev)
807 atomic_inc(&rdev->nr_pending);
977df362
N
808 if (rrdev && test_bit(Faulty, &rrdev->flags))
809 rrdev = NULL;
810 if (rrdev)
811 atomic_inc(&rrdev->nr_pending);
91c00924
DW
812 rcu_read_unlock();
813
73e92e51 814 /* We have already checked bad blocks for reads. Now
977df362
N
815 * need to check for writes. We never accept write errors
816 * on the replacement, so we don't to check rrdev.
73e92e51
N
817 */
818 while ((rw & WRITE) && rdev &&
819 test_bit(WriteErrorSeen, &rdev->flags)) {
820 sector_t first_bad;
821 int bad_sectors;
822 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
823 &first_bad, &bad_sectors);
824 if (!bad)
825 break;
826
827 if (bad < 0) {
828 set_bit(BlockedBadBlocks, &rdev->flags);
829 if (!conf->mddev->external &&
830 conf->mddev->flags) {
831 /* It is very unlikely, but we might
832 * still need to write out the
833 * bad block log - better give it
834 * a chance*/
835 md_check_recovery(conf->mddev);
836 }
1850753d 837 /*
838 * Because md_wait_for_blocked_rdev
839 * will dec nr_pending, we must
840 * increment it first.
841 */
842 atomic_inc(&rdev->nr_pending);
73e92e51
N
843 md_wait_for_blocked_rdev(rdev, conf->mddev);
844 } else {
845 /* Acknowledged bad block - skip the write */
846 rdev_dec_pending(rdev, conf->mddev);
847 rdev = NULL;
848 }
849 }
850
91c00924 851 if (rdev) {
9a3e1101
N
852 if (s->syncing || s->expanding || s->expanded
853 || s->replacing)
91c00924
DW
854 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
855
2b7497f0
DW
856 set_bit(STRIPE_IO_STARTED, &sh->state);
857
2f6db2a7 858 bio_reset(bi);
91c00924 859 bi->bi_bdev = rdev->bdev;
2f6db2a7
KO
860 bi->bi_rw = rw;
861 bi->bi_end_io = (rw & WRITE)
862 ? raid5_end_write_request
863 : raid5_end_read_request;
864 bi->bi_private = sh;
865
91c00924 866 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 867 __func__, (unsigned long long)sh->sector,
91c00924
DW
868 bi->bi_rw, i);
869 atomic_inc(&sh->count);
05616be5
N
870 if (use_new_offset(conf, sh))
871 bi->bi_sector = (sh->sector
872 + rdev->new_data_offset);
873 else
874 bi->bi_sector = (sh->sector
875 + rdev->data_offset);
3f9e7c14 876 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
877 bi->bi_rw |= REQ_FLUSH;
878
4997b72e 879 bi->bi_vcnt = 1;
91c00924
DW
880 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
881 bi->bi_io_vec[0].bv_offset = 0;
882 bi->bi_size = STRIPE_SIZE;
37c61ff3
SL
883 /*
884 * If this is discard request, set bi_vcnt 0. We don't
885 * want to confuse SCSI because SCSI will replace payload
886 */
887 if (rw & REQ_DISCARD)
888 bi->bi_vcnt = 0;
977df362
N
889 if (rrdev)
890 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
891
892 if (conf->mddev->gendisk)
893 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
894 bi, disk_devt(conf->mddev->gendisk),
895 sh->dev[i].sector);
91c00924 896 generic_make_request(bi);
977df362
N
897 }
898 if (rrdev) {
9a3e1101
N
899 if (s->syncing || s->expanding || s->expanded
900 || s->replacing)
977df362
N
901 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
902
903 set_bit(STRIPE_IO_STARTED, &sh->state);
904
2f6db2a7 905 bio_reset(rbi);
977df362 906 rbi->bi_bdev = rrdev->bdev;
2f6db2a7
KO
907 rbi->bi_rw = rw;
908 BUG_ON(!(rw & WRITE));
909 rbi->bi_end_io = raid5_end_write_request;
910 rbi->bi_private = sh;
911
977df362
N
912 pr_debug("%s: for %llu schedule op %ld on "
913 "replacement disc %d\n",
914 __func__, (unsigned long long)sh->sector,
915 rbi->bi_rw, i);
916 atomic_inc(&sh->count);
05616be5
N
917 if (use_new_offset(conf, sh))
918 rbi->bi_sector = (sh->sector
919 + rrdev->new_data_offset);
920 else
921 rbi->bi_sector = (sh->sector
922 + rrdev->data_offset);
4997b72e 923 rbi->bi_vcnt = 1;
977df362
N
924 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
925 rbi->bi_io_vec[0].bv_offset = 0;
926 rbi->bi_size = STRIPE_SIZE;
37c61ff3
SL
927 /*
928 * If this is discard request, set bi_vcnt 0. We don't
929 * want to confuse SCSI because SCSI will replace payload
930 */
931 if (rw & REQ_DISCARD)
932 rbi->bi_vcnt = 0;
e3620a3a
JB
933 if (conf->mddev->gendisk)
934 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
935 rbi, disk_devt(conf->mddev->gendisk),
936 sh->dev[i].sector);
977df362
N
937 generic_make_request(rbi);
938 }
939 if (!rdev && !rrdev) {
b062962e 940 if (rw & WRITE)
91c00924
DW
941 set_bit(STRIPE_DEGRADED, &sh->state);
942 pr_debug("skip op %ld on disc %d for sector %llu\n",
943 bi->bi_rw, i, (unsigned long long)sh->sector);
944 clear_bit(R5_LOCKED, &sh->dev[i].flags);
945 set_bit(STRIPE_HANDLE, &sh->state);
946 }
947 }
948}
949
950static struct dma_async_tx_descriptor *
951async_copy_data(int frombio, struct bio *bio, struct page *page,
952 sector_t sector, struct dma_async_tx_descriptor *tx)
953{
954 struct bio_vec *bvl;
955 struct page *bio_page;
956 int i;
957 int page_offset;
a08abd8c 958 struct async_submit_ctl submit;
0403e382 959 enum async_tx_flags flags = 0;
91c00924
DW
960
961 if (bio->bi_sector >= sector)
962 page_offset = (signed)(bio->bi_sector - sector) * 512;
963 else
964 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c 965
0403e382
DW
966 if (frombio)
967 flags |= ASYNC_TX_FENCE;
968 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
969
91c00924 970 bio_for_each_segment(bvl, bio, i) {
fcde9075 971 int len = bvl->bv_len;
91c00924
DW
972 int clen;
973 int b_offset = 0;
974
975 if (page_offset < 0) {
976 b_offset = -page_offset;
977 page_offset += b_offset;
978 len -= b_offset;
979 }
980
981 if (len > 0 && page_offset + len > STRIPE_SIZE)
982 clen = STRIPE_SIZE - page_offset;
983 else
984 clen = len;
985
986 if (clen > 0) {
fcde9075
NK
987 b_offset += bvl->bv_offset;
988 bio_page = bvl->bv_page;
91c00924
DW
989 if (frombio)
990 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 991 b_offset, clen, &submit);
91c00924
DW
992 else
993 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 994 page_offset, clen, &submit);
91c00924 995 }
a08abd8c
DW
996 /* chain the operations */
997 submit.depend_tx = tx;
998
91c00924
DW
999 if (clen < len) /* hit end of page */
1000 break;
1001 page_offset += len;
1002 }
1003
1004 return tx;
1005}
1006
1007static void ops_complete_biofill(void *stripe_head_ref)
1008{
1009 struct stripe_head *sh = stripe_head_ref;
1010 struct bio *return_bi = NULL;
e4d84909 1011 int i;
91c00924 1012
e46b272b 1013 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1014 (unsigned long long)sh->sector);
1015
1016 /* clear completed biofills */
1017 for (i = sh->disks; i--; ) {
1018 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1019
1020 /* acknowledge completion of a biofill operation */
e4d84909
DW
1021 /* and check if we need to reply to a read request,
1022 * new R5_Wantfill requests are held off until
83de75cc 1023 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1024 */
1025 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1026 struct bio *rbi, *rbi2;
91c00924 1027
91c00924
DW
1028 BUG_ON(!dev->read);
1029 rbi = dev->read;
1030 dev->read = NULL;
1031 while (rbi && rbi->bi_sector <
1032 dev->sector + STRIPE_SECTORS) {
1033 rbi2 = r5_next_bio(rbi, dev->sector);
e7836bd6 1034 if (!raid5_dec_bi_active_stripes(rbi)) {
91c00924
DW
1035 rbi->bi_next = return_bi;
1036 return_bi = rbi;
1037 }
91c00924
DW
1038 rbi = rbi2;
1039 }
1040 }
1041 }
83de75cc 1042 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
1043
1044 return_io(return_bi);
1045
e4d84909 1046 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
1047 release_stripe(sh);
1048}
1049
1050static void ops_run_biofill(struct stripe_head *sh)
1051{
1052 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1053 struct async_submit_ctl submit;
91c00924
DW
1054 int i;
1055
e46b272b 1056 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1057 (unsigned long long)sh->sector);
1058
1059 for (i = sh->disks; i--; ) {
1060 struct r5dev *dev = &sh->dev[i];
1061 if (test_bit(R5_Wantfill, &dev->flags)) {
1062 struct bio *rbi;
b17459c0 1063 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1064 dev->read = rbi = dev->toread;
1065 dev->toread = NULL;
b17459c0 1066 spin_unlock_irq(&sh->stripe_lock);
91c00924
DW
1067 while (rbi && rbi->bi_sector <
1068 dev->sector + STRIPE_SECTORS) {
1069 tx = async_copy_data(0, rbi, dev->page,
1070 dev->sector, tx);
1071 rbi = r5_next_bio(rbi, dev->sector);
1072 }
1073 }
1074 }
1075
1076 atomic_inc(&sh->count);
a08abd8c
DW
1077 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1078 async_trigger_callback(&submit);
91c00924
DW
1079}
1080
4e7d2c0a 1081static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1082{
4e7d2c0a 1083 struct r5dev *tgt;
91c00924 1084
4e7d2c0a
DW
1085 if (target < 0)
1086 return;
91c00924 1087
4e7d2c0a 1088 tgt = &sh->dev[target];
91c00924
DW
1089 set_bit(R5_UPTODATE, &tgt->flags);
1090 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1091 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1092}
1093
ac6b53b6 1094static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1095{
1096 struct stripe_head *sh = stripe_head_ref;
91c00924 1097
e46b272b 1098 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1099 (unsigned long long)sh->sector);
1100
ac6b53b6 1101 /* mark the computed target(s) as uptodate */
4e7d2c0a 1102 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1103 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1104
ecc65c9b
DW
1105 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1106 if (sh->check_state == check_state_compute_run)
1107 sh->check_state = check_state_compute_result;
91c00924
DW
1108 set_bit(STRIPE_HANDLE, &sh->state);
1109 release_stripe(sh);
1110}
1111
d6f38f31
DW
1112/* return a pointer to the address conversion region of the scribble buffer */
1113static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1114 struct raid5_percpu *percpu)
1115{
1116 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1117}
1118
1119static struct dma_async_tx_descriptor *
1120ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1121{
91c00924 1122 int disks = sh->disks;
d6f38f31 1123 struct page **xor_srcs = percpu->scribble;
91c00924
DW
1124 int target = sh->ops.target;
1125 struct r5dev *tgt = &sh->dev[target];
1126 struct page *xor_dest = tgt->page;
1127 int count = 0;
1128 struct dma_async_tx_descriptor *tx;
a08abd8c 1129 struct async_submit_ctl submit;
91c00924
DW
1130 int i;
1131
1132 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1133 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1134 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1135
1136 for (i = disks; i--; )
1137 if (i != target)
1138 xor_srcs[count++] = sh->dev[i].page;
1139
1140 atomic_inc(&sh->count);
1141
0403e382 1142 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 1143 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 1144 if (unlikely(count == 1))
a08abd8c 1145 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1146 else
a08abd8c 1147 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1148
91c00924
DW
1149 return tx;
1150}
1151
ac6b53b6
DW
1152/* set_syndrome_sources - populate source buffers for gen_syndrome
1153 * @srcs - (struct page *) array of size sh->disks
1154 * @sh - stripe_head to parse
1155 *
1156 * Populates srcs in proper layout order for the stripe and returns the
1157 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1158 * destination buffer is recorded in srcs[count] and the Q destination
1159 * is recorded in srcs[count+1]].
1160 */
1161static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1162{
1163 int disks = sh->disks;
1164 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1165 int d0_idx = raid6_d0(sh);
1166 int count;
1167 int i;
1168
1169 for (i = 0; i < disks; i++)
5dd33c9a 1170 srcs[i] = NULL;
ac6b53b6
DW
1171
1172 count = 0;
1173 i = d0_idx;
1174 do {
1175 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1176
1177 srcs[slot] = sh->dev[i].page;
1178 i = raid6_next_disk(i, disks);
1179 } while (i != d0_idx);
ac6b53b6 1180
e4424fee 1181 return syndrome_disks;
ac6b53b6
DW
1182}
1183
1184static struct dma_async_tx_descriptor *
1185ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1186{
1187 int disks = sh->disks;
1188 struct page **blocks = percpu->scribble;
1189 int target;
1190 int qd_idx = sh->qd_idx;
1191 struct dma_async_tx_descriptor *tx;
1192 struct async_submit_ctl submit;
1193 struct r5dev *tgt;
1194 struct page *dest;
1195 int i;
1196 int count;
1197
1198 if (sh->ops.target < 0)
1199 target = sh->ops.target2;
1200 else if (sh->ops.target2 < 0)
1201 target = sh->ops.target;
91c00924 1202 else
ac6b53b6
DW
1203 /* we should only have one valid target */
1204 BUG();
1205 BUG_ON(target < 0);
1206 pr_debug("%s: stripe %llu block: %d\n",
1207 __func__, (unsigned long long)sh->sector, target);
1208
1209 tgt = &sh->dev[target];
1210 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1211 dest = tgt->page;
1212
1213 atomic_inc(&sh->count);
1214
1215 if (target == qd_idx) {
1216 count = set_syndrome_sources(blocks, sh);
1217 blocks[count] = NULL; /* regenerating p is not necessary */
1218 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1219 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1220 ops_complete_compute, sh,
ac6b53b6
DW
1221 to_addr_conv(sh, percpu));
1222 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1223 } else {
1224 /* Compute any data- or p-drive using XOR */
1225 count = 0;
1226 for (i = disks; i-- ; ) {
1227 if (i == target || i == qd_idx)
1228 continue;
1229 blocks[count++] = sh->dev[i].page;
1230 }
1231
0403e382
DW
1232 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1233 NULL, ops_complete_compute, sh,
ac6b53b6
DW
1234 to_addr_conv(sh, percpu));
1235 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1236 }
91c00924 1237
91c00924
DW
1238 return tx;
1239}
1240
ac6b53b6
DW
1241static struct dma_async_tx_descriptor *
1242ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1243{
1244 int i, count, disks = sh->disks;
1245 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1246 int d0_idx = raid6_d0(sh);
1247 int faila = -1, failb = -1;
1248 int target = sh->ops.target;
1249 int target2 = sh->ops.target2;
1250 struct r5dev *tgt = &sh->dev[target];
1251 struct r5dev *tgt2 = &sh->dev[target2];
1252 struct dma_async_tx_descriptor *tx;
1253 struct page **blocks = percpu->scribble;
1254 struct async_submit_ctl submit;
1255
1256 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1257 __func__, (unsigned long long)sh->sector, target, target2);
1258 BUG_ON(target < 0 || target2 < 0);
1259 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1260 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1261
6c910a78 1262 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1263 * slot number conversion for 'faila' and 'failb'
1264 */
1265 for (i = 0; i < disks ; i++)
5dd33c9a 1266 blocks[i] = NULL;
ac6b53b6
DW
1267 count = 0;
1268 i = d0_idx;
1269 do {
1270 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1271
1272 blocks[slot] = sh->dev[i].page;
1273
1274 if (i == target)
1275 faila = slot;
1276 if (i == target2)
1277 failb = slot;
1278 i = raid6_next_disk(i, disks);
1279 } while (i != d0_idx);
ac6b53b6
DW
1280
1281 BUG_ON(faila == failb);
1282 if (failb < faila)
1283 swap(faila, failb);
1284 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1285 __func__, (unsigned long long)sh->sector, faila, failb);
1286
1287 atomic_inc(&sh->count);
1288
1289 if (failb == syndrome_disks+1) {
1290 /* Q disk is one of the missing disks */
1291 if (faila == syndrome_disks) {
1292 /* Missing P+Q, just recompute */
0403e382
DW
1293 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1294 ops_complete_compute, sh,
1295 to_addr_conv(sh, percpu));
e4424fee 1296 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1297 STRIPE_SIZE, &submit);
1298 } else {
1299 struct page *dest;
1300 int data_target;
1301 int qd_idx = sh->qd_idx;
1302
1303 /* Missing D+Q: recompute D from P, then recompute Q */
1304 if (target == qd_idx)
1305 data_target = target2;
1306 else
1307 data_target = target;
1308
1309 count = 0;
1310 for (i = disks; i-- ; ) {
1311 if (i == data_target || i == qd_idx)
1312 continue;
1313 blocks[count++] = sh->dev[i].page;
1314 }
1315 dest = sh->dev[data_target].page;
0403e382
DW
1316 init_async_submit(&submit,
1317 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1318 NULL, NULL, NULL,
1319 to_addr_conv(sh, percpu));
ac6b53b6
DW
1320 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1321 &submit);
1322
1323 count = set_syndrome_sources(blocks, sh);
0403e382
DW
1324 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1325 ops_complete_compute, sh,
1326 to_addr_conv(sh, percpu));
ac6b53b6
DW
1327 return async_gen_syndrome(blocks, 0, count+2,
1328 STRIPE_SIZE, &submit);
1329 }
ac6b53b6 1330 } else {
6c910a78
DW
1331 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1332 ops_complete_compute, sh,
1333 to_addr_conv(sh, percpu));
1334 if (failb == syndrome_disks) {
1335 /* We're missing D+P. */
1336 return async_raid6_datap_recov(syndrome_disks+2,
1337 STRIPE_SIZE, faila,
1338 blocks, &submit);
1339 } else {
1340 /* We're missing D+D. */
1341 return async_raid6_2data_recov(syndrome_disks+2,
1342 STRIPE_SIZE, faila, failb,
1343 blocks, &submit);
1344 }
ac6b53b6
DW
1345 }
1346}
1347
1348
91c00924
DW
1349static void ops_complete_prexor(void *stripe_head_ref)
1350{
1351 struct stripe_head *sh = stripe_head_ref;
1352
e46b272b 1353 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1354 (unsigned long long)sh->sector);
91c00924
DW
1355}
1356
1357static struct dma_async_tx_descriptor *
d6f38f31
DW
1358ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1359 struct dma_async_tx_descriptor *tx)
91c00924 1360{
91c00924 1361 int disks = sh->disks;
d6f38f31 1362 struct page **xor_srcs = percpu->scribble;
91c00924 1363 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1364 struct async_submit_ctl submit;
91c00924
DW
1365
1366 /* existing parity data subtracted */
1367 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1368
e46b272b 1369 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1370 (unsigned long long)sh->sector);
1371
1372 for (i = disks; i--; ) {
1373 struct r5dev *dev = &sh->dev[i];
1374 /* Only process blocks that are known to be uptodate */
d8ee0728 1375 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1376 xor_srcs[count++] = dev->page;
1377 }
1378
0403e382 1379 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 1380 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 1381 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1382
1383 return tx;
1384}
1385
1386static struct dma_async_tx_descriptor *
d8ee0728 1387ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1388{
1389 int disks = sh->disks;
d8ee0728 1390 int i;
91c00924 1391
e46b272b 1392 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1393 (unsigned long long)sh->sector);
1394
1395 for (i = disks; i--; ) {
1396 struct r5dev *dev = &sh->dev[i];
1397 struct bio *chosen;
91c00924 1398
d8ee0728 1399 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
1400 struct bio *wbi;
1401
b17459c0 1402 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1403 chosen = dev->towrite;
1404 dev->towrite = NULL;
1405 BUG_ON(dev->written);
1406 wbi = dev->written = chosen;
b17459c0 1407 spin_unlock_irq(&sh->stripe_lock);
91c00924
DW
1408
1409 while (wbi && wbi->bi_sector <
1410 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1411 if (wbi->bi_rw & REQ_FUA)
1412 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1413 if (wbi->bi_rw & REQ_SYNC)
1414 set_bit(R5_SyncIO, &dev->flags);
9e444768 1415 if (wbi->bi_rw & REQ_DISCARD)
620125f2 1416 set_bit(R5_Discard, &dev->flags);
9e444768 1417 else
620125f2
SL
1418 tx = async_copy_data(1, wbi, dev->page,
1419 dev->sector, tx);
91c00924
DW
1420 wbi = r5_next_bio(wbi, dev->sector);
1421 }
1422 }
1423 }
1424
1425 return tx;
1426}
1427
ac6b53b6 1428static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1429{
1430 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1431 int disks = sh->disks;
1432 int pd_idx = sh->pd_idx;
1433 int qd_idx = sh->qd_idx;
1434 int i;
9e444768 1435 bool fua = false, sync = false, discard = false;
91c00924 1436
e46b272b 1437 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1438 (unsigned long long)sh->sector);
1439
bc0934f0 1440 for (i = disks; i--; ) {
e9c7469b 1441 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1442 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1443 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1444 }
e9c7469b 1445
91c00924
DW
1446 for (i = disks; i--; ) {
1447 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1448
e9c7469b 1449 if (dev->written || i == pd_idx || i == qd_idx) {
9e444768
SL
1450 if (!discard)
1451 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1452 if (fua)
1453 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1454 if (sync)
1455 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1456 }
91c00924
DW
1457 }
1458
d8ee0728
DW
1459 if (sh->reconstruct_state == reconstruct_state_drain_run)
1460 sh->reconstruct_state = reconstruct_state_drain_result;
1461 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1462 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1463 else {
1464 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1465 sh->reconstruct_state = reconstruct_state_result;
1466 }
91c00924
DW
1467
1468 set_bit(STRIPE_HANDLE, &sh->state);
1469 release_stripe(sh);
1470}
1471
1472static void
ac6b53b6
DW
1473ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1474 struct dma_async_tx_descriptor *tx)
91c00924 1475{
91c00924 1476 int disks = sh->disks;
d6f38f31 1477 struct page **xor_srcs = percpu->scribble;
a08abd8c 1478 struct async_submit_ctl submit;
91c00924
DW
1479 int count = 0, pd_idx = sh->pd_idx, i;
1480 struct page *xor_dest;
d8ee0728 1481 int prexor = 0;
91c00924 1482 unsigned long flags;
91c00924 1483
e46b272b 1484 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1485 (unsigned long long)sh->sector);
1486
620125f2
SL
1487 for (i = 0; i < sh->disks; i++) {
1488 if (pd_idx == i)
1489 continue;
1490 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1491 break;
1492 }
1493 if (i >= sh->disks) {
1494 atomic_inc(&sh->count);
620125f2
SL
1495 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1496 ops_complete_reconstruct(sh);
1497 return;
1498 }
91c00924
DW
1499 /* check if prexor is active which means only process blocks
1500 * that are part of a read-modify-write (written)
1501 */
d8ee0728
DW
1502 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1503 prexor = 1;
91c00924
DW
1504 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1505 for (i = disks; i--; ) {
1506 struct r5dev *dev = &sh->dev[i];
1507 if (dev->written)
1508 xor_srcs[count++] = dev->page;
1509 }
1510 } else {
1511 xor_dest = sh->dev[pd_idx].page;
1512 for (i = disks; i--; ) {
1513 struct r5dev *dev = &sh->dev[i];
1514 if (i != pd_idx)
1515 xor_srcs[count++] = dev->page;
1516 }
1517 }
1518
91c00924
DW
1519 /* 1/ if we prexor'd then the dest is reused as a source
1520 * 2/ if we did not prexor then we are redoing the parity
1521 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1522 * for the synchronous xor case
1523 */
88ba2aa5 1524 flags = ASYNC_TX_ACK |
91c00924
DW
1525 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1526
1527 atomic_inc(&sh->count);
1528
ac6b53b6 1529 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1530 to_addr_conv(sh, percpu));
a08abd8c
DW
1531 if (unlikely(count == 1))
1532 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1533 else
1534 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1535}
1536
ac6b53b6
DW
1537static void
1538ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1539 struct dma_async_tx_descriptor *tx)
1540{
1541 struct async_submit_ctl submit;
1542 struct page **blocks = percpu->scribble;
620125f2 1543 int count, i;
ac6b53b6
DW
1544
1545 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1546
620125f2
SL
1547 for (i = 0; i < sh->disks; i++) {
1548 if (sh->pd_idx == i || sh->qd_idx == i)
1549 continue;
1550 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1551 break;
1552 }
1553 if (i >= sh->disks) {
1554 atomic_inc(&sh->count);
620125f2
SL
1555 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1556 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1557 ops_complete_reconstruct(sh);
1558 return;
1559 }
1560
ac6b53b6
DW
1561 count = set_syndrome_sources(blocks, sh);
1562
1563 atomic_inc(&sh->count);
1564
1565 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1566 sh, to_addr_conv(sh, percpu));
1567 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1568}
1569
1570static void ops_complete_check(void *stripe_head_ref)
1571{
1572 struct stripe_head *sh = stripe_head_ref;
91c00924 1573
e46b272b 1574 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1575 (unsigned long long)sh->sector);
1576
ecc65c9b 1577 sh->check_state = check_state_check_result;
91c00924
DW
1578 set_bit(STRIPE_HANDLE, &sh->state);
1579 release_stripe(sh);
1580}
1581
ac6b53b6 1582static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1583{
91c00924 1584 int disks = sh->disks;
ac6b53b6
DW
1585 int pd_idx = sh->pd_idx;
1586 int qd_idx = sh->qd_idx;
1587 struct page *xor_dest;
d6f38f31 1588 struct page **xor_srcs = percpu->scribble;
91c00924 1589 struct dma_async_tx_descriptor *tx;
a08abd8c 1590 struct async_submit_ctl submit;
ac6b53b6
DW
1591 int count;
1592 int i;
91c00924 1593
e46b272b 1594 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1595 (unsigned long long)sh->sector);
1596
ac6b53b6
DW
1597 count = 0;
1598 xor_dest = sh->dev[pd_idx].page;
1599 xor_srcs[count++] = xor_dest;
91c00924 1600 for (i = disks; i--; ) {
ac6b53b6
DW
1601 if (i == pd_idx || i == qd_idx)
1602 continue;
1603 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1604 }
1605
d6f38f31
DW
1606 init_async_submit(&submit, 0, NULL, NULL, NULL,
1607 to_addr_conv(sh, percpu));
099f53cb 1608 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1609 &sh->ops.zero_sum_result, &submit);
91c00924 1610
91c00924 1611 atomic_inc(&sh->count);
a08abd8c
DW
1612 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1613 tx = async_trigger_callback(&submit);
91c00924
DW
1614}
1615
ac6b53b6
DW
1616static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1617{
1618 struct page **srcs = percpu->scribble;
1619 struct async_submit_ctl submit;
1620 int count;
1621
1622 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1623 (unsigned long long)sh->sector, checkp);
1624
1625 count = set_syndrome_sources(srcs, sh);
1626 if (!checkp)
1627 srcs[count] = NULL;
91c00924 1628
91c00924 1629 atomic_inc(&sh->count);
ac6b53b6
DW
1630 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1631 sh, to_addr_conv(sh, percpu));
1632 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1633 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1634}
1635
51acbcec 1636static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1637{
1638 int overlap_clear = 0, i, disks = sh->disks;
1639 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1640 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1641 int level = conf->level;
d6f38f31
DW
1642 struct raid5_percpu *percpu;
1643 unsigned long cpu;
91c00924 1644
d6f38f31
DW
1645 cpu = get_cpu();
1646 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1647 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1648 ops_run_biofill(sh);
1649 overlap_clear++;
1650 }
1651
7b3a871e 1652 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1653 if (level < 6)
1654 tx = ops_run_compute5(sh, percpu);
1655 else {
1656 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1657 tx = ops_run_compute6_1(sh, percpu);
1658 else
1659 tx = ops_run_compute6_2(sh, percpu);
1660 }
1661 /* terminate the chain if reconstruct is not set to be run */
1662 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1663 async_tx_ack(tx);
1664 }
91c00924 1665
600aa109 1666 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1667 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1668
600aa109 1669 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1670 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1671 overlap_clear++;
1672 }
1673
ac6b53b6
DW
1674 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1675 if (level < 6)
1676 ops_run_reconstruct5(sh, percpu, tx);
1677 else
1678 ops_run_reconstruct6(sh, percpu, tx);
1679 }
91c00924 1680
ac6b53b6
DW
1681 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1682 if (sh->check_state == check_state_run)
1683 ops_run_check_p(sh, percpu);
1684 else if (sh->check_state == check_state_run_q)
1685 ops_run_check_pq(sh, percpu, 0);
1686 else if (sh->check_state == check_state_run_pq)
1687 ops_run_check_pq(sh, percpu, 1);
1688 else
1689 BUG();
1690 }
91c00924 1691
91c00924
DW
1692 if (overlap_clear)
1693 for (i = disks; i--; ) {
1694 struct r5dev *dev = &sh->dev[i];
1695 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1696 wake_up(&sh->raid_conf->wait_for_overlap);
1697 }
d6f38f31 1698 put_cpu();
91c00924
DW
1699}
1700
566c09c5 1701static int grow_one_stripe(struct r5conf *conf, int hash)
1da177e4
LT
1702{
1703 struct stripe_head *sh;
6ce32846 1704 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
3f294f4f
N
1705 if (!sh)
1706 return 0;
6ce32846 1707
3f294f4f 1708 sh->raid_conf = conf;
3f294f4f 1709
b17459c0
SL
1710 spin_lock_init(&sh->stripe_lock);
1711
e4e11e38
N
1712 if (grow_buffers(sh)) {
1713 shrink_buffers(sh);
3f294f4f
N
1714 kmem_cache_free(conf->slab_cache, sh);
1715 return 0;
1716 }
566c09c5 1717 sh->hash_lock_index = hash;
3f294f4f
N
1718 /* we just created an active stripe so... */
1719 atomic_set(&sh->count, 1);
1720 atomic_inc(&conf->active_stripes);
1721 INIT_LIST_HEAD(&sh->lru);
1722 release_stripe(sh);
1723 return 1;
1724}
1725
d1688a6d 1726static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 1727{
e18b890b 1728 struct kmem_cache *sc;
5e5e3e78 1729 int devs = max(conf->raid_disks, conf->previous_raid_disks);
566c09c5 1730 int hash;
1da177e4 1731
f4be6b43
N
1732 if (conf->mddev->gendisk)
1733 sprintf(conf->cache_name[0],
1734 "raid%d-%s", conf->level, mdname(conf->mddev));
1735 else
1736 sprintf(conf->cache_name[0],
1737 "raid%d-%p", conf->level, conf->mddev);
1738 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1739
ad01c9e3
N
1740 conf->active_name = 0;
1741 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1742 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1743 0, 0, NULL);
1da177e4
LT
1744 if (!sc)
1745 return 1;
1746 conf->slab_cache = sc;
ad01c9e3 1747 conf->pool_size = devs;
566c09c5
SL
1748 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1749 while (num--) {
1750 if (!grow_one_stripe(conf, hash))
1da177e4 1751 return 1;
566c09c5
SL
1752 conf->max_nr_stripes++;
1753 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1754 }
1da177e4
LT
1755 return 0;
1756}
29269553 1757
d6f38f31
DW
1758/**
1759 * scribble_len - return the required size of the scribble region
1760 * @num - total number of disks in the array
1761 *
1762 * The size must be enough to contain:
1763 * 1/ a struct page pointer for each device in the array +2
1764 * 2/ room to convert each entry in (1) to its corresponding dma
1765 * (dma_map_page()) or page (page_address()) address.
1766 *
1767 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1768 * calculate over all devices (not just the data blocks), using zeros in place
1769 * of the P and Q blocks.
1770 */
1771static size_t scribble_len(int num)
1772{
1773 size_t len;
1774
1775 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1776
1777 return len;
1778}
1779
d1688a6d 1780static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
1781{
1782 /* Make all the stripes able to hold 'newsize' devices.
1783 * New slots in each stripe get 'page' set to a new page.
1784 *
1785 * This happens in stages:
1786 * 1/ create a new kmem_cache and allocate the required number of
1787 * stripe_heads.
83f0d77a 1788 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
1789 * to the new stripe_heads. This will have the side effect of
1790 * freezing the array as once all stripe_heads have been collected,
1791 * no IO will be possible. Old stripe heads are freed once their
1792 * pages have been transferred over, and the old kmem_cache is
1793 * freed when all stripes are done.
1794 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1795 * we simple return a failre status - no need to clean anything up.
1796 * 4/ allocate new pages for the new slots in the new stripe_heads.
1797 * If this fails, we don't bother trying the shrink the
1798 * stripe_heads down again, we just leave them as they are.
1799 * As each stripe_head is processed the new one is released into
1800 * active service.
1801 *
1802 * Once step2 is started, we cannot afford to wait for a write,
1803 * so we use GFP_NOIO allocations.
1804 */
1805 struct stripe_head *osh, *nsh;
1806 LIST_HEAD(newstripes);
1807 struct disk_info *ndisks;
d6f38f31 1808 unsigned long cpu;
b5470dc5 1809 int err;
e18b890b 1810 struct kmem_cache *sc;
ad01c9e3 1811 int i;
566c09c5 1812 int hash, cnt;
ad01c9e3
N
1813
1814 if (newsize <= conf->pool_size)
1815 return 0; /* never bother to shrink */
1816
b5470dc5
DW
1817 err = md_allow_write(conf->mddev);
1818 if (err)
1819 return err;
2a2275d6 1820
ad01c9e3
N
1821 /* Step 1 */
1822 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1823 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1824 0, 0, NULL);
ad01c9e3
N
1825 if (!sc)
1826 return -ENOMEM;
1827
1828 for (i = conf->max_nr_stripes; i; i--) {
6ce32846 1829 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
ad01c9e3
N
1830 if (!nsh)
1831 break;
1832
ad01c9e3 1833 nsh->raid_conf = conf;
cb13ff69 1834 spin_lock_init(&nsh->stripe_lock);
ad01c9e3
N
1835
1836 list_add(&nsh->lru, &newstripes);
1837 }
1838 if (i) {
1839 /* didn't get enough, give up */
1840 while (!list_empty(&newstripes)) {
1841 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1842 list_del(&nsh->lru);
1843 kmem_cache_free(sc, nsh);
1844 }
1845 kmem_cache_destroy(sc);
1846 return -ENOMEM;
1847 }
1848 /* Step 2 - Must use GFP_NOIO now.
1849 * OK, we have enough stripes, start collecting inactive
1850 * stripes and copying them over
1851 */
566c09c5
SL
1852 hash = 0;
1853 cnt = 0;
ad01c9e3 1854 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5
SL
1855 lock_device_hash_lock(conf, hash);
1856 wait_event_cmd(conf->wait_for_stripe,
1857 !list_empty(conf->inactive_list + hash),
1858 unlock_device_hash_lock(conf, hash),
1859 lock_device_hash_lock(conf, hash));
1860 osh = get_free_stripe(conf, hash);
1861 unlock_device_hash_lock(conf, hash);
ad01c9e3
N
1862 atomic_set(&nsh->count, 1);
1863 for(i=0; i<conf->pool_size; i++)
1864 nsh->dev[i].page = osh->dev[i].page;
1865 for( ; i<newsize; i++)
1866 nsh->dev[i].page = NULL;
566c09c5 1867 nsh->hash_lock_index = hash;
ad01c9e3 1868 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
1869 cnt++;
1870 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1871 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1872 hash++;
1873 cnt = 0;
1874 }
ad01c9e3
N
1875 }
1876 kmem_cache_destroy(conf->slab_cache);
1877
1878 /* Step 3.
1879 * At this point, we are holding all the stripes so the array
1880 * is completely stalled, so now is a good time to resize
d6f38f31 1881 * conf->disks and the scribble region
ad01c9e3
N
1882 */
1883 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1884 if (ndisks) {
1885 for (i=0; i<conf->raid_disks; i++)
1886 ndisks[i] = conf->disks[i];
1887 kfree(conf->disks);
1888 conf->disks = ndisks;
1889 } else
1890 err = -ENOMEM;
1891
d6f38f31
DW
1892 get_online_cpus();
1893 conf->scribble_len = scribble_len(newsize);
1894 for_each_present_cpu(cpu) {
1895 struct raid5_percpu *percpu;
1896 void *scribble;
1897
1898 percpu = per_cpu_ptr(conf->percpu, cpu);
1899 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1900
1901 if (scribble) {
1902 kfree(percpu->scribble);
1903 percpu->scribble = scribble;
1904 } else {
1905 err = -ENOMEM;
1906 break;
1907 }
1908 }
1909 put_online_cpus();
1910
ad01c9e3
N
1911 /* Step 4, return new stripes to service */
1912 while(!list_empty(&newstripes)) {
1913 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1914 list_del_init(&nsh->lru);
d6f38f31 1915
ad01c9e3
N
1916 for (i=conf->raid_disks; i < newsize; i++)
1917 if (nsh->dev[i].page == NULL) {
1918 struct page *p = alloc_page(GFP_NOIO);
1919 nsh->dev[i].page = p;
1920 if (!p)
1921 err = -ENOMEM;
1922 }
1923 release_stripe(nsh);
1924 }
1925 /* critical section pass, GFP_NOIO no longer needed */
1926
1927 conf->slab_cache = sc;
1928 conf->active_name = 1-conf->active_name;
1929 conf->pool_size = newsize;
1930 return err;
1931}
1da177e4 1932
566c09c5 1933static int drop_one_stripe(struct r5conf *conf, int hash)
1da177e4
LT
1934{
1935 struct stripe_head *sh;
1936
566c09c5
SL
1937 spin_lock_irq(conf->hash_locks + hash);
1938 sh = get_free_stripe(conf, hash);
1939 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
1940 if (!sh)
1941 return 0;
78bafebd 1942 BUG_ON(atomic_read(&sh->count));
e4e11e38 1943 shrink_buffers(sh);
3f294f4f
N
1944 kmem_cache_free(conf->slab_cache, sh);
1945 atomic_dec(&conf->active_stripes);
1946 return 1;
1947}
1948
d1688a6d 1949static void shrink_stripes(struct r5conf *conf)
3f294f4f 1950{
566c09c5
SL
1951 int hash;
1952 for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1953 while (drop_one_stripe(conf, hash))
1954 ;
3f294f4f 1955
29fc7e3e
N
1956 if (conf->slab_cache)
1957 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1958 conf->slab_cache = NULL;
1959}
1960
6712ecf8 1961static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1962{
99c0fb5f 1963 struct stripe_head *sh = bi->bi_private;
d1688a6d 1964 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1965 int disks = sh->disks, i;
1da177e4 1966 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432 1967 char b[BDEVNAME_SIZE];
dd054fce 1968 struct md_rdev *rdev = NULL;
05616be5 1969 sector_t s;
1da177e4
LT
1970
1971 for (i=0 ; i<disks; i++)
1972 if (bi == &sh->dev[i].req)
1973 break;
1974
45b4233c
DW
1975 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1976 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1977 uptodate);
1978 if (i == disks) {
1979 BUG();
6712ecf8 1980 return;
1da177e4 1981 }
14a75d3e 1982 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
1983 /* If replacement finished while this request was outstanding,
1984 * 'replacement' might be NULL already.
1985 * In that case it moved down to 'rdev'.
1986 * rdev is not removed until all requests are finished.
1987 */
14a75d3e 1988 rdev = conf->disks[i].replacement;
dd054fce 1989 if (!rdev)
14a75d3e 1990 rdev = conf->disks[i].rdev;
1da177e4 1991
05616be5
N
1992 if (use_new_offset(conf, sh))
1993 s = sh->sector + rdev->new_data_offset;
1994 else
1995 s = sh->sector + rdev->data_offset;
1da177e4 1996 if (uptodate) {
1da177e4 1997 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1998 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
1999 /* Note that this cannot happen on a
2000 * replacement device. We just fail those on
2001 * any error
2002 */
8bda470e
CD
2003 printk_ratelimited(
2004 KERN_INFO
2005 "md/raid:%s: read error corrected"
2006 " (%lu sectors at %llu on %s)\n",
2007 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2008 (unsigned long long)s,
8bda470e 2009 bdevname(rdev->bdev, b));
ddd5115f 2010 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2011 clear_bit(R5_ReadError, &sh->dev[i].flags);
2012 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2013 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2014 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2015
14a75d3e
N
2016 if (atomic_read(&rdev->read_errors))
2017 atomic_set(&rdev->read_errors, 0);
1da177e4 2018 } else {
14a75d3e 2019 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2020 int retry = 0;
2e8ac303 2021 int set_bad = 0;
d6950432 2022
1da177e4 2023 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2024 atomic_inc(&rdev->read_errors);
14a75d3e
N
2025 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2026 printk_ratelimited(
2027 KERN_WARNING
2028 "md/raid:%s: read error on replacement device "
2029 "(sector %llu on %s).\n",
2030 mdname(conf->mddev),
05616be5 2031 (unsigned long long)s,
14a75d3e 2032 bdn);
2e8ac303 2033 else if (conf->mddev->degraded >= conf->max_degraded) {
2034 set_bad = 1;
8bda470e
CD
2035 printk_ratelimited(
2036 KERN_WARNING
2037 "md/raid:%s: read error not correctable "
2038 "(sector %llu on %s).\n",
2039 mdname(conf->mddev),
05616be5 2040 (unsigned long long)s,
8bda470e 2041 bdn);
2e8ac303 2042 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2043 /* Oh, no!!! */
2e8ac303 2044 set_bad = 1;
8bda470e
CD
2045 printk_ratelimited(
2046 KERN_WARNING
2047 "md/raid:%s: read error NOT corrected!! "
2048 "(sector %llu on %s).\n",
2049 mdname(conf->mddev),
05616be5 2050 (unsigned long long)s,
8bda470e 2051 bdn);
2e8ac303 2052 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2053 > conf->max_nr_stripes)
14f8d26b 2054 printk(KERN_WARNING
0c55e022 2055 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2056 mdname(conf->mddev), bdn);
ba22dcbf
N
2057 else
2058 retry = 1;
2059 if (retry)
3f9e7c14 2060 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2061 set_bit(R5_ReadError, &sh->dev[i].flags);
2062 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2063 } else
2064 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2065 else {
4e5314b5
N
2066 clear_bit(R5_ReadError, &sh->dev[i].flags);
2067 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2068 if (!(set_bad
2069 && test_bit(In_sync, &rdev->flags)
2070 && rdev_set_badblocks(
2071 rdev, sh->sector, STRIPE_SECTORS, 0)))
2072 md_error(conf->mddev, rdev);
ba22dcbf 2073 }
1da177e4 2074 }
14a75d3e 2075 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
2076 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2077 set_bit(STRIPE_HANDLE, &sh->state);
2078 release_stripe(sh);
1da177e4
LT
2079}
2080
d710e138 2081static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 2082{
99c0fb5f 2083 struct stripe_head *sh = bi->bi_private;
d1688a6d 2084 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2085 int disks = sh->disks, i;
977df362 2086 struct md_rdev *uninitialized_var(rdev);
1da177e4 2087 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
b84db560
N
2088 sector_t first_bad;
2089 int bad_sectors;
977df362 2090 int replacement = 0;
1da177e4 2091
977df362
N
2092 for (i = 0 ; i < disks; i++) {
2093 if (bi == &sh->dev[i].req) {
2094 rdev = conf->disks[i].rdev;
1da177e4 2095 break;
977df362
N
2096 }
2097 if (bi == &sh->dev[i].rreq) {
2098 rdev = conf->disks[i].replacement;
dd054fce
N
2099 if (rdev)
2100 replacement = 1;
2101 else
2102 /* rdev was removed and 'replacement'
2103 * replaced it. rdev is not removed
2104 * until all requests are finished.
2105 */
2106 rdev = conf->disks[i].rdev;
977df362
N
2107 break;
2108 }
2109 }
45b4233c 2110 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
2111 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2112 uptodate);
2113 if (i == disks) {
2114 BUG();
6712ecf8 2115 return;
1da177e4
LT
2116 }
2117
977df362
N
2118 if (replacement) {
2119 if (!uptodate)
2120 md_error(conf->mddev, rdev);
2121 else if (is_badblock(rdev, sh->sector,
2122 STRIPE_SECTORS,
2123 &first_bad, &bad_sectors))
2124 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2125 } else {
2126 if (!uptodate) {
2127 set_bit(WriteErrorSeen, &rdev->flags);
2128 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2129 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2130 set_bit(MD_RECOVERY_NEEDED,
2131 &rdev->mddev->recovery);
977df362
N
2132 } else if (is_badblock(rdev, sh->sector,
2133 STRIPE_SECTORS,
c0b32972 2134 &first_bad, &bad_sectors)) {
977df362 2135 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2136 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2137 /* That was a successful write so make
2138 * sure it looks like we already did
2139 * a re-write.
2140 */
2141 set_bit(R5_ReWrite, &sh->dev[i].flags);
2142 }
977df362
N
2143 }
2144 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2145
977df362
N
2146 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2147 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2148 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 2149 release_stripe(sh);
1da177e4
LT
2150}
2151
784052ec 2152static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 2153
784052ec 2154static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2155{
2156 struct r5dev *dev = &sh->dev[i];
2157
2158 bio_init(&dev->req);
2159 dev->req.bi_io_vec = &dev->vec;
2160 dev->req.bi_vcnt++;
2161 dev->req.bi_max_vecs++;
1da177e4 2162 dev->req.bi_private = sh;
995c4275 2163 dev->vec.bv_page = dev->page;
1da177e4 2164
977df362
N
2165 bio_init(&dev->rreq);
2166 dev->rreq.bi_io_vec = &dev->rvec;
2167 dev->rreq.bi_vcnt++;
2168 dev->rreq.bi_max_vecs++;
2169 dev->rreq.bi_private = sh;
2170 dev->rvec.bv_page = dev->page;
2171
1da177e4 2172 dev->flags = 0;
784052ec 2173 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
2174}
2175
fd01b88c 2176static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2177{
2178 char b[BDEVNAME_SIZE];
d1688a6d 2179 struct r5conf *conf = mddev->private;
908f4fbd 2180 unsigned long flags;
0c55e022 2181 pr_debug("raid456: error called\n");
1da177e4 2182
908f4fbd
N
2183 spin_lock_irqsave(&conf->device_lock, flags);
2184 clear_bit(In_sync, &rdev->flags);
2185 mddev->degraded = calc_degraded(conf);
2186 spin_unlock_irqrestore(&conf->device_lock, flags);
2187 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2188
de393cde 2189 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
2190 set_bit(Faulty, &rdev->flags);
2191 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2192 printk(KERN_ALERT
2193 "md/raid:%s: Disk failure on %s, disabling device.\n"
2194 "md/raid:%s: Operation continuing on %d devices.\n",
2195 mdname(mddev),
2196 bdevname(rdev->bdev, b),
2197 mdname(mddev),
2198 conf->raid_disks - mddev->degraded);
16a53ecc 2199}
1da177e4
LT
2200
2201/*
2202 * Input: a 'big' sector number,
2203 * Output: index of the data and parity disk, and the sector # in them.
2204 */
d1688a6d 2205static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
911d4ee8
N
2206 int previous, int *dd_idx,
2207 struct stripe_head *sh)
1da177e4 2208{
6e3b96ed 2209 sector_t stripe, stripe2;
35f2a591 2210 sector_t chunk_number;
1da177e4 2211 unsigned int chunk_offset;
911d4ee8 2212 int pd_idx, qd_idx;
67cc2b81 2213 int ddf_layout = 0;
1da177e4 2214 sector_t new_sector;
e183eaed
N
2215 int algorithm = previous ? conf->prev_algo
2216 : conf->algorithm;
09c9e5fa
AN
2217 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2218 : conf->chunk_sectors;
112bf897
N
2219 int raid_disks = previous ? conf->previous_raid_disks
2220 : conf->raid_disks;
2221 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2222
2223 /* First compute the information on this sector */
2224
2225 /*
2226 * Compute the chunk number and the sector offset inside the chunk
2227 */
2228 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2229 chunk_number = r_sector;
1da177e4
LT
2230
2231 /*
2232 * Compute the stripe number
2233 */
35f2a591
N
2234 stripe = chunk_number;
2235 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2236 stripe2 = stripe;
1da177e4
LT
2237 /*
2238 * Select the parity disk based on the user selected algorithm.
2239 */
84789554 2240 pd_idx = qd_idx = -1;
16a53ecc
N
2241 switch(conf->level) {
2242 case 4:
911d4ee8 2243 pd_idx = data_disks;
16a53ecc
N
2244 break;
2245 case 5:
e183eaed 2246 switch (algorithm) {
1da177e4 2247 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2248 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2249 if (*dd_idx >= pd_idx)
1da177e4
LT
2250 (*dd_idx)++;
2251 break;
2252 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2253 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2254 if (*dd_idx >= pd_idx)
1da177e4
LT
2255 (*dd_idx)++;
2256 break;
2257 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2258 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2259 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2260 break;
2261 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2262 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2263 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2264 break;
99c0fb5f
N
2265 case ALGORITHM_PARITY_0:
2266 pd_idx = 0;
2267 (*dd_idx)++;
2268 break;
2269 case ALGORITHM_PARITY_N:
2270 pd_idx = data_disks;
2271 break;
1da177e4 2272 default:
99c0fb5f 2273 BUG();
16a53ecc
N
2274 }
2275 break;
2276 case 6:
2277
e183eaed 2278 switch (algorithm) {
16a53ecc 2279 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2280 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2281 qd_idx = pd_idx + 1;
2282 if (pd_idx == raid_disks-1) {
99c0fb5f 2283 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2284 qd_idx = 0;
2285 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2286 (*dd_idx) += 2; /* D D P Q D */
2287 break;
2288 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2289 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2290 qd_idx = pd_idx + 1;
2291 if (pd_idx == raid_disks-1) {
99c0fb5f 2292 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2293 qd_idx = 0;
2294 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2295 (*dd_idx) += 2; /* D D P Q D */
2296 break;
2297 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2298 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2299 qd_idx = (pd_idx + 1) % raid_disks;
2300 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2301 break;
2302 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2303 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2304 qd_idx = (pd_idx + 1) % raid_disks;
2305 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2306 break;
99c0fb5f
N
2307
2308 case ALGORITHM_PARITY_0:
2309 pd_idx = 0;
2310 qd_idx = 1;
2311 (*dd_idx) += 2;
2312 break;
2313 case ALGORITHM_PARITY_N:
2314 pd_idx = data_disks;
2315 qd_idx = data_disks + 1;
2316 break;
2317
2318 case ALGORITHM_ROTATING_ZERO_RESTART:
2319 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2320 * of blocks for computing Q is different.
2321 */
6e3b96ed 2322 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2323 qd_idx = pd_idx + 1;
2324 if (pd_idx == raid_disks-1) {
2325 (*dd_idx)++; /* Q D D D P */
2326 qd_idx = 0;
2327 } else if (*dd_idx >= pd_idx)
2328 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2329 ddf_layout = 1;
99c0fb5f
N
2330 break;
2331
2332 case ALGORITHM_ROTATING_N_RESTART:
2333 /* Same a left_asymmetric, by first stripe is
2334 * D D D P Q rather than
2335 * Q D D D P
2336 */
6e3b96ed
N
2337 stripe2 += 1;
2338 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2339 qd_idx = pd_idx + 1;
2340 if (pd_idx == raid_disks-1) {
2341 (*dd_idx)++; /* Q D D D P */
2342 qd_idx = 0;
2343 } else if (*dd_idx >= pd_idx)
2344 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2345 ddf_layout = 1;
99c0fb5f
N
2346 break;
2347
2348 case ALGORITHM_ROTATING_N_CONTINUE:
2349 /* Same as left_symmetric but Q is before P */
6e3b96ed 2350 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2351 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2352 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2353 ddf_layout = 1;
99c0fb5f
N
2354 break;
2355
2356 case ALGORITHM_LEFT_ASYMMETRIC_6:
2357 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2358 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2359 if (*dd_idx >= pd_idx)
2360 (*dd_idx)++;
2361 qd_idx = raid_disks - 1;
2362 break;
2363
2364 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2365 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2366 if (*dd_idx >= pd_idx)
2367 (*dd_idx)++;
2368 qd_idx = raid_disks - 1;
2369 break;
2370
2371 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2372 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2373 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2374 qd_idx = raid_disks - 1;
2375 break;
2376
2377 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2378 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2379 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2380 qd_idx = raid_disks - 1;
2381 break;
2382
2383 case ALGORITHM_PARITY_0_6:
2384 pd_idx = 0;
2385 (*dd_idx)++;
2386 qd_idx = raid_disks - 1;
2387 break;
2388
16a53ecc 2389 default:
99c0fb5f 2390 BUG();
16a53ecc
N
2391 }
2392 break;
1da177e4
LT
2393 }
2394
911d4ee8
N
2395 if (sh) {
2396 sh->pd_idx = pd_idx;
2397 sh->qd_idx = qd_idx;
67cc2b81 2398 sh->ddf_layout = ddf_layout;
911d4ee8 2399 }
1da177e4
LT
2400 /*
2401 * Finally, compute the new sector number
2402 */
2403 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2404 return new_sector;
2405}
2406
2407
784052ec 2408static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2409{
d1688a6d 2410 struct r5conf *conf = sh->raid_conf;
b875e531
N
2411 int raid_disks = sh->disks;
2412 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2413 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2414 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2415 : conf->chunk_sectors;
e183eaed
N
2416 int algorithm = previous ? conf->prev_algo
2417 : conf->algorithm;
1da177e4
LT
2418 sector_t stripe;
2419 int chunk_offset;
35f2a591
N
2420 sector_t chunk_number;
2421 int dummy1, dd_idx = i;
1da177e4 2422 sector_t r_sector;
911d4ee8 2423 struct stripe_head sh2;
1da177e4 2424
16a53ecc 2425
1da177e4
LT
2426 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2427 stripe = new_sector;
1da177e4 2428
16a53ecc
N
2429 if (i == sh->pd_idx)
2430 return 0;
2431 switch(conf->level) {
2432 case 4: break;
2433 case 5:
e183eaed 2434 switch (algorithm) {
1da177e4
LT
2435 case ALGORITHM_LEFT_ASYMMETRIC:
2436 case ALGORITHM_RIGHT_ASYMMETRIC:
2437 if (i > sh->pd_idx)
2438 i--;
2439 break;
2440 case ALGORITHM_LEFT_SYMMETRIC:
2441 case ALGORITHM_RIGHT_SYMMETRIC:
2442 if (i < sh->pd_idx)
2443 i += raid_disks;
2444 i -= (sh->pd_idx + 1);
2445 break;
99c0fb5f
N
2446 case ALGORITHM_PARITY_0:
2447 i -= 1;
2448 break;
2449 case ALGORITHM_PARITY_N:
2450 break;
1da177e4 2451 default:
99c0fb5f 2452 BUG();
16a53ecc
N
2453 }
2454 break;
2455 case 6:
d0dabf7e 2456 if (i == sh->qd_idx)
16a53ecc 2457 return 0; /* It is the Q disk */
e183eaed 2458 switch (algorithm) {
16a53ecc
N
2459 case ALGORITHM_LEFT_ASYMMETRIC:
2460 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2461 case ALGORITHM_ROTATING_ZERO_RESTART:
2462 case ALGORITHM_ROTATING_N_RESTART:
2463 if (sh->pd_idx == raid_disks-1)
2464 i--; /* Q D D D P */
16a53ecc
N
2465 else if (i > sh->pd_idx)
2466 i -= 2; /* D D P Q D */
2467 break;
2468 case ALGORITHM_LEFT_SYMMETRIC:
2469 case ALGORITHM_RIGHT_SYMMETRIC:
2470 if (sh->pd_idx == raid_disks-1)
2471 i--; /* Q D D D P */
2472 else {
2473 /* D D P Q D */
2474 if (i < sh->pd_idx)
2475 i += raid_disks;
2476 i -= (sh->pd_idx + 2);
2477 }
2478 break;
99c0fb5f
N
2479 case ALGORITHM_PARITY_0:
2480 i -= 2;
2481 break;
2482 case ALGORITHM_PARITY_N:
2483 break;
2484 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2485 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2486 if (sh->pd_idx == 0)
2487 i--; /* P D D D Q */
e4424fee
N
2488 else {
2489 /* D D Q P D */
2490 if (i < sh->pd_idx)
2491 i += raid_disks;
2492 i -= (sh->pd_idx + 1);
2493 }
99c0fb5f
N
2494 break;
2495 case ALGORITHM_LEFT_ASYMMETRIC_6:
2496 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2497 if (i > sh->pd_idx)
2498 i--;
2499 break;
2500 case ALGORITHM_LEFT_SYMMETRIC_6:
2501 case ALGORITHM_RIGHT_SYMMETRIC_6:
2502 if (i < sh->pd_idx)
2503 i += data_disks + 1;
2504 i -= (sh->pd_idx + 1);
2505 break;
2506 case ALGORITHM_PARITY_0_6:
2507 i -= 1;
2508 break;
16a53ecc 2509 default:
99c0fb5f 2510 BUG();
16a53ecc
N
2511 }
2512 break;
1da177e4
LT
2513 }
2514
2515 chunk_number = stripe * data_disks + i;
35f2a591 2516 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2517
112bf897 2518 check = raid5_compute_sector(conf, r_sector,
784052ec 2519 previous, &dummy1, &sh2);
911d4ee8
N
2520 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2521 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2522 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2523 mdname(conf->mddev));
1da177e4
LT
2524 return 0;
2525 }
2526 return r_sector;
2527}
2528
2529
600aa109 2530static void
c0f7bddb 2531schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2532 int rcw, int expand)
e33129d8
DW
2533{
2534 int i, pd_idx = sh->pd_idx, disks = sh->disks;
d1688a6d 2535 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2536 int level = conf->level;
e33129d8
DW
2537
2538 if (rcw) {
e33129d8
DW
2539
2540 for (i = disks; i--; ) {
2541 struct r5dev *dev = &sh->dev[i];
2542
2543 if (dev->towrite) {
2544 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2545 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2546 if (!expand)
2547 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2548 s->locked++;
e33129d8
DW
2549 }
2550 }
ce7d363a
N
2551 /* if we are not expanding this is a proper write request, and
2552 * there will be bios with new data to be drained into the
2553 * stripe cache
2554 */
2555 if (!expand) {
2556 if (!s->locked)
2557 /* False alarm, nothing to do */
2558 return;
2559 sh->reconstruct_state = reconstruct_state_drain_run;
2560 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2561 } else
2562 sh->reconstruct_state = reconstruct_state_run;
2563
2564 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2565
c0f7bddb 2566 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2567 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2568 atomic_inc(&conf->pending_full_writes);
e33129d8 2569 } else {
c0f7bddb 2570 BUG_ON(level == 6);
e33129d8
DW
2571 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2572 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2573
e33129d8
DW
2574 for (i = disks; i--; ) {
2575 struct r5dev *dev = &sh->dev[i];
2576 if (i == pd_idx)
2577 continue;
2578
e33129d8
DW
2579 if (dev->towrite &&
2580 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2581 test_bit(R5_Wantcompute, &dev->flags))) {
2582 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2583 set_bit(R5_LOCKED, &dev->flags);
2584 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2585 s->locked++;
e33129d8
DW
2586 }
2587 }
ce7d363a
N
2588 if (!s->locked)
2589 /* False alarm - nothing to do */
2590 return;
2591 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2592 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2593 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2594 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2595 }
2596
c0f7bddb 2597 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2598 * are in flight
2599 */
2600 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2601 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2602 s->locked++;
e33129d8 2603
c0f7bddb
YT
2604 if (level == 6) {
2605 int qd_idx = sh->qd_idx;
2606 struct r5dev *dev = &sh->dev[qd_idx];
2607
2608 set_bit(R5_LOCKED, &dev->flags);
2609 clear_bit(R5_UPTODATE, &dev->flags);
2610 s->locked++;
2611 }
2612
600aa109 2613 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2614 __func__, (unsigned long long)sh->sector,
600aa109 2615 s->locked, s->ops_request);
e33129d8 2616}
16a53ecc 2617
1da177e4
LT
2618/*
2619 * Each stripe/dev can have one or more bion attached.
16a53ecc 2620 * toread/towrite point to the first in a chain.
1da177e4
LT
2621 * The bi_next chain must be in order.
2622 */
2623static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2624{
2625 struct bio **bip;
d1688a6d 2626 struct r5conf *conf = sh->raid_conf;
72626685 2627 int firstwrite=0;
1da177e4 2628
cbe47ec5 2629 pr_debug("adding bi b#%llu to stripe s#%llu\n",
1da177e4
LT
2630 (unsigned long long)bi->bi_sector,
2631 (unsigned long long)sh->sector);
2632
b17459c0
SL
2633 /*
2634 * If several bio share a stripe. The bio bi_phys_segments acts as a
2635 * reference count to avoid race. The reference count should already be
2636 * increased before this function is called (for example, in
2637 * make_request()), so other bio sharing this stripe will not free the
2638 * stripe. If a stripe is owned by one stripe, the stripe lock will
2639 * protect it.
2640 */
2641 spin_lock_irq(&sh->stripe_lock);
72626685 2642 if (forwrite) {
1da177e4 2643 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2644 if (*bip == NULL)
72626685
N
2645 firstwrite = 1;
2646 } else
1da177e4
LT
2647 bip = &sh->dev[dd_idx].toread;
2648 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
f73a1c7d 2649 if (bio_end_sector(*bip) > bi->bi_sector)
1da177e4
LT
2650 goto overlap;
2651 bip = & (*bip)->bi_next;
2652 }
f73a1c7d 2653 if (*bip && (*bip)->bi_sector < bio_end_sector(bi))
1da177e4
LT
2654 goto overlap;
2655
78bafebd 2656 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2657 if (*bip)
2658 bi->bi_next = *bip;
2659 *bip = bi;
e7836bd6 2660 raid5_inc_bi_active_stripes(bi);
72626685 2661
1da177e4
LT
2662 if (forwrite) {
2663 /* check if page is covered */
2664 sector_t sector = sh->dev[dd_idx].sector;
2665 for (bi=sh->dev[dd_idx].towrite;
2666 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2667 bi && bi->bi_sector <= sector;
2668 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
2669 if (bio_end_sector(bi) >= sector)
2670 sector = bio_end_sector(bi);
1da177e4
LT
2671 }
2672 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2673 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2674 }
cbe47ec5
N
2675
2676 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2677 (unsigned long long)(*bip)->bi_sector,
2678 (unsigned long long)sh->sector, dd_idx);
b97390ae 2679 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
2680
2681 if (conf->mddev->bitmap && firstwrite) {
2682 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2683 STRIPE_SECTORS, 0);
2684 sh->bm_seq = conf->seq_flush+1;
2685 set_bit(STRIPE_BIT_DELAY, &sh->state);
2686 }
1da177e4
LT
2687 return 1;
2688
2689 overlap:
2690 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 2691 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
2692 return 0;
2693}
2694
d1688a6d 2695static void end_reshape(struct r5conf *conf);
29269553 2696
d1688a6d 2697static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 2698 struct stripe_head *sh)
ccfcc3c1 2699{
784052ec 2700 int sectors_per_chunk =
09c9e5fa 2701 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2702 int dd_idx;
2d2063ce 2703 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2704 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2705
112bf897
N
2706 raid5_compute_sector(conf,
2707 stripe * (disks - conf->max_degraded)
b875e531 2708 *sectors_per_chunk + chunk_offset,
112bf897 2709 previous,
911d4ee8 2710 &dd_idx, sh);
ccfcc3c1
N
2711}
2712
a4456856 2713static void
d1688a6d 2714handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2715 struct stripe_head_state *s, int disks,
2716 struct bio **return_bi)
2717{
2718 int i;
2719 for (i = disks; i--; ) {
2720 struct bio *bi;
2721 int bitmap_end = 0;
2722
2723 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 2724 struct md_rdev *rdev;
a4456856
DW
2725 rcu_read_lock();
2726 rdev = rcu_dereference(conf->disks[i].rdev);
2727 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
2728 atomic_inc(&rdev->nr_pending);
2729 else
2730 rdev = NULL;
a4456856 2731 rcu_read_unlock();
7f0da59b
N
2732 if (rdev) {
2733 if (!rdev_set_badblocks(
2734 rdev,
2735 sh->sector,
2736 STRIPE_SECTORS, 0))
2737 md_error(conf->mddev, rdev);
2738 rdev_dec_pending(rdev, conf->mddev);
2739 }
a4456856 2740 }
b17459c0 2741 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
2742 /* fail all writes first */
2743 bi = sh->dev[i].towrite;
2744 sh->dev[i].towrite = NULL;
b17459c0 2745 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 2746 if (bi)
a4456856 2747 bitmap_end = 1;
a4456856
DW
2748
2749 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2750 wake_up(&conf->wait_for_overlap);
2751
2752 while (bi && bi->bi_sector <
2753 sh->dev[i].sector + STRIPE_SECTORS) {
2754 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2755 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 2756 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
2757 md_write_end(conf->mddev);
2758 bi->bi_next = *return_bi;
2759 *return_bi = bi;
2760 }
2761 bi = nextbi;
2762 }
7eaf7e8e
SL
2763 if (bitmap_end)
2764 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2765 STRIPE_SECTORS, 0, 0);
2766 bitmap_end = 0;
a4456856
DW
2767 /* and fail all 'written' */
2768 bi = sh->dev[i].written;
2769 sh->dev[i].written = NULL;
2770 if (bi) bitmap_end = 1;
2771 while (bi && bi->bi_sector <
2772 sh->dev[i].sector + STRIPE_SECTORS) {
2773 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2774 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 2775 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
2776 md_write_end(conf->mddev);
2777 bi->bi_next = *return_bi;
2778 *return_bi = bi;
2779 }
2780 bi = bi2;
2781 }
2782
b5e98d65
DW
2783 /* fail any reads if this device is non-operational and
2784 * the data has not reached the cache yet.
2785 */
2786 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2787 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2788 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 2789 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
2790 bi = sh->dev[i].toread;
2791 sh->dev[i].toread = NULL;
143c4d05 2792 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
2793 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2794 wake_up(&conf->wait_for_overlap);
a4456856
DW
2795 while (bi && bi->bi_sector <
2796 sh->dev[i].sector + STRIPE_SECTORS) {
2797 struct bio *nextbi =
2798 r5_next_bio(bi, sh->dev[i].sector);
2799 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 2800 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
2801 bi->bi_next = *return_bi;
2802 *return_bi = bi;
2803 }
2804 bi = nextbi;
2805 }
2806 }
a4456856
DW
2807 if (bitmap_end)
2808 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2809 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
2810 /* If we were in the middle of a write the parity block might
2811 * still be locked - so just clear all R5_LOCKED flags
2812 */
2813 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
2814 }
2815
8b3e6cdc
DW
2816 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2817 if (atomic_dec_and_test(&conf->pending_full_writes))
2818 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2819}
2820
7f0da59b 2821static void
d1688a6d 2822handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
2823 struct stripe_head_state *s)
2824{
2825 int abort = 0;
2826 int i;
2827
7f0da59b 2828 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
2829 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2830 wake_up(&conf->wait_for_overlap);
7f0da59b 2831 s->syncing = 0;
9a3e1101 2832 s->replacing = 0;
7f0da59b 2833 /* There is nothing more to do for sync/check/repair.
18b9837e
N
2834 * Don't even need to abort as that is handled elsewhere
2835 * if needed, and not always wanted e.g. if there is a known
2836 * bad block here.
9a3e1101 2837 * For recover/replace we need to record a bad block on all
7f0da59b
N
2838 * non-sync devices, or abort the recovery
2839 */
18b9837e
N
2840 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2841 /* During recovery devices cannot be removed, so
2842 * locking and refcounting of rdevs is not needed
2843 */
2844 for (i = 0; i < conf->raid_disks; i++) {
2845 struct md_rdev *rdev = conf->disks[i].rdev;
2846 if (rdev
2847 && !test_bit(Faulty, &rdev->flags)
2848 && !test_bit(In_sync, &rdev->flags)
2849 && !rdev_set_badblocks(rdev, sh->sector,
2850 STRIPE_SECTORS, 0))
2851 abort = 1;
2852 rdev = conf->disks[i].replacement;
2853 if (rdev
2854 && !test_bit(Faulty, &rdev->flags)
2855 && !test_bit(In_sync, &rdev->flags)
2856 && !rdev_set_badblocks(rdev, sh->sector,
2857 STRIPE_SECTORS, 0))
2858 abort = 1;
2859 }
2860 if (abort)
2861 conf->recovery_disabled =
2862 conf->mddev->recovery_disabled;
7f0da59b 2863 }
18b9837e 2864 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
2865}
2866
9a3e1101
N
2867static int want_replace(struct stripe_head *sh, int disk_idx)
2868{
2869 struct md_rdev *rdev;
2870 int rv = 0;
2871 /* Doing recovery so rcu locking not required */
2872 rdev = sh->raid_conf->disks[disk_idx].replacement;
2873 if (rdev
2874 && !test_bit(Faulty, &rdev->flags)
2875 && !test_bit(In_sync, &rdev->flags)
2876 && (rdev->recovery_offset <= sh->sector
2877 || rdev->mddev->recovery_cp <= sh->sector))
2878 rv = 1;
2879
2880 return rv;
2881}
2882
93b3dbce 2883/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
2884 * to be read or computed to satisfy a request.
2885 *
2886 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 2887 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 2888 */
93b3dbce
N
2889static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2890 int disk_idx, int disks)
a4456856 2891{
5599becc 2892 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
2893 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2894 &sh->dev[s->failed_num[1]] };
5599becc 2895
93b3dbce 2896 /* is the data in this block needed, and can we get it? */
5599becc
YT
2897 if (!test_bit(R5_LOCKED, &dev->flags) &&
2898 !test_bit(R5_UPTODATE, &dev->flags) &&
2899 (dev->toread ||
2900 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2901 s->syncing || s->expanding ||
9a3e1101 2902 (s->replacing && want_replace(sh, disk_idx)) ||
5d35e09c
N
2903 (s->failed >= 1 && fdev[0]->toread) ||
2904 (s->failed >= 2 && fdev[1]->toread) ||
93b3dbce
N
2905 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2906 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2907 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
5599becc
YT
2908 /* we would like to get this block, possibly by computing it,
2909 * otherwise read it if the backing disk is insync
2910 */
2911 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2912 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2913 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
2914 (s->failed && (disk_idx == s->failed_num[0] ||
2915 disk_idx == s->failed_num[1]))) {
5599becc
YT
2916 /* have disk failed, and we're requested to fetch it;
2917 * do compute it
a4456856 2918 */
5599becc
YT
2919 pr_debug("Computing stripe %llu block %d\n",
2920 (unsigned long long)sh->sector, disk_idx);
2921 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2922 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2923 set_bit(R5_Wantcompute, &dev->flags);
2924 sh->ops.target = disk_idx;
2925 sh->ops.target2 = -1; /* no 2nd target */
2926 s->req_compute = 1;
93b3dbce
N
2927 /* Careful: from this point on 'uptodate' is in the eye
2928 * of raid_run_ops which services 'compute' operations
2929 * before writes. R5_Wantcompute flags a block that will
2930 * be R5_UPTODATE by the time it is needed for a
2931 * subsequent operation.
2932 */
5599becc
YT
2933 s->uptodate++;
2934 return 1;
2935 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2936 /* Computing 2-failure is *very* expensive; only
2937 * do it if failed >= 2
2938 */
2939 int other;
2940 for (other = disks; other--; ) {
2941 if (other == disk_idx)
2942 continue;
2943 if (!test_bit(R5_UPTODATE,
2944 &sh->dev[other].flags))
2945 break;
a4456856 2946 }
5599becc
YT
2947 BUG_ON(other < 0);
2948 pr_debug("Computing stripe %llu blocks %d,%d\n",
2949 (unsigned long long)sh->sector,
2950 disk_idx, other);
2951 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2952 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2953 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2954 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2955 sh->ops.target = disk_idx;
2956 sh->ops.target2 = other;
2957 s->uptodate += 2;
2958 s->req_compute = 1;
2959 return 1;
2960 } else if (test_bit(R5_Insync, &dev->flags)) {
2961 set_bit(R5_LOCKED, &dev->flags);
2962 set_bit(R5_Wantread, &dev->flags);
2963 s->locked++;
2964 pr_debug("Reading block %d (sync=%d)\n",
2965 disk_idx, s->syncing);
a4456856
DW
2966 }
2967 }
5599becc
YT
2968
2969 return 0;
2970}
2971
2972/**
93b3dbce 2973 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 2974 */
93b3dbce
N
2975static void handle_stripe_fill(struct stripe_head *sh,
2976 struct stripe_head_state *s,
2977 int disks)
5599becc
YT
2978{
2979 int i;
2980
2981 /* look for blocks to read/compute, skip this if a compute
2982 * is already in flight, or if the stripe contents are in the
2983 * midst of changing due to a write
2984 */
2985 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2986 !sh->reconstruct_state)
2987 for (i = disks; i--; )
93b3dbce 2988 if (fetch_block(sh, s, i, disks))
5599becc 2989 break;
a4456856
DW
2990 set_bit(STRIPE_HANDLE, &sh->state);
2991}
2992
2993
1fe797e6 2994/* handle_stripe_clean_event
a4456856
DW
2995 * any written block on an uptodate or failed drive can be returned.
2996 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2997 * never LOCKED, so we don't need to test 'failed' directly.
2998 */
d1688a6d 2999static void handle_stripe_clean_event(struct r5conf *conf,
a4456856
DW
3000 struct stripe_head *sh, int disks, struct bio **return_bi)
3001{
3002 int i;
3003 struct r5dev *dev;
f8dfcffd 3004 int discard_pending = 0;
a4456856
DW
3005
3006 for (i = disks; i--; )
3007 if (sh->dev[i].written) {
3008 dev = &sh->dev[i];
3009 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3010 (test_bit(R5_UPTODATE, &dev->flags) ||
ca64cae9 3011 test_bit(R5_Discard, &dev->flags))) {
a4456856
DW
3012 /* We can return any write requests */
3013 struct bio *wbi, *wbi2;
45b4233c 3014 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3015 if (test_and_clear_bit(R5_Discard, &dev->flags))
3016 clear_bit(R5_UPTODATE, &dev->flags);
a4456856
DW
3017 wbi = dev->written;
3018 dev->written = NULL;
3019 while (wbi && wbi->bi_sector <
3020 dev->sector + STRIPE_SECTORS) {
3021 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 3022 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856
DW
3023 md_write_end(conf->mddev);
3024 wbi->bi_next = *return_bi;
3025 *return_bi = wbi;
3026 }
3027 wbi = wbi2;
3028 }
7eaf7e8e
SL
3029 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3030 STRIPE_SECTORS,
a4456856 3031 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3032 0);
f8dfcffd
N
3033 } else if (test_bit(R5_Discard, &dev->flags))
3034 discard_pending = 1;
3035 }
3036 if (!discard_pending &&
3037 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3038 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3039 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3040 if (sh->qd_idx >= 0) {
3041 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3042 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3043 }
3044 /* now that discard is done we can proceed with any sync */
3045 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3046 /*
3047 * SCSI discard will change some bio fields and the stripe has
3048 * no updated data, so remove it from hash list and the stripe
3049 * will be reinitialized
3050 */
3051 spin_lock_irq(&conf->device_lock);
3052 remove_hash(sh);
3053 spin_unlock_irq(&conf->device_lock);
f8dfcffd
N
3054 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3055 set_bit(STRIPE_HANDLE, &sh->state);
3056
3057 }
8b3e6cdc
DW
3058
3059 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3060 if (atomic_dec_and_test(&conf->pending_full_writes))
3061 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3062}
3063
d1688a6d 3064static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
3065 struct stripe_head *sh,
3066 struct stripe_head_state *s,
3067 int disks)
a4456856
DW
3068{
3069 int rmw = 0, rcw = 0, i;
a7854487
AL
3070 sector_t recovery_cp = conf->mddev->recovery_cp;
3071
3072 /* RAID6 requires 'rcw' in current implementation.
3073 * Otherwise, check whether resync is now happening or should start.
3074 * If yes, then the array is dirty (after unclean shutdown or
3075 * initial creation), so parity in some stripes might be inconsistent.
3076 * In this case, we need to always do reconstruct-write, to ensure
3077 * that in case of drive failure or read-error correction, we
3078 * generate correct data from the parity.
3079 */
3080 if (conf->max_degraded == 2 ||
3081 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3082 /* Calculate the real rcw later - for now make it
c8ac1803
N
3083 * look like rcw is cheaper
3084 */
3085 rcw = 1; rmw = 2;
a7854487
AL
3086 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3087 conf->max_degraded, (unsigned long long)recovery_cp,
3088 (unsigned long long)sh->sector);
c8ac1803 3089 } else for (i = disks; i--; ) {
a4456856
DW
3090 /* would I have to read this buffer for read_modify_write */
3091 struct r5dev *dev = &sh->dev[i];
3092 if ((dev->towrite || i == sh->pd_idx) &&
3093 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3094 !(test_bit(R5_UPTODATE, &dev->flags) ||
3095 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3096 if (test_bit(R5_Insync, &dev->flags))
3097 rmw++;
3098 else
3099 rmw += 2*disks; /* cannot read it */
3100 }
3101 /* Would I have to read this buffer for reconstruct_write */
3102 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3103 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3104 !(test_bit(R5_UPTODATE, &dev->flags) ||
3105 test_bit(R5_Wantcompute, &dev->flags))) {
3106 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
3107 else
3108 rcw += 2*disks;
3109 }
3110 }
45b4233c 3111 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
3112 (unsigned long long)sh->sector, rmw, rcw);
3113 set_bit(STRIPE_HANDLE, &sh->state);
a9add5d9 3114 if (rmw < rcw && rmw > 0) {
a4456856 3115 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3116 if (conf->mddev->queue)
3117 blk_add_trace_msg(conf->mddev->queue,
3118 "raid5 rmw %llu %d",
3119 (unsigned long long)sh->sector, rmw);
a4456856
DW
3120 for (i = disks; i--; ) {
3121 struct r5dev *dev = &sh->dev[i];
3122 if ((dev->towrite || i == sh->pd_idx) &&
3123 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3124 !(test_bit(R5_UPTODATE, &dev->flags) ||
3125 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
3126 test_bit(R5_Insync, &dev->flags)) {
3127 if (
3128 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 3129 pr_debug("Read_old block "
a9add5d9 3130 "%d for r-m-w\n", i);
a4456856
DW
3131 set_bit(R5_LOCKED, &dev->flags);
3132 set_bit(R5_Wantread, &dev->flags);
3133 s->locked++;
3134 } else {
3135 set_bit(STRIPE_DELAYED, &sh->state);
3136 set_bit(STRIPE_HANDLE, &sh->state);
3137 }
3138 }
3139 }
a9add5d9 3140 }
c8ac1803 3141 if (rcw <= rmw && rcw > 0) {
a4456856 3142 /* want reconstruct write, but need to get some data */
a9add5d9 3143 int qread =0;
c8ac1803 3144 rcw = 0;
a4456856
DW
3145 for (i = disks; i--; ) {
3146 struct r5dev *dev = &sh->dev[i];
3147 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3148 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3149 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3150 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3151 test_bit(R5_Wantcompute, &dev->flags))) {
3152 rcw++;
3153 if (!test_bit(R5_Insync, &dev->flags))
3154 continue; /* it's a failed drive */
a4456856
DW
3155 if (
3156 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 3157 pr_debug("Read_old block "
a4456856
DW
3158 "%d for Reconstruct\n", i);
3159 set_bit(R5_LOCKED, &dev->flags);
3160 set_bit(R5_Wantread, &dev->flags);
3161 s->locked++;
a9add5d9 3162 qread++;
a4456856
DW
3163 } else {
3164 set_bit(STRIPE_DELAYED, &sh->state);
3165 set_bit(STRIPE_HANDLE, &sh->state);
3166 }
3167 }
3168 }
e3620a3a 3169 if (rcw && conf->mddev->queue)
a9add5d9
N
3170 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3171 (unsigned long long)sh->sector,
3172 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3173 }
a4456856
DW
3174 /* now if nothing is locked, and if we have enough data,
3175 * we can start a write request
3176 */
f38e1219
DW
3177 /* since handle_stripe can be called at any time we need to handle the
3178 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
3179 * subsequent call wants to start a write request. raid_run_ops only
3180 * handles the case where compute block and reconstruct are requested
f38e1219
DW
3181 * simultaneously. If this is not the case then new writes need to be
3182 * held off until the compute completes.
3183 */
976ea8d4
DW
3184 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3185 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3186 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 3187 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
3188}
3189
d1688a6d 3190static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3191 struct stripe_head_state *s, int disks)
3192{
ecc65c9b 3193 struct r5dev *dev = NULL;
bd2ab670 3194
a4456856 3195 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 3196
ecc65c9b
DW
3197 switch (sh->check_state) {
3198 case check_state_idle:
3199 /* start a new check operation if there are no failures */
bd2ab670 3200 if (s->failed == 0) {
bd2ab670 3201 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
3202 sh->check_state = check_state_run;
3203 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 3204 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 3205 s->uptodate--;
ecc65c9b 3206 break;
bd2ab670 3207 }
f2b3b44d 3208 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
3209 /* fall through */
3210 case check_state_compute_result:
3211 sh->check_state = check_state_idle;
3212 if (!dev)
3213 dev = &sh->dev[sh->pd_idx];
3214
3215 /* check that a write has not made the stripe insync */
3216 if (test_bit(STRIPE_INSYNC, &sh->state))
3217 break;
c8894419 3218
a4456856 3219 /* either failed parity check, or recovery is happening */
a4456856
DW
3220 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3221 BUG_ON(s->uptodate != disks);
3222
3223 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 3224 s->locked++;
a4456856 3225 set_bit(R5_Wantwrite, &dev->flags);
830ea016 3226
a4456856 3227 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 3228 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
3229 break;
3230 case check_state_run:
3231 break; /* we will be called again upon completion */
3232 case check_state_check_result:
3233 sh->check_state = check_state_idle;
3234
3235 /* if a failure occurred during the check operation, leave
3236 * STRIPE_INSYNC not set and let the stripe be handled again
3237 */
3238 if (s->failed)
3239 break;
3240
3241 /* handle a successful check operation, if parity is correct
3242 * we are done. Otherwise update the mismatch count and repair
3243 * parity if !MD_RECOVERY_CHECK
3244 */
ad283ea4 3245 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
3246 /* parity is correct (on disc,
3247 * not in buffer any more)
3248 */
3249 set_bit(STRIPE_INSYNC, &sh->state);
3250 else {
7f7583d4 3251 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
3252 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3253 /* don't try to repair!! */
3254 set_bit(STRIPE_INSYNC, &sh->state);
3255 else {
3256 sh->check_state = check_state_compute_run;
976ea8d4 3257 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3258 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3259 set_bit(R5_Wantcompute,
3260 &sh->dev[sh->pd_idx].flags);
3261 sh->ops.target = sh->pd_idx;
ac6b53b6 3262 sh->ops.target2 = -1;
ecc65c9b
DW
3263 s->uptodate++;
3264 }
3265 }
3266 break;
3267 case check_state_compute_run:
3268 break;
3269 default:
3270 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3271 __func__, sh->check_state,
3272 (unsigned long long) sh->sector);
3273 BUG();
a4456856
DW
3274 }
3275}
3276
3277
d1688a6d 3278static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3279 struct stripe_head_state *s,
f2b3b44d 3280 int disks)
a4456856 3281{
a4456856 3282 int pd_idx = sh->pd_idx;
34e04e87 3283 int qd_idx = sh->qd_idx;
d82dfee0 3284 struct r5dev *dev;
a4456856
DW
3285
3286 set_bit(STRIPE_HANDLE, &sh->state);
3287
3288 BUG_ON(s->failed > 2);
d82dfee0 3289
a4456856
DW
3290 /* Want to check and possibly repair P and Q.
3291 * However there could be one 'failed' device, in which
3292 * case we can only check one of them, possibly using the
3293 * other to generate missing data
3294 */
3295
d82dfee0
DW
3296 switch (sh->check_state) {
3297 case check_state_idle:
3298 /* start a new check operation if there are < 2 failures */
f2b3b44d 3299 if (s->failed == s->q_failed) {
d82dfee0 3300 /* The only possible failed device holds Q, so it
a4456856
DW
3301 * makes sense to check P (If anything else were failed,
3302 * we would have used P to recreate it).
3303 */
d82dfee0 3304 sh->check_state = check_state_run;
a4456856 3305 }
f2b3b44d 3306 if (!s->q_failed && s->failed < 2) {
d82dfee0 3307 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3308 * anything, so it makes sense to check it
3309 */
d82dfee0
DW
3310 if (sh->check_state == check_state_run)
3311 sh->check_state = check_state_run_pq;
3312 else
3313 sh->check_state = check_state_run_q;
a4456856 3314 }
a4456856 3315
d82dfee0
DW
3316 /* discard potentially stale zero_sum_result */
3317 sh->ops.zero_sum_result = 0;
a4456856 3318
d82dfee0
DW
3319 if (sh->check_state == check_state_run) {
3320 /* async_xor_zero_sum destroys the contents of P */
3321 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3322 s->uptodate--;
a4456856 3323 }
d82dfee0
DW
3324 if (sh->check_state >= check_state_run &&
3325 sh->check_state <= check_state_run_pq) {
3326 /* async_syndrome_zero_sum preserves P and Q, so
3327 * no need to mark them !uptodate here
3328 */
3329 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3330 break;
a4456856
DW
3331 }
3332
d82dfee0
DW
3333 /* we have 2-disk failure */
3334 BUG_ON(s->failed != 2);
3335 /* fall through */
3336 case check_state_compute_result:
3337 sh->check_state = check_state_idle;
a4456856 3338
d82dfee0
DW
3339 /* check that a write has not made the stripe insync */
3340 if (test_bit(STRIPE_INSYNC, &sh->state))
3341 break;
a4456856
DW
3342
3343 /* now write out any block on a failed drive,
d82dfee0 3344 * or P or Q if they were recomputed
a4456856 3345 */
d82dfee0 3346 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3347 if (s->failed == 2) {
f2b3b44d 3348 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3349 s->locked++;
3350 set_bit(R5_LOCKED, &dev->flags);
3351 set_bit(R5_Wantwrite, &dev->flags);
3352 }
3353 if (s->failed >= 1) {
f2b3b44d 3354 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3355 s->locked++;
3356 set_bit(R5_LOCKED, &dev->flags);
3357 set_bit(R5_Wantwrite, &dev->flags);
3358 }
d82dfee0 3359 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3360 dev = &sh->dev[pd_idx];
3361 s->locked++;
3362 set_bit(R5_LOCKED, &dev->flags);
3363 set_bit(R5_Wantwrite, &dev->flags);
3364 }
d82dfee0 3365 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3366 dev = &sh->dev[qd_idx];
3367 s->locked++;
3368 set_bit(R5_LOCKED, &dev->flags);
3369 set_bit(R5_Wantwrite, &dev->flags);
3370 }
3371 clear_bit(STRIPE_DEGRADED, &sh->state);
3372
3373 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3374 break;
3375 case check_state_run:
3376 case check_state_run_q:
3377 case check_state_run_pq:
3378 break; /* we will be called again upon completion */
3379 case check_state_check_result:
3380 sh->check_state = check_state_idle;
3381
3382 /* handle a successful check operation, if parity is correct
3383 * we are done. Otherwise update the mismatch count and repair
3384 * parity if !MD_RECOVERY_CHECK
3385 */
3386 if (sh->ops.zero_sum_result == 0) {
3387 /* both parities are correct */
3388 if (!s->failed)
3389 set_bit(STRIPE_INSYNC, &sh->state);
3390 else {
3391 /* in contrast to the raid5 case we can validate
3392 * parity, but still have a failure to write
3393 * back
3394 */
3395 sh->check_state = check_state_compute_result;
3396 /* Returning at this point means that we may go
3397 * off and bring p and/or q uptodate again so
3398 * we make sure to check zero_sum_result again
3399 * to verify if p or q need writeback
3400 */
3401 }
3402 } else {
7f7583d4 3403 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3404 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3405 /* don't try to repair!! */
3406 set_bit(STRIPE_INSYNC, &sh->state);
3407 else {
3408 int *target = &sh->ops.target;
3409
3410 sh->ops.target = -1;
3411 sh->ops.target2 = -1;
3412 sh->check_state = check_state_compute_run;
3413 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3414 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3415 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3416 set_bit(R5_Wantcompute,
3417 &sh->dev[pd_idx].flags);
3418 *target = pd_idx;
3419 target = &sh->ops.target2;
3420 s->uptodate++;
3421 }
3422 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3423 set_bit(R5_Wantcompute,
3424 &sh->dev[qd_idx].flags);
3425 *target = qd_idx;
3426 s->uptodate++;
3427 }
3428 }
3429 }
3430 break;
3431 case check_state_compute_run:
3432 break;
3433 default:
3434 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3435 __func__, sh->check_state,
3436 (unsigned long long) sh->sector);
3437 BUG();
a4456856
DW
3438 }
3439}
3440
d1688a6d 3441static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3442{
3443 int i;
3444
3445 /* We have read all the blocks in this stripe and now we need to
3446 * copy some of them into a target stripe for expand.
3447 */
f0a50d37 3448 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
3449 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3450 for (i = 0; i < sh->disks; i++)
34e04e87 3451 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3452 int dd_idx, j;
a4456856 3453 struct stripe_head *sh2;
a08abd8c 3454 struct async_submit_ctl submit;
a4456856 3455
784052ec 3456 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
3457 sector_t s = raid5_compute_sector(conf, bn, 0,
3458 &dd_idx, NULL);
a8c906ca 3459 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3460 if (sh2 == NULL)
3461 /* so far only the early blocks of this stripe
3462 * have been requested. When later blocks
3463 * get requested, we will try again
3464 */
3465 continue;
3466 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3467 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3468 /* must have already done this block */
3469 release_stripe(sh2);
3470 continue;
3471 }
f0a50d37
DW
3472
3473 /* place all the copies on one channel */
a08abd8c 3474 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3475 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3476 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3477 &submit);
f0a50d37 3478
a4456856
DW
3479 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3480 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3481 for (j = 0; j < conf->raid_disks; j++)
3482 if (j != sh2->pd_idx &&
86c374ba 3483 j != sh2->qd_idx &&
a4456856
DW
3484 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3485 break;
3486 if (j == conf->raid_disks) {
3487 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3488 set_bit(STRIPE_HANDLE, &sh2->state);
3489 }
3490 release_stripe(sh2);
f0a50d37 3491
a4456856 3492 }
a2e08551 3493 /* done submitting copies, wait for them to complete */
749586b7 3494 async_tx_quiesce(&tx);
a4456856 3495}
1da177e4
LT
3496
3497/*
3498 * handle_stripe - do things to a stripe.
3499 *
9a3e1101
N
3500 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3501 * state of various bits to see what needs to be done.
1da177e4 3502 * Possible results:
9a3e1101
N
3503 * return some read requests which now have data
3504 * return some write requests which are safely on storage
1da177e4
LT
3505 * schedule a read on some buffers
3506 * schedule a write of some buffers
3507 * return confirmation of parity correctness
3508 *
1da177e4 3509 */
a4456856 3510
acfe726b 3511static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 3512{
d1688a6d 3513 struct r5conf *conf = sh->raid_conf;
f416885e 3514 int disks = sh->disks;
474af965
N
3515 struct r5dev *dev;
3516 int i;
9a3e1101 3517 int do_recovery = 0;
1da177e4 3518
acfe726b
N
3519 memset(s, 0, sizeof(*s));
3520
acfe726b
N
3521 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3522 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3523 s->failed_num[0] = -1;
3524 s->failed_num[1] = -1;
1da177e4 3525
acfe726b 3526 /* Now to look around and see what can be done */
1da177e4 3527 rcu_read_lock();
16a53ecc 3528 for (i=disks; i--; ) {
3cb03002 3529 struct md_rdev *rdev;
31c176ec
N
3530 sector_t first_bad;
3531 int bad_sectors;
3532 int is_bad = 0;
acfe726b 3533
16a53ecc 3534 dev = &sh->dev[i];
1da177e4 3535
45b4233c 3536 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
3537 i, dev->flags,
3538 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3539 /* maybe we can reply to a read
3540 *
3541 * new wantfill requests are only permitted while
3542 * ops_complete_biofill is guaranteed to be inactive
3543 */
3544 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3545 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3546 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3547
16a53ecc 3548 /* now count some things */
cc94015a
N
3549 if (test_bit(R5_LOCKED, &dev->flags))
3550 s->locked++;
3551 if (test_bit(R5_UPTODATE, &dev->flags))
3552 s->uptodate++;
2d6e4ecc 3553 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
3554 s->compute++;
3555 BUG_ON(s->compute > 2);
2d6e4ecc 3556 }
1da177e4 3557
acfe726b 3558 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 3559 s->to_fill++;
acfe726b 3560 else if (dev->toread)
cc94015a 3561 s->to_read++;
16a53ecc 3562 if (dev->towrite) {
cc94015a 3563 s->to_write++;
16a53ecc 3564 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 3565 s->non_overwrite++;
16a53ecc 3566 }
a4456856 3567 if (dev->written)
cc94015a 3568 s->written++;
14a75d3e
N
3569 /* Prefer to use the replacement for reads, but only
3570 * if it is recovered enough and has no bad blocks.
3571 */
3572 rdev = rcu_dereference(conf->disks[i].replacement);
3573 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3574 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3575 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3576 &first_bad, &bad_sectors))
3577 set_bit(R5_ReadRepl, &dev->flags);
3578 else {
9a3e1101
N
3579 if (rdev)
3580 set_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
3581 rdev = rcu_dereference(conf->disks[i].rdev);
3582 clear_bit(R5_ReadRepl, &dev->flags);
3583 }
9283d8c5
N
3584 if (rdev && test_bit(Faulty, &rdev->flags))
3585 rdev = NULL;
31c176ec
N
3586 if (rdev) {
3587 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3588 &first_bad, &bad_sectors);
3589 if (s->blocked_rdev == NULL
3590 && (test_bit(Blocked, &rdev->flags)
3591 || is_bad < 0)) {
3592 if (is_bad < 0)
3593 set_bit(BlockedBadBlocks,
3594 &rdev->flags);
3595 s->blocked_rdev = rdev;
3596 atomic_inc(&rdev->nr_pending);
3597 }
6bfe0b49 3598 }
415e72d0
N
3599 clear_bit(R5_Insync, &dev->flags);
3600 if (!rdev)
3601 /* Not in-sync */;
31c176ec
N
3602 else if (is_bad) {
3603 /* also not in-sync */
18b9837e
N
3604 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3605 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
3606 /* treat as in-sync, but with a read error
3607 * which we can now try to correct
3608 */
3609 set_bit(R5_Insync, &dev->flags);
3610 set_bit(R5_ReadError, &dev->flags);
3611 }
3612 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 3613 set_bit(R5_Insync, &dev->flags);
30d7a483 3614 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 3615 /* in sync if before recovery_offset */
30d7a483
N
3616 set_bit(R5_Insync, &dev->flags);
3617 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3618 test_bit(R5_Expanded, &dev->flags))
3619 /* If we've reshaped into here, we assume it is Insync.
3620 * We will shortly update recovery_offset to make
3621 * it official.
3622 */
3623 set_bit(R5_Insync, &dev->flags);
3624
5d8c71f9 3625 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
3626 /* This flag does not apply to '.replacement'
3627 * only to .rdev, so make sure to check that*/
3628 struct md_rdev *rdev2 = rcu_dereference(
3629 conf->disks[i].rdev);
3630 if (rdev2 == rdev)
3631 clear_bit(R5_Insync, &dev->flags);
3632 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 3633 s->handle_bad_blocks = 1;
14a75d3e 3634 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
3635 } else
3636 clear_bit(R5_WriteError, &dev->flags);
3637 }
5d8c71f9 3638 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
3639 /* This flag does not apply to '.replacement'
3640 * only to .rdev, so make sure to check that*/
3641 struct md_rdev *rdev2 = rcu_dereference(
3642 conf->disks[i].rdev);
3643 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 3644 s->handle_bad_blocks = 1;
14a75d3e 3645 atomic_inc(&rdev2->nr_pending);
b84db560
N
3646 } else
3647 clear_bit(R5_MadeGood, &dev->flags);
3648 }
977df362
N
3649 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3650 struct md_rdev *rdev2 = rcu_dereference(
3651 conf->disks[i].replacement);
3652 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3653 s->handle_bad_blocks = 1;
3654 atomic_inc(&rdev2->nr_pending);
3655 } else
3656 clear_bit(R5_MadeGoodRepl, &dev->flags);
3657 }
415e72d0 3658 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
3659 /* The ReadError flag will just be confusing now */
3660 clear_bit(R5_ReadError, &dev->flags);
3661 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3662 }
415e72d0
N
3663 if (test_bit(R5_ReadError, &dev->flags))
3664 clear_bit(R5_Insync, &dev->flags);
3665 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
3666 if (s->failed < 2)
3667 s->failed_num[s->failed] = i;
3668 s->failed++;
9a3e1101
N
3669 if (rdev && !test_bit(Faulty, &rdev->flags))
3670 do_recovery = 1;
415e72d0 3671 }
1da177e4 3672 }
9a3e1101
N
3673 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3674 /* If there is a failed device being replaced,
3675 * we must be recovering.
3676 * else if we are after recovery_cp, we must be syncing
c6d2e084 3677 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
3678 * else we can only be replacing
3679 * sync and recovery both need to read all devices, and so
3680 * use the same flag.
3681 */
3682 if (do_recovery ||
c6d2e084 3683 sh->sector >= conf->mddev->recovery_cp ||
3684 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
3685 s->syncing = 1;
3686 else
3687 s->replacing = 1;
3688 }
1da177e4 3689 rcu_read_unlock();
cc94015a
N
3690}
3691
3692static void handle_stripe(struct stripe_head *sh)
3693{
3694 struct stripe_head_state s;
d1688a6d 3695 struct r5conf *conf = sh->raid_conf;
3687c061 3696 int i;
84789554
N
3697 int prexor;
3698 int disks = sh->disks;
474af965 3699 struct r5dev *pdev, *qdev;
cc94015a
N
3700
3701 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 3702 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
3703 /* already being handled, ensure it gets handled
3704 * again when current action finishes */
3705 set_bit(STRIPE_HANDLE, &sh->state);
3706 return;
3707 }
3708
f8dfcffd
N
3709 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3710 spin_lock(&sh->stripe_lock);
3711 /* Cannot process 'sync' concurrently with 'discard' */
3712 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3713 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3714 set_bit(STRIPE_SYNCING, &sh->state);
3715 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 3716 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
3717 }
3718 spin_unlock(&sh->stripe_lock);
cc94015a
N
3719 }
3720 clear_bit(STRIPE_DELAYED, &sh->state);
3721
3722 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3723 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3724 (unsigned long long)sh->sector, sh->state,
3725 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3726 sh->check_state, sh->reconstruct_state);
3687c061 3727
acfe726b 3728 analyse_stripe(sh, &s);
c5a31000 3729
bc2607f3
N
3730 if (s.handle_bad_blocks) {
3731 set_bit(STRIPE_HANDLE, &sh->state);
3732 goto finish;
3733 }
3734
474af965
N
3735 if (unlikely(s.blocked_rdev)) {
3736 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 3737 s.replacing || s.to_write || s.written) {
474af965
N
3738 set_bit(STRIPE_HANDLE, &sh->state);
3739 goto finish;
3740 }
3741 /* There is nothing for the blocked_rdev to block */
3742 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3743 s.blocked_rdev = NULL;
3744 }
3745
3746 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3747 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3748 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3749 }
3750
3751 pr_debug("locked=%d uptodate=%d to_read=%d"
3752 " to_write=%d failed=%d failed_num=%d,%d\n",
3753 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3754 s.failed_num[0], s.failed_num[1]);
3755 /* check if the array has lost more than max_degraded devices and,
3756 * if so, some requests might need to be failed.
3757 */
9a3f530f
N
3758 if (s.failed > conf->max_degraded) {
3759 sh->check_state = 0;
3760 sh->reconstruct_state = 0;
3761 if (s.to_read+s.to_write+s.written)
3762 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 3763 if (s.syncing + s.replacing)
9a3f530f
N
3764 handle_failed_sync(conf, sh, &s);
3765 }
474af965 3766
84789554
N
3767 /* Now we check to see if any write operations have recently
3768 * completed
3769 */
3770 prexor = 0;
3771 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3772 prexor = 1;
3773 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3774 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3775 sh->reconstruct_state = reconstruct_state_idle;
3776
3777 /* All the 'written' buffers and the parity block are ready to
3778 * be written back to disk
3779 */
9e444768
SL
3780 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3781 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 3782 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
3783 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3784 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
3785 for (i = disks; i--; ) {
3786 struct r5dev *dev = &sh->dev[i];
3787 if (test_bit(R5_LOCKED, &dev->flags) &&
3788 (i == sh->pd_idx || i == sh->qd_idx ||
3789 dev->written)) {
3790 pr_debug("Writing block %d\n", i);
3791 set_bit(R5_Wantwrite, &dev->flags);
3792 if (prexor)
3793 continue;
3794 if (!test_bit(R5_Insync, &dev->flags) ||
3795 ((i == sh->pd_idx || i == sh->qd_idx) &&
3796 s.failed == 0))
3797 set_bit(STRIPE_INSYNC, &sh->state);
3798 }
3799 }
3800 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3801 s.dec_preread_active = 1;
3802 }
3803
ef5b7c69
N
3804 /*
3805 * might be able to return some write requests if the parity blocks
3806 * are safe, or on a failed drive
3807 */
3808 pdev = &sh->dev[sh->pd_idx];
3809 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3810 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3811 qdev = &sh->dev[sh->qd_idx];
3812 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3813 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3814 || conf->level < 6;
3815
3816 if (s.written &&
3817 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3818 && !test_bit(R5_LOCKED, &pdev->flags)
3819 && (test_bit(R5_UPTODATE, &pdev->flags) ||
3820 test_bit(R5_Discard, &pdev->flags))))) &&
3821 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3822 && !test_bit(R5_LOCKED, &qdev->flags)
3823 && (test_bit(R5_UPTODATE, &qdev->flags) ||
3824 test_bit(R5_Discard, &qdev->flags))))))
3825 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3826
3827 /* Now we might consider reading some blocks, either to check/generate
3828 * parity, or to satisfy requests
3829 * or to load a block that is being partially written.
3830 */
3831 if (s.to_read || s.non_overwrite
3832 || (conf->level == 6 && s.to_write && s.failed)
3833 || (s.syncing && (s.uptodate + s.compute < disks))
3834 || s.replacing
3835 || s.expanding)
3836 handle_stripe_fill(sh, &s, disks);
3837
84789554
N
3838 /* Now to consider new write requests and what else, if anything
3839 * should be read. We do not handle new writes when:
3840 * 1/ A 'write' operation (copy+xor) is already in flight.
3841 * 2/ A 'check' operation is in flight, as it may clobber the parity
3842 * block.
3843 */
3844 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3845 handle_stripe_dirtying(conf, sh, &s, disks);
3846
3847 /* maybe we need to check and possibly fix the parity for this stripe
3848 * Any reads will already have been scheduled, so we just see if enough
3849 * data is available. The parity check is held off while parity
3850 * dependent operations are in flight.
3851 */
3852 if (sh->check_state ||
3853 (s.syncing && s.locked == 0 &&
3854 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3855 !test_bit(STRIPE_INSYNC, &sh->state))) {
3856 if (conf->level == 6)
3857 handle_parity_checks6(conf, sh, &s, disks);
3858 else
3859 handle_parity_checks5(conf, sh, &s, disks);
3860 }
c5a31000 3861
f94c0b66
N
3862 if ((s.replacing || s.syncing) && s.locked == 0
3863 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3864 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
3865 /* Write out to replacement devices where possible */
3866 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
3867 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3868 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
3869 set_bit(R5_WantReplace, &sh->dev[i].flags);
3870 set_bit(R5_LOCKED, &sh->dev[i].flags);
3871 s.locked++;
3872 }
f94c0b66
N
3873 if (s.replacing)
3874 set_bit(STRIPE_INSYNC, &sh->state);
3875 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
3876 }
3877 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 3878 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 3879 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
3880 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3881 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3882 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3883 wake_up(&conf->wait_for_overlap);
c5a31000
N
3884 }
3885
3886 /* If the failed drives are just a ReadError, then we might need
3887 * to progress the repair/check process
3888 */
3889 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3890 for (i = 0; i < s.failed; i++) {
3891 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3892 if (test_bit(R5_ReadError, &dev->flags)
3893 && !test_bit(R5_LOCKED, &dev->flags)
3894 && test_bit(R5_UPTODATE, &dev->flags)
3895 ) {
3896 if (!test_bit(R5_ReWrite, &dev->flags)) {
3897 set_bit(R5_Wantwrite, &dev->flags);
3898 set_bit(R5_ReWrite, &dev->flags);
3899 set_bit(R5_LOCKED, &dev->flags);
3900 s.locked++;
3901 } else {
3902 /* let's read it back */
3903 set_bit(R5_Wantread, &dev->flags);
3904 set_bit(R5_LOCKED, &dev->flags);
3905 s.locked++;
3906 }
3907 }
3908 }
3909
3910
3687c061
N
3911 /* Finish reconstruct operations initiated by the expansion process */
3912 if (sh->reconstruct_state == reconstruct_state_result) {
3913 struct stripe_head *sh_src
3914 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3915 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3916 /* sh cannot be written until sh_src has been read.
3917 * so arrange for sh to be delayed a little
3918 */
3919 set_bit(STRIPE_DELAYED, &sh->state);
3920 set_bit(STRIPE_HANDLE, &sh->state);
3921 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3922 &sh_src->state))
3923 atomic_inc(&conf->preread_active_stripes);
3924 release_stripe(sh_src);
3925 goto finish;
3926 }
3927 if (sh_src)
3928 release_stripe(sh_src);
3929
3930 sh->reconstruct_state = reconstruct_state_idle;
3931 clear_bit(STRIPE_EXPANDING, &sh->state);
3932 for (i = conf->raid_disks; i--; ) {
3933 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3934 set_bit(R5_LOCKED, &sh->dev[i].flags);
3935 s.locked++;
3936 }
3937 }
f416885e 3938
3687c061
N
3939 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3940 !sh->reconstruct_state) {
3941 /* Need to write out all blocks after computing parity */
3942 sh->disks = conf->raid_disks;
3943 stripe_set_idx(sh->sector, conf, 0, sh);
3944 schedule_reconstruction(sh, &s, 1, 1);
3945 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3946 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3947 atomic_dec(&conf->reshape_stripes);
3948 wake_up(&conf->wait_for_overlap);
3949 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3950 }
3951
3952 if (s.expanding && s.locked == 0 &&
3953 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3954 handle_stripe_expansion(conf, sh);
16a53ecc 3955
3687c061 3956finish:
6bfe0b49 3957 /* wait for this device to become unblocked */
5f066c63
N
3958 if (unlikely(s.blocked_rdev)) {
3959 if (conf->mddev->external)
3960 md_wait_for_blocked_rdev(s.blocked_rdev,
3961 conf->mddev);
3962 else
3963 /* Internal metadata will immediately
3964 * be written by raid5d, so we don't
3965 * need to wait here.
3966 */
3967 rdev_dec_pending(s.blocked_rdev,
3968 conf->mddev);
3969 }
6bfe0b49 3970
bc2607f3
N
3971 if (s.handle_bad_blocks)
3972 for (i = disks; i--; ) {
3cb03002 3973 struct md_rdev *rdev;
bc2607f3
N
3974 struct r5dev *dev = &sh->dev[i];
3975 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3976 /* We own a safe reference to the rdev */
3977 rdev = conf->disks[i].rdev;
3978 if (!rdev_set_badblocks(rdev, sh->sector,
3979 STRIPE_SECTORS, 0))
3980 md_error(conf->mddev, rdev);
3981 rdev_dec_pending(rdev, conf->mddev);
3982 }
b84db560
N
3983 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3984 rdev = conf->disks[i].rdev;
3985 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 3986 STRIPE_SECTORS, 0);
b84db560
N
3987 rdev_dec_pending(rdev, conf->mddev);
3988 }
977df362
N
3989 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3990 rdev = conf->disks[i].replacement;
dd054fce
N
3991 if (!rdev)
3992 /* rdev have been moved down */
3993 rdev = conf->disks[i].rdev;
977df362 3994 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 3995 STRIPE_SECTORS, 0);
977df362
N
3996 rdev_dec_pending(rdev, conf->mddev);
3997 }
bc2607f3
N
3998 }
3999
6c0069c0
YT
4000 if (s.ops_request)
4001 raid_run_ops(sh, s.ops_request);
4002
f0e43bcd 4003 ops_run_io(sh, &s);
16a53ecc 4004
c5709ef6 4005 if (s.dec_preread_active) {
729a1866 4006 /* We delay this until after ops_run_io so that if make_request
e9c7469b 4007 * is waiting on a flush, it won't continue until the writes
729a1866
N
4008 * have actually been submitted.
4009 */
4010 atomic_dec(&conf->preread_active_stripes);
4011 if (atomic_read(&conf->preread_active_stripes) <
4012 IO_THRESHOLD)
4013 md_wakeup_thread(conf->mddev->thread);
4014 }
4015
c5709ef6 4016 return_io(s.return_bi);
16a53ecc 4017
257a4b42 4018 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
4019}
4020
d1688a6d 4021static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
4022{
4023 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4024 while (!list_empty(&conf->delayed_list)) {
4025 struct list_head *l = conf->delayed_list.next;
4026 struct stripe_head *sh;
4027 sh = list_entry(l, struct stripe_head, lru);
4028 list_del_init(l);
4029 clear_bit(STRIPE_DELAYED, &sh->state);
4030 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4031 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 4032 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 4033 raid5_wakeup_stripe_thread(sh);
16a53ecc 4034 }
482c0834 4035 }
16a53ecc
N
4036}
4037
566c09c5
SL
4038static void activate_bit_delay(struct r5conf *conf,
4039 struct list_head *temp_inactive_list)
16a53ecc
N
4040{
4041 /* device_lock is held */
4042 struct list_head head;
4043 list_add(&head, &conf->bitmap_list);
4044 list_del_init(&conf->bitmap_list);
4045 while (!list_empty(&head)) {
4046 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 4047 int hash;
16a53ecc
N
4048 list_del_init(&sh->lru);
4049 atomic_inc(&sh->count);
566c09c5
SL
4050 hash = sh->hash_lock_index;
4051 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
4052 }
4053}
4054
fd01b88c 4055int md_raid5_congested(struct mddev *mddev, int bits)
f022b2fd 4056{
d1688a6d 4057 struct r5conf *conf = mddev->private;
f022b2fd
N
4058
4059 /* No difference between reads and writes. Just check
4060 * how busy the stripe_cache is
4061 */
3fa841d7 4062
f022b2fd
N
4063 if (conf->inactive_blocked)
4064 return 1;
4065 if (conf->quiesce)
4066 return 1;
4bda556a 4067 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
4068 return 1;
4069
4070 return 0;
4071}
11d8a6e3
N
4072EXPORT_SYMBOL_GPL(md_raid5_congested);
4073
4074static int raid5_congested(void *data, int bits)
4075{
fd01b88c 4076 struct mddev *mddev = data;
11d8a6e3
N
4077
4078 return mddev_congested(mddev, bits) ||
4079 md_raid5_congested(mddev, bits);
4080}
f022b2fd 4081
23032a0e
RBJ
4082/* We want read requests to align with chunks where possible,
4083 * but write requests don't need to.
4084 */
cc371e66
AK
4085static int raid5_mergeable_bvec(struct request_queue *q,
4086 struct bvec_merge_data *bvm,
4087 struct bio_vec *biovec)
23032a0e 4088{
fd01b88c 4089 struct mddev *mddev = q->queuedata;
cc371e66 4090 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 4091 int max;
9d8f0363 4092 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 4093 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 4094
cc371e66 4095 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
4096 return biovec->bv_len; /* always allow writes to be mergeable */
4097
664e7c41
AN
4098 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4099 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
4100 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4101 if (max < 0) max = 0;
4102 if (max <= biovec->bv_len && bio_sectors == 0)
4103 return biovec->bv_len;
4104 else
4105 return max;
4106}
4107
f679623f 4108
fd01b88c 4109static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f
RBJ
4110{
4111 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 4112 unsigned int chunk_sectors = mddev->chunk_sectors;
aa8b57aa 4113 unsigned int bio_sectors = bio_sectors(bio);
f679623f 4114
664e7c41
AN
4115 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4116 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
4117 return chunk_sectors >=
4118 ((sector & (chunk_sectors - 1)) + bio_sectors);
4119}
4120
46031f9a
RBJ
4121/*
4122 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4123 * later sampled by raid5d.
4124 */
d1688a6d 4125static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
4126{
4127 unsigned long flags;
4128
4129 spin_lock_irqsave(&conf->device_lock, flags);
4130
4131 bi->bi_next = conf->retry_read_aligned_list;
4132 conf->retry_read_aligned_list = bi;
4133
4134 spin_unlock_irqrestore(&conf->device_lock, flags);
4135 md_wakeup_thread(conf->mddev->thread);
4136}
4137
4138
d1688a6d 4139static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
4140{
4141 struct bio *bi;
4142
4143 bi = conf->retry_read_aligned;
4144 if (bi) {
4145 conf->retry_read_aligned = NULL;
4146 return bi;
4147 }
4148 bi = conf->retry_read_aligned_list;
4149 if(bi) {
387bb173 4150 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 4151 bi->bi_next = NULL;
960e739d
JA
4152 /*
4153 * this sets the active strip count to 1 and the processed
4154 * strip count to zero (upper 8 bits)
4155 */
e7836bd6 4156 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
4157 }
4158
4159 return bi;
4160}
4161
4162
f679623f
RBJ
4163/*
4164 * The "raid5_align_endio" should check if the read succeeded and if it
4165 * did, call bio_endio on the original bio (having bio_put the new bio
4166 * first).
4167 * If the read failed..
4168 */
6712ecf8 4169static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
4170{
4171 struct bio* raid_bi = bi->bi_private;
fd01b88c 4172 struct mddev *mddev;
d1688a6d 4173 struct r5conf *conf;
46031f9a 4174 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3cb03002 4175 struct md_rdev *rdev;
46031f9a 4176
f679623f 4177 bio_put(bi);
46031f9a 4178
46031f9a
RBJ
4179 rdev = (void*)raid_bi->bi_next;
4180 raid_bi->bi_next = NULL;
2b7f2228
N
4181 mddev = rdev->mddev;
4182 conf = mddev->private;
46031f9a
RBJ
4183
4184 rdev_dec_pending(rdev, conf->mddev);
4185
4186 if (!error && uptodate) {
0a82a8d1
LT
4187 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4188 raid_bi, 0);
6712ecf8 4189 bio_endio(raid_bi, 0);
46031f9a
RBJ
4190 if (atomic_dec_and_test(&conf->active_aligned_reads))
4191 wake_up(&conf->wait_for_stripe);
6712ecf8 4192 return;
46031f9a
RBJ
4193 }
4194
4195
45b4233c 4196 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
4197
4198 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
4199}
4200
387bb173
NB
4201static int bio_fits_rdev(struct bio *bi)
4202{
165125e1 4203 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 4204
aa8b57aa 4205 if (bio_sectors(bi) > queue_max_sectors(q))
387bb173
NB
4206 return 0;
4207 blk_recount_segments(q, bi);
8a78362c 4208 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
4209 return 0;
4210
4211 if (q->merge_bvec_fn)
4212 /* it's too hard to apply the merge_bvec_fn at this stage,
4213 * just just give up
4214 */
4215 return 0;
4216
4217 return 1;
4218}
4219
4220
fd01b88c 4221static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
f679623f 4222{
d1688a6d 4223 struct r5conf *conf = mddev->private;
8553fe7e 4224 int dd_idx;
f679623f 4225 struct bio* align_bi;
3cb03002 4226 struct md_rdev *rdev;
671488cc 4227 sector_t end_sector;
f679623f
RBJ
4228
4229 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 4230 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
4231 return 0;
4232 }
4233 /*
a167f663 4234 * use bio_clone_mddev to make a copy of the bio
f679623f 4235 */
a167f663 4236 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
4237 if (!align_bi)
4238 return 0;
4239 /*
4240 * set bi_end_io to a new function, and set bi_private to the
4241 * original bio.
4242 */
4243 align_bi->bi_end_io = raid5_align_endio;
4244 align_bi->bi_private = raid_bio;
4245 /*
4246 * compute position
4247 */
112bf897
N
4248 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
4249 0,
911d4ee8 4250 &dd_idx, NULL);
f679623f 4251
f73a1c7d 4252 end_sector = bio_end_sector(align_bi);
f679623f 4253 rcu_read_lock();
671488cc
N
4254 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4255 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4256 rdev->recovery_offset < end_sector) {
4257 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4258 if (rdev &&
4259 (test_bit(Faulty, &rdev->flags) ||
4260 !(test_bit(In_sync, &rdev->flags) ||
4261 rdev->recovery_offset >= end_sector)))
4262 rdev = NULL;
4263 }
4264 if (rdev) {
31c176ec
N
4265 sector_t first_bad;
4266 int bad_sectors;
4267
f679623f
RBJ
4268 atomic_inc(&rdev->nr_pending);
4269 rcu_read_unlock();
46031f9a
RBJ
4270 raid_bio->bi_next = (void*)rdev;
4271 align_bi->bi_bdev = rdev->bdev;
4272 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
46031f9a 4273
31c176ec 4274 if (!bio_fits_rdev(align_bi) ||
aa8b57aa 4275 is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi),
31c176ec
N
4276 &first_bad, &bad_sectors)) {
4277 /* too big in some way, or has a known bad block */
387bb173
NB
4278 bio_put(align_bi);
4279 rdev_dec_pending(rdev, mddev);
4280 return 0;
4281 }
4282
6c0544e2 4283 /* No reshape active, so we can trust rdev->data_offset */
4284 align_bi->bi_sector += rdev->data_offset;
4285
46031f9a
RBJ
4286 spin_lock_irq(&conf->device_lock);
4287 wait_event_lock_irq(conf->wait_for_stripe,
4288 conf->quiesce == 0,
eed8c02e 4289 conf->device_lock);
46031f9a
RBJ
4290 atomic_inc(&conf->active_aligned_reads);
4291 spin_unlock_irq(&conf->device_lock);
4292
e3620a3a
JB
4293 if (mddev->gendisk)
4294 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4295 align_bi, disk_devt(mddev->gendisk),
4296 raid_bio->bi_sector);
f679623f
RBJ
4297 generic_make_request(align_bi);
4298 return 1;
4299 } else {
4300 rcu_read_unlock();
46031f9a 4301 bio_put(align_bi);
f679623f
RBJ
4302 return 0;
4303 }
4304}
4305
8b3e6cdc
DW
4306/* __get_priority_stripe - get the next stripe to process
4307 *
4308 * Full stripe writes are allowed to pass preread active stripes up until
4309 * the bypass_threshold is exceeded. In general the bypass_count
4310 * increments when the handle_list is handled before the hold_list; however, it
4311 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4312 * stripe with in flight i/o. The bypass_count will be reset when the
4313 * head of the hold_list has changed, i.e. the head was promoted to the
4314 * handle_list.
4315 */
851c30c9 4316static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 4317{
851c30c9
SL
4318 struct stripe_head *sh = NULL, *tmp;
4319 struct list_head *handle_list = NULL;
bfc90cb0 4320 struct r5worker_group *wg = NULL;
851c30c9
SL
4321
4322 if (conf->worker_cnt_per_group == 0) {
4323 handle_list = &conf->handle_list;
4324 } else if (group != ANY_GROUP) {
4325 handle_list = &conf->worker_groups[group].handle_list;
bfc90cb0 4326 wg = &conf->worker_groups[group];
851c30c9
SL
4327 } else {
4328 int i;
4329 for (i = 0; i < conf->group_cnt; i++) {
4330 handle_list = &conf->worker_groups[i].handle_list;
bfc90cb0 4331 wg = &conf->worker_groups[i];
851c30c9
SL
4332 if (!list_empty(handle_list))
4333 break;
4334 }
4335 }
8b3e6cdc
DW
4336
4337 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4338 __func__,
851c30c9 4339 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
4340 list_empty(&conf->hold_list) ? "empty" : "busy",
4341 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4342
851c30c9
SL
4343 if (!list_empty(handle_list)) {
4344 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
4345
4346 if (list_empty(&conf->hold_list))
4347 conf->bypass_count = 0;
4348 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4349 if (conf->hold_list.next == conf->last_hold)
4350 conf->bypass_count++;
4351 else {
4352 conf->last_hold = conf->hold_list.next;
4353 conf->bypass_count -= conf->bypass_threshold;
4354 if (conf->bypass_count < 0)
4355 conf->bypass_count = 0;
4356 }
4357 }
4358 } else if (!list_empty(&conf->hold_list) &&
4359 ((conf->bypass_threshold &&
4360 conf->bypass_count > conf->bypass_threshold) ||
4361 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
4362
4363 list_for_each_entry(tmp, &conf->hold_list, lru) {
4364 if (conf->worker_cnt_per_group == 0 ||
4365 group == ANY_GROUP ||
4366 !cpu_online(tmp->cpu) ||
4367 cpu_to_group(tmp->cpu) == group) {
4368 sh = tmp;
4369 break;
4370 }
4371 }
4372
4373 if (sh) {
4374 conf->bypass_count -= conf->bypass_threshold;
4375 if (conf->bypass_count < 0)
4376 conf->bypass_count = 0;
4377 }
bfc90cb0 4378 wg = NULL;
851c30c9
SL
4379 }
4380
4381 if (!sh)
8b3e6cdc
DW
4382 return NULL;
4383
bfc90cb0
SL
4384 if (wg) {
4385 wg->stripes_cnt--;
4386 sh->group = NULL;
4387 }
8b3e6cdc
DW
4388 list_del_init(&sh->lru);
4389 atomic_inc(&sh->count);
4390 BUG_ON(atomic_read(&sh->count) != 1);
4391 return sh;
4392}
f679623f 4393
8811b596
SL
4394struct raid5_plug_cb {
4395 struct blk_plug_cb cb;
4396 struct list_head list;
566c09c5 4397 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
4398};
4399
4400static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4401{
4402 struct raid5_plug_cb *cb = container_of(
4403 blk_cb, struct raid5_plug_cb, cb);
4404 struct stripe_head *sh;
4405 struct mddev *mddev = cb->cb.data;
4406 struct r5conf *conf = mddev->private;
a9add5d9 4407 int cnt = 0;
566c09c5 4408 int hash;
8811b596
SL
4409
4410 if (cb->list.next && !list_empty(&cb->list)) {
4411 spin_lock_irq(&conf->device_lock);
4412 while (!list_empty(&cb->list)) {
4413 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4414 list_del_init(&sh->lru);
4415 /*
4416 * avoid race release_stripe_plug() sees
4417 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4418 * is still in our list
4419 */
4420 smp_mb__before_clear_bit();
4421 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
4422 /*
4423 * STRIPE_ON_RELEASE_LIST could be set here. In that
4424 * case, the count is always > 1 here
4425 */
566c09c5
SL
4426 hash = sh->hash_lock_index;
4427 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 4428 cnt++;
8811b596
SL
4429 }
4430 spin_unlock_irq(&conf->device_lock);
4431 }
566c09c5
SL
4432 release_inactive_stripe_list(conf, cb->temp_inactive_list,
4433 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
4434 if (mddev->queue)
4435 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
4436 kfree(cb);
4437}
4438
4439static void release_stripe_plug(struct mddev *mddev,
4440 struct stripe_head *sh)
4441{
4442 struct blk_plug_cb *blk_cb = blk_check_plugged(
4443 raid5_unplug, mddev,
4444 sizeof(struct raid5_plug_cb));
4445 struct raid5_plug_cb *cb;
4446
4447 if (!blk_cb) {
4448 release_stripe(sh);
4449 return;
4450 }
4451
4452 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4453
566c09c5
SL
4454 if (cb->list.next == NULL) {
4455 int i;
8811b596 4456 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
4457 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4458 INIT_LIST_HEAD(cb->temp_inactive_list + i);
4459 }
8811b596
SL
4460
4461 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4462 list_add_tail(&sh->lru, &cb->list);
4463 else
4464 release_stripe(sh);
4465}
4466
620125f2
SL
4467static void make_discard_request(struct mddev *mddev, struct bio *bi)
4468{
4469 struct r5conf *conf = mddev->private;
4470 sector_t logical_sector, last_sector;
4471 struct stripe_head *sh;
4472 int remaining;
4473 int stripe_sectors;
4474
4475 if (mddev->reshape_position != MaxSector)
4476 /* Skip discard while reshape is happening */
4477 return;
4478
4479 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4480 last_sector = bi->bi_sector + (bi->bi_size>>9);
4481
4482 bi->bi_next = NULL;
4483 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4484
4485 stripe_sectors = conf->chunk_sectors *
4486 (conf->raid_disks - conf->max_degraded);
4487 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4488 stripe_sectors);
4489 sector_div(last_sector, stripe_sectors);
4490
4491 logical_sector *= conf->chunk_sectors;
4492 last_sector *= conf->chunk_sectors;
4493
4494 for (; logical_sector < last_sector;
4495 logical_sector += STRIPE_SECTORS) {
4496 DEFINE_WAIT(w);
4497 int d;
4498 again:
4499 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4500 prepare_to_wait(&conf->wait_for_overlap, &w,
4501 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
4502 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4503 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4504 release_stripe(sh);
4505 schedule();
4506 goto again;
4507 }
4508 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
4509 spin_lock_irq(&sh->stripe_lock);
4510 for (d = 0; d < conf->raid_disks; d++) {
4511 if (d == sh->pd_idx || d == sh->qd_idx)
4512 continue;
4513 if (sh->dev[d].towrite || sh->dev[d].toread) {
4514 set_bit(R5_Overlap, &sh->dev[d].flags);
4515 spin_unlock_irq(&sh->stripe_lock);
4516 release_stripe(sh);
4517 schedule();
4518 goto again;
4519 }
4520 }
f8dfcffd 4521 set_bit(STRIPE_DISCARD, &sh->state);
620125f2
SL
4522 finish_wait(&conf->wait_for_overlap, &w);
4523 for (d = 0; d < conf->raid_disks; d++) {
4524 if (d == sh->pd_idx || d == sh->qd_idx)
4525 continue;
4526 sh->dev[d].towrite = bi;
4527 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4528 raid5_inc_bi_active_stripes(bi);
4529 }
4530 spin_unlock_irq(&sh->stripe_lock);
4531 if (conf->mddev->bitmap) {
4532 for (d = 0;
4533 d < conf->raid_disks - conf->max_degraded;
4534 d++)
4535 bitmap_startwrite(mddev->bitmap,
4536 sh->sector,
4537 STRIPE_SECTORS,
4538 0);
4539 sh->bm_seq = conf->seq_flush + 1;
4540 set_bit(STRIPE_BIT_DELAY, &sh->state);
4541 }
4542
4543 set_bit(STRIPE_HANDLE, &sh->state);
4544 clear_bit(STRIPE_DELAYED, &sh->state);
4545 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4546 atomic_inc(&conf->preread_active_stripes);
4547 release_stripe_plug(mddev, sh);
4548 }
4549
4550 remaining = raid5_dec_bi_active_stripes(bi);
4551 if (remaining == 0) {
4552 md_write_end(mddev);
4553 bio_endio(bi, 0);
4554 }
4555}
4556
b4fdcb02 4557static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 4558{
d1688a6d 4559 struct r5conf *conf = mddev->private;
911d4ee8 4560 int dd_idx;
1da177e4
LT
4561 sector_t new_sector;
4562 sector_t logical_sector, last_sector;
4563 struct stripe_head *sh;
a362357b 4564 const int rw = bio_data_dir(bi);
49077326 4565 int remaining;
1da177e4 4566
e9c7469b
TH
4567 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4568 md_flush_request(mddev, bi);
5a7bbad2 4569 return;
e5dcdd80
N
4570 }
4571
3d310eb7 4572 md_write_start(mddev, bi);
06d91a5f 4573
802ba064 4574 if (rw == READ &&
52488615 4575 mddev->reshape_position == MaxSector &&
21a52c6d 4576 chunk_aligned_read(mddev,bi))
5a7bbad2 4577 return;
52488615 4578
620125f2
SL
4579 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4580 make_discard_request(mddev, bi);
4581 return;
4582 }
4583
1da177e4 4584 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 4585 last_sector = bio_end_sector(bi);
1da177e4
LT
4586 bi->bi_next = NULL;
4587 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 4588
1da177e4
LT
4589 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4590 DEFINE_WAIT(w);
b5663ba4 4591 int previous;
c46501b2 4592 int seq;
b578d55f 4593
7ecaa1e6 4594 retry:
c46501b2 4595 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 4596 previous = 0;
b578d55f 4597 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 4598 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 4599 /* spinlock is needed as reshape_progress may be
df8e7f76
N
4600 * 64bit on a 32bit platform, and so it might be
4601 * possible to see a half-updated value
aeb878b0 4602 * Of course reshape_progress could change after
df8e7f76
N
4603 * the lock is dropped, so once we get a reference
4604 * to the stripe that we think it is, we will have
4605 * to check again.
4606 */
7ecaa1e6 4607 spin_lock_irq(&conf->device_lock);
2c810cdd 4608 if (mddev->reshape_backwards
fef9c61f
N
4609 ? logical_sector < conf->reshape_progress
4610 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
4611 previous = 1;
4612 } else {
2c810cdd 4613 if (mddev->reshape_backwards
fef9c61f
N
4614 ? logical_sector < conf->reshape_safe
4615 : logical_sector >= conf->reshape_safe) {
b578d55f
N
4616 spin_unlock_irq(&conf->device_lock);
4617 schedule();
4618 goto retry;
4619 }
4620 }
7ecaa1e6
N
4621 spin_unlock_irq(&conf->device_lock);
4622 }
16a53ecc 4623
112bf897
N
4624 new_sector = raid5_compute_sector(conf, logical_sector,
4625 previous,
911d4ee8 4626 &dd_idx, NULL);
0c55e022 4627 pr_debug("raid456: make_request, sector %llu logical %llu\n",
c46501b2 4628 (unsigned long long)new_sector,
1da177e4
LT
4629 (unsigned long long)logical_sector);
4630
b5663ba4 4631 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 4632 (bi->bi_rw&RWA_MASK), 0);
1da177e4 4633 if (sh) {
b0f9ec04 4634 if (unlikely(previous)) {
7ecaa1e6 4635 /* expansion might have moved on while waiting for a
df8e7f76
N
4636 * stripe, so we must do the range check again.
4637 * Expansion could still move past after this
4638 * test, but as we are holding a reference to
4639 * 'sh', we know that if that happens,
4640 * STRIPE_EXPANDING will get set and the expansion
4641 * won't proceed until we finish with the stripe.
7ecaa1e6
N
4642 */
4643 int must_retry = 0;
4644 spin_lock_irq(&conf->device_lock);
2c810cdd 4645 if (mddev->reshape_backwards
b0f9ec04
N
4646 ? logical_sector >= conf->reshape_progress
4647 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
4648 /* mismatch, need to try again */
4649 must_retry = 1;
4650 spin_unlock_irq(&conf->device_lock);
4651 if (must_retry) {
4652 release_stripe(sh);
7a3ab908 4653 schedule();
7ecaa1e6
N
4654 goto retry;
4655 }
4656 }
c46501b2
N
4657 if (read_seqcount_retry(&conf->gen_lock, seq)) {
4658 /* Might have got the wrong stripe_head
4659 * by accident
4660 */
4661 release_stripe(sh);
4662 goto retry;
4663 }
e62e58a5 4664
ffd96e35 4665 if (rw == WRITE &&
a5c308d4 4666 logical_sector >= mddev->suspend_lo &&
e464eafd
N
4667 logical_sector < mddev->suspend_hi) {
4668 release_stripe(sh);
e62e58a5
N
4669 /* As the suspend_* range is controlled by
4670 * userspace, we want an interruptible
4671 * wait.
4672 */
4673 flush_signals(current);
4674 prepare_to_wait(&conf->wait_for_overlap,
4675 &w, TASK_INTERRUPTIBLE);
4676 if (logical_sector >= mddev->suspend_lo &&
4677 logical_sector < mddev->suspend_hi)
4678 schedule();
e464eafd
N
4679 goto retry;
4680 }
7ecaa1e6
N
4681
4682 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
ffd96e35 4683 !add_stripe_bio(sh, bi, dd_idx, rw)) {
7ecaa1e6
N
4684 /* Stripe is busy expanding or
4685 * add failed due to overlap. Flush everything
1da177e4
LT
4686 * and wait a while
4687 */
482c0834 4688 md_wakeup_thread(mddev->thread);
1da177e4
LT
4689 release_stripe(sh);
4690 schedule();
4691 goto retry;
4692 }
4693 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
4694 set_bit(STRIPE_HANDLE, &sh->state);
4695 clear_bit(STRIPE_DELAYED, &sh->state);
a852d7b8 4696 if ((bi->bi_rw & REQ_SYNC) &&
729a1866
N
4697 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4698 atomic_inc(&conf->preread_active_stripes);
8811b596 4699 release_stripe_plug(mddev, sh);
1da177e4
LT
4700 } else {
4701 /* cannot get stripe for read-ahead, just give-up */
4702 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4703 finish_wait(&conf->wait_for_overlap, &w);
4704 break;
4705 }
1da177e4 4706 }
7c13edc8 4707
e7836bd6 4708 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 4709 if (remaining == 0) {
1da177e4 4710
16a53ecc 4711 if ( rw == WRITE )
1da177e4 4712 md_write_end(mddev);
6712ecf8 4713
0a82a8d1
LT
4714 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4715 bi, 0);
0e13fe23 4716 bio_endio(bi, 0);
1da177e4 4717 }
1da177e4
LT
4718}
4719
fd01b88c 4720static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 4721
fd01b88c 4722static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 4723{
52c03291
N
4724 /* reshaping is quite different to recovery/resync so it is
4725 * handled quite separately ... here.
4726 *
4727 * On each call to sync_request, we gather one chunk worth of
4728 * destination stripes and flag them as expanding.
4729 * Then we find all the source stripes and request reads.
4730 * As the reads complete, handle_stripe will copy the data
4731 * into the destination stripe and release that stripe.
4732 */
d1688a6d 4733 struct r5conf *conf = mddev->private;
1da177e4 4734 struct stripe_head *sh;
ccfcc3c1 4735 sector_t first_sector, last_sector;
f416885e
N
4736 int raid_disks = conf->previous_raid_disks;
4737 int data_disks = raid_disks - conf->max_degraded;
4738 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
4739 int i;
4740 int dd_idx;
c8f517c4 4741 sector_t writepos, readpos, safepos;
ec32a2bd 4742 sector_t stripe_addr;
7a661381 4743 int reshape_sectors;
ab69ae12 4744 struct list_head stripes;
52c03291 4745
fef9c61f
N
4746 if (sector_nr == 0) {
4747 /* If restarting in the middle, skip the initial sectors */
2c810cdd 4748 if (mddev->reshape_backwards &&
fef9c61f
N
4749 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4750 sector_nr = raid5_size(mddev, 0, 0)
4751 - conf->reshape_progress;
2c810cdd 4752 } else if (!mddev->reshape_backwards &&
fef9c61f
N
4753 conf->reshape_progress > 0)
4754 sector_nr = conf->reshape_progress;
f416885e 4755 sector_div(sector_nr, new_data_disks);
fef9c61f 4756 if (sector_nr) {
8dee7211
N
4757 mddev->curr_resync_completed = sector_nr;
4758 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
4759 *skipped = 1;
4760 return sector_nr;
4761 }
52c03291
N
4762 }
4763
7a661381
N
4764 /* We need to process a full chunk at a time.
4765 * If old and new chunk sizes differ, we need to process the
4766 * largest of these
4767 */
664e7c41
AN
4768 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4769 reshape_sectors = mddev->new_chunk_sectors;
7a661381 4770 else
9d8f0363 4771 reshape_sectors = mddev->chunk_sectors;
7a661381 4772
b5254dd5
N
4773 /* We update the metadata at least every 10 seconds, or when
4774 * the data about to be copied would over-write the source of
4775 * the data at the front of the range. i.e. one new_stripe
4776 * along from reshape_progress new_maps to after where
4777 * reshape_safe old_maps to
52c03291 4778 */
fef9c61f 4779 writepos = conf->reshape_progress;
f416885e 4780 sector_div(writepos, new_data_disks);
c8f517c4
N
4781 readpos = conf->reshape_progress;
4782 sector_div(readpos, data_disks);
fef9c61f 4783 safepos = conf->reshape_safe;
f416885e 4784 sector_div(safepos, data_disks);
2c810cdd 4785 if (mddev->reshape_backwards) {
ed37d83e 4786 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 4787 readpos += reshape_sectors;
7a661381 4788 safepos += reshape_sectors;
fef9c61f 4789 } else {
7a661381 4790 writepos += reshape_sectors;
ed37d83e
N
4791 readpos -= min_t(sector_t, reshape_sectors, readpos);
4792 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 4793 }
52c03291 4794
b5254dd5
N
4795 /* Having calculated the 'writepos' possibly use it
4796 * to set 'stripe_addr' which is where we will write to.
4797 */
4798 if (mddev->reshape_backwards) {
4799 BUG_ON(conf->reshape_progress == 0);
4800 stripe_addr = writepos;
4801 BUG_ON((mddev->dev_sectors &
4802 ~((sector_t)reshape_sectors - 1))
4803 - reshape_sectors - stripe_addr
4804 != sector_nr);
4805 } else {
4806 BUG_ON(writepos != sector_nr + reshape_sectors);
4807 stripe_addr = sector_nr;
4808 }
4809
c8f517c4
N
4810 /* 'writepos' is the most advanced device address we might write.
4811 * 'readpos' is the least advanced device address we might read.
4812 * 'safepos' is the least address recorded in the metadata as having
4813 * been reshaped.
b5254dd5
N
4814 * If there is a min_offset_diff, these are adjusted either by
4815 * increasing the safepos/readpos if diff is negative, or
4816 * increasing writepos if diff is positive.
4817 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
4818 * ensure safety in the face of a crash - that must be done by userspace
4819 * making a backup of the data. So in that case there is no particular
4820 * rush to update metadata.
4821 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4822 * update the metadata to advance 'safepos' to match 'readpos' so that
4823 * we can be safe in the event of a crash.
4824 * So we insist on updating metadata if safepos is behind writepos and
4825 * readpos is beyond writepos.
4826 * In any case, update the metadata every 10 seconds.
4827 * Maybe that number should be configurable, but I'm not sure it is
4828 * worth it.... maybe it could be a multiple of safemode_delay???
4829 */
b5254dd5
N
4830 if (conf->min_offset_diff < 0) {
4831 safepos += -conf->min_offset_diff;
4832 readpos += -conf->min_offset_diff;
4833 } else
4834 writepos += conf->min_offset_diff;
4835
2c810cdd 4836 if ((mddev->reshape_backwards
c8f517c4
N
4837 ? (safepos > writepos && readpos < writepos)
4838 : (safepos < writepos && readpos > writepos)) ||
4839 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
4840 /* Cannot proceed until we've updated the superblock... */
4841 wait_event(conf->wait_for_overlap,
4842 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 4843 mddev->reshape_position = conf->reshape_progress;
75d3da43 4844 mddev->curr_resync_completed = sector_nr;
c8f517c4 4845 conf->reshape_checkpoint = jiffies;
850b2b42 4846 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 4847 md_wakeup_thread(mddev->thread);
850b2b42 4848 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
4849 kthread_should_stop());
4850 spin_lock_irq(&conf->device_lock);
fef9c61f 4851 conf->reshape_safe = mddev->reshape_position;
52c03291
N
4852 spin_unlock_irq(&conf->device_lock);
4853 wake_up(&conf->wait_for_overlap);
acb180b0 4854 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
4855 }
4856
ab69ae12 4857 INIT_LIST_HEAD(&stripes);
7a661381 4858 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 4859 int j;
a9f326eb 4860 int skipped_disk = 0;
a8c906ca 4861 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
4862 set_bit(STRIPE_EXPANDING, &sh->state);
4863 atomic_inc(&conf->reshape_stripes);
4864 /* If any of this stripe is beyond the end of the old
4865 * array, then we need to zero those blocks
4866 */
4867 for (j=sh->disks; j--;) {
4868 sector_t s;
4869 if (j == sh->pd_idx)
4870 continue;
f416885e 4871 if (conf->level == 6 &&
d0dabf7e 4872 j == sh->qd_idx)
f416885e 4873 continue;
784052ec 4874 s = compute_blocknr(sh, j, 0);
b522adcd 4875 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 4876 skipped_disk = 1;
52c03291
N
4877 continue;
4878 }
4879 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4880 set_bit(R5_Expanded, &sh->dev[j].flags);
4881 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4882 }
a9f326eb 4883 if (!skipped_disk) {
52c03291
N
4884 set_bit(STRIPE_EXPAND_READY, &sh->state);
4885 set_bit(STRIPE_HANDLE, &sh->state);
4886 }
ab69ae12 4887 list_add(&sh->lru, &stripes);
52c03291
N
4888 }
4889 spin_lock_irq(&conf->device_lock);
2c810cdd 4890 if (mddev->reshape_backwards)
7a661381 4891 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4892 else
7a661381 4893 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4894 spin_unlock_irq(&conf->device_lock);
4895 /* Ok, those stripe are ready. We can start scheduling
4896 * reads on the source stripes.
4897 * The source stripes are determined by mapping the first and last
4898 * block on the destination stripes.
4899 */
52c03291 4900 first_sector =
ec32a2bd 4901 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4902 1, &dd_idx, NULL);
52c03291 4903 last_sector =
0e6e0271 4904 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 4905 * new_data_disks - 1),
911d4ee8 4906 1, &dd_idx, NULL);
58c0fed4
AN
4907 if (last_sector >= mddev->dev_sectors)
4908 last_sector = mddev->dev_sectors - 1;
52c03291 4909 while (first_sector <= last_sector) {
a8c906ca 4910 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
4911 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4912 set_bit(STRIPE_HANDLE, &sh->state);
4913 release_stripe(sh);
4914 first_sector += STRIPE_SECTORS;
4915 }
ab69ae12
N
4916 /* Now that the sources are clearly marked, we can release
4917 * the destination stripes
4918 */
4919 while (!list_empty(&stripes)) {
4920 sh = list_entry(stripes.next, struct stripe_head, lru);
4921 list_del_init(&sh->lru);
4922 release_stripe(sh);
4923 }
c6207277
N
4924 /* If this takes us to the resync_max point where we have to pause,
4925 * then we need to write out the superblock.
4926 */
7a661381 4927 sector_nr += reshape_sectors;
c03f6a19
N
4928 if ((sector_nr - mddev->curr_resync_completed) * 2
4929 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
4930 /* Cannot proceed until we've updated the superblock... */
4931 wait_event(conf->wait_for_overlap,
4932 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 4933 mddev->reshape_position = conf->reshape_progress;
75d3da43 4934 mddev->curr_resync_completed = sector_nr;
c8f517c4 4935 conf->reshape_checkpoint = jiffies;
c6207277
N
4936 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4937 md_wakeup_thread(mddev->thread);
4938 wait_event(mddev->sb_wait,
4939 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4940 || kthread_should_stop());
4941 spin_lock_irq(&conf->device_lock);
fef9c61f 4942 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4943 spin_unlock_irq(&conf->device_lock);
4944 wake_up(&conf->wait_for_overlap);
acb180b0 4945 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 4946 }
7a661381 4947 return reshape_sectors;
52c03291
N
4948}
4949
4950/* FIXME go_faster isn't used */
fd01b88c 4951static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
52c03291 4952{
d1688a6d 4953 struct r5conf *conf = mddev->private;
52c03291 4954 struct stripe_head *sh;
58c0fed4 4955 sector_t max_sector = mddev->dev_sectors;
57dab0bd 4956 sector_t sync_blocks;
16a53ecc
N
4957 int still_degraded = 0;
4958 int i;
1da177e4 4959
72626685 4960 if (sector_nr >= max_sector) {
1da177e4 4961 /* just being told to finish up .. nothing much to do */
cea9c228 4962
29269553
N
4963 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4964 end_reshape(conf);
4965 return 0;
4966 }
72626685
N
4967
4968 if (mddev->curr_resync < max_sector) /* aborted */
4969 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4970 &sync_blocks, 1);
16a53ecc 4971 else /* completed sync */
72626685
N
4972 conf->fullsync = 0;
4973 bitmap_close_sync(mddev->bitmap);
4974
1da177e4
LT
4975 return 0;
4976 }
ccfcc3c1 4977
64bd660b
N
4978 /* Allow raid5_quiesce to complete */
4979 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4980
52c03291
N
4981 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4982 return reshape_request(mddev, sector_nr, skipped);
f6705578 4983
c6207277
N
4984 /* No need to check resync_max as we never do more than one
4985 * stripe, and as resync_max will always be on a chunk boundary,
4986 * if the check in md_do_sync didn't fire, there is no chance
4987 * of overstepping resync_max here
4988 */
4989
16a53ecc 4990 /* if there is too many failed drives and we are trying
1da177e4
LT
4991 * to resync, then assert that we are finished, because there is
4992 * nothing we can do.
4993 */
3285edf1 4994 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4995 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4996 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4997 *skipped = 1;
1da177e4
LT
4998 return rv;
4999 }
6f608040 5000 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5001 !conf->fullsync &&
5002 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5003 sync_blocks >= STRIPE_SECTORS) {
72626685
N
5004 /* we can skip this block, and probably more */
5005 sync_blocks /= STRIPE_SECTORS;
5006 *skipped = 1;
5007 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5008 }
1da177e4 5009
b47490c9
N
5010 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5011
a8c906ca 5012 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 5013 if (sh == NULL) {
a8c906ca 5014 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 5015 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 5016 * is trying to get access
1da177e4 5017 */
66c006a5 5018 schedule_timeout_uninterruptible(1);
1da177e4 5019 }
16a53ecc
N
5020 /* Need to check if array will still be degraded after recovery/resync
5021 * We don't need to check the 'failed' flag as when that gets set,
5022 * recovery aborts.
5023 */
f001a70c 5024 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
5025 if (conf->disks[i].rdev == NULL)
5026 still_degraded = 1;
5027
5028 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5029
83206d66 5030 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
1da177e4 5031
1442577b 5032 handle_stripe(sh);
1da177e4
LT
5033 release_stripe(sh);
5034
5035 return STRIPE_SECTORS;
5036}
5037
d1688a6d 5038static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
5039{
5040 /* We may not be able to submit a whole bio at once as there
5041 * may not be enough stripe_heads available.
5042 * We cannot pre-allocate enough stripe_heads as we may need
5043 * more than exist in the cache (if we allow ever large chunks).
5044 * So we do one stripe head at a time and record in
5045 * ->bi_hw_segments how many have been done.
5046 *
5047 * We *know* that this entire raid_bio is in one chunk, so
5048 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5049 */
5050 struct stripe_head *sh;
911d4ee8 5051 int dd_idx;
46031f9a
RBJ
5052 sector_t sector, logical_sector, last_sector;
5053 int scnt = 0;
5054 int remaining;
5055 int handled = 0;
5056
5057 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 5058 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 5059 0, &dd_idx, NULL);
f73a1c7d 5060 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
5061
5062 for (; logical_sector < last_sector;
387bb173
NB
5063 logical_sector += STRIPE_SECTORS,
5064 sector += STRIPE_SECTORS,
5065 scnt++) {
46031f9a 5066
e7836bd6 5067 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
5068 /* already done this stripe */
5069 continue;
5070
a8c906ca 5071 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
5072
5073 if (!sh) {
5074 /* failed to get a stripe - must wait */
e7836bd6 5075 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
5076 conf->retry_read_aligned = raid_bio;
5077 return handled;
5078 }
5079
387bb173
NB
5080 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5081 release_stripe(sh);
e7836bd6 5082 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
5083 conf->retry_read_aligned = raid_bio;
5084 return handled;
5085 }
5086
3f9e7c14 5087 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 5088 handle_stripe(sh);
46031f9a
RBJ
5089 release_stripe(sh);
5090 handled++;
5091 }
e7836bd6 5092 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
5093 if (remaining == 0) {
5094 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5095 raid_bio, 0);
0e13fe23 5096 bio_endio(raid_bio, 0);
0a82a8d1 5097 }
46031f9a
RBJ
5098 if (atomic_dec_and_test(&conf->active_aligned_reads))
5099 wake_up(&conf->wait_for_stripe);
5100 return handled;
5101}
5102
bfc90cb0 5103static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
5104 struct r5worker *worker,
5105 struct list_head *temp_inactive_list)
46a06401
SL
5106{
5107 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
5108 int i, batch_size = 0, hash;
5109 bool release_inactive = false;
46a06401
SL
5110
5111 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 5112 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
5113 batch[batch_size++] = sh;
5114
566c09c5
SL
5115 if (batch_size == 0) {
5116 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5117 if (!list_empty(temp_inactive_list + i))
5118 break;
5119 if (i == NR_STRIPE_HASH_LOCKS)
5120 return batch_size;
5121 release_inactive = true;
5122 }
46a06401
SL
5123 spin_unlock_irq(&conf->device_lock);
5124
566c09c5
SL
5125 release_inactive_stripe_list(conf, temp_inactive_list,
5126 NR_STRIPE_HASH_LOCKS);
5127
5128 if (release_inactive) {
5129 spin_lock_irq(&conf->device_lock);
5130 return 0;
5131 }
5132
46a06401
SL
5133 for (i = 0; i < batch_size; i++)
5134 handle_stripe(batch[i]);
5135
5136 cond_resched();
5137
5138 spin_lock_irq(&conf->device_lock);
566c09c5
SL
5139 for (i = 0; i < batch_size; i++) {
5140 hash = batch[i]->hash_lock_index;
5141 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5142 }
46a06401
SL
5143 return batch_size;
5144}
46031f9a 5145
851c30c9
SL
5146static void raid5_do_work(struct work_struct *work)
5147{
5148 struct r5worker *worker = container_of(work, struct r5worker, work);
5149 struct r5worker_group *group = worker->group;
5150 struct r5conf *conf = group->conf;
5151 int group_id = group - conf->worker_groups;
5152 int handled;
5153 struct blk_plug plug;
5154
5155 pr_debug("+++ raid5worker active\n");
5156
5157 blk_start_plug(&plug);
5158 handled = 0;
5159 spin_lock_irq(&conf->device_lock);
5160 while (1) {
5161 int batch_size, released;
5162
566c09c5 5163 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 5164
566c09c5
SL
5165 batch_size = handle_active_stripes(conf, group_id, worker,
5166 worker->temp_inactive_list);
bfc90cb0 5167 worker->working = false;
851c30c9
SL
5168 if (!batch_size && !released)
5169 break;
5170 handled += batch_size;
5171 }
5172 pr_debug("%d stripes handled\n", handled);
5173
5174 spin_unlock_irq(&conf->device_lock);
5175 blk_finish_plug(&plug);
5176
5177 pr_debug("--- raid5worker inactive\n");
5178}
5179
1da177e4
LT
5180/*
5181 * This is our raid5 kernel thread.
5182 *
5183 * We scan the hash table for stripes which can be handled now.
5184 * During the scan, completed stripes are saved for us by the interrupt
5185 * handler, so that they will not have to wait for our next wakeup.
5186 */
4ed8731d 5187static void raid5d(struct md_thread *thread)
1da177e4 5188{
4ed8731d 5189 struct mddev *mddev = thread->mddev;
d1688a6d 5190 struct r5conf *conf = mddev->private;
1da177e4 5191 int handled;
e1dfa0a2 5192 struct blk_plug plug;
1da177e4 5193
45b4233c 5194 pr_debug("+++ raid5d active\n");
1da177e4
LT
5195
5196 md_check_recovery(mddev);
1da177e4 5197
e1dfa0a2 5198 blk_start_plug(&plug);
1da177e4
LT
5199 handled = 0;
5200 spin_lock_irq(&conf->device_lock);
5201 while (1) {
46031f9a 5202 struct bio *bio;
773ca82f
SL
5203 int batch_size, released;
5204
566c09c5 5205 released = release_stripe_list(conf, conf->temp_inactive_list);
1da177e4 5206
0021b7bc 5207 if (
7c13edc8
N
5208 !list_empty(&conf->bitmap_list)) {
5209 /* Now is a good time to flush some bitmap updates */
5210 conf->seq_flush++;
700e432d 5211 spin_unlock_irq(&conf->device_lock);
72626685 5212 bitmap_unplug(mddev->bitmap);
700e432d 5213 spin_lock_irq(&conf->device_lock);
7c13edc8 5214 conf->seq_write = conf->seq_flush;
566c09c5 5215 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 5216 }
0021b7bc 5217 raid5_activate_delayed(conf);
72626685 5218
46031f9a
RBJ
5219 while ((bio = remove_bio_from_retry(conf))) {
5220 int ok;
5221 spin_unlock_irq(&conf->device_lock);
5222 ok = retry_aligned_read(conf, bio);
5223 spin_lock_irq(&conf->device_lock);
5224 if (!ok)
5225 break;
5226 handled++;
5227 }
5228
566c09c5
SL
5229 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5230 conf->temp_inactive_list);
773ca82f 5231 if (!batch_size && !released)
1da177e4 5232 break;
46a06401 5233 handled += batch_size;
1da177e4 5234
46a06401
SL
5235 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5236 spin_unlock_irq(&conf->device_lock);
de393cde 5237 md_check_recovery(mddev);
46a06401
SL
5238 spin_lock_irq(&conf->device_lock);
5239 }
1da177e4 5240 }
45b4233c 5241 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
5242
5243 spin_unlock_irq(&conf->device_lock);
5244
c9f21aaf 5245 async_tx_issue_pending_all();
e1dfa0a2 5246 blk_finish_plug(&plug);
1da177e4 5247
45b4233c 5248 pr_debug("--- raid5d inactive\n");
1da177e4
LT
5249}
5250
3f294f4f 5251static ssize_t
fd01b88c 5252raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 5253{
d1688a6d 5254 struct r5conf *conf = mddev->private;
96de1e66
N
5255 if (conf)
5256 return sprintf(page, "%d\n", conf->max_nr_stripes);
5257 else
5258 return 0;
3f294f4f
N
5259}
5260
c41d4ac4 5261int
fd01b88c 5262raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 5263{
d1688a6d 5264 struct r5conf *conf = mddev->private;
b5470dc5 5265 int err;
566c09c5 5266 int hash;
b5470dc5 5267
c41d4ac4 5268 if (size <= 16 || size > 32768)
3f294f4f 5269 return -EINVAL;
566c09c5 5270 hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
c41d4ac4 5271 while (size < conf->max_nr_stripes) {
566c09c5 5272 if (drop_one_stripe(conf, hash))
3f294f4f
N
5273 conf->max_nr_stripes--;
5274 else
5275 break;
566c09c5
SL
5276 hash--;
5277 if (hash < 0)
5278 hash = NR_STRIPE_HASH_LOCKS - 1;
3f294f4f 5279 }
b5470dc5
DW
5280 err = md_allow_write(mddev);
5281 if (err)
5282 return err;
566c09c5 5283 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
c41d4ac4 5284 while (size > conf->max_nr_stripes) {
566c09c5 5285 if (grow_one_stripe(conf, hash))
3f294f4f
N
5286 conf->max_nr_stripes++;
5287 else break;
566c09c5 5288 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
3f294f4f 5289 }
c41d4ac4
N
5290 return 0;
5291}
5292EXPORT_SYMBOL(raid5_set_cache_size);
5293
5294static ssize_t
fd01b88c 5295raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 5296{
d1688a6d 5297 struct r5conf *conf = mddev->private;
c41d4ac4
N
5298 unsigned long new;
5299 int err;
5300
5301 if (len >= PAGE_SIZE)
5302 return -EINVAL;
5303 if (!conf)
5304 return -ENODEV;
5305
b29bebd6 5306 if (kstrtoul(page, 10, &new))
c41d4ac4
N
5307 return -EINVAL;
5308 err = raid5_set_cache_size(mddev, new);
5309 if (err)
5310 return err;
3f294f4f
N
5311 return len;
5312}
007583c9 5313
96de1e66
N
5314static struct md_sysfs_entry
5315raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5316 raid5_show_stripe_cache_size,
5317 raid5_store_stripe_cache_size);
3f294f4f 5318
8b3e6cdc 5319static ssize_t
fd01b88c 5320raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 5321{
d1688a6d 5322 struct r5conf *conf = mddev->private;
8b3e6cdc
DW
5323 if (conf)
5324 return sprintf(page, "%d\n", conf->bypass_threshold);
5325 else
5326 return 0;
5327}
5328
5329static ssize_t
fd01b88c 5330raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 5331{
d1688a6d 5332 struct r5conf *conf = mddev->private;
4ef197d8 5333 unsigned long new;
8b3e6cdc
DW
5334 if (len >= PAGE_SIZE)
5335 return -EINVAL;
5336 if (!conf)
5337 return -ENODEV;
5338
b29bebd6 5339 if (kstrtoul(page, 10, &new))
8b3e6cdc 5340 return -EINVAL;
4ef197d8 5341 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
5342 return -EINVAL;
5343 conf->bypass_threshold = new;
5344 return len;
5345}
5346
5347static struct md_sysfs_entry
5348raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5349 S_IRUGO | S_IWUSR,
5350 raid5_show_preread_threshold,
5351 raid5_store_preread_threshold);
5352
3f294f4f 5353static ssize_t
fd01b88c 5354stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 5355{
d1688a6d 5356 struct r5conf *conf = mddev->private;
96de1e66
N
5357 if (conf)
5358 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5359 else
5360 return 0;
3f294f4f
N
5361}
5362
96de1e66
N
5363static struct md_sysfs_entry
5364raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 5365
b721420e
SL
5366static ssize_t
5367raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5368{
5369 struct r5conf *conf = mddev->private;
5370 if (conf)
5371 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5372 else
5373 return 0;
5374}
5375
5376static int alloc_thread_groups(struct r5conf *conf, int cnt);
5377static ssize_t
5378raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5379{
5380 struct r5conf *conf = mddev->private;
5381 unsigned long new;
5382 int err;
5383 struct r5worker_group *old_groups;
5384 int old_group_cnt;
5385
5386 if (len >= PAGE_SIZE)
5387 return -EINVAL;
5388 if (!conf)
5389 return -ENODEV;
5390
5391 if (kstrtoul(page, 10, &new))
5392 return -EINVAL;
5393
5394 if (new == conf->worker_cnt_per_group)
5395 return len;
5396
5397 mddev_suspend(mddev);
5398
5399 old_groups = conf->worker_groups;
5400 old_group_cnt = conf->worker_cnt_per_group;
5401
5402 conf->worker_groups = NULL;
5403 err = alloc_thread_groups(conf, new);
5404 if (err) {
5405 conf->worker_groups = old_groups;
5406 conf->worker_cnt_per_group = old_group_cnt;
5407 } else {
5408 if (old_groups)
5409 kfree(old_groups[0].workers);
5410 kfree(old_groups);
5411 }
5412
5413 mddev_resume(mddev);
5414
5415 if (err)
5416 return err;
5417 return len;
5418}
5419
5420static struct md_sysfs_entry
5421raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5422 raid5_show_group_thread_cnt,
5423 raid5_store_group_thread_cnt);
5424
007583c9 5425static struct attribute *raid5_attrs[] = {
3f294f4f
N
5426 &raid5_stripecache_size.attr,
5427 &raid5_stripecache_active.attr,
8b3e6cdc 5428 &raid5_preread_bypass_threshold.attr,
b721420e 5429 &raid5_group_thread_cnt.attr,
3f294f4f
N
5430 NULL,
5431};
007583c9
N
5432static struct attribute_group raid5_attrs_group = {
5433 .name = NULL,
5434 .attrs = raid5_attrs,
3f294f4f
N
5435};
5436
851c30c9
SL
5437static int alloc_thread_groups(struct r5conf *conf, int cnt)
5438{
566c09c5 5439 int i, j, k;
851c30c9
SL
5440 ssize_t size;
5441 struct r5worker *workers;
5442
5443 conf->worker_cnt_per_group = cnt;
5444 if (cnt == 0) {
5445 conf->worker_groups = NULL;
5446 return 0;
5447 }
5448 conf->group_cnt = num_possible_nodes();
5449 size = sizeof(struct r5worker) * cnt;
5450 workers = kzalloc(size * conf->group_cnt, GFP_NOIO);
5451 conf->worker_groups = kzalloc(sizeof(struct r5worker_group) *
5452 conf->group_cnt, GFP_NOIO);
5453 if (!conf->worker_groups || !workers) {
5454 kfree(workers);
5455 kfree(conf->worker_groups);
5456 conf->worker_groups = NULL;
5457 return -ENOMEM;
5458 }
5459
5460 for (i = 0; i < conf->group_cnt; i++) {
5461 struct r5worker_group *group;
5462
5463 group = &conf->worker_groups[i];
5464 INIT_LIST_HEAD(&group->handle_list);
5465 group->conf = conf;
5466 group->workers = workers + i * cnt;
5467
5468 for (j = 0; j < cnt; j++) {
566c09c5
SL
5469 struct r5worker *worker = group->workers + j;
5470 worker->group = group;
5471 INIT_WORK(&worker->work, raid5_do_work);
5472
5473 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5474 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
5475 }
5476 }
5477
5478 return 0;
5479}
5480
5481static void free_thread_groups(struct r5conf *conf)
5482{
5483 if (conf->worker_groups)
5484 kfree(conf->worker_groups[0].workers);
5485 kfree(conf->worker_groups);
5486 conf->worker_groups = NULL;
5487}
5488
80c3a6ce 5489static sector_t
fd01b88c 5490raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 5491{
d1688a6d 5492 struct r5conf *conf = mddev->private;
80c3a6ce
DW
5493
5494 if (!sectors)
5495 sectors = mddev->dev_sectors;
5e5e3e78 5496 if (!raid_disks)
7ec05478 5497 /* size is defined by the smallest of previous and new size */
5e5e3e78 5498 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 5499
9d8f0363 5500 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 5501 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
5502 return sectors * (raid_disks - conf->max_degraded);
5503}
5504
d1688a6d 5505static void raid5_free_percpu(struct r5conf *conf)
36d1c647
DW
5506{
5507 struct raid5_percpu *percpu;
5508 unsigned long cpu;
5509
5510 if (!conf->percpu)
5511 return;
5512
5513 get_online_cpus();
5514 for_each_possible_cpu(cpu) {
5515 percpu = per_cpu_ptr(conf->percpu, cpu);
5516 safe_put_page(percpu->spare_page);
d6f38f31 5517 kfree(percpu->scribble);
36d1c647
DW
5518 }
5519#ifdef CONFIG_HOTPLUG_CPU
5520 unregister_cpu_notifier(&conf->cpu_notify);
5521#endif
5522 put_online_cpus();
5523
5524 free_percpu(conf->percpu);
5525}
5526
d1688a6d 5527static void free_conf(struct r5conf *conf)
95fc17aa 5528{
851c30c9 5529 free_thread_groups(conf);
95fc17aa 5530 shrink_stripes(conf);
36d1c647 5531 raid5_free_percpu(conf);
95fc17aa
DW
5532 kfree(conf->disks);
5533 kfree(conf->stripe_hashtbl);
5534 kfree(conf);
5535}
5536
36d1c647
DW
5537#ifdef CONFIG_HOTPLUG_CPU
5538static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5539 void *hcpu)
5540{
d1688a6d 5541 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
5542 long cpu = (long)hcpu;
5543 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5544
5545 switch (action) {
5546 case CPU_UP_PREPARE:
5547 case CPU_UP_PREPARE_FROZEN:
d6f38f31 5548 if (conf->level == 6 && !percpu->spare_page)
36d1c647 5549 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
5550 if (!percpu->scribble)
5551 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5552
5553 if (!percpu->scribble ||
5554 (conf->level == 6 && !percpu->spare_page)) {
5555 safe_put_page(percpu->spare_page);
5556 kfree(percpu->scribble);
36d1c647
DW
5557 pr_err("%s: failed memory allocation for cpu%ld\n",
5558 __func__, cpu);
55af6bb5 5559 return notifier_from_errno(-ENOMEM);
36d1c647
DW
5560 }
5561 break;
5562 case CPU_DEAD:
5563 case CPU_DEAD_FROZEN:
5564 safe_put_page(percpu->spare_page);
d6f38f31 5565 kfree(percpu->scribble);
36d1c647 5566 percpu->spare_page = NULL;
d6f38f31 5567 percpu->scribble = NULL;
36d1c647
DW
5568 break;
5569 default:
5570 break;
5571 }
5572 return NOTIFY_OK;
5573}
5574#endif
5575
d1688a6d 5576static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
5577{
5578 unsigned long cpu;
5579 struct page *spare_page;
a29d8b8e 5580 struct raid5_percpu __percpu *allcpus;
d6f38f31 5581 void *scribble;
36d1c647
DW
5582 int err;
5583
36d1c647
DW
5584 allcpus = alloc_percpu(struct raid5_percpu);
5585 if (!allcpus)
5586 return -ENOMEM;
5587 conf->percpu = allcpus;
5588
5589 get_online_cpus();
5590 err = 0;
5591 for_each_present_cpu(cpu) {
d6f38f31
DW
5592 if (conf->level == 6) {
5593 spare_page = alloc_page(GFP_KERNEL);
5594 if (!spare_page) {
5595 err = -ENOMEM;
5596 break;
5597 }
5598 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5599 }
5e5e3e78 5600 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
d6f38f31 5601 if (!scribble) {
36d1c647
DW
5602 err = -ENOMEM;
5603 break;
5604 }
d6f38f31 5605 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
5606 }
5607#ifdef CONFIG_HOTPLUG_CPU
5608 conf->cpu_notify.notifier_call = raid456_cpu_notify;
5609 conf->cpu_notify.priority = 0;
5610 if (err == 0)
5611 err = register_cpu_notifier(&conf->cpu_notify);
5612#endif
5613 put_online_cpus();
5614
5615 return err;
5616}
5617
d1688a6d 5618static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 5619{
d1688a6d 5620 struct r5conf *conf;
5e5e3e78 5621 int raid_disk, memory, max_disks;
3cb03002 5622 struct md_rdev *rdev;
1da177e4 5623 struct disk_info *disk;
0232605d 5624 char pers_name[6];
566c09c5 5625 int i;
1da177e4 5626
91adb564
N
5627 if (mddev->new_level != 5
5628 && mddev->new_level != 4
5629 && mddev->new_level != 6) {
0c55e022 5630 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
5631 mdname(mddev), mddev->new_level);
5632 return ERR_PTR(-EIO);
1da177e4 5633 }
91adb564
N
5634 if ((mddev->new_level == 5
5635 && !algorithm_valid_raid5(mddev->new_layout)) ||
5636 (mddev->new_level == 6
5637 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 5638 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
5639 mdname(mddev), mddev->new_layout);
5640 return ERR_PTR(-EIO);
99c0fb5f 5641 }
91adb564 5642 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 5643 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
5644 mdname(mddev), mddev->raid_disks);
5645 return ERR_PTR(-EINVAL);
4bbf3771
N
5646 }
5647
664e7c41
AN
5648 if (!mddev->new_chunk_sectors ||
5649 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5650 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
5651 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5652 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 5653 return ERR_PTR(-EINVAL);
f6705578
N
5654 }
5655
d1688a6d 5656 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 5657 if (conf == NULL)
1da177e4 5658 goto abort;
851c30c9
SL
5659 /* Don't enable multi-threading by default*/
5660 if (alloc_thread_groups(conf, 0))
5661 goto abort;
f5efd45a 5662 spin_lock_init(&conf->device_lock);
c46501b2 5663 seqcount_init(&conf->gen_lock);
f5efd45a
DW
5664 init_waitqueue_head(&conf->wait_for_stripe);
5665 init_waitqueue_head(&conf->wait_for_overlap);
5666 INIT_LIST_HEAD(&conf->handle_list);
5667 INIT_LIST_HEAD(&conf->hold_list);
5668 INIT_LIST_HEAD(&conf->delayed_list);
5669 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 5670 init_llist_head(&conf->released_stripes);
f5efd45a
DW
5671 atomic_set(&conf->active_stripes, 0);
5672 atomic_set(&conf->preread_active_stripes, 0);
5673 atomic_set(&conf->active_aligned_reads, 0);
5674 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 5675 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
5676
5677 conf->raid_disks = mddev->raid_disks;
5678 if (mddev->reshape_position == MaxSector)
5679 conf->previous_raid_disks = mddev->raid_disks;
5680 else
f6705578 5681 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
5682 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5683 conf->scribble_len = scribble_len(max_disks);
f6705578 5684
5e5e3e78 5685 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
5686 GFP_KERNEL);
5687 if (!conf->disks)
5688 goto abort;
9ffae0cf 5689
1da177e4
LT
5690 conf->mddev = mddev;
5691
fccddba0 5692 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 5693 goto abort;
1da177e4 5694
566c09c5
SL
5695 /* We init hash_locks[0] separately to that it can be used
5696 * as the reference lock in the spin_lock_nest_lock() call
5697 * in lock_all_device_hash_locks_irq in order to convince
5698 * lockdep that we know what we are doing.
5699 */
5700 spin_lock_init(conf->hash_locks);
5701 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5702 spin_lock_init(conf->hash_locks + i);
5703
5704 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5705 INIT_LIST_HEAD(conf->inactive_list + i);
5706
5707 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5708 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5709
36d1c647
DW
5710 conf->level = mddev->new_level;
5711 if (raid5_alloc_percpu(conf) != 0)
5712 goto abort;
5713
0c55e022 5714 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 5715
dafb20fa 5716 rdev_for_each(rdev, mddev) {
1da177e4 5717 raid_disk = rdev->raid_disk;
5e5e3e78 5718 if (raid_disk >= max_disks
1da177e4
LT
5719 || raid_disk < 0)
5720 continue;
5721 disk = conf->disks + raid_disk;
5722
17045f52
N
5723 if (test_bit(Replacement, &rdev->flags)) {
5724 if (disk->replacement)
5725 goto abort;
5726 disk->replacement = rdev;
5727 } else {
5728 if (disk->rdev)
5729 goto abort;
5730 disk->rdev = rdev;
5731 }
1da177e4 5732
b2d444d7 5733 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 5734 char b[BDEVNAME_SIZE];
0c55e022
N
5735 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5736 " disk %d\n",
5737 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 5738 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
5739 /* Cannot rely on bitmap to complete recovery */
5740 conf->fullsync = 1;
1da177e4
LT
5741 }
5742
09c9e5fa 5743 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 5744 conf->level = mddev->new_level;
16a53ecc
N
5745 if (conf->level == 6)
5746 conf->max_degraded = 2;
5747 else
5748 conf->max_degraded = 1;
91adb564 5749 conf->algorithm = mddev->new_layout;
fef9c61f 5750 conf->reshape_progress = mddev->reshape_position;
e183eaed 5751 if (conf->reshape_progress != MaxSector) {
09c9e5fa 5752 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
5753 conf->prev_algo = mddev->layout;
5754 }
1da177e4 5755
91adb564 5756 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 5757 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 5758 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
566c09c5 5759 if (grow_stripes(conf, NR_STRIPES)) {
91adb564 5760 printk(KERN_ERR
0c55e022
N
5761 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5762 mdname(mddev), memory);
91adb564
N
5763 goto abort;
5764 } else
0c55e022
N
5765 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5766 mdname(mddev), memory);
1da177e4 5767
0232605d
N
5768 sprintf(pers_name, "raid%d", mddev->new_level);
5769 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
5770 if (!conf->thread) {
5771 printk(KERN_ERR
0c55e022 5772 "md/raid:%s: couldn't allocate thread.\n",
91adb564 5773 mdname(mddev));
16a53ecc
N
5774 goto abort;
5775 }
91adb564
N
5776
5777 return conf;
5778
5779 abort:
5780 if (conf) {
95fc17aa 5781 free_conf(conf);
91adb564
N
5782 return ERR_PTR(-EIO);
5783 } else
5784 return ERR_PTR(-ENOMEM);
5785}
5786
c148ffdc
N
5787
5788static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5789{
5790 switch (algo) {
5791 case ALGORITHM_PARITY_0:
5792 if (raid_disk < max_degraded)
5793 return 1;
5794 break;
5795 case ALGORITHM_PARITY_N:
5796 if (raid_disk >= raid_disks - max_degraded)
5797 return 1;
5798 break;
5799 case ALGORITHM_PARITY_0_6:
5800 if (raid_disk == 0 ||
5801 raid_disk == raid_disks - 1)
5802 return 1;
5803 break;
5804 case ALGORITHM_LEFT_ASYMMETRIC_6:
5805 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5806 case ALGORITHM_LEFT_SYMMETRIC_6:
5807 case ALGORITHM_RIGHT_SYMMETRIC_6:
5808 if (raid_disk == raid_disks - 1)
5809 return 1;
5810 }
5811 return 0;
5812}
5813
fd01b88c 5814static int run(struct mddev *mddev)
91adb564 5815{
d1688a6d 5816 struct r5conf *conf;
9f7c2220 5817 int working_disks = 0;
c148ffdc 5818 int dirty_parity_disks = 0;
3cb03002 5819 struct md_rdev *rdev;
c148ffdc 5820 sector_t reshape_offset = 0;
17045f52 5821 int i;
b5254dd5
N
5822 long long min_offset_diff = 0;
5823 int first = 1;
91adb564 5824
8c6ac868 5825 if (mddev->recovery_cp != MaxSector)
0c55e022 5826 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
5827 " -- starting background reconstruction\n",
5828 mdname(mddev));
b5254dd5
N
5829
5830 rdev_for_each(rdev, mddev) {
5831 long long diff;
5832 if (rdev->raid_disk < 0)
5833 continue;
5834 diff = (rdev->new_data_offset - rdev->data_offset);
5835 if (first) {
5836 min_offset_diff = diff;
5837 first = 0;
5838 } else if (mddev->reshape_backwards &&
5839 diff < min_offset_diff)
5840 min_offset_diff = diff;
5841 else if (!mddev->reshape_backwards &&
5842 diff > min_offset_diff)
5843 min_offset_diff = diff;
5844 }
5845
91adb564
N
5846 if (mddev->reshape_position != MaxSector) {
5847 /* Check that we can continue the reshape.
b5254dd5
N
5848 * Difficulties arise if the stripe we would write to
5849 * next is at or after the stripe we would read from next.
5850 * For a reshape that changes the number of devices, this
5851 * is only possible for a very short time, and mdadm makes
5852 * sure that time appears to have past before assembling
5853 * the array. So we fail if that time hasn't passed.
5854 * For a reshape that keeps the number of devices the same
5855 * mdadm must be monitoring the reshape can keeping the
5856 * critical areas read-only and backed up. It will start
5857 * the array in read-only mode, so we check for that.
91adb564
N
5858 */
5859 sector_t here_new, here_old;
5860 int old_disks;
18b00334 5861 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 5862
88ce4930 5863 if (mddev->new_level != mddev->level) {
0c55e022 5864 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
5865 "required - aborting.\n",
5866 mdname(mddev));
5867 return -EINVAL;
5868 }
91adb564
N
5869 old_disks = mddev->raid_disks - mddev->delta_disks;
5870 /* reshape_position must be on a new-stripe boundary, and one
5871 * further up in new geometry must map after here in old
5872 * geometry.
5873 */
5874 here_new = mddev->reshape_position;
664e7c41 5875 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 5876 (mddev->raid_disks - max_degraded))) {
0c55e022
N
5877 printk(KERN_ERR "md/raid:%s: reshape_position not "
5878 "on a stripe boundary\n", mdname(mddev));
91adb564
N
5879 return -EINVAL;
5880 }
c148ffdc 5881 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
5882 /* here_new is the stripe we will write to */
5883 here_old = mddev->reshape_position;
9d8f0363 5884 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
5885 (old_disks-max_degraded));
5886 /* here_old is the first stripe that we might need to read
5887 * from */
67ac6011 5888 if (mddev->delta_disks == 0) {
b5254dd5
N
5889 if ((here_new * mddev->new_chunk_sectors !=
5890 here_old * mddev->chunk_sectors)) {
5891 printk(KERN_ERR "md/raid:%s: reshape position is"
5892 " confused - aborting\n", mdname(mddev));
5893 return -EINVAL;
5894 }
67ac6011 5895 /* We cannot be sure it is safe to start an in-place
b5254dd5 5896 * reshape. It is only safe if user-space is monitoring
67ac6011
N
5897 * and taking constant backups.
5898 * mdadm always starts a situation like this in
5899 * readonly mode so it can take control before
5900 * allowing any writes. So just check for that.
5901 */
b5254dd5
N
5902 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5903 abs(min_offset_diff) >= mddev->new_chunk_sectors)
5904 /* not really in-place - so OK */;
5905 else if (mddev->ro == 0) {
5906 printk(KERN_ERR "md/raid:%s: in-place reshape "
5907 "must be started in read-only mode "
5908 "- aborting\n",
0c55e022 5909 mdname(mddev));
67ac6011
N
5910 return -EINVAL;
5911 }
2c810cdd 5912 } else if (mddev->reshape_backwards
b5254dd5 5913 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
67ac6011
N
5914 here_old * mddev->chunk_sectors)
5915 : (here_new * mddev->new_chunk_sectors >=
b5254dd5 5916 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
91adb564 5917 /* Reading from the same stripe as writing to - bad */
0c55e022
N
5918 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5919 "auto-recovery - aborting.\n",
5920 mdname(mddev));
91adb564
N
5921 return -EINVAL;
5922 }
0c55e022
N
5923 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5924 mdname(mddev));
91adb564
N
5925 /* OK, we should be able to continue; */
5926 } else {
5927 BUG_ON(mddev->level != mddev->new_level);
5928 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 5929 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 5930 BUG_ON(mddev->delta_disks != 0);
1da177e4 5931 }
91adb564 5932
245f46c2
N
5933 if (mddev->private == NULL)
5934 conf = setup_conf(mddev);
5935 else
5936 conf = mddev->private;
5937
91adb564
N
5938 if (IS_ERR(conf))
5939 return PTR_ERR(conf);
5940
b5254dd5 5941 conf->min_offset_diff = min_offset_diff;
91adb564
N
5942 mddev->thread = conf->thread;
5943 conf->thread = NULL;
5944 mddev->private = conf;
5945
17045f52
N
5946 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5947 i++) {
5948 rdev = conf->disks[i].rdev;
5949 if (!rdev && conf->disks[i].replacement) {
5950 /* The replacement is all we have yet */
5951 rdev = conf->disks[i].replacement;
5952 conf->disks[i].replacement = NULL;
5953 clear_bit(Replacement, &rdev->flags);
5954 conf->disks[i].rdev = rdev;
5955 }
5956 if (!rdev)
c148ffdc 5957 continue;
17045f52
N
5958 if (conf->disks[i].replacement &&
5959 conf->reshape_progress != MaxSector) {
5960 /* replacements and reshape simply do not mix. */
5961 printk(KERN_ERR "md: cannot handle concurrent "
5962 "replacement and reshape.\n");
5963 goto abort;
5964 }
2f115882 5965 if (test_bit(In_sync, &rdev->flags)) {
91adb564 5966 working_disks++;
2f115882
N
5967 continue;
5968 }
c148ffdc
N
5969 /* This disc is not fully in-sync. However if it
5970 * just stored parity (beyond the recovery_offset),
5971 * when we don't need to be concerned about the
5972 * array being dirty.
5973 * When reshape goes 'backwards', we never have
5974 * partially completed devices, so we only need
5975 * to worry about reshape going forwards.
5976 */
5977 /* Hack because v0.91 doesn't store recovery_offset properly. */
5978 if (mddev->major_version == 0 &&
5979 mddev->minor_version > 90)
5980 rdev->recovery_offset = reshape_offset;
5026d7a9 5981
c148ffdc
N
5982 if (rdev->recovery_offset < reshape_offset) {
5983 /* We need to check old and new layout */
5984 if (!only_parity(rdev->raid_disk,
5985 conf->algorithm,
5986 conf->raid_disks,
5987 conf->max_degraded))
5988 continue;
5989 }
5990 if (!only_parity(rdev->raid_disk,
5991 conf->prev_algo,
5992 conf->previous_raid_disks,
5993 conf->max_degraded))
5994 continue;
5995 dirty_parity_disks++;
5996 }
91adb564 5997
17045f52
N
5998 /*
5999 * 0 for a fully functional array, 1 or 2 for a degraded array.
6000 */
908f4fbd 6001 mddev->degraded = calc_degraded(conf);
91adb564 6002
674806d6 6003 if (has_failed(conf)) {
0c55e022 6004 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 6005 " (%d/%d failed)\n",
02c2de8c 6006 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
6007 goto abort;
6008 }
6009
91adb564 6010 /* device size must be a multiple of chunk size */
9d8f0363 6011 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
6012 mddev->resync_max_sectors = mddev->dev_sectors;
6013
c148ffdc 6014 if (mddev->degraded > dirty_parity_disks &&
1da177e4 6015 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
6016 if (mddev->ok_start_degraded)
6017 printk(KERN_WARNING
0c55e022
N
6018 "md/raid:%s: starting dirty degraded array"
6019 " - data corruption possible.\n",
6ff8d8ec
N
6020 mdname(mddev));
6021 else {
6022 printk(KERN_ERR
0c55e022 6023 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
6024 mdname(mddev));
6025 goto abort;
6026 }
1da177e4
LT
6027 }
6028
1da177e4 6029 if (mddev->degraded == 0)
0c55e022
N
6030 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6031 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
6032 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6033 mddev->new_layout);
1da177e4 6034 else
0c55e022
N
6035 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6036 " out of %d devices, algorithm %d\n",
6037 mdname(mddev), conf->level,
6038 mddev->raid_disks - mddev->degraded,
6039 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
6040
6041 print_raid5_conf(conf);
6042
fef9c61f 6043 if (conf->reshape_progress != MaxSector) {
fef9c61f 6044 conf->reshape_safe = conf->reshape_progress;
f6705578
N
6045 atomic_set(&conf->reshape_stripes, 0);
6046 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6047 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6048 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6049 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6050 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6051 "reshape");
f6705578
N
6052 }
6053
1da177e4
LT
6054
6055 /* Ok, everything is just fine now */
a64c876f
N
6056 if (mddev->to_remove == &raid5_attrs_group)
6057 mddev->to_remove = NULL;
00bcb4ac
N
6058 else if (mddev->kobj.sd &&
6059 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 6060 printk(KERN_WARNING
4a5add49 6061 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 6062 mdname(mddev));
4a5add49 6063 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 6064
4a5add49 6065 if (mddev->queue) {
9f7c2220 6066 int chunk_size;
620125f2 6067 bool discard_supported = true;
4a5add49
N
6068 /* read-ahead size must cover two whole stripes, which
6069 * is 2 * (datadisks) * chunksize where 'n' is the
6070 * number of raid devices
6071 */
6072 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6073 int stripe = data_disks *
6074 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6075 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6076 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 6077
4a5add49 6078 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
f022b2fd 6079
11d8a6e3
N
6080 mddev->queue->backing_dev_info.congested_data = mddev;
6081 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
7a5febe9 6082
9f7c2220
N
6083 chunk_size = mddev->chunk_sectors << 9;
6084 blk_queue_io_min(mddev->queue, chunk_size);
6085 blk_queue_io_opt(mddev->queue, chunk_size *
6086 (conf->raid_disks - conf->max_degraded));
620125f2
SL
6087 /*
6088 * We can only discard a whole stripe. It doesn't make sense to
6089 * discard data disk but write parity disk
6090 */
6091 stripe = stripe * PAGE_SIZE;
4ac6875e
N
6092 /* Round up to power of 2, as discard handling
6093 * currently assumes that */
6094 while ((stripe-1) & stripe)
6095 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
6096 mddev->queue->limits.discard_alignment = stripe;
6097 mddev->queue->limits.discard_granularity = stripe;
6098 /*
6099 * unaligned part of discard request will be ignored, so can't
6100 * guarantee discard_zerors_data
6101 */
6102 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 6103
5026d7a9
PA
6104 blk_queue_max_write_same_sectors(mddev->queue, 0);
6105
05616be5 6106 rdev_for_each(rdev, mddev) {
9f7c2220
N
6107 disk_stack_limits(mddev->gendisk, rdev->bdev,
6108 rdev->data_offset << 9);
05616be5
N
6109 disk_stack_limits(mddev->gendisk, rdev->bdev,
6110 rdev->new_data_offset << 9);
620125f2
SL
6111 /*
6112 * discard_zeroes_data is required, otherwise data
6113 * could be lost. Consider a scenario: discard a stripe
6114 * (the stripe could be inconsistent if
6115 * discard_zeroes_data is 0); write one disk of the
6116 * stripe (the stripe could be inconsistent again
6117 * depending on which disks are used to calculate
6118 * parity); the disk is broken; The stripe data of this
6119 * disk is lost.
6120 */
6121 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6122 !bdev_get_queue(rdev->bdev)->
6123 limits.discard_zeroes_data)
6124 discard_supported = false;
05616be5 6125 }
620125f2
SL
6126
6127 if (discard_supported &&
6128 mddev->queue->limits.max_discard_sectors >= stripe &&
6129 mddev->queue->limits.discard_granularity >= stripe)
6130 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6131 mddev->queue);
6132 else
6133 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6134 mddev->queue);
9f7c2220 6135 }
23032a0e 6136
1da177e4
LT
6137 return 0;
6138abort:
01f96c0a 6139 md_unregister_thread(&mddev->thread);
e4f869d9
N
6140 print_raid5_conf(conf);
6141 free_conf(conf);
1da177e4 6142 mddev->private = NULL;
0c55e022 6143 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
6144 return -EIO;
6145}
6146
fd01b88c 6147static int stop(struct mddev *mddev)
1da177e4 6148{
d1688a6d 6149 struct r5conf *conf = mddev->private;
1da177e4 6150
01f96c0a 6151 md_unregister_thread(&mddev->thread);
11d8a6e3
N
6152 if (mddev->queue)
6153 mddev->queue->backing_dev_info.congested_fn = NULL;
95fc17aa 6154 free_conf(conf);
a64c876f
N
6155 mddev->private = NULL;
6156 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
6157 return 0;
6158}
6159
fd01b88c 6160static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 6161{
d1688a6d 6162 struct r5conf *conf = mddev->private;
1da177e4
LT
6163 int i;
6164
9d8f0363
AN
6165 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6166 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 6167 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
6168 for (i = 0; i < conf->raid_disks; i++)
6169 seq_printf (seq, "%s",
6170 conf->disks[i].rdev &&
b2d444d7 6171 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 6172 seq_printf (seq, "]");
1da177e4
LT
6173}
6174
d1688a6d 6175static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
6176{
6177 int i;
6178 struct disk_info *tmp;
6179
0c55e022 6180 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
6181 if (!conf) {
6182 printk("(conf==NULL)\n");
6183 return;
6184 }
0c55e022
N
6185 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6186 conf->raid_disks,
6187 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
6188
6189 for (i = 0; i < conf->raid_disks; i++) {
6190 char b[BDEVNAME_SIZE];
6191 tmp = conf->disks + i;
6192 if (tmp->rdev)
0c55e022
N
6193 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6194 i, !test_bit(Faulty, &tmp->rdev->flags),
6195 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
6196 }
6197}
6198
fd01b88c 6199static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
6200{
6201 int i;
d1688a6d 6202 struct r5conf *conf = mddev->private;
1da177e4 6203 struct disk_info *tmp;
6b965620
N
6204 int count = 0;
6205 unsigned long flags;
1da177e4
LT
6206
6207 for (i = 0; i < conf->raid_disks; i++) {
6208 tmp = conf->disks + i;
dd054fce
N
6209 if (tmp->replacement
6210 && tmp->replacement->recovery_offset == MaxSector
6211 && !test_bit(Faulty, &tmp->replacement->flags)
6212 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6213 /* Replacement has just become active. */
6214 if (!tmp->rdev
6215 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6216 count++;
6217 if (tmp->rdev) {
6218 /* Replaced device not technically faulty,
6219 * but we need to be sure it gets removed
6220 * and never re-added.
6221 */
6222 set_bit(Faulty, &tmp->rdev->flags);
6223 sysfs_notify_dirent_safe(
6224 tmp->rdev->sysfs_state);
6225 }
6226 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6227 } else if (tmp->rdev
70fffd0b 6228 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 6229 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 6230 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 6231 count++;
43c73ca4 6232 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
6233 }
6234 }
6b965620 6235 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 6236 mddev->degraded = calc_degraded(conf);
6b965620 6237 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 6238 print_raid5_conf(conf);
6b965620 6239 return count;
1da177e4
LT
6240}
6241
b8321b68 6242static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 6243{
d1688a6d 6244 struct r5conf *conf = mddev->private;
1da177e4 6245 int err = 0;
b8321b68 6246 int number = rdev->raid_disk;
657e3e4d 6247 struct md_rdev **rdevp;
1da177e4
LT
6248 struct disk_info *p = conf->disks + number;
6249
6250 print_raid5_conf(conf);
657e3e4d
N
6251 if (rdev == p->rdev)
6252 rdevp = &p->rdev;
6253 else if (rdev == p->replacement)
6254 rdevp = &p->replacement;
6255 else
6256 return 0;
6257
6258 if (number >= conf->raid_disks &&
6259 conf->reshape_progress == MaxSector)
6260 clear_bit(In_sync, &rdev->flags);
6261
6262 if (test_bit(In_sync, &rdev->flags) ||
6263 atomic_read(&rdev->nr_pending)) {
6264 err = -EBUSY;
6265 goto abort;
6266 }
6267 /* Only remove non-faulty devices if recovery
6268 * isn't possible.
6269 */
6270 if (!test_bit(Faulty, &rdev->flags) &&
6271 mddev->recovery_disabled != conf->recovery_disabled &&
6272 !has_failed(conf) &&
dd054fce 6273 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
6274 number < conf->raid_disks) {
6275 err = -EBUSY;
6276 goto abort;
6277 }
6278 *rdevp = NULL;
6279 synchronize_rcu();
6280 if (atomic_read(&rdev->nr_pending)) {
6281 /* lost the race, try later */
6282 err = -EBUSY;
6283 *rdevp = rdev;
dd054fce
N
6284 } else if (p->replacement) {
6285 /* We must have just cleared 'rdev' */
6286 p->rdev = p->replacement;
6287 clear_bit(Replacement, &p->replacement->flags);
6288 smp_mb(); /* Make sure other CPUs may see both as identical
6289 * but will never see neither - if they are careful
6290 */
6291 p->replacement = NULL;
6292 clear_bit(WantReplacement, &rdev->flags);
6293 } else
6294 /* We might have just removed the Replacement as faulty-
6295 * clear the bit just in case
6296 */
6297 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
6298abort:
6299
6300 print_raid5_conf(conf);
6301 return err;
6302}
6303
fd01b88c 6304static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 6305{
d1688a6d 6306 struct r5conf *conf = mddev->private;
199050ea 6307 int err = -EEXIST;
1da177e4
LT
6308 int disk;
6309 struct disk_info *p;
6c2fce2e
NB
6310 int first = 0;
6311 int last = conf->raid_disks - 1;
1da177e4 6312
7f0da59b
N
6313 if (mddev->recovery_disabled == conf->recovery_disabled)
6314 return -EBUSY;
6315
dc10c643 6316 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 6317 /* no point adding a device */
199050ea 6318 return -EINVAL;
1da177e4 6319
6c2fce2e
NB
6320 if (rdev->raid_disk >= 0)
6321 first = last = rdev->raid_disk;
1da177e4
LT
6322
6323 /*
16a53ecc
N
6324 * find the disk ... but prefer rdev->saved_raid_disk
6325 * if possible.
1da177e4 6326 */
16a53ecc 6327 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 6328 rdev->saved_raid_disk >= first &&
16a53ecc 6329 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
6330 first = rdev->saved_raid_disk;
6331
6332 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
6333 p = conf->disks + disk;
6334 if (p->rdev == NULL) {
b2d444d7 6335 clear_bit(In_sync, &rdev->flags);
1da177e4 6336 rdev->raid_disk = disk;
199050ea 6337 err = 0;
72626685
N
6338 if (rdev->saved_raid_disk != disk)
6339 conf->fullsync = 1;
d6065f7b 6340 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 6341 goto out;
1da177e4 6342 }
5cfb22a1
N
6343 }
6344 for (disk = first; disk <= last; disk++) {
6345 p = conf->disks + disk;
7bfec5f3
N
6346 if (test_bit(WantReplacement, &p->rdev->flags) &&
6347 p->replacement == NULL) {
6348 clear_bit(In_sync, &rdev->flags);
6349 set_bit(Replacement, &rdev->flags);
6350 rdev->raid_disk = disk;
6351 err = 0;
6352 conf->fullsync = 1;
6353 rcu_assign_pointer(p->replacement, rdev);
6354 break;
6355 }
6356 }
5cfb22a1 6357out:
1da177e4 6358 print_raid5_conf(conf);
199050ea 6359 return err;
1da177e4
LT
6360}
6361
fd01b88c 6362static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
6363{
6364 /* no resync is happening, and there is enough space
6365 * on all devices, so we can resize.
6366 * We need to make sure resync covers any new space.
6367 * If the array is shrinking we should possibly wait until
6368 * any io in the removed space completes, but it hardly seems
6369 * worth it.
6370 */
a4a6125a 6371 sector_t newsize;
9d8f0363 6372 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
a4a6125a
N
6373 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6374 if (mddev->external_size &&
6375 mddev->array_sectors > newsize)
b522adcd 6376 return -EINVAL;
a4a6125a
N
6377 if (mddev->bitmap) {
6378 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6379 if (ret)
6380 return ret;
6381 }
6382 md_set_array_sectors(mddev, newsize);
f233ea5c 6383 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 6384 revalidate_disk(mddev->gendisk);
b098636c
N
6385 if (sectors > mddev->dev_sectors &&
6386 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 6387 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
6388 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6389 }
58c0fed4 6390 mddev->dev_sectors = sectors;
4b5c7ae8 6391 mddev->resync_max_sectors = sectors;
1da177e4
LT
6392 return 0;
6393}
6394
fd01b88c 6395static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
6396{
6397 /* Can only proceed if there are plenty of stripe_heads.
6398 * We need a minimum of one full stripe,, and for sensible progress
6399 * it is best to have about 4 times that.
6400 * If we require 4 times, then the default 256 4K stripe_heads will
6401 * allow for chunk sizes up to 256K, which is probably OK.
6402 * If the chunk size is greater, user-space should request more
6403 * stripe_heads first.
6404 */
d1688a6d 6405 struct r5conf *conf = mddev->private;
01ee22b4
N
6406 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6407 > conf->max_nr_stripes ||
6408 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6409 > conf->max_nr_stripes) {
0c55e022
N
6410 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
6411 mdname(mddev),
01ee22b4
N
6412 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6413 / STRIPE_SIZE)*4);
6414 return 0;
6415 }
6416 return 1;
6417}
6418
fd01b88c 6419static int check_reshape(struct mddev *mddev)
29269553 6420{
d1688a6d 6421 struct r5conf *conf = mddev->private;
29269553 6422
88ce4930
N
6423 if (mddev->delta_disks == 0 &&
6424 mddev->new_layout == mddev->layout &&
664e7c41 6425 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 6426 return 0; /* nothing to do */
674806d6 6427 if (has_failed(conf))
ec32a2bd 6428 return -EINVAL;
fdcfbbb6 6429 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
6430 /* We might be able to shrink, but the devices must
6431 * be made bigger first.
6432 * For raid6, 4 is the minimum size.
6433 * Otherwise 2 is the minimum
6434 */
6435 int min = 2;
6436 if (mddev->level == 6)
6437 min = 4;
6438 if (mddev->raid_disks + mddev->delta_disks < min)
6439 return -EINVAL;
6440 }
29269553 6441
01ee22b4 6442 if (!check_stripe_cache(mddev))
29269553 6443 return -ENOSPC;
29269553 6444
e56108d6
N
6445 return resize_stripes(conf, (conf->previous_raid_disks
6446 + mddev->delta_disks));
63c70c4f
N
6447}
6448
fd01b88c 6449static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 6450{
d1688a6d 6451 struct r5conf *conf = mddev->private;
3cb03002 6452 struct md_rdev *rdev;
63c70c4f 6453 int spares = 0;
c04be0aa 6454 unsigned long flags;
63c70c4f 6455
f416885e 6456 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
6457 return -EBUSY;
6458
01ee22b4
N
6459 if (!check_stripe_cache(mddev))
6460 return -ENOSPC;
6461
30b67645
N
6462 if (has_failed(conf))
6463 return -EINVAL;
6464
c6563a8c 6465 rdev_for_each(rdev, mddev) {
469518a3
N
6466 if (!test_bit(In_sync, &rdev->flags)
6467 && !test_bit(Faulty, &rdev->flags))
29269553 6468 spares++;
c6563a8c 6469 }
63c70c4f 6470
f416885e 6471 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
6472 /* Not enough devices even to make a degraded array
6473 * of that size
6474 */
6475 return -EINVAL;
6476
ec32a2bd
N
6477 /* Refuse to reduce size of the array. Any reductions in
6478 * array size must be through explicit setting of array_size
6479 * attribute.
6480 */
6481 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6482 < mddev->array_sectors) {
0c55e022 6483 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
6484 "before number of disks\n", mdname(mddev));
6485 return -EINVAL;
6486 }
6487
f6705578 6488 atomic_set(&conf->reshape_stripes, 0);
29269553 6489 spin_lock_irq(&conf->device_lock);
c46501b2 6490 write_seqcount_begin(&conf->gen_lock);
29269553 6491 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 6492 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
6493 conf->prev_chunk_sectors = conf->chunk_sectors;
6494 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
6495 conf->prev_algo = conf->algorithm;
6496 conf->algorithm = mddev->new_layout;
05616be5
N
6497 conf->generation++;
6498 /* Code that selects data_offset needs to see the generation update
6499 * if reshape_progress has been set - so a memory barrier needed.
6500 */
6501 smp_mb();
2c810cdd 6502 if (mddev->reshape_backwards)
fef9c61f
N
6503 conf->reshape_progress = raid5_size(mddev, 0, 0);
6504 else
6505 conf->reshape_progress = 0;
6506 conf->reshape_safe = conf->reshape_progress;
c46501b2 6507 write_seqcount_end(&conf->gen_lock);
29269553
N
6508 spin_unlock_irq(&conf->device_lock);
6509
4d77e3ba
N
6510 /* Now make sure any requests that proceeded on the assumption
6511 * the reshape wasn't running - like Discard or Read - have
6512 * completed.
6513 */
6514 mddev_suspend(mddev);
6515 mddev_resume(mddev);
6516
29269553
N
6517 /* Add some new drives, as many as will fit.
6518 * We know there are enough to make the newly sized array work.
3424bf6a
N
6519 * Don't add devices if we are reducing the number of
6520 * devices in the array. This is because it is not possible
6521 * to correctly record the "partially reconstructed" state of
6522 * such devices during the reshape and confusion could result.
29269553 6523 */
87a8dec9 6524 if (mddev->delta_disks >= 0) {
dafb20fa 6525 rdev_for_each(rdev, mddev)
87a8dec9
N
6526 if (rdev->raid_disk < 0 &&
6527 !test_bit(Faulty, &rdev->flags)) {
6528 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 6529 if (rdev->raid_disk
9d4c7d87 6530 >= conf->previous_raid_disks)
87a8dec9 6531 set_bit(In_sync, &rdev->flags);
9d4c7d87 6532 else
87a8dec9 6533 rdev->recovery_offset = 0;
36fad858
NK
6534
6535 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 6536 /* Failure here is OK */;
50da0840 6537 }
87a8dec9
N
6538 } else if (rdev->raid_disk >= conf->previous_raid_disks
6539 && !test_bit(Faulty, &rdev->flags)) {
6540 /* This is a spare that was manually added */
6541 set_bit(In_sync, &rdev->flags);
87a8dec9 6542 }
29269553 6543
87a8dec9
N
6544 /* When a reshape changes the number of devices,
6545 * ->degraded is measured against the larger of the
6546 * pre and post number of devices.
6547 */
ec32a2bd 6548 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 6549 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
6550 spin_unlock_irqrestore(&conf->device_lock, flags);
6551 }
63c70c4f 6552 mddev->raid_disks = conf->raid_disks;
e516402c 6553 mddev->reshape_position = conf->reshape_progress;
850b2b42 6554 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 6555
29269553
N
6556 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6557 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6558 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6559 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6560 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6561 "reshape");
29269553
N
6562 if (!mddev->sync_thread) {
6563 mddev->recovery = 0;
6564 spin_lock_irq(&conf->device_lock);
ba8805b9 6565 write_seqcount_begin(&conf->gen_lock);
29269553 6566 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
6567 mddev->new_chunk_sectors =
6568 conf->chunk_sectors = conf->prev_chunk_sectors;
6569 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
6570 rdev_for_each(rdev, mddev)
6571 rdev->new_data_offset = rdev->data_offset;
6572 smp_wmb();
ba8805b9 6573 conf->generation --;
fef9c61f 6574 conf->reshape_progress = MaxSector;
1e3fa9bd 6575 mddev->reshape_position = MaxSector;
ba8805b9 6576 write_seqcount_end(&conf->gen_lock);
29269553
N
6577 spin_unlock_irq(&conf->device_lock);
6578 return -EAGAIN;
6579 }
c8f517c4 6580 conf->reshape_checkpoint = jiffies;
29269553
N
6581 md_wakeup_thread(mddev->sync_thread);
6582 md_new_event(mddev);
6583 return 0;
6584}
29269553 6585
ec32a2bd
N
6586/* This is called from the reshape thread and should make any
6587 * changes needed in 'conf'
6588 */
d1688a6d 6589static void end_reshape(struct r5conf *conf)
29269553 6590{
29269553 6591
f6705578 6592 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 6593 struct md_rdev *rdev;
f6705578 6594
f6705578 6595 spin_lock_irq(&conf->device_lock);
cea9c228 6596 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
6597 rdev_for_each(rdev, conf->mddev)
6598 rdev->data_offset = rdev->new_data_offset;
6599 smp_wmb();
fef9c61f 6600 conf->reshape_progress = MaxSector;
f6705578 6601 spin_unlock_irq(&conf->device_lock);
b0f9ec04 6602 wake_up(&conf->wait_for_overlap);
16a53ecc
N
6603
6604 /* read-ahead size must cover two whole stripes, which is
6605 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6606 */
4a5add49 6607 if (conf->mddev->queue) {
cea9c228 6608 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 6609 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 6610 / PAGE_SIZE);
16a53ecc
N
6611 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6612 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6613 }
29269553 6614 }
29269553
N
6615}
6616
ec32a2bd
N
6617/* This is called from the raid5d thread with mddev_lock held.
6618 * It makes config changes to the device.
6619 */
fd01b88c 6620static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 6621{
d1688a6d 6622 struct r5conf *conf = mddev->private;
cea9c228
N
6623
6624 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6625
ec32a2bd
N
6626 if (mddev->delta_disks > 0) {
6627 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6628 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 6629 revalidate_disk(mddev->gendisk);
ec32a2bd
N
6630 } else {
6631 int d;
908f4fbd
N
6632 spin_lock_irq(&conf->device_lock);
6633 mddev->degraded = calc_degraded(conf);
6634 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
6635 for (d = conf->raid_disks ;
6636 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 6637 d++) {
3cb03002 6638 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
6639 if (rdev)
6640 clear_bit(In_sync, &rdev->flags);
6641 rdev = conf->disks[d].replacement;
6642 if (rdev)
6643 clear_bit(In_sync, &rdev->flags);
1a67dde0 6644 }
cea9c228 6645 }
88ce4930 6646 mddev->layout = conf->algorithm;
09c9e5fa 6647 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
6648 mddev->reshape_position = MaxSector;
6649 mddev->delta_disks = 0;
2c810cdd 6650 mddev->reshape_backwards = 0;
cea9c228
N
6651 }
6652}
6653
fd01b88c 6654static void raid5_quiesce(struct mddev *mddev, int state)
72626685 6655{
d1688a6d 6656 struct r5conf *conf = mddev->private;
72626685
N
6657
6658 switch(state) {
e464eafd
N
6659 case 2: /* resume for a suspend */
6660 wake_up(&conf->wait_for_overlap);
6661 break;
6662
72626685 6663 case 1: /* stop all writes */
566c09c5 6664 lock_all_device_hash_locks_irq(conf);
64bd660b
N
6665 /* '2' tells resync/reshape to pause so that all
6666 * active stripes can drain
6667 */
6668 conf->quiesce = 2;
566c09c5 6669 wait_event_cmd(conf->wait_for_stripe,
46031f9a
RBJ
6670 atomic_read(&conf->active_stripes) == 0 &&
6671 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
6672 unlock_all_device_hash_locks_irq(conf),
6673 lock_all_device_hash_locks_irq(conf));
64bd660b 6674 conf->quiesce = 1;
566c09c5 6675 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
6676 /* allow reshape to continue */
6677 wake_up(&conf->wait_for_overlap);
72626685
N
6678 break;
6679
6680 case 0: /* re-enable writes */
566c09c5 6681 lock_all_device_hash_locks_irq(conf);
72626685
N
6682 conf->quiesce = 0;
6683 wake_up(&conf->wait_for_stripe);
e464eafd 6684 wake_up(&conf->wait_for_overlap);
566c09c5 6685 unlock_all_device_hash_locks_irq(conf);
72626685
N
6686 break;
6687 }
72626685 6688}
b15c2e57 6689
d562b0c4 6690
fd01b88c 6691static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 6692{
e373ab10 6693 struct r0conf *raid0_conf = mddev->private;
d76c8420 6694 sector_t sectors;
54071b38 6695
f1b29bca 6696 /* for raid0 takeover only one zone is supported */
e373ab10 6697 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
6698 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6699 mdname(mddev));
f1b29bca
DW
6700 return ERR_PTR(-EINVAL);
6701 }
6702
e373ab10
N
6703 sectors = raid0_conf->strip_zone[0].zone_end;
6704 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 6705 mddev->dev_sectors = sectors;
f1b29bca 6706 mddev->new_level = level;
54071b38
TM
6707 mddev->new_layout = ALGORITHM_PARITY_N;
6708 mddev->new_chunk_sectors = mddev->chunk_sectors;
6709 mddev->raid_disks += 1;
6710 mddev->delta_disks = 1;
6711 /* make sure it will be not marked as dirty */
6712 mddev->recovery_cp = MaxSector;
6713
6714 return setup_conf(mddev);
6715}
6716
6717
fd01b88c 6718static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
6719{
6720 int chunksect;
6721
6722 if (mddev->raid_disks != 2 ||
6723 mddev->degraded > 1)
6724 return ERR_PTR(-EINVAL);
6725
6726 /* Should check if there are write-behind devices? */
6727
6728 chunksect = 64*2; /* 64K by default */
6729
6730 /* The array must be an exact multiple of chunksize */
6731 while (chunksect && (mddev->array_sectors & (chunksect-1)))
6732 chunksect >>= 1;
6733
6734 if ((chunksect<<9) < STRIPE_SIZE)
6735 /* array size does not allow a suitable chunk size */
6736 return ERR_PTR(-EINVAL);
6737
6738 mddev->new_level = 5;
6739 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 6740 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
6741
6742 return setup_conf(mddev);
6743}
6744
fd01b88c 6745static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
6746{
6747 int new_layout;
6748
6749 switch (mddev->layout) {
6750 case ALGORITHM_LEFT_ASYMMETRIC_6:
6751 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6752 break;
6753 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6754 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6755 break;
6756 case ALGORITHM_LEFT_SYMMETRIC_6:
6757 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6758 break;
6759 case ALGORITHM_RIGHT_SYMMETRIC_6:
6760 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6761 break;
6762 case ALGORITHM_PARITY_0_6:
6763 new_layout = ALGORITHM_PARITY_0;
6764 break;
6765 case ALGORITHM_PARITY_N:
6766 new_layout = ALGORITHM_PARITY_N;
6767 break;
6768 default:
6769 return ERR_PTR(-EINVAL);
6770 }
6771 mddev->new_level = 5;
6772 mddev->new_layout = new_layout;
6773 mddev->delta_disks = -1;
6774 mddev->raid_disks -= 1;
6775 return setup_conf(mddev);
6776}
6777
d562b0c4 6778
fd01b88c 6779static int raid5_check_reshape(struct mddev *mddev)
b3546035 6780{
88ce4930
N
6781 /* For a 2-drive array, the layout and chunk size can be changed
6782 * immediately as not restriping is needed.
6783 * For larger arrays we record the new value - after validation
6784 * to be used by a reshape pass.
b3546035 6785 */
d1688a6d 6786 struct r5conf *conf = mddev->private;
597a711b 6787 int new_chunk = mddev->new_chunk_sectors;
b3546035 6788
597a711b 6789 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
6790 return -EINVAL;
6791 if (new_chunk > 0) {
0ba459d2 6792 if (!is_power_of_2(new_chunk))
b3546035 6793 return -EINVAL;
597a711b 6794 if (new_chunk < (PAGE_SIZE>>9))
b3546035 6795 return -EINVAL;
597a711b 6796 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
6797 /* not factor of array size */
6798 return -EINVAL;
6799 }
6800
6801 /* They look valid */
6802
88ce4930 6803 if (mddev->raid_disks == 2) {
597a711b
N
6804 /* can make the change immediately */
6805 if (mddev->new_layout >= 0) {
6806 conf->algorithm = mddev->new_layout;
6807 mddev->layout = mddev->new_layout;
88ce4930
N
6808 }
6809 if (new_chunk > 0) {
597a711b
N
6810 conf->chunk_sectors = new_chunk ;
6811 mddev->chunk_sectors = new_chunk;
88ce4930
N
6812 }
6813 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6814 md_wakeup_thread(mddev->thread);
b3546035 6815 }
50ac168a 6816 return check_reshape(mddev);
88ce4930
N
6817}
6818
fd01b88c 6819static int raid6_check_reshape(struct mddev *mddev)
88ce4930 6820{
597a711b 6821 int new_chunk = mddev->new_chunk_sectors;
50ac168a 6822
597a711b 6823 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 6824 return -EINVAL;
b3546035 6825 if (new_chunk > 0) {
0ba459d2 6826 if (!is_power_of_2(new_chunk))
88ce4930 6827 return -EINVAL;
597a711b 6828 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 6829 return -EINVAL;
597a711b 6830 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
6831 /* not factor of array size */
6832 return -EINVAL;
b3546035 6833 }
88ce4930
N
6834
6835 /* They look valid */
50ac168a 6836 return check_reshape(mddev);
b3546035
N
6837}
6838
fd01b88c 6839static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
6840{
6841 /* raid5 can take over:
f1b29bca 6842 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
6843 * raid1 - if there are two drives. We need to know the chunk size
6844 * raid4 - trivial - just use a raid4 layout.
6845 * raid6 - Providing it is a *_6 layout
d562b0c4 6846 */
f1b29bca
DW
6847 if (mddev->level == 0)
6848 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
6849 if (mddev->level == 1)
6850 return raid5_takeover_raid1(mddev);
e9d4758f
N
6851 if (mddev->level == 4) {
6852 mddev->new_layout = ALGORITHM_PARITY_N;
6853 mddev->new_level = 5;
6854 return setup_conf(mddev);
6855 }
fc9739c6
N
6856 if (mddev->level == 6)
6857 return raid5_takeover_raid6(mddev);
d562b0c4
N
6858
6859 return ERR_PTR(-EINVAL);
6860}
6861
fd01b88c 6862static void *raid4_takeover(struct mddev *mddev)
a78d38a1 6863{
f1b29bca
DW
6864 /* raid4 can take over:
6865 * raid0 - if there is only one strip zone
6866 * raid5 - if layout is right
a78d38a1 6867 */
f1b29bca
DW
6868 if (mddev->level == 0)
6869 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
6870 if (mddev->level == 5 &&
6871 mddev->layout == ALGORITHM_PARITY_N) {
6872 mddev->new_layout = 0;
6873 mddev->new_level = 4;
6874 return setup_conf(mddev);
6875 }
6876 return ERR_PTR(-EINVAL);
6877}
d562b0c4 6878
84fc4b56 6879static struct md_personality raid5_personality;
245f46c2 6880
fd01b88c 6881static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
6882{
6883 /* Currently can only take over a raid5. We map the
6884 * personality to an equivalent raid6 personality
6885 * with the Q block at the end.
6886 */
6887 int new_layout;
6888
6889 if (mddev->pers != &raid5_personality)
6890 return ERR_PTR(-EINVAL);
6891 if (mddev->degraded > 1)
6892 return ERR_PTR(-EINVAL);
6893 if (mddev->raid_disks > 253)
6894 return ERR_PTR(-EINVAL);
6895 if (mddev->raid_disks < 3)
6896 return ERR_PTR(-EINVAL);
6897
6898 switch (mddev->layout) {
6899 case ALGORITHM_LEFT_ASYMMETRIC:
6900 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6901 break;
6902 case ALGORITHM_RIGHT_ASYMMETRIC:
6903 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6904 break;
6905 case ALGORITHM_LEFT_SYMMETRIC:
6906 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6907 break;
6908 case ALGORITHM_RIGHT_SYMMETRIC:
6909 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6910 break;
6911 case ALGORITHM_PARITY_0:
6912 new_layout = ALGORITHM_PARITY_0_6;
6913 break;
6914 case ALGORITHM_PARITY_N:
6915 new_layout = ALGORITHM_PARITY_N;
6916 break;
6917 default:
6918 return ERR_PTR(-EINVAL);
6919 }
6920 mddev->new_level = 6;
6921 mddev->new_layout = new_layout;
6922 mddev->delta_disks = 1;
6923 mddev->raid_disks += 1;
6924 return setup_conf(mddev);
6925}
6926
6927
84fc4b56 6928static struct md_personality raid6_personality =
16a53ecc
N
6929{
6930 .name = "raid6",
6931 .level = 6,
6932 .owner = THIS_MODULE,
6933 .make_request = make_request,
6934 .run = run,
6935 .stop = stop,
6936 .status = status,
6937 .error_handler = error,
6938 .hot_add_disk = raid5_add_disk,
6939 .hot_remove_disk= raid5_remove_disk,
6940 .spare_active = raid5_spare_active,
6941 .sync_request = sync_request,
6942 .resize = raid5_resize,
80c3a6ce 6943 .size = raid5_size,
50ac168a 6944 .check_reshape = raid6_check_reshape,
f416885e 6945 .start_reshape = raid5_start_reshape,
cea9c228 6946 .finish_reshape = raid5_finish_reshape,
16a53ecc 6947 .quiesce = raid5_quiesce,
245f46c2 6948 .takeover = raid6_takeover,
16a53ecc 6949};
84fc4b56 6950static struct md_personality raid5_personality =
1da177e4
LT
6951{
6952 .name = "raid5",
2604b703 6953 .level = 5,
1da177e4
LT
6954 .owner = THIS_MODULE,
6955 .make_request = make_request,
6956 .run = run,
6957 .stop = stop,
6958 .status = status,
6959 .error_handler = error,
6960 .hot_add_disk = raid5_add_disk,
6961 .hot_remove_disk= raid5_remove_disk,
6962 .spare_active = raid5_spare_active,
6963 .sync_request = sync_request,
6964 .resize = raid5_resize,
80c3a6ce 6965 .size = raid5_size,
63c70c4f
N
6966 .check_reshape = raid5_check_reshape,
6967 .start_reshape = raid5_start_reshape,
cea9c228 6968 .finish_reshape = raid5_finish_reshape,
72626685 6969 .quiesce = raid5_quiesce,
d562b0c4 6970 .takeover = raid5_takeover,
1da177e4
LT
6971};
6972
84fc4b56 6973static struct md_personality raid4_personality =
1da177e4 6974{
2604b703
N
6975 .name = "raid4",
6976 .level = 4,
6977 .owner = THIS_MODULE,
6978 .make_request = make_request,
6979 .run = run,
6980 .stop = stop,
6981 .status = status,
6982 .error_handler = error,
6983 .hot_add_disk = raid5_add_disk,
6984 .hot_remove_disk= raid5_remove_disk,
6985 .spare_active = raid5_spare_active,
6986 .sync_request = sync_request,
6987 .resize = raid5_resize,
80c3a6ce 6988 .size = raid5_size,
3d37890b
N
6989 .check_reshape = raid5_check_reshape,
6990 .start_reshape = raid5_start_reshape,
cea9c228 6991 .finish_reshape = raid5_finish_reshape,
2604b703 6992 .quiesce = raid5_quiesce,
a78d38a1 6993 .takeover = raid4_takeover,
2604b703
N
6994};
6995
6996static int __init raid5_init(void)
6997{
851c30c9
SL
6998 raid5_wq = alloc_workqueue("raid5wq",
6999 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7000 if (!raid5_wq)
7001 return -ENOMEM;
16a53ecc 7002 register_md_personality(&raid6_personality);
2604b703
N
7003 register_md_personality(&raid5_personality);
7004 register_md_personality(&raid4_personality);
7005 return 0;
1da177e4
LT
7006}
7007
2604b703 7008static void raid5_exit(void)
1da177e4 7009{
16a53ecc 7010 unregister_md_personality(&raid6_personality);
2604b703
N
7011 unregister_md_personality(&raid5_personality);
7012 unregister_md_personality(&raid4_personality);
851c30c9 7013 destroy_workqueue(raid5_wq);
1da177e4
LT
7014}
7015
7016module_init(raid5_init);
7017module_exit(raid5_exit);
7018MODULE_LICENSE("GPL");
0efb9e61 7019MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 7020MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
7021MODULE_ALIAS("md-raid5");
7022MODULE_ALIAS("md-raid4");
2604b703
N
7023MODULE_ALIAS("md-level-5");
7024MODULE_ALIAS("md-level-4");
16a53ecc
N
7025MODULE_ALIAS("md-personality-8"); /* RAID6 */
7026MODULE_ALIAS("md-raid6");
7027MODULE_ALIAS("md-level-6");
7028
7029/* This used to be two separate modules, they were: */
7030MODULE_ALIAS("raid5");
7031MODULE_ALIAS("raid6");