]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/md/raid5.c
raid5-cache: use crc32c checksum
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
a9add5d9
N
58#include <trace/events/block.h>
59
43b2e5d8 60#include "md.h"
bff61975 61#include "raid5.h"
54071b38 62#include "raid0.h"
ef740c37 63#include "bitmap.h"
72626685 64
851c30c9
SL
65#define cpu_to_group(cpu) cpu_to_node(cpu)
66#define ANY_GROUP NUMA_NO_NODE
67
8e0e99ba
N
68static bool devices_handle_discard_safely = false;
69module_param(devices_handle_discard_safely, bool, 0644);
70MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 72static struct workqueue_struct *raid5_wq;
1da177e4
LT
73/*
74 * Stripe cache
75 */
76
77#define NR_STRIPES 256
78#define STRIPE_SIZE PAGE_SIZE
79#define STRIPE_SHIFT (PAGE_SHIFT - 9)
80#define STRIPE_SECTORS (STRIPE_SIZE>>9)
81#define IO_THRESHOLD 1
8b3e6cdc 82#define BYPASS_THRESHOLD 1
fccddba0 83#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4 84#define HASH_MASK (NR_HASH - 1)
bfc90cb0 85#define MAX_STRIPE_BATCH 8
1da177e4 86
d1688a6d 87static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
88{
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91}
1da177e4 92
566c09c5
SL
93static inline int stripe_hash_locks_hash(sector_t sect)
94{
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96}
97
98static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99{
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102}
103
104static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105{
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108}
109
110static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111{
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118}
119
120static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121{
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127}
128
1da177e4
LT
129/* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
db298e19 135 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
136 * of the current stripe+device
137 */
db298e19
N
138static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139{
aa8b57aa 140 int sectors = bio_sectors(bio);
4f024f37 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
db298e19
N
142 return bio->bi_next;
143 else
144 return NULL;
145}
1da177e4 146
960e739d 147/*
5b99c2ff
JA
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 150 */
e7836bd6 151static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 152{
e7836bd6
SL
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
155}
156
e7836bd6 157static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 158{
e7836bd6
SL
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
161}
162
e7836bd6 163static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 164{
e7836bd6
SL
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
960e739d
JA
167}
168
e7836bd6
SL
169static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
960e739d 171{
e7836bd6
SL
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
960e739d 174
e7836bd6
SL
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
179}
180
e7836bd6 181static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 182{
e7836bd6
SL
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
960e739d
JA
185}
186
d0dabf7e
N
187/* Find first data disk in a raid6 stripe */
188static inline int raid6_d0(struct stripe_head *sh)
189{
67cc2b81
N
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
d0dabf7e
N
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198}
16a53ecc
N
199static inline int raid6_next_disk(int disk, int raid_disks)
200{
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203}
a4456856 204
d0dabf7e
N
205/* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
67cc2b81
N
210static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
d0dabf7e 212{
6629542e 213 int slot = *count;
67cc2b81 214
e4424fee 215 if (sh->ddf_layout)
6629542e 216 (*count)++;
d0dabf7e 217 if (idx == sh->pd_idx)
67cc2b81 218 return syndrome_disks;
d0dabf7e 219 if (idx == sh->qd_idx)
67cc2b81 220 return syndrome_disks + 1;
e4424fee 221 if (!sh->ddf_layout)
6629542e 222 (*count)++;
d0dabf7e
N
223 return slot;
224}
225
34a6f80e 226static void return_io(struct bio_list *return_bi)
a4456856 227{
34a6f80e
N
228 struct bio *bi;
229 while ((bi = bio_list_pop(return_bi)) != NULL) {
4f024f37 230 bi->bi_iter.bi_size = 0;
0a82a8d1
LT
231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 bi, 0);
4246a0b6 233 bio_endio(bi);
a4456856
DW
234 }
235}
236
d1688a6d 237static void print_raid5_conf (struct r5conf *conf);
1da177e4 238
600aa109
DW
239static int stripe_operations_active(struct stripe_head *sh)
240{
241 return sh->check_state || sh->reconstruct_state ||
242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244}
245
851c30c9
SL
246static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247{
248 struct r5conf *conf = sh->raid_conf;
249 struct r5worker_group *group;
bfc90cb0 250 int thread_cnt;
851c30c9
SL
251 int i, cpu = sh->cpu;
252
253 if (!cpu_online(cpu)) {
254 cpu = cpumask_any(cpu_online_mask);
255 sh->cpu = cpu;
256 }
257
258 if (list_empty(&sh->lru)) {
259 struct r5worker_group *group;
260 group = conf->worker_groups + cpu_to_group(cpu);
261 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
262 group->stripes_cnt++;
263 sh->group = group;
851c30c9
SL
264 }
265
266 if (conf->worker_cnt_per_group == 0) {
267 md_wakeup_thread(conf->mddev->thread);
268 return;
269 }
270
271 group = conf->worker_groups + cpu_to_group(sh->cpu);
272
bfc90cb0
SL
273 group->workers[0].working = true;
274 /* at least one worker should run to avoid race */
275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 /* wakeup more workers */
279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 if (group->workers[i].working == false) {
281 group->workers[i].working = true;
282 queue_work_on(sh->cpu, raid5_wq,
283 &group->workers[i].work);
284 thread_cnt--;
285 }
286 }
851c30c9
SL
287}
288
566c09c5
SL
289static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 struct list_head *temp_inactive_list)
1da177e4 291{
4eb788df
SL
292 BUG_ON(!list_empty(&sh->lru));
293 BUG_ON(atomic_read(&conf->active_stripes)==0);
294 if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 297 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
299 sh->bm_seq - conf->seq_write > 0)
300 list_add_tail(&sh->lru, &conf->bitmap_list);
301 else {
302 clear_bit(STRIPE_DELAYED, &sh->state);
303 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9
SL
304 if (conf->worker_cnt_per_group == 0) {
305 list_add_tail(&sh->lru, &conf->handle_list);
306 } else {
307 raid5_wakeup_stripe_thread(sh);
308 return;
309 }
4eb788df
SL
310 }
311 md_wakeup_thread(conf->mddev->thread);
312 } else {
313 BUG_ON(stripe_operations_active(sh));
314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 if (atomic_dec_return(&conf->preread_active_stripes)
316 < IO_THRESHOLD)
317 md_wakeup_thread(conf->mddev->thread);
318 atomic_dec(&conf->active_stripes);
566c09c5
SL
319 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 list_add_tail(&sh->lru, temp_inactive_list);
1da177e4
LT
321 }
322}
d0dabf7e 323
566c09c5
SL
324static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 struct list_head *temp_inactive_list)
4eb788df
SL
326{
327 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
328 do_release_stripe(conf, sh, temp_inactive_list);
329}
330
331/*
332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333 *
334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335 * given time. Adding stripes only takes device lock, while deleting stripes
336 * only takes hash lock.
337 */
338static void release_inactive_stripe_list(struct r5conf *conf,
339 struct list_head *temp_inactive_list,
340 int hash)
341{
342 int size;
e9e4c377
YL
343 unsigned long do_wakeup = 0;
344 int i = 0;
566c09c5
SL
345 unsigned long flags;
346
347 if (hash == NR_STRIPE_HASH_LOCKS) {
348 size = NR_STRIPE_HASH_LOCKS;
349 hash = NR_STRIPE_HASH_LOCKS - 1;
350 } else
351 size = 1;
352 while (size) {
353 struct list_head *list = &temp_inactive_list[size - 1];
354
355 /*
6d036f7d 356 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
357 * remove stripes from the list
358 */
359 if (!list_empty_careful(list)) {
360 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
361 if (list_empty(conf->inactive_list + hash) &&
362 !list_empty(list))
363 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 364 list_splice_tail_init(list, conf->inactive_list + hash);
e9e4c377 365 do_wakeup |= 1 << hash;
566c09c5
SL
366 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
367 }
368 size--;
369 hash--;
370 }
371
e9e4c377
YL
372 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
373 if (do_wakeup & (1 << i))
374 wake_up(&conf->wait_for_stripe[i]);
375 }
376
566c09c5 377 if (do_wakeup) {
b1b46486
YL
378 if (atomic_read(&conf->active_stripes) == 0)
379 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
380 if (conf->retry_read_aligned)
381 md_wakeup_thread(conf->mddev->thread);
382 }
4eb788df
SL
383}
384
773ca82f 385/* should hold conf->device_lock already */
566c09c5
SL
386static int release_stripe_list(struct r5conf *conf,
387 struct list_head *temp_inactive_list)
773ca82f
SL
388{
389 struct stripe_head *sh;
390 int count = 0;
391 struct llist_node *head;
392
393 head = llist_del_all(&conf->released_stripes);
d265d9dc 394 head = llist_reverse_order(head);
773ca82f 395 while (head) {
566c09c5
SL
396 int hash;
397
773ca82f
SL
398 sh = llist_entry(head, struct stripe_head, release_list);
399 head = llist_next(head);
400 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401 smp_mb();
402 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403 /*
404 * Don't worry the bit is set here, because if the bit is set
405 * again, the count is always > 1. This is true for
406 * STRIPE_ON_UNPLUG_LIST bit too.
407 */
566c09c5
SL
408 hash = sh->hash_lock_index;
409 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
410 count++;
411 }
412
413 return count;
414}
415
6d036f7d 416void raid5_release_stripe(struct stripe_head *sh)
1da177e4 417{
d1688a6d 418 struct r5conf *conf = sh->raid_conf;
1da177e4 419 unsigned long flags;
566c09c5
SL
420 struct list_head list;
421 int hash;
773ca82f 422 bool wakeup;
16a53ecc 423
cf170f3f
ES
424 /* Avoid release_list until the last reference.
425 */
426 if (atomic_add_unless(&sh->count, -1, 1))
427 return;
428
ad4068de 429 if (unlikely(!conf->mddev->thread) ||
430 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
431 goto slow_path;
432 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433 if (wakeup)
434 md_wakeup_thread(conf->mddev->thread);
435 return;
436slow_path:
4eb788df 437 local_irq_save(flags);
773ca82f 438 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 439 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
440 INIT_LIST_HEAD(&list);
441 hash = sh->hash_lock_index;
442 do_release_stripe(conf, sh, &list);
4eb788df 443 spin_unlock(&conf->device_lock);
566c09c5 444 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
445 }
446 local_irq_restore(flags);
1da177e4
LT
447}
448
fccddba0 449static inline void remove_hash(struct stripe_head *sh)
1da177e4 450{
45b4233c
DW
451 pr_debug("remove_hash(), stripe %llu\n",
452 (unsigned long long)sh->sector);
1da177e4 453
fccddba0 454 hlist_del_init(&sh->hash);
1da177e4
LT
455}
456
d1688a6d 457static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 458{
fccddba0 459 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 460
45b4233c
DW
461 pr_debug("insert_hash(), stripe %llu\n",
462 (unsigned long long)sh->sector);
1da177e4 463
fccddba0 464 hlist_add_head(&sh->hash, hp);
1da177e4
LT
465}
466
1da177e4 467/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 468static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
469{
470 struct stripe_head *sh = NULL;
471 struct list_head *first;
472
566c09c5 473 if (list_empty(conf->inactive_list + hash))
1da177e4 474 goto out;
566c09c5 475 first = (conf->inactive_list + hash)->next;
1da177e4
LT
476 sh = list_entry(first, struct stripe_head, lru);
477 list_del_init(first);
478 remove_hash(sh);
479 atomic_inc(&conf->active_stripes);
566c09c5 480 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
481 if (list_empty(conf->inactive_list + hash))
482 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
483out:
484 return sh;
485}
486
e4e11e38 487static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
488{
489 struct page *p;
490 int i;
e4e11e38 491 int num = sh->raid_conf->pool_size;
1da177e4 492
e4e11e38 493 for (i = 0; i < num ; i++) {
d592a996 494 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
495 p = sh->dev[i].page;
496 if (!p)
497 continue;
498 sh->dev[i].page = NULL;
2d1f3b5d 499 put_page(p);
1da177e4
LT
500 }
501}
502
a9683a79 503static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
504{
505 int i;
e4e11e38 506 int num = sh->raid_conf->pool_size;
1da177e4 507
e4e11e38 508 for (i = 0; i < num; i++) {
1da177e4
LT
509 struct page *page;
510
a9683a79 511 if (!(page = alloc_page(gfp))) {
1da177e4
LT
512 return 1;
513 }
514 sh->dev[i].page = page;
d592a996 515 sh->dev[i].orig_page = page;
1da177e4
LT
516 }
517 return 0;
518}
519
784052ec 520static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 521static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 522 struct stripe_head *sh);
1da177e4 523
b5663ba4 524static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 525{
d1688a6d 526 struct r5conf *conf = sh->raid_conf;
566c09c5 527 int i, seq;
1da177e4 528
78bafebd
ES
529 BUG_ON(atomic_read(&sh->count) != 0);
530 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 531 BUG_ON(stripe_operations_active(sh));
59fc630b 532 BUG_ON(sh->batch_head);
d84e0f10 533
45b4233c 534 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 535 (unsigned long long)sector);
566c09c5
SL
536retry:
537 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 538 sh->generation = conf->generation - previous;
b5663ba4 539 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 540 sh->sector = sector;
911d4ee8 541 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
542 sh->state = 0;
543
7ecaa1e6 544 for (i = sh->disks; i--; ) {
1da177e4
LT
545 struct r5dev *dev = &sh->dev[i];
546
d84e0f10 547 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 548 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 549 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 550 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 551 dev->read, dev->towrite, dev->written,
1da177e4 552 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 553 WARN_ON(1);
1da177e4
LT
554 }
555 dev->flags = 0;
784052ec 556 raid5_build_block(sh, i, previous);
1da177e4 557 }
566c09c5
SL
558 if (read_seqcount_retry(&conf->gen_lock, seq))
559 goto retry;
7a87f434 560 sh->overwrite_disks = 0;
1da177e4 561 insert_hash(conf, sh);
851c30c9 562 sh->cpu = smp_processor_id();
da41ba65 563 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
564}
565
d1688a6d 566static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 567 short generation)
1da177e4
LT
568{
569 struct stripe_head *sh;
570
45b4233c 571 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 572 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 573 if (sh->sector == sector && sh->generation == generation)
1da177e4 574 return sh;
45b4233c 575 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
576 return NULL;
577}
578
674806d6
N
579/*
580 * Need to check if array has failed when deciding whether to:
581 * - start an array
582 * - remove non-faulty devices
583 * - add a spare
584 * - allow a reshape
585 * This determination is simple when no reshape is happening.
586 * However if there is a reshape, we need to carefully check
587 * both the before and after sections.
588 * This is because some failed devices may only affect one
589 * of the two sections, and some non-in_sync devices may
590 * be insync in the section most affected by failed devices.
591 */
908f4fbd 592static int calc_degraded(struct r5conf *conf)
674806d6 593{
908f4fbd 594 int degraded, degraded2;
674806d6 595 int i;
674806d6
N
596
597 rcu_read_lock();
598 degraded = 0;
599 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 600 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
601 if (rdev && test_bit(Faulty, &rdev->flags))
602 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
603 if (!rdev || test_bit(Faulty, &rdev->flags))
604 degraded++;
605 else if (test_bit(In_sync, &rdev->flags))
606 ;
607 else
608 /* not in-sync or faulty.
609 * If the reshape increases the number of devices,
610 * this is being recovered by the reshape, so
611 * this 'previous' section is not in_sync.
612 * If the number of devices is being reduced however,
613 * the device can only be part of the array if
614 * we are reverting a reshape, so this section will
615 * be in-sync.
616 */
617 if (conf->raid_disks >= conf->previous_raid_disks)
618 degraded++;
619 }
620 rcu_read_unlock();
908f4fbd
N
621 if (conf->raid_disks == conf->previous_raid_disks)
622 return degraded;
674806d6 623 rcu_read_lock();
908f4fbd 624 degraded2 = 0;
674806d6 625 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 626 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
627 if (rdev && test_bit(Faulty, &rdev->flags))
628 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 629 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 630 degraded2++;
674806d6
N
631 else if (test_bit(In_sync, &rdev->flags))
632 ;
633 else
634 /* not in-sync or faulty.
635 * If reshape increases the number of devices, this
636 * section has already been recovered, else it
637 * almost certainly hasn't.
638 */
639 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 640 degraded2++;
674806d6
N
641 }
642 rcu_read_unlock();
908f4fbd
N
643 if (degraded2 > degraded)
644 return degraded2;
645 return degraded;
646}
647
648static int has_failed(struct r5conf *conf)
649{
650 int degraded;
651
652 if (conf->mddev->reshape_position == MaxSector)
653 return conf->mddev->degraded > conf->max_degraded;
654
655 degraded = calc_degraded(conf);
674806d6
N
656 if (degraded > conf->max_degraded)
657 return 1;
658 return 0;
659}
660
6d036f7d
SL
661struct stripe_head *
662raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
663 int previous, int noblock, int noquiesce)
1da177e4
LT
664{
665 struct stripe_head *sh;
566c09c5 666 int hash = stripe_hash_locks_hash(sector);
1da177e4 667
45b4233c 668 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 669
566c09c5 670 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
671
672 do {
b1b46486 673 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 674 conf->quiesce == 0 || noquiesce,
566c09c5 675 *(conf->hash_locks + hash));
86b42c71 676 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 677 if (!sh) {
edbe83ab 678 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 679 sh = get_free_stripe(conf, hash);
713bc5c2
SL
680 if (!sh && !test_bit(R5_DID_ALLOC,
681 &conf->cache_state))
edbe83ab
N
682 set_bit(R5_ALLOC_MORE,
683 &conf->cache_state);
684 }
1da177e4
LT
685 if (noblock && sh == NULL)
686 break;
687 if (!sh) {
5423399a
N
688 set_bit(R5_INACTIVE_BLOCKED,
689 &conf->cache_state);
e9e4c377
YL
690 wait_event_exclusive_cmd(
691 conf->wait_for_stripe[hash],
566c09c5
SL
692 !list_empty(conf->inactive_list + hash) &&
693 (atomic_read(&conf->active_stripes)
694 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
695 || !test_bit(R5_INACTIVE_BLOCKED,
696 &conf->cache_state)),
e9e4c377
YL
697 spin_unlock_irq(conf->hash_locks + hash),
698 spin_lock_irq(conf->hash_locks + hash));
5423399a
N
699 clear_bit(R5_INACTIVE_BLOCKED,
700 &conf->cache_state);
7da9d450 701 } else {
b5663ba4 702 init_stripe(sh, sector, previous);
7da9d450
N
703 atomic_inc(&sh->count);
704 }
e240c183 705 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 706 spin_lock(&conf->device_lock);
e240c183 707 if (!atomic_read(&sh->count)) {
1da177e4
LT
708 if (!test_bit(STRIPE_HANDLE, &sh->state))
709 atomic_inc(&conf->active_stripes);
5af9bef7
N
710 BUG_ON(list_empty(&sh->lru) &&
711 !test_bit(STRIPE_EXPANDING, &sh->state));
16a53ecc 712 list_del_init(&sh->lru);
bfc90cb0
SL
713 if (sh->group) {
714 sh->group->stripes_cnt--;
715 sh->group = NULL;
716 }
1da177e4 717 }
7da9d450 718 atomic_inc(&sh->count);
6d183de4 719 spin_unlock(&conf->device_lock);
1da177e4
LT
720 }
721 } while (sh == NULL);
722
e9e4c377
YL
723 if (!list_empty(conf->inactive_list + hash))
724 wake_up(&conf->wait_for_stripe[hash]);
725
566c09c5 726 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
727 return sh;
728}
729
7a87f434 730static bool is_full_stripe_write(struct stripe_head *sh)
731{
732 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
733 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
734}
735
59fc630b 736static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
737{
738 local_irq_disable();
739 if (sh1 > sh2) {
740 spin_lock(&sh2->stripe_lock);
741 spin_lock_nested(&sh1->stripe_lock, 1);
742 } else {
743 spin_lock(&sh1->stripe_lock);
744 spin_lock_nested(&sh2->stripe_lock, 1);
745 }
746}
747
748static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
749{
750 spin_unlock(&sh1->stripe_lock);
751 spin_unlock(&sh2->stripe_lock);
752 local_irq_enable();
753}
754
755/* Only freshly new full stripe normal write stripe can be added to a batch list */
756static bool stripe_can_batch(struct stripe_head *sh)
757{
758 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 759 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 760 is_full_stripe_write(sh);
761}
762
763/* we only do back search */
764static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
765{
766 struct stripe_head *head;
767 sector_t head_sector, tmp_sec;
768 int hash;
769 int dd_idx;
770
771 if (!stripe_can_batch(sh))
772 return;
773 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
774 tmp_sec = sh->sector;
775 if (!sector_div(tmp_sec, conf->chunk_sectors))
776 return;
777 head_sector = sh->sector - STRIPE_SECTORS;
778
779 hash = stripe_hash_locks_hash(head_sector);
780 spin_lock_irq(conf->hash_locks + hash);
781 head = __find_stripe(conf, head_sector, conf->generation);
782 if (head && !atomic_inc_not_zero(&head->count)) {
783 spin_lock(&conf->device_lock);
784 if (!atomic_read(&head->count)) {
785 if (!test_bit(STRIPE_HANDLE, &head->state))
786 atomic_inc(&conf->active_stripes);
787 BUG_ON(list_empty(&head->lru) &&
788 !test_bit(STRIPE_EXPANDING, &head->state));
789 list_del_init(&head->lru);
790 if (head->group) {
791 head->group->stripes_cnt--;
792 head->group = NULL;
793 }
794 }
795 atomic_inc(&head->count);
796 spin_unlock(&conf->device_lock);
797 }
798 spin_unlock_irq(conf->hash_locks + hash);
799
800 if (!head)
801 return;
802 if (!stripe_can_batch(head))
803 goto out;
804
805 lock_two_stripes(head, sh);
806 /* clear_batch_ready clear the flag */
807 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
808 goto unlock_out;
809
810 if (sh->batch_head)
811 goto unlock_out;
812
813 dd_idx = 0;
814 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
815 dd_idx++;
816 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
817 goto unlock_out;
818
819 if (head->batch_head) {
820 spin_lock(&head->batch_head->batch_lock);
821 /* This batch list is already running */
822 if (!stripe_can_batch(head)) {
823 spin_unlock(&head->batch_head->batch_lock);
824 goto unlock_out;
825 }
826
827 /*
828 * at this point, head's BATCH_READY could be cleared, but we
829 * can still add the stripe to batch list
830 */
831 list_add(&sh->batch_list, &head->batch_list);
832 spin_unlock(&head->batch_head->batch_lock);
833
834 sh->batch_head = head->batch_head;
835 } else {
836 head->batch_head = head;
837 sh->batch_head = head->batch_head;
838 spin_lock(&head->batch_lock);
839 list_add_tail(&sh->batch_list, &head->batch_list);
840 spin_unlock(&head->batch_lock);
841 }
842
843 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
844 if (atomic_dec_return(&conf->preread_active_stripes)
845 < IO_THRESHOLD)
846 md_wakeup_thread(conf->mddev->thread);
847
2b6b2457
N
848 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
849 int seq = sh->bm_seq;
850 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
851 sh->batch_head->bm_seq > seq)
852 seq = sh->batch_head->bm_seq;
853 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
854 sh->batch_head->bm_seq = seq;
855 }
856
59fc630b 857 atomic_inc(&sh->count);
858unlock_out:
859 unlock_two_stripes(head, sh);
860out:
6d036f7d 861 raid5_release_stripe(head);
59fc630b 862}
863
05616be5
N
864/* Determine if 'data_offset' or 'new_data_offset' should be used
865 * in this stripe_head.
866 */
867static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
868{
869 sector_t progress = conf->reshape_progress;
870 /* Need a memory barrier to make sure we see the value
871 * of conf->generation, or ->data_offset that was set before
872 * reshape_progress was updated.
873 */
874 smp_rmb();
875 if (progress == MaxSector)
876 return 0;
877 if (sh->generation == conf->generation - 1)
878 return 0;
879 /* We are in a reshape, and this is a new-generation stripe,
880 * so use new_data_offset.
881 */
882 return 1;
883}
884
6712ecf8 885static void
4246a0b6 886raid5_end_read_request(struct bio *bi);
6712ecf8 887static void
4246a0b6 888raid5_end_write_request(struct bio *bi);
91c00924 889
c4e5ac0a 890static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 891{
d1688a6d 892 struct r5conf *conf = sh->raid_conf;
91c00924 893 int i, disks = sh->disks;
59fc630b 894 struct stripe_head *head_sh = sh;
91c00924
DW
895
896 might_sleep();
897
f6bed0ef
SL
898 if (r5l_write_stripe(conf->log, sh) == 0)
899 return;
91c00924
DW
900 for (i = disks; i--; ) {
901 int rw;
9a3e1101 902 int replace_only = 0;
977df362
N
903 struct bio *bi, *rbi;
904 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 905
906 sh = head_sh;
e9c7469b
TH
907 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
908 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
909 rw = WRITE_FUA;
910 else
911 rw = WRITE;
9e444768 912 if (test_bit(R5_Discard, &sh->dev[i].flags))
620125f2 913 rw |= REQ_DISCARD;
e9c7469b 914 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 915 rw = READ;
9a3e1101
N
916 else if (test_and_clear_bit(R5_WantReplace,
917 &sh->dev[i].flags)) {
918 rw = WRITE;
919 replace_only = 1;
920 } else
91c00924 921 continue;
bc0934f0
SL
922 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
923 rw |= REQ_SYNC;
91c00924 924
59fc630b 925again:
91c00924 926 bi = &sh->dev[i].req;
977df362 927 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 928
91c00924 929 rcu_read_lock();
9a3e1101 930 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
931 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
932 rdev = rcu_dereference(conf->disks[i].rdev);
933 if (!rdev) {
934 rdev = rrdev;
935 rrdev = NULL;
936 }
9a3e1101
N
937 if (rw & WRITE) {
938 if (replace_only)
939 rdev = NULL;
dd054fce
N
940 if (rdev == rrdev)
941 /* We raced and saw duplicates */
942 rrdev = NULL;
9a3e1101 943 } else {
59fc630b 944 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
945 rdev = rrdev;
946 rrdev = NULL;
947 }
977df362 948
91c00924
DW
949 if (rdev && test_bit(Faulty, &rdev->flags))
950 rdev = NULL;
951 if (rdev)
952 atomic_inc(&rdev->nr_pending);
977df362
N
953 if (rrdev && test_bit(Faulty, &rrdev->flags))
954 rrdev = NULL;
955 if (rrdev)
956 atomic_inc(&rrdev->nr_pending);
91c00924
DW
957 rcu_read_unlock();
958
73e92e51 959 /* We have already checked bad blocks for reads. Now
977df362
N
960 * need to check for writes. We never accept write errors
961 * on the replacement, so we don't to check rrdev.
73e92e51
N
962 */
963 while ((rw & WRITE) && rdev &&
964 test_bit(WriteErrorSeen, &rdev->flags)) {
965 sector_t first_bad;
966 int bad_sectors;
967 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
968 &first_bad, &bad_sectors);
969 if (!bad)
970 break;
971
972 if (bad < 0) {
973 set_bit(BlockedBadBlocks, &rdev->flags);
974 if (!conf->mddev->external &&
975 conf->mddev->flags) {
976 /* It is very unlikely, but we might
977 * still need to write out the
978 * bad block log - better give it
979 * a chance*/
980 md_check_recovery(conf->mddev);
981 }
1850753d 982 /*
983 * Because md_wait_for_blocked_rdev
984 * will dec nr_pending, we must
985 * increment it first.
986 */
987 atomic_inc(&rdev->nr_pending);
73e92e51
N
988 md_wait_for_blocked_rdev(rdev, conf->mddev);
989 } else {
990 /* Acknowledged bad block - skip the write */
991 rdev_dec_pending(rdev, conf->mddev);
992 rdev = NULL;
993 }
994 }
995
91c00924 996 if (rdev) {
9a3e1101
N
997 if (s->syncing || s->expanding || s->expanded
998 || s->replacing)
91c00924
DW
999 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1000
2b7497f0
DW
1001 set_bit(STRIPE_IO_STARTED, &sh->state);
1002
2f6db2a7 1003 bio_reset(bi);
91c00924 1004 bi->bi_bdev = rdev->bdev;
2f6db2a7
KO
1005 bi->bi_rw = rw;
1006 bi->bi_end_io = (rw & WRITE)
1007 ? raid5_end_write_request
1008 : raid5_end_read_request;
1009 bi->bi_private = sh;
1010
91c00924 1011 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 1012 __func__, (unsigned long long)sh->sector,
91c00924
DW
1013 bi->bi_rw, i);
1014 atomic_inc(&sh->count);
59fc630b 1015 if (sh != head_sh)
1016 atomic_inc(&head_sh->count);
05616be5 1017 if (use_new_offset(conf, sh))
4f024f37 1018 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1019 + rdev->new_data_offset);
1020 else
4f024f37 1021 bi->bi_iter.bi_sector = (sh->sector
05616be5 1022 + rdev->data_offset);
59fc630b 1023 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
e59aa23f 1024 bi->bi_rw |= REQ_NOMERGE;
3f9e7c14 1025
d592a996
SL
1026 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1027 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1028 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1029 bi->bi_vcnt = 1;
91c00924
DW
1030 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1031 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1032 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1033 /*
1034 * If this is discard request, set bi_vcnt 0. We don't
1035 * want to confuse SCSI because SCSI will replace payload
1036 */
1037 if (rw & REQ_DISCARD)
1038 bi->bi_vcnt = 0;
977df362
N
1039 if (rrdev)
1040 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1041
1042 if (conf->mddev->gendisk)
1043 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1044 bi, disk_devt(conf->mddev->gendisk),
1045 sh->dev[i].sector);
91c00924 1046 generic_make_request(bi);
977df362
N
1047 }
1048 if (rrdev) {
9a3e1101
N
1049 if (s->syncing || s->expanding || s->expanded
1050 || s->replacing)
977df362
N
1051 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1052
1053 set_bit(STRIPE_IO_STARTED, &sh->state);
1054
2f6db2a7 1055 bio_reset(rbi);
977df362 1056 rbi->bi_bdev = rrdev->bdev;
2f6db2a7
KO
1057 rbi->bi_rw = rw;
1058 BUG_ON(!(rw & WRITE));
1059 rbi->bi_end_io = raid5_end_write_request;
1060 rbi->bi_private = sh;
1061
977df362
N
1062 pr_debug("%s: for %llu schedule op %ld on "
1063 "replacement disc %d\n",
1064 __func__, (unsigned long long)sh->sector,
1065 rbi->bi_rw, i);
1066 atomic_inc(&sh->count);
59fc630b 1067 if (sh != head_sh)
1068 atomic_inc(&head_sh->count);
05616be5 1069 if (use_new_offset(conf, sh))
4f024f37 1070 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1071 + rrdev->new_data_offset);
1072 else
4f024f37 1073 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1074 + rrdev->data_offset);
d592a996
SL
1075 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1076 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1077 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1078 rbi->bi_vcnt = 1;
977df362
N
1079 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1080 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1081 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1082 /*
1083 * If this is discard request, set bi_vcnt 0. We don't
1084 * want to confuse SCSI because SCSI will replace payload
1085 */
1086 if (rw & REQ_DISCARD)
1087 rbi->bi_vcnt = 0;
e3620a3a
JB
1088 if (conf->mddev->gendisk)
1089 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1090 rbi, disk_devt(conf->mddev->gendisk),
1091 sh->dev[i].sector);
977df362
N
1092 generic_make_request(rbi);
1093 }
1094 if (!rdev && !rrdev) {
b062962e 1095 if (rw & WRITE)
91c00924
DW
1096 set_bit(STRIPE_DEGRADED, &sh->state);
1097 pr_debug("skip op %ld on disc %d for sector %llu\n",
1098 bi->bi_rw, i, (unsigned long long)sh->sector);
1099 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1100 set_bit(STRIPE_HANDLE, &sh->state);
1101 }
59fc630b 1102
1103 if (!head_sh->batch_head)
1104 continue;
1105 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1106 batch_list);
1107 if (sh != head_sh)
1108 goto again;
91c00924
DW
1109 }
1110}
1111
1112static struct dma_async_tx_descriptor *
d592a996
SL
1113async_copy_data(int frombio, struct bio *bio, struct page **page,
1114 sector_t sector, struct dma_async_tx_descriptor *tx,
1115 struct stripe_head *sh)
91c00924 1116{
7988613b
KO
1117 struct bio_vec bvl;
1118 struct bvec_iter iter;
91c00924 1119 struct page *bio_page;
91c00924 1120 int page_offset;
a08abd8c 1121 struct async_submit_ctl submit;
0403e382 1122 enum async_tx_flags flags = 0;
91c00924 1123
4f024f37
KO
1124 if (bio->bi_iter.bi_sector >= sector)
1125 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1126 else
4f024f37 1127 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1128
0403e382
DW
1129 if (frombio)
1130 flags |= ASYNC_TX_FENCE;
1131 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1132
7988613b
KO
1133 bio_for_each_segment(bvl, bio, iter) {
1134 int len = bvl.bv_len;
91c00924
DW
1135 int clen;
1136 int b_offset = 0;
1137
1138 if (page_offset < 0) {
1139 b_offset = -page_offset;
1140 page_offset += b_offset;
1141 len -= b_offset;
1142 }
1143
1144 if (len > 0 && page_offset + len > STRIPE_SIZE)
1145 clen = STRIPE_SIZE - page_offset;
1146 else
1147 clen = len;
1148
1149 if (clen > 0) {
7988613b
KO
1150 b_offset += bvl.bv_offset;
1151 bio_page = bvl.bv_page;
d592a996
SL
1152 if (frombio) {
1153 if (sh->raid_conf->skip_copy &&
1154 b_offset == 0 && page_offset == 0 &&
1155 clen == STRIPE_SIZE)
1156 *page = bio_page;
1157 else
1158 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1159 b_offset, clen, &submit);
d592a996
SL
1160 } else
1161 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1162 page_offset, clen, &submit);
91c00924 1163 }
a08abd8c
DW
1164 /* chain the operations */
1165 submit.depend_tx = tx;
1166
91c00924
DW
1167 if (clen < len) /* hit end of page */
1168 break;
1169 page_offset += len;
1170 }
1171
1172 return tx;
1173}
1174
1175static void ops_complete_biofill(void *stripe_head_ref)
1176{
1177 struct stripe_head *sh = stripe_head_ref;
34a6f80e 1178 struct bio_list return_bi = BIO_EMPTY_LIST;
e4d84909 1179 int i;
91c00924 1180
e46b272b 1181 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1182 (unsigned long long)sh->sector);
1183
1184 /* clear completed biofills */
1185 for (i = sh->disks; i--; ) {
1186 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1187
1188 /* acknowledge completion of a biofill operation */
e4d84909
DW
1189 /* and check if we need to reply to a read request,
1190 * new R5_Wantfill requests are held off until
83de75cc 1191 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1192 */
1193 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1194 struct bio *rbi, *rbi2;
91c00924 1195
91c00924
DW
1196 BUG_ON(!dev->read);
1197 rbi = dev->read;
1198 dev->read = NULL;
4f024f37 1199 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1200 dev->sector + STRIPE_SECTORS) {
1201 rbi2 = r5_next_bio(rbi, dev->sector);
34a6f80e
N
1202 if (!raid5_dec_bi_active_stripes(rbi))
1203 bio_list_add(&return_bi, rbi);
91c00924
DW
1204 rbi = rbi2;
1205 }
1206 }
1207 }
83de75cc 1208 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1209
34a6f80e 1210 return_io(&return_bi);
91c00924 1211
e4d84909 1212 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1213 raid5_release_stripe(sh);
91c00924
DW
1214}
1215
1216static void ops_run_biofill(struct stripe_head *sh)
1217{
1218 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1219 struct async_submit_ctl submit;
91c00924
DW
1220 int i;
1221
59fc630b 1222 BUG_ON(sh->batch_head);
e46b272b 1223 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1224 (unsigned long long)sh->sector);
1225
1226 for (i = sh->disks; i--; ) {
1227 struct r5dev *dev = &sh->dev[i];
1228 if (test_bit(R5_Wantfill, &dev->flags)) {
1229 struct bio *rbi;
b17459c0 1230 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1231 dev->read = rbi = dev->toread;
1232 dev->toread = NULL;
b17459c0 1233 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1234 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1235 dev->sector + STRIPE_SECTORS) {
d592a996
SL
1236 tx = async_copy_data(0, rbi, &dev->page,
1237 dev->sector, tx, sh);
91c00924
DW
1238 rbi = r5_next_bio(rbi, dev->sector);
1239 }
1240 }
1241 }
1242
1243 atomic_inc(&sh->count);
a08abd8c
DW
1244 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1245 async_trigger_callback(&submit);
91c00924
DW
1246}
1247
4e7d2c0a 1248static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1249{
4e7d2c0a 1250 struct r5dev *tgt;
91c00924 1251
4e7d2c0a
DW
1252 if (target < 0)
1253 return;
91c00924 1254
4e7d2c0a 1255 tgt = &sh->dev[target];
91c00924
DW
1256 set_bit(R5_UPTODATE, &tgt->flags);
1257 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1258 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1259}
1260
ac6b53b6 1261static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1262{
1263 struct stripe_head *sh = stripe_head_ref;
91c00924 1264
e46b272b 1265 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1266 (unsigned long long)sh->sector);
1267
ac6b53b6 1268 /* mark the computed target(s) as uptodate */
4e7d2c0a 1269 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1270 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1271
ecc65c9b
DW
1272 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1273 if (sh->check_state == check_state_compute_run)
1274 sh->check_state = check_state_compute_result;
91c00924 1275 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1276 raid5_release_stripe(sh);
91c00924
DW
1277}
1278
d6f38f31
DW
1279/* return a pointer to the address conversion region of the scribble buffer */
1280static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1281 struct raid5_percpu *percpu, int i)
d6f38f31 1282{
46d5b785 1283 void *addr;
1284
1285 addr = flex_array_get(percpu->scribble, i);
1286 return addr + sizeof(struct page *) * (sh->disks + 2);
1287}
1288
1289/* return a pointer to the address conversion region of the scribble buffer */
1290static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1291{
1292 void *addr;
1293
1294 addr = flex_array_get(percpu->scribble, i);
1295 return addr;
d6f38f31
DW
1296}
1297
1298static struct dma_async_tx_descriptor *
1299ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1300{
91c00924 1301 int disks = sh->disks;
46d5b785 1302 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1303 int target = sh->ops.target;
1304 struct r5dev *tgt = &sh->dev[target];
1305 struct page *xor_dest = tgt->page;
1306 int count = 0;
1307 struct dma_async_tx_descriptor *tx;
a08abd8c 1308 struct async_submit_ctl submit;
91c00924
DW
1309 int i;
1310
59fc630b 1311 BUG_ON(sh->batch_head);
1312
91c00924 1313 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1314 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1315 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1316
1317 for (i = disks; i--; )
1318 if (i != target)
1319 xor_srcs[count++] = sh->dev[i].page;
1320
1321 atomic_inc(&sh->count);
1322
0403e382 1323 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1324 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1325 if (unlikely(count == 1))
a08abd8c 1326 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1327 else
a08abd8c 1328 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1329
91c00924
DW
1330 return tx;
1331}
1332
ac6b53b6
DW
1333/* set_syndrome_sources - populate source buffers for gen_syndrome
1334 * @srcs - (struct page *) array of size sh->disks
1335 * @sh - stripe_head to parse
1336 *
1337 * Populates srcs in proper layout order for the stripe and returns the
1338 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1339 * destination buffer is recorded in srcs[count] and the Q destination
1340 * is recorded in srcs[count+1]].
1341 */
584acdd4
MS
1342static int set_syndrome_sources(struct page **srcs,
1343 struct stripe_head *sh,
1344 int srctype)
ac6b53b6
DW
1345{
1346 int disks = sh->disks;
1347 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1348 int d0_idx = raid6_d0(sh);
1349 int count;
1350 int i;
1351
1352 for (i = 0; i < disks; i++)
5dd33c9a 1353 srcs[i] = NULL;
ac6b53b6
DW
1354
1355 count = 0;
1356 i = d0_idx;
1357 do {
1358 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1359 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1360
584acdd4
MS
1361 if (i == sh->qd_idx || i == sh->pd_idx ||
1362 (srctype == SYNDROME_SRC_ALL) ||
1363 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1364 test_bit(R5_Wantdrain, &dev->flags)) ||
1365 (srctype == SYNDROME_SRC_WRITTEN &&
1366 dev->written))
1367 srcs[slot] = sh->dev[i].page;
ac6b53b6
DW
1368 i = raid6_next_disk(i, disks);
1369 } while (i != d0_idx);
ac6b53b6 1370
e4424fee 1371 return syndrome_disks;
ac6b53b6
DW
1372}
1373
1374static struct dma_async_tx_descriptor *
1375ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1376{
1377 int disks = sh->disks;
46d5b785 1378 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1379 int target;
1380 int qd_idx = sh->qd_idx;
1381 struct dma_async_tx_descriptor *tx;
1382 struct async_submit_ctl submit;
1383 struct r5dev *tgt;
1384 struct page *dest;
1385 int i;
1386 int count;
1387
59fc630b 1388 BUG_ON(sh->batch_head);
ac6b53b6
DW
1389 if (sh->ops.target < 0)
1390 target = sh->ops.target2;
1391 else if (sh->ops.target2 < 0)
1392 target = sh->ops.target;
91c00924 1393 else
ac6b53b6
DW
1394 /* we should only have one valid target */
1395 BUG();
1396 BUG_ON(target < 0);
1397 pr_debug("%s: stripe %llu block: %d\n",
1398 __func__, (unsigned long long)sh->sector, target);
1399
1400 tgt = &sh->dev[target];
1401 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1402 dest = tgt->page;
1403
1404 atomic_inc(&sh->count);
1405
1406 if (target == qd_idx) {
584acdd4 1407 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1408 blocks[count] = NULL; /* regenerating p is not necessary */
1409 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1410 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1411 ops_complete_compute, sh,
46d5b785 1412 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1413 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1414 } else {
1415 /* Compute any data- or p-drive using XOR */
1416 count = 0;
1417 for (i = disks; i-- ; ) {
1418 if (i == target || i == qd_idx)
1419 continue;
1420 blocks[count++] = sh->dev[i].page;
1421 }
1422
0403e382
DW
1423 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1424 NULL, ops_complete_compute, sh,
46d5b785 1425 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1426 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1427 }
91c00924 1428
91c00924
DW
1429 return tx;
1430}
1431
ac6b53b6
DW
1432static struct dma_async_tx_descriptor *
1433ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1434{
1435 int i, count, disks = sh->disks;
1436 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1437 int d0_idx = raid6_d0(sh);
1438 int faila = -1, failb = -1;
1439 int target = sh->ops.target;
1440 int target2 = sh->ops.target2;
1441 struct r5dev *tgt = &sh->dev[target];
1442 struct r5dev *tgt2 = &sh->dev[target2];
1443 struct dma_async_tx_descriptor *tx;
46d5b785 1444 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1445 struct async_submit_ctl submit;
1446
59fc630b 1447 BUG_ON(sh->batch_head);
ac6b53b6
DW
1448 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1449 __func__, (unsigned long long)sh->sector, target, target2);
1450 BUG_ON(target < 0 || target2 < 0);
1451 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1452 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1453
6c910a78 1454 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1455 * slot number conversion for 'faila' and 'failb'
1456 */
1457 for (i = 0; i < disks ; i++)
5dd33c9a 1458 blocks[i] = NULL;
ac6b53b6
DW
1459 count = 0;
1460 i = d0_idx;
1461 do {
1462 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1463
1464 blocks[slot] = sh->dev[i].page;
1465
1466 if (i == target)
1467 faila = slot;
1468 if (i == target2)
1469 failb = slot;
1470 i = raid6_next_disk(i, disks);
1471 } while (i != d0_idx);
ac6b53b6
DW
1472
1473 BUG_ON(faila == failb);
1474 if (failb < faila)
1475 swap(faila, failb);
1476 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1477 __func__, (unsigned long long)sh->sector, faila, failb);
1478
1479 atomic_inc(&sh->count);
1480
1481 if (failb == syndrome_disks+1) {
1482 /* Q disk is one of the missing disks */
1483 if (faila == syndrome_disks) {
1484 /* Missing P+Q, just recompute */
0403e382
DW
1485 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1486 ops_complete_compute, sh,
46d5b785 1487 to_addr_conv(sh, percpu, 0));
e4424fee 1488 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1489 STRIPE_SIZE, &submit);
1490 } else {
1491 struct page *dest;
1492 int data_target;
1493 int qd_idx = sh->qd_idx;
1494
1495 /* Missing D+Q: recompute D from P, then recompute Q */
1496 if (target == qd_idx)
1497 data_target = target2;
1498 else
1499 data_target = target;
1500
1501 count = 0;
1502 for (i = disks; i-- ; ) {
1503 if (i == data_target || i == qd_idx)
1504 continue;
1505 blocks[count++] = sh->dev[i].page;
1506 }
1507 dest = sh->dev[data_target].page;
0403e382
DW
1508 init_async_submit(&submit,
1509 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1510 NULL, NULL, NULL,
46d5b785 1511 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1512 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1513 &submit);
1514
584acdd4 1515 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1516 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1517 ops_complete_compute, sh,
46d5b785 1518 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1519 return async_gen_syndrome(blocks, 0, count+2,
1520 STRIPE_SIZE, &submit);
1521 }
ac6b53b6 1522 } else {
6c910a78
DW
1523 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1524 ops_complete_compute, sh,
46d5b785 1525 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1526 if (failb == syndrome_disks) {
1527 /* We're missing D+P. */
1528 return async_raid6_datap_recov(syndrome_disks+2,
1529 STRIPE_SIZE, faila,
1530 blocks, &submit);
1531 } else {
1532 /* We're missing D+D. */
1533 return async_raid6_2data_recov(syndrome_disks+2,
1534 STRIPE_SIZE, faila, failb,
1535 blocks, &submit);
1536 }
ac6b53b6
DW
1537 }
1538}
1539
91c00924
DW
1540static void ops_complete_prexor(void *stripe_head_ref)
1541{
1542 struct stripe_head *sh = stripe_head_ref;
1543
e46b272b 1544 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1545 (unsigned long long)sh->sector);
91c00924
DW
1546}
1547
1548static struct dma_async_tx_descriptor *
584acdd4
MS
1549ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1550 struct dma_async_tx_descriptor *tx)
91c00924 1551{
91c00924 1552 int disks = sh->disks;
46d5b785 1553 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1554 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1555 struct async_submit_ctl submit;
91c00924
DW
1556
1557 /* existing parity data subtracted */
1558 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1559
59fc630b 1560 BUG_ON(sh->batch_head);
e46b272b 1561 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1562 (unsigned long long)sh->sector);
1563
1564 for (i = disks; i--; ) {
1565 struct r5dev *dev = &sh->dev[i];
1566 /* Only process blocks that are known to be uptodate */
d8ee0728 1567 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1568 xor_srcs[count++] = dev->page;
1569 }
1570
0403e382 1571 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1572 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1573 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1574
1575 return tx;
1576}
1577
584acdd4
MS
1578static struct dma_async_tx_descriptor *
1579ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1580 struct dma_async_tx_descriptor *tx)
1581{
1582 struct page **blocks = to_addr_page(percpu, 0);
1583 int count;
1584 struct async_submit_ctl submit;
1585
1586 pr_debug("%s: stripe %llu\n", __func__,
1587 (unsigned long long)sh->sector);
1588
1589 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1590
1591 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1592 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1593 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1594
1595 return tx;
1596}
1597
91c00924 1598static struct dma_async_tx_descriptor *
d8ee0728 1599ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1600{
1601 int disks = sh->disks;
d8ee0728 1602 int i;
59fc630b 1603 struct stripe_head *head_sh = sh;
91c00924 1604
e46b272b 1605 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1606 (unsigned long long)sh->sector);
1607
1608 for (i = disks; i--; ) {
59fc630b 1609 struct r5dev *dev;
91c00924 1610 struct bio *chosen;
91c00924 1611
59fc630b 1612 sh = head_sh;
1613 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1614 struct bio *wbi;
1615
59fc630b 1616again:
1617 dev = &sh->dev[i];
b17459c0 1618 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1619 chosen = dev->towrite;
1620 dev->towrite = NULL;
7a87f434 1621 sh->overwrite_disks = 0;
91c00924
DW
1622 BUG_ON(dev->written);
1623 wbi = dev->written = chosen;
b17459c0 1624 spin_unlock_irq(&sh->stripe_lock);
d592a996 1625 WARN_ON(dev->page != dev->orig_page);
91c00924 1626
4f024f37 1627 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1628 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1629 if (wbi->bi_rw & REQ_FUA)
1630 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1631 if (wbi->bi_rw & REQ_SYNC)
1632 set_bit(R5_SyncIO, &dev->flags);
9e444768 1633 if (wbi->bi_rw & REQ_DISCARD)
620125f2 1634 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1635 else {
1636 tx = async_copy_data(1, wbi, &dev->page,
1637 dev->sector, tx, sh);
1638 if (dev->page != dev->orig_page) {
1639 set_bit(R5_SkipCopy, &dev->flags);
1640 clear_bit(R5_UPTODATE, &dev->flags);
1641 clear_bit(R5_OVERWRITE, &dev->flags);
1642 }
1643 }
91c00924
DW
1644 wbi = r5_next_bio(wbi, dev->sector);
1645 }
59fc630b 1646
1647 if (head_sh->batch_head) {
1648 sh = list_first_entry(&sh->batch_list,
1649 struct stripe_head,
1650 batch_list);
1651 if (sh == head_sh)
1652 continue;
1653 goto again;
1654 }
91c00924
DW
1655 }
1656 }
1657
1658 return tx;
1659}
1660
ac6b53b6 1661static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1662{
1663 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1664 int disks = sh->disks;
1665 int pd_idx = sh->pd_idx;
1666 int qd_idx = sh->qd_idx;
1667 int i;
9e444768 1668 bool fua = false, sync = false, discard = false;
91c00924 1669
e46b272b 1670 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1671 (unsigned long long)sh->sector);
1672
bc0934f0 1673 for (i = disks; i--; ) {
e9c7469b 1674 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1675 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1676 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1677 }
e9c7469b 1678
91c00924
DW
1679 for (i = disks; i--; ) {
1680 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1681
e9c7469b 1682 if (dev->written || i == pd_idx || i == qd_idx) {
d592a996 1683 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
9e444768 1684 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1685 if (fua)
1686 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1687 if (sync)
1688 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1689 }
91c00924
DW
1690 }
1691
d8ee0728
DW
1692 if (sh->reconstruct_state == reconstruct_state_drain_run)
1693 sh->reconstruct_state = reconstruct_state_drain_result;
1694 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1695 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1696 else {
1697 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1698 sh->reconstruct_state = reconstruct_state_result;
1699 }
91c00924
DW
1700
1701 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1702 raid5_release_stripe(sh);
91c00924
DW
1703}
1704
1705static void
ac6b53b6
DW
1706ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1707 struct dma_async_tx_descriptor *tx)
91c00924 1708{
91c00924 1709 int disks = sh->disks;
59fc630b 1710 struct page **xor_srcs;
a08abd8c 1711 struct async_submit_ctl submit;
59fc630b 1712 int count, pd_idx = sh->pd_idx, i;
91c00924 1713 struct page *xor_dest;
d8ee0728 1714 int prexor = 0;
91c00924 1715 unsigned long flags;
59fc630b 1716 int j = 0;
1717 struct stripe_head *head_sh = sh;
1718 int last_stripe;
91c00924 1719
e46b272b 1720 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1721 (unsigned long long)sh->sector);
1722
620125f2
SL
1723 for (i = 0; i < sh->disks; i++) {
1724 if (pd_idx == i)
1725 continue;
1726 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1727 break;
1728 }
1729 if (i >= sh->disks) {
1730 atomic_inc(&sh->count);
620125f2
SL
1731 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1732 ops_complete_reconstruct(sh);
1733 return;
1734 }
59fc630b 1735again:
1736 count = 0;
1737 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1738 /* check if prexor is active which means only process blocks
1739 * that are part of a read-modify-write (written)
1740 */
59fc630b 1741 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1742 prexor = 1;
91c00924
DW
1743 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1744 for (i = disks; i--; ) {
1745 struct r5dev *dev = &sh->dev[i];
59fc630b 1746 if (head_sh->dev[i].written)
91c00924
DW
1747 xor_srcs[count++] = dev->page;
1748 }
1749 } else {
1750 xor_dest = sh->dev[pd_idx].page;
1751 for (i = disks; i--; ) {
1752 struct r5dev *dev = &sh->dev[i];
1753 if (i != pd_idx)
1754 xor_srcs[count++] = dev->page;
1755 }
1756 }
1757
91c00924
DW
1758 /* 1/ if we prexor'd then the dest is reused as a source
1759 * 2/ if we did not prexor then we are redoing the parity
1760 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1761 * for the synchronous xor case
1762 */
59fc630b 1763 last_stripe = !head_sh->batch_head ||
1764 list_first_entry(&sh->batch_list,
1765 struct stripe_head, batch_list) == head_sh;
1766 if (last_stripe) {
1767 flags = ASYNC_TX_ACK |
1768 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1769
1770 atomic_inc(&head_sh->count);
1771 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1772 to_addr_conv(sh, percpu, j));
1773 } else {
1774 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1775 init_async_submit(&submit, flags, tx, NULL, NULL,
1776 to_addr_conv(sh, percpu, j));
1777 }
91c00924 1778
a08abd8c
DW
1779 if (unlikely(count == 1))
1780 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1781 else
1782 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1783 if (!last_stripe) {
1784 j++;
1785 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1786 batch_list);
1787 goto again;
1788 }
91c00924
DW
1789}
1790
ac6b53b6
DW
1791static void
1792ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1793 struct dma_async_tx_descriptor *tx)
1794{
1795 struct async_submit_ctl submit;
59fc630b 1796 struct page **blocks;
1797 int count, i, j = 0;
1798 struct stripe_head *head_sh = sh;
1799 int last_stripe;
584acdd4
MS
1800 int synflags;
1801 unsigned long txflags;
ac6b53b6
DW
1802
1803 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1804
620125f2
SL
1805 for (i = 0; i < sh->disks; i++) {
1806 if (sh->pd_idx == i || sh->qd_idx == i)
1807 continue;
1808 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1809 break;
1810 }
1811 if (i >= sh->disks) {
1812 atomic_inc(&sh->count);
620125f2
SL
1813 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1814 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1815 ops_complete_reconstruct(sh);
1816 return;
1817 }
1818
59fc630b 1819again:
1820 blocks = to_addr_page(percpu, j);
584acdd4
MS
1821
1822 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1823 synflags = SYNDROME_SRC_WRITTEN;
1824 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1825 } else {
1826 synflags = SYNDROME_SRC_ALL;
1827 txflags = ASYNC_TX_ACK;
1828 }
1829
1830 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1831 last_stripe = !head_sh->batch_head ||
1832 list_first_entry(&sh->batch_list,
1833 struct stripe_head, batch_list) == head_sh;
1834
1835 if (last_stripe) {
1836 atomic_inc(&head_sh->count);
584acdd4 1837 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1838 head_sh, to_addr_conv(sh, percpu, j));
1839 } else
1840 init_async_submit(&submit, 0, tx, NULL, NULL,
1841 to_addr_conv(sh, percpu, j));
48769695 1842 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1843 if (!last_stripe) {
1844 j++;
1845 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1846 batch_list);
1847 goto again;
1848 }
91c00924
DW
1849}
1850
1851static void ops_complete_check(void *stripe_head_ref)
1852{
1853 struct stripe_head *sh = stripe_head_ref;
91c00924 1854
e46b272b 1855 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1856 (unsigned long long)sh->sector);
1857
ecc65c9b 1858 sh->check_state = check_state_check_result;
91c00924 1859 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1860 raid5_release_stripe(sh);
91c00924
DW
1861}
1862
ac6b53b6 1863static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1864{
91c00924 1865 int disks = sh->disks;
ac6b53b6
DW
1866 int pd_idx = sh->pd_idx;
1867 int qd_idx = sh->qd_idx;
1868 struct page *xor_dest;
46d5b785 1869 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1870 struct dma_async_tx_descriptor *tx;
a08abd8c 1871 struct async_submit_ctl submit;
ac6b53b6
DW
1872 int count;
1873 int i;
91c00924 1874
e46b272b 1875 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1876 (unsigned long long)sh->sector);
1877
59fc630b 1878 BUG_ON(sh->batch_head);
ac6b53b6
DW
1879 count = 0;
1880 xor_dest = sh->dev[pd_idx].page;
1881 xor_srcs[count++] = xor_dest;
91c00924 1882 for (i = disks; i--; ) {
ac6b53b6
DW
1883 if (i == pd_idx || i == qd_idx)
1884 continue;
1885 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1886 }
1887
d6f38f31 1888 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 1889 to_addr_conv(sh, percpu, 0));
099f53cb 1890 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1891 &sh->ops.zero_sum_result, &submit);
91c00924 1892
91c00924 1893 atomic_inc(&sh->count);
a08abd8c
DW
1894 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1895 tx = async_trigger_callback(&submit);
91c00924
DW
1896}
1897
ac6b53b6
DW
1898static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1899{
46d5b785 1900 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
1901 struct async_submit_ctl submit;
1902 int count;
1903
1904 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1905 (unsigned long long)sh->sector, checkp);
1906
59fc630b 1907 BUG_ON(sh->batch_head);
584acdd4 1908 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1909 if (!checkp)
1910 srcs[count] = NULL;
91c00924 1911
91c00924 1912 atomic_inc(&sh->count);
ac6b53b6 1913 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 1914 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1915 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1916 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1917}
1918
51acbcec 1919static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1920{
1921 int overlap_clear = 0, i, disks = sh->disks;
1922 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1923 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1924 int level = conf->level;
d6f38f31
DW
1925 struct raid5_percpu *percpu;
1926 unsigned long cpu;
91c00924 1927
d6f38f31
DW
1928 cpu = get_cpu();
1929 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1930 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1931 ops_run_biofill(sh);
1932 overlap_clear++;
1933 }
1934
7b3a871e 1935 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1936 if (level < 6)
1937 tx = ops_run_compute5(sh, percpu);
1938 else {
1939 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1940 tx = ops_run_compute6_1(sh, percpu);
1941 else
1942 tx = ops_run_compute6_2(sh, percpu);
1943 }
1944 /* terminate the chain if reconstruct is not set to be run */
1945 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1946 async_tx_ack(tx);
1947 }
91c00924 1948
584acdd4
MS
1949 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1950 if (level < 6)
1951 tx = ops_run_prexor5(sh, percpu, tx);
1952 else
1953 tx = ops_run_prexor6(sh, percpu, tx);
1954 }
91c00924 1955
600aa109 1956 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1957 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1958 overlap_clear++;
1959 }
1960
ac6b53b6
DW
1961 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1962 if (level < 6)
1963 ops_run_reconstruct5(sh, percpu, tx);
1964 else
1965 ops_run_reconstruct6(sh, percpu, tx);
1966 }
91c00924 1967
ac6b53b6
DW
1968 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1969 if (sh->check_state == check_state_run)
1970 ops_run_check_p(sh, percpu);
1971 else if (sh->check_state == check_state_run_q)
1972 ops_run_check_pq(sh, percpu, 0);
1973 else if (sh->check_state == check_state_run_pq)
1974 ops_run_check_pq(sh, percpu, 1);
1975 else
1976 BUG();
1977 }
91c00924 1978
59fc630b 1979 if (overlap_clear && !sh->batch_head)
91c00924
DW
1980 for (i = disks; i--; ) {
1981 struct r5dev *dev = &sh->dev[i];
1982 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1983 wake_up(&sh->raid_conf->wait_for_overlap);
1984 }
d6f38f31 1985 put_cpu();
91c00924
DW
1986}
1987
f18c1a35
N
1988static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1989{
1990 struct stripe_head *sh;
1991
1992 sh = kmem_cache_zalloc(sc, gfp);
1993 if (sh) {
1994 spin_lock_init(&sh->stripe_lock);
1995 spin_lock_init(&sh->batch_lock);
1996 INIT_LIST_HEAD(&sh->batch_list);
1997 INIT_LIST_HEAD(&sh->lru);
1998 atomic_set(&sh->count, 1);
1999 }
2000 return sh;
2001}
486f0644 2002static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2003{
2004 struct stripe_head *sh;
f18c1a35
N
2005
2006 sh = alloc_stripe(conf->slab_cache, gfp);
3f294f4f
N
2007 if (!sh)
2008 return 0;
6ce32846 2009
3f294f4f 2010 sh->raid_conf = conf;
3f294f4f 2011
a9683a79 2012 if (grow_buffers(sh, gfp)) {
e4e11e38 2013 shrink_buffers(sh);
3f294f4f
N
2014 kmem_cache_free(conf->slab_cache, sh);
2015 return 0;
2016 }
486f0644
N
2017 sh->hash_lock_index =
2018 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2019 /* we just created an active stripe so... */
3f294f4f 2020 atomic_inc(&conf->active_stripes);
59fc630b 2021
6d036f7d 2022 raid5_release_stripe(sh);
486f0644 2023 conf->max_nr_stripes++;
3f294f4f
N
2024 return 1;
2025}
2026
d1688a6d 2027static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2028{
e18b890b 2029 struct kmem_cache *sc;
5e5e3e78 2030 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2031
f4be6b43
N
2032 if (conf->mddev->gendisk)
2033 sprintf(conf->cache_name[0],
2034 "raid%d-%s", conf->level, mdname(conf->mddev));
2035 else
2036 sprintf(conf->cache_name[0],
2037 "raid%d-%p", conf->level, conf->mddev);
2038 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2039
ad01c9e3
N
2040 conf->active_name = 0;
2041 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2042 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2043 0, 0, NULL);
1da177e4
LT
2044 if (!sc)
2045 return 1;
2046 conf->slab_cache = sc;
ad01c9e3 2047 conf->pool_size = devs;
486f0644
N
2048 while (num--)
2049 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2050 return 1;
486f0644 2051
1da177e4
LT
2052 return 0;
2053}
29269553 2054
d6f38f31
DW
2055/**
2056 * scribble_len - return the required size of the scribble region
2057 * @num - total number of disks in the array
2058 *
2059 * The size must be enough to contain:
2060 * 1/ a struct page pointer for each device in the array +2
2061 * 2/ room to convert each entry in (1) to its corresponding dma
2062 * (dma_map_page()) or page (page_address()) address.
2063 *
2064 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2065 * calculate over all devices (not just the data blocks), using zeros in place
2066 * of the P and Q blocks.
2067 */
46d5b785 2068static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2069{
46d5b785 2070 struct flex_array *ret;
d6f38f31
DW
2071 size_t len;
2072
2073 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2074 ret = flex_array_alloc(len, cnt, flags);
2075 if (!ret)
2076 return NULL;
2077 /* always prealloc all elements, so no locking is required */
2078 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2079 flex_array_free(ret);
2080 return NULL;
2081 }
2082 return ret;
d6f38f31
DW
2083}
2084
738a2738
N
2085static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2086{
2087 unsigned long cpu;
2088 int err = 0;
2089
2090 mddev_suspend(conf->mddev);
2091 get_online_cpus();
2092 for_each_present_cpu(cpu) {
2093 struct raid5_percpu *percpu;
2094 struct flex_array *scribble;
2095
2096 percpu = per_cpu_ptr(conf->percpu, cpu);
2097 scribble = scribble_alloc(new_disks,
2098 new_sectors / STRIPE_SECTORS,
2099 GFP_NOIO);
2100
2101 if (scribble) {
2102 flex_array_free(percpu->scribble);
2103 percpu->scribble = scribble;
2104 } else {
2105 err = -ENOMEM;
2106 break;
2107 }
2108 }
2109 put_online_cpus();
2110 mddev_resume(conf->mddev);
2111 return err;
2112}
2113
d1688a6d 2114static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2115{
2116 /* Make all the stripes able to hold 'newsize' devices.
2117 * New slots in each stripe get 'page' set to a new page.
2118 *
2119 * This happens in stages:
2120 * 1/ create a new kmem_cache and allocate the required number of
2121 * stripe_heads.
83f0d77a 2122 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2123 * to the new stripe_heads. This will have the side effect of
2124 * freezing the array as once all stripe_heads have been collected,
2125 * no IO will be possible. Old stripe heads are freed once their
2126 * pages have been transferred over, and the old kmem_cache is
2127 * freed when all stripes are done.
2128 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2129 * we simple return a failre status - no need to clean anything up.
2130 * 4/ allocate new pages for the new slots in the new stripe_heads.
2131 * If this fails, we don't bother trying the shrink the
2132 * stripe_heads down again, we just leave them as they are.
2133 * As each stripe_head is processed the new one is released into
2134 * active service.
2135 *
2136 * Once step2 is started, we cannot afford to wait for a write,
2137 * so we use GFP_NOIO allocations.
2138 */
2139 struct stripe_head *osh, *nsh;
2140 LIST_HEAD(newstripes);
2141 struct disk_info *ndisks;
b5470dc5 2142 int err;
e18b890b 2143 struct kmem_cache *sc;
ad01c9e3 2144 int i;
566c09c5 2145 int hash, cnt;
ad01c9e3
N
2146
2147 if (newsize <= conf->pool_size)
2148 return 0; /* never bother to shrink */
2149
b5470dc5
DW
2150 err = md_allow_write(conf->mddev);
2151 if (err)
2152 return err;
2a2275d6 2153
ad01c9e3
N
2154 /* Step 1 */
2155 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2156 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2157 0, 0, NULL);
ad01c9e3
N
2158 if (!sc)
2159 return -ENOMEM;
2160
2d5b569b
N
2161 /* Need to ensure auto-resizing doesn't interfere */
2162 mutex_lock(&conf->cache_size_mutex);
2163
ad01c9e3 2164 for (i = conf->max_nr_stripes; i; i--) {
f18c1a35 2165 nsh = alloc_stripe(sc, GFP_KERNEL);
ad01c9e3
N
2166 if (!nsh)
2167 break;
2168
ad01c9e3 2169 nsh->raid_conf = conf;
ad01c9e3
N
2170 list_add(&nsh->lru, &newstripes);
2171 }
2172 if (i) {
2173 /* didn't get enough, give up */
2174 while (!list_empty(&newstripes)) {
2175 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2176 list_del(&nsh->lru);
2177 kmem_cache_free(sc, nsh);
2178 }
2179 kmem_cache_destroy(sc);
2d5b569b 2180 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2181 return -ENOMEM;
2182 }
2183 /* Step 2 - Must use GFP_NOIO now.
2184 * OK, we have enough stripes, start collecting inactive
2185 * stripes and copying them over
2186 */
566c09c5
SL
2187 hash = 0;
2188 cnt = 0;
ad01c9e3 2189 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2190 lock_device_hash_lock(conf, hash);
e9e4c377 2191 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
566c09c5
SL
2192 !list_empty(conf->inactive_list + hash),
2193 unlock_device_hash_lock(conf, hash),
2194 lock_device_hash_lock(conf, hash));
2195 osh = get_free_stripe(conf, hash);
2196 unlock_device_hash_lock(conf, hash);
f18c1a35 2197
d592a996 2198 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2199 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2200 nsh->dev[i].orig_page = osh->dev[i].page;
2201 }
566c09c5 2202 nsh->hash_lock_index = hash;
ad01c9e3 2203 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
2204 cnt++;
2205 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2206 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2207 hash++;
2208 cnt = 0;
2209 }
ad01c9e3
N
2210 }
2211 kmem_cache_destroy(conf->slab_cache);
2212
2213 /* Step 3.
2214 * At this point, we are holding all the stripes so the array
2215 * is completely stalled, so now is a good time to resize
d6f38f31 2216 * conf->disks and the scribble region
ad01c9e3
N
2217 */
2218 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2219 if (ndisks) {
2220 for (i=0; i<conf->raid_disks; i++)
2221 ndisks[i] = conf->disks[i];
2222 kfree(conf->disks);
2223 conf->disks = ndisks;
2224 } else
2225 err = -ENOMEM;
2226
2d5b569b 2227 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2228 /* Step 4, return new stripes to service */
2229 while(!list_empty(&newstripes)) {
2230 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2231 list_del_init(&nsh->lru);
d6f38f31 2232
ad01c9e3
N
2233 for (i=conf->raid_disks; i < newsize; i++)
2234 if (nsh->dev[i].page == NULL) {
2235 struct page *p = alloc_page(GFP_NOIO);
2236 nsh->dev[i].page = p;
d592a996 2237 nsh->dev[i].orig_page = p;
ad01c9e3
N
2238 if (!p)
2239 err = -ENOMEM;
2240 }
6d036f7d 2241 raid5_release_stripe(nsh);
ad01c9e3
N
2242 }
2243 /* critical section pass, GFP_NOIO no longer needed */
2244
2245 conf->slab_cache = sc;
2246 conf->active_name = 1-conf->active_name;
6e9eac2d
N
2247 if (!err)
2248 conf->pool_size = newsize;
ad01c9e3
N
2249 return err;
2250}
1da177e4 2251
486f0644 2252static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2253{
2254 struct stripe_head *sh;
49895bcc 2255 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2256
566c09c5
SL
2257 spin_lock_irq(conf->hash_locks + hash);
2258 sh = get_free_stripe(conf, hash);
2259 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2260 if (!sh)
2261 return 0;
78bafebd 2262 BUG_ON(atomic_read(&sh->count));
e4e11e38 2263 shrink_buffers(sh);
3f294f4f
N
2264 kmem_cache_free(conf->slab_cache, sh);
2265 atomic_dec(&conf->active_stripes);
486f0644 2266 conf->max_nr_stripes--;
3f294f4f
N
2267 return 1;
2268}
2269
d1688a6d 2270static void shrink_stripes(struct r5conf *conf)
3f294f4f 2271{
486f0644
N
2272 while (conf->max_nr_stripes &&
2273 drop_one_stripe(conf))
2274 ;
3f294f4f 2275
644df1a8 2276 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2277 conf->slab_cache = NULL;
2278}
2279
4246a0b6 2280static void raid5_end_read_request(struct bio * bi)
1da177e4 2281{
99c0fb5f 2282 struct stripe_head *sh = bi->bi_private;
d1688a6d 2283 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2284 int disks = sh->disks, i;
d6950432 2285 char b[BDEVNAME_SIZE];
dd054fce 2286 struct md_rdev *rdev = NULL;
05616be5 2287 sector_t s;
1da177e4
LT
2288
2289 for (i=0 ; i<disks; i++)
2290 if (bi == &sh->dev[i].req)
2291 break;
2292
4246a0b6 2293 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2294 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2295 bi->bi_error);
1da177e4
LT
2296 if (i == disks) {
2297 BUG();
6712ecf8 2298 return;
1da177e4 2299 }
14a75d3e 2300 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2301 /* If replacement finished while this request was outstanding,
2302 * 'replacement' might be NULL already.
2303 * In that case it moved down to 'rdev'.
2304 * rdev is not removed until all requests are finished.
2305 */
14a75d3e 2306 rdev = conf->disks[i].replacement;
dd054fce 2307 if (!rdev)
14a75d3e 2308 rdev = conf->disks[i].rdev;
1da177e4 2309
05616be5
N
2310 if (use_new_offset(conf, sh))
2311 s = sh->sector + rdev->new_data_offset;
2312 else
2313 s = sh->sector + rdev->data_offset;
4246a0b6 2314 if (!bi->bi_error) {
1da177e4 2315 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2316 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2317 /* Note that this cannot happen on a
2318 * replacement device. We just fail those on
2319 * any error
2320 */
8bda470e
CD
2321 printk_ratelimited(
2322 KERN_INFO
2323 "md/raid:%s: read error corrected"
2324 " (%lu sectors at %llu on %s)\n",
2325 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2326 (unsigned long long)s,
8bda470e 2327 bdevname(rdev->bdev, b));
ddd5115f 2328 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2329 clear_bit(R5_ReadError, &sh->dev[i].flags);
2330 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2331 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2332 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2333
14a75d3e
N
2334 if (atomic_read(&rdev->read_errors))
2335 atomic_set(&rdev->read_errors, 0);
1da177e4 2336 } else {
14a75d3e 2337 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2338 int retry = 0;
2e8ac303 2339 int set_bad = 0;
d6950432 2340
1da177e4 2341 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2342 atomic_inc(&rdev->read_errors);
14a75d3e
N
2343 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2344 printk_ratelimited(
2345 KERN_WARNING
2346 "md/raid:%s: read error on replacement device "
2347 "(sector %llu on %s).\n",
2348 mdname(conf->mddev),
05616be5 2349 (unsigned long long)s,
14a75d3e 2350 bdn);
2e8ac303 2351 else if (conf->mddev->degraded >= conf->max_degraded) {
2352 set_bad = 1;
8bda470e
CD
2353 printk_ratelimited(
2354 KERN_WARNING
2355 "md/raid:%s: read error not correctable "
2356 "(sector %llu on %s).\n",
2357 mdname(conf->mddev),
05616be5 2358 (unsigned long long)s,
8bda470e 2359 bdn);
2e8ac303 2360 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2361 /* Oh, no!!! */
2e8ac303 2362 set_bad = 1;
8bda470e
CD
2363 printk_ratelimited(
2364 KERN_WARNING
2365 "md/raid:%s: read error NOT corrected!! "
2366 "(sector %llu on %s).\n",
2367 mdname(conf->mddev),
05616be5 2368 (unsigned long long)s,
8bda470e 2369 bdn);
2e8ac303 2370 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2371 > conf->max_nr_stripes)
14f8d26b 2372 printk(KERN_WARNING
0c55e022 2373 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2374 mdname(conf->mddev), bdn);
ba22dcbf
N
2375 else
2376 retry = 1;
edfa1f65
BY
2377 if (set_bad && test_bit(In_sync, &rdev->flags)
2378 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2379 retry = 1;
ba22dcbf 2380 if (retry)
3f9e7c14 2381 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2382 set_bit(R5_ReadError, &sh->dev[i].flags);
2383 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2384 } else
2385 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2386 else {
4e5314b5
N
2387 clear_bit(R5_ReadError, &sh->dev[i].flags);
2388 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2389 if (!(set_bad
2390 && test_bit(In_sync, &rdev->flags)
2391 && rdev_set_badblocks(
2392 rdev, sh->sector, STRIPE_SECTORS, 0)))
2393 md_error(conf->mddev, rdev);
ba22dcbf 2394 }
1da177e4 2395 }
14a75d3e 2396 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
2397 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2398 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2399 raid5_release_stripe(sh);
1da177e4
LT
2400}
2401
4246a0b6 2402static void raid5_end_write_request(struct bio *bi)
1da177e4 2403{
99c0fb5f 2404 struct stripe_head *sh = bi->bi_private;
d1688a6d 2405 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2406 int disks = sh->disks, i;
977df362 2407 struct md_rdev *uninitialized_var(rdev);
b84db560
N
2408 sector_t first_bad;
2409 int bad_sectors;
977df362 2410 int replacement = 0;
1da177e4 2411
977df362
N
2412 for (i = 0 ; i < disks; i++) {
2413 if (bi == &sh->dev[i].req) {
2414 rdev = conf->disks[i].rdev;
1da177e4 2415 break;
977df362
N
2416 }
2417 if (bi == &sh->dev[i].rreq) {
2418 rdev = conf->disks[i].replacement;
dd054fce
N
2419 if (rdev)
2420 replacement = 1;
2421 else
2422 /* rdev was removed and 'replacement'
2423 * replaced it. rdev is not removed
2424 * until all requests are finished.
2425 */
2426 rdev = conf->disks[i].rdev;
977df362
N
2427 break;
2428 }
2429 }
4246a0b6 2430 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2431 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2432 bi->bi_error);
1da177e4
LT
2433 if (i == disks) {
2434 BUG();
6712ecf8 2435 return;
1da177e4
LT
2436 }
2437
977df362 2438 if (replacement) {
4246a0b6 2439 if (bi->bi_error)
977df362
N
2440 md_error(conf->mddev, rdev);
2441 else if (is_badblock(rdev, sh->sector,
2442 STRIPE_SECTORS,
2443 &first_bad, &bad_sectors))
2444 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2445 } else {
4246a0b6 2446 if (bi->bi_error) {
9f97e4b1 2447 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2448 set_bit(WriteErrorSeen, &rdev->flags);
2449 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2450 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2451 set_bit(MD_RECOVERY_NEEDED,
2452 &rdev->mddev->recovery);
977df362
N
2453 } else if (is_badblock(rdev, sh->sector,
2454 STRIPE_SECTORS,
c0b32972 2455 &first_bad, &bad_sectors)) {
977df362 2456 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2457 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2458 /* That was a successful write so make
2459 * sure it looks like we already did
2460 * a re-write.
2461 */
2462 set_bit(R5_ReWrite, &sh->dev[i].flags);
2463 }
977df362
N
2464 }
2465 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2466
4246a0b6 2467 if (sh->batch_head && bi->bi_error && !replacement)
72ac7330 2468 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2469
977df362
N
2470 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2471 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2472 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2473 raid5_release_stripe(sh);
59fc630b 2474
2475 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2476 raid5_release_stripe(sh->batch_head);
1da177e4
LT
2477}
2478
784052ec 2479static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2480{
2481 struct r5dev *dev = &sh->dev[i];
2482
2483 bio_init(&dev->req);
2484 dev->req.bi_io_vec = &dev->vec;
d592a996 2485 dev->req.bi_max_vecs = 1;
1da177e4
LT
2486 dev->req.bi_private = sh;
2487
977df362
N
2488 bio_init(&dev->rreq);
2489 dev->rreq.bi_io_vec = &dev->rvec;
d592a996 2490 dev->rreq.bi_max_vecs = 1;
977df362 2491 dev->rreq.bi_private = sh;
977df362 2492
1da177e4 2493 dev->flags = 0;
6d036f7d 2494 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4
LT
2495}
2496
fd01b88c 2497static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2498{
2499 char b[BDEVNAME_SIZE];
d1688a6d 2500 struct r5conf *conf = mddev->private;
908f4fbd 2501 unsigned long flags;
0c55e022 2502 pr_debug("raid456: error called\n");
1da177e4 2503
908f4fbd
N
2504 spin_lock_irqsave(&conf->device_lock, flags);
2505 clear_bit(In_sync, &rdev->flags);
2506 mddev->degraded = calc_degraded(conf);
2507 spin_unlock_irqrestore(&conf->device_lock, flags);
2508 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2509
de393cde 2510 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
2511 set_bit(Faulty, &rdev->flags);
2512 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c3cce6cd 2513 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6f8d0c77
N
2514 printk(KERN_ALERT
2515 "md/raid:%s: Disk failure on %s, disabling device.\n"
2516 "md/raid:%s: Operation continuing on %d devices.\n",
2517 mdname(mddev),
2518 bdevname(rdev->bdev, b),
2519 mdname(mddev),
2520 conf->raid_disks - mddev->degraded);
16a53ecc 2521}
1da177e4
LT
2522
2523/*
2524 * Input: a 'big' sector number,
2525 * Output: index of the data and parity disk, and the sector # in them.
2526 */
6d036f7d
SL
2527sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2528 int previous, int *dd_idx,
2529 struct stripe_head *sh)
1da177e4 2530{
6e3b96ed 2531 sector_t stripe, stripe2;
35f2a591 2532 sector_t chunk_number;
1da177e4 2533 unsigned int chunk_offset;
911d4ee8 2534 int pd_idx, qd_idx;
67cc2b81 2535 int ddf_layout = 0;
1da177e4 2536 sector_t new_sector;
e183eaed
N
2537 int algorithm = previous ? conf->prev_algo
2538 : conf->algorithm;
09c9e5fa
AN
2539 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2540 : conf->chunk_sectors;
112bf897
N
2541 int raid_disks = previous ? conf->previous_raid_disks
2542 : conf->raid_disks;
2543 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2544
2545 /* First compute the information on this sector */
2546
2547 /*
2548 * Compute the chunk number and the sector offset inside the chunk
2549 */
2550 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2551 chunk_number = r_sector;
1da177e4
LT
2552
2553 /*
2554 * Compute the stripe number
2555 */
35f2a591
N
2556 stripe = chunk_number;
2557 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2558 stripe2 = stripe;
1da177e4
LT
2559 /*
2560 * Select the parity disk based on the user selected algorithm.
2561 */
84789554 2562 pd_idx = qd_idx = -1;
16a53ecc
N
2563 switch(conf->level) {
2564 case 4:
911d4ee8 2565 pd_idx = data_disks;
16a53ecc
N
2566 break;
2567 case 5:
e183eaed 2568 switch (algorithm) {
1da177e4 2569 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2570 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2571 if (*dd_idx >= pd_idx)
1da177e4
LT
2572 (*dd_idx)++;
2573 break;
2574 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2575 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2576 if (*dd_idx >= pd_idx)
1da177e4
LT
2577 (*dd_idx)++;
2578 break;
2579 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2580 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2581 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2582 break;
2583 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2584 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2585 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2586 break;
99c0fb5f
N
2587 case ALGORITHM_PARITY_0:
2588 pd_idx = 0;
2589 (*dd_idx)++;
2590 break;
2591 case ALGORITHM_PARITY_N:
2592 pd_idx = data_disks;
2593 break;
1da177e4 2594 default:
99c0fb5f 2595 BUG();
16a53ecc
N
2596 }
2597 break;
2598 case 6:
2599
e183eaed 2600 switch (algorithm) {
16a53ecc 2601 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2602 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2603 qd_idx = pd_idx + 1;
2604 if (pd_idx == raid_disks-1) {
99c0fb5f 2605 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2606 qd_idx = 0;
2607 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2608 (*dd_idx) += 2; /* D D P Q D */
2609 break;
2610 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2611 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2612 qd_idx = pd_idx + 1;
2613 if (pd_idx == raid_disks-1) {
99c0fb5f 2614 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2615 qd_idx = 0;
2616 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2617 (*dd_idx) += 2; /* D D P Q D */
2618 break;
2619 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2620 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2621 qd_idx = (pd_idx + 1) % raid_disks;
2622 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2623 break;
2624 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2625 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2626 qd_idx = (pd_idx + 1) % raid_disks;
2627 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2628 break;
99c0fb5f
N
2629
2630 case ALGORITHM_PARITY_0:
2631 pd_idx = 0;
2632 qd_idx = 1;
2633 (*dd_idx) += 2;
2634 break;
2635 case ALGORITHM_PARITY_N:
2636 pd_idx = data_disks;
2637 qd_idx = data_disks + 1;
2638 break;
2639
2640 case ALGORITHM_ROTATING_ZERO_RESTART:
2641 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2642 * of blocks for computing Q is different.
2643 */
6e3b96ed 2644 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2645 qd_idx = pd_idx + 1;
2646 if (pd_idx == raid_disks-1) {
2647 (*dd_idx)++; /* Q D D D P */
2648 qd_idx = 0;
2649 } else if (*dd_idx >= pd_idx)
2650 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2651 ddf_layout = 1;
99c0fb5f
N
2652 break;
2653
2654 case ALGORITHM_ROTATING_N_RESTART:
2655 /* Same a left_asymmetric, by first stripe is
2656 * D D D P Q rather than
2657 * Q D D D P
2658 */
6e3b96ed
N
2659 stripe2 += 1;
2660 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2661 qd_idx = pd_idx + 1;
2662 if (pd_idx == raid_disks-1) {
2663 (*dd_idx)++; /* Q D D D P */
2664 qd_idx = 0;
2665 } else if (*dd_idx >= pd_idx)
2666 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2667 ddf_layout = 1;
99c0fb5f
N
2668 break;
2669
2670 case ALGORITHM_ROTATING_N_CONTINUE:
2671 /* Same as left_symmetric but Q is before P */
6e3b96ed 2672 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2673 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2674 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2675 ddf_layout = 1;
99c0fb5f
N
2676 break;
2677
2678 case ALGORITHM_LEFT_ASYMMETRIC_6:
2679 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2680 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2681 if (*dd_idx >= pd_idx)
2682 (*dd_idx)++;
2683 qd_idx = raid_disks - 1;
2684 break;
2685
2686 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2687 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2688 if (*dd_idx >= pd_idx)
2689 (*dd_idx)++;
2690 qd_idx = raid_disks - 1;
2691 break;
2692
2693 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2694 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2695 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2696 qd_idx = raid_disks - 1;
2697 break;
2698
2699 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2700 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2701 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2702 qd_idx = raid_disks - 1;
2703 break;
2704
2705 case ALGORITHM_PARITY_0_6:
2706 pd_idx = 0;
2707 (*dd_idx)++;
2708 qd_idx = raid_disks - 1;
2709 break;
2710
16a53ecc 2711 default:
99c0fb5f 2712 BUG();
16a53ecc
N
2713 }
2714 break;
1da177e4
LT
2715 }
2716
911d4ee8
N
2717 if (sh) {
2718 sh->pd_idx = pd_idx;
2719 sh->qd_idx = qd_idx;
67cc2b81 2720 sh->ddf_layout = ddf_layout;
911d4ee8 2721 }
1da177e4
LT
2722 /*
2723 * Finally, compute the new sector number
2724 */
2725 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2726 return new_sector;
2727}
2728
6d036f7d 2729sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2730{
d1688a6d 2731 struct r5conf *conf = sh->raid_conf;
b875e531
N
2732 int raid_disks = sh->disks;
2733 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2734 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2735 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2736 : conf->chunk_sectors;
e183eaed
N
2737 int algorithm = previous ? conf->prev_algo
2738 : conf->algorithm;
1da177e4
LT
2739 sector_t stripe;
2740 int chunk_offset;
35f2a591
N
2741 sector_t chunk_number;
2742 int dummy1, dd_idx = i;
1da177e4 2743 sector_t r_sector;
911d4ee8 2744 struct stripe_head sh2;
1da177e4
LT
2745
2746 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2747 stripe = new_sector;
1da177e4 2748
16a53ecc
N
2749 if (i == sh->pd_idx)
2750 return 0;
2751 switch(conf->level) {
2752 case 4: break;
2753 case 5:
e183eaed 2754 switch (algorithm) {
1da177e4
LT
2755 case ALGORITHM_LEFT_ASYMMETRIC:
2756 case ALGORITHM_RIGHT_ASYMMETRIC:
2757 if (i > sh->pd_idx)
2758 i--;
2759 break;
2760 case ALGORITHM_LEFT_SYMMETRIC:
2761 case ALGORITHM_RIGHT_SYMMETRIC:
2762 if (i < sh->pd_idx)
2763 i += raid_disks;
2764 i -= (sh->pd_idx + 1);
2765 break;
99c0fb5f
N
2766 case ALGORITHM_PARITY_0:
2767 i -= 1;
2768 break;
2769 case ALGORITHM_PARITY_N:
2770 break;
1da177e4 2771 default:
99c0fb5f 2772 BUG();
16a53ecc
N
2773 }
2774 break;
2775 case 6:
d0dabf7e 2776 if (i == sh->qd_idx)
16a53ecc 2777 return 0; /* It is the Q disk */
e183eaed 2778 switch (algorithm) {
16a53ecc
N
2779 case ALGORITHM_LEFT_ASYMMETRIC:
2780 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2781 case ALGORITHM_ROTATING_ZERO_RESTART:
2782 case ALGORITHM_ROTATING_N_RESTART:
2783 if (sh->pd_idx == raid_disks-1)
2784 i--; /* Q D D D P */
16a53ecc
N
2785 else if (i > sh->pd_idx)
2786 i -= 2; /* D D P Q D */
2787 break;
2788 case ALGORITHM_LEFT_SYMMETRIC:
2789 case ALGORITHM_RIGHT_SYMMETRIC:
2790 if (sh->pd_idx == raid_disks-1)
2791 i--; /* Q D D D P */
2792 else {
2793 /* D D P Q D */
2794 if (i < sh->pd_idx)
2795 i += raid_disks;
2796 i -= (sh->pd_idx + 2);
2797 }
2798 break;
99c0fb5f
N
2799 case ALGORITHM_PARITY_0:
2800 i -= 2;
2801 break;
2802 case ALGORITHM_PARITY_N:
2803 break;
2804 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2805 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2806 if (sh->pd_idx == 0)
2807 i--; /* P D D D Q */
e4424fee
N
2808 else {
2809 /* D D Q P D */
2810 if (i < sh->pd_idx)
2811 i += raid_disks;
2812 i -= (sh->pd_idx + 1);
2813 }
99c0fb5f
N
2814 break;
2815 case ALGORITHM_LEFT_ASYMMETRIC_6:
2816 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2817 if (i > sh->pd_idx)
2818 i--;
2819 break;
2820 case ALGORITHM_LEFT_SYMMETRIC_6:
2821 case ALGORITHM_RIGHT_SYMMETRIC_6:
2822 if (i < sh->pd_idx)
2823 i += data_disks + 1;
2824 i -= (sh->pd_idx + 1);
2825 break;
2826 case ALGORITHM_PARITY_0_6:
2827 i -= 1;
2828 break;
16a53ecc 2829 default:
99c0fb5f 2830 BUG();
16a53ecc
N
2831 }
2832 break;
1da177e4
LT
2833 }
2834
2835 chunk_number = stripe * data_disks + i;
35f2a591 2836 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2837
112bf897 2838 check = raid5_compute_sector(conf, r_sector,
784052ec 2839 previous, &dummy1, &sh2);
911d4ee8
N
2840 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2841 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2842 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2843 mdname(conf->mddev));
1da177e4
LT
2844 return 0;
2845 }
2846 return r_sector;
2847}
2848
600aa109 2849static void
c0f7bddb 2850schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2851 int rcw, int expand)
e33129d8 2852{
584acdd4 2853 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 2854 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2855 int level = conf->level;
e33129d8
DW
2856
2857 if (rcw) {
e33129d8
DW
2858
2859 for (i = disks; i--; ) {
2860 struct r5dev *dev = &sh->dev[i];
2861
2862 if (dev->towrite) {
2863 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2864 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2865 if (!expand)
2866 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2867 s->locked++;
e33129d8
DW
2868 }
2869 }
ce7d363a
N
2870 /* if we are not expanding this is a proper write request, and
2871 * there will be bios with new data to be drained into the
2872 * stripe cache
2873 */
2874 if (!expand) {
2875 if (!s->locked)
2876 /* False alarm, nothing to do */
2877 return;
2878 sh->reconstruct_state = reconstruct_state_drain_run;
2879 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2880 } else
2881 sh->reconstruct_state = reconstruct_state_run;
2882
2883 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2884
c0f7bddb 2885 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2886 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2887 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
2888 } else {
2889 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2890 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
2891 BUG_ON(level == 6 &&
2892 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2893 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 2894
e33129d8
DW
2895 for (i = disks; i--; ) {
2896 struct r5dev *dev = &sh->dev[i];
584acdd4 2897 if (i == pd_idx || i == qd_idx)
e33129d8
DW
2898 continue;
2899
e33129d8
DW
2900 if (dev->towrite &&
2901 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2902 test_bit(R5_Wantcompute, &dev->flags))) {
2903 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2904 set_bit(R5_LOCKED, &dev->flags);
2905 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2906 s->locked++;
e33129d8
DW
2907 }
2908 }
ce7d363a
N
2909 if (!s->locked)
2910 /* False alarm - nothing to do */
2911 return;
2912 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2913 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2914 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2915 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2916 }
2917
c0f7bddb 2918 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2919 * are in flight
2920 */
2921 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2922 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2923 s->locked++;
e33129d8 2924
c0f7bddb
YT
2925 if (level == 6) {
2926 int qd_idx = sh->qd_idx;
2927 struct r5dev *dev = &sh->dev[qd_idx];
2928
2929 set_bit(R5_LOCKED, &dev->flags);
2930 clear_bit(R5_UPTODATE, &dev->flags);
2931 s->locked++;
2932 }
2933
600aa109 2934 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2935 __func__, (unsigned long long)sh->sector,
600aa109 2936 s->locked, s->ops_request);
e33129d8 2937}
16a53ecc 2938
1da177e4
LT
2939/*
2940 * Each stripe/dev can have one or more bion attached.
16a53ecc 2941 * toread/towrite point to the first in a chain.
1da177e4
LT
2942 * The bi_next chain must be in order.
2943 */
da41ba65 2944static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2945 int forwrite, int previous)
1da177e4
LT
2946{
2947 struct bio **bip;
d1688a6d 2948 struct r5conf *conf = sh->raid_conf;
72626685 2949 int firstwrite=0;
1da177e4 2950
cbe47ec5 2951 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 2952 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
2953 (unsigned long long)sh->sector);
2954
b17459c0
SL
2955 /*
2956 * If several bio share a stripe. The bio bi_phys_segments acts as a
2957 * reference count to avoid race. The reference count should already be
2958 * increased before this function is called (for example, in
2959 * make_request()), so other bio sharing this stripe will not free the
2960 * stripe. If a stripe is owned by one stripe, the stripe lock will
2961 * protect it.
2962 */
2963 spin_lock_irq(&sh->stripe_lock);
59fc630b 2964 /* Don't allow new IO added to stripes in batch list */
2965 if (sh->batch_head)
2966 goto overlap;
72626685 2967 if (forwrite) {
1da177e4 2968 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2969 if (*bip == NULL)
72626685
N
2970 firstwrite = 1;
2971 } else
1da177e4 2972 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
2973 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2974 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
2975 goto overlap;
2976 bip = & (*bip)->bi_next;
2977 }
4f024f37 2978 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
2979 goto overlap;
2980
da41ba65 2981 if (!forwrite || previous)
2982 clear_bit(STRIPE_BATCH_READY, &sh->state);
2983
78bafebd 2984 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2985 if (*bip)
2986 bi->bi_next = *bip;
2987 *bip = bi;
e7836bd6 2988 raid5_inc_bi_active_stripes(bi);
72626685 2989
1da177e4
LT
2990 if (forwrite) {
2991 /* check if page is covered */
2992 sector_t sector = sh->dev[dd_idx].sector;
2993 for (bi=sh->dev[dd_idx].towrite;
2994 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 2995 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 2996 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
2997 if (bio_end_sector(bi) >= sector)
2998 sector = bio_end_sector(bi);
1da177e4
LT
2999 }
3000 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 3001 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3002 sh->overwrite_disks++;
1da177e4 3003 }
cbe47ec5
N
3004
3005 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3006 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3007 (unsigned long long)sh->sector, dd_idx);
3008
3009 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3010 /* Cannot hold spinlock over bitmap_startwrite,
3011 * but must ensure this isn't added to a batch until
3012 * we have added to the bitmap and set bm_seq.
3013 * So set STRIPE_BITMAP_PENDING to prevent
3014 * batching.
3015 * If multiple add_stripe_bio() calls race here they
3016 * much all set STRIPE_BITMAP_PENDING. So only the first one
3017 * to complete "bitmap_startwrite" gets to set
3018 * STRIPE_BIT_DELAY. This is important as once a stripe
3019 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3020 * any more.
3021 */
3022 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3023 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
3024 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3025 STRIPE_SECTORS, 0);
d0852df5
N
3026 spin_lock_irq(&sh->stripe_lock);
3027 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3028 if (!sh->batch_head) {
3029 sh->bm_seq = conf->seq_flush+1;
3030 set_bit(STRIPE_BIT_DELAY, &sh->state);
3031 }
cbe47ec5 3032 }
d0852df5 3033 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3034
3035 if (stripe_can_batch(sh))
3036 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3037 return 1;
3038
3039 overlap:
3040 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3041 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3042 return 0;
3043}
3044
d1688a6d 3045static void end_reshape(struct r5conf *conf);
29269553 3046
d1688a6d 3047static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3048 struct stripe_head *sh)
ccfcc3c1 3049{
784052ec 3050 int sectors_per_chunk =
09c9e5fa 3051 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3052 int dd_idx;
2d2063ce 3053 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3054 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3055
112bf897
N
3056 raid5_compute_sector(conf,
3057 stripe * (disks - conf->max_degraded)
b875e531 3058 *sectors_per_chunk + chunk_offset,
112bf897 3059 previous,
911d4ee8 3060 &dd_idx, sh);
ccfcc3c1
N
3061}
3062
a4456856 3063static void
d1688a6d 3064handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856 3065 struct stripe_head_state *s, int disks,
34a6f80e 3066 struct bio_list *return_bi)
a4456856
DW
3067{
3068 int i;
59fc630b 3069 BUG_ON(sh->batch_head);
a4456856
DW
3070 for (i = disks; i--; ) {
3071 struct bio *bi;
3072 int bitmap_end = 0;
3073
3074 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3075 struct md_rdev *rdev;
a4456856
DW
3076 rcu_read_lock();
3077 rdev = rcu_dereference(conf->disks[i].rdev);
3078 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
3079 atomic_inc(&rdev->nr_pending);
3080 else
3081 rdev = NULL;
a4456856 3082 rcu_read_unlock();
7f0da59b
N
3083 if (rdev) {
3084 if (!rdev_set_badblocks(
3085 rdev,
3086 sh->sector,
3087 STRIPE_SECTORS, 0))
3088 md_error(conf->mddev, rdev);
3089 rdev_dec_pending(rdev, conf->mddev);
3090 }
a4456856 3091 }
b17459c0 3092 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3093 /* fail all writes first */
3094 bi = sh->dev[i].towrite;
3095 sh->dev[i].towrite = NULL;
7a87f434 3096 sh->overwrite_disks = 0;
b17459c0 3097 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3098 if (bi)
a4456856 3099 bitmap_end = 1;
a4456856 3100
0576b1c6
SL
3101 r5l_stripe_write_finished(sh);
3102
a4456856
DW
3103 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3104 wake_up(&conf->wait_for_overlap);
3105
4f024f37 3106 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3107 sh->dev[i].sector + STRIPE_SECTORS) {
3108 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3109
3110 bi->bi_error = -EIO;
e7836bd6 3111 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856 3112 md_write_end(conf->mddev);
34a6f80e 3113 bio_list_add(return_bi, bi);
a4456856
DW
3114 }
3115 bi = nextbi;
3116 }
7eaf7e8e
SL
3117 if (bitmap_end)
3118 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3119 STRIPE_SECTORS, 0, 0);
3120 bitmap_end = 0;
a4456856
DW
3121 /* and fail all 'written' */
3122 bi = sh->dev[i].written;
3123 sh->dev[i].written = NULL;
d592a996
SL
3124 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3125 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3126 sh->dev[i].page = sh->dev[i].orig_page;
3127 }
3128
a4456856 3129 if (bi) bitmap_end = 1;
4f024f37 3130 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3131 sh->dev[i].sector + STRIPE_SECTORS) {
3132 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3133
3134 bi->bi_error = -EIO;
e7836bd6 3135 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856 3136 md_write_end(conf->mddev);
34a6f80e 3137 bio_list_add(return_bi, bi);
a4456856
DW
3138 }
3139 bi = bi2;
3140 }
3141
b5e98d65
DW
3142 /* fail any reads if this device is non-operational and
3143 * the data has not reached the cache yet.
3144 */
3145 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3146 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3147 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3148 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3149 bi = sh->dev[i].toread;
3150 sh->dev[i].toread = NULL;
143c4d05 3151 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3152 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3153 wake_up(&conf->wait_for_overlap);
ebda780b
SL
3154 if (bi)
3155 s->to_read--;
4f024f37 3156 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3157 sh->dev[i].sector + STRIPE_SECTORS) {
3158 struct bio *nextbi =
3159 r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3160
3161 bi->bi_error = -EIO;
34a6f80e
N
3162 if (!raid5_dec_bi_active_stripes(bi))
3163 bio_list_add(return_bi, bi);
a4456856
DW
3164 bi = nextbi;
3165 }
3166 }
a4456856
DW
3167 if (bitmap_end)
3168 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3169 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3170 /* If we were in the middle of a write the parity block might
3171 * still be locked - so just clear all R5_LOCKED flags
3172 */
3173 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3174 }
ebda780b
SL
3175 s->to_write = 0;
3176 s->written = 0;
a4456856 3177
8b3e6cdc
DW
3178 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3179 if (atomic_dec_and_test(&conf->pending_full_writes))
3180 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3181}
3182
7f0da59b 3183static void
d1688a6d 3184handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3185 struct stripe_head_state *s)
3186{
3187 int abort = 0;
3188 int i;
3189
59fc630b 3190 BUG_ON(sh->batch_head);
7f0da59b 3191 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3192 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3193 wake_up(&conf->wait_for_overlap);
7f0da59b 3194 s->syncing = 0;
9a3e1101 3195 s->replacing = 0;
7f0da59b 3196 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3197 * Don't even need to abort as that is handled elsewhere
3198 * if needed, and not always wanted e.g. if there is a known
3199 * bad block here.
9a3e1101 3200 * For recover/replace we need to record a bad block on all
7f0da59b
N
3201 * non-sync devices, or abort the recovery
3202 */
18b9837e
N
3203 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3204 /* During recovery devices cannot be removed, so
3205 * locking and refcounting of rdevs is not needed
3206 */
3207 for (i = 0; i < conf->raid_disks; i++) {
3208 struct md_rdev *rdev = conf->disks[i].rdev;
3209 if (rdev
3210 && !test_bit(Faulty, &rdev->flags)
3211 && !test_bit(In_sync, &rdev->flags)
3212 && !rdev_set_badblocks(rdev, sh->sector,
3213 STRIPE_SECTORS, 0))
3214 abort = 1;
3215 rdev = conf->disks[i].replacement;
3216 if (rdev
3217 && !test_bit(Faulty, &rdev->flags)
3218 && !test_bit(In_sync, &rdev->flags)
3219 && !rdev_set_badblocks(rdev, sh->sector,
3220 STRIPE_SECTORS, 0))
3221 abort = 1;
3222 }
3223 if (abort)
3224 conf->recovery_disabled =
3225 conf->mddev->recovery_disabled;
7f0da59b 3226 }
18b9837e 3227 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3228}
3229
9a3e1101
N
3230static int want_replace(struct stripe_head *sh, int disk_idx)
3231{
3232 struct md_rdev *rdev;
3233 int rv = 0;
3234 /* Doing recovery so rcu locking not required */
3235 rdev = sh->raid_conf->disks[disk_idx].replacement;
3236 if (rdev
3237 && !test_bit(Faulty, &rdev->flags)
3238 && !test_bit(In_sync, &rdev->flags)
3239 && (rdev->recovery_offset <= sh->sector
3240 || rdev->mddev->recovery_cp <= sh->sector))
3241 rv = 1;
3242
3243 return rv;
3244}
3245
93b3dbce 3246/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
3247 * to be read or computed to satisfy a request.
3248 *
3249 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 3250 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 3251 */
2c58f06e
N
3252
3253static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3254 int disk_idx, int disks)
a4456856 3255{
5599becc 3256 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3257 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3258 &sh->dev[s->failed_num[1]] };
ea664c82 3259 int i;
5599becc 3260
a79cfe12
N
3261
3262 if (test_bit(R5_LOCKED, &dev->flags) ||
3263 test_bit(R5_UPTODATE, &dev->flags))
3264 /* No point reading this as we already have it or have
3265 * decided to get it.
3266 */
3267 return 0;
3268
3269 if (dev->toread ||
3270 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3271 /* We need this block to directly satisfy a request */
3272 return 1;
3273
3274 if (s->syncing || s->expanding ||
3275 (s->replacing && want_replace(sh, disk_idx)))
3276 /* When syncing, or expanding we read everything.
3277 * When replacing, we need the replaced block.
3278 */
3279 return 1;
3280
3281 if ((s->failed >= 1 && fdev[0]->toread) ||
3282 (s->failed >= 2 && fdev[1]->toread))
3283 /* If we want to read from a failed device, then
3284 * we need to actually read every other device.
3285 */
3286 return 1;
3287
a9d56950
N
3288 /* Sometimes neither read-modify-write nor reconstruct-write
3289 * cycles can work. In those cases we read every block we
3290 * can. Then the parity-update is certain to have enough to
3291 * work with.
3292 * This can only be a problem when we need to write something,
3293 * and some device has failed. If either of those tests
3294 * fail we need look no further.
3295 */
3296 if (!s->failed || !s->to_write)
3297 return 0;
3298
3299 if (test_bit(R5_Insync, &dev->flags) &&
3300 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3301 /* Pre-reads at not permitted until after short delay
3302 * to gather multiple requests. However if this
3303 * device is no Insync, the block could only be be computed
3304 * and there is no need to delay that.
3305 */
3306 return 0;
ea664c82 3307
36707bb2 3308 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3309 if (fdev[i]->towrite &&
3310 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3311 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3312 /* If we have a partial write to a failed
3313 * device, then we will need to reconstruct
3314 * the content of that device, so all other
3315 * devices must be read.
3316 */
3317 return 1;
3318 }
3319
3320 /* If we are forced to do a reconstruct-write, either because
3321 * the current RAID6 implementation only supports that, or
3322 * or because parity cannot be trusted and we are currently
3323 * recovering it, there is extra need to be careful.
3324 * If one of the devices that we would need to read, because
3325 * it is not being overwritten (and maybe not written at all)
3326 * is missing/faulty, then we need to read everything we can.
3327 */
3328 if (sh->raid_conf->level != 6 &&
3329 sh->sector < sh->raid_conf->mddev->recovery_cp)
3330 /* reconstruct-write isn't being forced */
3331 return 0;
36707bb2 3332 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3333 if (s->failed_num[i] != sh->pd_idx &&
3334 s->failed_num[i] != sh->qd_idx &&
3335 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3336 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3337 return 1;
3338 }
3339
2c58f06e
N
3340 return 0;
3341}
3342
3343static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3344 int disk_idx, int disks)
3345{
3346 struct r5dev *dev = &sh->dev[disk_idx];
3347
3348 /* is the data in this block needed, and can we get it? */
3349 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3350 /* we would like to get this block, possibly by computing it,
3351 * otherwise read it if the backing disk is insync
3352 */
3353 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3354 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3355 BUG_ON(sh->batch_head);
5599becc 3356 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
3357 (s->failed && (disk_idx == s->failed_num[0] ||
3358 disk_idx == s->failed_num[1]))) {
5599becc
YT
3359 /* have disk failed, and we're requested to fetch it;
3360 * do compute it
a4456856 3361 */
5599becc
YT
3362 pr_debug("Computing stripe %llu block %d\n",
3363 (unsigned long long)sh->sector, disk_idx);
3364 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3365 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3366 set_bit(R5_Wantcompute, &dev->flags);
3367 sh->ops.target = disk_idx;
3368 sh->ops.target2 = -1; /* no 2nd target */
3369 s->req_compute = 1;
93b3dbce
N
3370 /* Careful: from this point on 'uptodate' is in the eye
3371 * of raid_run_ops which services 'compute' operations
3372 * before writes. R5_Wantcompute flags a block that will
3373 * be R5_UPTODATE by the time it is needed for a
3374 * subsequent operation.
3375 */
5599becc
YT
3376 s->uptodate++;
3377 return 1;
3378 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3379 /* Computing 2-failure is *very* expensive; only
3380 * do it if failed >= 2
3381 */
3382 int other;
3383 for (other = disks; other--; ) {
3384 if (other == disk_idx)
3385 continue;
3386 if (!test_bit(R5_UPTODATE,
3387 &sh->dev[other].flags))
3388 break;
a4456856 3389 }
5599becc
YT
3390 BUG_ON(other < 0);
3391 pr_debug("Computing stripe %llu blocks %d,%d\n",
3392 (unsigned long long)sh->sector,
3393 disk_idx, other);
3394 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3395 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3396 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3397 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3398 sh->ops.target = disk_idx;
3399 sh->ops.target2 = other;
3400 s->uptodate += 2;
3401 s->req_compute = 1;
3402 return 1;
3403 } else if (test_bit(R5_Insync, &dev->flags)) {
3404 set_bit(R5_LOCKED, &dev->flags);
3405 set_bit(R5_Wantread, &dev->flags);
3406 s->locked++;
3407 pr_debug("Reading block %d (sync=%d)\n",
3408 disk_idx, s->syncing);
a4456856
DW
3409 }
3410 }
5599becc
YT
3411
3412 return 0;
3413}
3414
3415/**
93b3dbce 3416 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3417 */
93b3dbce
N
3418static void handle_stripe_fill(struct stripe_head *sh,
3419 struct stripe_head_state *s,
3420 int disks)
5599becc
YT
3421{
3422 int i;
3423
3424 /* look for blocks to read/compute, skip this if a compute
3425 * is already in flight, or if the stripe contents are in the
3426 * midst of changing due to a write
3427 */
3428 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3429 !sh->reconstruct_state)
3430 for (i = disks; i--; )
93b3dbce 3431 if (fetch_block(sh, s, i, disks))
5599becc 3432 break;
a4456856
DW
3433 set_bit(STRIPE_HANDLE, &sh->state);
3434}
3435
787b76fa
N
3436static void break_stripe_batch_list(struct stripe_head *head_sh,
3437 unsigned long handle_flags);
1fe797e6 3438/* handle_stripe_clean_event
a4456856
DW
3439 * any written block on an uptodate or failed drive can be returned.
3440 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3441 * never LOCKED, so we don't need to test 'failed' directly.
3442 */
d1688a6d 3443static void handle_stripe_clean_event(struct r5conf *conf,
34a6f80e 3444 struct stripe_head *sh, int disks, struct bio_list *return_bi)
a4456856
DW
3445{
3446 int i;
3447 struct r5dev *dev;
f8dfcffd 3448 int discard_pending = 0;
59fc630b 3449 struct stripe_head *head_sh = sh;
3450 bool do_endio = false;
a4456856
DW
3451
3452 for (i = disks; i--; )
3453 if (sh->dev[i].written) {
3454 dev = &sh->dev[i];
3455 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3456 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3457 test_bit(R5_Discard, &dev->flags) ||
3458 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3459 /* We can return any write requests */
3460 struct bio *wbi, *wbi2;
45b4233c 3461 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3462 if (test_and_clear_bit(R5_Discard, &dev->flags))
3463 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3464 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3465 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3466 }
59fc630b 3467 do_endio = true;
3468
3469returnbi:
3470 dev->page = dev->orig_page;
a4456856
DW
3471 wbi = dev->written;
3472 dev->written = NULL;
4f024f37 3473 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3474 dev->sector + STRIPE_SECTORS) {
3475 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 3476 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856 3477 md_write_end(conf->mddev);
34a6f80e 3478 bio_list_add(return_bi, wbi);
a4456856
DW
3479 }
3480 wbi = wbi2;
3481 }
7eaf7e8e
SL
3482 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3483 STRIPE_SECTORS,
a4456856 3484 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3485 0);
59fc630b 3486 if (head_sh->batch_head) {
3487 sh = list_first_entry(&sh->batch_list,
3488 struct stripe_head,
3489 batch_list);
3490 if (sh != head_sh) {
3491 dev = &sh->dev[i];
3492 goto returnbi;
3493 }
3494 }
3495 sh = head_sh;
3496 dev = &sh->dev[i];
f8dfcffd
N
3497 } else if (test_bit(R5_Discard, &dev->flags))
3498 discard_pending = 1;
d592a996
SL
3499 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3500 WARN_ON(dev->page != dev->orig_page);
f8dfcffd 3501 }
f6bed0ef 3502
0576b1c6
SL
3503 r5l_stripe_write_finished(sh);
3504
f8dfcffd
N
3505 if (!discard_pending &&
3506 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3507 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3508 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3509 if (sh->qd_idx >= 0) {
3510 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3511 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3512 }
3513 /* now that discard is done we can proceed with any sync */
3514 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3515 /*
3516 * SCSI discard will change some bio fields and the stripe has
3517 * no updated data, so remove it from hash list and the stripe
3518 * will be reinitialized
3519 */
3520 spin_lock_irq(&conf->device_lock);
59fc630b 3521unhash:
d47648fc 3522 remove_hash(sh);
59fc630b 3523 if (head_sh->batch_head) {
3524 sh = list_first_entry(&sh->batch_list,
3525 struct stripe_head, batch_list);
3526 if (sh != head_sh)
3527 goto unhash;
3528 }
d47648fc 3529 spin_unlock_irq(&conf->device_lock);
59fc630b 3530 sh = head_sh;
3531
f8dfcffd
N
3532 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3533 set_bit(STRIPE_HANDLE, &sh->state);
3534
3535 }
8b3e6cdc
DW
3536
3537 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3538 if (atomic_dec_and_test(&conf->pending_full_writes))
3539 md_wakeup_thread(conf->mddev->thread);
59fc630b 3540
787b76fa
N
3541 if (head_sh->batch_head && do_endio)
3542 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3543}
3544
d1688a6d 3545static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
3546 struct stripe_head *sh,
3547 struct stripe_head_state *s,
3548 int disks)
a4456856
DW
3549{
3550 int rmw = 0, rcw = 0, i;
a7854487
AL
3551 sector_t recovery_cp = conf->mddev->recovery_cp;
3552
584acdd4 3553 /* Check whether resync is now happening or should start.
a7854487
AL
3554 * If yes, then the array is dirty (after unclean shutdown or
3555 * initial creation), so parity in some stripes might be inconsistent.
3556 * In this case, we need to always do reconstruct-write, to ensure
3557 * that in case of drive failure or read-error correction, we
3558 * generate correct data from the parity.
3559 */
584acdd4 3560 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3561 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3562 s->failed == 0)) {
a7854487 3563 /* Calculate the real rcw later - for now make it
c8ac1803
N
3564 * look like rcw is cheaper
3565 */
3566 rcw = 1; rmw = 2;
584acdd4
MS
3567 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3568 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3569 (unsigned long long)sh->sector);
c8ac1803 3570 } else for (i = disks; i--; ) {
a4456856
DW
3571 /* would I have to read this buffer for read_modify_write */
3572 struct r5dev *dev = &sh->dev[i];
584acdd4 3573 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3574 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3575 !(test_bit(R5_UPTODATE, &dev->flags) ||
3576 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3577 if (test_bit(R5_Insync, &dev->flags))
3578 rmw++;
3579 else
3580 rmw += 2*disks; /* cannot read it */
3581 }
3582 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3583 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3584 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3585 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3586 !(test_bit(R5_UPTODATE, &dev->flags) ||
3587 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3588 if (test_bit(R5_Insync, &dev->flags))
3589 rcw++;
a4456856
DW
3590 else
3591 rcw += 2*disks;
3592 }
3593 }
45b4233c 3594 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
3595 (unsigned long long)sh->sector, rmw, rcw);
3596 set_bit(STRIPE_HANDLE, &sh->state);
584acdd4 3597 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
a4456856 3598 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3599 if (conf->mddev->queue)
3600 blk_add_trace_msg(conf->mddev->queue,
3601 "raid5 rmw %llu %d",
3602 (unsigned long long)sh->sector, rmw);
a4456856
DW
3603 for (i = disks; i--; ) {
3604 struct r5dev *dev = &sh->dev[i];
584acdd4 3605 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3606 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3607 !(test_bit(R5_UPTODATE, &dev->flags) ||
3608 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3609 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3610 if (test_bit(STRIPE_PREREAD_ACTIVE,
3611 &sh->state)) {
3612 pr_debug("Read_old block %d for r-m-w\n",
3613 i);
a4456856
DW
3614 set_bit(R5_LOCKED, &dev->flags);
3615 set_bit(R5_Wantread, &dev->flags);
3616 s->locked++;
3617 } else {
3618 set_bit(STRIPE_DELAYED, &sh->state);
3619 set_bit(STRIPE_HANDLE, &sh->state);
3620 }
3621 }
3622 }
a9add5d9 3623 }
584acdd4 3624 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
a4456856 3625 /* want reconstruct write, but need to get some data */
a9add5d9 3626 int qread =0;
c8ac1803 3627 rcw = 0;
a4456856
DW
3628 for (i = disks; i--; ) {
3629 struct r5dev *dev = &sh->dev[i];
3630 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3631 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3632 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3633 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3634 test_bit(R5_Wantcompute, &dev->flags))) {
3635 rcw++;
67f45548
N
3636 if (test_bit(R5_Insync, &dev->flags) &&
3637 test_bit(STRIPE_PREREAD_ACTIVE,
3638 &sh->state)) {
45b4233c 3639 pr_debug("Read_old block "
a4456856
DW
3640 "%d for Reconstruct\n", i);
3641 set_bit(R5_LOCKED, &dev->flags);
3642 set_bit(R5_Wantread, &dev->flags);
3643 s->locked++;
a9add5d9 3644 qread++;
a4456856
DW
3645 } else {
3646 set_bit(STRIPE_DELAYED, &sh->state);
3647 set_bit(STRIPE_HANDLE, &sh->state);
3648 }
3649 }
3650 }
e3620a3a 3651 if (rcw && conf->mddev->queue)
a9add5d9
N
3652 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3653 (unsigned long long)sh->sector,
3654 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3655 }
b1b02fe9
N
3656
3657 if (rcw > disks && rmw > disks &&
3658 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3659 set_bit(STRIPE_DELAYED, &sh->state);
3660
a4456856
DW
3661 /* now if nothing is locked, and if we have enough data,
3662 * we can start a write request
3663 */
f38e1219
DW
3664 /* since handle_stripe can be called at any time we need to handle the
3665 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
3666 * subsequent call wants to start a write request. raid_run_ops only
3667 * handles the case where compute block and reconstruct are requested
f38e1219
DW
3668 * simultaneously. If this is not the case then new writes need to be
3669 * held off until the compute completes.
3670 */
976ea8d4
DW
3671 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3672 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3673 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 3674 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
3675}
3676
d1688a6d 3677static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3678 struct stripe_head_state *s, int disks)
3679{
ecc65c9b 3680 struct r5dev *dev = NULL;
bd2ab670 3681
59fc630b 3682 BUG_ON(sh->batch_head);
a4456856 3683 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 3684
ecc65c9b
DW
3685 switch (sh->check_state) {
3686 case check_state_idle:
3687 /* start a new check operation if there are no failures */
bd2ab670 3688 if (s->failed == 0) {
bd2ab670 3689 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
3690 sh->check_state = check_state_run;
3691 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 3692 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 3693 s->uptodate--;
ecc65c9b 3694 break;
bd2ab670 3695 }
f2b3b44d 3696 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
3697 /* fall through */
3698 case check_state_compute_result:
3699 sh->check_state = check_state_idle;
3700 if (!dev)
3701 dev = &sh->dev[sh->pd_idx];
3702
3703 /* check that a write has not made the stripe insync */
3704 if (test_bit(STRIPE_INSYNC, &sh->state))
3705 break;
c8894419 3706
a4456856 3707 /* either failed parity check, or recovery is happening */
a4456856
DW
3708 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3709 BUG_ON(s->uptodate != disks);
3710
3711 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 3712 s->locked++;
a4456856 3713 set_bit(R5_Wantwrite, &dev->flags);
830ea016 3714
a4456856 3715 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 3716 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
3717 break;
3718 case check_state_run:
3719 break; /* we will be called again upon completion */
3720 case check_state_check_result:
3721 sh->check_state = check_state_idle;
3722
3723 /* if a failure occurred during the check operation, leave
3724 * STRIPE_INSYNC not set and let the stripe be handled again
3725 */
3726 if (s->failed)
3727 break;
3728
3729 /* handle a successful check operation, if parity is correct
3730 * we are done. Otherwise update the mismatch count and repair
3731 * parity if !MD_RECOVERY_CHECK
3732 */
ad283ea4 3733 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
3734 /* parity is correct (on disc,
3735 * not in buffer any more)
3736 */
3737 set_bit(STRIPE_INSYNC, &sh->state);
3738 else {
7f7583d4 3739 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
3740 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3741 /* don't try to repair!! */
3742 set_bit(STRIPE_INSYNC, &sh->state);
3743 else {
3744 sh->check_state = check_state_compute_run;
976ea8d4 3745 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3746 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3747 set_bit(R5_Wantcompute,
3748 &sh->dev[sh->pd_idx].flags);
3749 sh->ops.target = sh->pd_idx;
ac6b53b6 3750 sh->ops.target2 = -1;
ecc65c9b
DW
3751 s->uptodate++;
3752 }
3753 }
3754 break;
3755 case check_state_compute_run:
3756 break;
3757 default:
3758 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3759 __func__, sh->check_state,
3760 (unsigned long long) sh->sector);
3761 BUG();
a4456856
DW
3762 }
3763}
3764
d1688a6d 3765static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3766 struct stripe_head_state *s,
f2b3b44d 3767 int disks)
a4456856 3768{
a4456856 3769 int pd_idx = sh->pd_idx;
34e04e87 3770 int qd_idx = sh->qd_idx;
d82dfee0 3771 struct r5dev *dev;
a4456856 3772
59fc630b 3773 BUG_ON(sh->batch_head);
a4456856
DW
3774 set_bit(STRIPE_HANDLE, &sh->state);
3775
3776 BUG_ON(s->failed > 2);
d82dfee0 3777
a4456856
DW
3778 /* Want to check and possibly repair P and Q.
3779 * However there could be one 'failed' device, in which
3780 * case we can only check one of them, possibly using the
3781 * other to generate missing data
3782 */
3783
d82dfee0
DW
3784 switch (sh->check_state) {
3785 case check_state_idle:
3786 /* start a new check operation if there are < 2 failures */
f2b3b44d 3787 if (s->failed == s->q_failed) {
d82dfee0 3788 /* The only possible failed device holds Q, so it
a4456856
DW
3789 * makes sense to check P (If anything else were failed,
3790 * we would have used P to recreate it).
3791 */
d82dfee0 3792 sh->check_state = check_state_run;
a4456856 3793 }
f2b3b44d 3794 if (!s->q_failed && s->failed < 2) {
d82dfee0 3795 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3796 * anything, so it makes sense to check it
3797 */
d82dfee0
DW
3798 if (sh->check_state == check_state_run)
3799 sh->check_state = check_state_run_pq;
3800 else
3801 sh->check_state = check_state_run_q;
a4456856 3802 }
a4456856 3803
d82dfee0
DW
3804 /* discard potentially stale zero_sum_result */
3805 sh->ops.zero_sum_result = 0;
a4456856 3806
d82dfee0
DW
3807 if (sh->check_state == check_state_run) {
3808 /* async_xor_zero_sum destroys the contents of P */
3809 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3810 s->uptodate--;
a4456856 3811 }
d82dfee0
DW
3812 if (sh->check_state >= check_state_run &&
3813 sh->check_state <= check_state_run_pq) {
3814 /* async_syndrome_zero_sum preserves P and Q, so
3815 * no need to mark them !uptodate here
3816 */
3817 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3818 break;
a4456856
DW
3819 }
3820
d82dfee0
DW
3821 /* we have 2-disk failure */
3822 BUG_ON(s->failed != 2);
3823 /* fall through */
3824 case check_state_compute_result:
3825 sh->check_state = check_state_idle;
a4456856 3826
d82dfee0
DW
3827 /* check that a write has not made the stripe insync */
3828 if (test_bit(STRIPE_INSYNC, &sh->state))
3829 break;
a4456856
DW
3830
3831 /* now write out any block on a failed drive,
d82dfee0 3832 * or P or Q if they were recomputed
a4456856 3833 */
d82dfee0 3834 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3835 if (s->failed == 2) {
f2b3b44d 3836 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3837 s->locked++;
3838 set_bit(R5_LOCKED, &dev->flags);
3839 set_bit(R5_Wantwrite, &dev->flags);
3840 }
3841 if (s->failed >= 1) {
f2b3b44d 3842 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3843 s->locked++;
3844 set_bit(R5_LOCKED, &dev->flags);
3845 set_bit(R5_Wantwrite, &dev->flags);
3846 }
d82dfee0 3847 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3848 dev = &sh->dev[pd_idx];
3849 s->locked++;
3850 set_bit(R5_LOCKED, &dev->flags);
3851 set_bit(R5_Wantwrite, &dev->flags);
3852 }
d82dfee0 3853 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3854 dev = &sh->dev[qd_idx];
3855 s->locked++;
3856 set_bit(R5_LOCKED, &dev->flags);
3857 set_bit(R5_Wantwrite, &dev->flags);
3858 }
3859 clear_bit(STRIPE_DEGRADED, &sh->state);
3860
3861 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3862 break;
3863 case check_state_run:
3864 case check_state_run_q:
3865 case check_state_run_pq:
3866 break; /* we will be called again upon completion */
3867 case check_state_check_result:
3868 sh->check_state = check_state_idle;
3869
3870 /* handle a successful check operation, if parity is correct
3871 * we are done. Otherwise update the mismatch count and repair
3872 * parity if !MD_RECOVERY_CHECK
3873 */
3874 if (sh->ops.zero_sum_result == 0) {
3875 /* both parities are correct */
3876 if (!s->failed)
3877 set_bit(STRIPE_INSYNC, &sh->state);
3878 else {
3879 /* in contrast to the raid5 case we can validate
3880 * parity, but still have a failure to write
3881 * back
3882 */
3883 sh->check_state = check_state_compute_result;
3884 /* Returning at this point means that we may go
3885 * off and bring p and/or q uptodate again so
3886 * we make sure to check zero_sum_result again
3887 * to verify if p or q need writeback
3888 */
3889 }
3890 } else {
7f7583d4 3891 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3892 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3893 /* don't try to repair!! */
3894 set_bit(STRIPE_INSYNC, &sh->state);
3895 else {
3896 int *target = &sh->ops.target;
3897
3898 sh->ops.target = -1;
3899 sh->ops.target2 = -1;
3900 sh->check_state = check_state_compute_run;
3901 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3902 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3903 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3904 set_bit(R5_Wantcompute,
3905 &sh->dev[pd_idx].flags);
3906 *target = pd_idx;
3907 target = &sh->ops.target2;
3908 s->uptodate++;
3909 }
3910 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3911 set_bit(R5_Wantcompute,
3912 &sh->dev[qd_idx].flags);
3913 *target = qd_idx;
3914 s->uptodate++;
3915 }
3916 }
3917 }
3918 break;
3919 case check_state_compute_run:
3920 break;
3921 default:
3922 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3923 __func__, sh->check_state,
3924 (unsigned long long) sh->sector);
3925 BUG();
a4456856
DW
3926 }
3927}
3928
d1688a6d 3929static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3930{
3931 int i;
3932
3933 /* We have read all the blocks in this stripe and now we need to
3934 * copy some of them into a target stripe for expand.
3935 */
f0a50d37 3936 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 3937 BUG_ON(sh->batch_head);
a4456856
DW
3938 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3939 for (i = 0; i < sh->disks; i++)
34e04e87 3940 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3941 int dd_idx, j;
a4456856 3942 struct stripe_head *sh2;
a08abd8c 3943 struct async_submit_ctl submit;
a4456856 3944
6d036f7d 3945 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
3946 sector_t s = raid5_compute_sector(conf, bn, 0,
3947 &dd_idx, NULL);
6d036f7d 3948 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3949 if (sh2 == NULL)
3950 /* so far only the early blocks of this stripe
3951 * have been requested. When later blocks
3952 * get requested, we will try again
3953 */
3954 continue;
3955 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3956 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3957 /* must have already done this block */
6d036f7d 3958 raid5_release_stripe(sh2);
a4456856
DW
3959 continue;
3960 }
f0a50d37
DW
3961
3962 /* place all the copies on one channel */
a08abd8c 3963 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3964 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3965 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3966 &submit);
f0a50d37 3967
a4456856
DW
3968 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3969 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3970 for (j = 0; j < conf->raid_disks; j++)
3971 if (j != sh2->pd_idx &&
86c374ba 3972 j != sh2->qd_idx &&
a4456856
DW
3973 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3974 break;
3975 if (j == conf->raid_disks) {
3976 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3977 set_bit(STRIPE_HANDLE, &sh2->state);
3978 }
6d036f7d 3979 raid5_release_stripe(sh2);
f0a50d37 3980
a4456856 3981 }
a2e08551 3982 /* done submitting copies, wait for them to complete */
749586b7 3983 async_tx_quiesce(&tx);
a4456856 3984}
1da177e4
LT
3985
3986/*
3987 * handle_stripe - do things to a stripe.
3988 *
9a3e1101
N
3989 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3990 * state of various bits to see what needs to be done.
1da177e4 3991 * Possible results:
9a3e1101
N
3992 * return some read requests which now have data
3993 * return some write requests which are safely on storage
1da177e4
LT
3994 * schedule a read on some buffers
3995 * schedule a write of some buffers
3996 * return confirmation of parity correctness
3997 *
1da177e4 3998 */
a4456856 3999
acfe726b 4000static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4001{
d1688a6d 4002 struct r5conf *conf = sh->raid_conf;
f416885e 4003 int disks = sh->disks;
474af965
N
4004 struct r5dev *dev;
4005 int i;
9a3e1101 4006 int do_recovery = 0;
1da177e4 4007
acfe726b
N
4008 memset(s, 0, sizeof(*s));
4009
dabc4ec6 4010 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4011 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4012 s->failed_num[0] = -1;
4013 s->failed_num[1] = -1;
1da177e4 4014
acfe726b 4015 /* Now to look around and see what can be done */
1da177e4 4016 rcu_read_lock();
16a53ecc 4017 for (i=disks; i--; ) {
3cb03002 4018 struct md_rdev *rdev;
31c176ec
N
4019 sector_t first_bad;
4020 int bad_sectors;
4021 int is_bad = 0;
acfe726b 4022
16a53ecc 4023 dev = &sh->dev[i];
1da177e4 4024
45b4233c 4025 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4026 i, dev->flags,
4027 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4028 /* maybe we can reply to a read
4029 *
4030 * new wantfill requests are only permitted while
4031 * ops_complete_biofill is guaranteed to be inactive
4032 */
4033 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4034 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4035 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4036
16a53ecc 4037 /* now count some things */
cc94015a
N
4038 if (test_bit(R5_LOCKED, &dev->flags))
4039 s->locked++;
4040 if (test_bit(R5_UPTODATE, &dev->flags))
4041 s->uptodate++;
2d6e4ecc 4042 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4043 s->compute++;
4044 BUG_ON(s->compute > 2);
2d6e4ecc 4045 }
1da177e4 4046
acfe726b 4047 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4048 s->to_fill++;
acfe726b 4049 else if (dev->toread)
cc94015a 4050 s->to_read++;
16a53ecc 4051 if (dev->towrite) {
cc94015a 4052 s->to_write++;
16a53ecc 4053 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4054 s->non_overwrite++;
16a53ecc 4055 }
a4456856 4056 if (dev->written)
cc94015a 4057 s->written++;
14a75d3e
N
4058 /* Prefer to use the replacement for reads, but only
4059 * if it is recovered enough and has no bad blocks.
4060 */
4061 rdev = rcu_dereference(conf->disks[i].replacement);
4062 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4063 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4064 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4065 &first_bad, &bad_sectors))
4066 set_bit(R5_ReadRepl, &dev->flags);
4067 else {
e6030cb0 4068 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4069 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4070 else
4071 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4072 rdev = rcu_dereference(conf->disks[i].rdev);
4073 clear_bit(R5_ReadRepl, &dev->flags);
4074 }
9283d8c5
N
4075 if (rdev && test_bit(Faulty, &rdev->flags))
4076 rdev = NULL;
31c176ec
N
4077 if (rdev) {
4078 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4079 &first_bad, &bad_sectors);
4080 if (s->blocked_rdev == NULL
4081 && (test_bit(Blocked, &rdev->flags)
4082 || is_bad < 0)) {
4083 if (is_bad < 0)
4084 set_bit(BlockedBadBlocks,
4085 &rdev->flags);
4086 s->blocked_rdev = rdev;
4087 atomic_inc(&rdev->nr_pending);
4088 }
6bfe0b49 4089 }
415e72d0
N
4090 clear_bit(R5_Insync, &dev->flags);
4091 if (!rdev)
4092 /* Not in-sync */;
31c176ec
N
4093 else if (is_bad) {
4094 /* also not in-sync */
18b9837e
N
4095 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4096 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4097 /* treat as in-sync, but with a read error
4098 * which we can now try to correct
4099 */
4100 set_bit(R5_Insync, &dev->flags);
4101 set_bit(R5_ReadError, &dev->flags);
4102 }
4103 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4104 set_bit(R5_Insync, &dev->flags);
30d7a483 4105 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4106 /* in sync if before recovery_offset */
30d7a483
N
4107 set_bit(R5_Insync, &dev->flags);
4108 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4109 test_bit(R5_Expanded, &dev->flags))
4110 /* If we've reshaped into here, we assume it is Insync.
4111 * We will shortly update recovery_offset to make
4112 * it official.
4113 */
4114 set_bit(R5_Insync, &dev->flags);
4115
1cc03eb9 4116 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4117 /* This flag does not apply to '.replacement'
4118 * only to .rdev, so make sure to check that*/
4119 struct md_rdev *rdev2 = rcu_dereference(
4120 conf->disks[i].rdev);
4121 if (rdev2 == rdev)
4122 clear_bit(R5_Insync, &dev->flags);
4123 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4124 s->handle_bad_blocks = 1;
14a75d3e 4125 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4126 } else
4127 clear_bit(R5_WriteError, &dev->flags);
4128 }
1cc03eb9 4129 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4130 /* This flag does not apply to '.replacement'
4131 * only to .rdev, so make sure to check that*/
4132 struct md_rdev *rdev2 = rcu_dereference(
4133 conf->disks[i].rdev);
4134 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4135 s->handle_bad_blocks = 1;
14a75d3e 4136 atomic_inc(&rdev2->nr_pending);
b84db560
N
4137 } else
4138 clear_bit(R5_MadeGood, &dev->flags);
4139 }
977df362
N
4140 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4141 struct md_rdev *rdev2 = rcu_dereference(
4142 conf->disks[i].replacement);
4143 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4144 s->handle_bad_blocks = 1;
4145 atomic_inc(&rdev2->nr_pending);
4146 } else
4147 clear_bit(R5_MadeGoodRepl, &dev->flags);
4148 }
415e72d0 4149 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4150 /* The ReadError flag will just be confusing now */
4151 clear_bit(R5_ReadError, &dev->flags);
4152 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4153 }
415e72d0
N
4154 if (test_bit(R5_ReadError, &dev->flags))
4155 clear_bit(R5_Insync, &dev->flags);
4156 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4157 if (s->failed < 2)
4158 s->failed_num[s->failed] = i;
4159 s->failed++;
9a3e1101
N
4160 if (rdev && !test_bit(Faulty, &rdev->flags))
4161 do_recovery = 1;
415e72d0 4162 }
1da177e4 4163 }
9a3e1101
N
4164 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4165 /* If there is a failed device being replaced,
4166 * we must be recovering.
4167 * else if we are after recovery_cp, we must be syncing
c6d2e084 4168 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4169 * else we can only be replacing
4170 * sync and recovery both need to read all devices, and so
4171 * use the same flag.
4172 */
4173 if (do_recovery ||
c6d2e084 4174 sh->sector >= conf->mddev->recovery_cp ||
4175 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4176 s->syncing = 1;
4177 else
4178 s->replacing = 1;
4179 }
1da177e4 4180 rcu_read_unlock();
cc94015a
N
4181}
4182
59fc630b 4183static int clear_batch_ready(struct stripe_head *sh)
4184{
b15a9dbd
N
4185 /* Return '1' if this is a member of batch, or
4186 * '0' if it is a lone stripe or a head which can now be
4187 * handled.
4188 */
59fc630b 4189 struct stripe_head *tmp;
4190 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4191 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4192 spin_lock(&sh->stripe_lock);
4193 if (!sh->batch_head) {
4194 spin_unlock(&sh->stripe_lock);
4195 return 0;
4196 }
4197
4198 /*
4199 * this stripe could be added to a batch list before we check
4200 * BATCH_READY, skips it
4201 */
4202 if (sh->batch_head != sh) {
4203 spin_unlock(&sh->stripe_lock);
4204 return 1;
4205 }
4206 spin_lock(&sh->batch_lock);
4207 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4208 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4209 spin_unlock(&sh->batch_lock);
4210 spin_unlock(&sh->stripe_lock);
4211
4212 /*
4213 * BATCH_READY is cleared, no new stripes can be added.
4214 * batch_list can be accessed without lock
4215 */
4216 return 0;
4217}
4218
3960ce79
N
4219static void break_stripe_batch_list(struct stripe_head *head_sh,
4220 unsigned long handle_flags)
72ac7330 4221{
4e3d62ff 4222 struct stripe_head *sh, *next;
72ac7330 4223 int i;
fb642b92 4224 int do_wakeup = 0;
72ac7330 4225
bb27051f
N
4226 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4227
72ac7330 4228 list_del_init(&sh->batch_list);
4229
1b956f7a
N
4230 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4231 (1 << STRIPE_SYNCING) |
4232 (1 << STRIPE_REPLACED) |
4233 (1 << STRIPE_PREREAD_ACTIVE) |
4234 (1 << STRIPE_DELAYED) |
4235 (1 << STRIPE_BIT_DELAY) |
4236 (1 << STRIPE_FULL_WRITE) |
4237 (1 << STRIPE_BIOFILL_RUN) |
4238 (1 << STRIPE_COMPUTE_RUN) |
4239 (1 << STRIPE_OPS_REQ_PENDING) |
4240 (1 << STRIPE_DISCARD) |
4241 (1 << STRIPE_BATCH_READY) |
4242 (1 << STRIPE_BATCH_ERR) |
4243 (1 << STRIPE_BITMAP_PENDING)));
4244 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4245 (1 << STRIPE_REPLACED)));
4246
4247 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4248 (1 << STRIPE_DEGRADED)),
4249 head_sh->state & (1 << STRIPE_INSYNC));
4250
72ac7330 4251 sh->check_state = head_sh->check_state;
4252 sh->reconstruct_state = head_sh->reconstruct_state;
fb642b92
N
4253 for (i = 0; i < sh->disks; i++) {
4254 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4255 do_wakeup = 1;
72ac7330 4256 sh->dev[i].flags = head_sh->dev[i].flags &
4257 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4258 }
72ac7330 4259 spin_lock_irq(&sh->stripe_lock);
4260 sh->batch_head = NULL;
4261 spin_unlock_irq(&sh->stripe_lock);
3960ce79
N
4262 if (handle_flags == 0 ||
4263 sh->state & handle_flags)
4264 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4265 raid5_release_stripe(sh);
72ac7330 4266 }
fb642b92
N
4267 spin_lock_irq(&head_sh->stripe_lock);
4268 head_sh->batch_head = NULL;
4269 spin_unlock_irq(&head_sh->stripe_lock);
4270 for (i = 0; i < head_sh->disks; i++)
4271 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4272 do_wakeup = 1;
3960ce79
N
4273 if (head_sh->state & handle_flags)
4274 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4275
4276 if (do_wakeup)
4277 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4278}
4279
cc94015a
N
4280static void handle_stripe(struct stripe_head *sh)
4281{
4282 struct stripe_head_state s;
d1688a6d 4283 struct r5conf *conf = sh->raid_conf;
3687c061 4284 int i;
84789554
N
4285 int prexor;
4286 int disks = sh->disks;
474af965 4287 struct r5dev *pdev, *qdev;
cc94015a
N
4288
4289 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4290 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4291 /* already being handled, ensure it gets handled
4292 * again when current action finishes */
4293 set_bit(STRIPE_HANDLE, &sh->state);
4294 return;
4295 }
4296
59fc630b 4297 if (clear_batch_ready(sh) ) {
4298 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4299 return;
4300 }
4301
4e3d62ff 4302 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4303 break_stripe_batch_list(sh, 0);
72ac7330 4304
dabc4ec6 4305 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd
N
4306 spin_lock(&sh->stripe_lock);
4307 /* Cannot process 'sync' concurrently with 'discard' */
4308 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4309 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4310 set_bit(STRIPE_SYNCING, &sh->state);
4311 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4312 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4313 }
4314 spin_unlock(&sh->stripe_lock);
cc94015a
N
4315 }
4316 clear_bit(STRIPE_DELAYED, &sh->state);
4317
4318 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4319 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4320 (unsigned long long)sh->sector, sh->state,
4321 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4322 sh->check_state, sh->reconstruct_state);
3687c061 4323
acfe726b 4324 analyse_stripe(sh, &s);
c5a31000 4325
b70abcb2
SL
4326 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4327 goto finish;
4328
bc2607f3
N
4329 if (s.handle_bad_blocks) {
4330 set_bit(STRIPE_HANDLE, &sh->state);
4331 goto finish;
4332 }
4333
474af965
N
4334 if (unlikely(s.blocked_rdev)) {
4335 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4336 s.replacing || s.to_write || s.written) {
474af965
N
4337 set_bit(STRIPE_HANDLE, &sh->state);
4338 goto finish;
4339 }
4340 /* There is nothing for the blocked_rdev to block */
4341 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4342 s.blocked_rdev = NULL;
4343 }
4344
4345 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4346 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4347 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4348 }
4349
4350 pr_debug("locked=%d uptodate=%d to_read=%d"
4351 " to_write=%d failed=%d failed_num=%d,%d\n",
4352 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4353 s.failed_num[0], s.failed_num[1]);
4354 /* check if the array has lost more than max_degraded devices and,
4355 * if so, some requests might need to be failed.
4356 */
9a3f530f
N
4357 if (s.failed > conf->max_degraded) {
4358 sh->check_state = 0;
4359 sh->reconstruct_state = 0;
626f2092 4360 break_stripe_batch_list(sh, 0);
9a3f530f
N
4361 if (s.to_read+s.to_write+s.written)
4362 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 4363 if (s.syncing + s.replacing)
9a3f530f
N
4364 handle_failed_sync(conf, sh, &s);
4365 }
474af965 4366
84789554
N
4367 /* Now we check to see if any write operations have recently
4368 * completed
4369 */
4370 prexor = 0;
4371 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4372 prexor = 1;
4373 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4374 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4375 sh->reconstruct_state = reconstruct_state_idle;
4376
4377 /* All the 'written' buffers and the parity block are ready to
4378 * be written back to disk
4379 */
9e444768
SL
4380 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4381 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4382 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4383 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4384 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4385 for (i = disks; i--; ) {
4386 struct r5dev *dev = &sh->dev[i];
4387 if (test_bit(R5_LOCKED, &dev->flags) &&
4388 (i == sh->pd_idx || i == sh->qd_idx ||
4389 dev->written)) {
4390 pr_debug("Writing block %d\n", i);
4391 set_bit(R5_Wantwrite, &dev->flags);
4392 if (prexor)
4393 continue;
9c4bdf69
N
4394 if (s.failed > 1)
4395 continue;
84789554
N
4396 if (!test_bit(R5_Insync, &dev->flags) ||
4397 ((i == sh->pd_idx || i == sh->qd_idx) &&
4398 s.failed == 0))
4399 set_bit(STRIPE_INSYNC, &sh->state);
4400 }
4401 }
4402 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4403 s.dec_preread_active = 1;
4404 }
4405
ef5b7c69
N
4406 /*
4407 * might be able to return some write requests if the parity blocks
4408 * are safe, or on a failed drive
4409 */
4410 pdev = &sh->dev[sh->pd_idx];
4411 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4412 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4413 qdev = &sh->dev[sh->qd_idx];
4414 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4415 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4416 || conf->level < 6;
4417
4418 if (s.written &&
4419 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4420 && !test_bit(R5_LOCKED, &pdev->flags)
4421 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4422 test_bit(R5_Discard, &pdev->flags))))) &&
4423 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4424 && !test_bit(R5_LOCKED, &qdev->flags)
4425 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4426 test_bit(R5_Discard, &qdev->flags))))))
4427 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4428
4429 /* Now we might consider reading some blocks, either to check/generate
4430 * parity, or to satisfy requests
4431 * or to load a block that is being partially written.
4432 */
4433 if (s.to_read || s.non_overwrite
4434 || (conf->level == 6 && s.to_write && s.failed)
4435 || (s.syncing && (s.uptodate + s.compute < disks))
4436 || s.replacing
4437 || s.expanding)
4438 handle_stripe_fill(sh, &s, disks);
4439
84789554
N
4440 /* Now to consider new write requests and what else, if anything
4441 * should be read. We do not handle new writes when:
4442 * 1/ A 'write' operation (copy+xor) is already in flight.
4443 * 2/ A 'check' operation is in flight, as it may clobber the parity
4444 * block.
4445 */
4446 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4447 handle_stripe_dirtying(conf, sh, &s, disks);
4448
4449 /* maybe we need to check and possibly fix the parity for this stripe
4450 * Any reads will already have been scheduled, so we just see if enough
4451 * data is available. The parity check is held off while parity
4452 * dependent operations are in flight.
4453 */
4454 if (sh->check_state ||
4455 (s.syncing && s.locked == 0 &&
4456 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4457 !test_bit(STRIPE_INSYNC, &sh->state))) {
4458 if (conf->level == 6)
4459 handle_parity_checks6(conf, sh, &s, disks);
4460 else
4461 handle_parity_checks5(conf, sh, &s, disks);
4462 }
c5a31000 4463
f94c0b66
N
4464 if ((s.replacing || s.syncing) && s.locked == 0
4465 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4466 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4467 /* Write out to replacement devices where possible */
4468 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4469 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4470 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4471 set_bit(R5_WantReplace, &sh->dev[i].flags);
4472 set_bit(R5_LOCKED, &sh->dev[i].flags);
4473 s.locked++;
4474 }
f94c0b66
N
4475 if (s.replacing)
4476 set_bit(STRIPE_INSYNC, &sh->state);
4477 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4478 }
4479 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4480 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4481 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4482 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4483 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4484 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4485 wake_up(&conf->wait_for_overlap);
c5a31000
N
4486 }
4487
4488 /* If the failed drives are just a ReadError, then we might need
4489 * to progress the repair/check process
4490 */
4491 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4492 for (i = 0; i < s.failed; i++) {
4493 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4494 if (test_bit(R5_ReadError, &dev->flags)
4495 && !test_bit(R5_LOCKED, &dev->flags)
4496 && test_bit(R5_UPTODATE, &dev->flags)
4497 ) {
4498 if (!test_bit(R5_ReWrite, &dev->flags)) {
4499 set_bit(R5_Wantwrite, &dev->flags);
4500 set_bit(R5_ReWrite, &dev->flags);
4501 set_bit(R5_LOCKED, &dev->flags);
4502 s.locked++;
4503 } else {
4504 /* let's read it back */
4505 set_bit(R5_Wantread, &dev->flags);
4506 set_bit(R5_LOCKED, &dev->flags);
4507 s.locked++;
4508 }
4509 }
4510 }
4511
3687c061
N
4512 /* Finish reconstruct operations initiated by the expansion process */
4513 if (sh->reconstruct_state == reconstruct_state_result) {
4514 struct stripe_head *sh_src
6d036f7d 4515 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
3687c061
N
4516 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4517 /* sh cannot be written until sh_src has been read.
4518 * so arrange for sh to be delayed a little
4519 */
4520 set_bit(STRIPE_DELAYED, &sh->state);
4521 set_bit(STRIPE_HANDLE, &sh->state);
4522 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4523 &sh_src->state))
4524 atomic_inc(&conf->preread_active_stripes);
6d036f7d 4525 raid5_release_stripe(sh_src);
3687c061
N
4526 goto finish;
4527 }
4528 if (sh_src)
6d036f7d 4529 raid5_release_stripe(sh_src);
3687c061
N
4530
4531 sh->reconstruct_state = reconstruct_state_idle;
4532 clear_bit(STRIPE_EXPANDING, &sh->state);
4533 for (i = conf->raid_disks; i--; ) {
4534 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4535 set_bit(R5_LOCKED, &sh->dev[i].flags);
4536 s.locked++;
4537 }
4538 }
f416885e 4539
3687c061
N
4540 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4541 !sh->reconstruct_state) {
4542 /* Need to write out all blocks after computing parity */
4543 sh->disks = conf->raid_disks;
4544 stripe_set_idx(sh->sector, conf, 0, sh);
4545 schedule_reconstruction(sh, &s, 1, 1);
4546 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4547 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4548 atomic_dec(&conf->reshape_stripes);
4549 wake_up(&conf->wait_for_overlap);
4550 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4551 }
4552
4553 if (s.expanding && s.locked == 0 &&
4554 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4555 handle_stripe_expansion(conf, sh);
16a53ecc 4556
3687c061 4557finish:
6bfe0b49 4558 /* wait for this device to become unblocked */
5f066c63
N
4559 if (unlikely(s.blocked_rdev)) {
4560 if (conf->mddev->external)
4561 md_wait_for_blocked_rdev(s.blocked_rdev,
4562 conf->mddev);
4563 else
4564 /* Internal metadata will immediately
4565 * be written by raid5d, so we don't
4566 * need to wait here.
4567 */
4568 rdev_dec_pending(s.blocked_rdev,
4569 conf->mddev);
4570 }
6bfe0b49 4571
bc2607f3
N
4572 if (s.handle_bad_blocks)
4573 for (i = disks; i--; ) {
3cb03002 4574 struct md_rdev *rdev;
bc2607f3
N
4575 struct r5dev *dev = &sh->dev[i];
4576 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4577 /* We own a safe reference to the rdev */
4578 rdev = conf->disks[i].rdev;
4579 if (!rdev_set_badblocks(rdev, sh->sector,
4580 STRIPE_SECTORS, 0))
4581 md_error(conf->mddev, rdev);
4582 rdev_dec_pending(rdev, conf->mddev);
4583 }
b84db560
N
4584 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4585 rdev = conf->disks[i].rdev;
4586 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4587 STRIPE_SECTORS, 0);
b84db560
N
4588 rdev_dec_pending(rdev, conf->mddev);
4589 }
977df362
N
4590 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4591 rdev = conf->disks[i].replacement;
dd054fce
N
4592 if (!rdev)
4593 /* rdev have been moved down */
4594 rdev = conf->disks[i].rdev;
977df362 4595 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4596 STRIPE_SECTORS, 0);
977df362
N
4597 rdev_dec_pending(rdev, conf->mddev);
4598 }
bc2607f3
N
4599 }
4600
6c0069c0
YT
4601 if (s.ops_request)
4602 raid_run_ops(sh, s.ops_request);
4603
f0e43bcd 4604 ops_run_io(sh, &s);
16a53ecc 4605
c5709ef6 4606 if (s.dec_preread_active) {
729a1866 4607 /* We delay this until after ops_run_io so that if make_request
e9c7469b 4608 * is waiting on a flush, it won't continue until the writes
729a1866
N
4609 * have actually been submitted.
4610 */
4611 atomic_dec(&conf->preread_active_stripes);
4612 if (atomic_read(&conf->preread_active_stripes) <
4613 IO_THRESHOLD)
4614 md_wakeup_thread(conf->mddev->thread);
4615 }
4616
c3cce6cd
N
4617 if (!bio_list_empty(&s.return_bi)) {
4618 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4619 spin_lock_irq(&conf->device_lock);
4620 bio_list_merge(&conf->return_bi, &s.return_bi);
4621 spin_unlock_irq(&conf->device_lock);
4622 md_wakeup_thread(conf->mddev->thread);
4623 } else
4624 return_io(&s.return_bi);
4625 }
16a53ecc 4626
257a4b42 4627 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
4628}
4629
d1688a6d 4630static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
4631{
4632 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4633 while (!list_empty(&conf->delayed_list)) {
4634 struct list_head *l = conf->delayed_list.next;
4635 struct stripe_head *sh;
4636 sh = list_entry(l, struct stripe_head, lru);
4637 list_del_init(l);
4638 clear_bit(STRIPE_DELAYED, &sh->state);
4639 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4640 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 4641 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 4642 raid5_wakeup_stripe_thread(sh);
16a53ecc 4643 }
482c0834 4644 }
16a53ecc
N
4645}
4646
566c09c5
SL
4647static void activate_bit_delay(struct r5conf *conf,
4648 struct list_head *temp_inactive_list)
16a53ecc
N
4649{
4650 /* device_lock is held */
4651 struct list_head head;
4652 list_add(&head, &conf->bitmap_list);
4653 list_del_init(&conf->bitmap_list);
4654 while (!list_empty(&head)) {
4655 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 4656 int hash;
16a53ecc
N
4657 list_del_init(&sh->lru);
4658 atomic_inc(&sh->count);
566c09c5
SL
4659 hash = sh->hash_lock_index;
4660 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
4661 }
4662}
4663
5c675f83 4664static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 4665{
d1688a6d 4666 struct r5conf *conf = mddev->private;
f022b2fd
N
4667
4668 /* No difference between reads and writes. Just check
4669 * how busy the stripe_cache is
4670 */
3fa841d7 4671
5423399a 4672 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd
N
4673 return 1;
4674 if (conf->quiesce)
4675 return 1;
4bda556a 4676 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
4677 return 1;
4678
4679 return 0;
4680}
4681
fd01b88c 4682static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 4683{
3cb5edf4 4684 struct r5conf *conf = mddev->private;
4f024f37 4685 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
3cb5edf4 4686 unsigned int chunk_sectors;
aa8b57aa 4687 unsigned int bio_sectors = bio_sectors(bio);
f679623f 4688
3cb5edf4 4689 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
4690 return chunk_sectors >=
4691 ((sector & (chunk_sectors - 1)) + bio_sectors);
4692}
4693
46031f9a
RBJ
4694/*
4695 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4696 * later sampled by raid5d.
4697 */
d1688a6d 4698static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
4699{
4700 unsigned long flags;
4701
4702 spin_lock_irqsave(&conf->device_lock, flags);
4703
4704 bi->bi_next = conf->retry_read_aligned_list;
4705 conf->retry_read_aligned_list = bi;
4706
4707 spin_unlock_irqrestore(&conf->device_lock, flags);
4708 md_wakeup_thread(conf->mddev->thread);
4709}
4710
d1688a6d 4711static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
4712{
4713 struct bio *bi;
4714
4715 bi = conf->retry_read_aligned;
4716 if (bi) {
4717 conf->retry_read_aligned = NULL;
4718 return bi;
4719 }
4720 bi = conf->retry_read_aligned_list;
4721 if(bi) {
387bb173 4722 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 4723 bi->bi_next = NULL;
960e739d
JA
4724 /*
4725 * this sets the active strip count to 1 and the processed
4726 * strip count to zero (upper 8 bits)
4727 */
e7836bd6 4728 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
4729 }
4730
4731 return bi;
4732}
4733
f679623f
RBJ
4734/*
4735 * The "raid5_align_endio" should check if the read succeeded and if it
4736 * did, call bio_endio on the original bio (having bio_put the new bio
4737 * first).
4738 * If the read failed..
4739 */
4246a0b6 4740static void raid5_align_endio(struct bio *bi)
f679623f
RBJ
4741{
4742 struct bio* raid_bi = bi->bi_private;
fd01b88c 4743 struct mddev *mddev;
d1688a6d 4744 struct r5conf *conf;
3cb03002 4745 struct md_rdev *rdev;
9b81c842 4746 int error = bi->bi_error;
46031f9a 4747
f679623f 4748 bio_put(bi);
46031f9a 4749
46031f9a
RBJ
4750 rdev = (void*)raid_bi->bi_next;
4751 raid_bi->bi_next = NULL;
2b7f2228
N
4752 mddev = rdev->mddev;
4753 conf = mddev->private;
46031f9a
RBJ
4754
4755 rdev_dec_pending(rdev, conf->mddev);
4756
9b81c842 4757 if (!error) {
0a82a8d1
LT
4758 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4759 raid_bi, 0);
4246a0b6 4760 bio_endio(raid_bi);
46031f9a 4761 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 4762 wake_up(&conf->wait_for_quiescent);
6712ecf8 4763 return;
46031f9a
RBJ
4764 }
4765
45b4233c 4766 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
4767
4768 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
4769}
4770
7ef6b12a 4771static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 4772{
d1688a6d 4773 struct r5conf *conf = mddev->private;
8553fe7e 4774 int dd_idx;
f679623f 4775 struct bio* align_bi;
3cb03002 4776 struct md_rdev *rdev;
671488cc 4777 sector_t end_sector;
f679623f
RBJ
4778
4779 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 4780 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
4781 return 0;
4782 }
4783 /*
a167f663 4784 * use bio_clone_mddev to make a copy of the bio
f679623f 4785 */
a167f663 4786 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
4787 if (!align_bi)
4788 return 0;
4789 /*
4790 * set bi_end_io to a new function, and set bi_private to the
4791 * original bio.
4792 */
4793 align_bi->bi_end_io = raid5_align_endio;
4794 align_bi->bi_private = raid_bio;
4795 /*
4796 * compute position
4797 */
4f024f37
KO
4798 align_bi->bi_iter.bi_sector =
4799 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4800 0, &dd_idx, NULL);
f679623f 4801
f73a1c7d 4802 end_sector = bio_end_sector(align_bi);
f679623f 4803 rcu_read_lock();
671488cc
N
4804 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4805 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4806 rdev->recovery_offset < end_sector) {
4807 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4808 if (rdev &&
4809 (test_bit(Faulty, &rdev->flags) ||
4810 !(test_bit(In_sync, &rdev->flags) ||
4811 rdev->recovery_offset >= end_sector)))
4812 rdev = NULL;
4813 }
4814 if (rdev) {
31c176ec
N
4815 sector_t first_bad;
4816 int bad_sectors;
4817
f679623f
RBJ
4818 atomic_inc(&rdev->nr_pending);
4819 rcu_read_unlock();
46031f9a
RBJ
4820 raid_bio->bi_next = (void*)rdev;
4821 align_bi->bi_bdev = rdev->bdev;
b7c44ed9 4822 bio_clear_flag(align_bi, BIO_SEG_VALID);
46031f9a 4823
7140aafc 4824 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4f024f37 4825 bio_sectors(align_bi),
31c176ec 4826 &first_bad, &bad_sectors)) {
387bb173
NB
4827 bio_put(align_bi);
4828 rdev_dec_pending(rdev, mddev);
4829 return 0;
4830 }
4831
6c0544e2 4832 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 4833 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 4834
46031f9a 4835 spin_lock_irq(&conf->device_lock);
b1b46486 4836 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 4837 conf->quiesce == 0,
eed8c02e 4838 conf->device_lock);
46031f9a
RBJ
4839 atomic_inc(&conf->active_aligned_reads);
4840 spin_unlock_irq(&conf->device_lock);
4841
e3620a3a
JB
4842 if (mddev->gendisk)
4843 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4844 align_bi, disk_devt(mddev->gendisk),
4f024f37 4845 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
4846 generic_make_request(align_bi);
4847 return 1;
4848 } else {
4849 rcu_read_unlock();
46031f9a 4850 bio_put(align_bi);
f679623f
RBJ
4851 return 0;
4852 }
4853}
4854
7ef6b12a
ML
4855static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4856{
4857 struct bio *split;
4858
4859 do {
4860 sector_t sector = raid_bio->bi_iter.bi_sector;
4861 unsigned chunk_sects = mddev->chunk_sectors;
4862 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4863
4864 if (sectors < bio_sectors(raid_bio)) {
4865 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4866 bio_chain(split, raid_bio);
4867 } else
4868 split = raid_bio;
4869
4870 if (!raid5_read_one_chunk(mddev, split)) {
4871 if (split != raid_bio)
4872 generic_make_request(raid_bio);
4873 return split;
4874 }
4875 } while (split != raid_bio);
4876
4877 return NULL;
4878}
4879
8b3e6cdc
DW
4880/* __get_priority_stripe - get the next stripe to process
4881 *
4882 * Full stripe writes are allowed to pass preread active stripes up until
4883 * the bypass_threshold is exceeded. In general the bypass_count
4884 * increments when the handle_list is handled before the hold_list; however, it
4885 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4886 * stripe with in flight i/o. The bypass_count will be reset when the
4887 * head of the hold_list has changed, i.e. the head was promoted to the
4888 * handle_list.
4889 */
851c30c9 4890static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 4891{
851c30c9
SL
4892 struct stripe_head *sh = NULL, *tmp;
4893 struct list_head *handle_list = NULL;
bfc90cb0 4894 struct r5worker_group *wg = NULL;
851c30c9
SL
4895
4896 if (conf->worker_cnt_per_group == 0) {
4897 handle_list = &conf->handle_list;
4898 } else if (group != ANY_GROUP) {
4899 handle_list = &conf->worker_groups[group].handle_list;
bfc90cb0 4900 wg = &conf->worker_groups[group];
851c30c9
SL
4901 } else {
4902 int i;
4903 for (i = 0; i < conf->group_cnt; i++) {
4904 handle_list = &conf->worker_groups[i].handle_list;
bfc90cb0 4905 wg = &conf->worker_groups[i];
851c30c9
SL
4906 if (!list_empty(handle_list))
4907 break;
4908 }
4909 }
8b3e6cdc
DW
4910
4911 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4912 __func__,
851c30c9 4913 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
4914 list_empty(&conf->hold_list) ? "empty" : "busy",
4915 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4916
851c30c9
SL
4917 if (!list_empty(handle_list)) {
4918 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
4919
4920 if (list_empty(&conf->hold_list))
4921 conf->bypass_count = 0;
4922 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4923 if (conf->hold_list.next == conf->last_hold)
4924 conf->bypass_count++;
4925 else {
4926 conf->last_hold = conf->hold_list.next;
4927 conf->bypass_count -= conf->bypass_threshold;
4928 if (conf->bypass_count < 0)
4929 conf->bypass_count = 0;
4930 }
4931 }
4932 } else if (!list_empty(&conf->hold_list) &&
4933 ((conf->bypass_threshold &&
4934 conf->bypass_count > conf->bypass_threshold) ||
4935 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
4936
4937 list_for_each_entry(tmp, &conf->hold_list, lru) {
4938 if (conf->worker_cnt_per_group == 0 ||
4939 group == ANY_GROUP ||
4940 !cpu_online(tmp->cpu) ||
4941 cpu_to_group(tmp->cpu) == group) {
4942 sh = tmp;
4943 break;
4944 }
4945 }
4946
4947 if (sh) {
4948 conf->bypass_count -= conf->bypass_threshold;
4949 if (conf->bypass_count < 0)
4950 conf->bypass_count = 0;
4951 }
bfc90cb0 4952 wg = NULL;
851c30c9
SL
4953 }
4954
4955 if (!sh)
8b3e6cdc
DW
4956 return NULL;
4957
bfc90cb0
SL
4958 if (wg) {
4959 wg->stripes_cnt--;
4960 sh->group = NULL;
4961 }
8b3e6cdc 4962 list_del_init(&sh->lru);
c7a6d35e 4963 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
4964 return sh;
4965}
f679623f 4966
8811b596
SL
4967struct raid5_plug_cb {
4968 struct blk_plug_cb cb;
4969 struct list_head list;
566c09c5 4970 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
4971};
4972
4973static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4974{
4975 struct raid5_plug_cb *cb = container_of(
4976 blk_cb, struct raid5_plug_cb, cb);
4977 struct stripe_head *sh;
4978 struct mddev *mddev = cb->cb.data;
4979 struct r5conf *conf = mddev->private;
a9add5d9 4980 int cnt = 0;
566c09c5 4981 int hash;
8811b596
SL
4982
4983 if (cb->list.next && !list_empty(&cb->list)) {
4984 spin_lock_irq(&conf->device_lock);
4985 while (!list_empty(&cb->list)) {
4986 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4987 list_del_init(&sh->lru);
4988 /*
4989 * avoid race release_stripe_plug() sees
4990 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4991 * is still in our list
4992 */
4e857c58 4993 smp_mb__before_atomic();
8811b596 4994 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
4995 /*
4996 * STRIPE_ON_RELEASE_LIST could be set here. In that
4997 * case, the count is always > 1 here
4998 */
566c09c5
SL
4999 hash = sh->hash_lock_index;
5000 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5001 cnt++;
8811b596
SL
5002 }
5003 spin_unlock_irq(&conf->device_lock);
5004 }
566c09c5
SL
5005 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5006 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5007 if (mddev->queue)
5008 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5009 kfree(cb);
5010}
5011
5012static void release_stripe_plug(struct mddev *mddev,
5013 struct stripe_head *sh)
5014{
5015 struct blk_plug_cb *blk_cb = blk_check_plugged(
5016 raid5_unplug, mddev,
5017 sizeof(struct raid5_plug_cb));
5018 struct raid5_plug_cb *cb;
5019
5020 if (!blk_cb) {
6d036f7d 5021 raid5_release_stripe(sh);
8811b596
SL
5022 return;
5023 }
5024
5025 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5026
566c09c5
SL
5027 if (cb->list.next == NULL) {
5028 int i;
8811b596 5029 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5030 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5031 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5032 }
8811b596
SL
5033
5034 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5035 list_add_tail(&sh->lru, &cb->list);
5036 else
6d036f7d 5037 raid5_release_stripe(sh);
8811b596
SL
5038}
5039
620125f2
SL
5040static void make_discard_request(struct mddev *mddev, struct bio *bi)
5041{
5042 struct r5conf *conf = mddev->private;
5043 sector_t logical_sector, last_sector;
5044 struct stripe_head *sh;
5045 int remaining;
5046 int stripe_sectors;
5047
5048 if (mddev->reshape_position != MaxSector)
5049 /* Skip discard while reshape is happening */
5050 return;
5051
4f024f37
KO
5052 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5053 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5054
5055 bi->bi_next = NULL;
5056 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5057
5058 stripe_sectors = conf->chunk_sectors *
5059 (conf->raid_disks - conf->max_degraded);
5060 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5061 stripe_sectors);
5062 sector_div(last_sector, stripe_sectors);
5063
5064 logical_sector *= conf->chunk_sectors;
5065 last_sector *= conf->chunk_sectors;
5066
5067 for (; logical_sector < last_sector;
5068 logical_sector += STRIPE_SECTORS) {
5069 DEFINE_WAIT(w);
5070 int d;
5071 again:
6d036f7d 5072 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
620125f2
SL
5073 prepare_to_wait(&conf->wait_for_overlap, &w,
5074 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5075 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5076 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5077 raid5_release_stripe(sh);
f8dfcffd
N
5078 schedule();
5079 goto again;
5080 }
5081 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5082 spin_lock_irq(&sh->stripe_lock);
5083 for (d = 0; d < conf->raid_disks; d++) {
5084 if (d == sh->pd_idx || d == sh->qd_idx)
5085 continue;
5086 if (sh->dev[d].towrite || sh->dev[d].toread) {
5087 set_bit(R5_Overlap, &sh->dev[d].flags);
5088 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5089 raid5_release_stripe(sh);
620125f2
SL
5090 schedule();
5091 goto again;
5092 }
5093 }
f8dfcffd 5094 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5095 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5096 sh->overwrite_disks = 0;
620125f2
SL
5097 for (d = 0; d < conf->raid_disks; d++) {
5098 if (d == sh->pd_idx || d == sh->qd_idx)
5099 continue;
5100 sh->dev[d].towrite = bi;
5101 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5102 raid5_inc_bi_active_stripes(bi);
7a87f434 5103 sh->overwrite_disks++;
620125f2
SL
5104 }
5105 spin_unlock_irq(&sh->stripe_lock);
5106 if (conf->mddev->bitmap) {
5107 for (d = 0;
5108 d < conf->raid_disks - conf->max_degraded;
5109 d++)
5110 bitmap_startwrite(mddev->bitmap,
5111 sh->sector,
5112 STRIPE_SECTORS,
5113 0);
5114 sh->bm_seq = conf->seq_flush + 1;
5115 set_bit(STRIPE_BIT_DELAY, &sh->state);
5116 }
5117
5118 set_bit(STRIPE_HANDLE, &sh->state);
5119 clear_bit(STRIPE_DELAYED, &sh->state);
5120 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5121 atomic_inc(&conf->preread_active_stripes);
5122 release_stripe_plug(mddev, sh);
5123 }
5124
5125 remaining = raid5_dec_bi_active_stripes(bi);
5126 if (remaining == 0) {
5127 md_write_end(mddev);
4246a0b6 5128 bio_endio(bi);
620125f2
SL
5129 }
5130}
5131
b4fdcb02 5132static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5133{
d1688a6d 5134 struct r5conf *conf = mddev->private;
911d4ee8 5135 int dd_idx;
1da177e4
LT
5136 sector_t new_sector;
5137 sector_t logical_sector, last_sector;
5138 struct stripe_head *sh;
a362357b 5139 const int rw = bio_data_dir(bi);
49077326 5140 int remaining;
27c0f68f
SL
5141 DEFINE_WAIT(w);
5142 bool do_prepare;
1da177e4 5143
e9c7469b
TH
5144 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5145 md_flush_request(mddev, bi);
5a7bbad2 5146 return;
e5dcdd80
N
5147 }
5148
3d310eb7 5149 md_write_start(mddev, bi);
06d91a5f 5150
9ffc8f7c
EM
5151 /*
5152 * If array is degraded, better not do chunk aligned read because
5153 * later we might have to read it again in order to reconstruct
5154 * data on failed drives.
5155 */
5156 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
5157 mddev->reshape_position == MaxSector) {
5158 bi = chunk_aligned_read(mddev, bi);
5159 if (!bi)
5160 return;
5161 }
52488615 5162
620125f2
SL
5163 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5164 make_discard_request(mddev, bi);
5165 return;
5166 }
5167
4f024f37 5168 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5169 last_sector = bio_end_sector(bi);
1da177e4
LT
5170 bi->bi_next = NULL;
5171 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 5172
27c0f68f 5173 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5174 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5175 int previous;
c46501b2 5176 int seq;
b578d55f 5177
27c0f68f 5178 do_prepare = false;
7ecaa1e6 5179 retry:
c46501b2 5180 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5181 previous = 0;
27c0f68f
SL
5182 if (do_prepare)
5183 prepare_to_wait(&conf->wait_for_overlap, &w,
5184 TASK_UNINTERRUPTIBLE);
b0f9ec04 5185 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5186 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5187 * 64bit on a 32bit platform, and so it might be
5188 * possible to see a half-updated value
aeb878b0 5189 * Of course reshape_progress could change after
df8e7f76
N
5190 * the lock is dropped, so once we get a reference
5191 * to the stripe that we think it is, we will have
5192 * to check again.
5193 */
7ecaa1e6 5194 spin_lock_irq(&conf->device_lock);
2c810cdd 5195 if (mddev->reshape_backwards
fef9c61f
N
5196 ? logical_sector < conf->reshape_progress
5197 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5198 previous = 1;
5199 } else {
2c810cdd 5200 if (mddev->reshape_backwards
fef9c61f
N
5201 ? logical_sector < conf->reshape_safe
5202 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5203 spin_unlock_irq(&conf->device_lock);
5204 schedule();
27c0f68f 5205 do_prepare = true;
b578d55f
N
5206 goto retry;
5207 }
5208 }
7ecaa1e6
N
5209 spin_unlock_irq(&conf->device_lock);
5210 }
16a53ecc 5211
112bf897
N
5212 new_sector = raid5_compute_sector(conf, logical_sector,
5213 previous,
911d4ee8 5214 &dd_idx, NULL);
0c55e022 5215 pr_debug("raid456: make_request, sector %llu logical %llu\n",
c46501b2 5216 (unsigned long long)new_sector,
1da177e4
LT
5217 (unsigned long long)logical_sector);
5218
6d036f7d 5219 sh = raid5_get_active_stripe(conf, new_sector, previous,
a8c906ca 5220 (bi->bi_rw&RWA_MASK), 0);
1da177e4 5221 if (sh) {
b0f9ec04 5222 if (unlikely(previous)) {
7ecaa1e6 5223 /* expansion might have moved on while waiting for a
df8e7f76
N
5224 * stripe, so we must do the range check again.
5225 * Expansion could still move past after this
5226 * test, but as we are holding a reference to
5227 * 'sh', we know that if that happens,
5228 * STRIPE_EXPANDING will get set and the expansion
5229 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5230 */
5231 int must_retry = 0;
5232 spin_lock_irq(&conf->device_lock);
2c810cdd 5233 if (mddev->reshape_backwards
b0f9ec04
N
5234 ? logical_sector >= conf->reshape_progress
5235 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5236 /* mismatch, need to try again */
5237 must_retry = 1;
5238 spin_unlock_irq(&conf->device_lock);
5239 if (must_retry) {
6d036f7d 5240 raid5_release_stripe(sh);
7a3ab908 5241 schedule();
27c0f68f 5242 do_prepare = true;
7ecaa1e6
N
5243 goto retry;
5244 }
5245 }
c46501b2
N
5246 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5247 /* Might have got the wrong stripe_head
5248 * by accident
5249 */
6d036f7d 5250 raid5_release_stripe(sh);
c46501b2
N
5251 goto retry;
5252 }
e62e58a5 5253
ffd96e35 5254 if (rw == WRITE &&
a5c308d4 5255 logical_sector >= mddev->suspend_lo &&
e464eafd 5256 logical_sector < mddev->suspend_hi) {
6d036f7d 5257 raid5_release_stripe(sh);
e62e58a5
N
5258 /* As the suspend_* range is controlled by
5259 * userspace, we want an interruptible
5260 * wait.
5261 */
5262 flush_signals(current);
5263 prepare_to_wait(&conf->wait_for_overlap,
5264 &w, TASK_INTERRUPTIBLE);
5265 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5266 logical_sector < mddev->suspend_hi) {
e62e58a5 5267 schedule();
27c0f68f
SL
5268 do_prepare = true;
5269 }
e464eafd
N
5270 goto retry;
5271 }
7ecaa1e6
N
5272
5273 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5274 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5275 /* Stripe is busy expanding or
5276 * add failed due to overlap. Flush everything
1da177e4
LT
5277 * and wait a while
5278 */
482c0834 5279 md_wakeup_thread(mddev->thread);
6d036f7d 5280 raid5_release_stripe(sh);
1da177e4 5281 schedule();
27c0f68f 5282 do_prepare = true;
1da177e4
LT
5283 goto retry;
5284 }
6ed3003c
N
5285 set_bit(STRIPE_HANDLE, &sh->state);
5286 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5287 if ((!sh->batch_head || sh == sh->batch_head) &&
5288 (bi->bi_rw & REQ_SYNC) &&
729a1866
N
5289 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5290 atomic_inc(&conf->preread_active_stripes);
8811b596 5291 release_stripe_plug(mddev, sh);
1da177e4
LT
5292 } else {
5293 /* cannot get stripe for read-ahead, just give-up */
4246a0b6 5294 bi->bi_error = -EIO;
1da177e4
LT
5295 break;
5296 }
1da177e4 5297 }
27c0f68f 5298 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5299
e7836bd6 5300 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 5301 if (remaining == 0) {
1da177e4 5302
16a53ecc 5303 if ( rw == WRITE )
1da177e4 5304 md_write_end(mddev);
6712ecf8 5305
0a82a8d1
LT
5306 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5307 bi, 0);
4246a0b6 5308 bio_endio(bi);
1da177e4 5309 }
1da177e4
LT
5310}
5311
fd01b88c 5312static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5313
fd01b88c 5314static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5315{
52c03291
N
5316 /* reshaping is quite different to recovery/resync so it is
5317 * handled quite separately ... here.
5318 *
5319 * On each call to sync_request, we gather one chunk worth of
5320 * destination stripes and flag them as expanding.
5321 * Then we find all the source stripes and request reads.
5322 * As the reads complete, handle_stripe will copy the data
5323 * into the destination stripe and release that stripe.
5324 */
d1688a6d 5325 struct r5conf *conf = mddev->private;
1da177e4 5326 struct stripe_head *sh;
ccfcc3c1 5327 sector_t first_sector, last_sector;
f416885e
N
5328 int raid_disks = conf->previous_raid_disks;
5329 int data_disks = raid_disks - conf->max_degraded;
5330 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5331 int i;
5332 int dd_idx;
c8f517c4 5333 sector_t writepos, readpos, safepos;
ec32a2bd 5334 sector_t stripe_addr;
7a661381 5335 int reshape_sectors;
ab69ae12 5336 struct list_head stripes;
92140480 5337 sector_t retn;
52c03291 5338
fef9c61f
N
5339 if (sector_nr == 0) {
5340 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5341 if (mddev->reshape_backwards &&
fef9c61f
N
5342 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5343 sector_nr = raid5_size(mddev, 0, 0)
5344 - conf->reshape_progress;
6cbd8148
N
5345 } else if (mddev->reshape_backwards &&
5346 conf->reshape_progress == MaxSector) {
5347 /* shouldn't happen, but just in case, finish up.*/
5348 sector_nr = MaxSector;
2c810cdd 5349 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5350 conf->reshape_progress > 0)
5351 sector_nr = conf->reshape_progress;
f416885e 5352 sector_div(sector_nr, new_data_disks);
fef9c61f 5353 if (sector_nr) {
8dee7211
N
5354 mddev->curr_resync_completed = sector_nr;
5355 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f 5356 *skipped = 1;
92140480
N
5357 retn = sector_nr;
5358 goto finish;
fef9c61f 5359 }
52c03291
N
5360 }
5361
7a661381
N
5362 /* We need to process a full chunk at a time.
5363 * If old and new chunk sizes differ, we need to process the
5364 * largest of these
5365 */
3cb5edf4
N
5366
5367 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 5368
b5254dd5
N
5369 /* We update the metadata at least every 10 seconds, or when
5370 * the data about to be copied would over-write the source of
5371 * the data at the front of the range. i.e. one new_stripe
5372 * along from reshape_progress new_maps to after where
5373 * reshape_safe old_maps to
52c03291 5374 */
fef9c61f 5375 writepos = conf->reshape_progress;
f416885e 5376 sector_div(writepos, new_data_disks);
c8f517c4
N
5377 readpos = conf->reshape_progress;
5378 sector_div(readpos, data_disks);
fef9c61f 5379 safepos = conf->reshape_safe;
f416885e 5380 sector_div(safepos, data_disks);
2c810cdd 5381 if (mddev->reshape_backwards) {
c74c0d76
N
5382 BUG_ON(writepos < reshape_sectors);
5383 writepos -= reshape_sectors;
c8f517c4 5384 readpos += reshape_sectors;
7a661381 5385 safepos += reshape_sectors;
fef9c61f 5386 } else {
7a661381 5387 writepos += reshape_sectors;
c74c0d76
N
5388 /* readpos and safepos are worst-case calculations.
5389 * A negative number is overly pessimistic, and causes
5390 * obvious problems for unsigned storage. So clip to 0.
5391 */
ed37d83e
N
5392 readpos -= min_t(sector_t, reshape_sectors, readpos);
5393 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5394 }
52c03291 5395
b5254dd5
N
5396 /* Having calculated the 'writepos' possibly use it
5397 * to set 'stripe_addr' which is where we will write to.
5398 */
5399 if (mddev->reshape_backwards) {
5400 BUG_ON(conf->reshape_progress == 0);
5401 stripe_addr = writepos;
5402 BUG_ON((mddev->dev_sectors &
5403 ~((sector_t)reshape_sectors - 1))
5404 - reshape_sectors - stripe_addr
5405 != sector_nr);
5406 } else {
5407 BUG_ON(writepos != sector_nr + reshape_sectors);
5408 stripe_addr = sector_nr;
5409 }
5410
c8f517c4
N
5411 /* 'writepos' is the most advanced device address we might write.
5412 * 'readpos' is the least advanced device address we might read.
5413 * 'safepos' is the least address recorded in the metadata as having
5414 * been reshaped.
b5254dd5
N
5415 * If there is a min_offset_diff, these are adjusted either by
5416 * increasing the safepos/readpos if diff is negative, or
5417 * increasing writepos if diff is positive.
5418 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5419 * ensure safety in the face of a crash - that must be done by userspace
5420 * making a backup of the data. So in that case there is no particular
5421 * rush to update metadata.
5422 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5423 * update the metadata to advance 'safepos' to match 'readpos' so that
5424 * we can be safe in the event of a crash.
5425 * So we insist on updating metadata if safepos is behind writepos and
5426 * readpos is beyond writepos.
5427 * In any case, update the metadata every 10 seconds.
5428 * Maybe that number should be configurable, but I'm not sure it is
5429 * worth it.... maybe it could be a multiple of safemode_delay???
5430 */
b5254dd5
N
5431 if (conf->min_offset_diff < 0) {
5432 safepos += -conf->min_offset_diff;
5433 readpos += -conf->min_offset_diff;
5434 } else
5435 writepos += conf->min_offset_diff;
5436
2c810cdd 5437 if ((mddev->reshape_backwards
c8f517c4
N
5438 ? (safepos > writepos && readpos < writepos)
5439 : (safepos < writepos && readpos > writepos)) ||
5440 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5441 /* Cannot proceed until we've updated the superblock... */
5442 wait_event(conf->wait_for_overlap,
c91abf5a
N
5443 atomic_read(&conf->reshape_stripes)==0
5444 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5445 if (atomic_read(&conf->reshape_stripes) != 0)
5446 return 0;
fef9c61f 5447 mddev->reshape_position = conf->reshape_progress;
75d3da43 5448 mddev->curr_resync_completed = sector_nr;
c8f517c4 5449 conf->reshape_checkpoint = jiffies;
850b2b42 5450 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 5451 md_wakeup_thread(mddev->thread);
850b2b42 5452 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
5453 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5454 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5455 return 0;
52c03291 5456 spin_lock_irq(&conf->device_lock);
fef9c61f 5457 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5458 spin_unlock_irq(&conf->device_lock);
5459 wake_up(&conf->wait_for_overlap);
acb180b0 5460 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5461 }
5462
ab69ae12 5463 INIT_LIST_HEAD(&stripes);
7a661381 5464 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5465 int j;
a9f326eb 5466 int skipped_disk = 0;
6d036f7d 5467 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5468 set_bit(STRIPE_EXPANDING, &sh->state);
5469 atomic_inc(&conf->reshape_stripes);
5470 /* If any of this stripe is beyond the end of the old
5471 * array, then we need to zero those blocks
5472 */
5473 for (j=sh->disks; j--;) {
5474 sector_t s;
5475 if (j == sh->pd_idx)
5476 continue;
f416885e 5477 if (conf->level == 6 &&
d0dabf7e 5478 j == sh->qd_idx)
f416885e 5479 continue;
6d036f7d 5480 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 5481 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5482 skipped_disk = 1;
52c03291
N
5483 continue;
5484 }
5485 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5486 set_bit(R5_Expanded, &sh->dev[j].flags);
5487 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5488 }
a9f326eb 5489 if (!skipped_disk) {
52c03291
N
5490 set_bit(STRIPE_EXPAND_READY, &sh->state);
5491 set_bit(STRIPE_HANDLE, &sh->state);
5492 }
ab69ae12 5493 list_add(&sh->lru, &stripes);
52c03291
N
5494 }
5495 spin_lock_irq(&conf->device_lock);
2c810cdd 5496 if (mddev->reshape_backwards)
7a661381 5497 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5498 else
7a661381 5499 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5500 spin_unlock_irq(&conf->device_lock);
5501 /* Ok, those stripe are ready. We can start scheduling
5502 * reads on the source stripes.
5503 * The source stripes are determined by mapping the first and last
5504 * block on the destination stripes.
5505 */
52c03291 5506 first_sector =
ec32a2bd 5507 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5508 1, &dd_idx, NULL);
52c03291 5509 last_sector =
0e6e0271 5510 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5511 * new_data_disks - 1),
911d4ee8 5512 1, &dd_idx, NULL);
58c0fed4
AN
5513 if (last_sector >= mddev->dev_sectors)
5514 last_sector = mddev->dev_sectors - 1;
52c03291 5515 while (first_sector <= last_sector) {
6d036f7d 5516 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5517 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5518 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 5519 raid5_release_stripe(sh);
52c03291
N
5520 first_sector += STRIPE_SECTORS;
5521 }
ab69ae12
N
5522 /* Now that the sources are clearly marked, we can release
5523 * the destination stripes
5524 */
5525 while (!list_empty(&stripes)) {
5526 sh = list_entry(stripes.next, struct stripe_head, lru);
5527 list_del_init(&sh->lru);
6d036f7d 5528 raid5_release_stripe(sh);
ab69ae12 5529 }
c6207277
N
5530 /* If this takes us to the resync_max point where we have to pause,
5531 * then we need to write out the superblock.
5532 */
7a661381 5533 sector_nr += reshape_sectors;
92140480
N
5534 retn = reshape_sectors;
5535finish:
c5e19d90
N
5536 if (mddev->curr_resync_completed > mddev->resync_max ||
5537 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 5538 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5539 /* Cannot proceed until we've updated the superblock... */
5540 wait_event(conf->wait_for_overlap,
c91abf5a
N
5541 atomic_read(&conf->reshape_stripes) == 0
5542 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5543 if (atomic_read(&conf->reshape_stripes) != 0)
5544 goto ret;
fef9c61f 5545 mddev->reshape_position = conf->reshape_progress;
75d3da43 5546 mddev->curr_resync_completed = sector_nr;
c8f517c4 5547 conf->reshape_checkpoint = jiffies;
c6207277
N
5548 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5549 md_wakeup_thread(mddev->thread);
5550 wait_event(mddev->sb_wait,
5551 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
c91abf5a
N
5552 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5553 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5554 goto ret;
c6207277 5555 spin_lock_irq(&conf->device_lock);
fef9c61f 5556 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5557 spin_unlock_irq(&conf->device_lock);
5558 wake_up(&conf->wait_for_overlap);
acb180b0 5559 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5560 }
c91abf5a 5561ret:
92140480 5562 return retn;
52c03291
N
5563}
5564
09314799 5565static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
52c03291 5566{
d1688a6d 5567 struct r5conf *conf = mddev->private;
52c03291 5568 struct stripe_head *sh;
58c0fed4 5569 sector_t max_sector = mddev->dev_sectors;
57dab0bd 5570 sector_t sync_blocks;
16a53ecc
N
5571 int still_degraded = 0;
5572 int i;
1da177e4 5573
72626685 5574 if (sector_nr >= max_sector) {
1da177e4 5575 /* just being told to finish up .. nothing much to do */
cea9c228 5576
29269553
N
5577 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5578 end_reshape(conf);
5579 return 0;
5580 }
72626685
N
5581
5582 if (mddev->curr_resync < max_sector) /* aborted */
5583 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5584 &sync_blocks, 1);
16a53ecc 5585 else /* completed sync */
72626685
N
5586 conf->fullsync = 0;
5587 bitmap_close_sync(mddev->bitmap);
5588
1da177e4
LT
5589 return 0;
5590 }
ccfcc3c1 5591
64bd660b
N
5592 /* Allow raid5_quiesce to complete */
5593 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5594
52c03291
N
5595 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5596 return reshape_request(mddev, sector_nr, skipped);
f6705578 5597
c6207277
N
5598 /* No need to check resync_max as we never do more than one
5599 * stripe, and as resync_max will always be on a chunk boundary,
5600 * if the check in md_do_sync didn't fire, there is no chance
5601 * of overstepping resync_max here
5602 */
5603
16a53ecc 5604 /* if there is too many failed drives and we are trying
1da177e4
LT
5605 * to resync, then assert that we are finished, because there is
5606 * nothing we can do.
5607 */
3285edf1 5608 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 5609 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 5610 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 5611 *skipped = 1;
1da177e4
LT
5612 return rv;
5613 }
6f608040 5614 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5615 !conf->fullsync &&
5616 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5617 sync_blocks >= STRIPE_SECTORS) {
72626685
N
5618 /* we can skip this block, and probably more */
5619 sync_blocks /= STRIPE_SECTORS;
5620 *skipped = 1;
5621 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5622 }
1da177e4 5623
c40f341f 5624 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
b47490c9 5625
6d036f7d 5626 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 5627 if (sh == NULL) {
6d036f7d 5628 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 5629 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 5630 * is trying to get access
1da177e4 5631 */
66c006a5 5632 schedule_timeout_uninterruptible(1);
1da177e4 5633 }
16a53ecc 5634 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
5635 * Note in case of > 1 drive failures it's possible we're rebuilding
5636 * one drive while leaving another faulty drive in array.
16a53ecc 5637 */
16d9cfab
EM
5638 rcu_read_lock();
5639 for (i = 0; i < conf->raid_disks; i++) {
5640 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5641
5642 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 5643 still_degraded = 1;
16d9cfab
EM
5644 }
5645 rcu_read_unlock();
16a53ecc
N
5646
5647 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5648
83206d66 5649 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 5650 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 5651
6d036f7d 5652 raid5_release_stripe(sh);
1da177e4
LT
5653
5654 return STRIPE_SECTORS;
5655}
5656
d1688a6d 5657static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
5658{
5659 /* We may not be able to submit a whole bio at once as there
5660 * may not be enough stripe_heads available.
5661 * We cannot pre-allocate enough stripe_heads as we may need
5662 * more than exist in the cache (if we allow ever large chunks).
5663 * So we do one stripe head at a time and record in
5664 * ->bi_hw_segments how many have been done.
5665 *
5666 * We *know* that this entire raid_bio is in one chunk, so
5667 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5668 */
5669 struct stripe_head *sh;
911d4ee8 5670 int dd_idx;
46031f9a
RBJ
5671 sector_t sector, logical_sector, last_sector;
5672 int scnt = 0;
5673 int remaining;
5674 int handled = 0;
5675
4f024f37
KO
5676 logical_sector = raid_bio->bi_iter.bi_sector &
5677 ~((sector_t)STRIPE_SECTORS-1);
112bf897 5678 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 5679 0, &dd_idx, NULL);
f73a1c7d 5680 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
5681
5682 for (; logical_sector < last_sector;
387bb173
NB
5683 logical_sector += STRIPE_SECTORS,
5684 sector += STRIPE_SECTORS,
5685 scnt++) {
46031f9a 5686
e7836bd6 5687 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
5688 /* already done this stripe */
5689 continue;
5690
6d036f7d 5691 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
5692
5693 if (!sh) {
5694 /* failed to get a stripe - must wait */
e7836bd6 5695 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
5696 conf->retry_read_aligned = raid_bio;
5697 return handled;
5698 }
5699
da41ba65 5700 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 5701 raid5_release_stripe(sh);
e7836bd6 5702 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
5703 conf->retry_read_aligned = raid_bio;
5704 return handled;
5705 }
5706
3f9e7c14 5707 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 5708 handle_stripe(sh);
6d036f7d 5709 raid5_release_stripe(sh);
46031f9a
RBJ
5710 handled++;
5711 }
e7836bd6 5712 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
5713 if (remaining == 0) {
5714 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5715 raid_bio, 0);
4246a0b6 5716 bio_endio(raid_bio);
0a82a8d1 5717 }
46031f9a 5718 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5719 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
5720 return handled;
5721}
5722
bfc90cb0 5723static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
5724 struct r5worker *worker,
5725 struct list_head *temp_inactive_list)
46a06401
SL
5726{
5727 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
5728 int i, batch_size = 0, hash;
5729 bool release_inactive = false;
46a06401
SL
5730
5731 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 5732 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
5733 batch[batch_size++] = sh;
5734
566c09c5
SL
5735 if (batch_size == 0) {
5736 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5737 if (!list_empty(temp_inactive_list + i))
5738 break;
5739 if (i == NR_STRIPE_HASH_LOCKS)
5740 return batch_size;
5741 release_inactive = true;
5742 }
46a06401
SL
5743 spin_unlock_irq(&conf->device_lock);
5744
566c09c5
SL
5745 release_inactive_stripe_list(conf, temp_inactive_list,
5746 NR_STRIPE_HASH_LOCKS);
5747
5748 if (release_inactive) {
5749 spin_lock_irq(&conf->device_lock);
5750 return 0;
5751 }
5752
46a06401
SL
5753 for (i = 0; i < batch_size; i++)
5754 handle_stripe(batch[i]);
f6bed0ef 5755 r5l_write_stripe_run(conf->log);
46a06401
SL
5756
5757 cond_resched();
5758
5759 spin_lock_irq(&conf->device_lock);
566c09c5
SL
5760 for (i = 0; i < batch_size; i++) {
5761 hash = batch[i]->hash_lock_index;
5762 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5763 }
46a06401
SL
5764 return batch_size;
5765}
46031f9a 5766
851c30c9
SL
5767static void raid5_do_work(struct work_struct *work)
5768{
5769 struct r5worker *worker = container_of(work, struct r5worker, work);
5770 struct r5worker_group *group = worker->group;
5771 struct r5conf *conf = group->conf;
5772 int group_id = group - conf->worker_groups;
5773 int handled;
5774 struct blk_plug plug;
5775
5776 pr_debug("+++ raid5worker active\n");
5777
5778 blk_start_plug(&plug);
5779 handled = 0;
5780 spin_lock_irq(&conf->device_lock);
5781 while (1) {
5782 int batch_size, released;
5783
566c09c5 5784 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 5785
566c09c5
SL
5786 batch_size = handle_active_stripes(conf, group_id, worker,
5787 worker->temp_inactive_list);
bfc90cb0 5788 worker->working = false;
851c30c9
SL
5789 if (!batch_size && !released)
5790 break;
5791 handled += batch_size;
5792 }
5793 pr_debug("%d stripes handled\n", handled);
5794
5795 spin_unlock_irq(&conf->device_lock);
5796 blk_finish_plug(&plug);
5797
5798 pr_debug("--- raid5worker inactive\n");
5799}
5800
1da177e4
LT
5801/*
5802 * This is our raid5 kernel thread.
5803 *
5804 * We scan the hash table for stripes which can be handled now.
5805 * During the scan, completed stripes are saved for us by the interrupt
5806 * handler, so that they will not have to wait for our next wakeup.
5807 */
4ed8731d 5808static void raid5d(struct md_thread *thread)
1da177e4 5809{
4ed8731d 5810 struct mddev *mddev = thread->mddev;
d1688a6d 5811 struct r5conf *conf = mddev->private;
1da177e4 5812 int handled;
e1dfa0a2 5813 struct blk_plug plug;
1da177e4 5814
45b4233c 5815 pr_debug("+++ raid5d active\n");
1da177e4
LT
5816
5817 md_check_recovery(mddev);
1da177e4 5818
c3cce6cd
N
5819 if (!bio_list_empty(&conf->return_bi) &&
5820 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5821 struct bio_list tmp = BIO_EMPTY_LIST;
5822 spin_lock_irq(&conf->device_lock);
5823 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5824 bio_list_merge(&tmp, &conf->return_bi);
5825 bio_list_init(&conf->return_bi);
5826 }
5827 spin_unlock_irq(&conf->device_lock);
5828 return_io(&tmp);
5829 }
5830
e1dfa0a2 5831 blk_start_plug(&plug);
1da177e4
LT
5832 handled = 0;
5833 spin_lock_irq(&conf->device_lock);
5834 while (1) {
46031f9a 5835 struct bio *bio;
773ca82f
SL
5836 int batch_size, released;
5837
566c09c5 5838 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
5839 if (released)
5840 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 5841
0021b7bc 5842 if (
7c13edc8
N
5843 !list_empty(&conf->bitmap_list)) {
5844 /* Now is a good time to flush some bitmap updates */
5845 conf->seq_flush++;
700e432d 5846 spin_unlock_irq(&conf->device_lock);
72626685 5847 bitmap_unplug(mddev->bitmap);
700e432d 5848 spin_lock_irq(&conf->device_lock);
7c13edc8 5849 conf->seq_write = conf->seq_flush;
566c09c5 5850 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 5851 }
0021b7bc 5852 raid5_activate_delayed(conf);
72626685 5853
46031f9a
RBJ
5854 while ((bio = remove_bio_from_retry(conf))) {
5855 int ok;
5856 spin_unlock_irq(&conf->device_lock);
5857 ok = retry_aligned_read(conf, bio);
5858 spin_lock_irq(&conf->device_lock);
5859 if (!ok)
5860 break;
5861 handled++;
5862 }
5863
566c09c5
SL
5864 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5865 conf->temp_inactive_list);
773ca82f 5866 if (!batch_size && !released)
1da177e4 5867 break;
46a06401 5868 handled += batch_size;
1da177e4 5869
46a06401
SL
5870 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5871 spin_unlock_irq(&conf->device_lock);
de393cde 5872 md_check_recovery(mddev);
46a06401
SL
5873 spin_lock_irq(&conf->device_lock);
5874 }
1da177e4 5875 }
45b4233c 5876 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
5877
5878 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
5879 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5880 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
5881 grow_one_stripe(conf, __GFP_NOWARN);
5882 /* Set flag even if allocation failed. This helps
5883 * slow down allocation requests when mem is short
5884 */
5885 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 5886 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 5887 }
1da177e4 5888
0576b1c6
SL
5889 r5l_flush_stripe_to_raid(conf->log);
5890
c9f21aaf 5891 async_tx_issue_pending_all();
e1dfa0a2 5892 blk_finish_plug(&plug);
1da177e4 5893
45b4233c 5894 pr_debug("--- raid5d inactive\n");
1da177e4
LT
5895}
5896
3f294f4f 5897static ssize_t
fd01b88c 5898raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 5899{
7b1485ba
N
5900 struct r5conf *conf;
5901 int ret = 0;
5902 spin_lock(&mddev->lock);
5903 conf = mddev->private;
96de1e66 5904 if (conf)
edbe83ab 5905 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
5906 spin_unlock(&mddev->lock);
5907 return ret;
3f294f4f
N
5908}
5909
c41d4ac4 5910int
fd01b88c 5911raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 5912{
d1688a6d 5913 struct r5conf *conf = mddev->private;
b5470dc5
DW
5914 int err;
5915
c41d4ac4 5916 if (size <= 16 || size > 32768)
3f294f4f 5917 return -EINVAL;
486f0644 5918
edbe83ab 5919 conf->min_nr_stripes = size;
2d5b569b 5920 mutex_lock(&conf->cache_size_mutex);
486f0644
N
5921 while (size < conf->max_nr_stripes &&
5922 drop_one_stripe(conf))
5923 ;
2d5b569b 5924 mutex_unlock(&conf->cache_size_mutex);
486f0644 5925
edbe83ab 5926
b5470dc5
DW
5927 err = md_allow_write(mddev);
5928 if (err)
5929 return err;
486f0644 5930
2d5b569b 5931 mutex_lock(&conf->cache_size_mutex);
486f0644
N
5932 while (size > conf->max_nr_stripes)
5933 if (!grow_one_stripe(conf, GFP_KERNEL))
5934 break;
2d5b569b 5935 mutex_unlock(&conf->cache_size_mutex);
486f0644 5936
c41d4ac4
N
5937 return 0;
5938}
5939EXPORT_SYMBOL(raid5_set_cache_size);
5940
5941static ssize_t
fd01b88c 5942raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 5943{
6791875e 5944 struct r5conf *conf;
c41d4ac4
N
5945 unsigned long new;
5946 int err;
5947
5948 if (len >= PAGE_SIZE)
5949 return -EINVAL;
b29bebd6 5950 if (kstrtoul(page, 10, &new))
c41d4ac4 5951 return -EINVAL;
6791875e 5952 err = mddev_lock(mddev);
c41d4ac4
N
5953 if (err)
5954 return err;
6791875e
N
5955 conf = mddev->private;
5956 if (!conf)
5957 err = -ENODEV;
5958 else
5959 err = raid5_set_cache_size(mddev, new);
5960 mddev_unlock(mddev);
5961
5962 return err ?: len;
3f294f4f 5963}
007583c9 5964
96de1e66
N
5965static struct md_sysfs_entry
5966raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5967 raid5_show_stripe_cache_size,
5968 raid5_store_stripe_cache_size);
3f294f4f 5969
d06f191f
MS
5970static ssize_t
5971raid5_show_rmw_level(struct mddev *mddev, char *page)
5972{
5973 struct r5conf *conf = mddev->private;
5974 if (conf)
5975 return sprintf(page, "%d\n", conf->rmw_level);
5976 else
5977 return 0;
5978}
5979
5980static ssize_t
5981raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
5982{
5983 struct r5conf *conf = mddev->private;
5984 unsigned long new;
5985
5986 if (!conf)
5987 return -ENODEV;
5988
5989 if (len >= PAGE_SIZE)
5990 return -EINVAL;
5991
5992 if (kstrtoul(page, 10, &new))
5993 return -EINVAL;
5994
5995 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5996 return -EINVAL;
5997
5998 if (new != PARITY_DISABLE_RMW &&
5999 new != PARITY_ENABLE_RMW &&
6000 new != PARITY_PREFER_RMW)
6001 return -EINVAL;
6002
6003 conf->rmw_level = new;
6004 return len;
6005}
6006
6007static struct md_sysfs_entry
6008raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6009 raid5_show_rmw_level,
6010 raid5_store_rmw_level);
6011
6012
8b3e6cdc 6013static ssize_t
fd01b88c 6014raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 6015{
7b1485ba
N
6016 struct r5conf *conf;
6017 int ret = 0;
6018 spin_lock(&mddev->lock);
6019 conf = mddev->private;
8b3e6cdc 6020 if (conf)
7b1485ba
N
6021 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6022 spin_unlock(&mddev->lock);
6023 return ret;
8b3e6cdc
DW
6024}
6025
6026static ssize_t
fd01b88c 6027raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6028{
6791875e 6029 struct r5conf *conf;
4ef197d8 6030 unsigned long new;
6791875e
N
6031 int err;
6032
8b3e6cdc
DW
6033 if (len >= PAGE_SIZE)
6034 return -EINVAL;
b29bebd6 6035 if (kstrtoul(page, 10, &new))
8b3e6cdc 6036 return -EINVAL;
6791875e
N
6037
6038 err = mddev_lock(mddev);
6039 if (err)
6040 return err;
6041 conf = mddev->private;
6042 if (!conf)
6043 err = -ENODEV;
edbe83ab 6044 else if (new > conf->min_nr_stripes)
6791875e
N
6045 err = -EINVAL;
6046 else
6047 conf->bypass_threshold = new;
6048 mddev_unlock(mddev);
6049 return err ?: len;
8b3e6cdc
DW
6050}
6051
6052static struct md_sysfs_entry
6053raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6054 S_IRUGO | S_IWUSR,
6055 raid5_show_preread_threshold,
6056 raid5_store_preread_threshold);
6057
d592a996
SL
6058static ssize_t
6059raid5_show_skip_copy(struct mddev *mddev, char *page)
6060{
7b1485ba
N
6061 struct r5conf *conf;
6062 int ret = 0;
6063 spin_lock(&mddev->lock);
6064 conf = mddev->private;
d592a996 6065 if (conf)
7b1485ba
N
6066 ret = sprintf(page, "%d\n", conf->skip_copy);
6067 spin_unlock(&mddev->lock);
6068 return ret;
d592a996
SL
6069}
6070
6071static ssize_t
6072raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6073{
6791875e 6074 struct r5conf *conf;
d592a996 6075 unsigned long new;
6791875e
N
6076 int err;
6077
d592a996
SL
6078 if (len >= PAGE_SIZE)
6079 return -EINVAL;
d592a996
SL
6080 if (kstrtoul(page, 10, &new))
6081 return -EINVAL;
6082 new = !!new;
6791875e
N
6083
6084 err = mddev_lock(mddev);
6085 if (err)
6086 return err;
6087 conf = mddev->private;
6088 if (!conf)
6089 err = -ENODEV;
6090 else if (new != conf->skip_copy) {
6091 mddev_suspend(mddev);
6092 conf->skip_copy = new;
6093 if (new)
6094 mddev->queue->backing_dev_info.capabilities |=
6095 BDI_CAP_STABLE_WRITES;
6096 else
6097 mddev->queue->backing_dev_info.capabilities &=
6098 ~BDI_CAP_STABLE_WRITES;
6099 mddev_resume(mddev);
6100 }
6101 mddev_unlock(mddev);
6102 return err ?: len;
d592a996
SL
6103}
6104
6105static struct md_sysfs_entry
6106raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6107 raid5_show_skip_copy,
6108 raid5_store_skip_copy);
6109
3f294f4f 6110static ssize_t
fd01b88c 6111stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6112{
d1688a6d 6113 struct r5conf *conf = mddev->private;
96de1e66
N
6114 if (conf)
6115 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6116 else
6117 return 0;
3f294f4f
N
6118}
6119
96de1e66
N
6120static struct md_sysfs_entry
6121raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6122
b721420e
SL
6123static ssize_t
6124raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6125{
7b1485ba
N
6126 struct r5conf *conf;
6127 int ret = 0;
6128 spin_lock(&mddev->lock);
6129 conf = mddev->private;
b721420e 6130 if (conf)
7b1485ba
N
6131 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6132 spin_unlock(&mddev->lock);
6133 return ret;
b721420e
SL
6134}
6135
60aaf933 6136static int alloc_thread_groups(struct r5conf *conf, int cnt,
6137 int *group_cnt,
6138 int *worker_cnt_per_group,
6139 struct r5worker_group **worker_groups);
b721420e
SL
6140static ssize_t
6141raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6142{
6791875e 6143 struct r5conf *conf;
b721420e
SL
6144 unsigned long new;
6145 int err;
60aaf933 6146 struct r5worker_group *new_groups, *old_groups;
6147 int group_cnt, worker_cnt_per_group;
b721420e
SL
6148
6149 if (len >= PAGE_SIZE)
6150 return -EINVAL;
b721420e
SL
6151 if (kstrtoul(page, 10, &new))
6152 return -EINVAL;
6153
6791875e
N
6154 err = mddev_lock(mddev);
6155 if (err)
6156 return err;
6157 conf = mddev->private;
6158 if (!conf)
6159 err = -ENODEV;
6160 else if (new != conf->worker_cnt_per_group) {
6161 mddev_suspend(mddev);
b721420e 6162
6791875e
N
6163 old_groups = conf->worker_groups;
6164 if (old_groups)
6165 flush_workqueue(raid5_wq);
d206dcfa 6166
6791875e
N
6167 err = alloc_thread_groups(conf, new,
6168 &group_cnt, &worker_cnt_per_group,
6169 &new_groups);
6170 if (!err) {
6171 spin_lock_irq(&conf->device_lock);
6172 conf->group_cnt = group_cnt;
6173 conf->worker_cnt_per_group = worker_cnt_per_group;
6174 conf->worker_groups = new_groups;
6175 spin_unlock_irq(&conf->device_lock);
b721420e 6176
6791875e
N
6177 if (old_groups)
6178 kfree(old_groups[0].workers);
6179 kfree(old_groups);
6180 }
6181 mddev_resume(mddev);
b721420e 6182 }
6791875e 6183 mddev_unlock(mddev);
b721420e 6184
6791875e 6185 return err ?: len;
b721420e
SL
6186}
6187
6188static struct md_sysfs_entry
6189raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6190 raid5_show_group_thread_cnt,
6191 raid5_store_group_thread_cnt);
6192
007583c9 6193static struct attribute *raid5_attrs[] = {
3f294f4f
N
6194 &raid5_stripecache_size.attr,
6195 &raid5_stripecache_active.attr,
8b3e6cdc 6196 &raid5_preread_bypass_threshold.attr,
b721420e 6197 &raid5_group_thread_cnt.attr,
d592a996 6198 &raid5_skip_copy.attr,
d06f191f 6199 &raid5_rmw_level.attr,
3f294f4f
N
6200 NULL,
6201};
007583c9
N
6202static struct attribute_group raid5_attrs_group = {
6203 .name = NULL,
6204 .attrs = raid5_attrs,
3f294f4f
N
6205};
6206
60aaf933 6207static int alloc_thread_groups(struct r5conf *conf, int cnt,
6208 int *group_cnt,
6209 int *worker_cnt_per_group,
6210 struct r5worker_group **worker_groups)
851c30c9 6211{
566c09c5 6212 int i, j, k;
851c30c9
SL
6213 ssize_t size;
6214 struct r5worker *workers;
6215
60aaf933 6216 *worker_cnt_per_group = cnt;
851c30c9 6217 if (cnt == 0) {
60aaf933 6218 *group_cnt = 0;
6219 *worker_groups = NULL;
851c30c9
SL
6220 return 0;
6221 }
60aaf933 6222 *group_cnt = num_possible_nodes();
851c30c9 6223 size = sizeof(struct r5worker) * cnt;
60aaf933 6224 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6225 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6226 *group_cnt, GFP_NOIO);
6227 if (!*worker_groups || !workers) {
851c30c9 6228 kfree(workers);
60aaf933 6229 kfree(*worker_groups);
851c30c9
SL
6230 return -ENOMEM;
6231 }
6232
60aaf933 6233 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6234 struct r5worker_group *group;
6235
0c775d52 6236 group = &(*worker_groups)[i];
851c30c9
SL
6237 INIT_LIST_HEAD(&group->handle_list);
6238 group->conf = conf;
6239 group->workers = workers + i * cnt;
6240
6241 for (j = 0; j < cnt; j++) {
566c09c5
SL
6242 struct r5worker *worker = group->workers + j;
6243 worker->group = group;
6244 INIT_WORK(&worker->work, raid5_do_work);
6245
6246 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6247 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6248 }
6249 }
6250
6251 return 0;
6252}
6253
6254static void free_thread_groups(struct r5conf *conf)
6255{
6256 if (conf->worker_groups)
6257 kfree(conf->worker_groups[0].workers);
6258 kfree(conf->worker_groups);
6259 conf->worker_groups = NULL;
6260}
6261
80c3a6ce 6262static sector_t
fd01b88c 6263raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6264{
d1688a6d 6265 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6266
6267 if (!sectors)
6268 sectors = mddev->dev_sectors;
5e5e3e78 6269 if (!raid_disks)
7ec05478 6270 /* size is defined by the smallest of previous and new size */
5e5e3e78 6271 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6272
3cb5edf4
N
6273 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6274 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
6275 return sectors * (raid_disks - conf->max_degraded);
6276}
6277
789b5e03
ON
6278static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6279{
6280 safe_put_page(percpu->spare_page);
46d5b785 6281 if (percpu->scribble)
6282 flex_array_free(percpu->scribble);
789b5e03
ON
6283 percpu->spare_page = NULL;
6284 percpu->scribble = NULL;
6285}
6286
6287static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6288{
6289 if (conf->level == 6 && !percpu->spare_page)
6290 percpu->spare_page = alloc_page(GFP_KERNEL);
6291 if (!percpu->scribble)
46d5b785 6292 percpu->scribble = scribble_alloc(max(conf->raid_disks,
738a2738
N
6293 conf->previous_raid_disks),
6294 max(conf->chunk_sectors,
6295 conf->prev_chunk_sectors)
6296 / STRIPE_SECTORS,
6297 GFP_KERNEL);
789b5e03
ON
6298
6299 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6300 free_scratch_buffer(conf, percpu);
6301 return -ENOMEM;
6302 }
6303
6304 return 0;
6305}
6306
d1688a6d 6307static void raid5_free_percpu(struct r5conf *conf)
36d1c647 6308{
36d1c647
DW
6309 unsigned long cpu;
6310
6311 if (!conf->percpu)
6312 return;
6313
36d1c647
DW
6314#ifdef CONFIG_HOTPLUG_CPU
6315 unregister_cpu_notifier(&conf->cpu_notify);
6316#endif
789b5e03
ON
6317
6318 get_online_cpus();
6319 for_each_possible_cpu(cpu)
6320 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6321 put_online_cpus();
6322
6323 free_percpu(conf->percpu);
6324}
6325
d1688a6d 6326static void free_conf(struct r5conf *conf)
95fc17aa 6327{
edbe83ab
N
6328 if (conf->shrinker.seeks)
6329 unregister_shrinker(&conf->shrinker);
851c30c9 6330 free_thread_groups(conf);
95fc17aa 6331 shrink_stripes(conf);
36d1c647 6332 raid5_free_percpu(conf);
95fc17aa
DW
6333 kfree(conf->disks);
6334 kfree(conf->stripe_hashtbl);
6335 kfree(conf);
6336}
6337
36d1c647
DW
6338#ifdef CONFIG_HOTPLUG_CPU
6339static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6340 void *hcpu)
6341{
d1688a6d 6342 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
6343 long cpu = (long)hcpu;
6344 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6345
6346 switch (action) {
6347 case CPU_UP_PREPARE:
6348 case CPU_UP_PREPARE_FROZEN:
789b5e03 6349 if (alloc_scratch_buffer(conf, percpu)) {
36d1c647
DW
6350 pr_err("%s: failed memory allocation for cpu%ld\n",
6351 __func__, cpu);
55af6bb5 6352 return notifier_from_errno(-ENOMEM);
36d1c647
DW
6353 }
6354 break;
6355 case CPU_DEAD:
6356 case CPU_DEAD_FROZEN:
789b5e03 6357 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6358 break;
6359 default:
6360 break;
6361 }
6362 return NOTIFY_OK;
6363}
6364#endif
6365
d1688a6d 6366static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
6367{
6368 unsigned long cpu;
789b5e03 6369 int err = 0;
36d1c647 6370
789b5e03
ON
6371 conf->percpu = alloc_percpu(struct raid5_percpu);
6372 if (!conf->percpu)
36d1c647 6373 return -ENOMEM;
789b5e03
ON
6374
6375#ifdef CONFIG_HOTPLUG_CPU
6376 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6377 conf->cpu_notify.priority = 0;
6378 err = register_cpu_notifier(&conf->cpu_notify);
6379 if (err)
6380 return err;
6381#endif
36d1c647
DW
6382
6383 get_online_cpus();
36d1c647 6384 for_each_present_cpu(cpu) {
789b5e03
ON
6385 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6386 if (err) {
6387 pr_err("%s: failed memory allocation for cpu%ld\n",
6388 __func__, cpu);
36d1c647
DW
6389 break;
6390 }
36d1c647 6391 }
36d1c647
DW
6392 put_online_cpus();
6393
6394 return err;
6395}
6396
edbe83ab
N
6397static unsigned long raid5_cache_scan(struct shrinker *shrink,
6398 struct shrink_control *sc)
6399{
6400 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
6401 unsigned long ret = SHRINK_STOP;
6402
6403 if (mutex_trylock(&conf->cache_size_mutex)) {
6404 ret= 0;
49895bcc
N
6405 while (ret < sc->nr_to_scan &&
6406 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
6407 if (drop_one_stripe(conf) == 0) {
6408 ret = SHRINK_STOP;
6409 break;
6410 }
6411 ret++;
6412 }
6413 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
6414 }
6415 return ret;
6416}
6417
6418static unsigned long raid5_cache_count(struct shrinker *shrink,
6419 struct shrink_control *sc)
6420{
6421 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6422
6423 if (conf->max_nr_stripes < conf->min_nr_stripes)
6424 /* unlikely, but not impossible */
6425 return 0;
6426 return conf->max_nr_stripes - conf->min_nr_stripes;
6427}
6428
d1688a6d 6429static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6430{
d1688a6d 6431 struct r5conf *conf;
5e5e3e78 6432 int raid_disk, memory, max_disks;
3cb03002 6433 struct md_rdev *rdev;
1da177e4 6434 struct disk_info *disk;
0232605d 6435 char pers_name[6];
566c09c5 6436 int i;
60aaf933 6437 int group_cnt, worker_cnt_per_group;
6438 struct r5worker_group *new_group;
1da177e4 6439
91adb564
N
6440 if (mddev->new_level != 5
6441 && mddev->new_level != 4
6442 && mddev->new_level != 6) {
0c55e022 6443 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
6444 mdname(mddev), mddev->new_level);
6445 return ERR_PTR(-EIO);
1da177e4 6446 }
91adb564
N
6447 if ((mddev->new_level == 5
6448 && !algorithm_valid_raid5(mddev->new_layout)) ||
6449 (mddev->new_level == 6
6450 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 6451 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
6452 mdname(mddev), mddev->new_layout);
6453 return ERR_PTR(-EIO);
99c0fb5f 6454 }
91adb564 6455 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 6456 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
6457 mdname(mddev), mddev->raid_disks);
6458 return ERR_PTR(-EINVAL);
4bbf3771
N
6459 }
6460
664e7c41
AN
6461 if (!mddev->new_chunk_sectors ||
6462 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6463 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
6464 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6465 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6466 return ERR_PTR(-EINVAL);
f6705578
N
6467 }
6468
d1688a6d 6469 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6470 if (conf == NULL)
1da177e4 6471 goto abort;
851c30c9 6472 /* Don't enable multi-threading by default*/
60aaf933 6473 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6474 &new_group)) {
6475 conf->group_cnt = group_cnt;
6476 conf->worker_cnt_per_group = worker_cnt_per_group;
6477 conf->worker_groups = new_group;
6478 } else
851c30c9 6479 goto abort;
f5efd45a 6480 spin_lock_init(&conf->device_lock);
c46501b2 6481 seqcount_init(&conf->gen_lock);
2d5b569b 6482 mutex_init(&conf->cache_size_mutex);
b1b46486 6483 init_waitqueue_head(&conf->wait_for_quiescent);
e9e4c377
YL
6484 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6485 init_waitqueue_head(&conf->wait_for_stripe[i]);
6486 }
f5efd45a
DW
6487 init_waitqueue_head(&conf->wait_for_overlap);
6488 INIT_LIST_HEAD(&conf->handle_list);
6489 INIT_LIST_HEAD(&conf->hold_list);
6490 INIT_LIST_HEAD(&conf->delayed_list);
6491 INIT_LIST_HEAD(&conf->bitmap_list);
c3cce6cd 6492 bio_list_init(&conf->return_bi);
773ca82f 6493 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6494 atomic_set(&conf->active_stripes, 0);
6495 atomic_set(&conf->preread_active_stripes, 0);
6496 atomic_set(&conf->active_aligned_reads, 0);
6497 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6498 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6499
6500 conf->raid_disks = mddev->raid_disks;
6501 if (mddev->reshape_position == MaxSector)
6502 conf->previous_raid_disks = mddev->raid_disks;
6503 else
f6705578 6504 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6505 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6506
5e5e3e78 6507 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
6508 GFP_KERNEL);
6509 if (!conf->disks)
6510 goto abort;
9ffae0cf 6511
1da177e4
LT
6512 conf->mddev = mddev;
6513
fccddba0 6514 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6515 goto abort;
1da177e4 6516
566c09c5
SL
6517 /* We init hash_locks[0] separately to that it can be used
6518 * as the reference lock in the spin_lock_nest_lock() call
6519 * in lock_all_device_hash_locks_irq in order to convince
6520 * lockdep that we know what we are doing.
6521 */
6522 spin_lock_init(conf->hash_locks);
6523 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6524 spin_lock_init(conf->hash_locks + i);
6525
6526 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6527 INIT_LIST_HEAD(conf->inactive_list + i);
6528
6529 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6530 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6531
36d1c647 6532 conf->level = mddev->new_level;
46d5b785 6533 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6534 if (raid5_alloc_percpu(conf) != 0)
6535 goto abort;
6536
0c55e022 6537 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6538
dafb20fa 6539 rdev_for_each(rdev, mddev) {
1da177e4 6540 raid_disk = rdev->raid_disk;
5e5e3e78 6541 if (raid_disk >= max_disks
1da177e4
LT
6542 || raid_disk < 0)
6543 continue;
6544 disk = conf->disks + raid_disk;
6545
17045f52
N
6546 if (test_bit(Replacement, &rdev->flags)) {
6547 if (disk->replacement)
6548 goto abort;
6549 disk->replacement = rdev;
6550 } else {
6551 if (disk->rdev)
6552 goto abort;
6553 disk->rdev = rdev;
6554 }
1da177e4 6555
b2d444d7 6556 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 6557 char b[BDEVNAME_SIZE];
0c55e022
N
6558 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6559 " disk %d\n",
6560 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 6561 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
6562 /* Cannot rely on bitmap to complete recovery */
6563 conf->fullsync = 1;
1da177e4
LT
6564 }
6565
91adb564 6566 conf->level = mddev->new_level;
584acdd4 6567 if (conf->level == 6) {
16a53ecc 6568 conf->max_degraded = 2;
584acdd4
MS
6569 if (raid6_call.xor_syndrome)
6570 conf->rmw_level = PARITY_ENABLE_RMW;
6571 else
6572 conf->rmw_level = PARITY_DISABLE_RMW;
6573 } else {
16a53ecc 6574 conf->max_degraded = 1;
584acdd4
MS
6575 conf->rmw_level = PARITY_ENABLE_RMW;
6576 }
91adb564 6577 conf->algorithm = mddev->new_layout;
fef9c61f 6578 conf->reshape_progress = mddev->reshape_position;
e183eaed 6579 if (conf->reshape_progress != MaxSector) {
09c9e5fa 6580 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 6581 conf->prev_algo = mddev->layout;
5cac6bcb
N
6582 } else {
6583 conf->prev_chunk_sectors = conf->chunk_sectors;
6584 conf->prev_algo = conf->algorithm;
e183eaed 6585 }
1da177e4 6586
edbe83ab
N
6587 conf->min_nr_stripes = NR_STRIPES;
6588 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 6589 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 6590 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 6591 if (grow_stripes(conf, conf->min_nr_stripes)) {
91adb564 6592 printk(KERN_ERR
0c55e022
N
6593 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6594 mdname(mddev), memory);
91adb564
N
6595 goto abort;
6596 } else
0c55e022
N
6597 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6598 mdname(mddev), memory);
edbe83ab
N
6599 /*
6600 * Losing a stripe head costs more than the time to refill it,
6601 * it reduces the queue depth and so can hurt throughput.
6602 * So set it rather large, scaled by number of devices.
6603 */
6604 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6605 conf->shrinker.scan_objects = raid5_cache_scan;
6606 conf->shrinker.count_objects = raid5_cache_count;
6607 conf->shrinker.batch = 128;
6608 conf->shrinker.flags = 0;
6609 register_shrinker(&conf->shrinker);
1da177e4 6610
0232605d
N
6611 sprintf(pers_name, "raid%d", mddev->new_level);
6612 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
6613 if (!conf->thread) {
6614 printk(KERN_ERR
0c55e022 6615 "md/raid:%s: couldn't allocate thread.\n",
91adb564 6616 mdname(mddev));
16a53ecc
N
6617 goto abort;
6618 }
91adb564
N
6619
6620 return conf;
6621
6622 abort:
6623 if (conf) {
95fc17aa 6624 free_conf(conf);
91adb564
N
6625 return ERR_PTR(-EIO);
6626 } else
6627 return ERR_PTR(-ENOMEM);
6628}
6629
c148ffdc
N
6630static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6631{
6632 switch (algo) {
6633 case ALGORITHM_PARITY_0:
6634 if (raid_disk < max_degraded)
6635 return 1;
6636 break;
6637 case ALGORITHM_PARITY_N:
6638 if (raid_disk >= raid_disks - max_degraded)
6639 return 1;
6640 break;
6641 case ALGORITHM_PARITY_0_6:
f72ffdd6 6642 if (raid_disk == 0 ||
c148ffdc
N
6643 raid_disk == raid_disks - 1)
6644 return 1;
6645 break;
6646 case ALGORITHM_LEFT_ASYMMETRIC_6:
6647 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6648 case ALGORITHM_LEFT_SYMMETRIC_6:
6649 case ALGORITHM_RIGHT_SYMMETRIC_6:
6650 if (raid_disk == raid_disks - 1)
6651 return 1;
6652 }
6653 return 0;
6654}
6655
fd01b88c 6656static int run(struct mddev *mddev)
91adb564 6657{
d1688a6d 6658 struct r5conf *conf;
9f7c2220 6659 int working_disks = 0;
c148ffdc 6660 int dirty_parity_disks = 0;
3cb03002 6661 struct md_rdev *rdev;
c148ffdc 6662 sector_t reshape_offset = 0;
17045f52 6663 int i;
b5254dd5
N
6664 long long min_offset_diff = 0;
6665 int first = 1;
91adb564 6666
8c6ac868 6667 if (mddev->recovery_cp != MaxSector)
0c55e022 6668 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
6669 " -- starting background reconstruction\n",
6670 mdname(mddev));
b5254dd5
N
6671
6672 rdev_for_each(rdev, mddev) {
6673 long long diff;
6674 if (rdev->raid_disk < 0)
6675 continue;
6676 diff = (rdev->new_data_offset - rdev->data_offset);
6677 if (first) {
6678 min_offset_diff = diff;
6679 first = 0;
6680 } else if (mddev->reshape_backwards &&
6681 diff < min_offset_diff)
6682 min_offset_diff = diff;
6683 else if (!mddev->reshape_backwards &&
6684 diff > min_offset_diff)
6685 min_offset_diff = diff;
6686 }
6687
91adb564
N
6688 if (mddev->reshape_position != MaxSector) {
6689 /* Check that we can continue the reshape.
b5254dd5
N
6690 * Difficulties arise if the stripe we would write to
6691 * next is at or after the stripe we would read from next.
6692 * For a reshape that changes the number of devices, this
6693 * is only possible for a very short time, and mdadm makes
6694 * sure that time appears to have past before assembling
6695 * the array. So we fail if that time hasn't passed.
6696 * For a reshape that keeps the number of devices the same
6697 * mdadm must be monitoring the reshape can keeping the
6698 * critical areas read-only and backed up. It will start
6699 * the array in read-only mode, so we check for that.
91adb564
N
6700 */
6701 sector_t here_new, here_old;
6702 int old_disks;
18b00334 6703 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
6704 int chunk_sectors;
6705 int new_data_disks;
91adb564 6706
88ce4930 6707 if (mddev->new_level != mddev->level) {
0c55e022 6708 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
6709 "required - aborting.\n",
6710 mdname(mddev));
6711 return -EINVAL;
6712 }
91adb564
N
6713 old_disks = mddev->raid_disks - mddev->delta_disks;
6714 /* reshape_position must be on a new-stripe boundary, and one
6715 * further up in new geometry must map after here in old
6716 * geometry.
05256d98
N
6717 * If the chunk sizes are different, then as we perform reshape
6718 * in units of the largest of the two, reshape_position needs
6719 * be a multiple of the largest chunk size times new data disks.
91adb564
N
6720 */
6721 here_new = mddev->reshape_position;
05256d98
N
6722 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6723 new_data_disks = mddev->raid_disks - max_degraded;
6724 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
0c55e022
N
6725 printk(KERN_ERR "md/raid:%s: reshape_position not "
6726 "on a stripe boundary\n", mdname(mddev));
91adb564
N
6727 return -EINVAL;
6728 }
05256d98 6729 reshape_offset = here_new * chunk_sectors;
91adb564
N
6730 /* here_new is the stripe we will write to */
6731 here_old = mddev->reshape_position;
05256d98 6732 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
6733 /* here_old is the first stripe that we might need to read
6734 * from */
67ac6011
N
6735 if (mddev->delta_disks == 0) {
6736 /* We cannot be sure it is safe to start an in-place
b5254dd5 6737 * reshape. It is only safe if user-space is monitoring
67ac6011
N
6738 * and taking constant backups.
6739 * mdadm always starts a situation like this in
6740 * readonly mode so it can take control before
6741 * allowing any writes. So just check for that.
6742 */
b5254dd5
N
6743 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6744 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6745 /* not really in-place - so OK */;
6746 else if (mddev->ro == 0) {
6747 printk(KERN_ERR "md/raid:%s: in-place reshape "
6748 "must be started in read-only mode "
6749 "- aborting\n",
0c55e022 6750 mdname(mddev));
67ac6011
N
6751 return -EINVAL;
6752 }
2c810cdd 6753 } else if (mddev->reshape_backwards
05256d98
N
6754 ? (here_new * chunk_sectors + min_offset_diff <=
6755 here_old * chunk_sectors)
6756 : (here_new * chunk_sectors >=
6757 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 6758 /* Reading from the same stripe as writing to - bad */
0c55e022
N
6759 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6760 "auto-recovery - aborting.\n",
6761 mdname(mddev));
91adb564
N
6762 return -EINVAL;
6763 }
0c55e022
N
6764 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6765 mdname(mddev));
91adb564
N
6766 /* OK, we should be able to continue; */
6767 } else {
6768 BUG_ON(mddev->level != mddev->new_level);
6769 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 6770 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 6771 BUG_ON(mddev->delta_disks != 0);
1da177e4 6772 }
91adb564 6773
245f46c2
N
6774 if (mddev->private == NULL)
6775 conf = setup_conf(mddev);
6776 else
6777 conf = mddev->private;
6778
91adb564
N
6779 if (IS_ERR(conf))
6780 return PTR_ERR(conf);
6781
b5254dd5 6782 conf->min_offset_diff = min_offset_diff;
91adb564
N
6783 mddev->thread = conf->thread;
6784 conf->thread = NULL;
6785 mddev->private = conf;
6786
17045f52
N
6787 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6788 i++) {
6789 rdev = conf->disks[i].rdev;
6790 if (!rdev && conf->disks[i].replacement) {
6791 /* The replacement is all we have yet */
6792 rdev = conf->disks[i].replacement;
6793 conf->disks[i].replacement = NULL;
6794 clear_bit(Replacement, &rdev->flags);
6795 conf->disks[i].rdev = rdev;
6796 }
6797 if (!rdev)
c148ffdc 6798 continue;
17045f52
N
6799 if (conf->disks[i].replacement &&
6800 conf->reshape_progress != MaxSector) {
6801 /* replacements and reshape simply do not mix. */
6802 printk(KERN_ERR "md: cannot handle concurrent "
6803 "replacement and reshape.\n");
6804 goto abort;
6805 }
2f115882 6806 if (test_bit(In_sync, &rdev->flags)) {
91adb564 6807 working_disks++;
2f115882
N
6808 continue;
6809 }
c148ffdc
N
6810 /* This disc is not fully in-sync. However if it
6811 * just stored parity (beyond the recovery_offset),
6812 * when we don't need to be concerned about the
6813 * array being dirty.
6814 * When reshape goes 'backwards', we never have
6815 * partially completed devices, so we only need
6816 * to worry about reshape going forwards.
6817 */
6818 /* Hack because v0.91 doesn't store recovery_offset properly. */
6819 if (mddev->major_version == 0 &&
6820 mddev->minor_version > 90)
6821 rdev->recovery_offset = reshape_offset;
5026d7a9 6822
c148ffdc
N
6823 if (rdev->recovery_offset < reshape_offset) {
6824 /* We need to check old and new layout */
6825 if (!only_parity(rdev->raid_disk,
6826 conf->algorithm,
6827 conf->raid_disks,
6828 conf->max_degraded))
6829 continue;
6830 }
6831 if (!only_parity(rdev->raid_disk,
6832 conf->prev_algo,
6833 conf->previous_raid_disks,
6834 conf->max_degraded))
6835 continue;
6836 dirty_parity_disks++;
6837 }
91adb564 6838
17045f52
N
6839 /*
6840 * 0 for a fully functional array, 1 or 2 for a degraded array.
6841 */
908f4fbd 6842 mddev->degraded = calc_degraded(conf);
91adb564 6843
674806d6 6844 if (has_failed(conf)) {
0c55e022 6845 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 6846 " (%d/%d failed)\n",
02c2de8c 6847 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
6848 goto abort;
6849 }
6850
91adb564 6851 /* device size must be a multiple of chunk size */
9d8f0363 6852 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
6853 mddev->resync_max_sectors = mddev->dev_sectors;
6854
c148ffdc 6855 if (mddev->degraded > dirty_parity_disks &&
1da177e4 6856 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
6857 if (mddev->ok_start_degraded)
6858 printk(KERN_WARNING
0c55e022
N
6859 "md/raid:%s: starting dirty degraded array"
6860 " - data corruption possible.\n",
6ff8d8ec
N
6861 mdname(mddev));
6862 else {
6863 printk(KERN_ERR
0c55e022 6864 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
6865 mdname(mddev));
6866 goto abort;
6867 }
1da177e4
LT
6868 }
6869
1da177e4 6870 if (mddev->degraded == 0)
0c55e022
N
6871 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6872 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
6873 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6874 mddev->new_layout);
1da177e4 6875 else
0c55e022
N
6876 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6877 " out of %d devices, algorithm %d\n",
6878 mdname(mddev), conf->level,
6879 mddev->raid_disks - mddev->degraded,
6880 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
6881
6882 print_raid5_conf(conf);
6883
fef9c61f 6884 if (conf->reshape_progress != MaxSector) {
fef9c61f 6885 conf->reshape_safe = conf->reshape_progress;
f6705578
N
6886 atomic_set(&conf->reshape_stripes, 0);
6887 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6888 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6889 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6890 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6891 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6892 "reshape");
f6705578
N
6893 }
6894
1da177e4 6895 /* Ok, everything is just fine now */
a64c876f
N
6896 if (mddev->to_remove == &raid5_attrs_group)
6897 mddev->to_remove = NULL;
00bcb4ac
N
6898 else if (mddev->kobj.sd &&
6899 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 6900 printk(KERN_WARNING
4a5add49 6901 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 6902 mdname(mddev));
4a5add49 6903 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 6904
4a5add49 6905 if (mddev->queue) {
9f7c2220 6906 int chunk_size;
620125f2 6907 bool discard_supported = true;
4a5add49
N
6908 /* read-ahead size must cover two whole stripes, which
6909 * is 2 * (datadisks) * chunksize where 'n' is the
6910 * number of raid devices
6911 */
6912 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6913 int stripe = data_disks *
6914 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6915 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6916 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 6917
9f7c2220
N
6918 chunk_size = mddev->chunk_sectors << 9;
6919 blk_queue_io_min(mddev->queue, chunk_size);
6920 blk_queue_io_opt(mddev->queue, chunk_size *
6921 (conf->raid_disks - conf->max_degraded));
c78afc62 6922 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
6923 /*
6924 * We can only discard a whole stripe. It doesn't make sense to
6925 * discard data disk but write parity disk
6926 */
6927 stripe = stripe * PAGE_SIZE;
4ac6875e
N
6928 /* Round up to power of 2, as discard handling
6929 * currently assumes that */
6930 while ((stripe-1) & stripe)
6931 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
6932 mddev->queue->limits.discard_alignment = stripe;
6933 mddev->queue->limits.discard_granularity = stripe;
6934 /*
6935 * unaligned part of discard request will be ignored, so can't
8e0e99ba 6936 * guarantee discard_zeroes_data
620125f2
SL
6937 */
6938 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 6939
5026d7a9
PA
6940 blk_queue_max_write_same_sectors(mddev->queue, 0);
6941
05616be5 6942 rdev_for_each(rdev, mddev) {
9f7c2220
N
6943 disk_stack_limits(mddev->gendisk, rdev->bdev,
6944 rdev->data_offset << 9);
05616be5
N
6945 disk_stack_limits(mddev->gendisk, rdev->bdev,
6946 rdev->new_data_offset << 9);
620125f2
SL
6947 /*
6948 * discard_zeroes_data is required, otherwise data
6949 * could be lost. Consider a scenario: discard a stripe
6950 * (the stripe could be inconsistent if
6951 * discard_zeroes_data is 0); write one disk of the
6952 * stripe (the stripe could be inconsistent again
6953 * depending on which disks are used to calculate
6954 * parity); the disk is broken; The stripe data of this
6955 * disk is lost.
6956 */
6957 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6958 !bdev_get_queue(rdev->bdev)->
6959 limits.discard_zeroes_data)
6960 discard_supported = false;
8e0e99ba
N
6961 /* Unfortunately, discard_zeroes_data is not currently
6962 * a guarantee - just a hint. So we only allow DISCARD
6963 * if the sysadmin has confirmed that only safe devices
6964 * are in use by setting a module parameter.
6965 */
6966 if (!devices_handle_discard_safely) {
6967 if (discard_supported) {
6968 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6969 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6970 }
6971 discard_supported = false;
6972 }
05616be5 6973 }
620125f2
SL
6974
6975 if (discard_supported &&
6976 mddev->queue->limits.max_discard_sectors >= stripe &&
6977 mddev->queue->limits.discard_granularity >= stripe)
6978 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6979 mddev->queue);
6980 else
6981 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6982 mddev->queue);
9f7c2220 6983 }
23032a0e 6984
1da177e4
LT
6985 return 0;
6986abort:
01f96c0a 6987 md_unregister_thread(&mddev->thread);
e4f869d9
N
6988 print_raid5_conf(conf);
6989 free_conf(conf);
1da177e4 6990 mddev->private = NULL;
0c55e022 6991 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
6992 return -EIO;
6993}
6994
afa0f557 6995static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 6996{
afa0f557 6997 struct r5conf *conf = priv;
1da177e4 6998
95fc17aa 6999 free_conf(conf);
a64c876f 7000 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
7001}
7002
fd01b88c 7003static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 7004{
d1688a6d 7005 struct r5conf *conf = mddev->private;
1da177e4
LT
7006 int i;
7007
9d8f0363 7008 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 7009 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 7010 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
7011 for (i = 0; i < conf->raid_disks; i++)
7012 seq_printf (seq, "%s",
7013 conf->disks[i].rdev &&
b2d444d7 7014 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 7015 seq_printf (seq, "]");
1da177e4
LT
7016}
7017
d1688a6d 7018static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
7019{
7020 int i;
7021 struct disk_info *tmp;
7022
0c55e022 7023 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
7024 if (!conf) {
7025 printk("(conf==NULL)\n");
7026 return;
7027 }
0c55e022
N
7028 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7029 conf->raid_disks,
7030 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
7031
7032 for (i = 0; i < conf->raid_disks; i++) {
7033 char b[BDEVNAME_SIZE];
7034 tmp = conf->disks + i;
7035 if (tmp->rdev)
0c55e022
N
7036 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7037 i, !test_bit(Faulty, &tmp->rdev->flags),
7038 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7039 }
7040}
7041
fd01b88c 7042static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7043{
7044 int i;
d1688a6d 7045 struct r5conf *conf = mddev->private;
1da177e4 7046 struct disk_info *tmp;
6b965620
N
7047 int count = 0;
7048 unsigned long flags;
1da177e4
LT
7049
7050 for (i = 0; i < conf->raid_disks; i++) {
7051 tmp = conf->disks + i;
dd054fce
N
7052 if (tmp->replacement
7053 && tmp->replacement->recovery_offset == MaxSector
7054 && !test_bit(Faulty, &tmp->replacement->flags)
7055 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7056 /* Replacement has just become active. */
7057 if (!tmp->rdev
7058 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7059 count++;
7060 if (tmp->rdev) {
7061 /* Replaced device not technically faulty,
7062 * but we need to be sure it gets removed
7063 * and never re-added.
7064 */
7065 set_bit(Faulty, &tmp->rdev->flags);
7066 sysfs_notify_dirent_safe(
7067 tmp->rdev->sysfs_state);
7068 }
7069 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7070 } else if (tmp->rdev
70fffd0b 7071 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7072 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7073 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7074 count++;
43c73ca4 7075 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7076 }
7077 }
6b965620 7078 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7079 mddev->degraded = calc_degraded(conf);
6b965620 7080 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7081 print_raid5_conf(conf);
6b965620 7082 return count;
1da177e4
LT
7083}
7084
b8321b68 7085static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7086{
d1688a6d 7087 struct r5conf *conf = mddev->private;
1da177e4 7088 int err = 0;
b8321b68 7089 int number = rdev->raid_disk;
657e3e4d 7090 struct md_rdev **rdevp;
1da177e4
LT
7091 struct disk_info *p = conf->disks + number;
7092
7093 print_raid5_conf(conf);
657e3e4d
N
7094 if (rdev == p->rdev)
7095 rdevp = &p->rdev;
7096 else if (rdev == p->replacement)
7097 rdevp = &p->replacement;
7098 else
7099 return 0;
7100
7101 if (number >= conf->raid_disks &&
7102 conf->reshape_progress == MaxSector)
7103 clear_bit(In_sync, &rdev->flags);
7104
7105 if (test_bit(In_sync, &rdev->flags) ||
7106 atomic_read(&rdev->nr_pending)) {
7107 err = -EBUSY;
7108 goto abort;
7109 }
7110 /* Only remove non-faulty devices if recovery
7111 * isn't possible.
7112 */
7113 if (!test_bit(Faulty, &rdev->flags) &&
7114 mddev->recovery_disabled != conf->recovery_disabled &&
7115 !has_failed(conf) &&
dd054fce 7116 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7117 number < conf->raid_disks) {
7118 err = -EBUSY;
7119 goto abort;
7120 }
7121 *rdevp = NULL;
7122 synchronize_rcu();
7123 if (atomic_read(&rdev->nr_pending)) {
7124 /* lost the race, try later */
7125 err = -EBUSY;
7126 *rdevp = rdev;
dd054fce
N
7127 } else if (p->replacement) {
7128 /* We must have just cleared 'rdev' */
7129 p->rdev = p->replacement;
7130 clear_bit(Replacement, &p->replacement->flags);
7131 smp_mb(); /* Make sure other CPUs may see both as identical
7132 * but will never see neither - if they are careful
7133 */
7134 p->replacement = NULL;
7135 clear_bit(WantReplacement, &rdev->flags);
7136 } else
7137 /* We might have just removed the Replacement as faulty-
7138 * clear the bit just in case
7139 */
7140 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7141abort:
7142
7143 print_raid5_conf(conf);
7144 return err;
7145}
7146
fd01b88c 7147static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7148{
d1688a6d 7149 struct r5conf *conf = mddev->private;
199050ea 7150 int err = -EEXIST;
1da177e4
LT
7151 int disk;
7152 struct disk_info *p;
6c2fce2e
NB
7153 int first = 0;
7154 int last = conf->raid_disks - 1;
1da177e4 7155
7f0da59b
N
7156 if (mddev->recovery_disabled == conf->recovery_disabled)
7157 return -EBUSY;
7158
dc10c643 7159 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7160 /* no point adding a device */
199050ea 7161 return -EINVAL;
1da177e4 7162
6c2fce2e
NB
7163 if (rdev->raid_disk >= 0)
7164 first = last = rdev->raid_disk;
1da177e4
LT
7165
7166 /*
16a53ecc
N
7167 * find the disk ... but prefer rdev->saved_raid_disk
7168 * if possible.
1da177e4 7169 */
16a53ecc 7170 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7171 rdev->saved_raid_disk >= first &&
16a53ecc 7172 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7173 first = rdev->saved_raid_disk;
7174
7175 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7176 p = conf->disks + disk;
7177 if (p->rdev == NULL) {
b2d444d7 7178 clear_bit(In_sync, &rdev->flags);
1da177e4 7179 rdev->raid_disk = disk;
199050ea 7180 err = 0;
72626685
N
7181 if (rdev->saved_raid_disk != disk)
7182 conf->fullsync = 1;
d6065f7b 7183 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 7184 goto out;
1da177e4 7185 }
5cfb22a1
N
7186 }
7187 for (disk = first; disk <= last; disk++) {
7188 p = conf->disks + disk;
7bfec5f3
N
7189 if (test_bit(WantReplacement, &p->rdev->flags) &&
7190 p->replacement == NULL) {
7191 clear_bit(In_sync, &rdev->flags);
7192 set_bit(Replacement, &rdev->flags);
7193 rdev->raid_disk = disk;
7194 err = 0;
7195 conf->fullsync = 1;
7196 rcu_assign_pointer(p->replacement, rdev);
7197 break;
7198 }
7199 }
5cfb22a1 7200out:
1da177e4 7201 print_raid5_conf(conf);
199050ea 7202 return err;
1da177e4
LT
7203}
7204
fd01b88c 7205static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7206{
7207 /* no resync is happening, and there is enough space
7208 * on all devices, so we can resize.
7209 * We need to make sure resync covers any new space.
7210 * If the array is shrinking we should possibly wait until
7211 * any io in the removed space completes, but it hardly seems
7212 * worth it.
7213 */
a4a6125a 7214 sector_t newsize;
3cb5edf4
N
7215 struct r5conf *conf = mddev->private;
7216
7217 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
7218 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7219 if (mddev->external_size &&
7220 mddev->array_sectors > newsize)
b522adcd 7221 return -EINVAL;
a4a6125a
N
7222 if (mddev->bitmap) {
7223 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7224 if (ret)
7225 return ret;
7226 }
7227 md_set_array_sectors(mddev, newsize);
f233ea5c 7228 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7229 revalidate_disk(mddev->gendisk);
b098636c
N
7230 if (sectors > mddev->dev_sectors &&
7231 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7232 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7233 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7234 }
58c0fed4 7235 mddev->dev_sectors = sectors;
4b5c7ae8 7236 mddev->resync_max_sectors = sectors;
1da177e4
LT
7237 return 0;
7238}
7239
fd01b88c 7240static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7241{
7242 /* Can only proceed if there are plenty of stripe_heads.
7243 * We need a minimum of one full stripe,, and for sensible progress
7244 * it is best to have about 4 times that.
7245 * If we require 4 times, then the default 256 4K stripe_heads will
7246 * allow for chunk sizes up to 256K, which is probably OK.
7247 * If the chunk size is greater, user-space should request more
7248 * stripe_heads first.
7249 */
d1688a6d 7250 struct r5conf *conf = mddev->private;
01ee22b4 7251 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7252 > conf->min_nr_stripes ||
01ee22b4 7253 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7254 > conf->min_nr_stripes) {
0c55e022
N
7255 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7256 mdname(mddev),
01ee22b4
N
7257 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7258 / STRIPE_SIZE)*4);
7259 return 0;
7260 }
7261 return 1;
7262}
7263
fd01b88c 7264static int check_reshape(struct mddev *mddev)
29269553 7265{
d1688a6d 7266 struct r5conf *conf = mddev->private;
29269553 7267
88ce4930
N
7268 if (mddev->delta_disks == 0 &&
7269 mddev->new_layout == mddev->layout &&
664e7c41 7270 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7271 return 0; /* nothing to do */
674806d6 7272 if (has_failed(conf))
ec32a2bd 7273 return -EINVAL;
fdcfbbb6 7274 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7275 /* We might be able to shrink, but the devices must
7276 * be made bigger first.
7277 * For raid6, 4 is the minimum size.
7278 * Otherwise 2 is the minimum
7279 */
7280 int min = 2;
7281 if (mddev->level == 6)
7282 min = 4;
7283 if (mddev->raid_disks + mddev->delta_disks < min)
7284 return -EINVAL;
7285 }
29269553 7286
01ee22b4 7287 if (!check_stripe_cache(mddev))
29269553 7288 return -ENOSPC;
29269553 7289
738a2738
N
7290 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7291 mddev->delta_disks > 0)
7292 if (resize_chunks(conf,
7293 conf->previous_raid_disks
7294 + max(0, mddev->delta_disks),
7295 max(mddev->new_chunk_sectors,
7296 mddev->chunk_sectors)
7297 ) < 0)
7298 return -ENOMEM;
e56108d6
N
7299 return resize_stripes(conf, (conf->previous_raid_disks
7300 + mddev->delta_disks));
63c70c4f
N
7301}
7302
fd01b88c 7303static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7304{
d1688a6d 7305 struct r5conf *conf = mddev->private;
3cb03002 7306 struct md_rdev *rdev;
63c70c4f 7307 int spares = 0;
c04be0aa 7308 unsigned long flags;
63c70c4f 7309
f416885e 7310 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7311 return -EBUSY;
7312
01ee22b4
N
7313 if (!check_stripe_cache(mddev))
7314 return -ENOSPC;
7315
30b67645
N
7316 if (has_failed(conf))
7317 return -EINVAL;
7318
c6563a8c 7319 rdev_for_each(rdev, mddev) {
469518a3
N
7320 if (!test_bit(In_sync, &rdev->flags)
7321 && !test_bit(Faulty, &rdev->flags))
29269553 7322 spares++;
c6563a8c 7323 }
63c70c4f 7324
f416885e 7325 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7326 /* Not enough devices even to make a degraded array
7327 * of that size
7328 */
7329 return -EINVAL;
7330
ec32a2bd
N
7331 /* Refuse to reduce size of the array. Any reductions in
7332 * array size must be through explicit setting of array_size
7333 * attribute.
7334 */
7335 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7336 < mddev->array_sectors) {
0c55e022 7337 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
7338 "before number of disks\n", mdname(mddev));
7339 return -EINVAL;
7340 }
7341
f6705578 7342 atomic_set(&conf->reshape_stripes, 0);
29269553 7343 spin_lock_irq(&conf->device_lock);
c46501b2 7344 write_seqcount_begin(&conf->gen_lock);
29269553 7345 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7346 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7347 conf->prev_chunk_sectors = conf->chunk_sectors;
7348 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7349 conf->prev_algo = conf->algorithm;
7350 conf->algorithm = mddev->new_layout;
05616be5
N
7351 conf->generation++;
7352 /* Code that selects data_offset needs to see the generation update
7353 * if reshape_progress has been set - so a memory barrier needed.
7354 */
7355 smp_mb();
2c810cdd 7356 if (mddev->reshape_backwards)
fef9c61f
N
7357 conf->reshape_progress = raid5_size(mddev, 0, 0);
7358 else
7359 conf->reshape_progress = 0;
7360 conf->reshape_safe = conf->reshape_progress;
c46501b2 7361 write_seqcount_end(&conf->gen_lock);
29269553
N
7362 spin_unlock_irq(&conf->device_lock);
7363
4d77e3ba
N
7364 /* Now make sure any requests that proceeded on the assumption
7365 * the reshape wasn't running - like Discard or Read - have
7366 * completed.
7367 */
7368 mddev_suspend(mddev);
7369 mddev_resume(mddev);
7370
29269553
N
7371 /* Add some new drives, as many as will fit.
7372 * We know there are enough to make the newly sized array work.
3424bf6a
N
7373 * Don't add devices if we are reducing the number of
7374 * devices in the array. This is because it is not possible
7375 * to correctly record the "partially reconstructed" state of
7376 * such devices during the reshape and confusion could result.
29269553 7377 */
87a8dec9 7378 if (mddev->delta_disks >= 0) {
dafb20fa 7379 rdev_for_each(rdev, mddev)
87a8dec9
N
7380 if (rdev->raid_disk < 0 &&
7381 !test_bit(Faulty, &rdev->flags)) {
7382 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7383 if (rdev->raid_disk
9d4c7d87 7384 >= conf->previous_raid_disks)
87a8dec9 7385 set_bit(In_sync, &rdev->flags);
9d4c7d87 7386 else
87a8dec9 7387 rdev->recovery_offset = 0;
36fad858
NK
7388
7389 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7390 /* Failure here is OK */;
50da0840 7391 }
87a8dec9
N
7392 } else if (rdev->raid_disk >= conf->previous_raid_disks
7393 && !test_bit(Faulty, &rdev->flags)) {
7394 /* This is a spare that was manually added */
7395 set_bit(In_sync, &rdev->flags);
87a8dec9 7396 }
29269553 7397
87a8dec9
N
7398 /* When a reshape changes the number of devices,
7399 * ->degraded is measured against the larger of the
7400 * pre and post number of devices.
7401 */
ec32a2bd 7402 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7403 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
7404 spin_unlock_irqrestore(&conf->device_lock, flags);
7405 }
63c70c4f 7406 mddev->raid_disks = conf->raid_disks;
e516402c 7407 mddev->reshape_position = conf->reshape_progress;
850b2b42 7408 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 7409
29269553
N
7410 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7411 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 7412 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
7413 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7414 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7415 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7416 "reshape");
29269553
N
7417 if (!mddev->sync_thread) {
7418 mddev->recovery = 0;
7419 spin_lock_irq(&conf->device_lock);
ba8805b9 7420 write_seqcount_begin(&conf->gen_lock);
29269553 7421 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7422 mddev->new_chunk_sectors =
7423 conf->chunk_sectors = conf->prev_chunk_sectors;
7424 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7425 rdev_for_each(rdev, mddev)
7426 rdev->new_data_offset = rdev->data_offset;
7427 smp_wmb();
ba8805b9 7428 conf->generation --;
fef9c61f 7429 conf->reshape_progress = MaxSector;
1e3fa9bd 7430 mddev->reshape_position = MaxSector;
ba8805b9 7431 write_seqcount_end(&conf->gen_lock);
29269553
N
7432 spin_unlock_irq(&conf->device_lock);
7433 return -EAGAIN;
7434 }
c8f517c4 7435 conf->reshape_checkpoint = jiffies;
29269553
N
7436 md_wakeup_thread(mddev->sync_thread);
7437 md_new_event(mddev);
7438 return 0;
7439}
29269553 7440
ec32a2bd
N
7441/* This is called from the reshape thread and should make any
7442 * changes needed in 'conf'
7443 */
d1688a6d 7444static void end_reshape(struct r5conf *conf)
29269553 7445{
29269553 7446
f6705578 7447 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 7448 struct md_rdev *rdev;
f6705578 7449
f6705578 7450 spin_lock_irq(&conf->device_lock);
cea9c228 7451 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
7452 rdev_for_each(rdev, conf->mddev)
7453 rdev->data_offset = rdev->new_data_offset;
7454 smp_wmb();
fef9c61f 7455 conf->reshape_progress = MaxSector;
6cbd8148 7456 conf->mddev->reshape_position = MaxSector;
f6705578 7457 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7458 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7459
7460 /* read-ahead size must cover two whole stripes, which is
7461 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7462 */
4a5add49 7463 if (conf->mddev->queue) {
cea9c228 7464 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7465 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7466 / PAGE_SIZE);
16a53ecc
N
7467 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7468 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7469 }
29269553 7470 }
29269553
N
7471}
7472
ec32a2bd
N
7473/* This is called from the raid5d thread with mddev_lock held.
7474 * It makes config changes to the device.
7475 */
fd01b88c 7476static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7477{
d1688a6d 7478 struct r5conf *conf = mddev->private;
cea9c228
N
7479
7480 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7481
ec32a2bd
N
7482 if (mddev->delta_disks > 0) {
7483 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7484 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7485 revalidate_disk(mddev->gendisk);
ec32a2bd
N
7486 } else {
7487 int d;
908f4fbd
N
7488 spin_lock_irq(&conf->device_lock);
7489 mddev->degraded = calc_degraded(conf);
7490 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
7491 for (d = conf->raid_disks ;
7492 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 7493 d++) {
3cb03002 7494 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
7495 if (rdev)
7496 clear_bit(In_sync, &rdev->flags);
7497 rdev = conf->disks[d].replacement;
7498 if (rdev)
7499 clear_bit(In_sync, &rdev->flags);
1a67dde0 7500 }
cea9c228 7501 }
88ce4930 7502 mddev->layout = conf->algorithm;
09c9e5fa 7503 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
7504 mddev->reshape_position = MaxSector;
7505 mddev->delta_disks = 0;
2c810cdd 7506 mddev->reshape_backwards = 0;
cea9c228
N
7507 }
7508}
7509
fd01b88c 7510static void raid5_quiesce(struct mddev *mddev, int state)
72626685 7511{
d1688a6d 7512 struct r5conf *conf = mddev->private;
72626685
N
7513
7514 switch(state) {
e464eafd
N
7515 case 2: /* resume for a suspend */
7516 wake_up(&conf->wait_for_overlap);
7517 break;
7518
72626685 7519 case 1: /* stop all writes */
566c09c5 7520 lock_all_device_hash_locks_irq(conf);
64bd660b
N
7521 /* '2' tells resync/reshape to pause so that all
7522 * active stripes can drain
7523 */
7524 conf->quiesce = 2;
b1b46486 7525 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
7526 atomic_read(&conf->active_stripes) == 0 &&
7527 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
7528 unlock_all_device_hash_locks_irq(conf),
7529 lock_all_device_hash_locks_irq(conf));
64bd660b 7530 conf->quiesce = 1;
566c09c5 7531 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
7532 /* allow reshape to continue */
7533 wake_up(&conf->wait_for_overlap);
72626685
N
7534 break;
7535
7536 case 0: /* re-enable writes */
566c09c5 7537 lock_all_device_hash_locks_irq(conf);
72626685 7538 conf->quiesce = 0;
b1b46486 7539 wake_up(&conf->wait_for_quiescent);
e464eafd 7540 wake_up(&conf->wait_for_overlap);
566c09c5 7541 unlock_all_device_hash_locks_irq(conf);
72626685
N
7542 break;
7543 }
72626685 7544}
b15c2e57 7545
fd01b88c 7546static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 7547{
e373ab10 7548 struct r0conf *raid0_conf = mddev->private;
d76c8420 7549 sector_t sectors;
54071b38 7550
f1b29bca 7551 /* for raid0 takeover only one zone is supported */
e373ab10 7552 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
7553 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7554 mdname(mddev));
f1b29bca
DW
7555 return ERR_PTR(-EINVAL);
7556 }
7557
e373ab10
N
7558 sectors = raid0_conf->strip_zone[0].zone_end;
7559 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 7560 mddev->dev_sectors = sectors;
f1b29bca 7561 mddev->new_level = level;
54071b38
TM
7562 mddev->new_layout = ALGORITHM_PARITY_N;
7563 mddev->new_chunk_sectors = mddev->chunk_sectors;
7564 mddev->raid_disks += 1;
7565 mddev->delta_disks = 1;
7566 /* make sure it will be not marked as dirty */
7567 mddev->recovery_cp = MaxSector;
7568
7569 return setup_conf(mddev);
7570}
7571
fd01b88c 7572static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
7573{
7574 int chunksect;
7575
7576 if (mddev->raid_disks != 2 ||
7577 mddev->degraded > 1)
7578 return ERR_PTR(-EINVAL);
7579
7580 /* Should check if there are write-behind devices? */
7581
7582 chunksect = 64*2; /* 64K by default */
7583
7584 /* The array must be an exact multiple of chunksize */
7585 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7586 chunksect >>= 1;
7587
7588 if ((chunksect<<9) < STRIPE_SIZE)
7589 /* array size does not allow a suitable chunk size */
7590 return ERR_PTR(-EINVAL);
7591
7592 mddev->new_level = 5;
7593 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 7594 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
7595
7596 return setup_conf(mddev);
7597}
7598
fd01b88c 7599static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
7600{
7601 int new_layout;
7602
7603 switch (mddev->layout) {
7604 case ALGORITHM_LEFT_ASYMMETRIC_6:
7605 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7606 break;
7607 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7608 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7609 break;
7610 case ALGORITHM_LEFT_SYMMETRIC_6:
7611 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7612 break;
7613 case ALGORITHM_RIGHT_SYMMETRIC_6:
7614 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7615 break;
7616 case ALGORITHM_PARITY_0_6:
7617 new_layout = ALGORITHM_PARITY_0;
7618 break;
7619 case ALGORITHM_PARITY_N:
7620 new_layout = ALGORITHM_PARITY_N;
7621 break;
7622 default:
7623 return ERR_PTR(-EINVAL);
7624 }
7625 mddev->new_level = 5;
7626 mddev->new_layout = new_layout;
7627 mddev->delta_disks = -1;
7628 mddev->raid_disks -= 1;
7629 return setup_conf(mddev);
7630}
7631
fd01b88c 7632static int raid5_check_reshape(struct mddev *mddev)
b3546035 7633{
88ce4930
N
7634 /* For a 2-drive array, the layout and chunk size can be changed
7635 * immediately as not restriping is needed.
7636 * For larger arrays we record the new value - after validation
7637 * to be used by a reshape pass.
b3546035 7638 */
d1688a6d 7639 struct r5conf *conf = mddev->private;
597a711b 7640 int new_chunk = mddev->new_chunk_sectors;
b3546035 7641
597a711b 7642 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
7643 return -EINVAL;
7644 if (new_chunk > 0) {
0ba459d2 7645 if (!is_power_of_2(new_chunk))
b3546035 7646 return -EINVAL;
597a711b 7647 if (new_chunk < (PAGE_SIZE>>9))
b3546035 7648 return -EINVAL;
597a711b 7649 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
7650 /* not factor of array size */
7651 return -EINVAL;
7652 }
7653
7654 /* They look valid */
7655
88ce4930 7656 if (mddev->raid_disks == 2) {
597a711b
N
7657 /* can make the change immediately */
7658 if (mddev->new_layout >= 0) {
7659 conf->algorithm = mddev->new_layout;
7660 mddev->layout = mddev->new_layout;
88ce4930
N
7661 }
7662 if (new_chunk > 0) {
597a711b
N
7663 conf->chunk_sectors = new_chunk ;
7664 mddev->chunk_sectors = new_chunk;
88ce4930
N
7665 }
7666 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7667 md_wakeup_thread(mddev->thread);
b3546035 7668 }
50ac168a 7669 return check_reshape(mddev);
88ce4930
N
7670}
7671
fd01b88c 7672static int raid6_check_reshape(struct mddev *mddev)
88ce4930 7673{
597a711b 7674 int new_chunk = mddev->new_chunk_sectors;
50ac168a 7675
597a711b 7676 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 7677 return -EINVAL;
b3546035 7678 if (new_chunk > 0) {
0ba459d2 7679 if (!is_power_of_2(new_chunk))
88ce4930 7680 return -EINVAL;
597a711b 7681 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 7682 return -EINVAL;
597a711b 7683 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
7684 /* not factor of array size */
7685 return -EINVAL;
b3546035 7686 }
88ce4930
N
7687
7688 /* They look valid */
50ac168a 7689 return check_reshape(mddev);
b3546035
N
7690}
7691
fd01b88c 7692static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
7693{
7694 /* raid5 can take over:
f1b29bca 7695 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
7696 * raid1 - if there are two drives. We need to know the chunk size
7697 * raid4 - trivial - just use a raid4 layout.
7698 * raid6 - Providing it is a *_6 layout
d562b0c4 7699 */
f1b29bca
DW
7700 if (mddev->level == 0)
7701 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
7702 if (mddev->level == 1)
7703 return raid5_takeover_raid1(mddev);
e9d4758f
N
7704 if (mddev->level == 4) {
7705 mddev->new_layout = ALGORITHM_PARITY_N;
7706 mddev->new_level = 5;
7707 return setup_conf(mddev);
7708 }
fc9739c6
N
7709 if (mddev->level == 6)
7710 return raid5_takeover_raid6(mddev);
d562b0c4
N
7711
7712 return ERR_PTR(-EINVAL);
7713}
7714
fd01b88c 7715static void *raid4_takeover(struct mddev *mddev)
a78d38a1 7716{
f1b29bca
DW
7717 /* raid4 can take over:
7718 * raid0 - if there is only one strip zone
7719 * raid5 - if layout is right
a78d38a1 7720 */
f1b29bca
DW
7721 if (mddev->level == 0)
7722 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
7723 if (mddev->level == 5 &&
7724 mddev->layout == ALGORITHM_PARITY_N) {
7725 mddev->new_layout = 0;
7726 mddev->new_level = 4;
7727 return setup_conf(mddev);
7728 }
7729 return ERR_PTR(-EINVAL);
7730}
d562b0c4 7731
84fc4b56 7732static struct md_personality raid5_personality;
245f46c2 7733
fd01b88c 7734static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
7735{
7736 /* Currently can only take over a raid5. We map the
7737 * personality to an equivalent raid6 personality
7738 * with the Q block at the end.
7739 */
7740 int new_layout;
7741
7742 if (mddev->pers != &raid5_personality)
7743 return ERR_PTR(-EINVAL);
7744 if (mddev->degraded > 1)
7745 return ERR_PTR(-EINVAL);
7746 if (mddev->raid_disks > 253)
7747 return ERR_PTR(-EINVAL);
7748 if (mddev->raid_disks < 3)
7749 return ERR_PTR(-EINVAL);
7750
7751 switch (mddev->layout) {
7752 case ALGORITHM_LEFT_ASYMMETRIC:
7753 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7754 break;
7755 case ALGORITHM_RIGHT_ASYMMETRIC:
7756 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7757 break;
7758 case ALGORITHM_LEFT_SYMMETRIC:
7759 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7760 break;
7761 case ALGORITHM_RIGHT_SYMMETRIC:
7762 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7763 break;
7764 case ALGORITHM_PARITY_0:
7765 new_layout = ALGORITHM_PARITY_0_6;
7766 break;
7767 case ALGORITHM_PARITY_N:
7768 new_layout = ALGORITHM_PARITY_N;
7769 break;
7770 default:
7771 return ERR_PTR(-EINVAL);
7772 }
7773 mddev->new_level = 6;
7774 mddev->new_layout = new_layout;
7775 mddev->delta_disks = 1;
7776 mddev->raid_disks += 1;
7777 return setup_conf(mddev);
7778}
7779
84fc4b56 7780static struct md_personality raid6_personality =
16a53ecc
N
7781{
7782 .name = "raid6",
7783 .level = 6,
7784 .owner = THIS_MODULE,
7785 .make_request = make_request,
7786 .run = run,
afa0f557 7787 .free = raid5_free,
16a53ecc
N
7788 .status = status,
7789 .error_handler = error,
7790 .hot_add_disk = raid5_add_disk,
7791 .hot_remove_disk= raid5_remove_disk,
7792 .spare_active = raid5_spare_active,
7793 .sync_request = sync_request,
7794 .resize = raid5_resize,
80c3a6ce 7795 .size = raid5_size,
50ac168a 7796 .check_reshape = raid6_check_reshape,
f416885e 7797 .start_reshape = raid5_start_reshape,
cea9c228 7798 .finish_reshape = raid5_finish_reshape,
16a53ecc 7799 .quiesce = raid5_quiesce,
245f46c2 7800 .takeover = raid6_takeover,
5c675f83 7801 .congested = raid5_congested,
16a53ecc 7802};
84fc4b56 7803static struct md_personality raid5_personality =
1da177e4
LT
7804{
7805 .name = "raid5",
2604b703 7806 .level = 5,
1da177e4
LT
7807 .owner = THIS_MODULE,
7808 .make_request = make_request,
7809 .run = run,
afa0f557 7810 .free = raid5_free,
1da177e4
LT
7811 .status = status,
7812 .error_handler = error,
7813 .hot_add_disk = raid5_add_disk,
7814 .hot_remove_disk= raid5_remove_disk,
7815 .spare_active = raid5_spare_active,
7816 .sync_request = sync_request,
7817 .resize = raid5_resize,
80c3a6ce 7818 .size = raid5_size,
63c70c4f
N
7819 .check_reshape = raid5_check_reshape,
7820 .start_reshape = raid5_start_reshape,
cea9c228 7821 .finish_reshape = raid5_finish_reshape,
72626685 7822 .quiesce = raid5_quiesce,
d562b0c4 7823 .takeover = raid5_takeover,
5c675f83 7824 .congested = raid5_congested,
1da177e4
LT
7825};
7826
84fc4b56 7827static struct md_personality raid4_personality =
1da177e4 7828{
2604b703
N
7829 .name = "raid4",
7830 .level = 4,
7831 .owner = THIS_MODULE,
7832 .make_request = make_request,
7833 .run = run,
afa0f557 7834 .free = raid5_free,
2604b703
N
7835 .status = status,
7836 .error_handler = error,
7837 .hot_add_disk = raid5_add_disk,
7838 .hot_remove_disk= raid5_remove_disk,
7839 .spare_active = raid5_spare_active,
7840 .sync_request = sync_request,
7841 .resize = raid5_resize,
80c3a6ce 7842 .size = raid5_size,
3d37890b
N
7843 .check_reshape = raid5_check_reshape,
7844 .start_reshape = raid5_start_reshape,
cea9c228 7845 .finish_reshape = raid5_finish_reshape,
2604b703 7846 .quiesce = raid5_quiesce,
a78d38a1 7847 .takeover = raid4_takeover,
5c675f83 7848 .congested = raid5_congested,
2604b703
N
7849};
7850
7851static int __init raid5_init(void)
7852{
851c30c9
SL
7853 raid5_wq = alloc_workqueue("raid5wq",
7854 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7855 if (!raid5_wq)
7856 return -ENOMEM;
16a53ecc 7857 register_md_personality(&raid6_personality);
2604b703
N
7858 register_md_personality(&raid5_personality);
7859 register_md_personality(&raid4_personality);
7860 return 0;
1da177e4
LT
7861}
7862
2604b703 7863static void raid5_exit(void)
1da177e4 7864{
16a53ecc 7865 unregister_md_personality(&raid6_personality);
2604b703
N
7866 unregister_md_personality(&raid5_personality);
7867 unregister_md_personality(&raid4_personality);
851c30c9 7868 destroy_workqueue(raid5_wq);
1da177e4
LT
7869}
7870
7871module_init(raid5_init);
7872module_exit(raid5_exit);
7873MODULE_LICENSE("GPL");
0efb9e61 7874MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 7875MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
7876MODULE_ALIAS("md-raid5");
7877MODULE_ALIAS("md-raid4");
2604b703
N
7878MODULE_ALIAS("md-level-5");
7879MODULE_ALIAS("md-level-4");
16a53ecc
N
7880MODULE_ALIAS("md-personality-8"); /* RAID6 */
7881MODULE_ALIAS("md-raid6");
7882MODULE_ALIAS("md-level-6");
7883
7884/* This used to be two separate modules, they were: */
7885MODULE_ALIAS("raid5");
7886MODULE_ALIAS("raid6");