]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/md/raid5.c
md/raid5. Don't write to known bad block on doubtful devices.
[mirror_ubuntu-jammy-kernel.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
07a3b417 50#include <linux/async.h>
bff61975 51#include <linux/seq_file.h>
36d1c647 52#include <linux/cpu.h>
5a0e3ad6 53#include <linux/slab.h>
8bda470e 54#include <linux/ratelimit.h>
43b2e5d8 55#include "md.h"
bff61975 56#include "raid5.h"
54071b38 57#include "raid0.h"
ef740c37 58#include "bitmap.h"
72626685 59
1da177e4
LT
60/*
61 * Stripe cache
62 */
63
64#define NR_STRIPES 256
65#define STRIPE_SIZE PAGE_SIZE
66#define STRIPE_SHIFT (PAGE_SHIFT - 9)
67#define STRIPE_SECTORS (STRIPE_SIZE>>9)
68#define IO_THRESHOLD 1
8b3e6cdc 69#define BYPASS_THRESHOLD 1
fccddba0 70#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
71#define HASH_MASK (NR_HASH - 1)
72
fccddba0 73#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
74
75/* bio's attached to a stripe+device for I/O are linked together in bi_sector
76 * order without overlap. There may be several bio's per stripe+device, and
77 * a bio could span several devices.
78 * When walking this list for a particular stripe+device, we must never proceed
79 * beyond a bio that extends past this device, as the next bio might no longer
80 * be valid.
81 * This macro is used to determine the 'next' bio in the list, given the sector
82 * of the current stripe+device
83 */
84#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85/*
86 * The following can be used to debug the driver
87 */
1da177e4
LT
88#define RAID5_PARANOIA 1
89#if RAID5_PARANOIA && defined(CONFIG_SMP)
90# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91#else
92# define CHECK_DEVLOCK()
93#endif
94
45b4233c 95#ifdef DEBUG
1da177e4
LT
96#define inline
97#define __inline__
98#endif
99
960e739d 100/*
5b99c2ff
JA
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
103 */
104static inline int raid5_bi_phys_segments(struct bio *bio)
105{
5b99c2ff 106 return bio->bi_phys_segments & 0xffff;
960e739d
JA
107}
108
109static inline int raid5_bi_hw_segments(struct bio *bio)
110{
5b99c2ff 111 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
112}
113
114static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115{
116 --bio->bi_phys_segments;
117 return raid5_bi_phys_segments(bio);
118}
119
120static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121{
122 unsigned short val = raid5_bi_hw_segments(bio);
123
124 --val;
5b99c2ff 125 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
126 return val;
127}
128
129static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130{
9b2dc8b6 131 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
960e739d
JA
132}
133
d0dabf7e
N
134/* Find first data disk in a raid6 stripe */
135static inline int raid6_d0(struct stripe_head *sh)
136{
67cc2b81
N
137 if (sh->ddf_layout)
138 /* ddf always start from first device */
139 return 0;
140 /* md starts just after Q block */
d0dabf7e
N
141 if (sh->qd_idx == sh->disks - 1)
142 return 0;
143 else
144 return sh->qd_idx + 1;
145}
16a53ecc
N
146static inline int raid6_next_disk(int disk, int raid_disks)
147{
148 disk++;
149 return (disk < raid_disks) ? disk : 0;
150}
a4456856 151
d0dabf7e
N
152/* When walking through the disks in a raid5, starting at raid6_d0,
153 * We need to map each disk to a 'slot', where the data disks are slot
154 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155 * is raid_disks-1. This help does that mapping.
156 */
67cc2b81
N
157static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158 int *count, int syndrome_disks)
d0dabf7e 159{
6629542e 160 int slot = *count;
67cc2b81 161
e4424fee 162 if (sh->ddf_layout)
6629542e 163 (*count)++;
d0dabf7e 164 if (idx == sh->pd_idx)
67cc2b81 165 return syndrome_disks;
d0dabf7e 166 if (idx == sh->qd_idx)
67cc2b81 167 return syndrome_disks + 1;
e4424fee 168 if (!sh->ddf_layout)
6629542e 169 (*count)++;
d0dabf7e
N
170 return slot;
171}
172
a4456856
DW
173static void return_io(struct bio *return_bi)
174{
175 struct bio *bi = return_bi;
176 while (bi) {
a4456856
DW
177
178 return_bi = bi->bi_next;
179 bi->bi_next = NULL;
180 bi->bi_size = 0;
0e13fe23 181 bio_endio(bi, 0);
a4456856
DW
182 bi = return_bi;
183 }
184}
185
1da177e4
LT
186static void print_raid5_conf (raid5_conf_t *conf);
187
600aa109
DW
188static int stripe_operations_active(struct stripe_head *sh)
189{
190 return sh->check_state || sh->reconstruct_state ||
191 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193}
194
858119e1 195static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
196{
197 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
198 BUG_ON(!list_empty(&sh->lru));
199 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 200 if (test_bit(STRIPE_HANDLE, &sh->state)) {
482c0834 201 if (test_bit(STRIPE_DELAYED, &sh->state))
1da177e4 202 list_add_tail(&sh->lru, &conf->delayed_list);
482c0834
N
203 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204 sh->bm_seq - conf->seq_write > 0)
72626685 205 list_add_tail(&sh->lru, &conf->bitmap_list);
482c0834 206 else {
72626685 207 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 208 list_add_tail(&sh->lru, &conf->handle_list);
72626685 209 }
1da177e4
LT
210 md_wakeup_thread(conf->mddev->thread);
211 } else {
600aa109 212 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
213 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
214 atomic_dec(&conf->preread_active_stripes);
215 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
216 md_wakeup_thread(conf->mddev->thread);
217 }
1da177e4 218 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
219 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
220 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 221 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
222 if (conf->retry_read_aligned)
223 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 224 }
1da177e4
LT
225 }
226 }
227}
d0dabf7e 228
1da177e4
LT
229static void release_stripe(struct stripe_head *sh)
230{
231 raid5_conf_t *conf = sh->raid_conf;
232 unsigned long flags;
16a53ecc 233
1da177e4
LT
234 spin_lock_irqsave(&conf->device_lock, flags);
235 __release_stripe(conf, sh);
236 spin_unlock_irqrestore(&conf->device_lock, flags);
237}
238
fccddba0 239static inline void remove_hash(struct stripe_head *sh)
1da177e4 240{
45b4233c
DW
241 pr_debug("remove_hash(), stripe %llu\n",
242 (unsigned long long)sh->sector);
1da177e4 243
fccddba0 244 hlist_del_init(&sh->hash);
1da177e4
LT
245}
246
16a53ecc 247static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 248{
fccddba0 249 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 250
45b4233c
DW
251 pr_debug("insert_hash(), stripe %llu\n",
252 (unsigned long long)sh->sector);
1da177e4
LT
253
254 CHECK_DEVLOCK();
fccddba0 255 hlist_add_head(&sh->hash, hp);
1da177e4
LT
256}
257
258
259/* find an idle stripe, make sure it is unhashed, and return it. */
260static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
261{
262 struct stripe_head *sh = NULL;
263 struct list_head *first;
264
265 CHECK_DEVLOCK();
266 if (list_empty(&conf->inactive_list))
267 goto out;
268 first = conf->inactive_list.next;
269 sh = list_entry(first, struct stripe_head, lru);
270 list_del_init(first);
271 remove_hash(sh);
272 atomic_inc(&conf->active_stripes);
273out:
274 return sh;
275}
276
e4e11e38 277static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
278{
279 struct page *p;
280 int i;
e4e11e38 281 int num = sh->raid_conf->pool_size;
1da177e4 282
e4e11e38 283 for (i = 0; i < num ; i++) {
1da177e4
LT
284 p = sh->dev[i].page;
285 if (!p)
286 continue;
287 sh->dev[i].page = NULL;
2d1f3b5d 288 put_page(p);
1da177e4
LT
289 }
290}
291
e4e11e38 292static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
293{
294 int i;
e4e11e38 295 int num = sh->raid_conf->pool_size;
1da177e4 296
e4e11e38 297 for (i = 0; i < num; i++) {
1da177e4
LT
298 struct page *page;
299
300 if (!(page = alloc_page(GFP_KERNEL))) {
301 return 1;
302 }
303 sh->dev[i].page = page;
304 }
305 return 0;
306}
307
784052ec 308static void raid5_build_block(struct stripe_head *sh, int i, int previous);
911d4ee8
N
309static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310 struct stripe_head *sh);
1da177e4 311
b5663ba4 312static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4
LT
313{
314 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 315 int i;
1da177e4 316
78bafebd
ES
317 BUG_ON(atomic_read(&sh->count) != 0);
318 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 319 BUG_ON(stripe_operations_active(sh));
d84e0f10 320
1da177e4 321 CHECK_DEVLOCK();
45b4233c 322 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
323 (unsigned long long)sh->sector);
324
325 remove_hash(sh);
16a53ecc 326
86b42c71 327 sh->generation = conf->generation - previous;
b5663ba4 328 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 329 sh->sector = sector;
911d4ee8 330 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
331 sh->state = 0;
332
7ecaa1e6
N
333
334 for (i = sh->disks; i--; ) {
1da177e4
LT
335 struct r5dev *dev = &sh->dev[i];
336
d84e0f10 337 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 338 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 339 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 340 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 341 dev->read, dev->towrite, dev->written,
1da177e4 342 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 343 WARN_ON(1);
1da177e4
LT
344 }
345 dev->flags = 0;
784052ec 346 raid5_build_block(sh, i, previous);
1da177e4
LT
347 }
348 insert_hash(conf, sh);
349}
350
86b42c71
N
351static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352 short generation)
1da177e4
LT
353{
354 struct stripe_head *sh;
fccddba0 355 struct hlist_node *hn;
1da177e4
LT
356
357 CHECK_DEVLOCK();
45b4233c 358 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 359 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 360 if (sh->sector == sector && sh->generation == generation)
1da177e4 361 return sh;
45b4233c 362 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
363 return NULL;
364}
365
674806d6
N
366/*
367 * Need to check if array has failed when deciding whether to:
368 * - start an array
369 * - remove non-faulty devices
370 * - add a spare
371 * - allow a reshape
372 * This determination is simple when no reshape is happening.
373 * However if there is a reshape, we need to carefully check
374 * both the before and after sections.
375 * This is because some failed devices may only affect one
376 * of the two sections, and some non-in_sync devices may
377 * be insync in the section most affected by failed devices.
378 */
379static int has_failed(raid5_conf_t *conf)
380{
381 int degraded;
382 int i;
383 if (conf->mddev->reshape_position == MaxSector)
384 return conf->mddev->degraded > conf->max_degraded;
385
386 rcu_read_lock();
387 degraded = 0;
388 for (i = 0; i < conf->previous_raid_disks; i++) {
389 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
390 if (!rdev || test_bit(Faulty, &rdev->flags))
391 degraded++;
392 else if (test_bit(In_sync, &rdev->flags))
393 ;
394 else
395 /* not in-sync or faulty.
396 * If the reshape increases the number of devices,
397 * this is being recovered by the reshape, so
398 * this 'previous' section is not in_sync.
399 * If the number of devices is being reduced however,
400 * the device can only be part of the array if
401 * we are reverting a reshape, so this section will
402 * be in-sync.
403 */
404 if (conf->raid_disks >= conf->previous_raid_disks)
405 degraded++;
406 }
407 rcu_read_unlock();
408 if (degraded > conf->max_degraded)
409 return 1;
410 rcu_read_lock();
411 degraded = 0;
412 for (i = 0; i < conf->raid_disks; i++) {
413 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
414 if (!rdev || test_bit(Faulty, &rdev->flags))
415 degraded++;
416 else if (test_bit(In_sync, &rdev->flags))
417 ;
418 else
419 /* not in-sync or faulty.
420 * If reshape increases the number of devices, this
421 * section has already been recovered, else it
422 * almost certainly hasn't.
423 */
424 if (conf->raid_disks <= conf->previous_raid_disks)
425 degraded++;
426 }
427 rcu_read_unlock();
428 if (degraded > conf->max_degraded)
429 return 1;
430 return 0;
431}
432
b5663ba4
N
433static struct stripe_head *
434get_active_stripe(raid5_conf_t *conf, sector_t sector,
a8c906ca 435 int previous, int noblock, int noquiesce)
1da177e4
LT
436{
437 struct stripe_head *sh;
438
45b4233c 439 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
440
441 spin_lock_irq(&conf->device_lock);
442
443 do {
72626685 444 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 445 conf->quiesce == 0 || noquiesce,
72626685 446 conf->device_lock, /* nothing */);
86b42c71 447 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
448 if (!sh) {
449 if (!conf->inactive_blocked)
450 sh = get_free_stripe(conf);
451 if (noblock && sh == NULL)
452 break;
453 if (!sh) {
454 conf->inactive_blocked = 1;
455 wait_event_lock_irq(conf->wait_for_stripe,
456 !list_empty(&conf->inactive_list) &&
5036805b
N
457 (atomic_read(&conf->active_stripes)
458 < (conf->max_nr_stripes *3/4)
1da177e4
LT
459 || !conf->inactive_blocked),
460 conf->device_lock,
7c13edc8 461 );
1da177e4
LT
462 conf->inactive_blocked = 0;
463 } else
b5663ba4 464 init_stripe(sh, sector, previous);
1da177e4
LT
465 } else {
466 if (atomic_read(&sh->count)) {
ab69ae12
N
467 BUG_ON(!list_empty(&sh->lru)
468 && !test_bit(STRIPE_EXPANDING, &sh->state));
1da177e4
LT
469 } else {
470 if (!test_bit(STRIPE_HANDLE, &sh->state))
471 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
472 if (list_empty(&sh->lru) &&
473 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
474 BUG();
475 list_del_init(&sh->lru);
1da177e4
LT
476 }
477 }
478 } while (sh == NULL);
479
480 if (sh)
481 atomic_inc(&sh->count);
482
483 spin_unlock_irq(&conf->device_lock);
484 return sh;
485}
486
6712ecf8
N
487static void
488raid5_end_read_request(struct bio *bi, int error);
489static void
490raid5_end_write_request(struct bio *bi, int error);
91c00924 491
c4e5ac0a 492static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924
DW
493{
494 raid5_conf_t *conf = sh->raid_conf;
495 int i, disks = sh->disks;
496
497 might_sleep();
498
499 for (i = disks; i--; ) {
500 int rw;
501 struct bio *bi;
502 mdk_rdev_t *rdev;
e9c7469b
TH
503 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
504 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
505 rw = WRITE_FUA;
506 else
507 rw = WRITE;
508 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924
DW
509 rw = READ;
510 else
511 continue;
512
513 bi = &sh->dev[i].req;
514
515 bi->bi_rw = rw;
b062962e 516 if (rw & WRITE)
91c00924
DW
517 bi->bi_end_io = raid5_end_write_request;
518 else
519 bi->bi_end_io = raid5_end_read_request;
520
521 rcu_read_lock();
522 rdev = rcu_dereference(conf->disks[i].rdev);
523 if (rdev && test_bit(Faulty, &rdev->flags))
524 rdev = NULL;
525 if (rdev)
526 atomic_inc(&rdev->nr_pending);
527 rcu_read_unlock();
528
73e92e51
N
529 /* We have already checked bad blocks for reads. Now
530 * need to check for writes.
531 */
532 while ((rw & WRITE) && rdev &&
533 test_bit(WriteErrorSeen, &rdev->flags)) {
534 sector_t first_bad;
535 int bad_sectors;
536 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
537 &first_bad, &bad_sectors);
538 if (!bad)
539 break;
540
541 if (bad < 0) {
542 set_bit(BlockedBadBlocks, &rdev->flags);
543 if (!conf->mddev->external &&
544 conf->mddev->flags) {
545 /* It is very unlikely, but we might
546 * still need to write out the
547 * bad block log - better give it
548 * a chance*/
549 md_check_recovery(conf->mddev);
550 }
551 md_wait_for_blocked_rdev(rdev, conf->mddev);
552 } else {
553 /* Acknowledged bad block - skip the write */
554 rdev_dec_pending(rdev, conf->mddev);
555 rdev = NULL;
556 }
557 }
558
91c00924 559 if (rdev) {
c4e5ac0a 560 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
561 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
562
2b7497f0
DW
563 set_bit(STRIPE_IO_STARTED, &sh->state);
564
91c00924
DW
565 bi->bi_bdev = rdev->bdev;
566 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 567 __func__, (unsigned long long)sh->sector,
91c00924
DW
568 bi->bi_rw, i);
569 atomic_inc(&sh->count);
570 bi->bi_sector = sh->sector + rdev->data_offset;
571 bi->bi_flags = 1 << BIO_UPTODATE;
572 bi->bi_vcnt = 1;
573 bi->bi_max_vecs = 1;
574 bi->bi_idx = 0;
575 bi->bi_io_vec = &sh->dev[i].vec;
576 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
577 bi->bi_io_vec[0].bv_offset = 0;
578 bi->bi_size = STRIPE_SIZE;
579 bi->bi_next = NULL;
91c00924
DW
580 generic_make_request(bi);
581 } else {
b062962e 582 if (rw & WRITE)
91c00924
DW
583 set_bit(STRIPE_DEGRADED, &sh->state);
584 pr_debug("skip op %ld on disc %d for sector %llu\n",
585 bi->bi_rw, i, (unsigned long long)sh->sector);
586 clear_bit(R5_LOCKED, &sh->dev[i].flags);
587 set_bit(STRIPE_HANDLE, &sh->state);
588 }
589 }
590}
591
592static struct dma_async_tx_descriptor *
593async_copy_data(int frombio, struct bio *bio, struct page *page,
594 sector_t sector, struct dma_async_tx_descriptor *tx)
595{
596 struct bio_vec *bvl;
597 struct page *bio_page;
598 int i;
599 int page_offset;
a08abd8c 600 struct async_submit_ctl submit;
0403e382 601 enum async_tx_flags flags = 0;
91c00924
DW
602
603 if (bio->bi_sector >= sector)
604 page_offset = (signed)(bio->bi_sector - sector) * 512;
605 else
606 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c 607
0403e382
DW
608 if (frombio)
609 flags |= ASYNC_TX_FENCE;
610 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
611
91c00924 612 bio_for_each_segment(bvl, bio, i) {
fcde9075 613 int len = bvl->bv_len;
91c00924
DW
614 int clen;
615 int b_offset = 0;
616
617 if (page_offset < 0) {
618 b_offset = -page_offset;
619 page_offset += b_offset;
620 len -= b_offset;
621 }
622
623 if (len > 0 && page_offset + len > STRIPE_SIZE)
624 clen = STRIPE_SIZE - page_offset;
625 else
626 clen = len;
627
628 if (clen > 0) {
fcde9075
NK
629 b_offset += bvl->bv_offset;
630 bio_page = bvl->bv_page;
91c00924
DW
631 if (frombio)
632 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 633 b_offset, clen, &submit);
91c00924
DW
634 else
635 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 636 page_offset, clen, &submit);
91c00924 637 }
a08abd8c
DW
638 /* chain the operations */
639 submit.depend_tx = tx;
640
91c00924
DW
641 if (clen < len) /* hit end of page */
642 break;
643 page_offset += len;
644 }
645
646 return tx;
647}
648
649static void ops_complete_biofill(void *stripe_head_ref)
650{
651 struct stripe_head *sh = stripe_head_ref;
652 struct bio *return_bi = NULL;
653 raid5_conf_t *conf = sh->raid_conf;
e4d84909 654 int i;
91c00924 655
e46b272b 656 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
657 (unsigned long long)sh->sector);
658
659 /* clear completed biofills */
83de75cc 660 spin_lock_irq(&conf->device_lock);
91c00924
DW
661 for (i = sh->disks; i--; ) {
662 struct r5dev *dev = &sh->dev[i];
91c00924
DW
663
664 /* acknowledge completion of a biofill operation */
e4d84909
DW
665 /* and check if we need to reply to a read request,
666 * new R5_Wantfill requests are held off until
83de75cc 667 * !STRIPE_BIOFILL_RUN
e4d84909
DW
668 */
669 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 670 struct bio *rbi, *rbi2;
91c00924 671
91c00924
DW
672 BUG_ON(!dev->read);
673 rbi = dev->read;
674 dev->read = NULL;
675 while (rbi && rbi->bi_sector <
676 dev->sector + STRIPE_SECTORS) {
677 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 678 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
679 rbi->bi_next = return_bi;
680 return_bi = rbi;
681 }
91c00924
DW
682 rbi = rbi2;
683 }
684 }
685 }
83de75cc
DW
686 spin_unlock_irq(&conf->device_lock);
687 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
688
689 return_io(return_bi);
690
e4d84909 691 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
692 release_stripe(sh);
693}
694
695static void ops_run_biofill(struct stripe_head *sh)
696{
697 struct dma_async_tx_descriptor *tx = NULL;
698 raid5_conf_t *conf = sh->raid_conf;
a08abd8c 699 struct async_submit_ctl submit;
91c00924
DW
700 int i;
701
e46b272b 702 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
703 (unsigned long long)sh->sector);
704
705 for (i = sh->disks; i--; ) {
706 struct r5dev *dev = &sh->dev[i];
707 if (test_bit(R5_Wantfill, &dev->flags)) {
708 struct bio *rbi;
709 spin_lock_irq(&conf->device_lock);
710 dev->read = rbi = dev->toread;
711 dev->toread = NULL;
712 spin_unlock_irq(&conf->device_lock);
713 while (rbi && rbi->bi_sector <
714 dev->sector + STRIPE_SECTORS) {
715 tx = async_copy_data(0, rbi, dev->page,
716 dev->sector, tx);
717 rbi = r5_next_bio(rbi, dev->sector);
718 }
719 }
720 }
721
722 atomic_inc(&sh->count);
a08abd8c
DW
723 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
724 async_trigger_callback(&submit);
91c00924
DW
725}
726
4e7d2c0a 727static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 728{
4e7d2c0a 729 struct r5dev *tgt;
91c00924 730
4e7d2c0a
DW
731 if (target < 0)
732 return;
91c00924 733
4e7d2c0a 734 tgt = &sh->dev[target];
91c00924
DW
735 set_bit(R5_UPTODATE, &tgt->flags);
736 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
737 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
738}
739
ac6b53b6 740static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
741{
742 struct stripe_head *sh = stripe_head_ref;
91c00924 743
e46b272b 744 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
745 (unsigned long long)sh->sector);
746
ac6b53b6 747 /* mark the computed target(s) as uptodate */
4e7d2c0a 748 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 749 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 750
ecc65c9b
DW
751 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
752 if (sh->check_state == check_state_compute_run)
753 sh->check_state = check_state_compute_result;
91c00924
DW
754 set_bit(STRIPE_HANDLE, &sh->state);
755 release_stripe(sh);
756}
757
d6f38f31
DW
758/* return a pointer to the address conversion region of the scribble buffer */
759static addr_conv_t *to_addr_conv(struct stripe_head *sh,
760 struct raid5_percpu *percpu)
761{
762 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
763}
764
765static struct dma_async_tx_descriptor *
766ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 767{
91c00924 768 int disks = sh->disks;
d6f38f31 769 struct page **xor_srcs = percpu->scribble;
91c00924
DW
770 int target = sh->ops.target;
771 struct r5dev *tgt = &sh->dev[target];
772 struct page *xor_dest = tgt->page;
773 int count = 0;
774 struct dma_async_tx_descriptor *tx;
a08abd8c 775 struct async_submit_ctl submit;
91c00924
DW
776 int i;
777
778 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 779 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
780 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
781
782 for (i = disks; i--; )
783 if (i != target)
784 xor_srcs[count++] = sh->dev[i].page;
785
786 atomic_inc(&sh->count);
787
0403e382 788 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 789 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 790 if (unlikely(count == 1))
a08abd8c 791 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 792 else
a08abd8c 793 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 794
91c00924
DW
795 return tx;
796}
797
ac6b53b6
DW
798/* set_syndrome_sources - populate source buffers for gen_syndrome
799 * @srcs - (struct page *) array of size sh->disks
800 * @sh - stripe_head to parse
801 *
802 * Populates srcs in proper layout order for the stripe and returns the
803 * 'count' of sources to be used in a call to async_gen_syndrome. The P
804 * destination buffer is recorded in srcs[count] and the Q destination
805 * is recorded in srcs[count+1]].
806 */
807static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
808{
809 int disks = sh->disks;
810 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
811 int d0_idx = raid6_d0(sh);
812 int count;
813 int i;
814
815 for (i = 0; i < disks; i++)
5dd33c9a 816 srcs[i] = NULL;
ac6b53b6
DW
817
818 count = 0;
819 i = d0_idx;
820 do {
821 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
822
823 srcs[slot] = sh->dev[i].page;
824 i = raid6_next_disk(i, disks);
825 } while (i != d0_idx);
ac6b53b6 826
e4424fee 827 return syndrome_disks;
ac6b53b6
DW
828}
829
830static struct dma_async_tx_descriptor *
831ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
832{
833 int disks = sh->disks;
834 struct page **blocks = percpu->scribble;
835 int target;
836 int qd_idx = sh->qd_idx;
837 struct dma_async_tx_descriptor *tx;
838 struct async_submit_ctl submit;
839 struct r5dev *tgt;
840 struct page *dest;
841 int i;
842 int count;
843
844 if (sh->ops.target < 0)
845 target = sh->ops.target2;
846 else if (sh->ops.target2 < 0)
847 target = sh->ops.target;
91c00924 848 else
ac6b53b6
DW
849 /* we should only have one valid target */
850 BUG();
851 BUG_ON(target < 0);
852 pr_debug("%s: stripe %llu block: %d\n",
853 __func__, (unsigned long long)sh->sector, target);
854
855 tgt = &sh->dev[target];
856 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
857 dest = tgt->page;
858
859 atomic_inc(&sh->count);
860
861 if (target == qd_idx) {
862 count = set_syndrome_sources(blocks, sh);
863 blocks[count] = NULL; /* regenerating p is not necessary */
864 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
865 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
866 ops_complete_compute, sh,
ac6b53b6
DW
867 to_addr_conv(sh, percpu));
868 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
869 } else {
870 /* Compute any data- or p-drive using XOR */
871 count = 0;
872 for (i = disks; i-- ; ) {
873 if (i == target || i == qd_idx)
874 continue;
875 blocks[count++] = sh->dev[i].page;
876 }
877
0403e382
DW
878 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
879 NULL, ops_complete_compute, sh,
ac6b53b6
DW
880 to_addr_conv(sh, percpu));
881 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
882 }
91c00924 883
91c00924
DW
884 return tx;
885}
886
ac6b53b6
DW
887static struct dma_async_tx_descriptor *
888ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
889{
890 int i, count, disks = sh->disks;
891 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
892 int d0_idx = raid6_d0(sh);
893 int faila = -1, failb = -1;
894 int target = sh->ops.target;
895 int target2 = sh->ops.target2;
896 struct r5dev *tgt = &sh->dev[target];
897 struct r5dev *tgt2 = &sh->dev[target2];
898 struct dma_async_tx_descriptor *tx;
899 struct page **blocks = percpu->scribble;
900 struct async_submit_ctl submit;
901
902 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
903 __func__, (unsigned long long)sh->sector, target, target2);
904 BUG_ON(target < 0 || target2 < 0);
905 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
906 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
907
6c910a78 908 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
909 * slot number conversion for 'faila' and 'failb'
910 */
911 for (i = 0; i < disks ; i++)
5dd33c9a 912 blocks[i] = NULL;
ac6b53b6
DW
913 count = 0;
914 i = d0_idx;
915 do {
916 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
917
918 blocks[slot] = sh->dev[i].page;
919
920 if (i == target)
921 faila = slot;
922 if (i == target2)
923 failb = slot;
924 i = raid6_next_disk(i, disks);
925 } while (i != d0_idx);
ac6b53b6
DW
926
927 BUG_ON(faila == failb);
928 if (failb < faila)
929 swap(faila, failb);
930 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
931 __func__, (unsigned long long)sh->sector, faila, failb);
932
933 atomic_inc(&sh->count);
934
935 if (failb == syndrome_disks+1) {
936 /* Q disk is one of the missing disks */
937 if (faila == syndrome_disks) {
938 /* Missing P+Q, just recompute */
0403e382
DW
939 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
940 ops_complete_compute, sh,
941 to_addr_conv(sh, percpu));
e4424fee 942 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
943 STRIPE_SIZE, &submit);
944 } else {
945 struct page *dest;
946 int data_target;
947 int qd_idx = sh->qd_idx;
948
949 /* Missing D+Q: recompute D from P, then recompute Q */
950 if (target == qd_idx)
951 data_target = target2;
952 else
953 data_target = target;
954
955 count = 0;
956 for (i = disks; i-- ; ) {
957 if (i == data_target || i == qd_idx)
958 continue;
959 blocks[count++] = sh->dev[i].page;
960 }
961 dest = sh->dev[data_target].page;
0403e382
DW
962 init_async_submit(&submit,
963 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
964 NULL, NULL, NULL,
965 to_addr_conv(sh, percpu));
ac6b53b6
DW
966 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
967 &submit);
968
969 count = set_syndrome_sources(blocks, sh);
0403e382
DW
970 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
971 ops_complete_compute, sh,
972 to_addr_conv(sh, percpu));
ac6b53b6
DW
973 return async_gen_syndrome(blocks, 0, count+2,
974 STRIPE_SIZE, &submit);
975 }
ac6b53b6 976 } else {
6c910a78
DW
977 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
978 ops_complete_compute, sh,
979 to_addr_conv(sh, percpu));
980 if (failb == syndrome_disks) {
981 /* We're missing D+P. */
982 return async_raid6_datap_recov(syndrome_disks+2,
983 STRIPE_SIZE, faila,
984 blocks, &submit);
985 } else {
986 /* We're missing D+D. */
987 return async_raid6_2data_recov(syndrome_disks+2,
988 STRIPE_SIZE, faila, failb,
989 blocks, &submit);
990 }
ac6b53b6
DW
991 }
992}
993
994
91c00924
DW
995static void ops_complete_prexor(void *stripe_head_ref)
996{
997 struct stripe_head *sh = stripe_head_ref;
998
e46b272b 999 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1000 (unsigned long long)sh->sector);
91c00924
DW
1001}
1002
1003static struct dma_async_tx_descriptor *
d6f38f31
DW
1004ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1005 struct dma_async_tx_descriptor *tx)
91c00924 1006{
91c00924 1007 int disks = sh->disks;
d6f38f31 1008 struct page **xor_srcs = percpu->scribble;
91c00924 1009 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1010 struct async_submit_ctl submit;
91c00924
DW
1011
1012 /* existing parity data subtracted */
1013 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1014
e46b272b 1015 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1016 (unsigned long long)sh->sector);
1017
1018 for (i = disks; i--; ) {
1019 struct r5dev *dev = &sh->dev[i];
1020 /* Only process blocks that are known to be uptodate */
d8ee0728 1021 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1022 xor_srcs[count++] = dev->page;
1023 }
1024
0403e382 1025 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 1026 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 1027 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1028
1029 return tx;
1030}
1031
1032static struct dma_async_tx_descriptor *
d8ee0728 1033ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1034{
1035 int disks = sh->disks;
d8ee0728 1036 int i;
91c00924 1037
e46b272b 1038 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1039 (unsigned long long)sh->sector);
1040
1041 for (i = disks; i--; ) {
1042 struct r5dev *dev = &sh->dev[i];
1043 struct bio *chosen;
91c00924 1044
d8ee0728 1045 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
1046 struct bio *wbi;
1047
cbe47ec5 1048 spin_lock_irq(&sh->raid_conf->device_lock);
91c00924
DW
1049 chosen = dev->towrite;
1050 dev->towrite = NULL;
1051 BUG_ON(dev->written);
1052 wbi = dev->written = chosen;
cbe47ec5 1053 spin_unlock_irq(&sh->raid_conf->device_lock);
91c00924
DW
1054
1055 while (wbi && wbi->bi_sector <
1056 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1057 if (wbi->bi_rw & REQ_FUA)
1058 set_bit(R5_WantFUA, &dev->flags);
91c00924
DW
1059 tx = async_copy_data(1, wbi, dev->page,
1060 dev->sector, tx);
1061 wbi = r5_next_bio(wbi, dev->sector);
1062 }
1063 }
1064 }
1065
1066 return tx;
1067}
1068
ac6b53b6 1069static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1070{
1071 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1072 int disks = sh->disks;
1073 int pd_idx = sh->pd_idx;
1074 int qd_idx = sh->qd_idx;
1075 int i;
e9c7469b 1076 bool fua = false;
91c00924 1077
e46b272b 1078 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1079 (unsigned long long)sh->sector);
1080
e9c7469b
TH
1081 for (i = disks; i--; )
1082 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1083
91c00924
DW
1084 for (i = disks; i--; ) {
1085 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1086
e9c7469b 1087 if (dev->written || i == pd_idx || i == qd_idx) {
91c00924 1088 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1089 if (fua)
1090 set_bit(R5_WantFUA, &dev->flags);
1091 }
91c00924
DW
1092 }
1093
d8ee0728
DW
1094 if (sh->reconstruct_state == reconstruct_state_drain_run)
1095 sh->reconstruct_state = reconstruct_state_drain_result;
1096 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1097 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1098 else {
1099 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1100 sh->reconstruct_state = reconstruct_state_result;
1101 }
91c00924
DW
1102
1103 set_bit(STRIPE_HANDLE, &sh->state);
1104 release_stripe(sh);
1105}
1106
1107static void
ac6b53b6
DW
1108ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1109 struct dma_async_tx_descriptor *tx)
91c00924 1110{
91c00924 1111 int disks = sh->disks;
d6f38f31 1112 struct page **xor_srcs = percpu->scribble;
a08abd8c 1113 struct async_submit_ctl submit;
91c00924
DW
1114 int count = 0, pd_idx = sh->pd_idx, i;
1115 struct page *xor_dest;
d8ee0728 1116 int prexor = 0;
91c00924 1117 unsigned long flags;
91c00924 1118
e46b272b 1119 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1120 (unsigned long long)sh->sector);
1121
1122 /* check if prexor is active which means only process blocks
1123 * that are part of a read-modify-write (written)
1124 */
d8ee0728
DW
1125 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1126 prexor = 1;
91c00924
DW
1127 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1128 for (i = disks; i--; ) {
1129 struct r5dev *dev = &sh->dev[i];
1130 if (dev->written)
1131 xor_srcs[count++] = dev->page;
1132 }
1133 } else {
1134 xor_dest = sh->dev[pd_idx].page;
1135 for (i = disks; i--; ) {
1136 struct r5dev *dev = &sh->dev[i];
1137 if (i != pd_idx)
1138 xor_srcs[count++] = dev->page;
1139 }
1140 }
1141
91c00924
DW
1142 /* 1/ if we prexor'd then the dest is reused as a source
1143 * 2/ if we did not prexor then we are redoing the parity
1144 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1145 * for the synchronous xor case
1146 */
88ba2aa5 1147 flags = ASYNC_TX_ACK |
91c00924
DW
1148 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1149
1150 atomic_inc(&sh->count);
1151
ac6b53b6 1152 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1153 to_addr_conv(sh, percpu));
a08abd8c
DW
1154 if (unlikely(count == 1))
1155 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1156 else
1157 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1158}
1159
ac6b53b6
DW
1160static void
1161ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1162 struct dma_async_tx_descriptor *tx)
1163{
1164 struct async_submit_ctl submit;
1165 struct page **blocks = percpu->scribble;
1166 int count;
1167
1168 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1169
1170 count = set_syndrome_sources(blocks, sh);
1171
1172 atomic_inc(&sh->count);
1173
1174 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1175 sh, to_addr_conv(sh, percpu));
1176 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1177}
1178
1179static void ops_complete_check(void *stripe_head_ref)
1180{
1181 struct stripe_head *sh = stripe_head_ref;
91c00924 1182
e46b272b 1183 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1184 (unsigned long long)sh->sector);
1185
ecc65c9b 1186 sh->check_state = check_state_check_result;
91c00924
DW
1187 set_bit(STRIPE_HANDLE, &sh->state);
1188 release_stripe(sh);
1189}
1190
ac6b53b6 1191static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1192{
91c00924 1193 int disks = sh->disks;
ac6b53b6
DW
1194 int pd_idx = sh->pd_idx;
1195 int qd_idx = sh->qd_idx;
1196 struct page *xor_dest;
d6f38f31 1197 struct page **xor_srcs = percpu->scribble;
91c00924 1198 struct dma_async_tx_descriptor *tx;
a08abd8c 1199 struct async_submit_ctl submit;
ac6b53b6
DW
1200 int count;
1201 int i;
91c00924 1202
e46b272b 1203 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1204 (unsigned long long)sh->sector);
1205
ac6b53b6
DW
1206 count = 0;
1207 xor_dest = sh->dev[pd_idx].page;
1208 xor_srcs[count++] = xor_dest;
91c00924 1209 for (i = disks; i--; ) {
ac6b53b6
DW
1210 if (i == pd_idx || i == qd_idx)
1211 continue;
1212 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1213 }
1214
d6f38f31
DW
1215 init_async_submit(&submit, 0, NULL, NULL, NULL,
1216 to_addr_conv(sh, percpu));
099f53cb 1217 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1218 &sh->ops.zero_sum_result, &submit);
91c00924 1219
91c00924 1220 atomic_inc(&sh->count);
a08abd8c
DW
1221 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1222 tx = async_trigger_callback(&submit);
91c00924
DW
1223}
1224
ac6b53b6
DW
1225static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1226{
1227 struct page **srcs = percpu->scribble;
1228 struct async_submit_ctl submit;
1229 int count;
1230
1231 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1232 (unsigned long long)sh->sector, checkp);
1233
1234 count = set_syndrome_sources(srcs, sh);
1235 if (!checkp)
1236 srcs[count] = NULL;
91c00924 1237
91c00924 1238 atomic_inc(&sh->count);
ac6b53b6
DW
1239 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1240 sh, to_addr_conv(sh, percpu));
1241 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1242 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1243}
1244
417b8d4a 1245static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1246{
1247 int overlap_clear = 0, i, disks = sh->disks;
1248 struct dma_async_tx_descriptor *tx = NULL;
d6f38f31 1249 raid5_conf_t *conf = sh->raid_conf;
ac6b53b6 1250 int level = conf->level;
d6f38f31
DW
1251 struct raid5_percpu *percpu;
1252 unsigned long cpu;
91c00924 1253
d6f38f31
DW
1254 cpu = get_cpu();
1255 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1256 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1257 ops_run_biofill(sh);
1258 overlap_clear++;
1259 }
1260
7b3a871e 1261 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1262 if (level < 6)
1263 tx = ops_run_compute5(sh, percpu);
1264 else {
1265 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1266 tx = ops_run_compute6_1(sh, percpu);
1267 else
1268 tx = ops_run_compute6_2(sh, percpu);
1269 }
1270 /* terminate the chain if reconstruct is not set to be run */
1271 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1272 async_tx_ack(tx);
1273 }
91c00924 1274
600aa109 1275 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1276 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1277
600aa109 1278 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1279 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1280 overlap_clear++;
1281 }
1282
ac6b53b6
DW
1283 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1284 if (level < 6)
1285 ops_run_reconstruct5(sh, percpu, tx);
1286 else
1287 ops_run_reconstruct6(sh, percpu, tx);
1288 }
91c00924 1289
ac6b53b6
DW
1290 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1291 if (sh->check_state == check_state_run)
1292 ops_run_check_p(sh, percpu);
1293 else if (sh->check_state == check_state_run_q)
1294 ops_run_check_pq(sh, percpu, 0);
1295 else if (sh->check_state == check_state_run_pq)
1296 ops_run_check_pq(sh, percpu, 1);
1297 else
1298 BUG();
1299 }
91c00924 1300
91c00924
DW
1301 if (overlap_clear)
1302 for (i = disks; i--; ) {
1303 struct r5dev *dev = &sh->dev[i];
1304 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1305 wake_up(&sh->raid_conf->wait_for_overlap);
1306 }
d6f38f31 1307 put_cpu();
91c00924
DW
1308}
1309
417b8d4a
DW
1310#ifdef CONFIG_MULTICORE_RAID456
1311static void async_run_ops(void *param, async_cookie_t cookie)
1312{
1313 struct stripe_head *sh = param;
1314 unsigned long ops_request = sh->ops.request;
1315
1316 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1317 wake_up(&sh->ops.wait_for_ops);
1318
1319 __raid_run_ops(sh, ops_request);
1320 release_stripe(sh);
1321}
1322
1323static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1324{
1325 /* since handle_stripe can be called outside of raid5d context
1326 * we need to ensure sh->ops.request is de-staged before another
1327 * request arrives
1328 */
1329 wait_event(sh->ops.wait_for_ops,
1330 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1331 sh->ops.request = ops_request;
1332
1333 atomic_inc(&sh->count);
1334 async_schedule(async_run_ops, sh);
1335}
1336#else
1337#define raid_run_ops __raid_run_ops
1338#endif
1339
3f294f4f 1340static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1341{
1342 struct stripe_head *sh;
6ce32846 1343 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
3f294f4f
N
1344 if (!sh)
1345 return 0;
6ce32846 1346
3f294f4f 1347 sh->raid_conf = conf;
417b8d4a
DW
1348 #ifdef CONFIG_MULTICORE_RAID456
1349 init_waitqueue_head(&sh->ops.wait_for_ops);
1350 #endif
3f294f4f 1351
e4e11e38
N
1352 if (grow_buffers(sh)) {
1353 shrink_buffers(sh);
3f294f4f
N
1354 kmem_cache_free(conf->slab_cache, sh);
1355 return 0;
1356 }
1357 /* we just created an active stripe so... */
1358 atomic_set(&sh->count, 1);
1359 atomic_inc(&conf->active_stripes);
1360 INIT_LIST_HEAD(&sh->lru);
1361 release_stripe(sh);
1362 return 1;
1363}
1364
1365static int grow_stripes(raid5_conf_t *conf, int num)
1366{
e18b890b 1367 struct kmem_cache *sc;
5e5e3e78 1368 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 1369
f4be6b43
N
1370 if (conf->mddev->gendisk)
1371 sprintf(conf->cache_name[0],
1372 "raid%d-%s", conf->level, mdname(conf->mddev));
1373 else
1374 sprintf(conf->cache_name[0],
1375 "raid%d-%p", conf->level, conf->mddev);
1376 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1377
ad01c9e3
N
1378 conf->active_name = 0;
1379 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1380 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1381 0, 0, NULL);
1da177e4
LT
1382 if (!sc)
1383 return 1;
1384 conf->slab_cache = sc;
ad01c9e3 1385 conf->pool_size = devs;
16a53ecc 1386 while (num--)
3f294f4f 1387 if (!grow_one_stripe(conf))
1da177e4 1388 return 1;
1da177e4
LT
1389 return 0;
1390}
29269553 1391
d6f38f31
DW
1392/**
1393 * scribble_len - return the required size of the scribble region
1394 * @num - total number of disks in the array
1395 *
1396 * The size must be enough to contain:
1397 * 1/ a struct page pointer for each device in the array +2
1398 * 2/ room to convert each entry in (1) to its corresponding dma
1399 * (dma_map_page()) or page (page_address()) address.
1400 *
1401 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1402 * calculate over all devices (not just the data blocks), using zeros in place
1403 * of the P and Q blocks.
1404 */
1405static size_t scribble_len(int num)
1406{
1407 size_t len;
1408
1409 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1410
1411 return len;
1412}
1413
ad01c9e3
N
1414static int resize_stripes(raid5_conf_t *conf, int newsize)
1415{
1416 /* Make all the stripes able to hold 'newsize' devices.
1417 * New slots in each stripe get 'page' set to a new page.
1418 *
1419 * This happens in stages:
1420 * 1/ create a new kmem_cache and allocate the required number of
1421 * stripe_heads.
1422 * 2/ gather all the old stripe_heads and tranfer the pages across
1423 * to the new stripe_heads. This will have the side effect of
1424 * freezing the array as once all stripe_heads have been collected,
1425 * no IO will be possible. Old stripe heads are freed once their
1426 * pages have been transferred over, and the old kmem_cache is
1427 * freed when all stripes are done.
1428 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1429 * we simple return a failre status - no need to clean anything up.
1430 * 4/ allocate new pages for the new slots in the new stripe_heads.
1431 * If this fails, we don't bother trying the shrink the
1432 * stripe_heads down again, we just leave them as they are.
1433 * As each stripe_head is processed the new one is released into
1434 * active service.
1435 *
1436 * Once step2 is started, we cannot afford to wait for a write,
1437 * so we use GFP_NOIO allocations.
1438 */
1439 struct stripe_head *osh, *nsh;
1440 LIST_HEAD(newstripes);
1441 struct disk_info *ndisks;
d6f38f31 1442 unsigned long cpu;
b5470dc5 1443 int err;
e18b890b 1444 struct kmem_cache *sc;
ad01c9e3
N
1445 int i;
1446
1447 if (newsize <= conf->pool_size)
1448 return 0; /* never bother to shrink */
1449
b5470dc5
DW
1450 err = md_allow_write(conf->mddev);
1451 if (err)
1452 return err;
2a2275d6 1453
ad01c9e3
N
1454 /* Step 1 */
1455 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1456 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1457 0, 0, NULL);
ad01c9e3
N
1458 if (!sc)
1459 return -ENOMEM;
1460
1461 for (i = conf->max_nr_stripes; i; i--) {
6ce32846 1462 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
ad01c9e3
N
1463 if (!nsh)
1464 break;
1465
ad01c9e3 1466 nsh->raid_conf = conf;
417b8d4a
DW
1467 #ifdef CONFIG_MULTICORE_RAID456
1468 init_waitqueue_head(&nsh->ops.wait_for_ops);
1469 #endif
ad01c9e3
N
1470
1471 list_add(&nsh->lru, &newstripes);
1472 }
1473 if (i) {
1474 /* didn't get enough, give up */
1475 while (!list_empty(&newstripes)) {
1476 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1477 list_del(&nsh->lru);
1478 kmem_cache_free(sc, nsh);
1479 }
1480 kmem_cache_destroy(sc);
1481 return -ENOMEM;
1482 }
1483 /* Step 2 - Must use GFP_NOIO now.
1484 * OK, we have enough stripes, start collecting inactive
1485 * stripes and copying them over
1486 */
1487 list_for_each_entry(nsh, &newstripes, lru) {
1488 spin_lock_irq(&conf->device_lock);
1489 wait_event_lock_irq(conf->wait_for_stripe,
1490 !list_empty(&conf->inactive_list),
1491 conf->device_lock,
482c0834 1492 );
ad01c9e3
N
1493 osh = get_free_stripe(conf);
1494 spin_unlock_irq(&conf->device_lock);
1495 atomic_set(&nsh->count, 1);
1496 for(i=0; i<conf->pool_size; i++)
1497 nsh->dev[i].page = osh->dev[i].page;
1498 for( ; i<newsize; i++)
1499 nsh->dev[i].page = NULL;
1500 kmem_cache_free(conf->slab_cache, osh);
1501 }
1502 kmem_cache_destroy(conf->slab_cache);
1503
1504 /* Step 3.
1505 * At this point, we are holding all the stripes so the array
1506 * is completely stalled, so now is a good time to resize
d6f38f31 1507 * conf->disks and the scribble region
ad01c9e3
N
1508 */
1509 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1510 if (ndisks) {
1511 for (i=0; i<conf->raid_disks; i++)
1512 ndisks[i] = conf->disks[i];
1513 kfree(conf->disks);
1514 conf->disks = ndisks;
1515 } else
1516 err = -ENOMEM;
1517
d6f38f31
DW
1518 get_online_cpus();
1519 conf->scribble_len = scribble_len(newsize);
1520 for_each_present_cpu(cpu) {
1521 struct raid5_percpu *percpu;
1522 void *scribble;
1523
1524 percpu = per_cpu_ptr(conf->percpu, cpu);
1525 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1526
1527 if (scribble) {
1528 kfree(percpu->scribble);
1529 percpu->scribble = scribble;
1530 } else {
1531 err = -ENOMEM;
1532 break;
1533 }
1534 }
1535 put_online_cpus();
1536
ad01c9e3
N
1537 /* Step 4, return new stripes to service */
1538 while(!list_empty(&newstripes)) {
1539 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1540 list_del_init(&nsh->lru);
d6f38f31 1541
ad01c9e3
N
1542 for (i=conf->raid_disks; i < newsize; i++)
1543 if (nsh->dev[i].page == NULL) {
1544 struct page *p = alloc_page(GFP_NOIO);
1545 nsh->dev[i].page = p;
1546 if (!p)
1547 err = -ENOMEM;
1548 }
1549 release_stripe(nsh);
1550 }
1551 /* critical section pass, GFP_NOIO no longer needed */
1552
1553 conf->slab_cache = sc;
1554 conf->active_name = 1-conf->active_name;
1555 conf->pool_size = newsize;
1556 return err;
1557}
1da177e4 1558
3f294f4f 1559static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1560{
1561 struct stripe_head *sh;
1562
3f294f4f
N
1563 spin_lock_irq(&conf->device_lock);
1564 sh = get_free_stripe(conf);
1565 spin_unlock_irq(&conf->device_lock);
1566 if (!sh)
1567 return 0;
78bafebd 1568 BUG_ON(atomic_read(&sh->count));
e4e11e38 1569 shrink_buffers(sh);
3f294f4f
N
1570 kmem_cache_free(conf->slab_cache, sh);
1571 atomic_dec(&conf->active_stripes);
1572 return 1;
1573}
1574
1575static void shrink_stripes(raid5_conf_t *conf)
1576{
1577 while (drop_one_stripe(conf))
1578 ;
1579
29fc7e3e
N
1580 if (conf->slab_cache)
1581 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1582 conf->slab_cache = NULL;
1583}
1584
6712ecf8 1585static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1586{
99c0fb5f 1587 struct stripe_head *sh = bi->bi_private;
1da177e4 1588 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1589 int disks = sh->disks, i;
1da177e4 1590 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1591 char b[BDEVNAME_SIZE];
1592 mdk_rdev_t *rdev;
1da177e4 1593
1da177e4
LT
1594
1595 for (i=0 ; i<disks; i++)
1596 if (bi == &sh->dev[i].req)
1597 break;
1598
45b4233c
DW
1599 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1600 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1601 uptodate);
1602 if (i == disks) {
1603 BUG();
6712ecf8 1604 return;
1da177e4
LT
1605 }
1606
1607 if (uptodate) {
1da177e4 1608 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1609 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1610 rdev = conf->disks[i].rdev;
8bda470e
CD
1611 printk_ratelimited(
1612 KERN_INFO
1613 "md/raid:%s: read error corrected"
1614 " (%lu sectors at %llu on %s)\n",
1615 mdname(conf->mddev), STRIPE_SECTORS,
1616 (unsigned long long)(sh->sector
1617 + rdev->data_offset),
1618 bdevname(rdev->bdev, b));
ddd5115f 1619 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
1620 clear_bit(R5_ReadError, &sh->dev[i].flags);
1621 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1622 }
ba22dcbf
N
1623 if (atomic_read(&conf->disks[i].rdev->read_errors))
1624 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1625 } else {
d6950432 1626 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1627 int retry = 0;
d6950432
N
1628 rdev = conf->disks[i].rdev;
1629
1da177e4 1630 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1631 atomic_inc(&rdev->read_errors);
7b0bb536 1632 if (conf->mddev->degraded >= conf->max_degraded)
8bda470e
CD
1633 printk_ratelimited(
1634 KERN_WARNING
1635 "md/raid:%s: read error not correctable "
1636 "(sector %llu on %s).\n",
1637 mdname(conf->mddev),
1638 (unsigned long long)(sh->sector
1639 + rdev->data_offset),
1640 bdn);
ba22dcbf 1641 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1642 /* Oh, no!!! */
8bda470e
CD
1643 printk_ratelimited(
1644 KERN_WARNING
1645 "md/raid:%s: read error NOT corrected!! "
1646 "(sector %llu on %s).\n",
1647 mdname(conf->mddev),
1648 (unsigned long long)(sh->sector
1649 + rdev->data_offset),
1650 bdn);
d6950432 1651 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1652 > conf->max_nr_stripes)
14f8d26b 1653 printk(KERN_WARNING
0c55e022 1654 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 1655 mdname(conf->mddev), bdn);
ba22dcbf
N
1656 else
1657 retry = 1;
1658 if (retry)
1659 set_bit(R5_ReadError, &sh->dev[i].flags);
1660 else {
4e5314b5
N
1661 clear_bit(R5_ReadError, &sh->dev[i].flags);
1662 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1663 md_error(conf->mddev, rdev);
ba22dcbf 1664 }
1da177e4
LT
1665 }
1666 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1667 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1668 set_bit(STRIPE_HANDLE, &sh->state);
1669 release_stripe(sh);
1da177e4
LT
1670}
1671
d710e138 1672static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1673{
99c0fb5f 1674 struct stripe_head *sh = bi->bi_private;
1da177e4 1675 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1676 int disks = sh->disks, i;
1da177e4
LT
1677 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1678
1da177e4
LT
1679 for (i=0 ; i<disks; i++)
1680 if (bi == &sh->dev[i].req)
1681 break;
1682
45b4233c 1683 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1684 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1685 uptodate);
1686 if (i == disks) {
1687 BUG();
6712ecf8 1688 return;
1da177e4
LT
1689 }
1690
bc2607f3
N
1691 if (!uptodate) {
1692 set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1693 set_bit(R5_WriteError, &sh->dev[i].flags);
1694 }
1da177e4
LT
1695
1696 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1697
1698 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1699 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1700 release_stripe(sh);
1da177e4
LT
1701}
1702
1703
784052ec 1704static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1705
784052ec 1706static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1707{
1708 struct r5dev *dev = &sh->dev[i];
1709
1710 bio_init(&dev->req);
1711 dev->req.bi_io_vec = &dev->vec;
1712 dev->req.bi_vcnt++;
1713 dev->req.bi_max_vecs++;
1714 dev->vec.bv_page = dev->page;
1715 dev->vec.bv_len = STRIPE_SIZE;
1716 dev->vec.bv_offset = 0;
1717
1718 dev->req.bi_sector = sh->sector;
1719 dev->req.bi_private = sh;
1720
1721 dev->flags = 0;
784052ec 1722 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1723}
1724
1725static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1726{
1727 char b[BDEVNAME_SIZE];
7b92813c 1728 raid5_conf_t *conf = mddev->private;
0c55e022 1729 pr_debug("raid456: error called\n");
1da177e4 1730
6f8d0c77
N
1731 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1732 unsigned long flags;
1733 spin_lock_irqsave(&conf->device_lock, flags);
1734 mddev->degraded++;
1735 spin_unlock_irqrestore(&conf->device_lock, flags);
1736 /*
1737 * if recovery was running, make sure it aborts.
1738 */
1739 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1740 }
de393cde 1741 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
1742 set_bit(Faulty, &rdev->flags);
1743 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1744 printk(KERN_ALERT
1745 "md/raid:%s: Disk failure on %s, disabling device.\n"
1746 "md/raid:%s: Operation continuing on %d devices.\n",
1747 mdname(mddev),
1748 bdevname(rdev->bdev, b),
1749 mdname(mddev),
1750 conf->raid_disks - mddev->degraded);
16a53ecc 1751}
1da177e4
LT
1752
1753/*
1754 * Input: a 'big' sector number,
1755 * Output: index of the data and parity disk, and the sector # in them.
1756 */
112bf897 1757static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
911d4ee8
N
1758 int previous, int *dd_idx,
1759 struct stripe_head *sh)
1da177e4 1760{
6e3b96ed 1761 sector_t stripe, stripe2;
35f2a591 1762 sector_t chunk_number;
1da177e4 1763 unsigned int chunk_offset;
911d4ee8 1764 int pd_idx, qd_idx;
67cc2b81 1765 int ddf_layout = 0;
1da177e4 1766 sector_t new_sector;
e183eaed
N
1767 int algorithm = previous ? conf->prev_algo
1768 : conf->algorithm;
09c9e5fa
AN
1769 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1770 : conf->chunk_sectors;
112bf897
N
1771 int raid_disks = previous ? conf->previous_raid_disks
1772 : conf->raid_disks;
1773 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1774
1775 /* First compute the information on this sector */
1776
1777 /*
1778 * Compute the chunk number and the sector offset inside the chunk
1779 */
1780 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1781 chunk_number = r_sector;
1da177e4
LT
1782
1783 /*
1784 * Compute the stripe number
1785 */
35f2a591
N
1786 stripe = chunk_number;
1787 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 1788 stripe2 = stripe;
1da177e4
LT
1789 /*
1790 * Select the parity disk based on the user selected algorithm.
1791 */
84789554 1792 pd_idx = qd_idx = -1;
16a53ecc
N
1793 switch(conf->level) {
1794 case 4:
911d4ee8 1795 pd_idx = data_disks;
16a53ecc
N
1796 break;
1797 case 5:
e183eaed 1798 switch (algorithm) {
1da177e4 1799 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1800 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1801 if (*dd_idx >= pd_idx)
1da177e4
LT
1802 (*dd_idx)++;
1803 break;
1804 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1805 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1806 if (*dd_idx >= pd_idx)
1da177e4
LT
1807 (*dd_idx)++;
1808 break;
1809 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1810 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1811 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1812 break;
1813 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1814 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1815 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1816 break;
99c0fb5f
N
1817 case ALGORITHM_PARITY_0:
1818 pd_idx = 0;
1819 (*dd_idx)++;
1820 break;
1821 case ALGORITHM_PARITY_N:
1822 pd_idx = data_disks;
1823 break;
1da177e4 1824 default:
99c0fb5f 1825 BUG();
16a53ecc
N
1826 }
1827 break;
1828 case 6:
1829
e183eaed 1830 switch (algorithm) {
16a53ecc 1831 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1832 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1833 qd_idx = pd_idx + 1;
1834 if (pd_idx == raid_disks-1) {
99c0fb5f 1835 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1836 qd_idx = 0;
1837 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1838 (*dd_idx) += 2; /* D D P Q D */
1839 break;
1840 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1841 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1842 qd_idx = pd_idx + 1;
1843 if (pd_idx == raid_disks-1) {
99c0fb5f 1844 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1845 qd_idx = 0;
1846 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1847 (*dd_idx) += 2; /* D D P Q D */
1848 break;
1849 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1850 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1851 qd_idx = (pd_idx + 1) % raid_disks;
1852 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1853 break;
1854 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1855 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1856 qd_idx = (pd_idx + 1) % raid_disks;
1857 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 1858 break;
99c0fb5f
N
1859
1860 case ALGORITHM_PARITY_0:
1861 pd_idx = 0;
1862 qd_idx = 1;
1863 (*dd_idx) += 2;
1864 break;
1865 case ALGORITHM_PARITY_N:
1866 pd_idx = data_disks;
1867 qd_idx = data_disks + 1;
1868 break;
1869
1870 case ALGORITHM_ROTATING_ZERO_RESTART:
1871 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1872 * of blocks for computing Q is different.
1873 */
6e3b96ed 1874 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
1875 qd_idx = pd_idx + 1;
1876 if (pd_idx == raid_disks-1) {
1877 (*dd_idx)++; /* Q D D D P */
1878 qd_idx = 0;
1879 } else if (*dd_idx >= pd_idx)
1880 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1881 ddf_layout = 1;
99c0fb5f
N
1882 break;
1883
1884 case ALGORITHM_ROTATING_N_RESTART:
1885 /* Same a left_asymmetric, by first stripe is
1886 * D D D P Q rather than
1887 * Q D D D P
1888 */
6e3b96ed
N
1889 stripe2 += 1;
1890 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1891 qd_idx = pd_idx + 1;
1892 if (pd_idx == raid_disks-1) {
1893 (*dd_idx)++; /* Q D D D P */
1894 qd_idx = 0;
1895 } else if (*dd_idx >= pd_idx)
1896 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1897 ddf_layout = 1;
99c0fb5f
N
1898 break;
1899
1900 case ALGORITHM_ROTATING_N_CONTINUE:
1901 /* Same as left_symmetric but Q is before P */
6e3b96ed 1902 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1903 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1904 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 1905 ddf_layout = 1;
99c0fb5f
N
1906 break;
1907
1908 case ALGORITHM_LEFT_ASYMMETRIC_6:
1909 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 1910 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1911 if (*dd_idx >= pd_idx)
1912 (*dd_idx)++;
1913 qd_idx = raid_disks - 1;
1914 break;
1915
1916 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 1917 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1918 if (*dd_idx >= pd_idx)
1919 (*dd_idx)++;
1920 qd_idx = raid_disks - 1;
1921 break;
1922
1923 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 1924 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1925 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1926 qd_idx = raid_disks - 1;
1927 break;
1928
1929 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 1930 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1931 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1932 qd_idx = raid_disks - 1;
1933 break;
1934
1935 case ALGORITHM_PARITY_0_6:
1936 pd_idx = 0;
1937 (*dd_idx)++;
1938 qd_idx = raid_disks - 1;
1939 break;
1940
16a53ecc 1941 default:
99c0fb5f 1942 BUG();
16a53ecc
N
1943 }
1944 break;
1da177e4
LT
1945 }
1946
911d4ee8
N
1947 if (sh) {
1948 sh->pd_idx = pd_idx;
1949 sh->qd_idx = qd_idx;
67cc2b81 1950 sh->ddf_layout = ddf_layout;
911d4ee8 1951 }
1da177e4
LT
1952 /*
1953 * Finally, compute the new sector number
1954 */
1955 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1956 return new_sector;
1957}
1958
1959
784052ec 1960static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1961{
1962 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1963 int raid_disks = sh->disks;
1964 int data_disks = raid_disks - conf->max_degraded;
1da177e4 1965 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
1966 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1967 : conf->chunk_sectors;
e183eaed
N
1968 int algorithm = previous ? conf->prev_algo
1969 : conf->algorithm;
1da177e4
LT
1970 sector_t stripe;
1971 int chunk_offset;
35f2a591
N
1972 sector_t chunk_number;
1973 int dummy1, dd_idx = i;
1da177e4 1974 sector_t r_sector;
911d4ee8 1975 struct stripe_head sh2;
1da177e4 1976
16a53ecc 1977
1da177e4
LT
1978 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1979 stripe = new_sector;
1da177e4 1980
16a53ecc
N
1981 if (i == sh->pd_idx)
1982 return 0;
1983 switch(conf->level) {
1984 case 4: break;
1985 case 5:
e183eaed 1986 switch (algorithm) {
1da177e4
LT
1987 case ALGORITHM_LEFT_ASYMMETRIC:
1988 case ALGORITHM_RIGHT_ASYMMETRIC:
1989 if (i > sh->pd_idx)
1990 i--;
1991 break;
1992 case ALGORITHM_LEFT_SYMMETRIC:
1993 case ALGORITHM_RIGHT_SYMMETRIC:
1994 if (i < sh->pd_idx)
1995 i += raid_disks;
1996 i -= (sh->pd_idx + 1);
1997 break;
99c0fb5f
N
1998 case ALGORITHM_PARITY_0:
1999 i -= 1;
2000 break;
2001 case ALGORITHM_PARITY_N:
2002 break;
1da177e4 2003 default:
99c0fb5f 2004 BUG();
16a53ecc
N
2005 }
2006 break;
2007 case 6:
d0dabf7e 2008 if (i == sh->qd_idx)
16a53ecc 2009 return 0; /* It is the Q disk */
e183eaed 2010 switch (algorithm) {
16a53ecc
N
2011 case ALGORITHM_LEFT_ASYMMETRIC:
2012 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2013 case ALGORITHM_ROTATING_ZERO_RESTART:
2014 case ALGORITHM_ROTATING_N_RESTART:
2015 if (sh->pd_idx == raid_disks-1)
2016 i--; /* Q D D D P */
16a53ecc
N
2017 else if (i > sh->pd_idx)
2018 i -= 2; /* D D P Q D */
2019 break;
2020 case ALGORITHM_LEFT_SYMMETRIC:
2021 case ALGORITHM_RIGHT_SYMMETRIC:
2022 if (sh->pd_idx == raid_disks-1)
2023 i--; /* Q D D D P */
2024 else {
2025 /* D D P Q D */
2026 if (i < sh->pd_idx)
2027 i += raid_disks;
2028 i -= (sh->pd_idx + 2);
2029 }
2030 break;
99c0fb5f
N
2031 case ALGORITHM_PARITY_0:
2032 i -= 2;
2033 break;
2034 case ALGORITHM_PARITY_N:
2035 break;
2036 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2037 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2038 if (sh->pd_idx == 0)
2039 i--; /* P D D D Q */
e4424fee
N
2040 else {
2041 /* D D Q P D */
2042 if (i < sh->pd_idx)
2043 i += raid_disks;
2044 i -= (sh->pd_idx + 1);
2045 }
99c0fb5f
N
2046 break;
2047 case ALGORITHM_LEFT_ASYMMETRIC_6:
2048 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2049 if (i > sh->pd_idx)
2050 i--;
2051 break;
2052 case ALGORITHM_LEFT_SYMMETRIC_6:
2053 case ALGORITHM_RIGHT_SYMMETRIC_6:
2054 if (i < sh->pd_idx)
2055 i += data_disks + 1;
2056 i -= (sh->pd_idx + 1);
2057 break;
2058 case ALGORITHM_PARITY_0_6:
2059 i -= 1;
2060 break;
16a53ecc 2061 default:
99c0fb5f 2062 BUG();
16a53ecc
N
2063 }
2064 break;
1da177e4
LT
2065 }
2066
2067 chunk_number = stripe * data_disks + i;
35f2a591 2068 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2069
112bf897 2070 check = raid5_compute_sector(conf, r_sector,
784052ec 2071 previous, &dummy1, &sh2);
911d4ee8
N
2072 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2073 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2074 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2075 mdname(conf->mddev));
1da177e4
LT
2076 return 0;
2077 }
2078 return r_sector;
2079}
2080
2081
600aa109 2082static void
c0f7bddb 2083schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2084 int rcw, int expand)
e33129d8
DW
2085{
2086 int i, pd_idx = sh->pd_idx, disks = sh->disks;
c0f7bddb
YT
2087 raid5_conf_t *conf = sh->raid_conf;
2088 int level = conf->level;
e33129d8
DW
2089
2090 if (rcw) {
2091 /* if we are not expanding this is a proper write request, and
2092 * there will be bios with new data to be drained into the
2093 * stripe cache
2094 */
2095 if (!expand) {
600aa109
DW
2096 sh->reconstruct_state = reconstruct_state_drain_run;
2097 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2098 } else
2099 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 2100
ac6b53b6 2101 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2102
2103 for (i = disks; i--; ) {
2104 struct r5dev *dev = &sh->dev[i];
2105
2106 if (dev->towrite) {
2107 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2108 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2109 if (!expand)
2110 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2111 s->locked++;
e33129d8
DW
2112 }
2113 }
c0f7bddb 2114 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2115 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2116 atomic_inc(&conf->pending_full_writes);
e33129d8 2117 } else {
c0f7bddb 2118 BUG_ON(level == 6);
e33129d8
DW
2119 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2120 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2121
d8ee0728 2122 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
2123 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2124 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
ac6b53b6 2125 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2126
2127 for (i = disks; i--; ) {
2128 struct r5dev *dev = &sh->dev[i];
2129 if (i == pd_idx)
2130 continue;
2131
e33129d8
DW
2132 if (dev->towrite &&
2133 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2134 test_bit(R5_Wantcompute, &dev->flags))) {
2135 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2136 set_bit(R5_LOCKED, &dev->flags);
2137 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2138 s->locked++;
e33129d8
DW
2139 }
2140 }
2141 }
2142
c0f7bddb 2143 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2144 * are in flight
2145 */
2146 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2147 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2148 s->locked++;
e33129d8 2149
c0f7bddb
YT
2150 if (level == 6) {
2151 int qd_idx = sh->qd_idx;
2152 struct r5dev *dev = &sh->dev[qd_idx];
2153
2154 set_bit(R5_LOCKED, &dev->flags);
2155 clear_bit(R5_UPTODATE, &dev->flags);
2156 s->locked++;
2157 }
2158
600aa109 2159 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2160 __func__, (unsigned long long)sh->sector,
600aa109 2161 s->locked, s->ops_request);
e33129d8 2162}
16a53ecc 2163
1da177e4
LT
2164/*
2165 * Each stripe/dev can have one or more bion attached.
16a53ecc 2166 * toread/towrite point to the first in a chain.
1da177e4
LT
2167 * The bi_next chain must be in order.
2168 */
2169static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2170{
2171 struct bio **bip;
2172 raid5_conf_t *conf = sh->raid_conf;
72626685 2173 int firstwrite=0;
1da177e4 2174
cbe47ec5 2175 pr_debug("adding bi b#%llu to stripe s#%llu\n",
1da177e4
LT
2176 (unsigned long long)bi->bi_sector,
2177 (unsigned long long)sh->sector);
2178
2179
1da177e4 2180 spin_lock_irq(&conf->device_lock);
72626685 2181 if (forwrite) {
1da177e4 2182 bip = &sh->dev[dd_idx].towrite;
72626685
N
2183 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2184 firstwrite = 1;
2185 } else
1da177e4
LT
2186 bip = &sh->dev[dd_idx].toread;
2187 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2188 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2189 goto overlap;
2190 bip = & (*bip)->bi_next;
2191 }
2192 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2193 goto overlap;
2194
78bafebd 2195 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2196 if (*bip)
2197 bi->bi_next = *bip;
2198 *bip = bi;
960e739d 2199 bi->bi_phys_segments++;
72626685 2200
1da177e4
LT
2201 if (forwrite) {
2202 /* check if page is covered */
2203 sector_t sector = sh->dev[dd_idx].sector;
2204 for (bi=sh->dev[dd_idx].towrite;
2205 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2206 bi && bi->bi_sector <= sector;
2207 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2208 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2209 sector = bi->bi_sector + (bi->bi_size>>9);
2210 }
2211 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2212 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2213 }
cbe47ec5 2214 spin_unlock_irq(&conf->device_lock);
cbe47ec5
N
2215
2216 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2217 (unsigned long long)(*bip)->bi_sector,
2218 (unsigned long long)sh->sector, dd_idx);
2219
2220 if (conf->mddev->bitmap && firstwrite) {
2221 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2222 STRIPE_SECTORS, 0);
2223 sh->bm_seq = conf->seq_flush+1;
2224 set_bit(STRIPE_BIT_DELAY, &sh->state);
2225 }
1da177e4
LT
2226 return 1;
2227
2228 overlap:
2229 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2230 spin_unlock_irq(&conf->device_lock);
1da177e4
LT
2231 return 0;
2232}
2233
29269553
N
2234static void end_reshape(raid5_conf_t *conf);
2235
911d4ee8
N
2236static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2237 struct stripe_head *sh)
ccfcc3c1 2238{
784052ec 2239 int sectors_per_chunk =
09c9e5fa 2240 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2241 int dd_idx;
2d2063ce 2242 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2243 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2244
112bf897
N
2245 raid5_compute_sector(conf,
2246 stripe * (disks - conf->max_degraded)
b875e531 2247 *sectors_per_chunk + chunk_offset,
112bf897 2248 previous,
911d4ee8 2249 &dd_idx, sh);
ccfcc3c1
N
2250}
2251
a4456856 2252static void
1fe797e6 2253handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
a4456856
DW
2254 struct stripe_head_state *s, int disks,
2255 struct bio **return_bi)
2256{
2257 int i;
2258 for (i = disks; i--; ) {
2259 struct bio *bi;
2260 int bitmap_end = 0;
2261
2262 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2263 mdk_rdev_t *rdev;
2264 rcu_read_lock();
2265 rdev = rcu_dereference(conf->disks[i].rdev);
2266 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
2267 atomic_inc(&rdev->nr_pending);
2268 else
2269 rdev = NULL;
a4456856 2270 rcu_read_unlock();
7f0da59b
N
2271 if (rdev) {
2272 if (!rdev_set_badblocks(
2273 rdev,
2274 sh->sector,
2275 STRIPE_SECTORS, 0))
2276 md_error(conf->mddev, rdev);
2277 rdev_dec_pending(rdev, conf->mddev);
2278 }
a4456856
DW
2279 }
2280 spin_lock_irq(&conf->device_lock);
2281 /* fail all writes first */
2282 bi = sh->dev[i].towrite;
2283 sh->dev[i].towrite = NULL;
2284 if (bi) {
2285 s->to_write--;
2286 bitmap_end = 1;
2287 }
2288
2289 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2290 wake_up(&conf->wait_for_overlap);
2291
2292 while (bi && bi->bi_sector <
2293 sh->dev[i].sector + STRIPE_SECTORS) {
2294 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2295 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2296 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2297 md_write_end(conf->mddev);
2298 bi->bi_next = *return_bi;
2299 *return_bi = bi;
2300 }
2301 bi = nextbi;
2302 }
2303 /* and fail all 'written' */
2304 bi = sh->dev[i].written;
2305 sh->dev[i].written = NULL;
2306 if (bi) bitmap_end = 1;
2307 while (bi && bi->bi_sector <
2308 sh->dev[i].sector + STRIPE_SECTORS) {
2309 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2310 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2311 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2312 md_write_end(conf->mddev);
2313 bi->bi_next = *return_bi;
2314 *return_bi = bi;
2315 }
2316 bi = bi2;
2317 }
2318
b5e98d65
DW
2319 /* fail any reads if this device is non-operational and
2320 * the data has not reached the cache yet.
2321 */
2322 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2323 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2324 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2325 bi = sh->dev[i].toread;
2326 sh->dev[i].toread = NULL;
2327 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2328 wake_up(&conf->wait_for_overlap);
2329 if (bi) s->to_read--;
2330 while (bi && bi->bi_sector <
2331 sh->dev[i].sector + STRIPE_SECTORS) {
2332 struct bio *nextbi =
2333 r5_next_bio(bi, sh->dev[i].sector);
2334 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2335 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2336 bi->bi_next = *return_bi;
2337 *return_bi = bi;
2338 }
2339 bi = nextbi;
2340 }
2341 }
2342 spin_unlock_irq(&conf->device_lock);
2343 if (bitmap_end)
2344 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2345 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
2346 /* If we were in the middle of a write the parity block might
2347 * still be locked - so just clear all R5_LOCKED flags
2348 */
2349 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
2350 }
2351
8b3e6cdc
DW
2352 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2353 if (atomic_dec_and_test(&conf->pending_full_writes))
2354 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2355}
2356
7f0da59b
N
2357static void
2358handle_failed_sync(raid5_conf_t *conf, struct stripe_head *sh,
2359 struct stripe_head_state *s)
2360{
2361 int abort = 0;
2362 int i;
2363
2364 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2365 clear_bit(STRIPE_SYNCING, &sh->state);
2366 s->syncing = 0;
2367 /* There is nothing more to do for sync/check/repair.
2368 * For recover we need to record a bad block on all
2369 * non-sync devices, or abort the recovery
2370 */
2371 if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2372 return;
2373 /* During recovery devices cannot be removed, so locking and
2374 * refcounting of rdevs is not needed
2375 */
2376 for (i = 0; i < conf->raid_disks; i++) {
2377 mdk_rdev_t *rdev = conf->disks[i].rdev;
2378 if (!rdev
2379 || test_bit(Faulty, &rdev->flags)
2380 || test_bit(In_sync, &rdev->flags))
2381 continue;
2382 if (!rdev_set_badblocks(rdev, sh->sector,
2383 STRIPE_SECTORS, 0))
2384 abort = 1;
2385 }
2386 if (abort) {
2387 conf->recovery_disabled = conf->mddev->recovery_disabled;
2388 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2389 }
2390}
2391
93b3dbce 2392/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
2393 * to be read or computed to satisfy a request.
2394 *
2395 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 2396 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 2397 */
93b3dbce
N
2398static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2399 int disk_idx, int disks)
a4456856 2400{
5599becc 2401 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
2402 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2403 &sh->dev[s->failed_num[1]] };
5599becc 2404
93b3dbce 2405 /* is the data in this block needed, and can we get it? */
5599becc
YT
2406 if (!test_bit(R5_LOCKED, &dev->flags) &&
2407 !test_bit(R5_UPTODATE, &dev->flags) &&
2408 (dev->toread ||
2409 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2410 s->syncing || s->expanding ||
5d35e09c
N
2411 (s->failed >= 1 && fdev[0]->toread) ||
2412 (s->failed >= 2 && fdev[1]->toread) ||
93b3dbce
N
2413 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2414 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2415 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
5599becc
YT
2416 /* we would like to get this block, possibly by computing it,
2417 * otherwise read it if the backing disk is insync
2418 */
2419 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2420 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2421 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
2422 (s->failed && (disk_idx == s->failed_num[0] ||
2423 disk_idx == s->failed_num[1]))) {
5599becc
YT
2424 /* have disk failed, and we're requested to fetch it;
2425 * do compute it
a4456856 2426 */
5599becc
YT
2427 pr_debug("Computing stripe %llu block %d\n",
2428 (unsigned long long)sh->sector, disk_idx);
2429 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2430 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2431 set_bit(R5_Wantcompute, &dev->flags);
2432 sh->ops.target = disk_idx;
2433 sh->ops.target2 = -1; /* no 2nd target */
2434 s->req_compute = 1;
93b3dbce
N
2435 /* Careful: from this point on 'uptodate' is in the eye
2436 * of raid_run_ops which services 'compute' operations
2437 * before writes. R5_Wantcompute flags a block that will
2438 * be R5_UPTODATE by the time it is needed for a
2439 * subsequent operation.
2440 */
5599becc
YT
2441 s->uptodate++;
2442 return 1;
2443 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2444 /* Computing 2-failure is *very* expensive; only
2445 * do it if failed >= 2
2446 */
2447 int other;
2448 for (other = disks; other--; ) {
2449 if (other == disk_idx)
2450 continue;
2451 if (!test_bit(R5_UPTODATE,
2452 &sh->dev[other].flags))
2453 break;
a4456856 2454 }
5599becc
YT
2455 BUG_ON(other < 0);
2456 pr_debug("Computing stripe %llu blocks %d,%d\n",
2457 (unsigned long long)sh->sector,
2458 disk_idx, other);
2459 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2460 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2461 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2462 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2463 sh->ops.target = disk_idx;
2464 sh->ops.target2 = other;
2465 s->uptodate += 2;
2466 s->req_compute = 1;
2467 return 1;
2468 } else if (test_bit(R5_Insync, &dev->flags)) {
2469 set_bit(R5_LOCKED, &dev->flags);
2470 set_bit(R5_Wantread, &dev->flags);
2471 s->locked++;
2472 pr_debug("Reading block %d (sync=%d)\n",
2473 disk_idx, s->syncing);
a4456856
DW
2474 }
2475 }
5599becc
YT
2476
2477 return 0;
2478}
2479
2480/**
93b3dbce 2481 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 2482 */
93b3dbce
N
2483static void handle_stripe_fill(struct stripe_head *sh,
2484 struct stripe_head_state *s,
2485 int disks)
5599becc
YT
2486{
2487 int i;
2488
2489 /* look for blocks to read/compute, skip this if a compute
2490 * is already in flight, or if the stripe contents are in the
2491 * midst of changing due to a write
2492 */
2493 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2494 !sh->reconstruct_state)
2495 for (i = disks; i--; )
93b3dbce 2496 if (fetch_block(sh, s, i, disks))
5599becc 2497 break;
a4456856
DW
2498 set_bit(STRIPE_HANDLE, &sh->state);
2499}
2500
2501
1fe797e6 2502/* handle_stripe_clean_event
a4456856
DW
2503 * any written block on an uptodate or failed drive can be returned.
2504 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2505 * never LOCKED, so we don't need to test 'failed' directly.
2506 */
1fe797e6 2507static void handle_stripe_clean_event(raid5_conf_t *conf,
a4456856
DW
2508 struct stripe_head *sh, int disks, struct bio **return_bi)
2509{
2510 int i;
2511 struct r5dev *dev;
2512
2513 for (i = disks; i--; )
2514 if (sh->dev[i].written) {
2515 dev = &sh->dev[i];
2516 if (!test_bit(R5_LOCKED, &dev->flags) &&
2517 test_bit(R5_UPTODATE, &dev->flags)) {
2518 /* We can return any write requests */
2519 struct bio *wbi, *wbi2;
2520 int bitmap_end = 0;
45b4233c 2521 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2522 spin_lock_irq(&conf->device_lock);
2523 wbi = dev->written;
2524 dev->written = NULL;
2525 while (wbi && wbi->bi_sector <
2526 dev->sector + STRIPE_SECTORS) {
2527 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2528 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2529 md_write_end(conf->mddev);
2530 wbi->bi_next = *return_bi;
2531 *return_bi = wbi;
2532 }
2533 wbi = wbi2;
2534 }
2535 if (dev->towrite == NULL)
2536 bitmap_end = 1;
2537 spin_unlock_irq(&conf->device_lock);
2538 if (bitmap_end)
2539 bitmap_endwrite(conf->mddev->bitmap,
2540 sh->sector,
2541 STRIPE_SECTORS,
2542 !test_bit(STRIPE_DEGRADED, &sh->state),
2543 0);
2544 }
2545 }
8b3e6cdc
DW
2546
2547 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2548 if (atomic_dec_and_test(&conf->pending_full_writes))
2549 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2550}
2551
c8ac1803
N
2552static void handle_stripe_dirtying(raid5_conf_t *conf,
2553 struct stripe_head *sh,
2554 struct stripe_head_state *s,
2555 int disks)
a4456856
DW
2556{
2557 int rmw = 0, rcw = 0, i;
c8ac1803
N
2558 if (conf->max_degraded == 2) {
2559 /* RAID6 requires 'rcw' in current implementation
2560 * Calculate the real rcw later - for now fake it
2561 * look like rcw is cheaper
2562 */
2563 rcw = 1; rmw = 2;
2564 } else for (i = disks; i--; ) {
a4456856
DW
2565 /* would I have to read this buffer for read_modify_write */
2566 struct r5dev *dev = &sh->dev[i];
2567 if ((dev->towrite || i == sh->pd_idx) &&
2568 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2569 !(test_bit(R5_UPTODATE, &dev->flags) ||
2570 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2571 if (test_bit(R5_Insync, &dev->flags))
2572 rmw++;
2573 else
2574 rmw += 2*disks; /* cannot read it */
2575 }
2576 /* Would I have to read this buffer for reconstruct_write */
2577 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2578 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2579 !(test_bit(R5_UPTODATE, &dev->flags) ||
2580 test_bit(R5_Wantcompute, &dev->flags))) {
2581 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2582 else
2583 rcw += 2*disks;
2584 }
2585 }
45b4233c 2586 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2587 (unsigned long long)sh->sector, rmw, rcw);
2588 set_bit(STRIPE_HANDLE, &sh->state);
2589 if (rmw < rcw && rmw > 0)
2590 /* prefer read-modify-write, but need to get some data */
2591 for (i = disks; i--; ) {
2592 struct r5dev *dev = &sh->dev[i];
2593 if ((dev->towrite || i == sh->pd_idx) &&
2594 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2595 !(test_bit(R5_UPTODATE, &dev->flags) ||
2596 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2597 test_bit(R5_Insync, &dev->flags)) {
2598 if (
2599 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2600 pr_debug("Read_old block "
a4456856
DW
2601 "%d for r-m-w\n", i);
2602 set_bit(R5_LOCKED, &dev->flags);
2603 set_bit(R5_Wantread, &dev->flags);
2604 s->locked++;
2605 } else {
2606 set_bit(STRIPE_DELAYED, &sh->state);
2607 set_bit(STRIPE_HANDLE, &sh->state);
2608 }
2609 }
2610 }
c8ac1803 2611 if (rcw <= rmw && rcw > 0) {
a4456856 2612 /* want reconstruct write, but need to get some data */
c8ac1803 2613 rcw = 0;
a4456856
DW
2614 for (i = disks; i--; ) {
2615 struct r5dev *dev = &sh->dev[i];
2616 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 2617 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 2618 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 2619 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
2620 test_bit(R5_Wantcompute, &dev->flags))) {
2621 rcw++;
2622 if (!test_bit(R5_Insync, &dev->flags))
2623 continue; /* it's a failed drive */
a4456856
DW
2624 if (
2625 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2626 pr_debug("Read_old block "
a4456856
DW
2627 "%d for Reconstruct\n", i);
2628 set_bit(R5_LOCKED, &dev->flags);
2629 set_bit(R5_Wantread, &dev->flags);
2630 s->locked++;
2631 } else {
2632 set_bit(STRIPE_DELAYED, &sh->state);
2633 set_bit(STRIPE_HANDLE, &sh->state);
2634 }
2635 }
2636 }
c8ac1803 2637 }
a4456856
DW
2638 /* now if nothing is locked, and if we have enough data,
2639 * we can start a write request
2640 */
f38e1219
DW
2641 /* since handle_stripe can be called at any time we need to handle the
2642 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
2643 * subsequent call wants to start a write request. raid_run_ops only
2644 * handles the case where compute block and reconstruct are requested
f38e1219
DW
2645 * simultaneously. If this is not the case then new writes need to be
2646 * held off until the compute completes.
2647 */
976ea8d4
DW
2648 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2649 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2650 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 2651 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
2652}
2653
a4456856
DW
2654static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2655 struct stripe_head_state *s, int disks)
2656{
ecc65c9b 2657 struct r5dev *dev = NULL;
bd2ab670 2658
a4456856 2659 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2660
ecc65c9b
DW
2661 switch (sh->check_state) {
2662 case check_state_idle:
2663 /* start a new check operation if there are no failures */
bd2ab670 2664 if (s->failed == 0) {
bd2ab670 2665 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2666 sh->check_state = check_state_run;
2667 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2668 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2669 s->uptodate--;
ecc65c9b 2670 break;
bd2ab670 2671 }
f2b3b44d 2672 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
2673 /* fall through */
2674 case check_state_compute_result:
2675 sh->check_state = check_state_idle;
2676 if (!dev)
2677 dev = &sh->dev[sh->pd_idx];
2678
2679 /* check that a write has not made the stripe insync */
2680 if (test_bit(STRIPE_INSYNC, &sh->state))
2681 break;
c8894419 2682
a4456856 2683 /* either failed parity check, or recovery is happening */
a4456856
DW
2684 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2685 BUG_ON(s->uptodate != disks);
2686
2687 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2688 s->locked++;
a4456856 2689 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2690
a4456856 2691 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2692 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2693 break;
2694 case check_state_run:
2695 break; /* we will be called again upon completion */
2696 case check_state_check_result:
2697 sh->check_state = check_state_idle;
2698
2699 /* if a failure occurred during the check operation, leave
2700 * STRIPE_INSYNC not set and let the stripe be handled again
2701 */
2702 if (s->failed)
2703 break;
2704
2705 /* handle a successful check operation, if parity is correct
2706 * we are done. Otherwise update the mismatch count and repair
2707 * parity if !MD_RECOVERY_CHECK
2708 */
ad283ea4 2709 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
2710 /* parity is correct (on disc,
2711 * not in buffer any more)
2712 */
2713 set_bit(STRIPE_INSYNC, &sh->state);
2714 else {
2715 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2716 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2717 /* don't try to repair!! */
2718 set_bit(STRIPE_INSYNC, &sh->state);
2719 else {
2720 sh->check_state = check_state_compute_run;
976ea8d4 2721 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2722 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2723 set_bit(R5_Wantcompute,
2724 &sh->dev[sh->pd_idx].flags);
2725 sh->ops.target = sh->pd_idx;
ac6b53b6 2726 sh->ops.target2 = -1;
ecc65c9b
DW
2727 s->uptodate++;
2728 }
2729 }
2730 break;
2731 case check_state_compute_run:
2732 break;
2733 default:
2734 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2735 __func__, sh->check_state,
2736 (unsigned long long) sh->sector);
2737 BUG();
a4456856
DW
2738 }
2739}
2740
2741
2742static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
36d1c647 2743 struct stripe_head_state *s,
f2b3b44d 2744 int disks)
a4456856 2745{
a4456856 2746 int pd_idx = sh->pd_idx;
34e04e87 2747 int qd_idx = sh->qd_idx;
d82dfee0 2748 struct r5dev *dev;
a4456856
DW
2749
2750 set_bit(STRIPE_HANDLE, &sh->state);
2751
2752 BUG_ON(s->failed > 2);
d82dfee0 2753
a4456856
DW
2754 /* Want to check and possibly repair P and Q.
2755 * However there could be one 'failed' device, in which
2756 * case we can only check one of them, possibly using the
2757 * other to generate missing data
2758 */
2759
d82dfee0
DW
2760 switch (sh->check_state) {
2761 case check_state_idle:
2762 /* start a new check operation if there are < 2 failures */
f2b3b44d 2763 if (s->failed == s->q_failed) {
d82dfee0 2764 /* The only possible failed device holds Q, so it
a4456856
DW
2765 * makes sense to check P (If anything else were failed,
2766 * we would have used P to recreate it).
2767 */
d82dfee0 2768 sh->check_state = check_state_run;
a4456856 2769 }
f2b3b44d 2770 if (!s->q_failed && s->failed < 2) {
d82dfee0 2771 /* Q is not failed, and we didn't use it to generate
a4456856
DW
2772 * anything, so it makes sense to check it
2773 */
d82dfee0
DW
2774 if (sh->check_state == check_state_run)
2775 sh->check_state = check_state_run_pq;
2776 else
2777 sh->check_state = check_state_run_q;
a4456856 2778 }
a4456856 2779
d82dfee0
DW
2780 /* discard potentially stale zero_sum_result */
2781 sh->ops.zero_sum_result = 0;
a4456856 2782
d82dfee0
DW
2783 if (sh->check_state == check_state_run) {
2784 /* async_xor_zero_sum destroys the contents of P */
2785 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2786 s->uptodate--;
a4456856 2787 }
d82dfee0
DW
2788 if (sh->check_state >= check_state_run &&
2789 sh->check_state <= check_state_run_pq) {
2790 /* async_syndrome_zero_sum preserves P and Q, so
2791 * no need to mark them !uptodate here
2792 */
2793 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2794 break;
a4456856
DW
2795 }
2796
d82dfee0
DW
2797 /* we have 2-disk failure */
2798 BUG_ON(s->failed != 2);
2799 /* fall through */
2800 case check_state_compute_result:
2801 sh->check_state = check_state_idle;
a4456856 2802
d82dfee0
DW
2803 /* check that a write has not made the stripe insync */
2804 if (test_bit(STRIPE_INSYNC, &sh->state))
2805 break;
a4456856
DW
2806
2807 /* now write out any block on a failed drive,
d82dfee0 2808 * or P or Q if they were recomputed
a4456856 2809 */
d82dfee0 2810 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 2811 if (s->failed == 2) {
f2b3b44d 2812 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
2813 s->locked++;
2814 set_bit(R5_LOCKED, &dev->flags);
2815 set_bit(R5_Wantwrite, &dev->flags);
2816 }
2817 if (s->failed >= 1) {
f2b3b44d 2818 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
2819 s->locked++;
2820 set_bit(R5_LOCKED, &dev->flags);
2821 set_bit(R5_Wantwrite, &dev->flags);
2822 }
d82dfee0 2823 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
2824 dev = &sh->dev[pd_idx];
2825 s->locked++;
2826 set_bit(R5_LOCKED, &dev->flags);
2827 set_bit(R5_Wantwrite, &dev->flags);
2828 }
d82dfee0 2829 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
2830 dev = &sh->dev[qd_idx];
2831 s->locked++;
2832 set_bit(R5_LOCKED, &dev->flags);
2833 set_bit(R5_Wantwrite, &dev->flags);
2834 }
2835 clear_bit(STRIPE_DEGRADED, &sh->state);
2836
2837 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
2838 break;
2839 case check_state_run:
2840 case check_state_run_q:
2841 case check_state_run_pq:
2842 break; /* we will be called again upon completion */
2843 case check_state_check_result:
2844 sh->check_state = check_state_idle;
2845
2846 /* handle a successful check operation, if parity is correct
2847 * we are done. Otherwise update the mismatch count and repair
2848 * parity if !MD_RECOVERY_CHECK
2849 */
2850 if (sh->ops.zero_sum_result == 0) {
2851 /* both parities are correct */
2852 if (!s->failed)
2853 set_bit(STRIPE_INSYNC, &sh->state);
2854 else {
2855 /* in contrast to the raid5 case we can validate
2856 * parity, but still have a failure to write
2857 * back
2858 */
2859 sh->check_state = check_state_compute_result;
2860 /* Returning at this point means that we may go
2861 * off and bring p and/or q uptodate again so
2862 * we make sure to check zero_sum_result again
2863 * to verify if p or q need writeback
2864 */
2865 }
2866 } else {
2867 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2868 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2869 /* don't try to repair!! */
2870 set_bit(STRIPE_INSYNC, &sh->state);
2871 else {
2872 int *target = &sh->ops.target;
2873
2874 sh->ops.target = -1;
2875 sh->ops.target2 = -1;
2876 sh->check_state = check_state_compute_run;
2877 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2878 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2879 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2880 set_bit(R5_Wantcompute,
2881 &sh->dev[pd_idx].flags);
2882 *target = pd_idx;
2883 target = &sh->ops.target2;
2884 s->uptodate++;
2885 }
2886 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2887 set_bit(R5_Wantcompute,
2888 &sh->dev[qd_idx].flags);
2889 *target = qd_idx;
2890 s->uptodate++;
2891 }
2892 }
2893 }
2894 break;
2895 case check_state_compute_run:
2896 break;
2897 default:
2898 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2899 __func__, sh->check_state,
2900 (unsigned long long) sh->sector);
2901 BUG();
a4456856
DW
2902 }
2903}
2904
86c374ba 2905static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
a4456856
DW
2906{
2907 int i;
2908
2909 /* We have read all the blocks in this stripe and now we need to
2910 * copy some of them into a target stripe for expand.
2911 */
f0a50d37 2912 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2913 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2914 for (i = 0; i < sh->disks; i++)
34e04e87 2915 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 2916 int dd_idx, j;
a4456856 2917 struct stripe_head *sh2;
a08abd8c 2918 struct async_submit_ctl submit;
a4456856 2919
784052ec 2920 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
2921 sector_t s = raid5_compute_sector(conf, bn, 0,
2922 &dd_idx, NULL);
a8c906ca 2923 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
2924 if (sh2 == NULL)
2925 /* so far only the early blocks of this stripe
2926 * have been requested. When later blocks
2927 * get requested, we will try again
2928 */
2929 continue;
2930 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2931 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2932 /* must have already done this block */
2933 release_stripe(sh2);
2934 continue;
2935 }
f0a50d37
DW
2936
2937 /* place all the copies on one channel */
a08abd8c 2938 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 2939 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 2940 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 2941 &submit);
f0a50d37 2942
a4456856
DW
2943 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2944 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2945 for (j = 0; j < conf->raid_disks; j++)
2946 if (j != sh2->pd_idx &&
86c374ba 2947 j != sh2->qd_idx &&
a4456856
DW
2948 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2949 break;
2950 if (j == conf->raid_disks) {
2951 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2952 set_bit(STRIPE_HANDLE, &sh2->state);
2953 }
2954 release_stripe(sh2);
f0a50d37 2955
a4456856 2956 }
a2e08551
N
2957 /* done submitting copies, wait for them to complete */
2958 if (tx) {
2959 async_tx_ack(tx);
2960 dma_wait_for_async_tx(tx);
2961 }
a4456856 2962}
1da177e4 2963
6bfe0b49 2964
1da177e4
LT
2965/*
2966 * handle_stripe - do things to a stripe.
2967 *
2968 * We lock the stripe and then examine the state of various bits
2969 * to see what needs to be done.
2970 * Possible results:
2971 * return some read request which now have data
2972 * return some write requests which are safely on disc
2973 * schedule a read on some buffers
2974 * schedule a write of some buffers
2975 * return confirmation of parity correctness
2976 *
1da177e4
LT
2977 * buffers are taken off read_list or write_list, and bh_cache buffers
2978 * get BH_Lock set before the stripe lock is released.
2979 *
2980 */
a4456856 2981
acfe726b 2982static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 2983{
bff61975 2984 raid5_conf_t *conf = sh->raid_conf;
f416885e 2985 int disks = sh->disks;
474af965
N
2986 struct r5dev *dev;
2987 int i;
1da177e4 2988
acfe726b
N
2989 memset(s, 0, sizeof(*s));
2990
2991 s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2992 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2993 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2994 s->failed_num[0] = -1;
2995 s->failed_num[1] = -1;
1da177e4 2996
acfe726b 2997 /* Now to look around and see what can be done */
1da177e4 2998 rcu_read_lock();
c4c1663b 2999 spin_lock_irq(&conf->device_lock);
16a53ecc
N
3000 for (i=disks; i--; ) {
3001 mdk_rdev_t *rdev;
31c176ec
N
3002 sector_t first_bad;
3003 int bad_sectors;
3004 int is_bad = 0;
acfe726b 3005
16a53ecc 3006 dev = &sh->dev[i];
1da177e4 3007
45b4233c 3008 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc 3009 i, dev->flags, dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3010 /* maybe we can reply to a read
3011 *
3012 * new wantfill requests are only permitted while
3013 * ops_complete_biofill is guaranteed to be inactive
3014 */
3015 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3016 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3017 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3018
16a53ecc 3019 /* now count some things */
cc94015a
N
3020 if (test_bit(R5_LOCKED, &dev->flags))
3021 s->locked++;
3022 if (test_bit(R5_UPTODATE, &dev->flags))
3023 s->uptodate++;
2d6e4ecc 3024 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
3025 s->compute++;
3026 BUG_ON(s->compute > 2);
2d6e4ecc 3027 }
1da177e4 3028
acfe726b 3029 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 3030 s->to_fill++;
acfe726b 3031 else if (dev->toread)
cc94015a 3032 s->to_read++;
16a53ecc 3033 if (dev->towrite) {
cc94015a 3034 s->to_write++;
16a53ecc 3035 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 3036 s->non_overwrite++;
16a53ecc 3037 }
a4456856 3038 if (dev->written)
cc94015a 3039 s->written++;
16a53ecc 3040 rdev = rcu_dereference(conf->disks[i].rdev);
31c176ec
N
3041 if (rdev) {
3042 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3043 &first_bad, &bad_sectors);
3044 if (s->blocked_rdev == NULL
3045 && (test_bit(Blocked, &rdev->flags)
3046 || is_bad < 0)) {
3047 if (is_bad < 0)
3048 set_bit(BlockedBadBlocks,
3049 &rdev->flags);
3050 s->blocked_rdev = rdev;
3051 atomic_inc(&rdev->nr_pending);
3052 }
6bfe0b49 3053 }
415e72d0
N
3054 clear_bit(R5_Insync, &dev->flags);
3055 if (!rdev)
3056 /* Not in-sync */;
31c176ec
N
3057 else if (is_bad) {
3058 /* also not in-sync */
3059 if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3060 /* treat as in-sync, but with a read error
3061 * which we can now try to correct
3062 */
3063 set_bit(R5_Insync, &dev->flags);
3064 set_bit(R5_ReadError, &dev->flags);
3065 }
3066 } else if (test_bit(In_sync, &rdev->flags))
415e72d0
N
3067 set_bit(R5_Insync, &dev->flags);
3068 else {
3069 /* in sync if before recovery_offset */
3070 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3071 set_bit(R5_Insync, &dev->flags);
3072 }
bc2607f3
N
3073 if (test_bit(R5_WriteError, &dev->flags)) {
3074 clear_bit(R5_Insync, &dev->flags);
3075 if (!test_bit(Faulty, &rdev->flags)) {
3076 s->handle_bad_blocks = 1;
3077 atomic_inc(&rdev->nr_pending);
3078 } else
3079 clear_bit(R5_WriteError, &dev->flags);
3080 }
415e72d0 3081 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
3082 /* The ReadError flag will just be confusing now */
3083 clear_bit(R5_ReadError, &dev->flags);
3084 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3085 }
415e72d0
N
3086 if (test_bit(R5_ReadError, &dev->flags))
3087 clear_bit(R5_Insync, &dev->flags);
3088 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
3089 if (s->failed < 2)
3090 s->failed_num[s->failed] = i;
3091 s->failed++;
415e72d0 3092 }
1da177e4 3093 }
c4c1663b 3094 spin_unlock_irq(&conf->device_lock);
1da177e4 3095 rcu_read_unlock();
cc94015a
N
3096}
3097
3098static void handle_stripe(struct stripe_head *sh)
3099{
3100 struct stripe_head_state s;
474af965 3101 raid5_conf_t *conf = sh->raid_conf;
3687c061 3102 int i;
84789554
N
3103 int prexor;
3104 int disks = sh->disks;
474af965 3105 struct r5dev *pdev, *qdev;
cc94015a
N
3106
3107 clear_bit(STRIPE_HANDLE, &sh->state);
3108 if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3109 /* already being handled, ensure it gets handled
3110 * again when current action finishes */
3111 set_bit(STRIPE_HANDLE, &sh->state);
3112 return;
3113 }
3114
3115 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3116 set_bit(STRIPE_SYNCING, &sh->state);
3117 clear_bit(STRIPE_INSYNC, &sh->state);
3118 }
3119 clear_bit(STRIPE_DELAYED, &sh->state);
3120
3121 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3122 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3123 (unsigned long long)sh->sector, sh->state,
3124 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3125 sh->check_state, sh->reconstruct_state);
3687c061 3126
acfe726b 3127 analyse_stripe(sh, &s);
c5a31000 3128
bc2607f3
N
3129 if (s.handle_bad_blocks) {
3130 set_bit(STRIPE_HANDLE, &sh->state);
3131 goto finish;
3132 }
3133
474af965
N
3134 if (unlikely(s.blocked_rdev)) {
3135 if (s.syncing || s.expanding || s.expanded ||
3136 s.to_write || s.written) {
3137 set_bit(STRIPE_HANDLE, &sh->state);
3138 goto finish;
3139 }
3140 /* There is nothing for the blocked_rdev to block */
3141 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3142 s.blocked_rdev = NULL;
3143 }
3144
3145 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3146 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3147 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3148 }
3149
3150 pr_debug("locked=%d uptodate=%d to_read=%d"
3151 " to_write=%d failed=%d failed_num=%d,%d\n",
3152 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3153 s.failed_num[0], s.failed_num[1]);
3154 /* check if the array has lost more than max_degraded devices and,
3155 * if so, some requests might need to be failed.
3156 */
3157 if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
3158 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
7f0da59b
N
3159 if (s.failed > conf->max_degraded && s.syncing)
3160 handle_failed_sync(conf, sh, &s);
474af965
N
3161
3162 /*
3163 * might be able to return some write requests if the parity blocks
3164 * are safe, or on a failed drive
3165 */
3166 pdev = &sh->dev[sh->pd_idx];
3167 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3168 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3169 qdev = &sh->dev[sh->qd_idx];
3170 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3171 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3172 || conf->level < 6;
3173
3174 if (s.written &&
3175 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3176 && !test_bit(R5_LOCKED, &pdev->flags)
3177 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3178 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3179 && !test_bit(R5_LOCKED, &qdev->flags)
3180 && test_bit(R5_UPTODATE, &qdev->flags)))))
3181 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3182
3183 /* Now we might consider reading some blocks, either to check/generate
3184 * parity, or to satisfy requests
3185 * or to load a block that is being partially written.
3186 */
3187 if (s.to_read || s.non_overwrite
3188 || (conf->level == 6 && s.to_write && s.failed)
3189 || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3190 handle_stripe_fill(sh, &s, disks);
3191
84789554
N
3192 /* Now we check to see if any write operations have recently
3193 * completed
3194 */
3195 prexor = 0;
3196 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3197 prexor = 1;
3198 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3199 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3200 sh->reconstruct_state = reconstruct_state_idle;
3201
3202 /* All the 'written' buffers and the parity block are ready to
3203 * be written back to disk
3204 */
3205 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3206 BUG_ON(sh->qd_idx >= 0 &&
3207 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3208 for (i = disks; i--; ) {
3209 struct r5dev *dev = &sh->dev[i];
3210 if (test_bit(R5_LOCKED, &dev->flags) &&
3211 (i == sh->pd_idx || i == sh->qd_idx ||
3212 dev->written)) {
3213 pr_debug("Writing block %d\n", i);
3214 set_bit(R5_Wantwrite, &dev->flags);
3215 if (prexor)
3216 continue;
3217 if (!test_bit(R5_Insync, &dev->flags) ||
3218 ((i == sh->pd_idx || i == sh->qd_idx) &&
3219 s.failed == 0))
3220 set_bit(STRIPE_INSYNC, &sh->state);
3221 }
3222 }
3223 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3224 s.dec_preread_active = 1;
3225 }
3226
3227 /* Now to consider new write requests and what else, if anything
3228 * should be read. We do not handle new writes when:
3229 * 1/ A 'write' operation (copy+xor) is already in flight.
3230 * 2/ A 'check' operation is in flight, as it may clobber the parity
3231 * block.
3232 */
3233 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3234 handle_stripe_dirtying(conf, sh, &s, disks);
3235
3236 /* maybe we need to check and possibly fix the parity for this stripe
3237 * Any reads will already have been scheduled, so we just see if enough
3238 * data is available. The parity check is held off while parity
3239 * dependent operations are in flight.
3240 */
3241 if (sh->check_state ||
3242 (s.syncing && s.locked == 0 &&
3243 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3244 !test_bit(STRIPE_INSYNC, &sh->state))) {
3245 if (conf->level == 6)
3246 handle_parity_checks6(conf, sh, &s, disks);
3247 else
3248 handle_parity_checks5(conf, sh, &s, disks);
3249 }
c5a31000
N
3250
3251 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3252 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3253 clear_bit(STRIPE_SYNCING, &sh->state);
3254 }
3255
3256 /* If the failed drives are just a ReadError, then we might need
3257 * to progress the repair/check process
3258 */
3259 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3260 for (i = 0; i < s.failed; i++) {
3261 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3262 if (test_bit(R5_ReadError, &dev->flags)
3263 && !test_bit(R5_LOCKED, &dev->flags)
3264 && test_bit(R5_UPTODATE, &dev->flags)
3265 ) {
3266 if (!test_bit(R5_ReWrite, &dev->flags)) {
3267 set_bit(R5_Wantwrite, &dev->flags);
3268 set_bit(R5_ReWrite, &dev->flags);
3269 set_bit(R5_LOCKED, &dev->flags);
3270 s.locked++;
3271 } else {
3272 /* let's read it back */
3273 set_bit(R5_Wantread, &dev->flags);
3274 set_bit(R5_LOCKED, &dev->flags);
3275 s.locked++;
3276 }
3277 }
3278 }
3279
3280
3687c061
N
3281 /* Finish reconstruct operations initiated by the expansion process */
3282 if (sh->reconstruct_state == reconstruct_state_result) {
3283 struct stripe_head *sh_src
3284 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3285 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3286 /* sh cannot be written until sh_src has been read.
3287 * so arrange for sh to be delayed a little
3288 */
3289 set_bit(STRIPE_DELAYED, &sh->state);
3290 set_bit(STRIPE_HANDLE, &sh->state);
3291 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3292 &sh_src->state))
3293 atomic_inc(&conf->preread_active_stripes);
3294 release_stripe(sh_src);
3295 goto finish;
3296 }
3297 if (sh_src)
3298 release_stripe(sh_src);
3299
3300 sh->reconstruct_state = reconstruct_state_idle;
3301 clear_bit(STRIPE_EXPANDING, &sh->state);
3302 for (i = conf->raid_disks; i--; ) {
3303 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3304 set_bit(R5_LOCKED, &sh->dev[i].flags);
3305 s.locked++;
3306 }
3307 }
f416885e 3308
3687c061
N
3309 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3310 !sh->reconstruct_state) {
3311 /* Need to write out all blocks after computing parity */
3312 sh->disks = conf->raid_disks;
3313 stripe_set_idx(sh->sector, conf, 0, sh);
3314 schedule_reconstruction(sh, &s, 1, 1);
3315 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3316 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3317 atomic_dec(&conf->reshape_stripes);
3318 wake_up(&conf->wait_for_overlap);
3319 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3320 }
3321
3322 if (s.expanding && s.locked == 0 &&
3323 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3324 handle_stripe_expansion(conf, sh);
16a53ecc 3325
3687c061 3326finish:
6bfe0b49 3327 /* wait for this device to become unblocked */
c5709ef6
N
3328 if (unlikely(s.blocked_rdev))
3329 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
6bfe0b49 3330
bc2607f3
N
3331 if (s.handle_bad_blocks)
3332 for (i = disks; i--; ) {
3333 mdk_rdev_t *rdev;
3334 struct r5dev *dev = &sh->dev[i];
3335 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3336 /* We own a safe reference to the rdev */
3337 rdev = conf->disks[i].rdev;
3338 if (!rdev_set_badblocks(rdev, sh->sector,
3339 STRIPE_SECTORS, 0))
3340 md_error(conf->mddev, rdev);
3341 rdev_dec_pending(rdev, conf->mddev);
3342 }
3343 }
3344
6c0069c0
YT
3345 if (s.ops_request)
3346 raid_run_ops(sh, s.ops_request);
3347
f0e43bcd 3348 ops_run_io(sh, &s);
16a53ecc 3349
c5709ef6 3350 if (s.dec_preread_active) {
729a1866 3351 /* We delay this until after ops_run_io so that if make_request
e9c7469b 3352 * is waiting on a flush, it won't continue until the writes
729a1866
N
3353 * have actually been submitted.
3354 */
3355 atomic_dec(&conf->preread_active_stripes);
3356 if (atomic_read(&conf->preread_active_stripes) <
3357 IO_THRESHOLD)
3358 md_wakeup_thread(conf->mddev->thread);
3359 }
3360
c5709ef6 3361 return_io(s.return_bi);
16a53ecc 3362
c4c1663b 3363 clear_bit(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
3364}
3365
16a53ecc
N
3366static void raid5_activate_delayed(raid5_conf_t *conf)
3367{
3368 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3369 while (!list_empty(&conf->delayed_list)) {
3370 struct list_head *l = conf->delayed_list.next;
3371 struct stripe_head *sh;
3372 sh = list_entry(l, struct stripe_head, lru);
3373 list_del_init(l);
3374 clear_bit(STRIPE_DELAYED, &sh->state);
3375 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3376 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3377 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3378 }
482c0834 3379 }
16a53ecc
N
3380}
3381
3382static void activate_bit_delay(raid5_conf_t *conf)
3383{
3384 /* device_lock is held */
3385 struct list_head head;
3386 list_add(&head, &conf->bitmap_list);
3387 list_del_init(&conf->bitmap_list);
3388 while (!list_empty(&head)) {
3389 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3390 list_del_init(&sh->lru);
3391 atomic_inc(&sh->count);
3392 __release_stripe(conf, sh);
3393 }
3394}
3395
11d8a6e3 3396int md_raid5_congested(mddev_t *mddev, int bits)
f022b2fd 3397{
070ec55d 3398 raid5_conf_t *conf = mddev->private;
f022b2fd
N
3399
3400 /* No difference between reads and writes. Just check
3401 * how busy the stripe_cache is
3402 */
3fa841d7 3403
f022b2fd
N
3404 if (conf->inactive_blocked)
3405 return 1;
3406 if (conf->quiesce)
3407 return 1;
3408 if (list_empty_careful(&conf->inactive_list))
3409 return 1;
3410
3411 return 0;
3412}
11d8a6e3
N
3413EXPORT_SYMBOL_GPL(md_raid5_congested);
3414
3415static int raid5_congested(void *data, int bits)
3416{
3417 mddev_t *mddev = data;
3418
3419 return mddev_congested(mddev, bits) ||
3420 md_raid5_congested(mddev, bits);
3421}
f022b2fd 3422
23032a0e
RBJ
3423/* We want read requests to align with chunks where possible,
3424 * but write requests don't need to.
3425 */
cc371e66
AK
3426static int raid5_mergeable_bvec(struct request_queue *q,
3427 struct bvec_merge_data *bvm,
3428 struct bio_vec *biovec)
23032a0e
RBJ
3429{
3430 mddev_t *mddev = q->queuedata;
cc371e66 3431 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 3432 int max;
9d8f0363 3433 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 3434 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3435
cc371e66 3436 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3437 return biovec->bv_len; /* always allow writes to be mergeable */
3438
664e7c41
AN
3439 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3440 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
3441 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3442 if (max < 0) max = 0;
3443 if (max <= biovec->bv_len && bio_sectors == 0)
3444 return biovec->bv_len;
3445 else
3446 return max;
3447}
3448
f679623f
RBJ
3449
3450static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3451{
3452 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 3453 unsigned int chunk_sectors = mddev->chunk_sectors;
f679623f
RBJ
3454 unsigned int bio_sectors = bio->bi_size >> 9;
3455
664e7c41
AN
3456 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3457 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
3458 return chunk_sectors >=
3459 ((sector & (chunk_sectors - 1)) + bio_sectors);
3460}
3461
46031f9a
RBJ
3462/*
3463 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3464 * later sampled by raid5d.
3465 */
3466static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3467{
3468 unsigned long flags;
3469
3470 spin_lock_irqsave(&conf->device_lock, flags);
3471
3472 bi->bi_next = conf->retry_read_aligned_list;
3473 conf->retry_read_aligned_list = bi;
3474
3475 spin_unlock_irqrestore(&conf->device_lock, flags);
3476 md_wakeup_thread(conf->mddev->thread);
3477}
3478
3479
3480static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3481{
3482 struct bio *bi;
3483
3484 bi = conf->retry_read_aligned;
3485 if (bi) {
3486 conf->retry_read_aligned = NULL;
3487 return bi;
3488 }
3489 bi = conf->retry_read_aligned_list;
3490 if(bi) {
387bb173 3491 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3492 bi->bi_next = NULL;
960e739d
JA
3493 /*
3494 * this sets the active strip count to 1 and the processed
3495 * strip count to zero (upper 8 bits)
3496 */
46031f9a 3497 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3498 }
3499
3500 return bi;
3501}
3502
3503
f679623f
RBJ
3504/*
3505 * The "raid5_align_endio" should check if the read succeeded and if it
3506 * did, call bio_endio on the original bio (having bio_put the new bio
3507 * first).
3508 * If the read failed..
3509 */
6712ecf8 3510static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3511{
3512 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3513 mddev_t *mddev;
3514 raid5_conf_t *conf;
3515 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3516 mdk_rdev_t *rdev;
3517
f679623f 3518 bio_put(bi);
46031f9a 3519
46031f9a
RBJ
3520 rdev = (void*)raid_bi->bi_next;
3521 raid_bi->bi_next = NULL;
2b7f2228
N
3522 mddev = rdev->mddev;
3523 conf = mddev->private;
46031f9a
RBJ
3524
3525 rdev_dec_pending(rdev, conf->mddev);
3526
3527 if (!error && uptodate) {
6712ecf8 3528 bio_endio(raid_bi, 0);
46031f9a
RBJ
3529 if (atomic_dec_and_test(&conf->active_aligned_reads))
3530 wake_up(&conf->wait_for_stripe);
6712ecf8 3531 return;
46031f9a
RBJ
3532 }
3533
3534
45b4233c 3535 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3536
3537 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3538}
3539
387bb173
NB
3540static int bio_fits_rdev(struct bio *bi)
3541{
165125e1 3542 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 3543
ae03bf63 3544 if ((bi->bi_size>>9) > queue_max_sectors(q))
387bb173
NB
3545 return 0;
3546 blk_recount_segments(q, bi);
8a78362c 3547 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
3548 return 0;
3549
3550 if (q->merge_bvec_fn)
3551 /* it's too hard to apply the merge_bvec_fn at this stage,
3552 * just just give up
3553 */
3554 return 0;
3555
3556 return 1;
3557}
3558
3559
21a52c6d 3560static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
f679623f 3561{
070ec55d 3562 raid5_conf_t *conf = mddev->private;
8553fe7e 3563 int dd_idx;
f679623f
RBJ
3564 struct bio* align_bi;
3565 mdk_rdev_t *rdev;
3566
3567 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3568 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3569 return 0;
3570 }
3571 /*
a167f663 3572 * use bio_clone_mddev to make a copy of the bio
f679623f 3573 */
a167f663 3574 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
3575 if (!align_bi)
3576 return 0;
3577 /*
3578 * set bi_end_io to a new function, and set bi_private to the
3579 * original bio.
3580 */
3581 align_bi->bi_end_io = raid5_align_endio;
3582 align_bi->bi_private = raid_bio;
3583 /*
3584 * compute position
3585 */
112bf897
N
3586 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3587 0,
911d4ee8 3588 &dd_idx, NULL);
f679623f
RBJ
3589
3590 rcu_read_lock();
3591 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3592 if (rdev && test_bit(In_sync, &rdev->flags)) {
31c176ec
N
3593 sector_t first_bad;
3594 int bad_sectors;
3595
f679623f
RBJ
3596 atomic_inc(&rdev->nr_pending);
3597 rcu_read_unlock();
46031f9a
RBJ
3598 raid_bio->bi_next = (void*)rdev;
3599 align_bi->bi_bdev = rdev->bdev;
3600 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3601 align_bi->bi_sector += rdev->data_offset;
3602
31c176ec
N
3603 if (!bio_fits_rdev(align_bi) ||
3604 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3605 &first_bad, &bad_sectors)) {
3606 /* too big in some way, or has a known bad block */
387bb173
NB
3607 bio_put(align_bi);
3608 rdev_dec_pending(rdev, mddev);
3609 return 0;
3610 }
3611
46031f9a
RBJ
3612 spin_lock_irq(&conf->device_lock);
3613 wait_event_lock_irq(conf->wait_for_stripe,
3614 conf->quiesce == 0,
3615 conf->device_lock, /* nothing */);
3616 atomic_inc(&conf->active_aligned_reads);
3617 spin_unlock_irq(&conf->device_lock);
3618
f679623f
RBJ
3619 generic_make_request(align_bi);
3620 return 1;
3621 } else {
3622 rcu_read_unlock();
46031f9a 3623 bio_put(align_bi);
f679623f
RBJ
3624 return 0;
3625 }
3626}
3627
8b3e6cdc
DW
3628/* __get_priority_stripe - get the next stripe to process
3629 *
3630 * Full stripe writes are allowed to pass preread active stripes up until
3631 * the bypass_threshold is exceeded. In general the bypass_count
3632 * increments when the handle_list is handled before the hold_list; however, it
3633 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3634 * stripe with in flight i/o. The bypass_count will be reset when the
3635 * head of the hold_list has changed, i.e. the head was promoted to the
3636 * handle_list.
3637 */
3638static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3639{
3640 struct stripe_head *sh;
3641
3642 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3643 __func__,
3644 list_empty(&conf->handle_list) ? "empty" : "busy",
3645 list_empty(&conf->hold_list) ? "empty" : "busy",
3646 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3647
3648 if (!list_empty(&conf->handle_list)) {
3649 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3650
3651 if (list_empty(&conf->hold_list))
3652 conf->bypass_count = 0;
3653 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3654 if (conf->hold_list.next == conf->last_hold)
3655 conf->bypass_count++;
3656 else {
3657 conf->last_hold = conf->hold_list.next;
3658 conf->bypass_count -= conf->bypass_threshold;
3659 if (conf->bypass_count < 0)
3660 conf->bypass_count = 0;
3661 }
3662 }
3663 } else if (!list_empty(&conf->hold_list) &&
3664 ((conf->bypass_threshold &&
3665 conf->bypass_count > conf->bypass_threshold) ||
3666 atomic_read(&conf->pending_full_writes) == 0)) {
3667 sh = list_entry(conf->hold_list.next,
3668 typeof(*sh), lru);
3669 conf->bypass_count -= conf->bypass_threshold;
3670 if (conf->bypass_count < 0)
3671 conf->bypass_count = 0;
3672 } else
3673 return NULL;
3674
3675 list_del_init(&sh->lru);
3676 atomic_inc(&sh->count);
3677 BUG_ON(atomic_read(&sh->count) != 1);
3678 return sh;
3679}
f679623f 3680
21a52c6d 3681static int make_request(mddev_t *mddev, struct bio * bi)
1da177e4 3682{
070ec55d 3683 raid5_conf_t *conf = mddev->private;
911d4ee8 3684 int dd_idx;
1da177e4
LT
3685 sector_t new_sector;
3686 sector_t logical_sector, last_sector;
3687 struct stripe_head *sh;
a362357b 3688 const int rw = bio_data_dir(bi);
49077326 3689 int remaining;
7c13edc8 3690 int plugged;
1da177e4 3691
e9c7469b
TH
3692 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3693 md_flush_request(mddev, bi);
e5dcdd80
N
3694 return 0;
3695 }
3696
3d310eb7 3697 md_write_start(mddev, bi);
06d91a5f 3698
802ba064 3699 if (rw == READ &&
52488615 3700 mddev->reshape_position == MaxSector &&
21a52c6d 3701 chunk_aligned_read(mddev,bi))
99c0fb5f 3702 return 0;
52488615 3703
1da177e4
LT
3704 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3705 last_sector = bi->bi_sector + (bi->bi_size>>9);
3706 bi->bi_next = NULL;
3707 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3708
7c13edc8 3709 plugged = mddev_check_plugged(mddev);
1da177e4
LT
3710 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3711 DEFINE_WAIT(w);
16a53ecc 3712 int disks, data_disks;
b5663ba4 3713 int previous;
b578d55f 3714
7ecaa1e6 3715 retry:
b5663ba4 3716 previous = 0;
b0f9ec04 3717 disks = conf->raid_disks;
b578d55f 3718 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 3719 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 3720 /* spinlock is needed as reshape_progress may be
df8e7f76
N
3721 * 64bit on a 32bit platform, and so it might be
3722 * possible to see a half-updated value
aeb878b0 3723 * Of course reshape_progress could change after
df8e7f76
N
3724 * the lock is dropped, so once we get a reference
3725 * to the stripe that we think it is, we will have
3726 * to check again.
3727 */
7ecaa1e6 3728 spin_lock_irq(&conf->device_lock);
fef9c61f
N
3729 if (mddev->delta_disks < 0
3730 ? logical_sector < conf->reshape_progress
3731 : logical_sector >= conf->reshape_progress) {
7ecaa1e6 3732 disks = conf->previous_raid_disks;
b5663ba4
N
3733 previous = 1;
3734 } else {
fef9c61f
N
3735 if (mddev->delta_disks < 0
3736 ? logical_sector < conf->reshape_safe
3737 : logical_sector >= conf->reshape_safe) {
b578d55f
N
3738 spin_unlock_irq(&conf->device_lock);
3739 schedule();
3740 goto retry;
3741 }
3742 }
7ecaa1e6
N
3743 spin_unlock_irq(&conf->device_lock);
3744 }
16a53ecc
N
3745 data_disks = disks - conf->max_degraded;
3746
112bf897
N
3747 new_sector = raid5_compute_sector(conf, logical_sector,
3748 previous,
911d4ee8 3749 &dd_idx, NULL);
0c55e022 3750 pr_debug("raid456: make_request, sector %llu logical %llu\n",
1da177e4
LT
3751 (unsigned long long)new_sector,
3752 (unsigned long long)logical_sector);
3753
b5663ba4 3754 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 3755 (bi->bi_rw&RWA_MASK), 0);
1da177e4 3756 if (sh) {
b0f9ec04 3757 if (unlikely(previous)) {
7ecaa1e6 3758 /* expansion might have moved on while waiting for a
df8e7f76
N
3759 * stripe, so we must do the range check again.
3760 * Expansion could still move past after this
3761 * test, but as we are holding a reference to
3762 * 'sh', we know that if that happens,
3763 * STRIPE_EXPANDING will get set and the expansion
3764 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3765 */
3766 int must_retry = 0;
3767 spin_lock_irq(&conf->device_lock);
b0f9ec04
N
3768 if (mddev->delta_disks < 0
3769 ? logical_sector >= conf->reshape_progress
3770 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
3771 /* mismatch, need to try again */
3772 must_retry = 1;
3773 spin_unlock_irq(&conf->device_lock);
3774 if (must_retry) {
3775 release_stripe(sh);
7a3ab908 3776 schedule();
7ecaa1e6
N
3777 goto retry;
3778 }
3779 }
e62e58a5 3780
ffd96e35 3781 if (rw == WRITE &&
a5c308d4 3782 logical_sector >= mddev->suspend_lo &&
e464eafd
N
3783 logical_sector < mddev->suspend_hi) {
3784 release_stripe(sh);
e62e58a5
N
3785 /* As the suspend_* range is controlled by
3786 * userspace, we want an interruptible
3787 * wait.
3788 */
3789 flush_signals(current);
3790 prepare_to_wait(&conf->wait_for_overlap,
3791 &w, TASK_INTERRUPTIBLE);
3792 if (logical_sector >= mddev->suspend_lo &&
3793 logical_sector < mddev->suspend_hi)
3794 schedule();
e464eafd
N
3795 goto retry;
3796 }
7ecaa1e6
N
3797
3798 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
ffd96e35 3799 !add_stripe_bio(sh, bi, dd_idx, rw)) {
7ecaa1e6
N
3800 /* Stripe is busy expanding or
3801 * add failed due to overlap. Flush everything
1da177e4
LT
3802 * and wait a while
3803 */
482c0834 3804 md_wakeup_thread(mddev->thread);
1da177e4
LT
3805 release_stripe(sh);
3806 schedule();
3807 goto retry;
3808 }
3809 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
3810 set_bit(STRIPE_HANDLE, &sh->state);
3811 clear_bit(STRIPE_DELAYED, &sh->state);
e9c7469b 3812 if ((bi->bi_rw & REQ_SYNC) &&
729a1866
N
3813 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3814 atomic_inc(&conf->preread_active_stripes);
1da177e4 3815 release_stripe(sh);
1da177e4
LT
3816 } else {
3817 /* cannot get stripe for read-ahead, just give-up */
3818 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3819 finish_wait(&conf->wait_for_overlap, &w);
3820 break;
3821 }
3822
3823 }
7c13edc8
N
3824 if (!plugged)
3825 md_wakeup_thread(mddev->thread);
3826
1da177e4 3827 spin_lock_irq(&conf->device_lock);
960e739d 3828 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
3829 spin_unlock_irq(&conf->device_lock);
3830 if (remaining == 0) {
1da177e4 3831
16a53ecc 3832 if ( rw == WRITE )
1da177e4 3833 md_write_end(mddev);
6712ecf8 3834
0e13fe23 3835 bio_endio(bi, 0);
1da177e4 3836 }
729a1866 3837
1da177e4
LT
3838 return 0;
3839}
3840
b522adcd
DW
3841static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3842
52c03291 3843static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 3844{
52c03291
N
3845 /* reshaping is quite different to recovery/resync so it is
3846 * handled quite separately ... here.
3847 *
3848 * On each call to sync_request, we gather one chunk worth of
3849 * destination stripes and flag them as expanding.
3850 * Then we find all the source stripes and request reads.
3851 * As the reads complete, handle_stripe will copy the data
3852 * into the destination stripe and release that stripe.
3853 */
7b92813c 3854 raid5_conf_t *conf = mddev->private;
1da177e4 3855 struct stripe_head *sh;
ccfcc3c1 3856 sector_t first_sector, last_sector;
f416885e
N
3857 int raid_disks = conf->previous_raid_disks;
3858 int data_disks = raid_disks - conf->max_degraded;
3859 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
3860 int i;
3861 int dd_idx;
c8f517c4 3862 sector_t writepos, readpos, safepos;
ec32a2bd 3863 sector_t stripe_addr;
7a661381 3864 int reshape_sectors;
ab69ae12 3865 struct list_head stripes;
52c03291 3866
fef9c61f
N
3867 if (sector_nr == 0) {
3868 /* If restarting in the middle, skip the initial sectors */
3869 if (mddev->delta_disks < 0 &&
3870 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3871 sector_nr = raid5_size(mddev, 0, 0)
3872 - conf->reshape_progress;
a639755c 3873 } else if (mddev->delta_disks >= 0 &&
fef9c61f
N
3874 conf->reshape_progress > 0)
3875 sector_nr = conf->reshape_progress;
f416885e 3876 sector_div(sector_nr, new_data_disks);
fef9c61f 3877 if (sector_nr) {
8dee7211
N
3878 mddev->curr_resync_completed = sector_nr;
3879 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
3880 *skipped = 1;
3881 return sector_nr;
3882 }
52c03291
N
3883 }
3884
7a661381
N
3885 /* We need to process a full chunk at a time.
3886 * If old and new chunk sizes differ, we need to process the
3887 * largest of these
3888 */
664e7c41
AN
3889 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3890 reshape_sectors = mddev->new_chunk_sectors;
7a661381 3891 else
9d8f0363 3892 reshape_sectors = mddev->chunk_sectors;
7a661381 3893
52c03291
N
3894 /* we update the metadata when there is more than 3Meg
3895 * in the block range (that is rather arbitrary, should
3896 * probably be time based) or when the data about to be
3897 * copied would over-write the source of the data at
3898 * the front of the range.
fef9c61f
N
3899 * i.e. one new_stripe along from reshape_progress new_maps
3900 * to after where reshape_safe old_maps to
52c03291 3901 */
fef9c61f 3902 writepos = conf->reshape_progress;
f416885e 3903 sector_div(writepos, new_data_disks);
c8f517c4
N
3904 readpos = conf->reshape_progress;
3905 sector_div(readpos, data_disks);
fef9c61f 3906 safepos = conf->reshape_safe;
f416885e 3907 sector_div(safepos, data_disks);
fef9c61f 3908 if (mddev->delta_disks < 0) {
ed37d83e 3909 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 3910 readpos += reshape_sectors;
7a661381 3911 safepos += reshape_sectors;
fef9c61f 3912 } else {
7a661381 3913 writepos += reshape_sectors;
ed37d83e
N
3914 readpos -= min_t(sector_t, reshape_sectors, readpos);
3915 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 3916 }
52c03291 3917
c8f517c4
N
3918 /* 'writepos' is the most advanced device address we might write.
3919 * 'readpos' is the least advanced device address we might read.
3920 * 'safepos' is the least address recorded in the metadata as having
3921 * been reshaped.
3922 * If 'readpos' is behind 'writepos', then there is no way that we can
3923 * ensure safety in the face of a crash - that must be done by userspace
3924 * making a backup of the data. So in that case there is no particular
3925 * rush to update metadata.
3926 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3927 * update the metadata to advance 'safepos' to match 'readpos' so that
3928 * we can be safe in the event of a crash.
3929 * So we insist on updating metadata if safepos is behind writepos and
3930 * readpos is beyond writepos.
3931 * In any case, update the metadata every 10 seconds.
3932 * Maybe that number should be configurable, but I'm not sure it is
3933 * worth it.... maybe it could be a multiple of safemode_delay???
3934 */
fef9c61f 3935 if ((mddev->delta_disks < 0
c8f517c4
N
3936 ? (safepos > writepos && readpos < writepos)
3937 : (safepos < writepos && readpos > writepos)) ||
3938 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
3939 /* Cannot proceed until we've updated the superblock... */
3940 wait_event(conf->wait_for_overlap,
3941 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 3942 mddev->reshape_position = conf->reshape_progress;
75d3da43 3943 mddev->curr_resync_completed = sector_nr;
c8f517c4 3944 conf->reshape_checkpoint = jiffies;
850b2b42 3945 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 3946 md_wakeup_thread(mddev->thread);
850b2b42 3947 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
3948 kthread_should_stop());
3949 spin_lock_irq(&conf->device_lock);
fef9c61f 3950 conf->reshape_safe = mddev->reshape_position;
52c03291
N
3951 spin_unlock_irq(&conf->device_lock);
3952 wake_up(&conf->wait_for_overlap);
acb180b0 3953 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
3954 }
3955
ec32a2bd
N
3956 if (mddev->delta_disks < 0) {
3957 BUG_ON(conf->reshape_progress == 0);
3958 stripe_addr = writepos;
3959 BUG_ON((mddev->dev_sectors &
7a661381
N
3960 ~((sector_t)reshape_sectors - 1))
3961 - reshape_sectors - stripe_addr
ec32a2bd
N
3962 != sector_nr);
3963 } else {
7a661381 3964 BUG_ON(writepos != sector_nr + reshape_sectors);
ec32a2bd
N
3965 stripe_addr = sector_nr;
3966 }
ab69ae12 3967 INIT_LIST_HEAD(&stripes);
7a661381 3968 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 3969 int j;
a9f326eb 3970 int skipped_disk = 0;
a8c906ca 3971 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
3972 set_bit(STRIPE_EXPANDING, &sh->state);
3973 atomic_inc(&conf->reshape_stripes);
3974 /* If any of this stripe is beyond the end of the old
3975 * array, then we need to zero those blocks
3976 */
3977 for (j=sh->disks; j--;) {
3978 sector_t s;
3979 if (j == sh->pd_idx)
3980 continue;
f416885e 3981 if (conf->level == 6 &&
d0dabf7e 3982 j == sh->qd_idx)
f416885e 3983 continue;
784052ec 3984 s = compute_blocknr(sh, j, 0);
b522adcd 3985 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 3986 skipped_disk = 1;
52c03291
N
3987 continue;
3988 }
3989 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3990 set_bit(R5_Expanded, &sh->dev[j].flags);
3991 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3992 }
a9f326eb 3993 if (!skipped_disk) {
52c03291
N
3994 set_bit(STRIPE_EXPAND_READY, &sh->state);
3995 set_bit(STRIPE_HANDLE, &sh->state);
3996 }
ab69ae12 3997 list_add(&sh->lru, &stripes);
52c03291
N
3998 }
3999 spin_lock_irq(&conf->device_lock);
fef9c61f 4000 if (mddev->delta_disks < 0)
7a661381 4001 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4002 else
7a661381 4003 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4004 spin_unlock_irq(&conf->device_lock);
4005 /* Ok, those stripe are ready. We can start scheduling
4006 * reads on the source stripes.
4007 * The source stripes are determined by mapping the first and last
4008 * block on the destination stripes.
4009 */
52c03291 4010 first_sector =
ec32a2bd 4011 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4012 1, &dd_idx, NULL);
52c03291 4013 last_sector =
0e6e0271 4014 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 4015 * new_data_disks - 1),
911d4ee8 4016 1, &dd_idx, NULL);
58c0fed4
AN
4017 if (last_sector >= mddev->dev_sectors)
4018 last_sector = mddev->dev_sectors - 1;
52c03291 4019 while (first_sector <= last_sector) {
a8c906ca 4020 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
4021 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4022 set_bit(STRIPE_HANDLE, &sh->state);
4023 release_stripe(sh);
4024 first_sector += STRIPE_SECTORS;
4025 }
ab69ae12
N
4026 /* Now that the sources are clearly marked, we can release
4027 * the destination stripes
4028 */
4029 while (!list_empty(&stripes)) {
4030 sh = list_entry(stripes.next, struct stripe_head, lru);
4031 list_del_init(&sh->lru);
4032 release_stripe(sh);
4033 }
c6207277
N
4034 /* If this takes us to the resync_max point where we have to pause,
4035 * then we need to write out the superblock.
4036 */
7a661381 4037 sector_nr += reshape_sectors;
c03f6a19
N
4038 if ((sector_nr - mddev->curr_resync_completed) * 2
4039 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
4040 /* Cannot proceed until we've updated the superblock... */
4041 wait_event(conf->wait_for_overlap,
4042 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 4043 mddev->reshape_position = conf->reshape_progress;
75d3da43 4044 mddev->curr_resync_completed = sector_nr;
c8f517c4 4045 conf->reshape_checkpoint = jiffies;
c6207277
N
4046 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4047 md_wakeup_thread(mddev->thread);
4048 wait_event(mddev->sb_wait,
4049 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4050 || kthread_should_stop());
4051 spin_lock_irq(&conf->device_lock);
fef9c61f 4052 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4053 spin_unlock_irq(&conf->device_lock);
4054 wake_up(&conf->wait_for_overlap);
acb180b0 4055 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 4056 }
7a661381 4057 return reshape_sectors;
52c03291
N
4058}
4059
4060/* FIXME go_faster isn't used */
4061static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4062{
7b92813c 4063 raid5_conf_t *conf = mddev->private;
52c03291 4064 struct stripe_head *sh;
58c0fed4 4065 sector_t max_sector = mddev->dev_sectors;
57dab0bd 4066 sector_t sync_blocks;
16a53ecc
N
4067 int still_degraded = 0;
4068 int i;
1da177e4 4069
72626685 4070 if (sector_nr >= max_sector) {
1da177e4 4071 /* just being told to finish up .. nothing much to do */
cea9c228 4072
29269553
N
4073 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4074 end_reshape(conf);
4075 return 0;
4076 }
72626685
N
4077
4078 if (mddev->curr_resync < max_sector) /* aborted */
4079 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4080 &sync_blocks, 1);
16a53ecc 4081 else /* completed sync */
72626685
N
4082 conf->fullsync = 0;
4083 bitmap_close_sync(mddev->bitmap);
4084
1da177e4
LT
4085 return 0;
4086 }
ccfcc3c1 4087
64bd660b
N
4088 /* Allow raid5_quiesce to complete */
4089 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4090
52c03291
N
4091 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4092 return reshape_request(mddev, sector_nr, skipped);
f6705578 4093
c6207277
N
4094 /* No need to check resync_max as we never do more than one
4095 * stripe, and as resync_max will always be on a chunk boundary,
4096 * if the check in md_do_sync didn't fire, there is no chance
4097 * of overstepping resync_max here
4098 */
4099
16a53ecc 4100 /* if there is too many failed drives and we are trying
1da177e4
LT
4101 * to resync, then assert that we are finished, because there is
4102 * nothing we can do.
4103 */
3285edf1 4104 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4105 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4106 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4107 *skipped = 1;
1da177e4
LT
4108 return rv;
4109 }
72626685 4110 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4111 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4112 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4113 /* we can skip this block, and probably more */
4114 sync_blocks /= STRIPE_SECTORS;
4115 *skipped = 1;
4116 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4117 }
1da177e4 4118
b47490c9
N
4119
4120 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4121
a8c906ca 4122 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 4123 if (sh == NULL) {
a8c906ca 4124 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 4125 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4126 * is trying to get access
1da177e4 4127 */
66c006a5 4128 schedule_timeout_uninterruptible(1);
1da177e4 4129 }
16a53ecc
N
4130 /* Need to check if array will still be degraded after recovery/resync
4131 * We don't need to check the 'failed' flag as when that gets set,
4132 * recovery aborts.
4133 */
f001a70c 4134 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
4135 if (conf->disks[i].rdev == NULL)
4136 still_degraded = 1;
4137
4138 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4139
83206d66 4140 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
1da177e4 4141
1442577b 4142 handle_stripe(sh);
1da177e4
LT
4143 release_stripe(sh);
4144
4145 return STRIPE_SECTORS;
4146}
4147
46031f9a
RBJ
4148static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4149{
4150 /* We may not be able to submit a whole bio at once as there
4151 * may not be enough stripe_heads available.
4152 * We cannot pre-allocate enough stripe_heads as we may need
4153 * more than exist in the cache (if we allow ever large chunks).
4154 * So we do one stripe head at a time and record in
4155 * ->bi_hw_segments how many have been done.
4156 *
4157 * We *know* that this entire raid_bio is in one chunk, so
4158 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4159 */
4160 struct stripe_head *sh;
911d4ee8 4161 int dd_idx;
46031f9a
RBJ
4162 sector_t sector, logical_sector, last_sector;
4163 int scnt = 0;
4164 int remaining;
4165 int handled = 0;
4166
4167 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4168 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4169 0, &dd_idx, NULL);
46031f9a
RBJ
4170 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4171
4172 for (; logical_sector < last_sector;
387bb173
NB
4173 logical_sector += STRIPE_SECTORS,
4174 sector += STRIPE_SECTORS,
4175 scnt++) {
46031f9a 4176
960e739d 4177 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4178 /* already done this stripe */
4179 continue;
4180
a8c906ca 4181 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
4182
4183 if (!sh) {
4184 /* failed to get a stripe - must wait */
960e739d 4185 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4186 conf->retry_read_aligned = raid_bio;
4187 return handled;
4188 }
4189
4190 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
4191 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4192 release_stripe(sh);
960e739d 4193 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4194 conf->retry_read_aligned = raid_bio;
4195 return handled;
4196 }
4197
36d1c647 4198 handle_stripe(sh);
46031f9a
RBJ
4199 release_stripe(sh);
4200 handled++;
4201 }
4202 spin_lock_irq(&conf->device_lock);
960e739d 4203 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4204 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4205 if (remaining == 0)
4206 bio_endio(raid_bio, 0);
46031f9a
RBJ
4207 if (atomic_dec_and_test(&conf->active_aligned_reads))
4208 wake_up(&conf->wait_for_stripe);
4209 return handled;
4210}
4211
46031f9a 4212
1da177e4
LT
4213/*
4214 * This is our raid5 kernel thread.
4215 *
4216 * We scan the hash table for stripes which can be handled now.
4217 * During the scan, completed stripes are saved for us by the interrupt
4218 * handler, so that they will not have to wait for our next wakeup.
4219 */
6ed3003c 4220static void raid5d(mddev_t *mddev)
1da177e4
LT
4221{
4222 struct stripe_head *sh;
070ec55d 4223 raid5_conf_t *conf = mddev->private;
1da177e4 4224 int handled;
e1dfa0a2 4225 struct blk_plug plug;
1da177e4 4226
45b4233c 4227 pr_debug("+++ raid5d active\n");
1da177e4
LT
4228
4229 md_check_recovery(mddev);
1da177e4 4230
e1dfa0a2 4231 blk_start_plug(&plug);
1da177e4
LT
4232 handled = 0;
4233 spin_lock_irq(&conf->device_lock);
4234 while (1) {
46031f9a 4235 struct bio *bio;
1da177e4 4236
7c13edc8
N
4237 if (atomic_read(&mddev->plug_cnt) == 0 &&
4238 !list_empty(&conf->bitmap_list)) {
4239 /* Now is a good time to flush some bitmap updates */
4240 conf->seq_flush++;
700e432d 4241 spin_unlock_irq(&conf->device_lock);
72626685 4242 bitmap_unplug(mddev->bitmap);
700e432d 4243 spin_lock_irq(&conf->device_lock);
7c13edc8 4244 conf->seq_write = conf->seq_flush;
72626685
N
4245 activate_bit_delay(conf);
4246 }
7c13edc8
N
4247 if (atomic_read(&mddev->plug_cnt) == 0)
4248 raid5_activate_delayed(conf);
72626685 4249
46031f9a
RBJ
4250 while ((bio = remove_bio_from_retry(conf))) {
4251 int ok;
4252 spin_unlock_irq(&conf->device_lock);
4253 ok = retry_aligned_read(conf, bio);
4254 spin_lock_irq(&conf->device_lock);
4255 if (!ok)
4256 break;
4257 handled++;
4258 }
4259
8b3e6cdc
DW
4260 sh = __get_priority_stripe(conf);
4261
c9f21aaf 4262 if (!sh)
1da177e4 4263 break;
1da177e4
LT
4264 spin_unlock_irq(&conf->device_lock);
4265
4266 handled++;
417b8d4a
DW
4267 handle_stripe(sh);
4268 release_stripe(sh);
4269 cond_resched();
1da177e4 4270
de393cde
N
4271 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4272 md_check_recovery(mddev);
4273
1da177e4
LT
4274 spin_lock_irq(&conf->device_lock);
4275 }
45b4233c 4276 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4277
4278 spin_unlock_irq(&conf->device_lock);
4279
c9f21aaf 4280 async_tx_issue_pending_all();
e1dfa0a2 4281 blk_finish_plug(&plug);
1da177e4 4282
45b4233c 4283 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4284}
4285
3f294f4f 4286static ssize_t
007583c9 4287raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 4288{
070ec55d 4289 raid5_conf_t *conf = mddev->private;
96de1e66
N
4290 if (conf)
4291 return sprintf(page, "%d\n", conf->max_nr_stripes);
4292 else
4293 return 0;
3f294f4f
N
4294}
4295
c41d4ac4
N
4296int
4297raid5_set_cache_size(mddev_t *mddev, int size)
3f294f4f 4298{
070ec55d 4299 raid5_conf_t *conf = mddev->private;
b5470dc5
DW
4300 int err;
4301
c41d4ac4 4302 if (size <= 16 || size > 32768)
3f294f4f 4303 return -EINVAL;
c41d4ac4 4304 while (size < conf->max_nr_stripes) {
3f294f4f
N
4305 if (drop_one_stripe(conf))
4306 conf->max_nr_stripes--;
4307 else
4308 break;
4309 }
b5470dc5
DW
4310 err = md_allow_write(mddev);
4311 if (err)
4312 return err;
c41d4ac4 4313 while (size > conf->max_nr_stripes) {
3f294f4f
N
4314 if (grow_one_stripe(conf))
4315 conf->max_nr_stripes++;
4316 else break;
4317 }
c41d4ac4
N
4318 return 0;
4319}
4320EXPORT_SYMBOL(raid5_set_cache_size);
4321
4322static ssize_t
4323raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4324{
4325 raid5_conf_t *conf = mddev->private;
4326 unsigned long new;
4327 int err;
4328
4329 if (len >= PAGE_SIZE)
4330 return -EINVAL;
4331 if (!conf)
4332 return -ENODEV;
4333
4334 if (strict_strtoul(page, 10, &new))
4335 return -EINVAL;
4336 err = raid5_set_cache_size(mddev, new);
4337 if (err)
4338 return err;
3f294f4f
N
4339 return len;
4340}
007583c9 4341
96de1e66
N
4342static struct md_sysfs_entry
4343raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4344 raid5_show_stripe_cache_size,
4345 raid5_store_stripe_cache_size);
3f294f4f 4346
8b3e6cdc
DW
4347static ssize_t
4348raid5_show_preread_threshold(mddev_t *mddev, char *page)
4349{
070ec55d 4350 raid5_conf_t *conf = mddev->private;
8b3e6cdc
DW
4351 if (conf)
4352 return sprintf(page, "%d\n", conf->bypass_threshold);
4353 else
4354 return 0;
4355}
4356
4357static ssize_t
4358raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4359{
070ec55d 4360 raid5_conf_t *conf = mddev->private;
4ef197d8 4361 unsigned long new;
8b3e6cdc
DW
4362 if (len >= PAGE_SIZE)
4363 return -EINVAL;
4364 if (!conf)
4365 return -ENODEV;
4366
4ef197d8 4367 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4368 return -EINVAL;
4ef197d8 4369 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4370 return -EINVAL;
4371 conf->bypass_threshold = new;
4372 return len;
4373}
4374
4375static struct md_sysfs_entry
4376raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4377 S_IRUGO | S_IWUSR,
4378 raid5_show_preread_threshold,
4379 raid5_store_preread_threshold);
4380
3f294f4f 4381static ssize_t
96de1e66 4382stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4383{
070ec55d 4384 raid5_conf_t *conf = mddev->private;
96de1e66
N
4385 if (conf)
4386 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4387 else
4388 return 0;
3f294f4f
N
4389}
4390
96de1e66
N
4391static struct md_sysfs_entry
4392raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4393
007583c9 4394static struct attribute *raid5_attrs[] = {
3f294f4f
N
4395 &raid5_stripecache_size.attr,
4396 &raid5_stripecache_active.attr,
8b3e6cdc 4397 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4398 NULL,
4399};
007583c9
N
4400static struct attribute_group raid5_attrs_group = {
4401 .name = NULL,
4402 .attrs = raid5_attrs,
3f294f4f
N
4403};
4404
80c3a6ce
DW
4405static sector_t
4406raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4407{
070ec55d 4408 raid5_conf_t *conf = mddev->private;
80c3a6ce
DW
4409
4410 if (!sectors)
4411 sectors = mddev->dev_sectors;
5e5e3e78 4412 if (!raid_disks)
7ec05478 4413 /* size is defined by the smallest of previous and new size */
5e5e3e78 4414 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 4415
9d8f0363 4416 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 4417 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
4418 return sectors * (raid_disks - conf->max_degraded);
4419}
4420
36d1c647
DW
4421static void raid5_free_percpu(raid5_conf_t *conf)
4422{
4423 struct raid5_percpu *percpu;
4424 unsigned long cpu;
4425
4426 if (!conf->percpu)
4427 return;
4428
4429 get_online_cpus();
4430 for_each_possible_cpu(cpu) {
4431 percpu = per_cpu_ptr(conf->percpu, cpu);
4432 safe_put_page(percpu->spare_page);
d6f38f31 4433 kfree(percpu->scribble);
36d1c647
DW
4434 }
4435#ifdef CONFIG_HOTPLUG_CPU
4436 unregister_cpu_notifier(&conf->cpu_notify);
4437#endif
4438 put_online_cpus();
4439
4440 free_percpu(conf->percpu);
4441}
4442
95fc17aa
DW
4443static void free_conf(raid5_conf_t *conf)
4444{
4445 shrink_stripes(conf);
36d1c647 4446 raid5_free_percpu(conf);
95fc17aa
DW
4447 kfree(conf->disks);
4448 kfree(conf->stripe_hashtbl);
4449 kfree(conf);
4450}
4451
36d1c647
DW
4452#ifdef CONFIG_HOTPLUG_CPU
4453static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4454 void *hcpu)
4455{
4456 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4457 long cpu = (long)hcpu;
4458 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4459
4460 switch (action) {
4461 case CPU_UP_PREPARE:
4462 case CPU_UP_PREPARE_FROZEN:
d6f38f31 4463 if (conf->level == 6 && !percpu->spare_page)
36d1c647 4464 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
4465 if (!percpu->scribble)
4466 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4467
4468 if (!percpu->scribble ||
4469 (conf->level == 6 && !percpu->spare_page)) {
4470 safe_put_page(percpu->spare_page);
4471 kfree(percpu->scribble);
36d1c647
DW
4472 pr_err("%s: failed memory allocation for cpu%ld\n",
4473 __func__, cpu);
55af6bb5 4474 return notifier_from_errno(-ENOMEM);
36d1c647
DW
4475 }
4476 break;
4477 case CPU_DEAD:
4478 case CPU_DEAD_FROZEN:
4479 safe_put_page(percpu->spare_page);
d6f38f31 4480 kfree(percpu->scribble);
36d1c647 4481 percpu->spare_page = NULL;
d6f38f31 4482 percpu->scribble = NULL;
36d1c647
DW
4483 break;
4484 default:
4485 break;
4486 }
4487 return NOTIFY_OK;
4488}
4489#endif
4490
4491static int raid5_alloc_percpu(raid5_conf_t *conf)
4492{
4493 unsigned long cpu;
4494 struct page *spare_page;
a29d8b8e 4495 struct raid5_percpu __percpu *allcpus;
d6f38f31 4496 void *scribble;
36d1c647
DW
4497 int err;
4498
36d1c647
DW
4499 allcpus = alloc_percpu(struct raid5_percpu);
4500 if (!allcpus)
4501 return -ENOMEM;
4502 conf->percpu = allcpus;
4503
4504 get_online_cpus();
4505 err = 0;
4506 for_each_present_cpu(cpu) {
d6f38f31
DW
4507 if (conf->level == 6) {
4508 spare_page = alloc_page(GFP_KERNEL);
4509 if (!spare_page) {
4510 err = -ENOMEM;
4511 break;
4512 }
4513 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4514 }
5e5e3e78 4515 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
d6f38f31 4516 if (!scribble) {
36d1c647
DW
4517 err = -ENOMEM;
4518 break;
4519 }
d6f38f31 4520 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
4521 }
4522#ifdef CONFIG_HOTPLUG_CPU
4523 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4524 conf->cpu_notify.priority = 0;
4525 if (err == 0)
4526 err = register_cpu_notifier(&conf->cpu_notify);
4527#endif
4528 put_online_cpus();
4529
4530 return err;
4531}
4532
91adb564 4533static raid5_conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
4534{
4535 raid5_conf_t *conf;
5e5e3e78 4536 int raid_disk, memory, max_disks;
1da177e4
LT
4537 mdk_rdev_t *rdev;
4538 struct disk_info *disk;
1da177e4 4539
91adb564
N
4540 if (mddev->new_level != 5
4541 && mddev->new_level != 4
4542 && mddev->new_level != 6) {
0c55e022 4543 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4544 mdname(mddev), mddev->new_level);
4545 return ERR_PTR(-EIO);
1da177e4 4546 }
91adb564
N
4547 if ((mddev->new_level == 5
4548 && !algorithm_valid_raid5(mddev->new_layout)) ||
4549 (mddev->new_level == 6
4550 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 4551 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
4552 mdname(mddev), mddev->new_layout);
4553 return ERR_PTR(-EIO);
99c0fb5f 4554 }
91adb564 4555 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 4556 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
4557 mdname(mddev), mddev->raid_disks);
4558 return ERR_PTR(-EINVAL);
4bbf3771
N
4559 }
4560
664e7c41
AN
4561 if (!mddev->new_chunk_sectors ||
4562 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4563 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
4564 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4565 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 4566 return ERR_PTR(-EINVAL);
f6705578
N
4567 }
4568
91adb564
N
4569 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4570 if (conf == NULL)
1da177e4 4571 goto abort;
f5efd45a
DW
4572 spin_lock_init(&conf->device_lock);
4573 init_waitqueue_head(&conf->wait_for_stripe);
4574 init_waitqueue_head(&conf->wait_for_overlap);
4575 INIT_LIST_HEAD(&conf->handle_list);
4576 INIT_LIST_HEAD(&conf->hold_list);
4577 INIT_LIST_HEAD(&conf->delayed_list);
4578 INIT_LIST_HEAD(&conf->bitmap_list);
4579 INIT_LIST_HEAD(&conf->inactive_list);
4580 atomic_set(&conf->active_stripes, 0);
4581 atomic_set(&conf->preread_active_stripes, 0);
4582 atomic_set(&conf->active_aligned_reads, 0);
4583 conf->bypass_threshold = BYPASS_THRESHOLD;
91adb564
N
4584
4585 conf->raid_disks = mddev->raid_disks;
4586 if (mddev->reshape_position == MaxSector)
4587 conf->previous_raid_disks = mddev->raid_disks;
4588 else
f6705578 4589 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
4590 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4591 conf->scribble_len = scribble_len(max_disks);
f6705578 4592
5e5e3e78 4593 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
4594 GFP_KERNEL);
4595 if (!conf->disks)
4596 goto abort;
9ffae0cf 4597
1da177e4
LT
4598 conf->mddev = mddev;
4599
fccddba0 4600 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4601 goto abort;
1da177e4 4602
36d1c647
DW
4603 conf->level = mddev->new_level;
4604 if (raid5_alloc_percpu(conf) != 0)
4605 goto abort;
4606
0c55e022 4607 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 4608
159ec1fc 4609 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 4610 raid_disk = rdev->raid_disk;
5e5e3e78 4611 if (raid_disk >= max_disks
1da177e4
LT
4612 || raid_disk < 0)
4613 continue;
4614 disk = conf->disks + raid_disk;
4615
4616 disk->rdev = rdev;
4617
b2d444d7 4618 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 4619 char b[BDEVNAME_SIZE];
0c55e022
N
4620 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4621 " disk %d\n",
4622 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 4623 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
4624 /* Cannot rely on bitmap to complete recovery */
4625 conf->fullsync = 1;
1da177e4
LT
4626 }
4627
09c9e5fa 4628 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 4629 conf->level = mddev->new_level;
16a53ecc
N
4630 if (conf->level == 6)
4631 conf->max_degraded = 2;
4632 else
4633 conf->max_degraded = 1;
91adb564 4634 conf->algorithm = mddev->new_layout;
1da177e4 4635 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4636 conf->reshape_progress = mddev->reshape_position;
e183eaed 4637 if (conf->reshape_progress != MaxSector) {
09c9e5fa 4638 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
4639 conf->prev_algo = mddev->layout;
4640 }
1da177e4 4641
91adb564 4642 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 4643 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
91adb564
N
4644 if (grow_stripes(conf, conf->max_nr_stripes)) {
4645 printk(KERN_ERR
0c55e022
N
4646 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4647 mdname(mddev), memory);
91adb564
N
4648 goto abort;
4649 } else
0c55e022
N
4650 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4651 mdname(mddev), memory);
1da177e4 4652
0da3c619 4653 conf->thread = md_register_thread(raid5d, mddev, NULL);
91adb564
N
4654 if (!conf->thread) {
4655 printk(KERN_ERR
0c55e022 4656 "md/raid:%s: couldn't allocate thread.\n",
91adb564 4657 mdname(mddev));
16a53ecc
N
4658 goto abort;
4659 }
91adb564
N
4660
4661 return conf;
4662
4663 abort:
4664 if (conf) {
95fc17aa 4665 free_conf(conf);
91adb564
N
4666 return ERR_PTR(-EIO);
4667 } else
4668 return ERR_PTR(-ENOMEM);
4669}
4670
c148ffdc
N
4671
4672static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4673{
4674 switch (algo) {
4675 case ALGORITHM_PARITY_0:
4676 if (raid_disk < max_degraded)
4677 return 1;
4678 break;
4679 case ALGORITHM_PARITY_N:
4680 if (raid_disk >= raid_disks - max_degraded)
4681 return 1;
4682 break;
4683 case ALGORITHM_PARITY_0_6:
4684 if (raid_disk == 0 ||
4685 raid_disk == raid_disks - 1)
4686 return 1;
4687 break;
4688 case ALGORITHM_LEFT_ASYMMETRIC_6:
4689 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4690 case ALGORITHM_LEFT_SYMMETRIC_6:
4691 case ALGORITHM_RIGHT_SYMMETRIC_6:
4692 if (raid_disk == raid_disks - 1)
4693 return 1;
4694 }
4695 return 0;
4696}
4697
91adb564
N
4698static int run(mddev_t *mddev)
4699{
4700 raid5_conf_t *conf;
9f7c2220 4701 int working_disks = 0;
c148ffdc 4702 int dirty_parity_disks = 0;
91adb564 4703 mdk_rdev_t *rdev;
c148ffdc 4704 sector_t reshape_offset = 0;
91adb564 4705
8c6ac868 4706 if (mddev->recovery_cp != MaxSector)
0c55e022 4707 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
4708 " -- starting background reconstruction\n",
4709 mdname(mddev));
91adb564
N
4710 if (mddev->reshape_position != MaxSector) {
4711 /* Check that we can continue the reshape.
4712 * Currently only disks can change, it must
4713 * increase, and we must be past the point where
4714 * a stripe over-writes itself
4715 */
4716 sector_t here_new, here_old;
4717 int old_disks;
18b00334 4718 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 4719
88ce4930 4720 if (mddev->new_level != mddev->level) {
0c55e022 4721 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
4722 "required - aborting.\n",
4723 mdname(mddev));
4724 return -EINVAL;
4725 }
91adb564
N
4726 old_disks = mddev->raid_disks - mddev->delta_disks;
4727 /* reshape_position must be on a new-stripe boundary, and one
4728 * further up in new geometry must map after here in old
4729 * geometry.
4730 */
4731 here_new = mddev->reshape_position;
664e7c41 4732 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 4733 (mddev->raid_disks - max_degraded))) {
0c55e022
N
4734 printk(KERN_ERR "md/raid:%s: reshape_position not "
4735 "on a stripe boundary\n", mdname(mddev));
91adb564
N
4736 return -EINVAL;
4737 }
c148ffdc 4738 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
4739 /* here_new is the stripe we will write to */
4740 here_old = mddev->reshape_position;
9d8f0363 4741 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
4742 (old_disks-max_degraded));
4743 /* here_old is the first stripe that we might need to read
4744 * from */
67ac6011
N
4745 if (mddev->delta_disks == 0) {
4746 /* We cannot be sure it is safe to start an in-place
4747 * reshape. It is only safe if user-space if monitoring
4748 * and taking constant backups.
4749 * mdadm always starts a situation like this in
4750 * readonly mode so it can take control before
4751 * allowing any writes. So just check for that.
4752 */
4753 if ((here_new * mddev->new_chunk_sectors !=
4754 here_old * mddev->chunk_sectors) ||
4755 mddev->ro == 0) {
0c55e022
N
4756 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4757 " in read-only mode - aborting\n",
4758 mdname(mddev));
67ac6011
N
4759 return -EINVAL;
4760 }
4761 } else if (mddev->delta_disks < 0
4762 ? (here_new * mddev->new_chunk_sectors <=
4763 here_old * mddev->chunk_sectors)
4764 : (here_new * mddev->new_chunk_sectors >=
4765 here_old * mddev->chunk_sectors)) {
91adb564 4766 /* Reading from the same stripe as writing to - bad */
0c55e022
N
4767 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4768 "auto-recovery - aborting.\n",
4769 mdname(mddev));
91adb564
N
4770 return -EINVAL;
4771 }
0c55e022
N
4772 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4773 mdname(mddev));
91adb564
N
4774 /* OK, we should be able to continue; */
4775 } else {
4776 BUG_ON(mddev->level != mddev->new_level);
4777 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 4778 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 4779 BUG_ON(mddev->delta_disks != 0);
1da177e4 4780 }
91adb564 4781
245f46c2
N
4782 if (mddev->private == NULL)
4783 conf = setup_conf(mddev);
4784 else
4785 conf = mddev->private;
4786
91adb564
N
4787 if (IS_ERR(conf))
4788 return PTR_ERR(conf);
4789
4790 mddev->thread = conf->thread;
4791 conf->thread = NULL;
4792 mddev->private = conf;
4793
4794 /*
4795 * 0 for a fully functional array, 1 or 2 for a degraded array.
4796 */
c148ffdc
N
4797 list_for_each_entry(rdev, &mddev->disks, same_set) {
4798 if (rdev->raid_disk < 0)
4799 continue;
2f115882 4800 if (test_bit(In_sync, &rdev->flags)) {
91adb564 4801 working_disks++;
2f115882
N
4802 continue;
4803 }
c148ffdc
N
4804 /* This disc is not fully in-sync. However if it
4805 * just stored parity (beyond the recovery_offset),
4806 * when we don't need to be concerned about the
4807 * array being dirty.
4808 * When reshape goes 'backwards', we never have
4809 * partially completed devices, so we only need
4810 * to worry about reshape going forwards.
4811 */
4812 /* Hack because v0.91 doesn't store recovery_offset properly. */
4813 if (mddev->major_version == 0 &&
4814 mddev->minor_version > 90)
4815 rdev->recovery_offset = reshape_offset;
4816
c148ffdc
N
4817 if (rdev->recovery_offset < reshape_offset) {
4818 /* We need to check old and new layout */
4819 if (!only_parity(rdev->raid_disk,
4820 conf->algorithm,
4821 conf->raid_disks,
4822 conf->max_degraded))
4823 continue;
4824 }
4825 if (!only_parity(rdev->raid_disk,
4826 conf->prev_algo,
4827 conf->previous_raid_disks,
4828 conf->max_degraded))
4829 continue;
4830 dirty_parity_disks++;
4831 }
91adb564 4832
5e5e3e78
N
4833 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4834 - working_disks);
91adb564 4835
674806d6 4836 if (has_failed(conf)) {
0c55e022 4837 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 4838 " (%d/%d failed)\n",
02c2de8c 4839 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4840 goto abort;
4841 }
4842
91adb564 4843 /* device size must be a multiple of chunk size */
9d8f0363 4844 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
4845 mddev->resync_max_sectors = mddev->dev_sectors;
4846
c148ffdc 4847 if (mddev->degraded > dirty_parity_disks &&
1da177e4 4848 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4849 if (mddev->ok_start_degraded)
4850 printk(KERN_WARNING
0c55e022
N
4851 "md/raid:%s: starting dirty degraded array"
4852 " - data corruption possible.\n",
6ff8d8ec
N
4853 mdname(mddev));
4854 else {
4855 printk(KERN_ERR
0c55e022 4856 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
4857 mdname(mddev));
4858 goto abort;
4859 }
1da177e4
LT
4860 }
4861
1da177e4 4862 if (mddev->degraded == 0)
0c55e022
N
4863 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4864 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
4865 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4866 mddev->new_layout);
1da177e4 4867 else
0c55e022
N
4868 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4869 " out of %d devices, algorithm %d\n",
4870 mdname(mddev), conf->level,
4871 mddev->raid_disks - mddev->degraded,
4872 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
4873
4874 print_raid5_conf(conf);
4875
fef9c61f 4876 if (conf->reshape_progress != MaxSector) {
fef9c61f 4877 conf->reshape_safe = conf->reshape_progress;
f6705578
N
4878 atomic_set(&conf->reshape_stripes, 0);
4879 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4880 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4881 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4882 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4883 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 4884 "reshape");
f6705578
N
4885 }
4886
1da177e4
LT
4887
4888 /* Ok, everything is just fine now */
a64c876f
N
4889 if (mddev->to_remove == &raid5_attrs_group)
4890 mddev->to_remove = NULL;
00bcb4ac
N
4891 else if (mddev->kobj.sd &&
4892 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 4893 printk(KERN_WARNING
4a5add49 4894 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 4895 mdname(mddev));
4a5add49 4896 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 4897
4a5add49 4898 if (mddev->queue) {
9f7c2220 4899 int chunk_size;
4a5add49
N
4900 /* read-ahead size must cover two whole stripes, which
4901 * is 2 * (datadisks) * chunksize where 'n' is the
4902 * number of raid devices
4903 */
4904 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4905 int stripe = data_disks *
4906 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4907 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4908 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 4909
4a5add49 4910 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
f022b2fd 4911
11d8a6e3
N
4912 mddev->queue->backing_dev_info.congested_data = mddev;
4913 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
7a5febe9 4914
9f7c2220
N
4915 chunk_size = mddev->chunk_sectors << 9;
4916 blk_queue_io_min(mddev->queue, chunk_size);
4917 blk_queue_io_opt(mddev->queue, chunk_size *
4918 (conf->raid_disks - conf->max_degraded));
8f6c2e4b 4919
9f7c2220
N
4920 list_for_each_entry(rdev, &mddev->disks, same_set)
4921 disk_stack_limits(mddev->gendisk, rdev->bdev,
4922 rdev->data_offset << 9);
4923 }
23032a0e 4924
1da177e4
LT
4925 return 0;
4926abort:
e0cf8f04 4927 md_unregister_thread(mddev->thread);
91adb564 4928 mddev->thread = NULL;
1da177e4
LT
4929 if (conf) {
4930 print_raid5_conf(conf);
95fc17aa 4931 free_conf(conf);
1da177e4
LT
4932 }
4933 mddev->private = NULL;
0c55e022 4934 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
4935 return -EIO;
4936}
4937
3f294f4f 4938static int stop(mddev_t *mddev)
1da177e4 4939{
7b92813c 4940 raid5_conf_t *conf = mddev->private;
1da177e4
LT
4941
4942 md_unregister_thread(mddev->thread);
4943 mddev->thread = NULL;
11d8a6e3
N
4944 if (mddev->queue)
4945 mddev->queue->backing_dev_info.congested_fn = NULL;
95fc17aa 4946 free_conf(conf);
a64c876f
N
4947 mddev->private = NULL;
4948 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
4949 return 0;
4950}
4951
45b4233c 4952#ifdef DEBUG
d710e138 4953static void print_sh(struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
4954{
4955 int i;
4956
16a53ecc
N
4957 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4958 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4959 seq_printf(seq, "sh %llu, count %d.\n",
4960 (unsigned long long)sh->sector, atomic_read(&sh->count));
4961 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 4962 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
4963 seq_printf(seq, "(cache%d: %p %ld) ",
4964 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 4965 }
16a53ecc 4966 seq_printf(seq, "\n");
1da177e4
LT
4967}
4968
d710e138 4969static void printall(struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
4970{
4971 struct stripe_head *sh;
fccddba0 4972 struct hlist_node *hn;
1da177e4
LT
4973 int i;
4974
4975 spin_lock_irq(&conf->device_lock);
4976 for (i = 0; i < NR_HASH; i++) {
fccddba0 4977 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
4978 if (sh->raid_conf != conf)
4979 continue;
16a53ecc 4980 print_sh(seq, sh);
1da177e4
LT
4981 }
4982 }
4983 spin_unlock_irq(&conf->device_lock);
4984}
4985#endif
4986
d710e138 4987static void status(struct seq_file *seq, mddev_t *mddev)
1da177e4 4988{
7b92813c 4989 raid5_conf_t *conf = mddev->private;
1da177e4
LT
4990 int i;
4991
9d8f0363
AN
4992 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4993 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 4994 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
4995 for (i = 0; i < conf->raid_disks; i++)
4996 seq_printf (seq, "%s",
4997 conf->disks[i].rdev &&
b2d444d7 4998 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 4999 seq_printf (seq, "]");
45b4233c 5000#ifdef DEBUG
16a53ecc
N
5001 seq_printf (seq, "\n");
5002 printall(seq, conf);
1da177e4
LT
5003#endif
5004}
5005
5006static void print_raid5_conf (raid5_conf_t *conf)
5007{
5008 int i;
5009 struct disk_info *tmp;
5010
0c55e022 5011 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
5012 if (!conf) {
5013 printk("(conf==NULL)\n");
5014 return;
5015 }
0c55e022
N
5016 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5017 conf->raid_disks,
5018 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
5019
5020 for (i = 0; i < conf->raid_disks; i++) {
5021 char b[BDEVNAME_SIZE];
5022 tmp = conf->disks + i;
5023 if (tmp->rdev)
0c55e022
N
5024 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5025 i, !test_bit(Faulty, &tmp->rdev->flags),
5026 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
5027 }
5028}
5029
5030static int raid5_spare_active(mddev_t *mddev)
5031{
5032 int i;
5033 raid5_conf_t *conf = mddev->private;
5034 struct disk_info *tmp;
6b965620
N
5035 int count = 0;
5036 unsigned long flags;
1da177e4
LT
5037
5038 for (i = 0; i < conf->raid_disks; i++) {
5039 tmp = conf->disks + i;
5040 if (tmp->rdev
70fffd0b 5041 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 5042 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 5043 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 5044 count++;
43c73ca4 5045 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
5046 }
5047 }
6b965620
N
5048 spin_lock_irqsave(&conf->device_lock, flags);
5049 mddev->degraded -= count;
5050 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 5051 print_raid5_conf(conf);
6b965620 5052 return count;
1da177e4
LT
5053}
5054
5055static int raid5_remove_disk(mddev_t *mddev, int number)
5056{
5057 raid5_conf_t *conf = mddev->private;
5058 int err = 0;
5059 mdk_rdev_t *rdev;
5060 struct disk_info *p = conf->disks + number;
5061
5062 print_raid5_conf(conf);
5063 rdev = p->rdev;
5064 if (rdev) {
ec32a2bd
N
5065 if (number >= conf->raid_disks &&
5066 conf->reshape_progress == MaxSector)
5067 clear_bit(In_sync, &rdev->flags);
5068
b2d444d7 5069 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
5070 atomic_read(&rdev->nr_pending)) {
5071 err = -EBUSY;
5072 goto abort;
5073 }
dfc70645
N
5074 /* Only remove non-faulty devices if recovery
5075 * isn't possible.
5076 */
5077 if (!test_bit(Faulty, &rdev->flags) &&
7f0da59b 5078 mddev->recovery_disabled != conf->recovery_disabled &&
674806d6 5079 !has_failed(conf) &&
ec32a2bd 5080 number < conf->raid_disks) {
dfc70645
N
5081 err = -EBUSY;
5082 goto abort;
5083 }
1da177e4 5084 p->rdev = NULL;
fbd568a3 5085 synchronize_rcu();
1da177e4
LT
5086 if (atomic_read(&rdev->nr_pending)) {
5087 /* lost the race, try later */
5088 err = -EBUSY;
5089 p->rdev = rdev;
5090 }
5091 }
5092abort:
5093
5094 print_raid5_conf(conf);
5095 return err;
5096}
5097
5098static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5099{
5100 raid5_conf_t *conf = mddev->private;
199050ea 5101 int err = -EEXIST;
1da177e4
LT
5102 int disk;
5103 struct disk_info *p;
6c2fce2e
NB
5104 int first = 0;
5105 int last = conf->raid_disks - 1;
1da177e4 5106
7f0da59b
N
5107 if (mddev->recovery_disabled == conf->recovery_disabled)
5108 return -EBUSY;
5109
674806d6 5110 if (has_failed(conf))
1da177e4 5111 /* no point adding a device */
199050ea 5112 return -EINVAL;
1da177e4 5113
6c2fce2e
NB
5114 if (rdev->raid_disk >= 0)
5115 first = last = rdev->raid_disk;
1da177e4
LT
5116
5117 /*
16a53ecc
N
5118 * find the disk ... but prefer rdev->saved_raid_disk
5119 * if possible.
1da177e4 5120 */
16a53ecc 5121 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 5122 rdev->saved_raid_disk >= first &&
16a53ecc
N
5123 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5124 disk = rdev->saved_raid_disk;
5125 else
6c2fce2e
NB
5126 disk = first;
5127 for ( ; disk <= last ; disk++)
1da177e4 5128 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 5129 clear_bit(In_sync, &rdev->flags);
1da177e4 5130 rdev->raid_disk = disk;
199050ea 5131 err = 0;
72626685
N
5132 if (rdev->saved_raid_disk != disk)
5133 conf->fullsync = 1;
d6065f7b 5134 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
5135 break;
5136 }
5137 print_raid5_conf(conf);
199050ea 5138 return err;
1da177e4
LT
5139}
5140
5141static int raid5_resize(mddev_t *mddev, sector_t sectors)
5142{
5143 /* no resync is happening, and there is enough space
5144 * on all devices, so we can resize.
5145 * We need to make sure resync covers any new space.
5146 * If the array is shrinking we should possibly wait until
5147 * any io in the removed space completes, but it hardly seems
5148 * worth it.
5149 */
9d8f0363 5150 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
1f403624
DW
5151 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5152 mddev->raid_disks));
b522adcd
DW
5153 if (mddev->array_sectors >
5154 raid5_size(mddev, sectors, mddev->raid_disks))
5155 return -EINVAL;
f233ea5c 5156 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5157 revalidate_disk(mddev->gendisk);
b098636c
N
5158 if (sectors > mddev->dev_sectors &&
5159 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 5160 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
5161 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5162 }
58c0fed4 5163 mddev->dev_sectors = sectors;
4b5c7ae8 5164 mddev->resync_max_sectors = sectors;
1da177e4
LT
5165 return 0;
5166}
5167
01ee22b4
N
5168static int check_stripe_cache(mddev_t *mddev)
5169{
5170 /* Can only proceed if there are plenty of stripe_heads.
5171 * We need a minimum of one full stripe,, and for sensible progress
5172 * it is best to have about 4 times that.
5173 * If we require 4 times, then the default 256 4K stripe_heads will
5174 * allow for chunk sizes up to 256K, which is probably OK.
5175 * If the chunk size is greater, user-space should request more
5176 * stripe_heads first.
5177 */
5178 raid5_conf_t *conf = mddev->private;
5179 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5180 > conf->max_nr_stripes ||
5181 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5182 > conf->max_nr_stripes) {
0c55e022
N
5183 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5184 mdname(mddev),
01ee22b4
N
5185 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5186 / STRIPE_SIZE)*4);
5187 return 0;
5188 }
5189 return 1;
5190}
5191
50ac168a 5192static int check_reshape(mddev_t *mddev)
29269553 5193{
070ec55d 5194 raid5_conf_t *conf = mddev->private;
29269553 5195
88ce4930
N
5196 if (mddev->delta_disks == 0 &&
5197 mddev->new_layout == mddev->layout &&
664e7c41 5198 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 5199 return 0; /* nothing to do */
dba034ee
N
5200 if (mddev->bitmap)
5201 /* Cannot grow a bitmap yet */
5202 return -EBUSY;
674806d6 5203 if (has_failed(conf))
ec32a2bd
N
5204 return -EINVAL;
5205 if (mddev->delta_disks < 0) {
5206 /* We might be able to shrink, but the devices must
5207 * be made bigger first.
5208 * For raid6, 4 is the minimum size.
5209 * Otherwise 2 is the minimum
5210 */
5211 int min = 2;
5212 if (mddev->level == 6)
5213 min = 4;
5214 if (mddev->raid_disks + mddev->delta_disks < min)
5215 return -EINVAL;
5216 }
29269553 5217
01ee22b4 5218 if (!check_stripe_cache(mddev))
29269553 5219 return -ENOSPC;
29269553 5220
ec32a2bd 5221 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
5222}
5223
5224static int raid5_start_reshape(mddev_t *mddev)
5225{
070ec55d 5226 raid5_conf_t *conf = mddev->private;
63c70c4f 5227 mdk_rdev_t *rdev;
63c70c4f 5228 int spares = 0;
c04be0aa 5229 unsigned long flags;
63c70c4f 5230
f416885e 5231 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
5232 return -EBUSY;
5233
01ee22b4
N
5234 if (!check_stripe_cache(mddev))
5235 return -ENOSPC;
5236
159ec1fc 5237 list_for_each_entry(rdev, &mddev->disks, same_set)
469518a3
N
5238 if (!test_bit(In_sync, &rdev->flags)
5239 && !test_bit(Faulty, &rdev->flags))
29269553 5240 spares++;
63c70c4f 5241
f416885e 5242 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
5243 /* Not enough devices even to make a degraded array
5244 * of that size
5245 */
5246 return -EINVAL;
5247
ec32a2bd
N
5248 /* Refuse to reduce size of the array. Any reductions in
5249 * array size must be through explicit setting of array_size
5250 * attribute.
5251 */
5252 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5253 < mddev->array_sectors) {
0c55e022 5254 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
5255 "before number of disks\n", mdname(mddev));
5256 return -EINVAL;
5257 }
5258
f6705578 5259 atomic_set(&conf->reshape_stripes, 0);
29269553
N
5260 spin_lock_irq(&conf->device_lock);
5261 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 5262 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
5263 conf->prev_chunk_sectors = conf->chunk_sectors;
5264 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
5265 conf->prev_algo = conf->algorithm;
5266 conf->algorithm = mddev->new_layout;
fef9c61f
N
5267 if (mddev->delta_disks < 0)
5268 conf->reshape_progress = raid5_size(mddev, 0, 0);
5269 else
5270 conf->reshape_progress = 0;
5271 conf->reshape_safe = conf->reshape_progress;
86b42c71 5272 conf->generation++;
29269553
N
5273 spin_unlock_irq(&conf->device_lock);
5274
5275 /* Add some new drives, as many as will fit.
5276 * We know there are enough to make the newly sized array work.
3424bf6a
N
5277 * Don't add devices if we are reducing the number of
5278 * devices in the array. This is because it is not possible
5279 * to correctly record the "partially reconstructed" state of
5280 * such devices during the reshape and confusion could result.
29269553 5281 */
87a8dec9
N
5282 if (mddev->delta_disks >= 0) {
5283 int added_devices = 0;
5284 list_for_each_entry(rdev, &mddev->disks, same_set)
5285 if (rdev->raid_disk < 0 &&
5286 !test_bit(Faulty, &rdev->flags)) {
5287 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9
N
5288 if (rdev->raid_disk
5289 >= conf->previous_raid_disks) {
5290 set_bit(In_sync, &rdev->flags);
5291 added_devices++;
5292 } else
5293 rdev->recovery_offset = 0;
36fad858
NK
5294
5295 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 5296 /* Failure here is OK */;
50da0840 5297 }
87a8dec9
N
5298 } else if (rdev->raid_disk >= conf->previous_raid_disks
5299 && !test_bit(Faulty, &rdev->flags)) {
5300 /* This is a spare that was manually added */
5301 set_bit(In_sync, &rdev->flags);
5302 added_devices++;
5303 }
29269553 5304
87a8dec9
N
5305 /* When a reshape changes the number of devices,
5306 * ->degraded is measured against the larger of the
5307 * pre and post number of devices.
5308 */
ec32a2bd 5309 spin_lock_irqsave(&conf->device_lock, flags);
9eb07c25 5310 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
ec32a2bd
N
5311 - added_devices;
5312 spin_unlock_irqrestore(&conf->device_lock, flags);
5313 }
63c70c4f 5314 mddev->raid_disks = conf->raid_disks;
e516402c 5315 mddev->reshape_position = conf->reshape_progress;
850b2b42 5316 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 5317
29269553
N
5318 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5319 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5320 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5321 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5322 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5323 "reshape");
29269553
N
5324 if (!mddev->sync_thread) {
5325 mddev->recovery = 0;
5326 spin_lock_irq(&conf->device_lock);
5327 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
fef9c61f 5328 conf->reshape_progress = MaxSector;
29269553
N
5329 spin_unlock_irq(&conf->device_lock);
5330 return -EAGAIN;
5331 }
c8f517c4 5332 conf->reshape_checkpoint = jiffies;
29269553
N
5333 md_wakeup_thread(mddev->sync_thread);
5334 md_new_event(mddev);
5335 return 0;
5336}
29269553 5337
ec32a2bd
N
5338/* This is called from the reshape thread and should make any
5339 * changes needed in 'conf'
5340 */
29269553
N
5341static void end_reshape(raid5_conf_t *conf)
5342{
29269553 5343
f6705578 5344 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f6705578 5345
f6705578 5346 spin_lock_irq(&conf->device_lock);
cea9c228 5347 conf->previous_raid_disks = conf->raid_disks;
fef9c61f 5348 conf->reshape_progress = MaxSector;
f6705578 5349 spin_unlock_irq(&conf->device_lock);
b0f9ec04 5350 wake_up(&conf->wait_for_overlap);
16a53ecc
N
5351
5352 /* read-ahead size must cover two whole stripes, which is
5353 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5354 */
4a5add49 5355 if (conf->mddev->queue) {
cea9c228 5356 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 5357 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 5358 / PAGE_SIZE);
16a53ecc
N
5359 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5360 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5361 }
29269553 5362 }
29269553
N
5363}
5364
ec32a2bd
N
5365/* This is called from the raid5d thread with mddev_lock held.
5366 * It makes config changes to the device.
5367 */
cea9c228
N
5368static void raid5_finish_reshape(mddev_t *mddev)
5369{
070ec55d 5370 raid5_conf_t *conf = mddev->private;
cea9c228
N
5371
5372 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5373
ec32a2bd
N
5374 if (mddev->delta_disks > 0) {
5375 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5376 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5377 revalidate_disk(mddev->gendisk);
ec32a2bd
N
5378 } else {
5379 int d;
ec32a2bd
N
5380 mddev->degraded = conf->raid_disks;
5381 for (d = 0; d < conf->raid_disks ; d++)
5382 if (conf->disks[d].rdev &&
5383 test_bit(In_sync,
5384 &conf->disks[d].rdev->flags))
5385 mddev->degraded--;
5386 for (d = conf->raid_disks ;
5387 d < conf->raid_disks - mddev->delta_disks;
1a67dde0
N
5388 d++) {
5389 mdk_rdev_t *rdev = conf->disks[d].rdev;
5390 if (rdev && raid5_remove_disk(mddev, d) == 0) {
36fad858 5391 sysfs_unlink_rdev(mddev, rdev);
1a67dde0
N
5392 rdev->raid_disk = -1;
5393 }
5394 }
cea9c228 5395 }
88ce4930 5396 mddev->layout = conf->algorithm;
09c9e5fa 5397 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
5398 mddev->reshape_position = MaxSector;
5399 mddev->delta_disks = 0;
cea9c228
N
5400 }
5401}
5402
72626685
N
5403static void raid5_quiesce(mddev_t *mddev, int state)
5404{
070ec55d 5405 raid5_conf_t *conf = mddev->private;
72626685
N
5406
5407 switch(state) {
e464eafd
N
5408 case 2: /* resume for a suspend */
5409 wake_up(&conf->wait_for_overlap);
5410 break;
5411
72626685
N
5412 case 1: /* stop all writes */
5413 spin_lock_irq(&conf->device_lock);
64bd660b
N
5414 /* '2' tells resync/reshape to pause so that all
5415 * active stripes can drain
5416 */
5417 conf->quiesce = 2;
72626685 5418 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
5419 atomic_read(&conf->active_stripes) == 0 &&
5420 atomic_read(&conf->active_aligned_reads) == 0,
72626685 5421 conf->device_lock, /* nothing */);
64bd660b 5422 conf->quiesce = 1;
72626685 5423 spin_unlock_irq(&conf->device_lock);
64bd660b
N
5424 /* allow reshape to continue */
5425 wake_up(&conf->wait_for_overlap);
72626685
N
5426 break;
5427
5428 case 0: /* re-enable writes */
5429 spin_lock_irq(&conf->device_lock);
5430 conf->quiesce = 0;
5431 wake_up(&conf->wait_for_stripe);
e464eafd 5432 wake_up(&conf->wait_for_overlap);
72626685
N
5433 spin_unlock_irq(&conf->device_lock);
5434 break;
5435 }
72626685 5436}
b15c2e57 5437
d562b0c4 5438
f1b29bca 5439static void *raid45_takeover_raid0(mddev_t *mddev, int level)
54071b38 5440{
f1b29bca 5441 struct raid0_private_data *raid0_priv = mddev->private;
d76c8420 5442 sector_t sectors;
54071b38 5443
f1b29bca
DW
5444 /* for raid0 takeover only one zone is supported */
5445 if (raid0_priv->nr_strip_zones > 1) {
0c55e022
N
5446 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5447 mdname(mddev));
f1b29bca
DW
5448 return ERR_PTR(-EINVAL);
5449 }
5450
3b71bd93
N
5451 sectors = raid0_priv->strip_zone[0].zone_end;
5452 sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5453 mddev->dev_sectors = sectors;
f1b29bca 5454 mddev->new_level = level;
54071b38
TM
5455 mddev->new_layout = ALGORITHM_PARITY_N;
5456 mddev->new_chunk_sectors = mddev->chunk_sectors;
5457 mddev->raid_disks += 1;
5458 mddev->delta_disks = 1;
5459 /* make sure it will be not marked as dirty */
5460 mddev->recovery_cp = MaxSector;
5461
5462 return setup_conf(mddev);
5463}
5464
5465
d562b0c4
N
5466static void *raid5_takeover_raid1(mddev_t *mddev)
5467{
5468 int chunksect;
5469
5470 if (mddev->raid_disks != 2 ||
5471 mddev->degraded > 1)
5472 return ERR_PTR(-EINVAL);
5473
5474 /* Should check if there are write-behind devices? */
5475
5476 chunksect = 64*2; /* 64K by default */
5477
5478 /* The array must be an exact multiple of chunksize */
5479 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5480 chunksect >>= 1;
5481
5482 if ((chunksect<<9) < STRIPE_SIZE)
5483 /* array size does not allow a suitable chunk size */
5484 return ERR_PTR(-EINVAL);
5485
5486 mddev->new_level = 5;
5487 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 5488 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
5489
5490 return setup_conf(mddev);
5491}
5492
fc9739c6
N
5493static void *raid5_takeover_raid6(mddev_t *mddev)
5494{
5495 int new_layout;
5496
5497 switch (mddev->layout) {
5498 case ALGORITHM_LEFT_ASYMMETRIC_6:
5499 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5500 break;
5501 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5502 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5503 break;
5504 case ALGORITHM_LEFT_SYMMETRIC_6:
5505 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5506 break;
5507 case ALGORITHM_RIGHT_SYMMETRIC_6:
5508 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5509 break;
5510 case ALGORITHM_PARITY_0_6:
5511 new_layout = ALGORITHM_PARITY_0;
5512 break;
5513 case ALGORITHM_PARITY_N:
5514 new_layout = ALGORITHM_PARITY_N;
5515 break;
5516 default:
5517 return ERR_PTR(-EINVAL);
5518 }
5519 mddev->new_level = 5;
5520 mddev->new_layout = new_layout;
5521 mddev->delta_disks = -1;
5522 mddev->raid_disks -= 1;
5523 return setup_conf(mddev);
5524}
5525
d562b0c4 5526
50ac168a 5527static int raid5_check_reshape(mddev_t *mddev)
b3546035 5528{
88ce4930
N
5529 /* For a 2-drive array, the layout and chunk size can be changed
5530 * immediately as not restriping is needed.
5531 * For larger arrays we record the new value - after validation
5532 * to be used by a reshape pass.
b3546035 5533 */
070ec55d 5534 raid5_conf_t *conf = mddev->private;
597a711b 5535 int new_chunk = mddev->new_chunk_sectors;
b3546035 5536
597a711b 5537 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
5538 return -EINVAL;
5539 if (new_chunk > 0) {
0ba459d2 5540 if (!is_power_of_2(new_chunk))
b3546035 5541 return -EINVAL;
597a711b 5542 if (new_chunk < (PAGE_SIZE>>9))
b3546035 5543 return -EINVAL;
597a711b 5544 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
5545 /* not factor of array size */
5546 return -EINVAL;
5547 }
5548
5549 /* They look valid */
5550
88ce4930 5551 if (mddev->raid_disks == 2) {
597a711b
N
5552 /* can make the change immediately */
5553 if (mddev->new_layout >= 0) {
5554 conf->algorithm = mddev->new_layout;
5555 mddev->layout = mddev->new_layout;
88ce4930
N
5556 }
5557 if (new_chunk > 0) {
597a711b
N
5558 conf->chunk_sectors = new_chunk ;
5559 mddev->chunk_sectors = new_chunk;
88ce4930
N
5560 }
5561 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5562 md_wakeup_thread(mddev->thread);
b3546035 5563 }
50ac168a 5564 return check_reshape(mddev);
88ce4930
N
5565}
5566
50ac168a 5567static int raid6_check_reshape(mddev_t *mddev)
88ce4930 5568{
597a711b 5569 int new_chunk = mddev->new_chunk_sectors;
50ac168a 5570
597a711b 5571 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 5572 return -EINVAL;
b3546035 5573 if (new_chunk > 0) {
0ba459d2 5574 if (!is_power_of_2(new_chunk))
88ce4930 5575 return -EINVAL;
597a711b 5576 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 5577 return -EINVAL;
597a711b 5578 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
5579 /* not factor of array size */
5580 return -EINVAL;
b3546035 5581 }
88ce4930
N
5582
5583 /* They look valid */
50ac168a 5584 return check_reshape(mddev);
b3546035
N
5585}
5586
d562b0c4
N
5587static void *raid5_takeover(mddev_t *mddev)
5588{
5589 /* raid5 can take over:
f1b29bca 5590 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
5591 * raid1 - if there are two drives. We need to know the chunk size
5592 * raid4 - trivial - just use a raid4 layout.
5593 * raid6 - Providing it is a *_6 layout
d562b0c4 5594 */
f1b29bca
DW
5595 if (mddev->level == 0)
5596 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
5597 if (mddev->level == 1)
5598 return raid5_takeover_raid1(mddev);
e9d4758f
N
5599 if (mddev->level == 4) {
5600 mddev->new_layout = ALGORITHM_PARITY_N;
5601 mddev->new_level = 5;
5602 return setup_conf(mddev);
5603 }
fc9739c6
N
5604 if (mddev->level == 6)
5605 return raid5_takeover_raid6(mddev);
d562b0c4
N
5606
5607 return ERR_PTR(-EINVAL);
5608}
5609
a78d38a1
N
5610static void *raid4_takeover(mddev_t *mddev)
5611{
f1b29bca
DW
5612 /* raid4 can take over:
5613 * raid0 - if there is only one strip zone
5614 * raid5 - if layout is right
a78d38a1 5615 */
f1b29bca
DW
5616 if (mddev->level == 0)
5617 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
5618 if (mddev->level == 5 &&
5619 mddev->layout == ALGORITHM_PARITY_N) {
5620 mddev->new_layout = 0;
5621 mddev->new_level = 4;
5622 return setup_conf(mddev);
5623 }
5624 return ERR_PTR(-EINVAL);
5625}
d562b0c4 5626
245f46c2
N
5627static struct mdk_personality raid5_personality;
5628
5629static void *raid6_takeover(mddev_t *mddev)
5630{
5631 /* Currently can only take over a raid5. We map the
5632 * personality to an equivalent raid6 personality
5633 * with the Q block at the end.
5634 */
5635 int new_layout;
5636
5637 if (mddev->pers != &raid5_personality)
5638 return ERR_PTR(-EINVAL);
5639 if (mddev->degraded > 1)
5640 return ERR_PTR(-EINVAL);
5641 if (mddev->raid_disks > 253)
5642 return ERR_PTR(-EINVAL);
5643 if (mddev->raid_disks < 3)
5644 return ERR_PTR(-EINVAL);
5645
5646 switch (mddev->layout) {
5647 case ALGORITHM_LEFT_ASYMMETRIC:
5648 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5649 break;
5650 case ALGORITHM_RIGHT_ASYMMETRIC:
5651 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5652 break;
5653 case ALGORITHM_LEFT_SYMMETRIC:
5654 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5655 break;
5656 case ALGORITHM_RIGHT_SYMMETRIC:
5657 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5658 break;
5659 case ALGORITHM_PARITY_0:
5660 new_layout = ALGORITHM_PARITY_0_6;
5661 break;
5662 case ALGORITHM_PARITY_N:
5663 new_layout = ALGORITHM_PARITY_N;
5664 break;
5665 default:
5666 return ERR_PTR(-EINVAL);
5667 }
5668 mddev->new_level = 6;
5669 mddev->new_layout = new_layout;
5670 mddev->delta_disks = 1;
5671 mddev->raid_disks += 1;
5672 return setup_conf(mddev);
5673}
5674
5675
16a53ecc
N
5676static struct mdk_personality raid6_personality =
5677{
5678 .name = "raid6",
5679 .level = 6,
5680 .owner = THIS_MODULE,
5681 .make_request = make_request,
5682 .run = run,
5683 .stop = stop,
5684 .status = status,
5685 .error_handler = error,
5686 .hot_add_disk = raid5_add_disk,
5687 .hot_remove_disk= raid5_remove_disk,
5688 .spare_active = raid5_spare_active,
5689 .sync_request = sync_request,
5690 .resize = raid5_resize,
80c3a6ce 5691 .size = raid5_size,
50ac168a 5692 .check_reshape = raid6_check_reshape,
f416885e 5693 .start_reshape = raid5_start_reshape,
cea9c228 5694 .finish_reshape = raid5_finish_reshape,
16a53ecc 5695 .quiesce = raid5_quiesce,
245f46c2 5696 .takeover = raid6_takeover,
16a53ecc 5697};
2604b703 5698static struct mdk_personality raid5_personality =
1da177e4
LT
5699{
5700 .name = "raid5",
2604b703 5701 .level = 5,
1da177e4
LT
5702 .owner = THIS_MODULE,
5703 .make_request = make_request,
5704 .run = run,
5705 .stop = stop,
5706 .status = status,
5707 .error_handler = error,
5708 .hot_add_disk = raid5_add_disk,
5709 .hot_remove_disk= raid5_remove_disk,
5710 .spare_active = raid5_spare_active,
5711 .sync_request = sync_request,
5712 .resize = raid5_resize,
80c3a6ce 5713 .size = raid5_size,
63c70c4f
N
5714 .check_reshape = raid5_check_reshape,
5715 .start_reshape = raid5_start_reshape,
cea9c228 5716 .finish_reshape = raid5_finish_reshape,
72626685 5717 .quiesce = raid5_quiesce,
d562b0c4 5718 .takeover = raid5_takeover,
1da177e4
LT
5719};
5720
2604b703 5721static struct mdk_personality raid4_personality =
1da177e4 5722{
2604b703
N
5723 .name = "raid4",
5724 .level = 4,
5725 .owner = THIS_MODULE,
5726 .make_request = make_request,
5727 .run = run,
5728 .stop = stop,
5729 .status = status,
5730 .error_handler = error,
5731 .hot_add_disk = raid5_add_disk,
5732 .hot_remove_disk= raid5_remove_disk,
5733 .spare_active = raid5_spare_active,
5734 .sync_request = sync_request,
5735 .resize = raid5_resize,
80c3a6ce 5736 .size = raid5_size,
3d37890b
N
5737 .check_reshape = raid5_check_reshape,
5738 .start_reshape = raid5_start_reshape,
cea9c228 5739 .finish_reshape = raid5_finish_reshape,
2604b703 5740 .quiesce = raid5_quiesce,
a78d38a1 5741 .takeover = raid4_takeover,
2604b703
N
5742};
5743
5744static int __init raid5_init(void)
5745{
16a53ecc 5746 register_md_personality(&raid6_personality);
2604b703
N
5747 register_md_personality(&raid5_personality);
5748 register_md_personality(&raid4_personality);
5749 return 0;
1da177e4
LT
5750}
5751
2604b703 5752static void raid5_exit(void)
1da177e4 5753{
16a53ecc 5754 unregister_md_personality(&raid6_personality);
2604b703
N
5755 unregister_md_personality(&raid5_personality);
5756 unregister_md_personality(&raid4_personality);
1da177e4
LT
5757}
5758
5759module_init(raid5_init);
5760module_exit(raid5_exit);
5761MODULE_LICENSE("GPL");
0efb9e61 5762MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 5763MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
5764MODULE_ALIAS("md-raid5");
5765MODULE_ALIAS("md-raid4");
2604b703
N
5766MODULE_ALIAS("md-level-5");
5767MODULE_ALIAS("md-level-4");
16a53ecc
N
5768MODULE_ALIAS("md-personality-8"); /* RAID6 */
5769MODULE_ALIAS("md-raid6");
5770MODULE_ALIAS("md-level-6");
5771
5772/* This used to be two separate modules, they were: */
5773MODULE_ALIAS("raid5");
5774MODULE_ALIAS("raid6");