]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/md/raid5.c
loop: Set correct device size when using LOOP_CONFIGURE
[mirror_ubuntu-jammy-kernel.git] / drivers / md / raid5.c
CommitLineData
af1a8899 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 6 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 7 *
16a53ecc
N
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
1da177e4
LT
11 */
12
ae3c20cc
N
13/*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 27 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
1da177e4 37
bff61975 38#include <linux/blkdev.h>
f6705578 39#include <linux/kthread.h>
f701d589 40#include <linux/raid/pq.h>
91c00924 41#include <linux/async_tx.h>
056075c7 42#include <linux/module.h>
07a3b417 43#include <linux/async.h>
bff61975 44#include <linux/seq_file.h>
36d1c647 45#include <linux/cpu.h>
5a0e3ad6 46#include <linux/slab.h>
8bda470e 47#include <linux/ratelimit.h>
851c30c9 48#include <linux/nodemask.h>
3f07c014 49
a9add5d9 50#include <trace/events/block.h>
aaf9f12e 51#include <linux/list_sort.h>
a9add5d9 52
43b2e5d8 53#include "md.h"
bff61975 54#include "raid5.h"
54071b38 55#include "raid0.h"
935fe098 56#include "md-bitmap.h"
ff875738 57#include "raid5-log.h"
72626685 58
394ed8e4
SL
59#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
60
851c30c9
SL
61#define cpu_to_group(cpu) cpu_to_node(cpu)
62#define ANY_GROUP NUMA_NO_NODE
63
8e0e99ba
N
64static bool devices_handle_discard_safely = false;
65module_param(devices_handle_discard_safely, bool, 0644);
66MODULE_PARM_DESC(devices_handle_discard_safely,
67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 68static struct workqueue_struct *raid5_wq;
1da177e4 69
d1688a6d 70static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19 71{
c911c46c 72 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
db298e19
N
73 return &conf->stripe_hashtbl[hash];
74}
1da177e4 75
c911c46c 76static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
566c09c5 77{
c911c46c 78 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
566c09c5
SL
79}
80
81static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82{
83 spin_lock_irq(conf->hash_locks + hash);
84 spin_lock(&conf->device_lock);
85}
86
87static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
88{
89 spin_unlock(&conf->device_lock);
90 spin_unlock_irq(conf->hash_locks + hash);
91}
92
93static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
94{
95 int i;
3d05f3ae 96 spin_lock_irq(conf->hash_locks);
566c09c5
SL
97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99 spin_lock(&conf->device_lock);
100}
101
102static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
103{
104 int i;
105 spin_unlock(&conf->device_lock);
3d05f3ae
JC
106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107 spin_unlock(conf->hash_locks + i);
108 spin_unlock_irq(conf->hash_locks);
566c09c5
SL
109}
110
d0dabf7e
N
111/* Find first data disk in a raid6 stripe */
112static inline int raid6_d0(struct stripe_head *sh)
113{
67cc2b81
N
114 if (sh->ddf_layout)
115 /* ddf always start from first device */
116 return 0;
117 /* md starts just after Q block */
d0dabf7e
N
118 if (sh->qd_idx == sh->disks - 1)
119 return 0;
120 else
121 return sh->qd_idx + 1;
122}
16a53ecc
N
123static inline int raid6_next_disk(int disk, int raid_disks)
124{
125 disk++;
126 return (disk < raid_disks) ? disk : 0;
127}
a4456856 128
d0dabf7e
N
129/* When walking through the disks in a raid5, starting at raid6_d0,
130 * We need to map each disk to a 'slot', where the data disks are slot
131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132 * is raid_disks-1. This help does that mapping.
133 */
67cc2b81
N
134static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135 int *count, int syndrome_disks)
d0dabf7e 136{
6629542e 137 int slot = *count;
67cc2b81 138
e4424fee 139 if (sh->ddf_layout)
6629542e 140 (*count)++;
d0dabf7e 141 if (idx == sh->pd_idx)
67cc2b81 142 return syndrome_disks;
d0dabf7e 143 if (idx == sh->qd_idx)
67cc2b81 144 return syndrome_disks + 1;
e4424fee 145 if (!sh->ddf_layout)
6629542e 146 (*count)++;
d0dabf7e
N
147 return slot;
148}
149
d1688a6d 150static void print_raid5_conf (struct r5conf *conf);
1da177e4 151
600aa109
DW
152static int stripe_operations_active(struct stripe_head *sh)
153{
154 return sh->check_state || sh->reconstruct_state ||
155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
157}
158
535ae4eb
SL
159static bool stripe_is_lowprio(struct stripe_head *sh)
160{
161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163 !test_bit(STRIPE_R5C_CACHING, &sh->state);
164}
165
851c30c9
SL
166static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
167{
168 struct r5conf *conf = sh->raid_conf;
169 struct r5worker_group *group;
bfc90cb0 170 int thread_cnt;
851c30c9
SL
171 int i, cpu = sh->cpu;
172
173 if (!cpu_online(cpu)) {
174 cpu = cpumask_any(cpu_online_mask);
175 sh->cpu = cpu;
176 }
177
178 if (list_empty(&sh->lru)) {
179 struct r5worker_group *group;
180 group = conf->worker_groups + cpu_to_group(cpu);
535ae4eb
SL
181 if (stripe_is_lowprio(sh))
182 list_add_tail(&sh->lru, &group->loprio_list);
183 else
184 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
185 group->stripes_cnt++;
186 sh->group = group;
851c30c9
SL
187 }
188
189 if (conf->worker_cnt_per_group == 0) {
190 md_wakeup_thread(conf->mddev->thread);
191 return;
192 }
193
194 group = conf->worker_groups + cpu_to_group(sh->cpu);
195
bfc90cb0
SL
196 group->workers[0].working = true;
197 /* at least one worker should run to avoid race */
198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
199
200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201 /* wakeup more workers */
202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203 if (group->workers[i].working == false) {
204 group->workers[i].working = true;
205 queue_work_on(sh->cpu, raid5_wq,
206 &group->workers[i].work);
207 thread_cnt--;
208 }
209 }
851c30c9
SL
210}
211
566c09c5
SL
212static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213 struct list_head *temp_inactive_list)
1da177e4 214{
1e6d690b
SL
215 int i;
216 int injournal = 0; /* number of date pages with R5_InJournal */
217
4eb788df
SL
218 BUG_ON(!list_empty(&sh->lru));
219 BUG_ON(atomic_read(&conf->active_stripes)==0);
1e6d690b
SL
220
221 if (r5c_is_writeback(conf->log))
222 for (i = sh->disks; i--; )
223 if (test_bit(R5_InJournal, &sh->dev[i].flags))
224 injournal++;
a39f7afd 225 /*
5ddf0440
SL
226 * In the following cases, the stripe cannot be released to cached
227 * lists. Therefore, we make the stripe write out and set
228 * STRIPE_HANDLE:
229 * 1. when quiesce in r5c write back;
230 * 2. when resync is requested fot the stripe.
a39f7afd 231 */
5ddf0440
SL
232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233 (conf->quiesce && r5c_is_writeback(conf->log) &&
234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
a39f7afd
SL
235 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236 r5c_make_stripe_write_out(sh);
237 set_bit(STRIPE_HANDLE, &sh->state);
238 }
1e6d690b 239
4eb788df
SL
240 if (test_bit(STRIPE_HANDLE, &sh->state)) {
241 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 243 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
245 sh->bm_seq - conf->seq_write > 0)
246 list_add_tail(&sh->lru, &conf->bitmap_list);
247 else {
248 clear_bit(STRIPE_DELAYED, &sh->state);
249 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9 250 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
251 if (stripe_is_lowprio(sh))
252 list_add_tail(&sh->lru,
253 &conf->loprio_list);
254 else
255 list_add_tail(&sh->lru,
256 &conf->handle_list);
851c30c9
SL
257 } else {
258 raid5_wakeup_stripe_thread(sh);
259 return;
260 }
4eb788df
SL
261 }
262 md_wakeup_thread(conf->mddev->thread);
263 } else {
264 BUG_ON(stripe_operations_active(sh));
265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266 if (atomic_dec_return(&conf->preread_active_stripes)
267 < IO_THRESHOLD)
268 md_wakeup_thread(conf->mddev->thread);
269 atomic_dec(&conf->active_stripes);
1e6d690b
SL
270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271 if (!r5c_is_writeback(conf->log))
272 list_add_tail(&sh->lru, temp_inactive_list);
273 else {
274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
275 if (injournal == 0)
276 list_add_tail(&sh->lru, temp_inactive_list);
277 else if (injournal == conf->raid_disks - conf->max_degraded) {
278 /* full stripe */
279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280 atomic_inc(&conf->r5c_cached_full_stripes);
281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282 atomic_dec(&conf->r5c_cached_partial_stripes);
283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
a39f7afd 284 r5c_check_cached_full_stripe(conf);
03b047f4
SL
285 } else
286 /*
287 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 * r5c_try_caching_write(). No need to
289 * set it again.
290 */
1e6d690b 291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
1e6d690b
SL
292 }
293 }
1da177e4
LT
294 }
295}
d0dabf7e 296
566c09c5
SL
297static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298 struct list_head *temp_inactive_list)
4eb788df
SL
299{
300 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
301 do_release_stripe(conf, sh, temp_inactive_list);
302}
303
304/*
305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
306 *
307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308 * given time. Adding stripes only takes device lock, while deleting stripes
309 * only takes hash lock.
310 */
311static void release_inactive_stripe_list(struct r5conf *conf,
312 struct list_head *temp_inactive_list,
313 int hash)
314{
315 int size;
6ab2a4b8 316 bool do_wakeup = false;
566c09c5
SL
317 unsigned long flags;
318
319 if (hash == NR_STRIPE_HASH_LOCKS) {
320 size = NR_STRIPE_HASH_LOCKS;
321 hash = NR_STRIPE_HASH_LOCKS - 1;
322 } else
323 size = 1;
324 while (size) {
325 struct list_head *list = &temp_inactive_list[size - 1];
326
327 /*
6d036f7d 328 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
329 * remove stripes from the list
330 */
331 if (!list_empty_careful(list)) {
332 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
333 if (list_empty(conf->inactive_list + hash) &&
334 !list_empty(list))
335 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 336 list_splice_tail_init(list, conf->inactive_list + hash);
6ab2a4b8 337 do_wakeup = true;
566c09c5
SL
338 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
339 }
340 size--;
341 hash--;
342 }
343
344 if (do_wakeup) {
6ab2a4b8 345 wake_up(&conf->wait_for_stripe);
b1b46486
YL
346 if (atomic_read(&conf->active_stripes) == 0)
347 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
348 if (conf->retry_read_aligned)
349 md_wakeup_thread(conf->mddev->thread);
350 }
4eb788df
SL
351}
352
773ca82f 353/* should hold conf->device_lock already */
566c09c5
SL
354static int release_stripe_list(struct r5conf *conf,
355 struct list_head *temp_inactive_list)
773ca82f 356{
eae8263f 357 struct stripe_head *sh, *t;
773ca82f
SL
358 int count = 0;
359 struct llist_node *head;
360
361 head = llist_del_all(&conf->released_stripes);
d265d9dc 362 head = llist_reverse_order(head);
eae8263f 363 llist_for_each_entry_safe(sh, t, head, release_list) {
566c09c5
SL
364 int hash;
365
773ca82f
SL
366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367 smp_mb();
368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
369 /*
370 * Don't worry the bit is set here, because if the bit is set
371 * again, the count is always > 1. This is true for
372 * STRIPE_ON_UNPLUG_LIST bit too.
373 */
566c09c5
SL
374 hash = sh->hash_lock_index;
375 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
376 count++;
377 }
378
379 return count;
380}
381
6d036f7d 382void raid5_release_stripe(struct stripe_head *sh)
1da177e4 383{
d1688a6d 384 struct r5conf *conf = sh->raid_conf;
1da177e4 385 unsigned long flags;
566c09c5
SL
386 struct list_head list;
387 int hash;
773ca82f 388 bool wakeup;
16a53ecc 389
cf170f3f
ES
390 /* Avoid release_list until the last reference.
391 */
392 if (atomic_add_unless(&sh->count, -1, 1))
393 return;
394
ad4068de 395 if (unlikely(!conf->mddev->thread) ||
396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
397 goto slow_path;
398 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
399 if (wakeup)
400 md_wakeup_thread(conf->mddev->thread);
401 return;
402slow_path:
773ca82f 403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
685dbcaa 404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
566c09c5
SL
405 INIT_LIST_HEAD(&list);
406 hash = sh->hash_lock_index;
407 do_release_stripe(conf, sh, &list);
08edaaa6 408 spin_unlock_irqrestore(&conf->device_lock, flags);
566c09c5 409 release_inactive_stripe_list(conf, &list, hash);
4eb788df 410 }
1da177e4
LT
411}
412
fccddba0 413static inline void remove_hash(struct stripe_head *sh)
1da177e4 414{
45b4233c
DW
415 pr_debug("remove_hash(), stripe %llu\n",
416 (unsigned long long)sh->sector);
1da177e4 417
fccddba0 418 hlist_del_init(&sh->hash);
1da177e4
LT
419}
420
d1688a6d 421static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 422{
fccddba0 423 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 424
45b4233c
DW
425 pr_debug("insert_hash(), stripe %llu\n",
426 (unsigned long long)sh->sector);
1da177e4 427
fccddba0 428 hlist_add_head(&sh->hash, hp);
1da177e4
LT
429}
430
1da177e4 431/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 432static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
433{
434 struct stripe_head *sh = NULL;
435 struct list_head *first;
436
566c09c5 437 if (list_empty(conf->inactive_list + hash))
1da177e4 438 goto out;
566c09c5 439 first = (conf->inactive_list + hash)->next;
1da177e4
LT
440 sh = list_entry(first, struct stripe_head, lru);
441 list_del_init(first);
442 remove_hash(sh);
443 atomic_inc(&conf->active_stripes);
566c09c5 444 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
445 if (list_empty(conf->inactive_list + hash))
446 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
447out:
448 return sh;
449}
450
e4e11e38 451static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
452{
453 struct page *p;
454 int i;
e4e11e38 455 int num = sh->raid_conf->pool_size;
1da177e4 456
e4e11e38 457 for (i = 0; i < num ; i++) {
d592a996 458 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
459 p = sh->dev[i].page;
460 if (!p)
461 continue;
462 sh->dev[i].page = NULL;
2d1f3b5d 463 put_page(p);
1da177e4
LT
464 }
465}
466
a9683a79 467static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
468{
469 int i;
e4e11e38 470 int num = sh->raid_conf->pool_size;
1da177e4 471
e4e11e38 472 for (i = 0; i < num; i++) {
1da177e4
LT
473 struct page *page;
474
a9683a79 475 if (!(page = alloc_page(gfp))) {
1da177e4
LT
476 return 1;
477 }
478 sh->dev[i].page = page;
d592a996 479 sh->dev[i].orig_page = page;
1da177e4 480 }
3418d036 481
1da177e4
LT
482 return 0;
483}
484
d1688a6d 485static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 486 struct stripe_head *sh);
1da177e4 487
b5663ba4 488static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 489{
d1688a6d 490 struct r5conf *conf = sh->raid_conf;
566c09c5 491 int i, seq;
1da177e4 492
78bafebd
ES
493 BUG_ON(atomic_read(&sh->count) != 0);
494 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 495 BUG_ON(stripe_operations_active(sh));
59fc630b 496 BUG_ON(sh->batch_head);
d84e0f10 497
45b4233c 498 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 499 (unsigned long long)sector);
566c09c5
SL
500retry:
501 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 502 sh->generation = conf->generation - previous;
b5663ba4 503 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 504 sh->sector = sector;
911d4ee8 505 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
506 sh->state = 0;
507
7ecaa1e6 508 for (i = sh->disks; i--; ) {
1da177e4
LT
509 struct r5dev *dev = &sh->dev[i];
510
d84e0f10 511 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 512 test_bit(R5_LOCKED, &dev->flags)) {
cc6167b4 513 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 514 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 515 dev->read, dev->towrite, dev->written,
1da177e4 516 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 517 WARN_ON(1);
1da177e4
LT
518 }
519 dev->flags = 0;
27a4ff8f 520 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4 521 }
566c09c5
SL
522 if (read_seqcount_retry(&conf->gen_lock, seq))
523 goto retry;
7a87f434 524 sh->overwrite_disks = 0;
1da177e4 525 insert_hash(conf, sh);
851c30c9 526 sh->cpu = smp_processor_id();
da41ba65 527 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
528}
529
d1688a6d 530static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 531 short generation)
1da177e4
LT
532{
533 struct stripe_head *sh;
534
45b4233c 535 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 536 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 537 if (sh->sector == sector && sh->generation == generation)
1da177e4 538 return sh;
45b4233c 539 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
540 return NULL;
541}
542
674806d6
N
543/*
544 * Need to check if array has failed when deciding whether to:
545 * - start an array
546 * - remove non-faulty devices
547 * - add a spare
548 * - allow a reshape
549 * This determination is simple when no reshape is happening.
550 * However if there is a reshape, we need to carefully check
551 * both the before and after sections.
552 * This is because some failed devices may only affect one
553 * of the two sections, and some non-in_sync devices may
554 * be insync in the section most affected by failed devices.
555 */
2e38a37f 556int raid5_calc_degraded(struct r5conf *conf)
674806d6 557{
908f4fbd 558 int degraded, degraded2;
674806d6 559 int i;
674806d6
N
560
561 rcu_read_lock();
562 degraded = 0;
563 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 564 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
565 if (rdev && test_bit(Faulty, &rdev->flags))
566 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
567 if (!rdev || test_bit(Faulty, &rdev->flags))
568 degraded++;
569 else if (test_bit(In_sync, &rdev->flags))
570 ;
571 else
572 /* not in-sync or faulty.
573 * If the reshape increases the number of devices,
574 * this is being recovered by the reshape, so
575 * this 'previous' section is not in_sync.
576 * If the number of devices is being reduced however,
577 * the device can only be part of the array if
578 * we are reverting a reshape, so this section will
579 * be in-sync.
580 */
581 if (conf->raid_disks >= conf->previous_raid_disks)
582 degraded++;
583 }
584 rcu_read_unlock();
908f4fbd
N
585 if (conf->raid_disks == conf->previous_raid_disks)
586 return degraded;
674806d6 587 rcu_read_lock();
908f4fbd 588 degraded2 = 0;
674806d6 589 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 590 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
591 if (rdev && test_bit(Faulty, &rdev->flags))
592 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 593 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 594 degraded2++;
674806d6
N
595 else if (test_bit(In_sync, &rdev->flags))
596 ;
597 else
598 /* not in-sync or faulty.
599 * If reshape increases the number of devices, this
600 * section has already been recovered, else it
601 * almost certainly hasn't.
602 */
603 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 604 degraded2++;
674806d6
N
605 }
606 rcu_read_unlock();
908f4fbd
N
607 if (degraded2 > degraded)
608 return degraded2;
609 return degraded;
610}
611
612static int has_failed(struct r5conf *conf)
613{
614 int degraded;
615
616 if (conf->mddev->reshape_position == MaxSector)
617 return conf->mddev->degraded > conf->max_degraded;
618
2e38a37f 619 degraded = raid5_calc_degraded(conf);
674806d6
N
620 if (degraded > conf->max_degraded)
621 return 1;
622 return 0;
623}
624
6d036f7d
SL
625struct stripe_head *
626raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
627 int previous, int noblock, int noquiesce)
1da177e4
LT
628{
629 struct stripe_head *sh;
c911c46c 630 int hash = stripe_hash_locks_hash(conf, sector);
ff00d3b4 631 int inc_empty_inactive_list_flag;
1da177e4 632
45b4233c 633 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 634
566c09c5 635 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
636
637 do {
b1b46486 638 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 639 conf->quiesce == 0 || noquiesce,
566c09c5 640 *(conf->hash_locks + hash));
86b42c71 641 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 642 if (!sh) {
edbe83ab 643 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 644 sh = get_free_stripe(conf, hash);
713bc5c2
SL
645 if (!sh && !test_bit(R5_DID_ALLOC,
646 &conf->cache_state))
edbe83ab
N
647 set_bit(R5_ALLOC_MORE,
648 &conf->cache_state);
649 }
1da177e4
LT
650 if (noblock && sh == NULL)
651 break;
a39f7afd
SL
652
653 r5c_check_stripe_cache_usage(conf);
1da177e4 654 if (!sh) {
5423399a
N
655 set_bit(R5_INACTIVE_BLOCKED,
656 &conf->cache_state);
a39f7afd 657 r5l_wake_reclaim(conf->log, 0);
6ab2a4b8
SL
658 wait_event_lock_irq(
659 conf->wait_for_stripe,
566c09c5
SL
660 !list_empty(conf->inactive_list + hash) &&
661 (atomic_read(&conf->active_stripes)
662 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
663 || !test_bit(R5_INACTIVE_BLOCKED,
664 &conf->cache_state)),
6ab2a4b8 665 *(conf->hash_locks + hash));
5423399a
N
666 clear_bit(R5_INACTIVE_BLOCKED,
667 &conf->cache_state);
7da9d450 668 } else {
b5663ba4 669 init_stripe(sh, sector, previous);
7da9d450
N
670 atomic_inc(&sh->count);
671 }
e240c183 672 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 673 spin_lock(&conf->device_lock);
e240c183 674 if (!atomic_read(&sh->count)) {
1da177e4
LT
675 if (!test_bit(STRIPE_HANDLE, &sh->state))
676 atomic_inc(&conf->active_stripes);
5af9bef7
N
677 BUG_ON(list_empty(&sh->lru) &&
678 !test_bit(STRIPE_EXPANDING, &sh->state));
ff00d3b4
ZL
679 inc_empty_inactive_list_flag = 0;
680 if (!list_empty(conf->inactive_list + hash))
681 inc_empty_inactive_list_flag = 1;
16a53ecc 682 list_del_init(&sh->lru);
ff00d3b4
ZL
683 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
684 atomic_inc(&conf->empty_inactive_list_nr);
bfc90cb0
SL
685 if (sh->group) {
686 sh->group->stripes_cnt--;
687 sh->group = NULL;
688 }
1da177e4 689 }
7da9d450 690 atomic_inc(&sh->count);
6d183de4 691 spin_unlock(&conf->device_lock);
1da177e4
LT
692 }
693 } while (sh == NULL);
694
566c09c5 695 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
696 return sh;
697}
698
7a87f434 699static bool is_full_stripe_write(struct stripe_head *sh)
700{
701 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
702 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
703}
704
59fc630b 705static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
368ecade
CH
706 __acquires(&sh1->stripe_lock)
707 __acquires(&sh2->stripe_lock)
59fc630b 708{
59fc630b 709 if (sh1 > sh2) {
3d05f3ae 710 spin_lock_irq(&sh2->stripe_lock);
59fc630b 711 spin_lock_nested(&sh1->stripe_lock, 1);
712 } else {
3d05f3ae 713 spin_lock_irq(&sh1->stripe_lock);
59fc630b 714 spin_lock_nested(&sh2->stripe_lock, 1);
715 }
716}
717
718static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
368ecade
CH
719 __releases(&sh1->stripe_lock)
720 __releases(&sh2->stripe_lock)
59fc630b 721{
722 spin_unlock(&sh1->stripe_lock);
3d05f3ae 723 spin_unlock_irq(&sh2->stripe_lock);
59fc630b 724}
725
726/* Only freshly new full stripe normal write stripe can be added to a batch list */
727static bool stripe_can_batch(struct stripe_head *sh)
728{
9c3e333d
SL
729 struct r5conf *conf = sh->raid_conf;
730
e254de6b 731 if (raid5_has_log(conf) || raid5_has_ppl(conf))
9c3e333d 732 return false;
59fc630b 733 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 734 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 735 is_full_stripe_write(sh);
736}
737
738/* we only do back search */
739static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
740{
741 struct stripe_head *head;
742 sector_t head_sector, tmp_sec;
743 int hash;
744 int dd_idx;
ff00d3b4 745 int inc_empty_inactive_list_flag;
59fc630b 746
59fc630b 747 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
748 tmp_sec = sh->sector;
749 if (!sector_div(tmp_sec, conf->chunk_sectors))
750 return;
c911c46c 751 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
59fc630b 752
c911c46c 753 hash = stripe_hash_locks_hash(conf, head_sector);
59fc630b 754 spin_lock_irq(conf->hash_locks + hash);
755 head = __find_stripe(conf, head_sector, conf->generation);
756 if (head && !atomic_inc_not_zero(&head->count)) {
757 spin_lock(&conf->device_lock);
758 if (!atomic_read(&head->count)) {
759 if (!test_bit(STRIPE_HANDLE, &head->state))
760 atomic_inc(&conf->active_stripes);
761 BUG_ON(list_empty(&head->lru) &&
762 !test_bit(STRIPE_EXPANDING, &head->state));
ff00d3b4
ZL
763 inc_empty_inactive_list_flag = 0;
764 if (!list_empty(conf->inactive_list + hash))
765 inc_empty_inactive_list_flag = 1;
59fc630b 766 list_del_init(&head->lru);
ff00d3b4
ZL
767 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
768 atomic_inc(&conf->empty_inactive_list_nr);
59fc630b 769 if (head->group) {
770 head->group->stripes_cnt--;
771 head->group = NULL;
772 }
773 }
774 atomic_inc(&head->count);
775 spin_unlock(&conf->device_lock);
776 }
777 spin_unlock_irq(conf->hash_locks + hash);
778
779 if (!head)
780 return;
781 if (!stripe_can_batch(head))
782 goto out;
783
784 lock_two_stripes(head, sh);
785 /* clear_batch_ready clear the flag */
786 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
787 goto unlock_out;
788
789 if (sh->batch_head)
790 goto unlock_out;
791
792 dd_idx = 0;
793 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
794 dd_idx++;
1eff9d32 795 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796a5cf0 796 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
59fc630b 797 goto unlock_out;
798
799 if (head->batch_head) {
800 spin_lock(&head->batch_head->batch_lock);
801 /* This batch list is already running */
802 if (!stripe_can_batch(head)) {
803 spin_unlock(&head->batch_head->batch_lock);
804 goto unlock_out;
805 }
3664847d
SL
806 /*
807 * We must assign batch_head of this stripe within the
808 * batch_lock, otherwise clear_batch_ready of batch head
809 * stripe could clear BATCH_READY bit of this stripe and
810 * this stripe->batch_head doesn't get assigned, which
811 * could confuse clear_batch_ready for this stripe
812 */
813 sh->batch_head = head->batch_head;
59fc630b 814
815 /*
816 * at this point, head's BATCH_READY could be cleared, but we
817 * can still add the stripe to batch list
818 */
819 list_add(&sh->batch_list, &head->batch_list);
820 spin_unlock(&head->batch_head->batch_lock);
59fc630b 821 } else {
822 head->batch_head = head;
823 sh->batch_head = head->batch_head;
824 spin_lock(&head->batch_lock);
825 list_add_tail(&sh->batch_list, &head->batch_list);
826 spin_unlock(&head->batch_lock);
827 }
828
829 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
830 if (atomic_dec_return(&conf->preread_active_stripes)
831 < IO_THRESHOLD)
832 md_wakeup_thread(conf->mddev->thread);
833
2b6b2457
N
834 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
835 int seq = sh->bm_seq;
836 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
837 sh->batch_head->bm_seq > seq)
838 seq = sh->batch_head->bm_seq;
839 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
840 sh->batch_head->bm_seq = seq;
841 }
842
59fc630b 843 atomic_inc(&sh->count);
844unlock_out:
845 unlock_two_stripes(head, sh);
846out:
6d036f7d 847 raid5_release_stripe(head);
59fc630b 848}
849
05616be5
N
850/* Determine if 'data_offset' or 'new_data_offset' should be used
851 * in this stripe_head.
852 */
853static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
854{
855 sector_t progress = conf->reshape_progress;
856 /* Need a memory barrier to make sure we see the value
857 * of conf->generation, or ->data_offset that was set before
858 * reshape_progress was updated.
859 */
860 smp_rmb();
861 if (progress == MaxSector)
862 return 0;
863 if (sh->generation == conf->generation - 1)
864 return 0;
865 /* We are in a reshape, and this is a new-generation stripe,
866 * so use new_data_offset.
867 */
868 return 1;
869}
870
aaf9f12e 871static void dispatch_bio_list(struct bio_list *tmp)
765d704d 872{
765d704d
SL
873 struct bio *bio;
874
aaf9f12e 875 while ((bio = bio_list_pop(tmp)))
ed00aabd 876 submit_bio_noacct(bio);
aaf9f12e
SL
877}
878
879static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
880{
881 const struct r5pending_data *da = list_entry(a,
882 struct r5pending_data, sibling);
883 const struct r5pending_data *db = list_entry(b,
884 struct r5pending_data, sibling);
885 if (da->sector > db->sector)
886 return 1;
887 if (da->sector < db->sector)
888 return -1;
889 return 0;
890}
891
892static void dispatch_defer_bios(struct r5conf *conf, int target,
893 struct bio_list *list)
894{
895 struct r5pending_data *data;
896 struct list_head *first, *next = NULL;
897 int cnt = 0;
898
899 if (conf->pending_data_cnt == 0)
900 return;
901
902 list_sort(NULL, &conf->pending_list, cmp_stripe);
903
904 first = conf->pending_list.next;
905
906 /* temporarily move the head */
907 if (conf->next_pending_data)
908 list_move_tail(&conf->pending_list,
909 &conf->next_pending_data->sibling);
910
911 while (!list_empty(&conf->pending_list)) {
912 data = list_first_entry(&conf->pending_list,
913 struct r5pending_data, sibling);
914 if (&data->sibling == first)
915 first = data->sibling.next;
916 next = data->sibling.next;
917
918 bio_list_merge(list, &data->bios);
919 list_move(&data->sibling, &conf->free_list);
920 cnt++;
921 if (cnt >= target)
922 break;
923 }
924 conf->pending_data_cnt -= cnt;
925 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
926
927 if (next != &conf->pending_list)
928 conf->next_pending_data = list_entry(next,
929 struct r5pending_data, sibling);
930 else
931 conf->next_pending_data = NULL;
932 /* list isn't empty */
933 if (first != &conf->pending_list)
934 list_move_tail(&conf->pending_list, first);
935}
936
937static void flush_deferred_bios(struct r5conf *conf)
938{
939 struct bio_list tmp = BIO_EMPTY_LIST;
940
941 if (conf->pending_data_cnt == 0)
765d704d
SL
942 return;
943
765d704d 944 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
945 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
946 BUG_ON(conf->pending_data_cnt != 0);
765d704d
SL
947 spin_unlock(&conf->pending_bios_lock);
948
aaf9f12e 949 dispatch_bio_list(&tmp);
765d704d
SL
950}
951
aaf9f12e
SL
952static void defer_issue_bios(struct r5conf *conf, sector_t sector,
953 struct bio_list *bios)
765d704d 954{
aaf9f12e
SL
955 struct bio_list tmp = BIO_EMPTY_LIST;
956 struct r5pending_data *ent;
957
765d704d 958 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
959 ent = list_first_entry(&conf->free_list, struct r5pending_data,
960 sibling);
961 list_move_tail(&ent->sibling, &conf->pending_list);
962 ent->sector = sector;
963 bio_list_init(&ent->bios);
964 bio_list_merge(&ent->bios, bios);
965 conf->pending_data_cnt++;
966 if (conf->pending_data_cnt >= PENDING_IO_MAX)
967 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
968
765d704d 969 spin_unlock(&conf->pending_bios_lock);
aaf9f12e
SL
970
971 dispatch_bio_list(&tmp);
765d704d
SL
972}
973
6712ecf8 974static void
4246a0b6 975raid5_end_read_request(struct bio *bi);
6712ecf8 976static void
4246a0b6 977raid5_end_write_request(struct bio *bi);
91c00924 978
c4e5ac0a 979static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 980{
d1688a6d 981 struct r5conf *conf = sh->raid_conf;
91c00924 982 int i, disks = sh->disks;
59fc630b 983 struct stripe_head *head_sh = sh;
aaf9f12e
SL
984 struct bio_list pending_bios = BIO_EMPTY_LIST;
985 bool should_defer;
91c00924
DW
986
987 might_sleep();
988
ff875738
AP
989 if (log_stripe(sh, s) == 0)
990 return;
1e6d690b 991
aaf9f12e 992 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1e6d690b 993
91c00924 994 for (i = disks; i--; ) {
796a5cf0 995 int op, op_flags = 0;
9a3e1101 996 int replace_only = 0;
977df362
N
997 struct bio *bi, *rbi;
998 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 999
1000 sh = head_sh;
e9c7469b 1001 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
796a5cf0 1002 op = REQ_OP_WRITE;
e9c7469b 1003 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
70fd7614 1004 op_flags = REQ_FUA;
9e444768 1005 if (test_bit(R5_Discard, &sh->dev[i].flags))
796a5cf0 1006 op = REQ_OP_DISCARD;
e9c7469b 1007 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
796a5cf0 1008 op = REQ_OP_READ;
9a3e1101
N
1009 else if (test_and_clear_bit(R5_WantReplace,
1010 &sh->dev[i].flags)) {
796a5cf0 1011 op = REQ_OP_WRITE;
9a3e1101
N
1012 replace_only = 1;
1013 } else
91c00924 1014 continue;
bc0934f0 1015 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
796a5cf0 1016 op_flags |= REQ_SYNC;
91c00924 1017
59fc630b 1018again:
91c00924 1019 bi = &sh->dev[i].req;
977df362 1020 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 1021
91c00924 1022 rcu_read_lock();
9a3e1101 1023 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
1024 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1025 rdev = rcu_dereference(conf->disks[i].rdev);
1026 if (!rdev) {
1027 rdev = rrdev;
1028 rrdev = NULL;
1029 }
796a5cf0 1030 if (op_is_write(op)) {
9a3e1101
N
1031 if (replace_only)
1032 rdev = NULL;
dd054fce
N
1033 if (rdev == rrdev)
1034 /* We raced and saw duplicates */
1035 rrdev = NULL;
9a3e1101 1036 } else {
59fc630b 1037 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
1038 rdev = rrdev;
1039 rrdev = NULL;
1040 }
977df362 1041
91c00924
DW
1042 if (rdev && test_bit(Faulty, &rdev->flags))
1043 rdev = NULL;
1044 if (rdev)
1045 atomic_inc(&rdev->nr_pending);
977df362
N
1046 if (rrdev && test_bit(Faulty, &rrdev->flags))
1047 rrdev = NULL;
1048 if (rrdev)
1049 atomic_inc(&rrdev->nr_pending);
91c00924
DW
1050 rcu_read_unlock();
1051
73e92e51 1052 /* We have already checked bad blocks for reads. Now
977df362
N
1053 * need to check for writes. We never accept write errors
1054 * on the replacement, so we don't to check rrdev.
73e92e51 1055 */
796a5cf0 1056 while (op_is_write(op) && rdev &&
73e92e51
N
1057 test_bit(WriteErrorSeen, &rdev->flags)) {
1058 sector_t first_bad;
1059 int bad_sectors;
c911c46c 1060 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
73e92e51
N
1061 &first_bad, &bad_sectors);
1062 if (!bad)
1063 break;
1064
1065 if (bad < 0) {
1066 set_bit(BlockedBadBlocks, &rdev->flags);
1067 if (!conf->mddev->external &&
2953079c 1068 conf->mddev->sb_flags) {
73e92e51
N
1069 /* It is very unlikely, but we might
1070 * still need to write out the
1071 * bad block log - better give it
1072 * a chance*/
1073 md_check_recovery(conf->mddev);
1074 }
1850753d 1075 /*
1076 * Because md_wait_for_blocked_rdev
1077 * will dec nr_pending, we must
1078 * increment it first.
1079 */
1080 atomic_inc(&rdev->nr_pending);
73e92e51
N
1081 md_wait_for_blocked_rdev(rdev, conf->mddev);
1082 } else {
1083 /* Acknowledged bad block - skip the write */
1084 rdev_dec_pending(rdev, conf->mddev);
1085 rdev = NULL;
1086 }
1087 }
1088
91c00924 1089 if (rdev) {
9a3e1101
N
1090 if (s->syncing || s->expanding || s->expanded
1091 || s->replacing)
c911c46c 1092 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
91c00924 1093
2b7497f0
DW
1094 set_bit(STRIPE_IO_STARTED, &sh->state);
1095
74d46992 1096 bio_set_dev(bi, rdev->bdev);
796a5cf0
MC
1097 bio_set_op_attrs(bi, op, op_flags);
1098 bi->bi_end_io = op_is_write(op)
2f6db2a7
KO
1099 ? raid5_end_write_request
1100 : raid5_end_read_request;
1101 bi->bi_private = sh;
1102
6296b960 1103 pr_debug("%s: for %llu schedule op %d on disc %d\n",
e46b272b 1104 __func__, (unsigned long long)sh->sector,
1eff9d32 1105 bi->bi_opf, i);
91c00924 1106 atomic_inc(&sh->count);
59fc630b 1107 if (sh != head_sh)
1108 atomic_inc(&head_sh->count);
05616be5 1109 if (use_new_offset(conf, sh))
4f024f37 1110 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1111 + rdev->new_data_offset);
1112 else
4f024f37 1113 bi->bi_iter.bi_sector = (sh->sector
05616be5 1114 + rdev->data_offset);
59fc630b 1115 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1eff9d32 1116 bi->bi_opf |= REQ_NOMERGE;
3f9e7c14 1117
d592a996
SL
1118 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1119 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
86aa1397
SL
1120
1121 if (!op_is_write(op) &&
1122 test_bit(R5_InJournal, &sh->dev[i].flags))
1123 /*
1124 * issuing read for a page in journal, this
1125 * must be preparing for prexor in rmw; read
1126 * the data into orig_page
1127 */
1128 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1129 else
1130 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1131 bi->bi_vcnt = 1;
c911c46c 1132 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
91c00924 1133 bi->bi_io_vec[0].bv_offset = 0;
c911c46c 1134 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
2cd259a7
MD
1135 bi->bi_write_hint = sh->dev[i].write_hint;
1136 if (!rrdev)
f1934892 1137 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
37c61ff3
SL
1138 /*
1139 * If this is discard request, set bi_vcnt 0. We don't
1140 * want to confuse SCSI because SCSI will replace payload
1141 */
796a5cf0 1142 if (op == REQ_OP_DISCARD)
37c61ff3 1143 bi->bi_vcnt = 0;
977df362
N
1144 if (rrdev)
1145 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1146
1147 if (conf->mddev->gendisk)
74d46992 1148 trace_block_bio_remap(bi->bi_disk->queue,
e3620a3a
JB
1149 bi, disk_devt(conf->mddev->gendisk),
1150 sh->dev[i].sector);
aaf9f12e
SL
1151 if (should_defer && op_is_write(op))
1152 bio_list_add(&pending_bios, bi);
1153 else
ed00aabd 1154 submit_bio_noacct(bi);
977df362
N
1155 }
1156 if (rrdev) {
9a3e1101
N
1157 if (s->syncing || s->expanding || s->expanded
1158 || s->replacing)
c911c46c 1159 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
977df362
N
1160
1161 set_bit(STRIPE_IO_STARTED, &sh->state);
1162
74d46992 1163 bio_set_dev(rbi, rrdev->bdev);
796a5cf0
MC
1164 bio_set_op_attrs(rbi, op, op_flags);
1165 BUG_ON(!op_is_write(op));
2f6db2a7
KO
1166 rbi->bi_end_io = raid5_end_write_request;
1167 rbi->bi_private = sh;
1168
6296b960 1169 pr_debug("%s: for %llu schedule op %d on "
977df362
N
1170 "replacement disc %d\n",
1171 __func__, (unsigned long long)sh->sector,
1eff9d32 1172 rbi->bi_opf, i);
977df362 1173 atomic_inc(&sh->count);
59fc630b 1174 if (sh != head_sh)
1175 atomic_inc(&head_sh->count);
05616be5 1176 if (use_new_offset(conf, sh))
4f024f37 1177 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1178 + rrdev->new_data_offset);
1179 else
4f024f37 1180 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1181 + rrdev->data_offset);
d592a996
SL
1182 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1185 rbi->bi_vcnt = 1;
c911c46c 1186 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
977df362 1187 rbi->bi_io_vec[0].bv_offset = 0;
c911c46c 1188 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
2cd259a7 1189 rbi->bi_write_hint = sh->dev[i].write_hint;
f1934892 1190 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
37c61ff3
SL
1191 /*
1192 * If this is discard request, set bi_vcnt 0. We don't
1193 * want to confuse SCSI because SCSI will replace payload
1194 */
796a5cf0 1195 if (op == REQ_OP_DISCARD)
37c61ff3 1196 rbi->bi_vcnt = 0;
e3620a3a 1197 if (conf->mddev->gendisk)
74d46992 1198 trace_block_bio_remap(rbi->bi_disk->queue,
e3620a3a
JB
1199 rbi, disk_devt(conf->mddev->gendisk),
1200 sh->dev[i].sector);
aaf9f12e
SL
1201 if (should_defer && op_is_write(op))
1202 bio_list_add(&pending_bios, rbi);
1203 else
ed00aabd 1204 submit_bio_noacct(rbi);
977df362
N
1205 }
1206 if (!rdev && !rrdev) {
796a5cf0 1207 if (op_is_write(op))
91c00924 1208 set_bit(STRIPE_DEGRADED, &sh->state);
6296b960 1209 pr_debug("skip op %d on disc %d for sector %llu\n",
1eff9d32 1210 bi->bi_opf, i, (unsigned long long)sh->sector);
91c00924
DW
1211 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1212 set_bit(STRIPE_HANDLE, &sh->state);
1213 }
59fc630b 1214
1215 if (!head_sh->batch_head)
1216 continue;
1217 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1218 batch_list);
1219 if (sh != head_sh)
1220 goto again;
91c00924 1221 }
aaf9f12e
SL
1222
1223 if (should_defer && !bio_list_empty(&pending_bios))
1224 defer_issue_bios(conf, head_sh->sector, &pending_bios);
91c00924
DW
1225}
1226
1227static struct dma_async_tx_descriptor *
d592a996
SL
1228async_copy_data(int frombio, struct bio *bio, struct page **page,
1229 sector_t sector, struct dma_async_tx_descriptor *tx,
1e6d690b 1230 struct stripe_head *sh, int no_skipcopy)
91c00924 1231{
7988613b
KO
1232 struct bio_vec bvl;
1233 struct bvec_iter iter;
91c00924 1234 struct page *bio_page;
91c00924 1235 int page_offset;
a08abd8c 1236 struct async_submit_ctl submit;
0403e382 1237 enum async_tx_flags flags = 0;
c911c46c 1238 struct r5conf *conf = sh->raid_conf;
91c00924 1239
4f024f37
KO
1240 if (bio->bi_iter.bi_sector >= sector)
1241 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1242 else
4f024f37 1243 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1244
0403e382
DW
1245 if (frombio)
1246 flags |= ASYNC_TX_FENCE;
1247 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1248
7988613b
KO
1249 bio_for_each_segment(bvl, bio, iter) {
1250 int len = bvl.bv_len;
91c00924
DW
1251 int clen;
1252 int b_offset = 0;
1253
1254 if (page_offset < 0) {
1255 b_offset = -page_offset;
1256 page_offset += b_offset;
1257 len -= b_offset;
1258 }
1259
c911c46c
YY
1260 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1261 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
91c00924
DW
1262 else
1263 clen = len;
1264
1265 if (clen > 0) {
7988613b
KO
1266 b_offset += bvl.bv_offset;
1267 bio_page = bvl.bv_page;
d592a996 1268 if (frombio) {
c911c46c 1269 if (conf->skip_copy &&
d592a996 1270 b_offset == 0 && page_offset == 0 &&
c911c46c 1271 clen == RAID5_STRIPE_SIZE(conf) &&
1e6d690b 1272 !no_skipcopy)
d592a996
SL
1273 *page = bio_page;
1274 else
1275 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1276 b_offset, clen, &submit);
d592a996
SL
1277 } else
1278 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1279 page_offset, clen, &submit);
91c00924 1280 }
a08abd8c
DW
1281 /* chain the operations */
1282 submit.depend_tx = tx;
1283
91c00924
DW
1284 if (clen < len) /* hit end of page */
1285 break;
1286 page_offset += len;
1287 }
1288
1289 return tx;
1290}
1291
1292static void ops_complete_biofill(void *stripe_head_ref)
1293{
1294 struct stripe_head *sh = stripe_head_ref;
e4d84909 1295 int i;
c911c46c 1296 struct r5conf *conf = sh->raid_conf;
91c00924 1297
e46b272b 1298 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1299 (unsigned long long)sh->sector);
1300
1301 /* clear completed biofills */
1302 for (i = sh->disks; i--; ) {
1303 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1304
1305 /* acknowledge completion of a biofill operation */
e4d84909
DW
1306 /* and check if we need to reply to a read request,
1307 * new R5_Wantfill requests are held off until
83de75cc 1308 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1309 */
1310 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1311 struct bio *rbi, *rbi2;
91c00924 1312
91c00924
DW
1313 BUG_ON(!dev->read);
1314 rbi = dev->read;
1315 dev->read = NULL;
4f024f37 1316 while (rbi && rbi->bi_iter.bi_sector <
c911c46c
YY
1317 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1318 rbi2 = r5_next_bio(conf, rbi, dev->sector);
016c76ac 1319 bio_endio(rbi);
91c00924
DW
1320 rbi = rbi2;
1321 }
1322 }
1323 }
83de75cc 1324 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1325
e4d84909 1326 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1327 raid5_release_stripe(sh);
91c00924
DW
1328}
1329
1330static void ops_run_biofill(struct stripe_head *sh)
1331{
1332 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1333 struct async_submit_ctl submit;
91c00924 1334 int i;
c911c46c 1335 struct r5conf *conf = sh->raid_conf;
91c00924 1336
59fc630b 1337 BUG_ON(sh->batch_head);
e46b272b 1338 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1339 (unsigned long long)sh->sector);
1340
1341 for (i = sh->disks; i--; ) {
1342 struct r5dev *dev = &sh->dev[i];
1343 if (test_bit(R5_Wantfill, &dev->flags)) {
1344 struct bio *rbi;
b17459c0 1345 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1346 dev->read = rbi = dev->toread;
1347 dev->toread = NULL;
b17459c0 1348 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1349 while (rbi && rbi->bi_iter.bi_sector <
c911c46c 1350 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
d592a996 1351 tx = async_copy_data(0, rbi, &dev->page,
1e6d690b 1352 dev->sector, tx, sh, 0);
c911c46c 1353 rbi = r5_next_bio(conf, rbi, dev->sector);
91c00924
DW
1354 }
1355 }
1356 }
1357
1358 atomic_inc(&sh->count);
a08abd8c
DW
1359 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1360 async_trigger_callback(&submit);
91c00924
DW
1361}
1362
4e7d2c0a 1363static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1364{
4e7d2c0a 1365 struct r5dev *tgt;
91c00924 1366
4e7d2c0a
DW
1367 if (target < 0)
1368 return;
91c00924 1369
4e7d2c0a 1370 tgt = &sh->dev[target];
91c00924
DW
1371 set_bit(R5_UPTODATE, &tgt->flags);
1372 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1373 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1374}
1375
ac6b53b6 1376static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1377{
1378 struct stripe_head *sh = stripe_head_ref;
91c00924 1379
e46b272b 1380 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1381 (unsigned long long)sh->sector);
1382
ac6b53b6 1383 /* mark the computed target(s) as uptodate */
4e7d2c0a 1384 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1385 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1386
ecc65c9b
DW
1387 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1388 if (sh->check_state == check_state_compute_run)
1389 sh->check_state = check_state_compute_result;
91c00924 1390 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1391 raid5_release_stripe(sh);
91c00924
DW
1392}
1393
d6f38f31 1394/* return a pointer to the address conversion region of the scribble buffer */
b330e6a4 1395static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
d6f38f31 1396{
b330e6a4 1397 return percpu->scribble + i * percpu->scribble_obj_size;
46d5b785 1398}
1399
1400/* return a pointer to the address conversion region of the scribble buffer */
b330e6a4
KO
1401static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1402 struct raid5_percpu *percpu, int i)
46d5b785 1403{
b330e6a4 1404 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
d6f38f31
DW
1405}
1406
1407static struct dma_async_tx_descriptor *
1408ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1409{
91c00924 1410 int disks = sh->disks;
46d5b785 1411 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1412 int target = sh->ops.target;
1413 struct r5dev *tgt = &sh->dev[target];
1414 struct page *xor_dest = tgt->page;
1415 int count = 0;
1416 struct dma_async_tx_descriptor *tx;
a08abd8c 1417 struct async_submit_ctl submit;
91c00924
DW
1418 int i;
1419
59fc630b 1420 BUG_ON(sh->batch_head);
1421
91c00924 1422 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1423 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1424 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1425
1426 for (i = disks; i--; )
1427 if (i != target)
1428 xor_srcs[count++] = sh->dev[i].page;
1429
1430 atomic_inc(&sh->count);
1431
0403e382 1432 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1433 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1434 if (unlikely(count == 1))
c911c46c
YY
1435 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0,
1436 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
91c00924 1437 else
c911c46c
YY
1438 tx = async_xor(xor_dest, xor_srcs, 0, count,
1439 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
91c00924 1440
91c00924
DW
1441 return tx;
1442}
1443
ac6b53b6
DW
1444/* set_syndrome_sources - populate source buffers for gen_syndrome
1445 * @srcs - (struct page *) array of size sh->disks
1446 * @sh - stripe_head to parse
1447 *
1448 * Populates srcs in proper layout order for the stripe and returns the
1449 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1450 * destination buffer is recorded in srcs[count] and the Q destination
1451 * is recorded in srcs[count+1]].
1452 */
584acdd4
MS
1453static int set_syndrome_sources(struct page **srcs,
1454 struct stripe_head *sh,
1455 int srctype)
ac6b53b6
DW
1456{
1457 int disks = sh->disks;
1458 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1459 int d0_idx = raid6_d0(sh);
1460 int count;
1461 int i;
1462
1463 for (i = 0; i < disks; i++)
5dd33c9a 1464 srcs[i] = NULL;
ac6b53b6
DW
1465
1466 count = 0;
1467 i = d0_idx;
1468 do {
1469 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1470 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1471
584acdd4
MS
1472 if (i == sh->qd_idx || i == sh->pd_idx ||
1473 (srctype == SYNDROME_SRC_ALL) ||
1474 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1e6d690b
SL
1475 (test_bit(R5_Wantdrain, &dev->flags) ||
1476 test_bit(R5_InJournal, &dev->flags))) ||
584acdd4 1477 (srctype == SYNDROME_SRC_WRITTEN &&
0977762f
SL
1478 (dev->written ||
1479 test_bit(R5_InJournal, &dev->flags)))) {
1e6d690b
SL
1480 if (test_bit(R5_InJournal, &dev->flags))
1481 srcs[slot] = sh->dev[i].orig_page;
1482 else
1483 srcs[slot] = sh->dev[i].page;
1484 }
ac6b53b6
DW
1485 i = raid6_next_disk(i, disks);
1486 } while (i != d0_idx);
ac6b53b6 1487
e4424fee 1488 return syndrome_disks;
ac6b53b6
DW
1489}
1490
1491static struct dma_async_tx_descriptor *
1492ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1493{
1494 int disks = sh->disks;
46d5b785 1495 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1496 int target;
1497 int qd_idx = sh->qd_idx;
1498 struct dma_async_tx_descriptor *tx;
1499 struct async_submit_ctl submit;
1500 struct r5dev *tgt;
1501 struct page *dest;
1502 int i;
1503 int count;
1504
59fc630b 1505 BUG_ON(sh->batch_head);
ac6b53b6
DW
1506 if (sh->ops.target < 0)
1507 target = sh->ops.target2;
1508 else if (sh->ops.target2 < 0)
1509 target = sh->ops.target;
91c00924 1510 else
ac6b53b6
DW
1511 /* we should only have one valid target */
1512 BUG();
1513 BUG_ON(target < 0);
1514 pr_debug("%s: stripe %llu block: %d\n",
1515 __func__, (unsigned long long)sh->sector, target);
1516
1517 tgt = &sh->dev[target];
1518 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1519 dest = tgt->page;
1520
1521 atomic_inc(&sh->count);
1522
1523 if (target == qd_idx) {
584acdd4 1524 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1525 blocks[count] = NULL; /* regenerating p is not necessary */
1526 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1527 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1528 ops_complete_compute, sh,
46d5b785 1529 to_addr_conv(sh, percpu, 0));
c911c46c
YY
1530 tx = async_gen_syndrome(blocks, 0, count+2,
1531 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
ac6b53b6
DW
1532 } else {
1533 /* Compute any data- or p-drive using XOR */
1534 count = 0;
1535 for (i = disks; i-- ; ) {
1536 if (i == target || i == qd_idx)
1537 continue;
1538 blocks[count++] = sh->dev[i].page;
1539 }
1540
0403e382
DW
1541 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1542 NULL, ops_complete_compute, sh,
46d5b785 1543 to_addr_conv(sh, percpu, 0));
c911c46c
YY
1544 tx = async_xor(dest, blocks, 0, count,
1545 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
ac6b53b6 1546 }
91c00924 1547
91c00924
DW
1548 return tx;
1549}
1550
ac6b53b6
DW
1551static struct dma_async_tx_descriptor *
1552ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1553{
1554 int i, count, disks = sh->disks;
1555 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1556 int d0_idx = raid6_d0(sh);
1557 int faila = -1, failb = -1;
1558 int target = sh->ops.target;
1559 int target2 = sh->ops.target2;
1560 struct r5dev *tgt = &sh->dev[target];
1561 struct r5dev *tgt2 = &sh->dev[target2];
1562 struct dma_async_tx_descriptor *tx;
46d5b785 1563 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1564 struct async_submit_ctl submit;
1565
59fc630b 1566 BUG_ON(sh->batch_head);
ac6b53b6
DW
1567 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1568 __func__, (unsigned long long)sh->sector, target, target2);
1569 BUG_ON(target < 0 || target2 < 0);
1570 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1571 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1572
6c910a78 1573 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1574 * slot number conversion for 'faila' and 'failb'
1575 */
1576 for (i = 0; i < disks ; i++)
5dd33c9a 1577 blocks[i] = NULL;
ac6b53b6
DW
1578 count = 0;
1579 i = d0_idx;
1580 do {
1581 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1582
1583 blocks[slot] = sh->dev[i].page;
1584
1585 if (i == target)
1586 faila = slot;
1587 if (i == target2)
1588 failb = slot;
1589 i = raid6_next_disk(i, disks);
1590 } while (i != d0_idx);
ac6b53b6
DW
1591
1592 BUG_ON(faila == failb);
1593 if (failb < faila)
1594 swap(faila, failb);
1595 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1596 __func__, (unsigned long long)sh->sector, faila, failb);
1597
1598 atomic_inc(&sh->count);
1599
1600 if (failb == syndrome_disks+1) {
1601 /* Q disk is one of the missing disks */
1602 if (faila == syndrome_disks) {
1603 /* Missing P+Q, just recompute */
0403e382
DW
1604 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1605 ops_complete_compute, sh,
46d5b785 1606 to_addr_conv(sh, percpu, 0));
e4424fee 1607 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
c911c46c
YY
1608 RAID5_STRIPE_SIZE(sh->raid_conf),
1609 &submit);
ac6b53b6
DW
1610 } else {
1611 struct page *dest;
1612 int data_target;
1613 int qd_idx = sh->qd_idx;
1614
1615 /* Missing D+Q: recompute D from P, then recompute Q */
1616 if (target == qd_idx)
1617 data_target = target2;
1618 else
1619 data_target = target;
1620
1621 count = 0;
1622 for (i = disks; i-- ; ) {
1623 if (i == data_target || i == qd_idx)
1624 continue;
1625 blocks[count++] = sh->dev[i].page;
1626 }
1627 dest = sh->dev[data_target].page;
0403e382
DW
1628 init_async_submit(&submit,
1629 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1630 NULL, NULL, NULL,
46d5b785 1631 to_addr_conv(sh, percpu, 0));
c911c46c
YY
1632 tx = async_xor(dest, blocks, 0, count,
1633 RAID5_STRIPE_SIZE(sh->raid_conf),
ac6b53b6
DW
1634 &submit);
1635
584acdd4 1636 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1637 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1638 ops_complete_compute, sh,
46d5b785 1639 to_addr_conv(sh, percpu, 0));
ac6b53b6 1640 return async_gen_syndrome(blocks, 0, count+2,
c911c46c
YY
1641 RAID5_STRIPE_SIZE(sh->raid_conf),
1642 &submit);
ac6b53b6 1643 }
ac6b53b6 1644 } else {
6c910a78
DW
1645 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1646 ops_complete_compute, sh,
46d5b785 1647 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1648 if (failb == syndrome_disks) {
1649 /* We're missing D+P. */
1650 return async_raid6_datap_recov(syndrome_disks+2,
c911c46c
YY
1651 RAID5_STRIPE_SIZE(sh->raid_conf),
1652 faila,
1653 blocks, &submit);
6c910a78
DW
1654 } else {
1655 /* We're missing D+D. */
1656 return async_raid6_2data_recov(syndrome_disks+2,
c911c46c
YY
1657 RAID5_STRIPE_SIZE(sh->raid_conf),
1658 faila, failb,
1659 blocks, &submit);
6c910a78 1660 }
ac6b53b6
DW
1661 }
1662}
1663
91c00924
DW
1664static void ops_complete_prexor(void *stripe_head_ref)
1665{
1666 struct stripe_head *sh = stripe_head_ref;
1667
e46b272b 1668 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1669 (unsigned long long)sh->sector);
1e6d690b
SL
1670
1671 if (r5c_is_writeback(sh->raid_conf->log))
1672 /*
1673 * raid5-cache write back uses orig_page during prexor.
1674 * After prexor, it is time to free orig_page
1675 */
1676 r5c_release_extra_page(sh);
91c00924
DW
1677}
1678
1679static struct dma_async_tx_descriptor *
584acdd4
MS
1680ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1681 struct dma_async_tx_descriptor *tx)
91c00924 1682{
91c00924 1683 int disks = sh->disks;
46d5b785 1684 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1685 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1686 struct async_submit_ctl submit;
91c00924
DW
1687
1688 /* existing parity data subtracted */
1689 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1690
59fc630b 1691 BUG_ON(sh->batch_head);
e46b272b 1692 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1693 (unsigned long long)sh->sector);
1694
1695 for (i = disks; i--; ) {
1696 struct r5dev *dev = &sh->dev[i];
1697 /* Only process blocks that are known to be uptodate */
1e6d690b
SL
1698 if (test_bit(R5_InJournal, &dev->flags))
1699 xor_srcs[count++] = dev->orig_page;
1700 else if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1701 xor_srcs[count++] = dev->page;
1702 }
1703
0403e382 1704 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1705 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
c911c46c
YY
1706 tx = async_xor(xor_dest, xor_srcs, 0, count,
1707 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
91c00924
DW
1708
1709 return tx;
1710}
1711
584acdd4
MS
1712static struct dma_async_tx_descriptor *
1713ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1714 struct dma_async_tx_descriptor *tx)
1715{
1716 struct page **blocks = to_addr_page(percpu, 0);
1717 int count;
1718 struct async_submit_ctl submit;
1719
1720 pr_debug("%s: stripe %llu\n", __func__,
1721 (unsigned long long)sh->sector);
1722
1723 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1724
1725 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1726 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
c911c46c
YY
1727 tx = async_gen_syndrome(blocks, 0, count+2,
1728 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
584acdd4
MS
1729
1730 return tx;
1731}
1732
91c00924 1733static struct dma_async_tx_descriptor *
d8ee0728 1734ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924 1735{
1e6d690b 1736 struct r5conf *conf = sh->raid_conf;
91c00924 1737 int disks = sh->disks;
d8ee0728 1738 int i;
59fc630b 1739 struct stripe_head *head_sh = sh;
91c00924 1740
e46b272b 1741 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1742 (unsigned long long)sh->sector);
1743
1744 for (i = disks; i--; ) {
59fc630b 1745 struct r5dev *dev;
91c00924 1746 struct bio *chosen;
91c00924 1747
59fc630b 1748 sh = head_sh;
1749 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1750 struct bio *wbi;
1751
59fc630b 1752again:
1753 dev = &sh->dev[i];
1e6d690b
SL
1754 /*
1755 * clear R5_InJournal, so when rewriting a page in
1756 * journal, it is not skipped by r5l_log_stripe()
1757 */
1758 clear_bit(R5_InJournal, &dev->flags);
b17459c0 1759 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1760 chosen = dev->towrite;
1761 dev->towrite = NULL;
7a87f434 1762 sh->overwrite_disks = 0;
91c00924
DW
1763 BUG_ON(dev->written);
1764 wbi = dev->written = chosen;
b17459c0 1765 spin_unlock_irq(&sh->stripe_lock);
d592a996 1766 WARN_ON(dev->page != dev->orig_page);
91c00924 1767
4f024f37 1768 while (wbi && wbi->bi_iter.bi_sector <
c911c46c 1769 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1eff9d32 1770 if (wbi->bi_opf & REQ_FUA)
e9c7469b 1771 set_bit(R5_WantFUA, &dev->flags);
1eff9d32 1772 if (wbi->bi_opf & REQ_SYNC)
bc0934f0 1773 set_bit(R5_SyncIO, &dev->flags);
796a5cf0 1774 if (bio_op(wbi) == REQ_OP_DISCARD)
620125f2 1775 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1776 else {
1777 tx = async_copy_data(1, wbi, &dev->page,
1e6d690b
SL
1778 dev->sector, tx, sh,
1779 r5c_is_writeback(conf->log));
1780 if (dev->page != dev->orig_page &&
1781 !r5c_is_writeback(conf->log)) {
d592a996
SL
1782 set_bit(R5_SkipCopy, &dev->flags);
1783 clear_bit(R5_UPTODATE, &dev->flags);
1784 clear_bit(R5_OVERWRITE, &dev->flags);
1785 }
1786 }
c911c46c 1787 wbi = r5_next_bio(conf, wbi, dev->sector);
91c00924 1788 }
59fc630b 1789
1790 if (head_sh->batch_head) {
1791 sh = list_first_entry(&sh->batch_list,
1792 struct stripe_head,
1793 batch_list);
1794 if (sh == head_sh)
1795 continue;
1796 goto again;
1797 }
91c00924
DW
1798 }
1799 }
1800
1801 return tx;
1802}
1803
ac6b53b6 1804static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1805{
1806 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1807 int disks = sh->disks;
1808 int pd_idx = sh->pd_idx;
1809 int qd_idx = sh->qd_idx;
1810 int i;
9e444768 1811 bool fua = false, sync = false, discard = false;
91c00924 1812
e46b272b 1813 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1814 (unsigned long long)sh->sector);
1815
bc0934f0 1816 for (i = disks; i--; ) {
e9c7469b 1817 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1818 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1819 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1820 }
e9c7469b 1821
91c00924
DW
1822 for (i = disks; i--; ) {
1823 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1824
e9c7469b 1825 if (dev->written || i == pd_idx || i == qd_idx) {
235b6003 1826 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
9e444768 1827 set_bit(R5_UPTODATE, &dev->flags);
235b6003
N
1828 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1829 set_bit(R5_Expanded, &dev->flags);
1830 }
e9c7469b
TH
1831 if (fua)
1832 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1833 if (sync)
1834 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1835 }
91c00924
DW
1836 }
1837
d8ee0728
DW
1838 if (sh->reconstruct_state == reconstruct_state_drain_run)
1839 sh->reconstruct_state = reconstruct_state_drain_result;
1840 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1841 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1842 else {
1843 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1844 sh->reconstruct_state = reconstruct_state_result;
1845 }
91c00924
DW
1846
1847 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1848 raid5_release_stripe(sh);
91c00924
DW
1849}
1850
1851static void
ac6b53b6
DW
1852ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1853 struct dma_async_tx_descriptor *tx)
91c00924 1854{
91c00924 1855 int disks = sh->disks;
59fc630b 1856 struct page **xor_srcs;
a08abd8c 1857 struct async_submit_ctl submit;
59fc630b 1858 int count, pd_idx = sh->pd_idx, i;
91c00924 1859 struct page *xor_dest;
d8ee0728 1860 int prexor = 0;
91c00924 1861 unsigned long flags;
59fc630b 1862 int j = 0;
1863 struct stripe_head *head_sh = sh;
1864 int last_stripe;
91c00924 1865
e46b272b 1866 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1867 (unsigned long long)sh->sector);
1868
620125f2
SL
1869 for (i = 0; i < sh->disks; i++) {
1870 if (pd_idx == i)
1871 continue;
1872 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1873 break;
1874 }
1875 if (i >= sh->disks) {
1876 atomic_inc(&sh->count);
620125f2
SL
1877 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1878 ops_complete_reconstruct(sh);
1879 return;
1880 }
59fc630b 1881again:
1882 count = 0;
1883 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1884 /* check if prexor is active which means only process blocks
1885 * that are part of a read-modify-write (written)
1886 */
59fc630b 1887 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1888 prexor = 1;
91c00924
DW
1889 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1890 for (i = disks; i--; ) {
1891 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
1892 if (head_sh->dev[i].written ||
1893 test_bit(R5_InJournal, &head_sh->dev[i].flags))
91c00924
DW
1894 xor_srcs[count++] = dev->page;
1895 }
1896 } else {
1897 xor_dest = sh->dev[pd_idx].page;
1898 for (i = disks; i--; ) {
1899 struct r5dev *dev = &sh->dev[i];
1900 if (i != pd_idx)
1901 xor_srcs[count++] = dev->page;
1902 }
1903 }
1904
91c00924
DW
1905 /* 1/ if we prexor'd then the dest is reused as a source
1906 * 2/ if we did not prexor then we are redoing the parity
1907 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1908 * for the synchronous xor case
1909 */
59fc630b 1910 last_stripe = !head_sh->batch_head ||
1911 list_first_entry(&sh->batch_list,
1912 struct stripe_head, batch_list) == head_sh;
1913 if (last_stripe) {
1914 flags = ASYNC_TX_ACK |
1915 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1916
1917 atomic_inc(&head_sh->count);
1918 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1919 to_addr_conv(sh, percpu, j));
1920 } else {
1921 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1922 init_async_submit(&submit, flags, tx, NULL, NULL,
1923 to_addr_conv(sh, percpu, j));
1924 }
91c00924 1925
a08abd8c 1926 if (unlikely(count == 1))
c911c46c
YY
1927 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0,
1928 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
a08abd8c 1929 else
c911c46c
YY
1930 tx = async_xor(xor_dest, xor_srcs, 0, count,
1931 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
59fc630b 1932 if (!last_stripe) {
1933 j++;
1934 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1935 batch_list);
1936 goto again;
1937 }
91c00924
DW
1938}
1939
ac6b53b6
DW
1940static void
1941ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1942 struct dma_async_tx_descriptor *tx)
1943{
1944 struct async_submit_ctl submit;
59fc630b 1945 struct page **blocks;
1946 int count, i, j = 0;
1947 struct stripe_head *head_sh = sh;
1948 int last_stripe;
584acdd4
MS
1949 int synflags;
1950 unsigned long txflags;
ac6b53b6
DW
1951
1952 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1953
620125f2
SL
1954 for (i = 0; i < sh->disks; i++) {
1955 if (sh->pd_idx == i || sh->qd_idx == i)
1956 continue;
1957 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1958 break;
1959 }
1960 if (i >= sh->disks) {
1961 atomic_inc(&sh->count);
620125f2
SL
1962 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1963 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1964 ops_complete_reconstruct(sh);
1965 return;
1966 }
1967
59fc630b 1968again:
1969 blocks = to_addr_page(percpu, j);
584acdd4
MS
1970
1971 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1972 synflags = SYNDROME_SRC_WRITTEN;
1973 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1974 } else {
1975 synflags = SYNDROME_SRC_ALL;
1976 txflags = ASYNC_TX_ACK;
1977 }
1978
1979 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1980 last_stripe = !head_sh->batch_head ||
1981 list_first_entry(&sh->batch_list,
1982 struct stripe_head, batch_list) == head_sh;
1983
1984 if (last_stripe) {
1985 atomic_inc(&head_sh->count);
584acdd4 1986 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1987 head_sh, to_addr_conv(sh, percpu, j));
1988 } else
1989 init_async_submit(&submit, 0, tx, NULL, NULL,
1990 to_addr_conv(sh, percpu, j));
c911c46c
YY
1991 tx = async_gen_syndrome(blocks, 0, count+2,
1992 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
59fc630b 1993 if (!last_stripe) {
1994 j++;
1995 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1996 batch_list);
1997 goto again;
1998 }
91c00924
DW
1999}
2000
2001static void ops_complete_check(void *stripe_head_ref)
2002{
2003 struct stripe_head *sh = stripe_head_ref;
91c00924 2004
e46b272b 2005 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2006 (unsigned long long)sh->sector);
2007
ecc65c9b 2008 sh->check_state = check_state_check_result;
91c00924 2009 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2010 raid5_release_stripe(sh);
91c00924
DW
2011}
2012
ac6b53b6 2013static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 2014{
91c00924 2015 int disks = sh->disks;
ac6b53b6
DW
2016 int pd_idx = sh->pd_idx;
2017 int qd_idx = sh->qd_idx;
2018 struct page *xor_dest;
46d5b785 2019 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 2020 struct dma_async_tx_descriptor *tx;
a08abd8c 2021 struct async_submit_ctl submit;
ac6b53b6
DW
2022 int count;
2023 int i;
91c00924 2024
e46b272b 2025 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2026 (unsigned long long)sh->sector);
2027
59fc630b 2028 BUG_ON(sh->batch_head);
ac6b53b6
DW
2029 count = 0;
2030 xor_dest = sh->dev[pd_idx].page;
2031 xor_srcs[count++] = xor_dest;
91c00924 2032 for (i = disks; i--; ) {
ac6b53b6
DW
2033 if (i == pd_idx || i == qd_idx)
2034 continue;
2035 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
2036 }
2037
d6f38f31 2038 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 2039 to_addr_conv(sh, percpu, 0));
c911c46c
YY
2040 tx = async_xor_val(xor_dest, xor_srcs, 0, count,
2041 RAID5_STRIPE_SIZE(sh->raid_conf),
a08abd8c 2042 &sh->ops.zero_sum_result, &submit);
91c00924 2043
91c00924 2044 atomic_inc(&sh->count);
a08abd8c
DW
2045 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2046 tx = async_trigger_callback(&submit);
91c00924
DW
2047}
2048
ac6b53b6
DW
2049static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2050{
46d5b785 2051 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
2052 struct async_submit_ctl submit;
2053 int count;
2054
2055 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2056 (unsigned long long)sh->sector, checkp);
2057
59fc630b 2058 BUG_ON(sh->batch_head);
584acdd4 2059 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
2060 if (!checkp)
2061 srcs[count] = NULL;
91c00924 2062
91c00924 2063 atomic_inc(&sh->count);
ac6b53b6 2064 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 2065 sh, to_addr_conv(sh, percpu, 0));
c911c46c
YY
2066 async_syndrome_val(srcs, 0, count+2,
2067 RAID5_STRIPE_SIZE(sh->raid_conf),
ac6b53b6 2068 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
2069}
2070
51acbcec 2071static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
2072{
2073 int overlap_clear = 0, i, disks = sh->disks;
2074 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 2075 struct r5conf *conf = sh->raid_conf;
ac6b53b6 2076 int level = conf->level;
d6f38f31
DW
2077 struct raid5_percpu *percpu;
2078 unsigned long cpu;
91c00924 2079
d6f38f31
DW
2080 cpu = get_cpu();
2081 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 2082 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
2083 ops_run_biofill(sh);
2084 overlap_clear++;
2085 }
2086
7b3a871e 2087 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
2088 if (level < 6)
2089 tx = ops_run_compute5(sh, percpu);
2090 else {
2091 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2092 tx = ops_run_compute6_1(sh, percpu);
2093 else
2094 tx = ops_run_compute6_2(sh, percpu);
2095 }
2096 /* terminate the chain if reconstruct is not set to be run */
2097 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
2098 async_tx_ack(tx);
2099 }
91c00924 2100
584acdd4
MS
2101 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2102 if (level < 6)
2103 tx = ops_run_prexor5(sh, percpu, tx);
2104 else
2105 tx = ops_run_prexor6(sh, percpu, tx);
2106 }
91c00924 2107
ae1713e2
AP
2108 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2109 tx = ops_run_partial_parity(sh, percpu, tx);
2110
600aa109 2111 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 2112 tx = ops_run_biodrain(sh, tx);
91c00924
DW
2113 overlap_clear++;
2114 }
2115
ac6b53b6
DW
2116 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2117 if (level < 6)
2118 ops_run_reconstruct5(sh, percpu, tx);
2119 else
2120 ops_run_reconstruct6(sh, percpu, tx);
2121 }
91c00924 2122
ac6b53b6
DW
2123 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2124 if (sh->check_state == check_state_run)
2125 ops_run_check_p(sh, percpu);
2126 else if (sh->check_state == check_state_run_q)
2127 ops_run_check_pq(sh, percpu, 0);
2128 else if (sh->check_state == check_state_run_pq)
2129 ops_run_check_pq(sh, percpu, 1);
2130 else
2131 BUG();
2132 }
91c00924 2133
59fc630b 2134 if (overlap_clear && !sh->batch_head)
91c00924
DW
2135 for (i = disks; i--; ) {
2136 struct r5dev *dev = &sh->dev[i];
2137 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2138 wake_up(&sh->raid_conf->wait_for_overlap);
2139 }
d6f38f31 2140 put_cpu();
91c00924
DW
2141}
2142
845b9e22
AP
2143static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2144{
2145 if (sh->ppl_page)
2146 __free_page(sh->ppl_page);
2147 kmem_cache_free(sc, sh);
2148}
2149
5f9d1fde 2150static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
845b9e22 2151 int disks, struct r5conf *conf)
f18c1a35
N
2152{
2153 struct stripe_head *sh;
5f9d1fde 2154 int i;
f18c1a35
N
2155
2156 sh = kmem_cache_zalloc(sc, gfp);
2157 if (sh) {
2158 spin_lock_init(&sh->stripe_lock);
2159 spin_lock_init(&sh->batch_lock);
2160 INIT_LIST_HEAD(&sh->batch_list);
2161 INIT_LIST_HEAD(&sh->lru);
a39f7afd 2162 INIT_LIST_HEAD(&sh->r5c);
d7bd398e 2163 INIT_LIST_HEAD(&sh->log_list);
f18c1a35 2164 atomic_set(&sh->count, 1);
845b9e22 2165 sh->raid_conf = conf;
a39f7afd 2166 sh->log_start = MaxSector;
5f9d1fde
SL
2167 for (i = 0; i < disks; i++) {
2168 struct r5dev *dev = &sh->dev[i];
2169
3a83f467
ML
2170 bio_init(&dev->req, &dev->vec, 1);
2171 bio_init(&dev->rreq, &dev->rvec, 1);
5f9d1fde 2172 }
845b9e22
AP
2173
2174 if (raid5_has_ppl(conf)) {
2175 sh->ppl_page = alloc_page(gfp);
2176 if (!sh->ppl_page) {
2177 free_stripe(sc, sh);
2178 sh = NULL;
2179 }
2180 }
f18c1a35
N
2181 }
2182 return sh;
2183}
486f0644 2184static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2185{
2186 struct stripe_head *sh;
f18c1a35 2187
845b9e22 2188 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
3f294f4f
N
2189 if (!sh)
2190 return 0;
6ce32846 2191
a9683a79 2192 if (grow_buffers(sh, gfp)) {
e4e11e38 2193 shrink_buffers(sh);
845b9e22 2194 free_stripe(conf->slab_cache, sh);
3f294f4f
N
2195 return 0;
2196 }
486f0644
N
2197 sh->hash_lock_index =
2198 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2199 /* we just created an active stripe so... */
3f294f4f 2200 atomic_inc(&conf->active_stripes);
59fc630b 2201
6d036f7d 2202 raid5_release_stripe(sh);
486f0644 2203 conf->max_nr_stripes++;
3f294f4f
N
2204 return 1;
2205}
2206
d1688a6d 2207static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2208{
e18b890b 2209 struct kmem_cache *sc;
53b8d89d 2210 size_t namelen = sizeof(conf->cache_name[0]);
5e5e3e78 2211 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2212
f4be6b43 2213 if (conf->mddev->gendisk)
53b8d89d 2214 snprintf(conf->cache_name[0], namelen,
f4be6b43
N
2215 "raid%d-%s", conf->level, mdname(conf->mddev));
2216 else
53b8d89d 2217 snprintf(conf->cache_name[0], namelen,
f4be6b43 2218 "raid%d-%p", conf->level, conf->mddev);
53b8d89d 2219 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
f4be6b43 2220
ad01c9e3
N
2221 conf->active_name = 0;
2222 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2223 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2224 0, 0, NULL);
1da177e4
LT
2225 if (!sc)
2226 return 1;
2227 conf->slab_cache = sc;
ad01c9e3 2228 conf->pool_size = devs;
486f0644
N
2229 while (num--)
2230 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2231 return 1;
486f0644 2232
1da177e4
LT
2233 return 0;
2234}
29269553 2235
d6f38f31 2236/**
7f8a30e5
CL
2237 * scribble_alloc - allocate percpu scribble buffer for required size
2238 * of the scribble region
2aada5b1
DLM
2239 * @percpu: from for_each_present_cpu() of the caller
2240 * @num: total number of disks in the array
2241 * @cnt: scribble objs count for required size of the scribble region
d6f38f31 2242 *
7f8a30e5 2243 * The scribble buffer size must be enough to contain:
d6f38f31
DW
2244 * 1/ a struct page pointer for each device in the array +2
2245 * 2/ room to convert each entry in (1) to its corresponding dma
2246 * (dma_map_page()) or page (page_address()) address.
2247 *
2248 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2249 * calculate over all devices (not just the data blocks), using zeros in place
2250 * of the P and Q blocks.
2251 */
b330e6a4 2252static int scribble_alloc(struct raid5_percpu *percpu,
ba54d4d4 2253 int num, int cnt)
d6f38f31 2254{
b330e6a4
KO
2255 size_t obj_size =
2256 sizeof(struct page *) * (num+2) +
2257 sizeof(addr_conv_t) * (num+2);
2258 void *scribble;
d6f38f31 2259
ba54d4d4
CL
2260 /*
2261 * If here is in raid array suspend context, it is in memalloc noio
2262 * context as well, there is no potential recursive memory reclaim
2263 * I/Os with the GFP_KERNEL flag.
2264 */
2265 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
b330e6a4
KO
2266 if (!scribble)
2267 return -ENOMEM;
2268
2269 kvfree(percpu->scribble);
2270
2271 percpu->scribble = scribble;
2272 percpu->scribble_obj_size = obj_size;
2273 return 0;
d6f38f31
DW
2274}
2275
738a2738
N
2276static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2277{
2278 unsigned long cpu;
2279 int err = 0;
2280
27a353c0
SL
2281 /*
2282 * Never shrink. And mddev_suspend() could deadlock if this is called
2283 * from raid5d. In that case, scribble_disks and scribble_sectors
2284 * should equal to new_disks and new_sectors
2285 */
2286 if (conf->scribble_disks >= new_disks &&
2287 conf->scribble_sectors >= new_sectors)
2288 return 0;
738a2738
N
2289 mddev_suspend(conf->mddev);
2290 get_online_cpus();
b330e6a4 2291
738a2738
N
2292 for_each_present_cpu(cpu) {
2293 struct raid5_percpu *percpu;
738a2738
N
2294
2295 percpu = per_cpu_ptr(conf->percpu, cpu);
b330e6a4 2296 err = scribble_alloc(percpu, new_disks,
c911c46c 2297 new_sectors / RAID5_STRIPE_SECTORS(conf));
b330e6a4 2298 if (err)
738a2738 2299 break;
738a2738 2300 }
b330e6a4 2301
738a2738
N
2302 put_online_cpus();
2303 mddev_resume(conf->mddev);
27a353c0
SL
2304 if (!err) {
2305 conf->scribble_disks = new_disks;
2306 conf->scribble_sectors = new_sectors;
2307 }
738a2738
N
2308 return err;
2309}
2310
d1688a6d 2311static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2312{
2313 /* Make all the stripes able to hold 'newsize' devices.
2314 * New slots in each stripe get 'page' set to a new page.
2315 *
2316 * This happens in stages:
2317 * 1/ create a new kmem_cache and allocate the required number of
2318 * stripe_heads.
83f0d77a 2319 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2320 * to the new stripe_heads. This will have the side effect of
2321 * freezing the array as once all stripe_heads have been collected,
2322 * no IO will be possible. Old stripe heads are freed once their
2323 * pages have been transferred over, and the old kmem_cache is
2324 * freed when all stripes are done.
2325 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
3560741e 2326 * we simple return a failure status - no need to clean anything up.
ad01c9e3
N
2327 * 4/ allocate new pages for the new slots in the new stripe_heads.
2328 * If this fails, we don't bother trying the shrink the
2329 * stripe_heads down again, we just leave them as they are.
2330 * As each stripe_head is processed the new one is released into
2331 * active service.
2332 *
2333 * Once step2 is started, we cannot afford to wait for a write,
2334 * so we use GFP_NOIO allocations.
2335 */
2336 struct stripe_head *osh, *nsh;
2337 LIST_HEAD(newstripes);
2338 struct disk_info *ndisks;
2214c260 2339 int err = 0;
e18b890b 2340 struct kmem_cache *sc;
ad01c9e3 2341 int i;
566c09c5 2342 int hash, cnt;
ad01c9e3 2343
2214c260 2344 md_allow_write(conf->mddev);
2a2275d6 2345
ad01c9e3
N
2346 /* Step 1 */
2347 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2348 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2349 0, 0, NULL);
ad01c9e3
N
2350 if (!sc)
2351 return -ENOMEM;
2352
2d5b569b
N
2353 /* Need to ensure auto-resizing doesn't interfere */
2354 mutex_lock(&conf->cache_size_mutex);
2355
ad01c9e3 2356 for (i = conf->max_nr_stripes; i; i--) {
845b9e22 2357 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
ad01c9e3
N
2358 if (!nsh)
2359 break;
2360
ad01c9e3
N
2361 list_add(&nsh->lru, &newstripes);
2362 }
2363 if (i) {
2364 /* didn't get enough, give up */
2365 while (!list_empty(&newstripes)) {
2366 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2367 list_del(&nsh->lru);
845b9e22 2368 free_stripe(sc, nsh);
ad01c9e3
N
2369 }
2370 kmem_cache_destroy(sc);
2d5b569b 2371 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2372 return -ENOMEM;
2373 }
2374 /* Step 2 - Must use GFP_NOIO now.
2375 * OK, we have enough stripes, start collecting inactive
2376 * stripes and copying them over
2377 */
566c09c5
SL
2378 hash = 0;
2379 cnt = 0;
ad01c9e3 2380 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2381 lock_device_hash_lock(conf, hash);
6ab2a4b8 2382 wait_event_cmd(conf->wait_for_stripe,
566c09c5
SL
2383 !list_empty(conf->inactive_list + hash),
2384 unlock_device_hash_lock(conf, hash),
2385 lock_device_hash_lock(conf, hash));
2386 osh = get_free_stripe(conf, hash);
2387 unlock_device_hash_lock(conf, hash);
f18c1a35 2388
d592a996 2389 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2390 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2391 nsh->dev[i].orig_page = osh->dev[i].page;
2392 }
566c09c5 2393 nsh->hash_lock_index = hash;
845b9e22 2394 free_stripe(conf->slab_cache, osh);
566c09c5
SL
2395 cnt++;
2396 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2397 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2398 hash++;
2399 cnt = 0;
2400 }
ad01c9e3
N
2401 }
2402 kmem_cache_destroy(conf->slab_cache);
2403
2404 /* Step 3.
2405 * At this point, we are holding all the stripes so the array
2406 * is completely stalled, so now is a good time to resize
d6f38f31 2407 * conf->disks and the scribble region
ad01c9e3 2408 */
6396bb22 2409 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
ad01c9e3 2410 if (ndisks) {
d7bd398e 2411 for (i = 0; i < conf->pool_size; i++)
ad01c9e3 2412 ndisks[i] = conf->disks[i];
d7bd398e
SL
2413
2414 for (i = conf->pool_size; i < newsize; i++) {
2415 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2416 if (!ndisks[i].extra_page)
2417 err = -ENOMEM;
2418 }
2419
2420 if (err) {
2421 for (i = conf->pool_size; i < newsize; i++)
2422 if (ndisks[i].extra_page)
2423 put_page(ndisks[i].extra_page);
2424 kfree(ndisks);
2425 } else {
2426 kfree(conf->disks);
2427 conf->disks = ndisks;
2428 }
ad01c9e3
N
2429 } else
2430 err = -ENOMEM;
2431
2d5b569b 2432 mutex_unlock(&conf->cache_size_mutex);
583da48e
DY
2433
2434 conf->slab_cache = sc;
2435 conf->active_name = 1-conf->active_name;
2436
ad01c9e3
N
2437 /* Step 4, return new stripes to service */
2438 while(!list_empty(&newstripes)) {
2439 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2440 list_del_init(&nsh->lru);
d6f38f31 2441
ad01c9e3
N
2442 for (i=conf->raid_disks; i < newsize; i++)
2443 if (nsh->dev[i].page == NULL) {
2444 struct page *p = alloc_page(GFP_NOIO);
2445 nsh->dev[i].page = p;
d592a996 2446 nsh->dev[i].orig_page = p;
ad01c9e3
N
2447 if (!p)
2448 err = -ENOMEM;
2449 }
6d036f7d 2450 raid5_release_stripe(nsh);
ad01c9e3
N
2451 }
2452 /* critical section pass, GFP_NOIO no longer needed */
2453
6e9eac2d
N
2454 if (!err)
2455 conf->pool_size = newsize;
ad01c9e3
N
2456 return err;
2457}
1da177e4 2458
486f0644 2459static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2460{
2461 struct stripe_head *sh;
49895bcc 2462 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2463
566c09c5
SL
2464 spin_lock_irq(conf->hash_locks + hash);
2465 sh = get_free_stripe(conf, hash);
2466 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2467 if (!sh)
2468 return 0;
78bafebd 2469 BUG_ON(atomic_read(&sh->count));
e4e11e38 2470 shrink_buffers(sh);
845b9e22 2471 free_stripe(conf->slab_cache, sh);
3f294f4f 2472 atomic_dec(&conf->active_stripes);
486f0644 2473 conf->max_nr_stripes--;
3f294f4f
N
2474 return 1;
2475}
2476
d1688a6d 2477static void shrink_stripes(struct r5conf *conf)
3f294f4f 2478{
486f0644
N
2479 while (conf->max_nr_stripes &&
2480 drop_one_stripe(conf))
2481 ;
3f294f4f 2482
644df1a8 2483 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2484 conf->slab_cache = NULL;
2485}
2486
4246a0b6 2487static void raid5_end_read_request(struct bio * bi)
1da177e4 2488{
99c0fb5f 2489 struct stripe_head *sh = bi->bi_private;
d1688a6d 2490 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2491 int disks = sh->disks, i;
d6950432 2492 char b[BDEVNAME_SIZE];
dd054fce 2493 struct md_rdev *rdev = NULL;
05616be5 2494 sector_t s;
1da177e4
LT
2495
2496 for (i=0 ; i<disks; i++)
2497 if (bi == &sh->dev[i].req)
2498 break;
2499
4246a0b6 2500 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2501 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4e4cbee9 2502 bi->bi_status);
1da177e4 2503 if (i == disks) {
5f9d1fde 2504 bio_reset(bi);
1da177e4 2505 BUG();
6712ecf8 2506 return;
1da177e4 2507 }
14a75d3e 2508 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2509 /* If replacement finished while this request was outstanding,
2510 * 'replacement' might be NULL already.
2511 * In that case it moved down to 'rdev'.
2512 * rdev is not removed until all requests are finished.
2513 */
14a75d3e 2514 rdev = conf->disks[i].replacement;
dd054fce 2515 if (!rdev)
14a75d3e 2516 rdev = conf->disks[i].rdev;
1da177e4 2517
05616be5
N
2518 if (use_new_offset(conf, sh))
2519 s = sh->sector + rdev->new_data_offset;
2520 else
2521 s = sh->sector + rdev->data_offset;
4e4cbee9 2522 if (!bi->bi_status) {
1da177e4 2523 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2524 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2525 /* Note that this cannot happen on a
2526 * replacement device. We just fail those on
2527 * any error
2528 */
cc6167b4
N
2529 pr_info_ratelimited(
2530 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
c911c46c 2531 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
05616be5 2532 (unsigned long long)s,
8bda470e 2533 bdevname(rdev->bdev, b));
c911c46c 2534 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
4e5314b5
N
2535 clear_bit(R5_ReadError, &sh->dev[i].flags);
2536 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2537 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2538 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2539
86aa1397
SL
2540 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2541 /*
2542 * end read for a page in journal, this
2543 * must be preparing for prexor in rmw
2544 */
2545 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2546
14a75d3e
N
2547 if (atomic_read(&rdev->read_errors))
2548 atomic_set(&rdev->read_errors, 0);
1da177e4 2549 } else {
14a75d3e 2550 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2551 int retry = 0;
2e8ac303 2552 int set_bad = 0;
d6950432 2553
1da177e4 2554 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
b76b4715
NC
2555 if (!(bi->bi_status == BLK_STS_PROTECTION))
2556 atomic_inc(&rdev->read_errors);
14a75d3e 2557 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
cc6167b4
N
2558 pr_warn_ratelimited(
2559 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
14a75d3e 2560 mdname(conf->mddev),
05616be5 2561 (unsigned long long)s,
14a75d3e 2562 bdn);
2e8ac303 2563 else if (conf->mddev->degraded >= conf->max_degraded) {
2564 set_bad = 1;
cc6167b4
N
2565 pr_warn_ratelimited(
2566 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
8bda470e 2567 mdname(conf->mddev),
05616be5 2568 (unsigned long long)s,
8bda470e 2569 bdn);
2e8ac303 2570 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2571 /* Oh, no!!! */
2e8ac303 2572 set_bad = 1;
cc6167b4
N
2573 pr_warn_ratelimited(
2574 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
8bda470e 2575 mdname(conf->mddev),
05616be5 2576 (unsigned long long)s,
8bda470e 2577 bdn);
2e8ac303 2578 } else if (atomic_read(&rdev->read_errors)
0009fad0
NC
2579 > conf->max_nr_stripes) {
2580 if (!test_bit(Faulty, &rdev->flags)) {
2581 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2582 mdname(conf->mddev),
2583 atomic_read(&rdev->read_errors),
2584 conf->max_nr_stripes);
2585 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2586 mdname(conf->mddev), bdn);
2587 }
2588 } else
ba22dcbf 2589 retry = 1;
edfa1f65
BY
2590 if (set_bad && test_bit(In_sync, &rdev->flags)
2591 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2592 retry = 1;
ba22dcbf 2593 if (retry)
143f6e73
XN
2594 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2595 set_bit(R5_ReadError, &sh->dev[i].flags);
2596 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
3f9e7c14 2597 set_bit(R5_ReadError, &sh->dev[i].flags);
2598 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2599 } else
2600 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2601 else {
4e5314b5
N
2602 clear_bit(R5_ReadError, &sh->dev[i].flags);
2603 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2604 if (!(set_bad
2605 && test_bit(In_sync, &rdev->flags)
2606 && rdev_set_badblocks(
c911c46c 2607 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2e8ac303 2608 md_error(conf->mddev, rdev);
ba22dcbf 2609 }
1da177e4 2610 }
14a75d3e 2611 rdev_dec_pending(rdev, conf->mddev);
c9445555 2612 bio_reset(bi);
1da177e4
LT
2613 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2614 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2615 raid5_release_stripe(sh);
1da177e4
LT
2616}
2617
4246a0b6 2618static void raid5_end_write_request(struct bio *bi)
1da177e4 2619{
99c0fb5f 2620 struct stripe_head *sh = bi->bi_private;
d1688a6d 2621 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2622 int disks = sh->disks, i;
3f649ab7 2623 struct md_rdev *rdev;
b84db560
N
2624 sector_t first_bad;
2625 int bad_sectors;
977df362 2626 int replacement = 0;
1da177e4 2627
977df362
N
2628 for (i = 0 ; i < disks; i++) {
2629 if (bi == &sh->dev[i].req) {
2630 rdev = conf->disks[i].rdev;
1da177e4 2631 break;
977df362
N
2632 }
2633 if (bi == &sh->dev[i].rreq) {
2634 rdev = conf->disks[i].replacement;
dd054fce
N
2635 if (rdev)
2636 replacement = 1;
2637 else
2638 /* rdev was removed and 'replacement'
2639 * replaced it. rdev is not removed
2640 * until all requests are finished.
2641 */
2642 rdev = conf->disks[i].rdev;
977df362
N
2643 break;
2644 }
2645 }
4246a0b6 2646 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2647 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4e4cbee9 2648 bi->bi_status);
1da177e4 2649 if (i == disks) {
5f9d1fde 2650 bio_reset(bi);
1da177e4 2651 BUG();
6712ecf8 2652 return;
1da177e4
LT
2653 }
2654
977df362 2655 if (replacement) {
4e4cbee9 2656 if (bi->bi_status)
977df362
N
2657 md_error(conf->mddev, rdev);
2658 else if (is_badblock(rdev, sh->sector,
c911c46c 2659 RAID5_STRIPE_SECTORS(conf),
977df362
N
2660 &first_bad, &bad_sectors))
2661 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2662 } else {
4e4cbee9 2663 if (bi->bi_status) {
9f97e4b1 2664 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2665 set_bit(WriteErrorSeen, &rdev->flags);
2666 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2667 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2668 set_bit(MD_RECOVERY_NEEDED,
2669 &rdev->mddev->recovery);
977df362 2670 } else if (is_badblock(rdev, sh->sector,
c911c46c 2671 RAID5_STRIPE_SECTORS(conf),
c0b32972 2672 &first_bad, &bad_sectors)) {
977df362 2673 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2674 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2675 /* That was a successful write so make
2676 * sure it looks like we already did
2677 * a re-write.
2678 */
2679 set_bit(R5_ReWrite, &sh->dev[i].flags);
2680 }
977df362
N
2681 }
2682 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2683
4e4cbee9 2684 if (sh->batch_head && bi->bi_status && !replacement)
72ac7330 2685 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2686
c9445555 2687 bio_reset(bi);
977df362
N
2688 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2689 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2690 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2691 raid5_release_stripe(sh);
59fc630b 2692
2693 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2694 raid5_release_stripe(sh->batch_head);
1da177e4
LT
2695}
2696
849674e4 2697static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2698{
2699 char b[BDEVNAME_SIZE];
d1688a6d 2700 struct r5conf *conf = mddev->private;
908f4fbd 2701 unsigned long flags;
0c55e022 2702 pr_debug("raid456: error called\n");
1da177e4 2703
908f4fbd 2704 spin_lock_irqsave(&conf->device_lock, flags);
fb73b357
MT
2705
2706 if (test_bit(In_sync, &rdev->flags) &&
2707 mddev->degraded == conf->max_degraded) {
2708 /*
2709 * Don't allow to achieve failed state
2710 * Don't try to recover this device
2711 */
2712 conf->recovery_disabled = mddev->recovery_disabled;
2713 spin_unlock_irqrestore(&conf->device_lock, flags);
2714 return;
2715 }
2716
aff69d89 2717 set_bit(Faulty, &rdev->flags);
908f4fbd 2718 clear_bit(In_sync, &rdev->flags);
2e38a37f 2719 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd
N
2720 spin_unlock_irqrestore(&conf->device_lock, flags);
2721 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2722
de393cde 2723 set_bit(Blocked, &rdev->flags);
2953079c
SL
2724 set_mask_bits(&mddev->sb_flags, 0,
2725 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
cc6167b4
N
2726 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2727 "md/raid:%s: Operation continuing on %d devices.\n",
2728 mdname(mddev),
2729 bdevname(rdev->bdev, b),
2730 mdname(mddev),
2731 conf->raid_disks - mddev->degraded);
70d466f7 2732 r5c_update_on_rdev_error(mddev, rdev);
16a53ecc 2733}
1da177e4
LT
2734
2735/*
2736 * Input: a 'big' sector number,
2737 * Output: index of the data and parity disk, and the sector # in them.
2738 */
6d036f7d
SL
2739sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2740 int previous, int *dd_idx,
2741 struct stripe_head *sh)
1da177e4 2742{
6e3b96ed 2743 sector_t stripe, stripe2;
35f2a591 2744 sector_t chunk_number;
1da177e4 2745 unsigned int chunk_offset;
911d4ee8 2746 int pd_idx, qd_idx;
67cc2b81 2747 int ddf_layout = 0;
1da177e4 2748 sector_t new_sector;
e183eaed
N
2749 int algorithm = previous ? conf->prev_algo
2750 : conf->algorithm;
09c9e5fa
AN
2751 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2752 : conf->chunk_sectors;
112bf897
N
2753 int raid_disks = previous ? conf->previous_raid_disks
2754 : conf->raid_disks;
2755 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2756
2757 /* First compute the information on this sector */
2758
2759 /*
2760 * Compute the chunk number and the sector offset inside the chunk
2761 */
2762 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2763 chunk_number = r_sector;
1da177e4
LT
2764
2765 /*
2766 * Compute the stripe number
2767 */
35f2a591
N
2768 stripe = chunk_number;
2769 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2770 stripe2 = stripe;
1da177e4
LT
2771 /*
2772 * Select the parity disk based on the user selected algorithm.
2773 */
84789554 2774 pd_idx = qd_idx = -1;
16a53ecc
N
2775 switch(conf->level) {
2776 case 4:
911d4ee8 2777 pd_idx = data_disks;
16a53ecc
N
2778 break;
2779 case 5:
e183eaed 2780 switch (algorithm) {
1da177e4 2781 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2782 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2783 if (*dd_idx >= pd_idx)
1da177e4
LT
2784 (*dd_idx)++;
2785 break;
2786 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2787 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2788 if (*dd_idx >= pd_idx)
1da177e4
LT
2789 (*dd_idx)++;
2790 break;
2791 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2792 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2793 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2794 break;
2795 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2796 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2797 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2798 break;
99c0fb5f
N
2799 case ALGORITHM_PARITY_0:
2800 pd_idx = 0;
2801 (*dd_idx)++;
2802 break;
2803 case ALGORITHM_PARITY_N:
2804 pd_idx = data_disks;
2805 break;
1da177e4 2806 default:
99c0fb5f 2807 BUG();
16a53ecc
N
2808 }
2809 break;
2810 case 6:
2811
e183eaed 2812 switch (algorithm) {
16a53ecc 2813 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2814 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2815 qd_idx = pd_idx + 1;
2816 if (pd_idx == raid_disks-1) {
99c0fb5f 2817 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2818 qd_idx = 0;
2819 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2820 (*dd_idx) += 2; /* D D P Q D */
2821 break;
2822 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2823 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2824 qd_idx = pd_idx + 1;
2825 if (pd_idx == raid_disks-1) {
99c0fb5f 2826 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2827 qd_idx = 0;
2828 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2829 (*dd_idx) += 2; /* D D P Q D */
2830 break;
2831 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2832 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2833 qd_idx = (pd_idx + 1) % raid_disks;
2834 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2835 break;
2836 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2837 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2838 qd_idx = (pd_idx + 1) % raid_disks;
2839 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2840 break;
99c0fb5f
N
2841
2842 case ALGORITHM_PARITY_0:
2843 pd_idx = 0;
2844 qd_idx = 1;
2845 (*dd_idx) += 2;
2846 break;
2847 case ALGORITHM_PARITY_N:
2848 pd_idx = data_disks;
2849 qd_idx = data_disks + 1;
2850 break;
2851
2852 case ALGORITHM_ROTATING_ZERO_RESTART:
2853 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2854 * of blocks for computing Q is different.
2855 */
6e3b96ed 2856 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2857 qd_idx = pd_idx + 1;
2858 if (pd_idx == raid_disks-1) {
2859 (*dd_idx)++; /* Q D D D P */
2860 qd_idx = 0;
2861 } else if (*dd_idx >= pd_idx)
2862 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2863 ddf_layout = 1;
99c0fb5f
N
2864 break;
2865
2866 case ALGORITHM_ROTATING_N_RESTART:
2867 /* Same a left_asymmetric, by first stripe is
2868 * D D D P Q rather than
2869 * Q D D D P
2870 */
6e3b96ed
N
2871 stripe2 += 1;
2872 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2873 qd_idx = pd_idx + 1;
2874 if (pd_idx == raid_disks-1) {
2875 (*dd_idx)++; /* Q D D D P */
2876 qd_idx = 0;
2877 } else if (*dd_idx >= pd_idx)
2878 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2879 ddf_layout = 1;
99c0fb5f
N
2880 break;
2881
2882 case ALGORITHM_ROTATING_N_CONTINUE:
2883 /* Same as left_symmetric but Q is before P */
6e3b96ed 2884 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2885 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2886 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2887 ddf_layout = 1;
99c0fb5f
N
2888 break;
2889
2890 case ALGORITHM_LEFT_ASYMMETRIC_6:
2891 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2892 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2893 if (*dd_idx >= pd_idx)
2894 (*dd_idx)++;
2895 qd_idx = raid_disks - 1;
2896 break;
2897
2898 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2899 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2900 if (*dd_idx >= pd_idx)
2901 (*dd_idx)++;
2902 qd_idx = raid_disks - 1;
2903 break;
2904
2905 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2906 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2907 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2908 qd_idx = raid_disks - 1;
2909 break;
2910
2911 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2912 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2913 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2914 qd_idx = raid_disks - 1;
2915 break;
2916
2917 case ALGORITHM_PARITY_0_6:
2918 pd_idx = 0;
2919 (*dd_idx)++;
2920 qd_idx = raid_disks - 1;
2921 break;
2922
16a53ecc 2923 default:
99c0fb5f 2924 BUG();
16a53ecc
N
2925 }
2926 break;
1da177e4
LT
2927 }
2928
911d4ee8
N
2929 if (sh) {
2930 sh->pd_idx = pd_idx;
2931 sh->qd_idx = qd_idx;
67cc2b81 2932 sh->ddf_layout = ddf_layout;
911d4ee8 2933 }
1da177e4
LT
2934 /*
2935 * Finally, compute the new sector number
2936 */
2937 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2938 return new_sector;
2939}
2940
6d036f7d 2941sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2942{
d1688a6d 2943 struct r5conf *conf = sh->raid_conf;
b875e531
N
2944 int raid_disks = sh->disks;
2945 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2946 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2947 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2948 : conf->chunk_sectors;
e183eaed
N
2949 int algorithm = previous ? conf->prev_algo
2950 : conf->algorithm;
1da177e4
LT
2951 sector_t stripe;
2952 int chunk_offset;
35f2a591
N
2953 sector_t chunk_number;
2954 int dummy1, dd_idx = i;
1da177e4 2955 sector_t r_sector;
911d4ee8 2956 struct stripe_head sh2;
1da177e4
LT
2957
2958 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2959 stripe = new_sector;
1da177e4 2960
16a53ecc
N
2961 if (i == sh->pd_idx)
2962 return 0;
2963 switch(conf->level) {
2964 case 4: break;
2965 case 5:
e183eaed 2966 switch (algorithm) {
1da177e4
LT
2967 case ALGORITHM_LEFT_ASYMMETRIC:
2968 case ALGORITHM_RIGHT_ASYMMETRIC:
2969 if (i > sh->pd_idx)
2970 i--;
2971 break;
2972 case ALGORITHM_LEFT_SYMMETRIC:
2973 case ALGORITHM_RIGHT_SYMMETRIC:
2974 if (i < sh->pd_idx)
2975 i += raid_disks;
2976 i -= (sh->pd_idx + 1);
2977 break;
99c0fb5f
N
2978 case ALGORITHM_PARITY_0:
2979 i -= 1;
2980 break;
2981 case ALGORITHM_PARITY_N:
2982 break;
1da177e4 2983 default:
99c0fb5f 2984 BUG();
16a53ecc
N
2985 }
2986 break;
2987 case 6:
d0dabf7e 2988 if (i == sh->qd_idx)
16a53ecc 2989 return 0; /* It is the Q disk */
e183eaed 2990 switch (algorithm) {
16a53ecc
N
2991 case ALGORITHM_LEFT_ASYMMETRIC:
2992 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2993 case ALGORITHM_ROTATING_ZERO_RESTART:
2994 case ALGORITHM_ROTATING_N_RESTART:
2995 if (sh->pd_idx == raid_disks-1)
2996 i--; /* Q D D D P */
16a53ecc
N
2997 else if (i > sh->pd_idx)
2998 i -= 2; /* D D P Q D */
2999 break;
3000 case ALGORITHM_LEFT_SYMMETRIC:
3001 case ALGORITHM_RIGHT_SYMMETRIC:
3002 if (sh->pd_idx == raid_disks-1)
3003 i--; /* Q D D D P */
3004 else {
3005 /* D D P Q D */
3006 if (i < sh->pd_idx)
3007 i += raid_disks;
3008 i -= (sh->pd_idx + 2);
3009 }
3010 break;
99c0fb5f
N
3011 case ALGORITHM_PARITY_0:
3012 i -= 2;
3013 break;
3014 case ALGORITHM_PARITY_N:
3015 break;
3016 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 3017 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
3018 if (sh->pd_idx == 0)
3019 i--; /* P D D D Q */
e4424fee
N
3020 else {
3021 /* D D Q P D */
3022 if (i < sh->pd_idx)
3023 i += raid_disks;
3024 i -= (sh->pd_idx + 1);
3025 }
99c0fb5f
N
3026 break;
3027 case ALGORITHM_LEFT_ASYMMETRIC_6:
3028 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3029 if (i > sh->pd_idx)
3030 i--;
3031 break;
3032 case ALGORITHM_LEFT_SYMMETRIC_6:
3033 case ALGORITHM_RIGHT_SYMMETRIC_6:
3034 if (i < sh->pd_idx)
3035 i += data_disks + 1;
3036 i -= (sh->pd_idx + 1);
3037 break;
3038 case ALGORITHM_PARITY_0_6:
3039 i -= 1;
3040 break;
16a53ecc 3041 default:
99c0fb5f 3042 BUG();
16a53ecc
N
3043 }
3044 break;
1da177e4
LT
3045 }
3046
3047 chunk_number = stripe * data_disks + i;
35f2a591 3048 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 3049
112bf897 3050 check = raid5_compute_sector(conf, r_sector,
784052ec 3051 previous, &dummy1, &sh2);
911d4ee8
N
3052 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3053 || sh2.qd_idx != sh->qd_idx) {
cc6167b4
N
3054 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3055 mdname(conf->mddev));
1da177e4
LT
3056 return 0;
3057 }
3058 return r_sector;
3059}
3060
07e83364
SL
3061/*
3062 * There are cases where we want handle_stripe_dirtying() and
3063 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3064 *
3065 * This function checks whether we want to delay the towrite. Specifically,
3066 * we delay the towrite when:
3067 *
3068 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3069 * stripe has data in journal (for other devices).
3070 *
3071 * In this case, when reading data for the non-overwrite dev, it is
3072 * necessary to handle complex rmw of write back cache (prexor with
3073 * orig_page, and xor with page). To keep read path simple, we would
3074 * like to flush data in journal to RAID disks first, so complex rmw
3075 * is handled in the write patch (handle_stripe_dirtying).
3076 *
39b99586
SL
3077 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3078 *
3079 * It is important to be able to flush all stripes in raid5-cache.
3080 * Therefore, we need reserve some space on the journal device for
3081 * these flushes. If flush operation includes pending writes to the
3082 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3083 * for the flush out. If we exclude these pending writes from flush
3084 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3085 * Therefore, excluding pending writes in these cases enables more
3086 * efficient use of the journal device.
3087 *
3088 * Note: To make sure the stripe makes progress, we only delay
3089 * towrite for stripes with data already in journal (injournal > 0).
3090 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3091 * no_space_stripes list.
3092 *
70d466f7
SL
3093 * 3. during journal failure
3094 * In journal failure, we try to flush all cached data to raid disks
3095 * based on data in stripe cache. The array is read-only to upper
3096 * layers, so we would skip all pending writes.
3097 *
07e83364 3098 */
39b99586
SL
3099static inline bool delay_towrite(struct r5conf *conf,
3100 struct r5dev *dev,
3101 struct stripe_head_state *s)
07e83364 3102{
39b99586
SL
3103 /* case 1 above */
3104 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3105 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3106 return true;
3107 /* case 2 above */
3108 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3109 s->injournal > 0)
3110 return true;
70d466f7
SL
3111 /* case 3 above */
3112 if (s->log_failed && s->injournal)
3113 return true;
39b99586 3114 return false;
07e83364
SL
3115}
3116
600aa109 3117static void
c0f7bddb 3118schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 3119 int rcw, int expand)
e33129d8 3120{
584acdd4 3121 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 3122 struct r5conf *conf = sh->raid_conf;
c0f7bddb 3123 int level = conf->level;
e33129d8
DW
3124
3125 if (rcw) {
1e6d690b
SL
3126 /*
3127 * In some cases, handle_stripe_dirtying initially decided to
3128 * run rmw and allocates extra page for prexor. However, rcw is
3129 * cheaper later on. We need to free the extra page now,
3130 * because we won't be able to do that in ops_complete_prexor().
3131 */
3132 r5c_release_extra_page(sh);
e33129d8
DW
3133
3134 for (i = disks; i--; ) {
3135 struct r5dev *dev = &sh->dev[i];
3136
39b99586 3137 if (dev->towrite && !delay_towrite(conf, dev, s)) {
e33129d8 3138 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 3139 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3140 if (!expand)
3141 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3142 s->locked++;
1e6d690b
SL
3143 } else if (test_bit(R5_InJournal, &dev->flags)) {
3144 set_bit(R5_LOCKED, &dev->flags);
3145 s->locked++;
e33129d8
DW
3146 }
3147 }
ce7d363a
N
3148 /* if we are not expanding this is a proper write request, and
3149 * there will be bios with new data to be drained into the
3150 * stripe cache
3151 */
3152 if (!expand) {
3153 if (!s->locked)
3154 /* False alarm, nothing to do */
3155 return;
3156 sh->reconstruct_state = reconstruct_state_drain_run;
3157 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3158 } else
3159 sh->reconstruct_state = reconstruct_state_run;
3160
3161 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3162
c0f7bddb 3163 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 3164 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 3165 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
3166 } else {
3167 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3168 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
3169 BUG_ON(level == 6 &&
3170 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3171 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 3172
e33129d8
DW
3173 for (i = disks; i--; ) {
3174 struct r5dev *dev = &sh->dev[i];
584acdd4 3175 if (i == pd_idx || i == qd_idx)
e33129d8
DW
3176 continue;
3177
e33129d8
DW
3178 if (dev->towrite &&
3179 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
3180 test_bit(R5_Wantcompute, &dev->flags))) {
3181 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3182 set_bit(R5_LOCKED, &dev->flags);
3183 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3184 s->locked++;
1e6d690b
SL
3185 } else if (test_bit(R5_InJournal, &dev->flags)) {
3186 set_bit(R5_LOCKED, &dev->flags);
3187 s->locked++;
e33129d8
DW
3188 }
3189 }
ce7d363a
N
3190 if (!s->locked)
3191 /* False alarm - nothing to do */
3192 return;
3193 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3194 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3195 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3196 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
3197 }
3198
c0f7bddb 3199 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
3200 * are in flight
3201 */
3202 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3203 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 3204 s->locked++;
e33129d8 3205
c0f7bddb
YT
3206 if (level == 6) {
3207 int qd_idx = sh->qd_idx;
3208 struct r5dev *dev = &sh->dev[qd_idx];
3209
3210 set_bit(R5_LOCKED, &dev->flags);
3211 clear_bit(R5_UPTODATE, &dev->flags);
3212 s->locked++;
3213 }
3214
845b9e22 3215 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3418d036
AP
3216 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3217 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3218 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3219 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3220
600aa109 3221 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 3222 __func__, (unsigned long long)sh->sector,
600aa109 3223 s->locked, s->ops_request);
e33129d8 3224}
16a53ecc 3225
1da177e4
LT
3226/*
3227 * Each stripe/dev can have one or more bion attached.
16a53ecc 3228 * toread/towrite point to the first in a chain.
1da177e4
LT
3229 * The bi_next chain must be in order.
3230 */
da41ba65 3231static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3232 int forwrite, int previous)
1da177e4
LT
3233{
3234 struct bio **bip;
d1688a6d 3235 struct r5conf *conf = sh->raid_conf;
72626685 3236 int firstwrite=0;
1da177e4 3237
cbe47ec5 3238 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 3239 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
3240 (unsigned long long)sh->sector);
3241
b17459c0 3242 spin_lock_irq(&sh->stripe_lock);
2cd259a7 3243 sh->dev[dd_idx].write_hint = bi->bi_write_hint;
59fc630b 3244 /* Don't allow new IO added to stripes in batch list */
3245 if (sh->batch_head)
3246 goto overlap;
72626685 3247 if (forwrite) {
1da177e4 3248 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 3249 if (*bip == NULL)
72626685
N
3250 firstwrite = 1;
3251 } else
1da177e4 3252 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
3253 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3254 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
3255 goto overlap;
3256 bip = & (*bip)->bi_next;
3257 }
4f024f37 3258 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
3259 goto overlap;
3260
3418d036
AP
3261 if (forwrite && raid5_has_ppl(conf)) {
3262 /*
3263 * With PPL only writes to consecutive data chunks within a
3264 * stripe are allowed because for a single stripe_head we can
3265 * only have one PPL entry at a time, which describes one data
3266 * range. Not really an overlap, but wait_for_overlap can be
3267 * used to handle this.
3268 */
3269 sector_t sector;
3270 sector_t first = 0;
3271 sector_t last = 0;
3272 int count = 0;
3273 int i;
3274
3275 for (i = 0; i < sh->disks; i++) {
3276 if (i != sh->pd_idx &&
3277 (i == dd_idx || sh->dev[i].towrite)) {
3278 sector = sh->dev[i].sector;
3279 if (count == 0 || sector < first)
3280 first = sector;
3281 if (sector > last)
3282 last = sector;
3283 count++;
3284 }
3285 }
3286
3287 if (first + conf->chunk_sectors * (count - 1) != last)
3288 goto overlap;
3289 }
3290
da41ba65 3291 if (!forwrite || previous)
3292 clear_bit(STRIPE_BATCH_READY, &sh->state);
3293
78bafebd 3294 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
3295 if (*bip)
3296 bi->bi_next = *bip;
3297 *bip = bi;
016c76ac 3298 bio_inc_remaining(bi);
49728050 3299 md_write_inc(conf->mddev, bi);
72626685 3300
1da177e4
LT
3301 if (forwrite) {
3302 /* check if page is covered */
3303 sector_t sector = sh->dev[dd_idx].sector;
3304 for (bi=sh->dev[dd_idx].towrite;
c911c46c 3305 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
4f024f37 3306 bi && bi->bi_iter.bi_sector <= sector;
c911c46c 3307 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
3308 if (bio_end_sector(bi) >= sector)
3309 sector = bio_end_sector(bi);
1da177e4 3310 }
c911c46c 3311 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
7a87f434 3312 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3313 sh->overwrite_disks++;
1da177e4 3314 }
cbe47ec5
N
3315
3316 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3317 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3318 (unsigned long long)sh->sector, dd_idx);
3319
3320 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3321 /* Cannot hold spinlock over bitmap_startwrite,
3322 * but must ensure this isn't added to a batch until
3323 * we have added to the bitmap and set bm_seq.
3324 * So set STRIPE_BITMAP_PENDING to prevent
3325 * batching.
3326 * If multiple add_stripe_bio() calls race here they
3327 * much all set STRIPE_BITMAP_PENDING. So only the first one
3328 * to complete "bitmap_startwrite" gets to set
3329 * STRIPE_BIT_DELAY. This is important as once a stripe
3330 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3331 * any more.
3332 */
3333 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3334 spin_unlock_irq(&sh->stripe_lock);
e64e4018 3335 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
c911c46c 3336 RAID5_STRIPE_SECTORS(conf), 0);
d0852df5
N
3337 spin_lock_irq(&sh->stripe_lock);
3338 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3339 if (!sh->batch_head) {
3340 sh->bm_seq = conf->seq_flush+1;
3341 set_bit(STRIPE_BIT_DELAY, &sh->state);
3342 }
cbe47ec5 3343 }
d0852df5 3344 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3345
3346 if (stripe_can_batch(sh))
3347 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3348 return 1;
3349
3350 overlap:
3351 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3352 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3353 return 0;
3354}
3355
d1688a6d 3356static void end_reshape(struct r5conf *conf);
29269553 3357
d1688a6d 3358static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3359 struct stripe_head *sh)
ccfcc3c1 3360{
784052ec 3361 int sectors_per_chunk =
09c9e5fa 3362 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3363 int dd_idx;
2d2063ce 3364 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3365 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3366
112bf897
N
3367 raid5_compute_sector(conf,
3368 stripe * (disks - conf->max_degraded)
b875e531 3369 *sectors_per_chunk + chunk_offset,
112bf897 3370 previous,
911d4ee8 3371 &dd_idx, sh);
ccfcc3c1
N
3372}
3373
a4456856 3374static void
d1688a6d 3375handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
bd83d0a2 3376 struct stripe_head_state *s, int disks)
a4456856
DW
3377{
3378 int i;
59fc630b 3379 BUG_ON(sh->batch_head);
a4456856
DW
3380 for (i = disks; i--; ) {
3381 struct bio *bi;
3382 int bitmap_end = 0;
3383
3384 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3385 struct md_rdev *rdev;
a4456856
DW
3386 rcu_read_lock();
3387 rdev = rcu_dereference(conf->disks[i].rdev);
f5b67ae8
N
3388 if (rdev && test_bit(In_sync, &rdev->flags) &&
3389 !test_bit(Faulty, &rdev->flags))
7f0da59b
N
3390 atomic_inc(&rdev->nr_pending);
3391 else
3392 rdev = NULL;
a4456856 3393 rcu_read_unlock();
7f0da59b
N
3394 if (rdev) {
3395 if (!rdev_set_badblocks(
3396 rdev,
3397 sh->sector,
c911c46c 3398 RAID5_STRIPE_SECTORS(conf), 0))
7f0da59b
N
3399 md_error(conf->mddev, rdev);
3400 rdev_dec_pending(rdev, conf->mddev);
3401 }
a4456856 3402 }
b17459c0 3403 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3404 /* fail all writes first */
3405 bi = sh->dev[i].towrite;
3406 sh->dev[i].towrite = NULL;
7a87f434 3407 sh->overwrite_disks = 0;
b17459c0 3408 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3409 if (bi)
a4456856 3410 bitmap_end = 1;
a4456856 3411
ff875738 3412 log_stripe_write_finished(sh);
0576b1c6 3413
a4456856
DW
3414 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3415 wake_up(&conf->wait_for_overlap);
3416
4f024f37 3417 while (bi && bi->bi_iter.bi_sector <
c911c46c
YY
3418 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3419 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
4246a0b6 3420
49728050 3421 md_write_end(conf->mddev);
6308d8e3 3422 bio_io_error(bi);
a4456856
DW
3423 bi = nextbi;
3424 }
7eaf7e8e 3425 if (bitmap_end)
e64e4018 3426 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
c911c46c 3427 RAID5_STRIPE_SECTORS(conf), 0, 0);
7eaf7e8e 3428 bitmap_end = 0;
a4456856
DW
3429 /* and fail all 'written' */
3430 bi = sh->dev[i].written;
3431 sh->dev[i].written = NULL;
d592a996
SL
3432 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3433 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3434 sh->dev[i].page = sh->dev[i].orig_page;
3435 }
3436
a4456856 3437 if (bi) bitmap_end = 1;
4f024f37 3438 while (bi && bi->bi_iter.bi_sector <
c911c46c
YY
3439 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3440 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
4246a0b6 3441
49728050 3442 md_write_end(conf->mddev);
6308d8e3 3443 bio_io_error(bi);
a4456856
DW
3444 bi = bi2;
3445 }
3446
b5e98d65
DW
3447 /* fail any reads if this device is non-operational and
3448 * the data has not reached the cache yet.
3449 */
3450 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
6e74a9cf 3451 s->failed > conf->max_degraded &&
b5e98d65
DW
3452 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3453 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3454 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3455 bi = sh->dev[i].toread;
3456 sh->dev[i].toread = NULL;
143c4d05 3457 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3458 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3459 wake_up(&conf->wait_for_overlap);
ebda780b
SL
3460 if (bi)
3461 s->to_read--;
4f024f37 3462 while (bi && bi->bi_iter.bi_sector <
c911c46c 3463 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
a4456856 3464 struct bio *nextbi =
c911c46c 3465 r5_next_bio(conf, bi, sh->dev[i].sector);
4246a0b6 3466
6308d8e3 3467 bio_io_error(bi);
a4456856
DW
3468 bi = nextbi;
3469 }
3470 }
a4456856 3471 if (bitmap_end)
e64e4018 3472 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
c911c46c 3473 RAID5_STRIPE_SECTORS(conf), 0, 0);
8cfa7b0f
N
3474 /* If we were in the middle of a write the parity block might
3475 * still be locked - so just clear all R5_LOCKED flags
3476 */
3477 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3478 }
ebda780b
SL
3479 s->to_write = 0;
3480 s->written = 0;
a4456856 3481
8b3e6cdc
DW
3482 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3483 if (atomic_dec_and_test(&conf->pending_full_writes))
3484 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3485}
3486
7f0da59b 3487static void
d1688a6d 3488handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3489 struct stripe_head_state *s)
3490{
3491 int abort = 0;
3492 int i;
3493
59fc630b 3494 BUG_ON(sh->batch_head);
7f0da59b 3495 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3496 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3497 wake_up(&conf->wait_for_overlap);
7f0da59b 3498 s->syncing = 0;
9a3e1101 3499 s->replacing = 0;
7f0da59b 3500 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3501 * Don't even need to abort as that is handled elsewhere
3502 * if needed, and not always wanted e.g. if there is a known
3503 * bad block here.
9a3e1101 3504 * For recover/replace we need to record a bad block on all
7f0da59b
N
3505 * non-sync devices, or abort the recovery
3506 */
18b9837e
N
3507 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3508 /* During recovery devices cannot be removed, so
3509 * locking and refcounting of rdevs is not needed
3510 */
e50d3992 3511 rcu_read_lock();
18b9837e 3512 for (i = 0; i < conf->raid_disks; i++) {
e50d3992 3513 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
18b9837e
N
3514 if (rdev
3515 && !test_bit(Faulty, &rdev->flags)
3516 && !test_bit(In_sync, &rdev->flags)
3517 && !rdev_set_badblocks(rdev, sh->sector,
c911c46c 3518 RAID5_STRIPE_SECTORS(conf), 0))
18b9837e 3519 abort = 1;
e50d3992 3520 rdev = rcu_dereference(conf->disks[i].replacement);
18b9837e
N
3521 if (rdev
3522 && !test_bit(Faulty, &rdev->flags)
3523 && !test_bit(In_sync, &rdev->flags)
3524 && !rdev_set_badblocks(rdev, sh->sector,
c911c46c 3525 RAID5_STRIPE_SECTORS(conf), 0))
18b9837e
N
3526 abort = 1;
3527 }
e50d3992 3528 rcu_read_unlock();
18b9837e
N
3529 if (abort)
3530 conf->recovery_disabled =
3531 conf->mddev->recovery_disabled;
7f0da59b 3532 }
c911c46c 3533 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
7f0da59b
N
3534}
3535
9a3e1101
N
3536static int want_replace(struct stripe_head *sh, int disk_idx)
3537{
3538 struct md_rdev *rdev;
3539 int rv = 0;
3f232d6a
N
3540
3541 rcu_read_lock();
3542 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
9a3e1101
N
3543 if (rdev
3544 && !test_bit(Faulty, &rdev->flags)
3545 && !test_bit(In_sync, &rdev->flags)
3546 && (rdev->recovery_offset <= sh->sector
3547 || rdev->mddev->recovery_cp <= sh->sector))
3548 rv = 1;
3f232d6a 3549 rcu_read_unlock();
9a3e1101
N
3550 return rv;
3551}
3552
2c58f06e
N
3553static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3554 int disk_idx, int disks)
a4456856 3555{
5599becc 3556 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3557 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3558 &sh->dev[s->failed_num[1]] };
ea664c82 3559 int i;
45a4d8fd 3560 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
5599becc 3561
a79cfe12
N
3562
3563 if (test_bit(R5_LOCKED, &dev->flags) ||
3564 test_bit(R5_UPTODATE, &dev->flags))
3565 /* No point reading this as we already have it or have
3566 * decided to get it.
3567 */
3568 return 0;
3569
3570 if (dev->toread ||
3571 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3572 /* We need this block to directly satisfy a request */
3573 return 1;
3574
3575 if (s->syncing || s->expanding ||
3576 (s->replacing && want_replace(sh, disk_idx)))
3577 /* When syncing, or expanding we read everything.
3578 * When replacing, we need the replaced block.
3579 */
3580 return 1;
3581
3582 if ((s->failed >= 1 && fdev[0]->toread) ||
3583 (s->failed >= 2 && fdev[1]->toread))
3584 /* If we want to read from a failed device, then
3585 * we need to actually read every other device.
3586 */
3587 return 1;
3588
a9d56950
N
3589 /* Sometimes neither read-modify-write nor reconstruct-write
3590 * cycles can work. In those cases we read every block we
3591 * can. Then the parity-update is certain to have enough to
3592 * work with.
3593 * This can only be a problem when we need to write something,
3594 * and some device has failed. If either of those tests
3595 * fail we need look no further.
3596 */
3597 if (!s->failed || !s->to_write)
3598 return 0;
3599
3600 if (test_bit(R5_Insync, &dev->flags) &&
3601 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3602 /* Pre-reads at not permitted until after short delay
3603 * to gather multiple requests. However if this
3560741e 3604 * device is no Insync, the block could only be computed
a9d56950
N
3605 * and there is no need to delay that.
3606 */
3607 return 0;
ea664c82 3608
36707bb2 3609 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3610 if (fdev[i]->towrite &&
3611 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3612 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3613 /* If we have a partial write to a failed
3614 * device, then we will need to reconstruct
3615 * the content of that device, so all other
3616 * devices must be read.
3617 */
3618 return 1;
45a4d8fd
CP
3619
3620 if (s->failed >= 2 &&
3621 (fdev[i]->towrite ||
3622 s->failed_num[i] == sh->pd_idx ||
3623 s->failed_num[i] == sh->qd_idx) &&
3624 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3625 /* In max degraded raid6, If the failed disk is P, Q,
3626 * or we want to read the failed disk, we need to do
3627 * reconstruct-write.
3628 */
3629 force_rcw = true;
ea664c82
N
3630 }
3631
45a4d8fd
CP
3632 /* If we are forced to do a reconstruct-write, because parity
3633 * cannot be trusted and we are currently recovering it, there
3634 * is extra need to be careful.
ea664c82
N
3635 * If one of the devices that we would need to read, because
3636 * it is not being overwritten (and maybe not written at all)
3637 * is missing/faulty, then we need to read everything we can.
3638 */
45a4d8fd 3639 if (!force_rcw &&
ea664c82
N
3640 sh->sector < sh->raid_conf->mddev->recovery_cp)
3641 /* reconstruct-write isn't being forced */
3642 return 0;
36707bb2 3643 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3644 if (s->failed_num[i] != sh->pd_idx &&
3645 s->failed_num[i] != sh->qd_idx &&
3646 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3647 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3648 return 1;
3649 }
3650
2c58f06e
N
3651 return 0;
3652}
3653
ba02684d
SL
3654/* fetch_block - checks the given member device to see if its data needs
3655 * to be read or computed to satisfy a request.
3656 *
3657 * Returns 1 when no more member devices need to be checked, otherwise returns
3658 * 0 to tell the loop in handle_stripe_fill to continue
3659 */
2c58f06e
N
3660static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3661 int disk_idx, int disks)
3662{
3663 struct r5dev *dev = &sh->dev[disk_idx];
3664
3665 /* is the data in this block needed, and can we get it? */
3666 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3667 /* we would like to get this block, possibly by computing it,
3668 * otherwise read it if the backing disk is insync
3669 */
3670 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3671 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3672 BUG_ON(sh->batch_head);
7471fb77
N
3673
3674 /*
3675 * In the raid6 case if the only non-uptodate disk is P
3676 * then we already trusted P to compute the other failed
3677 * drives. It is safe to compute rather than re-read P.
3678 * In other cases we only compute blocks from failed
3679 * devices, otherwise check/repair might fail to detect
3680 * a real inconsistency.
3681 */
3682
5599becc 3683 if ((s->uptodate == disks - 1) &&
7471fb77 3684 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
f2b3b44d 3685 (s->failed && (disk_idx == s->failed_num[0] ||
7471fb77 3686 disk_idx == s->failed_num[1])))) {
5599becc
YT
3687 /* have disk failed, and we're requested to fetch it;
3688 * do compute it
a4456856 3689 */
5599becc
YT
3690 pr_debug("Computing stripe %llu block %d\n",
3691 (unsigned long long)sh->sector, disk_idx);
3692 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3693 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3694 set_bit(R5_Wantcompute, &dev->flags);
3695 sh->ops.target = disk_idx;
3696 sh->ops.target2 = -1; /* no 2nd target */
3697 s->req_compute = 1;
93b3dbce
N
3698 /* Careful: from this point on 'uptodate' is in the eye
3699 * of raid_run_ops which services 'compute' operations
3700 * before writes. R5_Wantcompute flags a block that will
3701 * be R5_UPTODATE by the time it is needed for a
3702 * subsequent operation.
3703 */
5599becc
YT
3704 s->uptodate++;
3705 return 1;
3706 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3707 /* Computing 2-failure is *very* expensive; only
3708 * do it if failed >= 2
3709 */
3710 int other;
3711 for (other = disks; other--; ) {
3712 if (other == disk_idx)
3713 continue;
3714 if (!test_bit(R5_UPTODATE,
3715 &sh->dev[other].flags))
3716 break;
a4456856 3717 }
5599becc
YT
3718 BUG_ON(other < 0);
3719 pr_debug("Computing stripe %llu blocks %d,%d\n",
3720 (unsigned long long)sh->sector,
3721 disk_idx, other);
3722 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3723 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3724 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3725 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3726 sh->ops.target = disk_idx;
3727 sh->ops.target2 = other;
3728 s->uptodate += 2;
3729 s->req_compute = 1;
3730 return 1;
3731 } else if (test_bit(R5_Insync, &dev->flags)) {
3732 set_bit(R5_LOCKED, &dev->flags);
3733 set_bit(R5_Wantread, &dev->flags);
3734 s->locked++;
3735 pr_debug("Reading block %d (sync=%d)\n",
3736 disk_idx, s->syncing);
a4456856
DW
3737 }
3738 }
5599becc
YT
3739
3740 return 0;
3741}
3742
2aada5b1 3743/*
93b3dbce 3744 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3745 */
93b3dbce
N
3746static void handle_stripe_fill(struct stripe_head *sh,
3747 struct stripe_head_state *s,
3748 int disks)
5599becc
YT
3749{
3750 int i;
3751
3752 /* look for blocks to read/compute, skip this if a compute
3753 * is already in flight, or if the stripe contents are in the
3754 * midst of changing due to a write
3755 */
3756 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
07e83364
SL
3757 !sh->reconstruct_state) {
3758
3759 /*
3760 * For degraded stripe with data in journal, do not handle
3761 * read requests yet, instead, flush the stripe to raid
3762 * disks first, this avoids handling complex rmw of write
3763 * back cache (prexor with orig_page, and then xor with
3764 * page) in the read path
3765 */
3766 if (s->injournal && s->failed) {
3767 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3768 r5c_make_stripe_write_out(sh);
3769 goto out;
3770 }
3771
5599becc 3772 for (i = disks; i--; )
93b3dbce 3773 if (fetch_block(sh, s, i, disks))
5599becc 3774 break;
07e83364
SL
3775 }
3776out:
a4456856
DW
3777 set_bit(STRIPE_HANDLE, &sh->state);
3778}
3779
787b76fa
N
3780static void break_stripe_batch_list(struct stripe_head *head_sh,
3781 unsigned long handle_flags);
1fe797e6 3782/* handle_stripe_clean_event
a4456856
DW
3783 * any written block on an uptodate or failed drive can be returned.
3784 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3785 * never LOCKED, so we don't need to test 'failed' directly.
3786 */
d1688a6d 3787static void handle_stripe_clean_event(struct r5conf *conf,
bd83d0a2 3788 struct stripe_head *sh, int disks)
a4456856
DW
3789{
3790 int i;
3791 struct r5dev *dev;
f8dfcffd 3792 int discard_pending = 0;
59fc630b 3793 struct stripe_head *head_sh = sh;
3794 bool do_endio = false;
a4456856
DW
3795
3796 for (i = disks; i--; )
3797 if (sh->dev[i].written) {
3798 dev = &sh->dev[i];
3799 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3800 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3801 test_bit(R5_Discard, &dev->flags) ||
3802 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3803 /* We can return any write requests */
3804 struct bio *wbi, *wbi2;
45b4233c 3805 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3806 if (test_and_clear_bit(R5_Discard, &dev->flags))
3807 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3808 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3809 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3810 }
59fc630b 3811 do_endio = true;
3812
3813returnbi:
3814 dev->page = dev->orig_page;
a4456856
DW
3815 wbi = dev->written;
3816 dev->written = NULL;
4f024f37 3817 while (wbi && wbi->bi_iter.bi_sector <
c911c46c
YY
3818 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
3819 wbi2 = r5_next_bio(conf, wbi, dev->sector);
49728050 3820 md_write_end(conf->mddev);
016c76ac 3821 bio_endio(wbi);
a4456856
DW
3822 wbi = wbi2;
3823 }
e64e4018 3824 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
c911c46c 3825 RAID5_STRIPE_SECTORS(conf),
e64e4018
AS
3826 !test_bit(STRIPE_DEGRADED, &sh->state),
3827 0);
59fc630b 3828 if (head_sh->batch_head) {
3829 sh = list_first_entry(&sh->batch_list,
3830 struct stripe_head,
3831 batch_list);
3832 if (sh != head_sh) {
3833 dev = &sh->dev[i];
3834 goto returnbi;
3835 }
3836 }
3837 sh = head_sh;
3838 dev = &sh->dev[i];
f8dfcffd
N
3839 } else if (test_bit(R5_Discard, &dev->flags))
3840 discard_pending = 1;
3841 }
f6bed0ef 3842
ff875738 3843 log_stripe_write_finished(sh);
0576b1c6 3844
f8dfcffd
N
3845 if (!discard_pending &&
3846 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
b8a9d66d 3847 int hash;
f8dfcffd
N
3848 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3849 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3850 if (sh->qd_idx >= 0) {
3851 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3852 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3853 }
3854 /* now that discard is done we can proceed with any sync */
3855 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3856 /*
3857 * SCSI discard will change some bio fields and the stripe has
3858 * no updated data, so remove it from hash list and the stripe
3859 * will be reinitialized
3860 */
59fc630b 3861unhash:
b8a9d66d
RG
3862 hash = sh->hash_lock_index;
3863 spin_lock_irq(conf->hash_locks + hash);
d47648fc 3864 remove_hash(sh);
b8a9d66d 3865 spin_unlock_irq(conf->hash_locks + hash);
59fc630b 3866 if (head_sh->batch_head) {
3867 sh = list_first_entry(&sh->batch_list,
3868 struct stripe_head, batch_list);
3869 if (sh != head_sh)
3870 goto unhash;
3871 }
59fc630b 3872 sh = head_sh;
3873
f8dfcffd
N
3874 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3875 set_bit(STRIPE_HANDLE, &sh->state);
3876
3877 }
8b3e6cdc
DW
3878
3879 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3880 if (atomic_dec_and_test(&conf->pending_full_writes))
3881 md_wakeup_thread(conf->mddev->thread);
59fc630b 3882
787b76fa
N
3883 if (head_sh->batch_head && do_endio)
3884 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3885}
3886
86aa1397
SL
3887/*
3888 * For RMW in write back cache, we need extra page in prexor to store the
3889 * old data. This page is stored in dev->orig_page.
3890 *
3891 * This function checks whether we have data for prexor. The exact logic
3892 * is:
3893 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3894 */
3895static inline bool uptodate_for_rmw(struct r5dev *dev)
3896{
3897 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3898 (!test_bit(R5_InJournal, &dev->flags) ||
3899 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3900}
3901
d7bd398e
SL
3902static int handle_stripe_dirtying(struct r5conf *conf,
3903 struct stripe_head *sh,
3904 struct stripe_head_state *s,
3905 int disks)
a4456856
DW
3906{
3907 int rmw = 0, rcw = 0, i;
a7854487
AL
3908 sector_t recovery_cp = conf->mddev->recovery_cp;
3909
584acdd4 3910 /* Check whether resync is now happening or should start.
a7854487
AL
3911 * If yes, then the array is dirty (after unclean shutdown or
3912 * initial creation), so parity in some stripes might be inconsistent.
3913 * In this case, we need to always do reconstruct-write, to ensure
3914 * that in case of drive failure or read-error correction, we
3915 * generate correct data from the parity.
3916 */
584acdd4 3917 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3918 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3919 s->failed == 0)) {
a7854487 3920 /* Calculate the real rcw later - for now make it
c8ac1803
N
3921 * look like rcw is cheaper
3922 */
3923 rcw = 1; rmw = 2;
584acdd4
MS
3924 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3925 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3926 (unsigned long long)sh->sector);
c8ac1803 3927 } else for (i = disks; i--; ) {
a4456856
DW
3928 /* would I have to read this buffer for read_modify_write */
3929 struct r5dev *dev = &sh->dev[i];
39b99586 3930 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
07e83364 3931 i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b 3932 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3933 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3934 !(uptodate_for_rmw(dev) ||
f38e1219 3935 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3936 if (test_bit(R5_Insync, &dev->flags))
3937 rmw++;
3938 else
3939 rmw += 2*disks; /* cannot read it */
3940 }
3941 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3942 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3943 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3944 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3945 !(test_bit(R5_UPTODATE, &dev->flags) ||
1e6d690b 3946 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3947 if (test_bit(R5_Insync, &dev->flags))
3948 rcw++;
a4456856
DW
3949 else
3950 rcw += 2*disks;
3951 }
3952 }
1e6d690b 3953
39b99586
SL
3954 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3955 (unsigned long long)sh->sector, sh->state, rmw, rcw);
a4456856 3956 set_bit(STRIPE_HANDLE, &sh->state);
41257580 3957 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
a4456856 3958 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3959 if (conf->mddev->queue)
3960 blk_add_trace_msg(conf->mddev->queue,
3961 "raid5 rmw %llu %d",
3962 (unsigned long long)sh->sector, rmw);
a4456856
DW
3963 for (i = disks; i--; ) {
3964 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
3965 if (test_bit(R5_InJournal, &dev->flags) &&
3966 dev->page == dev->orig_page &&
3967 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3968 /* alloc page for prexor */
d7bd398e
SL
3969 struct page *p = alloc_page(GFP_NOIO);
3970
3971 if (p) {
3972 dev->orig_page = p;
3973 continue;
3974 }
3975
3976 /*
3977 * alloc_page() failed, try use
3978 * disk_info->extra_page
3979 */
3980 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3981 &conf->cache_state)) {
3982 r5c_use_extra_page(sh);
3983 break;
3984 }
1e6d690b 3985
d7bd398e
SL
3986 /* extra_page in use, add to delayed_list */
3987 set_bit(STRIPE_DELAYED, &sh->state);
3988 s->waiting_extra_page = 1;
3989 return -EAGAIN;
1e6d690b 3990 }
d7bd398e 3991 }
1e6d690b 3992
d7bd398e
SL
3993 for (i = disks; i--; ) {
3994 struct r5dev *dev = &sh->dev[i];
39b99586 3995 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
1e6d690b
SL
3996 i == sh->pd_idx || i == sh->qd_idx ||
3997 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3998 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3999 !(uptodate_for_rmw(dev) ||
1e6d690b 4000 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 4001 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
4002 if (test_bit(STRIPE_PREREAD_ACTIVE,
4003 &sh->state)) {
4004 pr_debug("Read_old block %d for r-m-w\n",
4005 i);
a4456856
DW
4006 set_bit(R5_LOCKED, &dev->flags);
4007 set_bit(R5_Wantread, &dev->flags);
4008 s->locked++;
e3914d59 4009 } else
a4456856 4010 set_bit(STRIPE_DELAYED, &sh->state);
a4456856
DW
4011 }
4012 }
a9add5d9 4013 }
41257580 4014 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
a4456856 4015 /* want reconstruct write, but need to get some data */
a9add5d9 4016 int qread =0;
c8ac1803 4017 rcw = 0;
a4456856
DW
4018 for (i = disks; i--; ) {
4019 struct r5dev *dev = &sh->dev[i];
4020 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 4021 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 4022 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 4023 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
4024 test_bit(R5_Wantcompute, &dev->flags))) {
4025 rcw++;
67f45548
N
4026 if (test_bit(R5_Insync, &dev->flags) &&
4027 test_bit(STRIPE_PREREAD_ACTIVE,
4028 &sh->state)) {
45b4233c 4029 pr_debug("Read_old block "
a4456856
DW
4030 "%d for Reconstruct\n", i);
4031 set_bit(R5_LOCKED, &dev->flags);
4032 set_bit(R5_Wantread, &dev->flags);
4033 s->locked++;
a9add5d9 4034 qread++;
e3914d59 4035 } else
a4456856 4036 set_bit(STRIPE_DELAYED, &sh->state);
a4456856
DW
4037 }
4038 }
e3620a3a 4039 if (rcw && conf->mddev->queue)
a9add5d9
N
4040 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4041 (unsigned long long)sh->sector,
4042 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 4043 }
b1b02fe9
N
4044
4045 if (rcw > disks && rmw > disks &&
4046 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4047 set_bit(STRIPE_DELAYED, &sh->state);
4048
a4456856
DW
4049 /* now if nothing is locked, and if we have enough data,
4050 * we can start a write request
4051 */
f38e1219
DW
4052 /* since handle_stripe can be called at any time we need to handle the
4053 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
4054 * subsequent call wants to start a write request. raid_run_ops only
4055 * handles the case where compute block and reconstruct are requested
f38e1219
DW
4056 * simultaneously. If this is not the case then new writes need to be
4057 * held off until the compute completes.
4058 */
976ea8d4
DW
4059 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4060 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
1e6d690b 4061 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 4062 schedule_reconstruction(sh, s, rcw == 0, 0);
d7bd398e 4063 return 0;
a4456856
DW
4064}
4065
d1688a6d 4066static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
4067 struct stripe_head_state *s, int disks)
4068{
ecc65c9b 4069 struct r5dev *dev = NULL;
bd2ab670 4070
59fc630b 4071 BUG_ON(sh->batch_head);
a4456856 4072 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 4073
ecc65c9b
DW
4074 switch (sh->check_state) {
4075 case check_state_idle:
4076 /* start a new check operation if there are no failures */
bd2ab670 4077 if (s->failed == 0) {
bd2ab670 4078 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
4079 sh->check_state = check_state_run;
4080 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 4081 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 4082 s->uptodate--;
ecc65c9b 4083 break;
bd2ab670 4084 }
f2b3b44d 4085 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
4086 /* fall through */
4087 case check_state_compute_result:
4088 sh->check_state = check_state_idle;
4089 if (!dev)
4090 dev = &sh->dev[sh->pd_idx];
4091
4092 /* check that a write has not made the stripe insync */
4093 if (test_bit(STRIPE_INSYNC, &sh->state))
4094 break;
c8894419 4095
a4456856 4096 /* either failed parity check, or recovery is happening */
a4456856
DW
4097 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4098 BUG_ON(s->uptodate != disks);
4099
4100 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 4101 s->locked++;
a4456856 4102 set_bit(R5_Wantwrite, &dev->flags);
830ea016 4103
a4456856 4104 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 4105 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
4106 break;
4107 case check_state_run:
4108 break; /* we will be called again upon completion */
4109 case check_state_check_result:
4110 sh->check_state = check_state_idle;
4111
4112 /* if a failure occurred during the check operation, leave
4113 * STRIPE_INSYNC not set and let the stripe be handled again
4114 */
4115 if (s->failed)
4116 break;
4117
4118 /* handle a successful check operation, if parity is correct
4119 * we are done. Otherwise update the mismatch count and repair
4120 * parity if !MD_RECOVERY_CHECK
4121 */
ad283ea4 4122 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
4123 /* parity is correct (on disc,
4124 * not in buffer any more)
4125 */
4126 set_bit(STRIPE_INSYNC, &sh->state);
4127 else {
c911c46c 4128 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
e1539036 4129 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
ecc65c9b
DW
4130 /* don't try to repair!! */
4131 set_bit(STRIPE_INSYNC, &sh->state);
e1539036
N
4132 pr_warn_ratelimited("%s: mismatch sector in range "
4133 "%llu-%llu\n", mdname(conf->mddev),
4134 (unsigned long long) sh->sector,
4135 (unsigned long long) sh->sector +
c911c46c 4136 RAID5_STRIPE_SECTORS(conf));
e1539036 4137 } else {
ecc65c9b 4138 sh->check_state = check_state_compute_run;
976ea8d4 4139 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
4140 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4141 set_bit(R5_Wantcompute,
4142 &sh->dev[sh->pd_idx].flags);
4143 sh->ops.target = sh->pd_idx;
ac6b53b6 4144 sh->ops.target2 = -1;
ecc65c9b
DW
4145 s->uptodate++;
4146 }
4147 }
4148 break;
4149 case check_state_compute_run:
4150 break;
4151 default:
cc6167b4 4152 pr_err("%s: unknown check_state: %d sector: %llu\n",
ecc65c9b
DW
4153 __func__, sh->check_state,
4154 (unsigned long long) sh->sector);
4155 BUG();
a4456856
DW
4156 }
4157}
4158
d1688a6d 4159static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 4160 struct stripe_head_state *s,
f2b3b44d 4161 int disks)
a4456856 4162{
a4456856 4163 int pd_idx = sh->pd_idx;
34e04e87 4164 int qd_idx = sh->qd_idx;
d82dfee0 4165 struct r5dev *dev;
a4456856 4166
59fc630b 4167 BUG_ON(sh->batch_head);
a4456856
DW
4168 set_bit(STRIPE_HANDLE, &sh->state);
4169
4170 BUG_ON(s->failed > 2);
d82dfee0 4171
a4456856
DW
4172 /* Want to check and possibly repair P and Q.
4173 * However there could be one 'failed' device, in which
4174 * case we can only check one of them, possibly using the
4175 * other to generate missing data
4176 */
4177
d82dfee0
DW
4178 switch (sh->check_state) {
4179 case check_state_idle:
4180 /* start a new check operation if there are < 2 failures */
f2b3b44d 4181 if (s->failed == s->q_failed) {
d82dfee0 4182 /* The only possible failed device holds Q, so it
a4456856
DW
4183 * makes sense to check P (If anything else were failed,
4184 * we would have used P to recreate it).
4185 */
d82dfee0 4186 sh->check_state = check_state_run;
a4456856 4187 }
f2b3b44d 4188 if (!s->q_failed && s->failed < 2) {
d82dfee0 4189 /* Q is not failed, and we didn't use it to generate
a4456856
DW
4190 * anything, so it makes sense to check it
4191 */
d82dfee0
DW
4192 if (sh->check_state == check_state_run)
4193 sh->check_state = check_state_run_pq;
4194 else
4195 sh->check_state = check_state_run_q;
a4456856 4196 }
a4456856 4197
d82dfee0
DW
4198 /* discard potentially stale zero_sum_result */
4199 sh->ops.zero_sum_result = 0;
a4456856 4200
d82dfee0
DW
4201 if (sh->check_state == check_state_run) {
4202 /* async_xor_zero_sum destroys the contents of P */
4203 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4204 s->uptodate--;
a4456856 4205 }
d82dfee0
DW
4206 if (sh->check_state >= check_state_run &&
4207 sh->check_state <= check_state_run_pq) {
4208 /* async_syndrome_zero_sum preserves P and Q, so
4209 * no need to mark them !uptodate here
4210 */
4211 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4212 break;
a4456856
DW
4213 }
4214
d82dfee0
DW
4215 /* we have 2-disk failure */
4216 BUG_ON(s->failed != 2);
4217 /* fall through */
4218 case check_state_compute_result:
4219 sh->check_state = check_state_idle;
a4456856 4220
d82dfee0
DW
4221 /* check that a write has not made the stripe insync */
4222 if (test_bit(STRIPE_INSYNC, &sh->state))
4223 break;
a4456856
DW
4224
4225 /* now write out any block on a failed drive,
d82dfee0 4226 * or P or Q if they were recomputed
a4456856 4227 */
b2176a1d 4228 dev = NULL;
a4456856 4229 if (s->failed == 2) {
f2b3b44d 4230 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
4231 s->locked++;
4232 set_bit(R5_LOCKED, &dev->flags);
4233 set_bit(R5_Wantwrite, &dev->flags);
4234 }
4235 if (s->failed >= 1) {
f2b3b44d 4236 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
4237 s->locked++;
4238 set_bit(R5_LOCKED, &dev->flags);
4239 set_bit(R5_Wantwrite, &dev->flags);
4240 }
d82dfee0 4241 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
4242 dev = &sh->dev[pd_idx];
4243 s->locked++;
4244 set_bit(R5_LOCKED, &dev->flags);
4245 set_bit(R5_Wantwrite, &dev->flags);
4246 }
d82dfee0 4247 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
4248 dev = &sh->dev[qd_idx];
4249 s->locked++;
4250 set_bit(R5_LOCKED, &dev->flags);
4251 set_bit(R5_Wantwrite, &dev->flags);
4252 }
b2176a1d
NC
4253 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4254 "%s: disk%td not up to date\n",
4255 mdname(conf->mddev),
4256 dev - (struct r5dev *) &sh->dev)) {
4257 clear_bit(R5_LOCKED, &dev->flags);
4258 clear_bit(R5_Wantwrite, &dev->flags);
4259 s->locked--;
4260 }
a4456856
DW
4261 clear_bit(STRIPE_DEGRADED, &sh->state);
4262
4263 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
4264 break;
4265 case check_state_run:
4266 case check_state_run_q:
4267 case check_state_run_pq:
4268 break; /* we will be called again upon completion */
4269 case check_state_check_result:
4270 sh->check_state = check_state_idle;
4271
4272 /* handle a successful check operation, if parity is correct
4273 * we are done. Otherwise update the mismatch count and repair
4274 * parity if !MD_RECOVERY_CHECK
4275 */
4276 if (sh->ops.zero_sum_result == 0) {
a25d8c32
SL
4277 /* both parities are correct */
4278 if (!s->failed)
4279 set_bit(STRIPE_INSYNC, &sh->state);
4280 else {
4281 /* in contrast to the raid5 case we can validate
4282 * parity, but still have a failure to write
4283 * back
4284 */
4285 sh->check_state = check_state_compute_result;
4286 /* Returning at this point means that we may go
4287 * off and bring p and/or q uptodate again so
4288 * we make sure to check zero_sum_result again
4289 * to verify if p or q need writeback
4290 */
4291 }
d82dfee0 4292 } else {
c911c46c 4293 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
e1539036 4294 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
d82dfee0
DW
4295 /* don't try to repair!! */
4296 set_bit(STRIPE_INSYNC, &sh->state);
e1539036
N
4297 pr_warn_ratelimited("%s: mismatch sector in range "
4298 "%llu-%llu\n", mdname(conf->mddev),
4299 (unsigned long long) sh->sector,
4300 (unsigned long long) sh->sector +
c911c46c 4301 RAID5_STRIPE_SECTORS(conf));
e1539036 4302 } else {
d82dfee0
DW
4303 int *target = &sh->ops.target;
4304
4305 sh->ops.target = -1;
4306 sh->ops.target2 = -1;
4307 sh->check_state = check_state_compute_run;
4308 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4309 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4310 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4311 set_bit(R5_Wantcompute,
4312 &sh->dev[pd_idx].flags);
4313 *target = pd_idx;
4314 target = &sh->ops.target2;
4315 s->uptodate++;
4316 }
4317 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4318 set_bit(R5_Wantcompute,
4319 &sh->dev[qd_idx].flags);
4320 *target = qd_idx;
4321 s->uptodate++;
4322 }
4323 }
4324 }
4325 break;
4326 case check_state_compute_run:
4327 break;
4328 default:
cc6167b4
N
4329 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4330 __func__, sh->check_state,
4331 (unsigned long long) sh->sector);
d82dfee0 4332 BUG();
a4456856
DW
4333 }
4334}
4335
d1688a6d 4336static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
4337{
4338 int i;
4339
4340 /* We have read all the blocks in this stripe and now we need to
4341 * copy some of them into a target stripe for expand.
4342 */
f0a50d37 4343 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 4344 BUG_ON(sh->batch_head);
a4456856
DW
4345 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4346 for (i = 0; i < sh->disks; i++)
34e04e87 4347 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 4348 int dd_idx, j;
a4456856 4349 struct stripe_head *sh2;
a08abd8c 4350 struct async_submit_ctl submit;
a4456856 4351
6d036f7d 4352 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
4353 sector_t s = raid5_compute_sector(conf, bn, 0,
4354 &dd_idx, NULL);
6d036f7d 4355 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
4356 if (sh2 == NULL)
4357 /* so far only the early blocks of this stripe
4358 * have been requested. When later blocks
4359 * get requested, we will try again
4360 */
4361 continue;
4362 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4363 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4364 /* must have already done this block */
6d036f7d 4365 raid5_release_stripe(sh2);
a4456856
DW
4366 continue;
4367 }
f0a50d37
DW
4368
4369 /* place all the copies on one channel */
a08abd8c 4370 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 4371 tx = async_memcpy(sh2->dev[dd_idx].page,
c911c46c 4372 sh->dev[i].page, 0, 0, RAID5_STRIPE_SIZE(conf),
a08abd8c 4373 &submit);
f0a50d37 4374
a4456856
DW
4375 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4376 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4377 for (j = 0; j < conf->raid_disks; j++)
4378 if (j != sh2->pd_idx &&
86c374ba 4379 j != sh2->qd_idx &&
a4456856
DW
4380 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4381 break;
4382 if (j == conf->raid_disks) {
4383 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4384 set_bit(STRIPE_HANDLE, &sh2->state);
4385 }
6d036f7d 4386 raid5_release_stripe(sh2);
f0a50d37 4387
a4456856 4388 }
a2e08551 4389 /* done submitting copies, wait for them to complete */
749586b7 4390 async_tx_quiesce(&tx);
a4456856 4391}
1da177e4
LT
4392
4393/*
4394 * handle_stripe - do things to a stripe.
4395 *
9a3e1101
N
4396 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4397 * state of various bits to see what needs to be done.
1da177e4 4398 * Possible results:
9a3e1101
N
4399 * return some read requests which now have data
4400 * return some write requests which are safely on storage
1da177e4
LT
4401 * schedule a read on some buffers
4402 * schedule a write of some buffers
4403 * return confirmation of parity correctness
4404 *
1da177e4 4405 */
a4456856 4406
acfe726b 4407static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4408{
d1688a6d 4409 struct r5conf *conf = sh->raid_conf;
f416885e 4410 int disks = sh->disks;
474af965
N
4411 struct r5dev *dev;
4412 int i;
9a3e1101 4413 int do_recovery = 0;
1da177e4 4414
acfe726b
N
4415 memset(s, 0, sizeof(*s));
4416
dabc4ec6 4417 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4418 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4419 s->failed_num[0] = -1;
4420 s->failed_num[1] = -1;
6e74a9cf 4421 s->log_failed = r5l_log_disk_error(conf);
1da177e4 4422
acfe726b 4423 /* Now to look around and see what can be done */
1da177e4 4424 rcu_read_lock();
16a53ecc 4425 for (i=disks; i--; ) {
3cb03002 4426 struct md_rdev *rdev;
31c176ec
N
4427 sector_t first_bad;
4428 int bad_sectors;
4429 int is_bad = 0;
acfe726b 4430
16a53ecc 4431 dev = &sh->dev[i];
1da177e4 4432
45b4233c 4433 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4434 i, dev->flags,
4435 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4436 /* maybe we can reply to a read
4437 *
4438 * new wantfill requests are only permitted while
4439 * ops_complete_biofill is guaranteed to be inactive
4440 */
4441 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4442 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4443 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4444
16a53ecc 4445 /* now count some things */
cc94015a
N
4446 if (test_bit(R5_LOCKED, &dev->flags))
4447 s->locked++;
4448 if (test_bit(R5_UPTODATE, &dev->flags))
4449 s->uptodate++;
2d6e4ecc 4450 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4451 s->compute++;
4452 BUG_ON(s->compute > 2);
2d6e4ecc 4453 }
1da177e4 4454
acfe726b 4455 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4456 s->to_fill++;
acfe726b 4457 else if (dev->toread)
cc94015a 4458 s->to_read++;
16a53ecc 4459 if (dev->towrite) {
cc94015a 4460 s->to_write++;
16a53ecc 4461 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4462 s->non_overwrite++;
16a53ecc 4463 }
a4456856 4464 if (dev->written)
cc94015a 4465 s->written++;
14a75d3e
N
4466 /* Prefer to use the replacement for reads, but only
4467 * if it is recovered enough and has no bad blocks.
4468 */
4469 rdev = rcu_dereference(conf->disks[i].replacement);
4470 if (rdev && !test_bit(Faulty, &rdev->flags) &&
c911c46c
YY
4471 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4472 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
14a75d3e
N
4473 &first_bad, &bad_sectors))
4474 set_bit(R5_ReadRepl, &dev->flags);
4475 else {
e6030cb0 4476 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4477 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4478 else
4479 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4480 rdev = rcu_dereference(conf->disks[i].rdev);
4481 clear_bit(R5_ReadRepl, &dev->flags);
4482 }
9283d8c5
N
4483 if (rdev && test_bit(Faulty, &rdev->flags))
4484 rdev = NULL;
31c176ec 4485 if (rdev) {
c911c46c 4486 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
31c176ec
N
4487 &first_bad, &bad_sectors);
4488 if (s->blocked_rdev == NULL
4489 && (test_bit(Blocked, &rdev->flags)
4490 || is_bad < 0)) {
4491 if (is_bad < 0)
4492 set_bit(BlockedBadBlocks,
4493 &rdev->flags);
4494 s->blocked_rdev = rdev;
4495 atomic_inc(&rdev->nr_pending);
4496 }
6bfe0b49 4497 }
415e72d0
N
4498 clear_bit(R5_Insync, &dev->flags);
4499 if (!rdev)
4500 /* Not in-sync */;
31c176ec
N
4501 else if (is_bad) {
4502 /* also not in-sync */
18b9837e
N
4503 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4504 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4505 /* treat as in-sync, but with a read error
4506 * which we can now try to correct
4507 */
4508 set_bit(R5_Insync, &dev->flags);
4509 set_bit(R5_ReadError, &dev->flags);
4510 }
4511 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4512 set_bit(R5_Insync, &dev->flags);
c911c46c 4513 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
415e72d0 4514 /* in sync if before recovery_offset */
30d7a483
N
4515 set_bit(R5_Insync, &dev->flags);
4516 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4517 test_bit(R5_Expanded, &dev->flags))
4518 /* If we've reshaped into here, we assume it is Insync.
4519 * We will shortly update recovery_offset to make
4520 * it official.
4521 */
4522 set_bit(R5_Insync, &dev->flags);
4523
1cc03eb9 4524 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4525 /* This flag does not apply to '.replacement'
4526 * only to .rdev, so make sure to check that*/
4527 struct md_rdev *rdev2 = rcu_dereference(
4528 conf->disks[i].rdev);
4529 if (rdev2 == rdev)
4530 clear_bit(R5_Insync, &dev->flags);
4531 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4532 s->handle_bad_blocks = 1;
14a75d3e 4533 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4534 } else
4535 clear_bit(R5_WriteError, &dev->flags);
4536 }
1cc03eb9 4537 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4538 /* This flag does not apply to '.replacement'
4539 * only to .rdev, so make sure to check that*/
4540 struct md_rdev *rdev2 = rcu_dereference(
4541 conf->disks[i].rdev);
4542 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4543 s->handle_bad_blocks = 1;
14a75d3e 4544 atomic_inc(&rdev2->nr_pending);
b84db560
N
4545 } else
4546 clear_bit(R5_MadeGood, &dev->flags);
4547 }
977df362
N
4548 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4549 struct md_rdev *rdev2 = rcu_dereference(
4550 conf->disks[i].replacement);
4551 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4552 s->handle_bad_blocks = 1;
4553 atomic_inc(&rdev2->nr_pending);
4554 } else
4555 clear_bit(R5_MadeGoodRepl, &dev->flags);
4556 }
415e72d0 4557 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4558 /* The ReadError flag will just be confusing now */
4559 clear_bit(R5_ReadError, &dev->flags);
4560 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4561 }
415e72d0
N
4562 if (test_bit(R5_ReadError, &dev->flags))
4563 clear_bit(R5_Insync, &dev->flags);
4564 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4565 if (s->failed < 2)
4566 s->failed_num[s->failed] = i;
4567 s->failed++;
9a3e1101
N
4568 if (rdev && !test_bit(Faulty, &rdev->flags))
4569 do_recovery = 1;
d63e2fc8
BC
4570 else if (!rdev) {
4571 rdev = rcu_dereference(
4572 conf->disks[i].replacement);
4573 if (rdev && !test_bit(Faulty, &rdev->flags))
4574 do_recovery = 1;
4575 }
415e72d0 4576 }
2ded3703
SL
4577
4578 if (test_bit(R5_InJournal, &dev->flags))
4579 s->injournal++;
1e6d690b
SL
4580 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4581 s->just_cached++;
1da177e4 4582 }
9a3e1101
N
4583 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4584 /* If there is a failed device being replaced,
4585 * we must be recovering.
4586 * else if we are after recovery_cp, we must be syncing
c6d2e084 4587 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4588 * else we can only be replacing
4589 * sync and recovery both need to read all devices, and so
4590 * use the same flag.
4591 */
4592 if (do_recovery ||
c6d2e084 4593 sh->sector >= conf->mddev->recovery_cp ||
4594 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4595 s->syncing = 1;
4596 else
4597 s->replacing = 1;
4598 }
1da177e4 4599 rcu_read_unlock();
cc94015a
N
4600}
4601
cb9902db
GJ
4602/*
4603 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4604 * a head which can now be handled.
4605 */
59fc630b 4606static int clear_batch_ready(struct stripe_head *sh)
4607{
4608 struct stripe_head *tmp;
4609 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4610 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4611 spin_lock(&sh->stripe_lock);
4612 if (!sh->batch_head) {
4613 spin_unlock(&sh->stripe_lock);
4614 return 0;
4615 }
4616
4617 /*
4618 * this stripe could be added to a batch list before we check
4619 * BATCH_READY, skips it
4620 */
4621 if (sh->batch_head != sh) {
4622 spin_unlock(&sh->stripe_lock);
4623 return 1;
4624 }
4625 spin_lock(&sh->batch_lock);
4626 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4627 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4628 spin_unlock(&sh->batch_lock);
4629 spin_unlock(&sh->stripe_lock);
4630
4631 /*
4632 * BATCH_READY is cleared, no new stripes can be added.
4633 * batch_list can be accessed without lock
4634 */
4635 return 0;
4636}
4637
3960ce79
N
4638static void break_stripe_batch_list(struct stripe_head *head_sh,
4639 unsigned long handle_flags)
72ac7330 4640{
4e3d62ff 4641 struct stripe_head *sh, *next;
72ac7330 4642 int i;
fb642b92 4643 int do_wakeup = 0;
72ac7330 4644
bb27051f
N
4645 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4646
72ac7330 4647 list_del_init(&sh->batch_list);
4648
fb3229d5 4649 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
1b956f7a
N
4650 (1 << STRIPE_SYNCING) |
4651 (1 << STRIPE_REPLACED) |
1b956f7a
N
4652 (1 << STRIPE_DELAYED) |
4653 (1 << STRIPE_BIT_DELAY) |
4654 (1 << STRIPE_FULL_WRITE) |
4655 (1 << STRIPE_BIOFILL_RUN) |
4656 (1 << STRIPE_COMPUTE_RUN) |
1b956f7a
N
4657 (1 << STRIPE_DISCARD) |
4658 (1 << STRIPE_BATCH_READY) |
4659 (1 << STRIPE_BATCH_ERR) |
fb3229d5
SL
4660 (1 << STRIPE_BITMAP_PENDING)),
4661 "stripe state: %lx\n", sh->state);
4662 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4663 (1 << STRIPE_REPLACED)),
4664 "head stripe state: %lx\n", head_sh->state);
1b956f7a
N
4665
4666 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
550da24f 4667 (1 << STRIPE_PREREAD_ACTIVE) |
184a09eb
DY
4668 (1 << STRIPE_DEGRADED) |
4669 (1 << STRIPE_ON_UNPLUG_LIST)),
1b956f7a
N
4670 head_sh->state & (1 << STRIPE_INSYNC));
4671
72ac7330 4672 sh->check_state = head_sh->check_state;
4673 sh->reconstruct_state = head_sh->reconstruct_state;
448ec638
AC
4674 spin_lock_irq(&sh->stripe_lock);
4675 sh->batch_head = NULL;
4676 spin_unlock_irq(&sh->stripe_lock);
fb642b92
N
4677 for (i = 0; i < sh->disks; i++) {
4678 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4679 do_wakeup = 1;
72ac7330 4680 sh->dev[i].flags = head_sh->dev[i].flags &
4681 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4682 }
3960ce79
N
4683 if (handle_flags == 0 ||
4684 sh->state & handle_flags)
4685 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4686 raid5_release_stripe(sh);
72ac7330 4687 }
fb642b92
N
4688 spin_lock_irq(&head_sh->stripe_lock);
4689 head_sh->batch_head = NULL;
4690 spin_unlock_irq(&head_sh->stripe_lock);
4691 for (i = 0; i < head_sh->disks; i++)
4692 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4693 do_wakeup = 1;
3960ce79
N
4694 if (head_sh->state & handle_flags)
4695 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4696
4697 if (do_wakeup)
4698 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4699}
4700
cc94015a
N
4701static void handle_stripe(struct stripe_head *sh)
4702{
4703 struct stripe_head_state s;
d1688a6d 4704 struct r5conf *conf = sh->raid_conf;
3687c061 4705 int i;
84789554
N
4706 int prexor;
4707 int disks = sh->disks;
474af965 4708 struct r5dev *pdev, *qdev;
cc94015a
N
4709
4710 clear_bit(STRIPE_HANDLE, &sh->state);
a377a472
GJ
4711
4712 /*
4713 * handle_stripe should not continue handle the batched stripe, only
4714 * the head of batch list or lone stripe can continue. Otherwise we
4715 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4716 * is set for the batched stripe.
4717 */
4718 if (clear_batch_ready(sh))
4719 return;
4720
257a4b42 4721 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4722 /* already being handled, ensure it gets handled
4723 * again when current action finishes */
4724 set_bit(STRIPE_HANDLE, &sh->state);
4725 return;
4726 }
4727
4e3d62ff 4728 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4729 break_stripe_batch_list(sh, 0);
72ac7330 4730
dabc4ec6 4731 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd 4732 spin_lock(&sh->stripe_lock);
5ddf0440
SL
4733 /*
4734 * Cannot process 'sync' concurrently with 'discard'.
4735 * Flush data in r5cache before 'sync'.
4736 */
4737 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4738 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4739 !test_bit(STRIPE_DISCARD, &sh->state) &&
f8dfcffd
N
4740 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4741 set_bit(STRIPE_SYNCING, &sh->state);
4742 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4743 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4744 }
4745 spin_unlock(&sh->stripe_lock);
cc94015a
N
4746 }
4747 clear_bit(STRIPE_DELAYED, &sh->state);
4748
4749 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4750 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4751 (unsigned long long)sh->sector, sh->state,
4752 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4753 sh->check_state, sh->reconstruct_state);
3687c061 4754
acfe726b 4755 analyse_stripe(sh, &s);
c5a31000 4756
b70abcb2
SL
4757 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4758 goto finish;
4759
16d997b7
N
4760 if (s.handle_bad_blocks ||
4761 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
bc2607f3
N
4762 set_bit(STRIPE_HANDLE, &sh->state);
4763 goto finish;
4764 }
4765
474af965
N
4766 if (unlikely(s.blocked_rdev)) {
4767 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4768 s.replacing || s.to_write || s.written) {
474af965
N
4769 set_bit(STRIPE_HANDLE, &sh->state);
4770 goto finish;
4771 }
4772 /* There is nothing for the blocked_rdev to block */
4773 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4774 s.blocked_rdev = NULL;
4775 }
4776
4777 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4778 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4779 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4780 }
4781
4782 pr_debug("locked=%d uptodate=%d to_read=%d"
4783 " to_write=%d failed=%d failed_num=%d,%d\n",
4784 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4785 s.failed_num[0], s.failed_num[1]);
70d466f7
SL
4786 /*
4787 * check if the array has lost more than max_degraded devices and,
474af965 4788 * if so, some requests might need to be failed.
70d466f7
SL
4789 *
4790 * When journal device failed (log_failed), we will only process
4791 * the stripe if there is data need write to raid disks
474af965 4792 */
70d466f7
SL
4793 if (s.failed > conf->max_degraded ||
4794 (s.log_failed && s.injournal == 0)) {
9a3f530f
N
4795 sh->check_state = 0;
4796 sh->reconstruct_state = 0;
626f2092 4797 break_stripe_batch_list(sh, 0);
9a3f530f 4798 if (s.to_read+s.to_write+s.written)
bd83d0a2 4799 handle_failed_stripe(conf, sh, &s, disks);
9a3e1101 4800 if (s.syncing + s.replacing)
9a3f530f
N
4801 handle_failed_sync(conf, sh, &s);
4802 }
474af965 4803
84789554
N
4804 /* Now we check to see if any write operations have recently
4805 * completed
4806 */
4807 prexor = 0;
4808 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4809 prexor = 1;
4810 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4811 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4812 sh->reconstruct_state = reconstruct_state_idle;
4813
4814 /* All the 'written' buffers and the parity block are ready to
4815 * be written back to disk
4816 */
9e444768
SL
4817 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4818 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4819 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4820 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4821 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4822 for (i = disks; i--; ) {
4823 struct r5dev *dev = &sh->dev[i];
4824 if (test_bit(R5_LOCKED, &dev->flags) &&
4825 (i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b
SL
4826 dev->written || test_bit(R5_InJournal,
4827 &dev->flags))) {
84789554
N
4828 pr_debug("Writing block %d\n", i);
4829 set_bit(R5_Wantwrite, &dev->flags);
4830 if (prexor)
4831 continue;
9c4bdf69
N
4832 if (s.failed > 1)
4833 continue;
84789554
N
4834 if (!test_bit(R5_Insync, &dev->flags) ||
4835 ((i == sh->pd_idx || i == sh->qd_idx) &&
4836 s.failed == 0))
4837 set_bit(STRIPE_INSYNC, &sh->state);
4838 }
4839 }
4840 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4841 s.dec_preread_active = 1;
4842 }
4843
ef5b7c69
N
4844 /*
4845 * might be able to return some write requests if the parity blocks
4846 * are safe, or on a failed drive
4847 */
4848 pdev = &sh->dev[sh->pd_idx];
4849 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4850 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4851 qdev = &sh->dev[sh->qd_idx];
4852 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4853 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4854 || conf->level < 6;
4855
4856 if (s.written &&
4857 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4858 && !test_bit(R5_LOCKED, &pdev->flags)
4859 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4860 test_bit(R5_Discard, &pdev->flags))))) &&
4861 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4862 && !test_bit(R5_LOCKED, &qdev->flags)
4863 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4864 test_bit(R5_Discard, &qdev->flags))))))
bd83d0a2 4865 handle_stripe_clean_event(conf, sh, disks);
ef5b7c69 4866
1e6d690b 4867 if (s.just_cached)
bd83d0a2 4868 r5c_handle_cached_data_endio(conf, sh, disks);
ff875738 4869 log_stripe_write_finished(sh);
1e6d690b 4870
ef5b7c69
N
4871 /* Now we might consider reading some blocks, either to check/generate
4872 * parity, or to satisfy requests
4873 * or to load a block that is being partially written.
4874 */
4875 if (s.to_read || s.non_overwrite
a1c6ae3d 4876 || (s.to_write && s.failed)
ef5b7c69
N
4877 || (s.syncing && (s.uptodate + s.compute < disks))
4878 || s.replacing
4879 || s.expanding)
4880 handle_stripe_fill(sh, &s, disks);
4881
2ded3703
SL
4882 /*
4883 * When the stripe finishes full journal write cycle (write to journal
4884 * and raid disk), this is the clean up procedure so it is ready for
4885 * next operation.
4886 */
4887 r5c_finish_stripe_write_out(conf, sh, &s);
4888
4889 /*
4890 * Now to consider new write requests, cache write back and what else,
4891 * if anything should be read. We do not handle new writes when:
84789554
N
4892 * 1/ A 'write' operation (copy+xor) is already in flight.
4893 * 2/ A 'check' operation is in flight, as it may clobber the parity
4894 * block.
2ded3703 4895 * 3/ A r5c cache log write is in flight.
84789554 4896 */
2ded3703
SL
4897
4898 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4899 if (!r5c_is_writeback(conf->log)) {
4900 if (s.to_write)
4901 handle_stripe_dirtying(conf, sh, &s, disks);
4902 } else { /* write back cache */
4903 int ret = 0;
4904
4905 /* First, try handle writes in caching phase */
4906 if (s.to_write)
4907 ret = r5c_try_caching_write(conf, sh, &s,
4908 disks);
4909 /*
4910 * If caching phase failed: ret == -EAGAIN
4911 * OR
4912 * stripe under reclaim: !caching && injournal
4913 *
4914 * fall back to handle_stripe_dirtying()
4915 */
4916 if (ret == -EAGAIN ||
4917 /* stripe under reclaim: !caching && injournal */
4918 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
d7bd398e
SL
4919 s.injournal > 0)) {
4920 ret = handle_stripe_dirtying(conf, sh, &s,
4921 disks);
4922 if (ret == -EAGAIN)
4923 goto finish;
4924 }
2ded3703
SL
4925 }
4926 }
84789554
N
4927
4928 /* maybe we need to check and possibly fix the parity for this stripe
4929 * Any reads will already have been scheduled, so we just see if enough
4930 * data is available. The parity check is held off while parity
4931 * dependent operations are in flight.
4932 */
4933 if (sh->check_state ||
4934 (s.syncing && s.locked == 0 &&
4935 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4936 !test_bit(STRIPE_INSYNC, &sh->state))) {
4937 if (conf->level == 6)
4938 handle_parity_checks6(conf, sh, &s, disks);
4939 else
4940 handle_parity_checks5(conf, sh, &s, disks);
4941 }
c5a31000 4942
f94c0b66
N
4943 if ((s.replacing || s.syncing) && s.locked == 0
4944 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4945 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4946 /* Write out to replacement devices where possible */
4947 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4948 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4949 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4950 set_bit(R5_WantReplace, &sh->dev[i].flags);
4951 set_bit(R5_LOCKED, &sh->dev[i].flags);
4952 s.locked++;
4953 }
f94c0b66
N
4954 if (s.replacing)
4955 set_bit(STRIPE_INSYNC, &sh->state);
4956 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4957 }
4958 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4959 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4960 test_bit(STRIPE_INSYNC, &sh->state)) {
c911c46c 4961 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
c5a31000 4962 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4963 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4964 wake_up(&conf->wait_for_overlap);
c5a31000
N
4965 }
4966
4967 /* If the failed drives are just a ReadError, then we might need
4968 * to progress the repair/check process
4969 */
4970 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4971 for (i = 0; i < s.failed; i++) {
4972 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4973 if (test_bit(R5_ReadError, &dev->flags)
4974 && !test_bit(R5_LOCKED, &dev->flags)
4975 && test_bit(R5_UPTODATE, &dev->flags)
4976 ) {
4977 if (!test_bit(R5_ReWrite, &dev->flags)) {
4978 set_bit(R5_Wantwrite, &dev->flags);
4979 set_bit(R5_ReWrite, &dev->flags);
3a31cf3d 4980 } else
c5a31000
N
4981 /* let's read it back */
4982 set_bit(R5_Wantread, &dev->flags);
3a31cf3d
GJ
4983 set_bit(R5_LOCKED, &dev->flags);
4984 s.locked++;
c5a31000
N
4985 }
4986 }
4987
3687c061
N
4988 /* Finish reconstruct operations initiated by the expansion process */
4989 if (sh->reconstruct_state == reconstruct_state_result) {
4990 struct stripe_head *sh_src
6d036f7d 4991 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
3687c061
N
4992 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4993 /* sh cannot be written until sh_src has been read.
4994 * so arrange for sh to be delayed a little
4995 */
4996 set_bit(STRIPE_DELAYED, &sh->state);
4997 set_bit(STRIPE_HANDLE, &sh->state);
4998 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4999 &sh_src->state))
5000 atomic_inc(&conf->preread_active_stripes);
6d036f7d 5001 raid5_release_stripe(sh_src);
3687c061
N
5002 goto finish;
5003 }
5004 if (sh_src)
6d036f7d 5005 raid5_release_stripe(sh_src);
3687c061
N
5006
5007 sh->reconstruct_state = reconstruct_state_idle;
5008 clear_bit(STRIPE_EXPANDING, &sh->state);
5009 for (i = conf->raid_disks; i--; ) {
5010 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5011 set_bit(R5_LOCKED, &sh->dev[i].flags);
5012 s.locked++;
5013 }
5014 }
f416885e 5015
3687c061
N
5016 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5017 !sh->reconstruct_state) {
5018 /* Need to write out all blocks after computing parity */
5019 sh->disks = conf->raid_disks;
5020 stripe_set_idx(sh->sector, conf, 0, sh);
5021 schedule_reconstruction(sh, &s, 1, 1);
5022 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5023 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5024 atomic_dec(&conf->reshape_stripes);
5025 wake_up(&conf->wait_for_overlap);
c911c46c 5026 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
3687c061
N
5027 }
5028
5029 if (s.expanding && s.locked == 0 &&
5030 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5031 handle_stripe_expansion(conf, sh);
16a53ecc 5032
3687c061 5033finish:
6bfe0b49 5034 /* wait for this device to become unblocked */
5f066c63
N
5035 if (unlikely(s.blocked_rdev)) {
5036 if (conf->mddev->external)
5037 md_wait_for_blocked_rdev(s.blocked_rdev,
5038 conf->mddev);
5039 else
5040 /* Internal metadata will immediately
5041 * be written by raid5d, so we don't
5042 * need to wait here.
5043 */
5044 rdev_dec_pending(s.blocked_rdev,
5045 conf->mddev);
5046 }
6bfe0b49 5047
bc2607f3
N
5048 if (s.handle_bad_blocks)
5049 for (i = disks; i--; ) {
3cb03002 5050 struct md_rdev *rdev;
bc2607f3
N
5051 struct r5dev *dev = &sh->dev[i];
5052 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5053 /* We own a safe reference to the rdev */
5054 rdev = conf->disks[i].rdev;
5055 if (!rdev_set_badblocks(rdev, sh->sector,
c911c46c 5056 RAID5_STRIPE_SECTORS(conf), 0))
bc2607f3
N
5057 md_error(conf->mddev, rdev);
5058 rdev_dec_pending(rdev, conf->mddev);
5059 }
b84db560
N
5060 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5061 rdev = conf->disks[i].rdev;
5062 rdev_clear_badblocks(rdev, sh->sector,
c911c46c 5063 RAID5_STRIPE_SECTORS(conf), 0);
b84db560
N
5064 rdev_dec_pending(rdev, conf->mddev);
5065 }
977df362
N
5066 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5067 rdev = conf->disks[i].replacement;
dd054fce
N
5068 if (!rdev)
5069 /* rdev have been moved down */
5070 rdev = conf->disks[i].rdev;
977df362 5071 rdev_clear_badblocks(rdev, sh->sector,
c911c46c 5072 RAID5_STRIPE_SECTORS(conf), 0);
977df362
N
5073 rdev_dec_pending(rdev, conf->mddev);
5074 }
bc2607f3
N
5075 }
5076
6c0069c0
YT
5077 if (s.ops_request)
5078 raid_run_ops(sh, s.ops_request);
5079
f0e43bcd 5080 ops_run_io(sh, &s);
16a53ecc 5081
c5709ef6 5082 if (s.dec_preread_active) {
729a1866 5083 /* We delay this until after ops_run_io so that if make_request
e9c7469b 5084 * is waiting on a flush, it won't continue until the writes
729a1866
N
5085 * have actually been submitted.
5086 */
5087 atomic_dec(&conf->preread_active_stripes);
5088 if (atomic_read(&conf->preread_active_stripes) <
5089 IO_THRESHOLD)
5090 md_wakeup_thread(conf->mddev->thread);
5091 }
5092
257a4b42 5093 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
5094}
5095
d1688a6d 5096static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
5097{
5098 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5099 while (!list_empty(&conf->delayed_list)) {
5100 struct list_head *l = conf->delayed_list.next;
5101 struct stripe_head *sh;
5102 sh = list_entry(l, struct stripe_head, lru);
5103 list_del_init(l);
5104 clear_bit(STRIPE_DELAYED, &sh->state);
5105 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5106 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 5107 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 5108 raid5_wakeup_stripe_thread(sh);
16a53ecc 5109 }
482c0834 5110 }
16a53ecc
N
5111}
5112
566c09c5
SL
5113static void activate_bit_delay(struct r5conf *conf,
5114 struct list_head *temp_inactive_list)
16a53ecc
N
5115{
5116 /* device_lock is held */
5117 struct list_head head;
5118 list_add(&head, &conf->bitmap_list);
5119 list_del_init(&conf->bitmap_list);
5120 while (!list_empty(&head)) {
5121 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 5122 int hash;
16a53ecc
N
5123 list_del_init(&sh->lru);
5124 atomic_inc(&sh->count);
566c09c5
SL
5125 hash = sh->hash_lock_index;
5126 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
5127 }
5128}
5129
fd01b88c 5130static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 5131{
3cb5edf4 5132 struct r5conf *conf = mddev->private;
10433d04 5133 sector_t sector = bio->bi_iter.bi_sector;
3cb5edf4 5134 unsigned int chunk_sectors;
aa8b57aa 5135 unsigned int bio_sectors = bio_sectors(bio);
f679623f 5136
10433d04
CH
5137 WARN_ON_ONCE(bio->bi_partno);
5138
3cb5edf4 5139 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
5140 return chunk_sectors >=
5141 ((sector & (chunk_sectors - 1)) + bio_sectors);
5142}
5143
46031f9a
RBJ
5144/*
5145 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5146 * later sampled by raid5d.
5147 */
d1688a6d 5148static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
5149{
5150 unsigned long flags;
5151
5152 spin_lock_irqsave(&conf->device_lock, flags);
5153
5154 bi->bi_next = conf->retry_read_aligned_list;
5155 conf->retry_read_aligned_list = bi;
5156
5157 spin_unlock_irqrestore(&conf->device_lock, flags);
5158 md_wakeup_thread(conf->mddev->thread);
5159}
5160
0472a42b
N
5161static struct bio *remove_bio_from_retry(struct r5conf *conf,
5162 unsigned int *offset)
46031f9a
RBJ
5163{
5164 struct bio *bi;
5165
5166 bi = conf->retry_read_aligned;
5167 if (bi) {
0472a42b 5168 *offset = conf->retry_read_offset;
46031f9a
RBJ
5169 conf->retry_read_aligned = NULL;
5170 return bi;
5171 }
5172 bi = conf->retry_read_aligned_list;
5173 if(bi) {
387bb173 5174 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 5175 bi->bi_next = NULL;
0472a42b 5176 *offset = 0;
46031f9a
RBJ
5177 }
5178
5179 return bi;
5180}
5181
f679623f
RBJ
5182/*
5183 * The "raid5_align_endio" should check if the read succeeded and if it
5184 * did, call bio_endio on the original bio (having bio_put the new bio
5185 * first).
5186 * If the read failed..
5187 */
4246a0b6 5188static void raid5_align_endio(struct bio *bi)
f679623f
RBJ
5189{
5190 struct bio* raid_bi = bi->bi_private;
fd01b88c 5191 struct mddev *mddev;
d1688a6d 5192 struct r5conf *conf;
3cb03002 5193 struct md_rdev *rdev;
4e4cbee9 5194 blk_status_t error = bi->bi_status;
46031f9a 5195
f679623f 5196 bio_put(bi);
46031f9a 5197
46031f9a
RBJ
5198 rdev = (void*)raid_bi->bi_next;
5199 raid_bi->bi_next = NULL;
2b7f2228
N
5200 mddev = rdev->mddev;
5201 conf = mddev->private;
46031f9a
RBJ
5202
5203 rdev_dec_pending(rdev, conf->mddev);
5204
9b81c842 5205 if (!error) {
4246a0b6 5206 bio_endio(raid_bi);
46031f9a 5207 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5208 wake_up(&conf->wait_for_quiescent);
6712ecf8 5209 return;
46031f9a
RBJ
5210 }
5211
45b4233c 5212 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
5213
5214 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
5215}
5216
7ef6b12a 5217static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 5218{
d1688a6d 5219 struct r5conf *conf = mddev->private;
8553fe7e 5220 int dd_idx;
f679623f 5221 struct bio* align_bi;
3cb03002 5222 struct md_rdev *rdev;
671488cc 5223 sector_t end_sector;
f679623f
RBJ
5224
5225 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 5226 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
5227 return 0;
5228 }
5229 /*
d7a10308 5230 * use bio_clone_fast to make a copy of the bio
f679623f 5231 */
afeee514 5232 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
f679623f
RBJ
5233 if (!align_bi)
5234 return 0;
5235 /*
5236 * set bi_end_io to a new function, and set bi_private to the
5237 * original bio.
5238 */
5239 align_bi->bi_end_io = raid5_align_endio;
5240 align_bi->bi_private = raid_bio;
5241 /*
5242 * compute position
5243 */
4f024f37
KO
5244 align_bi->bi_iter.bi_sector =
5245 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5246 0, &dd_idx, NULL);
f679623f 5247
f73a1c7d 5248 end_sector = bio_end_sector(align_bi);
f679623f 5249 rcu_read_lock();
671488cc
N
5250 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5251 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5252 rdev->recovery_offset < end_sector) {
5253 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5254 if (rdev &&
5255 (test_bit(Faulty, &rdev->flags) ||
5256 !(test_bit(In_sync, &rdev->flags) ||
5257 rdev->recovery_offset >= end_sector)))
5258 rdev = NULL;
5259 }
03b047f4
SL
5260
5261 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5262 rcu_read_unlock();
5263 bio_put(align_bi);
5264 return 0;
5265 }
5266
671488cc 5267 if (rdev) {
31c176ec
N
5268 sector_t first_bad;
5269 int bad_sectors;
5270
f679623f
RBJ
5271 atomic_inc(&rdev->nr_pending);
5272 rcu_read_unlock();
46031f9a 5273 raid_bio->bi_next = (void*)rdev;
74d46992 5274 bio_set_dev(align_bi, rdev->bdev);
46031f9a 5275
7140aafc 5276 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4f024f37 5277 bio_sectors(align_bi),
31c176ec 5278 &first_bad, &bad_sectors)) {
387bb173
NB
5279 bio_put(align_bi);
5280 rdev_dec_pending(rdev, mddev);
5281 return 0;
5282 }
5283
6c0544e2 5284 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 5285 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 5286
46031f9a 5287 spin_lock_irq(&conf->device_lock);
b1b46486 5288 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 5289 conf->quiesce == 0,
eed8c02e 5290 conf->device_lock);
46031f9a
RBJ
5291 atomic_inc(&conf->active_aligned_reads);
5292 spin_unlock_irq(&conf->device_lock);
5293
e3620a3a 5294 if (mddev->gendisk)
74d46992 5295 trace_block_bio_remap(align_bi->bi_disk->queue,
e3620a3a 5296 align_bi, disk_devt(mddev->gendisk),
4f024f37 5297 raid_bio->bi_iter.bi_sector);
ed00aabd 5298 submit_bio_noacct(align_bi);
f679623f
RBJ
5299 return 1;
5300 } else {
5301 rcu_read_unlock();
46031f9a 5302 bio_put(align_bi);
f679623f
RBJ
5303 return 0;
5304 }
5305}
5306
7ef6b12a
ML
5307static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5308{
5309 struct bio *split;
dd7a8f5d
N
5310 sector_t sector = raid_bio->bi_iter.bi_sector;
5311 unsigned chunk_sects = mddev->chunk_sectors;
5312 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
7ef6b12a 5313
dd7a8f5d
N
5314 if (sectors < bio_sectors(raid_bio)) {
5315 struct r5conf *conf = mddev->private;
afeee514 5316 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
dd7a8f5d 5317 bio_chain(split, raid_bio);
ed00aabd 5318 submit_bio_noacct(raid_bio);
dd7a8f5d
N
5319 raid_bio = split;
5320 }
7ef6b12a 5321
dd7a8f5d
N
5322 if (!raid5_read_one_chunk(mddev, raid_bio))
5323 return raid_bio;
7ef6b12a
ML
5324
5325 return NULL;
5326}
5327
8b3e6cdc
DW
5328/* __get_priority_stripe - get the next stripe to process
5329 *
5330 * Full stripe writes are allowed to pass preread active stripes up until
5331 * the bypass_threshold is exceeded. In general the bypass_count
5332 * increments when the handle_list is handled before the hold_list; however, it
5333 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5334 * stripe with in flight i/o. The bypass_count will be reset when the
5335 * head of the hold_list has changed, i.e. the head was promoted to the
5336 * handle_list.
5337 */
851c30c9 5338static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 5339{
535ae4eb 5340 struct stripe_head *sh, *tmp;
851c30c9 5341 struct list_head *handle_list = NULL;
535ae4eb 5342 struct r5worker_group *wg;
70d466f7
SL
5343 bool second_try = !r5c_is_writeback(conf->log) &&
5344 !r5l_log_disk_error(conf);
5345 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5346 r5l_log_disk_error(conf);
851c30c9 5347
535ae4eb
SL
5348again:
5349 wg = NULL;
5350 sh = NULL;
851c30c9 5351 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
5352 handle_list = try_loprio ? &conf->loprio_list :
5353 &conf->handle_list;
851c30c9 5354 } else if (group != ANY_GROUP) {
535ae4eb
SL
5355 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5356 &conf->worker_groups[group].handle_list;
bfc90cb0 5357 wg = &conf->worker_groups[group];
851c30c9
SL
5358 } else {
5359 int i;
5360 for (i = 0; i < conf->group_cnt; i++) {
535ae4eb
SL
5361 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5362 &conf->worker_groups[i].handle_list;
bfc90cb0 5363 wg = &conf->worker_groups[i];
851c30c9
SL
5364 if (!list_empty(handle_list))
5365 break;
5366 }
5367 }
8b3e6cdc
DW
5368
5369 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5370 __func__,
851c30c9 5371 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
5372 list_empty(&conf->hold_list) ? "empty" : "busy",
5373 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5374
851c30c9
SL
5375 if (!list_empty(handle_list)) {
5376 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
5377
5378 if (list_empty(&conf->hold_list))
5379 conf->bypass_count = 0;
5380 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5381 if (conf->hold_list.next == conf->last_hold)
5382 conf->bypass_count++;
5383 else {
5384 conf->last_hold = conf->hold_list.next;
5385 conf->bypass_count -= conf->bypass_threshold;
5386 if (conf->bypass_count < 0)
5387 conf->bypass_count = 0;
5388 }
5389 }
5390 } else if (!list_empty(&conf->hold_list) &&
5391 ((conf->bypass_threshold &&
5392 conf->bypass_count > conf->bypass_threshold) ||
5393 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
5394
5395 list_for_each_entry(tmp, &conf->hold_list, lru) {
5396 if (conf->worker_cnt_per_group == 0 ||
5397 group == ANY_GROUP ||
5398 !cpu_online(tmp->cpu) ||
5399 cpu_to_group(tmp->cpu) == group) {
5400 sh = tmp;
5401 break;
5402 }
5403 }
5404
5405 if (sh) {
5406 conf->bypass_count -= conf->bypass_threshold;
5407 if (conf->bypass_count < 0)
5408 conf->bypass_count = 0;
5409 }
bfc90cb0 5410 wg = NULL;
851c30c9
SL
5411 }
5412
535ae4eb
SL
5413 if (!sh) {
5414 if (second_try)
5415 return NULL;
5416 second_try = true;
5417 try_loprio = !try_loprio;
5418 goto again;
5419 }
8b3e6cdc 5420
bfc90cb0
SL
5421 if (wg) {
5422 wg->stripes_cnt--;
5423 sh->group = NULL;
5424 }
8b3e6cdc 5425 list_del_init(&sh->lru);
c7a6d35e 5426 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
5427 return sh;
5428}
f679623f 5429
8811b596
SL
5430struct raid5_plug_cb {
5431 struct blk_plug_cb cb;
5432 struct list_head list;
566c09c5 5433 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
5434};
5435
5436static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5437{
5438 struct raid5_plug_cb *cb = container_of(
5439 blk_cb, struct raid5_plug_cb, cb);
5440 struct stripe_head *sh;
5441 struct mddev *mddev = cb->cb.data;
5442 struct r5conf *conf = mddev->private;
a9add5d9 5443 int cnt = 0;
566c09c5 5444 int hash;
8811b596
SL
5445
5446 if (cb->list.next && !list_empty(&cb->list)) {
5447 spin_lock_irq(&conf->device_lock);
5448 while (!list_empty(&cb->list)) {
5449 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5450 list_del_init(&sh->lru);
5451 /*
5452 * avoid race release_stripe_plug() sees
5453 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5454 * is still in our list
5455 */
4e857c58 5456 smp_mb__before_atomic();
8811b596 5457 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
5458 /*
5459 * STRIPE_ON_RELEASE_LIST could be set here. In that
5460 * case, the count is always > 1 here
5461 */
566c09c5
SL
5462 hash = sh->hash_lock_index;
5463 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5464 cnt++;
8811b596
SL
5465 }
5466 spin_unlock_irq(&conf->device_lock);
5467 }
566c09c5
SL
5468 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5469 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5470 if (mddev->queue)
5471 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5472 kfree(cb);
5473}
5474
5475static void release_stripe_plug(struct mddev *mddev,
5476 struct stripe_head *sh)
5477{
5478 struct blk_plug_cb *blk_cb = blk_check_plugged(
5479 raid5_unplug, mddev,
5480 sizeof(struct raid5_plug_cb));
5481 struct raid5_plug_cb *cb;
5482
5483 if (!blk_cb) {
6d036f7d 5484 raid5_release_stripe(sh);
8811b596
SL
5485 return;
5486 }
5487
5488 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5489
566c09c5
SL
5490 if (cb->list.next == NULL) {
5491 int i;
8811b596 5492 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5493 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5494 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5495 }
8811b596
SL
5496
5497 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5498 list_add_tail(&sh->lru, &cb->list);
5499 else
6d036f7d 5500 raid5_release_stripe(sh);
8811b596
SL
5501}
5502
620125f2
SL
5503static void make_discard_request(struct mddev *mddev, struct bio *bi)
5504{
5505 struct r5conf *conf = mddev->private;
5506 sector_t logical_sector, last_sector;
5507 struct stripe_head *sh;
620125f2
SL
5508 int stripe_sectors;
5509
5510 if (mddev->reshape_position != MaxSector)
5511 /* Skip discard while reshape is happening */
5512 return;
5513
c911c46c 5514 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
b0f01ecf 5515 last_sector = bio_end_sector(bi);
620125f2
SL
5516
5517 bi->bi_next = NULL;
620125f2
SL
5518
5519 stripe_sectors = conf->chunk_sectors *
5520 (conf->raid_disks - conf->max_degraded);
5521 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5522 stripe_sectors);
5523 sector_div(last_sector, stripe_sectors);
5524
5525 logical_sector *= conf->chunk_sectors;
5526 last_sector *= conf->chunk_sectors;
5527
5528 for (; logical_sector < last_sector;
c911c46c 5529 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
620125f2
SL
5530 DEFINE_WAIT(w);
5531 int d;
5532 again:
6d036f7d 5533 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
620125f2
SL
5534 prepare_to_wait(&conf->wait_for_overlap, &w,
5535 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5536 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5537 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5538 raid5_release_stripe(sh);
f8dfcffd
N
5539 schedule();
5540 goto again;
5541 }
5542 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5543 spin_lock_irq(&sh->stripe_lock);
5544 for (d = 0; d < conf->raid_disks; d++) {
5545 if (d == sh->pd_idx || d == sh->qd_idx)
5546 continue;
5547 if (sh->dev[d].towrite || sh->dev[d].toread) {
5548 set_bit(R5_Overlap, &sh->dev[d].flags);
5549 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5550 raid5_release_stripe(sh);
620125f2
SL
5551 schedule();
5552 goto again;
5553 }
5554 }
f8dfcffd 5555 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5556 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5557 sh->overwrite_disks = 0;
620125f2
SL
5558 for (d = 0; d < conf->raid_disks; d++) {
5559 if (d == sh->pd_idx || d == sh->qd_idx)
5560 continue;
5561 sh->dev[d].towrite = bi;
5562 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
016c76ac 5563 bio_inc_remaining(bi);
49728050 5564 md_write_inc(mddev, bi);
7a87f434 5565 sh->overwrite_disks++;
620125f2
SL
5566 }
5567 spin_unlock_irq(&sh->stripe_lock);
5568 if (conf->mddev->bitmap) {
5569 for (d = 0;
5570 d < conf->raid_disks - conf->max_degraded;
5571 d++)
e64e4018
AS
5572 md_bitmap_startwrite(mddev->bitmap,
5573 sh->sector,
c911c46c 5574 RAID5_STRIPE_SECTORS(conf),
e64e4018 5575 0);
620125f2
SL
5576 sh->bm_seq = conf->seq_flush + 1;
5577 set_bit(STRIPE_BIT_DELAY, &sh->state);
5578 }
5579
5580 set_bit(STRIPE_HANDLE, &sh->state);
5581 clear_bit(STRIPE_DELAYED, &sh->state);
5582 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5583 atomic_inc(&conf->preread_active_stripes);
5584 release_stripe_plug(mddev, sh);
5585 }
5586
016c76ac 5587 bio_endio(bi);
620125f2
SL
5588}
5589
cc27b0c7 5590static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5591{
d1688a6d 5592 struct r5conf *conf = mddev->private;
911d4ee8 5593 int dd_idx;
1da177e4
LT
5594 sector_t new_sector;
5595 sector_t logical_sector, last_sector;
5596 struct stripe_head *sh;
a362357b 5597 const int rw = bio_data_dir(bi);
27c0f68f
SL
5598 DEFINE_WAIT(w);
5599 bool do_prepare;
3bddb7f8 5600 bool do_flush = false;
1da177e4 5601
1eff9d32 5602 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
1532d9e8 5603 int ret = log_handle_flush_request(conf, bi);
828cbe98
SL
5604
5605 if (ret == 0)
cc27b0c7 5606 return true;
828cbe98 5607 if (ret == -ENODEV) {
775d7831
DJ
5608 if (md_flush_request(mddev, bi))
5609 return true;
828cbe98
SL
5610 }
5611 /* ret == -EAGAIN, fallback */
3bddb7f8
SL
5612 /*
5613 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5614 * we need to flush journal device
5615 */
5616 do_flush = bi->bi_opf & REQ_PREFLUSH;
e5dcdd80
N
5617 }
5618
cc27b0c7
N
5619 if (!md_write_start(mddev, bi))
5620 return false;
9ffc8f7c
EM
5621 /*
5622 * If array is degraded, better not do chunk aligned read because
5623 * later we might have to read it again in order to reconstruct
5624 * data on failed drives.
5625 */
5626 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
5627 mddev->reshape_position == MaxSector) {
5628 bi = chunk_aligned_read(mddev, bi);
5629 if (!bi)
cc27b0c7 5630 return true;
7ef6b12a 5631 }
52488615 5632
796a5cf0 5633 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
620125f2 5634 make_discard_request(mddev, bi);
cc27b0c7
N
5635 md_write_end(mddev);
5636 return true;
620125f2
SL
5637 }
5638
c911c46c 5639 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
f73a1c7d 5640 last_sector = bio_end_sector(bi);
1da177e4 5641 bi->bi_next = NULL;
06d91a5f 5642
27c0f68f 5643 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
c911c46c 5644 for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) {
b5663ba4 5645 int previous;
c46501b2 5646 int seq;
b578d55f 5647
27c0f68f 5648 do_prepare = false;
7ecaa1e6 5649 retry:
c46501b2 5650 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5651 previous = 0;
27c0f68f
SL
5652 if (do_prepare)
5653 prepare_to_wait(&conf->wait_for_overlap, &w,
5654 TASK_UNINTERRUPTIBLE);
b0f9ec04 5655 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5656 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5657 * 64bit on a 32bit platform, and so it might be
5658 * possible to see a half-updated value
aeb878b0 5659 * Of course reshape_progress could change after
df8e7f76
N
5660 * the lock is dropped, so once we get a reference
5661 * to the stripe that we think it is, we will have
5662 * to check again.
5663 */
7ecaa1e6 5664 spin_lock_irq(&conf->device_lock);
2c810cdd 5665 if (mddev->reshape_backwards
fef9c61f
N
5666 ? logical_sector < conf->reshape_progress
5667 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5668 previous = 1;
5669 } else {
2c810cdd 5670 if (mddev->reshape_backwards
fef9c61f
N
5671 ? logical_sector < conf->reshape_safe
5672 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5673 spin_unlock_irq(&conf->device_lock);
5674 schedule();
27c0f68f 5675 do_prepare = true;
b578d55f
N
5676 goto retry;
5677 }
5678 }
7ecaa1e6
N
5679 spin_unlock_irq(&conf->device_lock);
5680 }
16a53ecc 5681
112bf897
N
5682 new_sector = raid5_compute_sector(conf, logical_sector,
5683 previous,
911d4ee8 5684 &dd_idx, NULL);
849674e4 5685 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
c46501b2 5686 (unsigned long long)new_sector,
1da177e4
LT
5687 (unsigned long long)logical_sector);
5688
6d036f7d 5689 sh = raid5_get_active_stripe(conf, new_sector, previous,
1eff9d32 5690 (bi->bi_opf & REQ_RAHEAD), 0);
1da177e4 5691 if (sh) {
b0f9ec04 5692 if (unlikely(previous)) {
7ecaa1e6 5693 /* expansion might have moved on while waiting for a
df8e7f76
N
5694 * stripe, so we must do the range check again.
5695 * Expansion could still move past after this
5696 * test, but as we are holding a reference to
5697 * 'sh', we know that if that happens,
5698 * STRIPE_EXPANDING will get set and the expansion
5699 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5700 */
5701 int must_retry = 0;
5702 spin_lock_irq(&conf->device_lock);
2c810cdd 5703 if (mddev->reshape_backwards
b0f9ec04
N
5704 ? logical_sector >= conf->reshape_progress
5705 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5706 /* mismatch, need to try again */
5707 must_retry = 1;
5708 spin_unlock_irq(&conf->device_lock);
5709 if (must_retry) {
6d036f7d 5710 raid5_release_stripe(sh);
7a3ab908 5711 schedule();
27c0f68f 5712 do_prepare = true;
7ecaa1e6
N
5713 goto retry;
5714 }
5715 }
c46501b2
N
5716 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5717 /* Might have got the wrong stripe_head
5718 * by accident
5719 */
6d036f7d 5720 raid5_release_stripe(sh);
c46501b2
N
5721 goto retry;
5722 }
e62e58a5 5723
7ecaa1e6 5724 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5725 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5726 /* Stripe is busy expanding or
5727 * add failed due to overlap. Flush everything
1da177e4
LT
5728 * and wait a while
5729 */
482c0834 5730 md_wakeup_thread(mddev->thread);
6d036f7d 5731 raid5_release_stripe(sh);
1da177e4 5732 schedule();
27c0f68f 5733 do_prepare = true;
1da177e4
LT
5734 goto retry;
5735 }
3bddb7f8
SL
5736 if (do_flush) {
5737 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5738 /* we only need flush for one stripe */
5739 do_flush = false;
5740 }
5741
1684e975 5742 set_bit(STRIPE_HANDLE, &sh->state);
6ed3003c 5743 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5744 if ((!sh->batch_head || sh == sh->batch_head) &&
1eff9d32 5745 (bi->bi_opf & REQ_SYNC) &&
729a1866
N
5746 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5747 atomic_inc(&conf->preread_active_stripes);
8811b596 5748 release_stripe_plug(mddev, sh);
1da177e4
LT
5749 } else {
5750 /* cannot get stripe for read-ahead, just give-up */
4e4cbee9 5751 bi->bi_status = BLK_STS_IOERR;
1da177e4
LT
5752 break;
5753 }
1da177e4 5754 }
27c0f68f 5755 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5756
49728050
N
5757 if (rw == WRITE)
5758 md_write_end(mddev);
016c76ac 5759 bio_endio(bi);
cc27b0c7 5760 return true;
1da177e4
LT
5761}
5762
fd01b88c 5763static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5764
fd01b88c 5765static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5766{
52c03291
N
5767 /* reshaping is quite different to recovery/resync so it is
5768 * handled quite separately ... here.
5769 *
5770 * On each call to sync_request, we gather one chunk worth of
5771 * destination stripes and flag them as expanding.
5772 * Then we find all the source stripes and request reads.
5773 * As the reads complete, handle_stripe will copy the data
5774 * into the destination stripe and release that stripe.
5775 */
d1688a6d 5776 struct r5conf *conf = mddev->private;
1da177e4 5777 struct stripe_head *sh;
db0505d3 5778 struct md_rdev *rdev;
ccfcc3c1 5779 sector_t first_sector, last_sector;
f416885e
N
5780 int raid_disks = conf->previous_raid_disks;
5781 int data_disks = raid_disks - conf->max_degraded;
5782 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5783 int i;
5784 int dd_idx;
c8f517c4 5785 sector_t writepos, readpos, safepos;
ec32a2bd 5786 sector_t stripe_addr;
7a661381 5787 int reshape_sectors;
ab69ae12 5788 struct list_head stripes;
92140480 5789 sector_t retn;
52c03291 5790
fef9c61f
N
5791 if (sector_nr == 0) {
5792 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5793 if (mddev->reshape_backwards &&
fef9c61f
N
5794 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5795 sector_nr = raid5_size(mddev, 0, 0)
5796 - conf->reshape_progress;
6cbd8148
N
5797 } else if (mddev->reshape_backwards &&
5798 conf->reshape_progress == MaxSector) {
5799 /* shouldn't happen, but just in case, finish up.*/
5800 sector_nr = MaxSector;
2c810cdd 5801 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5802 conf->reshape_progress > 0)
5803 sector_nr = conf->reshape_progress;
f416885e 5804 sector_div(sector_nr, new_data_disks);
fef9c61f 5805 if (sector_nr) {
8dee7211 5806 mddev->curr_resync_completed = sector_nr;
e1a86dbb 5807 sysfs_notify_dirent_safe(mddev->sysfs_completed);
fef9c61f 5808 *skipped = 1;
92140480
N
5809 retn = sector_nr;
5810 goto finish;
fef9c61f 5811 }
52c03291
N
5812 }
5813
7a661381
N
5814 /* We need to process a full chunk at a time.
5815 * If old and new chunk sizes differ, we need to process the
5816 * largest of these
5817 */
3cb5edf4
N
5818
5819 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 5820
b5254dd5
N
5821 /* We update the metadata at least every 10 seconds, or when
5822 * the data about to be copied would over-write the source of
5823 * the data at the front of the range. i.e. one new_stripe
5824 * along from reshape_progress new_maps to after where
5825 * reshape_safe old_maps to
52c03291 5826 */
fef9c61f 5827 writepos = conf->reshape_progress;
f416885e 5828 sector_div(writepos, new_data_disks);
c8f517c4
N
5829 readpos = conf->reshape_progress;
5830 sector_div(readpos, data_disks);
fef9c61f 5831 safepos = conf->reshape_safe;
f416885e 5832 sector_div(safepos, data_disks);
2c810cdd 5833 if (mddev->reshape_backwards) {
c74c0d76
N
5834 BUG_ON(writepos < reshape_sectors);
5835 writepos -= reshape_sectors;
c8f517c4 5836 readpos += reshape_sectors;
7a661381 5837 safepos += reshape_sectors;
fef9c61f 5838 } else {
7a661381 5839 writepos += reshape_sectors;
c74c0d76
N
5840 /* readpos and safepos are worst-case calculations.
5841 * A negative number is overly pessimistic, and causes
5842 * obvious problems for unsigned storage. So clip to 0.
5843 */
ed37d83e
N
5844 readpos -= min_t(sector_t, reshape_sectors, readpos);
5845 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5846 }
52c03291 5847
b5254dd5
N
5848 /* Having calculated the 'writepos' possibly use it
5849 * to set 'stripe_addr' which is where we will write to.
5850 */
5851 if (mddev->reshape_backwards) {
5852 BUG_ON(conf->reshape_progress == 0);
5853 stripe_addr = writepos;
5854 BUG_ON((mddev->dev_sectors &
5855 ~((sector_t)reshape_sectors - 1))
5856 - reshape_sectors - stripe_addr
5857 != sector_nr);
5858 } else {
5859 BUG_ON(writepos != sector_nr + reshape_sectors);
5860 stripe_addr = sector_nr;
5861 }
5862
c8f517c4
N
5863 /* 'writepos' is the most advanced device address we might write.
5864 * 'readpos' is the least advanced device address we might read.
5865 * 'safepos' is the least address recorded in the metadata as having
5866 * been reshaped.
b5254dd5
N
5867 * If there is a min_offset_diff, these are adjusted either by
5868 * increasing the safepos/readpos if diff is negative, or
5869 * increasing writepos if diff is positive.
5870 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5871 * ensure safety in the face of a crash - that must be done by userspace
5872 * making a backup of the data. So in that case there is no particular
5873 * rush to update metadata.
5874 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5875 * update the metadata to advance 'safepos' to match 'readpos' so that
5876 * we can be safe in the event of a crash.
5877 * So we insist on updating metadata if safepos is behind writepos and
5878 * readpos is beyond writepos.
5879 * In any case, update the metadata every 10 seconds.
5880 * Maybe that number should be configurable, but I'm not sure it is
5881 * worth it.... maybe it could be a multiple of safemode_delay???
5882 */
b5254dd5
N
5883 if (conf->min_offset_diff < 0) {
5884 safepos += -conf->min_offset_diff;
5885 readpos += -conf->min_offset_diff;
5886 } else
5887 writepos += conf->min_offset_diff;
5888
2c810cdd 5889 if ((mddev->reshape_backwards
c8f517c4
N
5890 ? (safepos > writepos && readpos < writepos)
5891 : (safepos < writepos && readpos > writepos)) ||
5892 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5893 /* Cannot proceed until we've updated the superblock... */
5894 wait_event(conf->wait_for_overlap,
c91abf5a
N
5895 atomic_read(&conf->reshape_stripes)==0
5896 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5897 if (atomic_read(&conf->reshape_stripes) != 0)
5898 return 0;
fef9c61f 5899 mddev->reshape_position = conf->reshape_progress;
75d3da43 5900 mddev->curr_resync_completed = sector_nr;
db0505d3
N
5901 if (!mddev->reshape_backwards)
5902 /* Can update recovery_offset */
5903 rdev_for_each(rdev, mddev)
5904 if (rdev->raid_disk >= 0 &&
5905 !test_bit(Journal, &rdev->flags) &&
5906 !test_bit(In_sync, &rdev->flags) &&
5907 rdev->recovery_offset < sector_nr)
5908 rdev->recovery_offset = sector_nr;
5909
c8f517c4 5910 conf->reshape_checkpoint = jiffies;
2953079c 5911 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
52c03291 5912 md_wakeup_thread(mddev->thread);
2953079c 5913 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
5914 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5915 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5916 return 0;
52c03291 5917 spin_lock_irq(&conf->device_lock);
fef9c61f 5918 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5919 spin_unlock_irq(&conf->device_lock);
5920 wake_up(&conf->wait_for_overlap);
e1a86dbb 5921 sysfs_notify_dirent_safe(mddev->sysfs_completed);
52c03291
N
5922 }
5923
ab69ae12 5924 INIT_LIST_HEAD(&stripes);
c911c46c 5925 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
52c03291 5926 int j;
a9f326eb 5927 int skipped_disk = 0;
6d036f7d 5928 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5929 set_bit(STRIPE_EXPANDING, &sh->state);
5930 atomic_inc(&conf->reshape_stripes);
5931 /* If any of this stripe is beyond the end of the old
5932 * array, then we need to zero those blocks
5933 */
5934 for (j=sh->disks; j--;) {
5935 sector_t s;
5936 if (j == sh->pd_idx)
5937 continue;
f416885e 5938 if (conf->level == 6 &&
d0dabf7e 5939 j == sh->qd_idx)
f416885e 5940 continue;
6d036f7d 5941 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 5942 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5943 skipped_disk = 1;
52c03291
N
5944 continue;
5945 }
c911c46c 5946 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
52c03291
N
5947 set_bit(R5_Expanded, &sh->dev[j].flags);
5948 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5949 }
a9f326eb 5950 if (!skipped_disk) {
52c03291
N
5951 set_bit(STRIPE_EXPAND_READY, &sh->state);
5952 set_bit(STRIPE_HANDLE, &sh->state);
5953 }
ab69ae12 5954 list_add(&sh->lru, &stripes);
52c03291
N
5955 }
5956 spin_lock_irq(&conf->device_lock);
2c810cdd 5957 if (mddev->reshape_backwards)
7a661381 5958 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5959 else
7a661381 5960 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5961 spin_unlock_irq(&conf->device_lock);
5962 /* Ok, those stripe are ready. We can start scheduling
5963 * reads on the source stripes.
5964 * The source stripes are determined by mapping the first and last
5965 * block on the destination stripes.
5966 */
52c03291 5967 first_sector =
ec32a2bd 5968 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5969 1, &dd_idx, NULL);
52c03291 5970 last_sector =
0e6e0271 5971 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5972 * new_data_disks - 1),
911d4ee8 5973 1, &dd_idx, NULL);
58c0fed4
AN
5974 if (last_sector >= mddev->dev_sectors)
5975 last_sector = mddev->dev_sectors - 1;
52c03291 5976 while (first_sector <= last_sector) {
6d036f7d 5977 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5978 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5979 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 5980 raid5_release_stripe(sh);
c911c46c 5981 first_sector += RAID5_STRIPE_SECTORS(conf);
52c03291 5982 }
ab69ae12
N
5983 /* Now that the sources are clearly marked, we can release
5984 * the destination stripes
5985 */
5986 while (!list_empty(&stripes)) {
5987 sh = list_entry(stripes.next, struct stripe_head, lru);
5988 list_del_init(&sh->lru);
6d036f7d 5989 raid5_release_stripe(sh);
ab69ae12 5990 }
c6207277
N
5991 /* If this takes us to the resync_max point where we have to pause,
5992 * then we need to write out the superblock.
5993 */
7a661381 5994 sector_nr += reshape_sectors;
92140480
N
5995 retn = reshape_sectors;
5996finish:
c5e19d90
N
5997 if (mddev->curr_resync_completed > mddev->resync_max ||
5998 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 5999 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
6000 /* Cannot proceed until we've updated the superblock... */
6001 wait_event(conf->wait_for_overlap,
c91abf5a
N
6002 atomic_read(&conf->reshape_stripes) == 0
6003 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6004 if (atomic_read(&conf->reshape_stripes) != 0)
6005 goto ret;
fef9c61f 6006 mddev->reshape_position = conf->reshape_progress;
75d3da43 6007 mddev->curr_resync_completed = sector_nr;
db0505d3
N
6008 if (!mddev->reshape_backwards)
6009 /* Can update recovery_offset */
6010 rdev_for_each(rdev, mddev)
6011 if (rdev->raid_disk >= 0 &&
6012 !test_bit(Journal, &rdev->flags) &&
6013 !test_bit(In_sync, &rdev->flags) &&
6014 rdev->recovery_offset < sector_nr)
6015 rdev->recovery_offset = sector_nr;
c8f517c4 6016 conf->reshape_checkpoint = jiffies;
2953079c 6017 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
c6207277
N
6018 md_wakeup_thread(mddev->thread);
6019 wait_event(mddev->sb_wait,
2953079c 6020 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
c91abf5a
N
6021 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6022 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6023 goto ret;
c6207277 6024 spin_lock_irq(&conf->device_lock);
fef9c61f 6025 conf->reshape_safe = mddev->reshape_position;
c6207277
N
6026 spin_unlock_irq(&conf->device_lock);
6027 wake_up(&conf->wait_for_overlap);
e1a86dbb 6028 sysfs_notify_dirent_safe(mddev->sysfs_completed);
c6207277 6029 }
c91abf5a 6030ret:
92140480 6031 return retn;
52c03291
N
6032}
6033
849674e4
SL
6034static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6035 int *skipped)
52c03291 6036{
d1688a6d 6037 struct r5conf *conf = mddev->private;
52c03291 6038 struct stripe_head *sh;
58c0fed4 6039 sector_t max_sector = mddev->dev_sectors;
57dab0bd 6040 sector_t sync_blocks;
16a53ecc
N
6041 int still_degraded = 0;
6042 int i;
1da177e4 6043
72626685 6044 if (sector_nr >= max_sector) {
1da177e4 6045 /* just being told to finish up .. nothing much to do */
cea9c228 6046
29269553
N
6047 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6048 end_reshape(conf);
6049 return 0;
6050 }
72626685
N
6051
6052 if (mddev->curr_resync < max_sector) /* aborted */
e64e4018
AS
6053 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6054 &sync_blocks, 1);
16a53ecc 6055 else /* completed sync */
72626685 6056 conf->fullsync = 0;
e64e4018 6057 md_bitmap_close_sync(mddev->bitmap);
72626685 6058
1da177e4
LT
6059 return 0;
6060 }
ccfcc3c1 6061
64bd660b
N
6062 /* Allow raid5_quiesce to complete */
6063 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6064
52c03291
N
6065 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6066 return reshape_request(mddev, sector_nr, skipped);
f6705578 6067
c6207277
N
6068 /* No need to check resync_max as we never do more than one
6069 * stripe, and as resync_max will always be on a chunk boundary,
6070 * if the check in md_do_sync didn't fire, there is no chance
6071 * of overstepping resync_max here
6072 */
6073
16a53ecc 6074 /* if there is too many failed drives and we are trying
1da177e4
LT
6075 * to resync, then assert that we are finished, because there is
6076 * nothing we can do.
6077 */
3285edf1 6078 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 6079 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 6080 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 6081 *skipped = 1;
1da177e4
LT
6082 return rv;
6083 }
6f608040 6084 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6085 !conf->fullsync &&
e64e4018 6086 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
c911c46c 6087 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
72626685 6088 /* we can skip this block, and probably more */
83c3e5e1 6089 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
72626685 6090 *skipped = 1;
c911c46c
YY
6091 /* keep things rounded to whole stripes */
6092 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
72626685 6093 }
1da177e4 6094
e64e4018 6095 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
b47490c9 6096
6d036f7d 6097 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 6098 if (sh == NULL) {
6d036f7d 6099 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 6100 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 6101 * is trying to get access
1da177e4 6102 */
66c006a5 6103 schedule_timeout_uninterruptible(1);
1da177e4 6104 }
16a53ecc 6105 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
6106 * Note in case of > 1 drive failures it's possible we're rebuilding
6107 * one drive while leaving another faulty drive in array.
16a53ecc 6108 */
16d9cfab
EM
6109 rcu_read_lock();
6110 for (i = 0; i < conf->raid_disks; i++) {
6aa7de05 6111 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
16d9cfab
EM
6112
6113 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 6114 still_degraded = 1;
16d9cfab
EM
6115 }
6116 rcu_read_unlock();
16a53ecc 6117
e64e4018 6118 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
16a53ecc 6119
83206d66 6120 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 6121 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 6122
6d036f7d 6123 raid5_release_stripe(sh);
1da177e4 6124
c911c46c 6125 return RAID5_STRIPE_SECTORS(conf);
1da177e4
LT
6126}
6127
0472a42b
N
6128static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6129 unsigned int offset)
46031f9a
RBJ
6130{
6131 /* We may not be able to submit a whole bio at once as there
6132 * may not be enough stripe_heads available.
6133 * We cannot pre-allocate enough stripe_heads as we may need
6134 * more than exist in the cache (if we allow ever large chunks).
6135 * So we do one stripe head at a time and record in
6136 * ->bi_hw_segments how many have been done.
6137 *
6138 * We *know* that this entire raid_bio is in one chunk, so
6139 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6140 */
6141 struct stripe_head *sh;
911d4ee8 6142 int dd_idx;
46031f9a
RBJ
6143 sector_t sector, logical_sector, last_sector;
6144 int scnt = 0;
46031f9a
RBJ
6145 int handled = 0;
6146
4f024f37 6147 logical_sector = raid_bio->bi_iter.bi_sector &
c911c46c 6148 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
112bf897 6149 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 6150 0, &dd_idx, NULL);
f73a1c7d 6151 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
6152
6153 for (; logical_sector < last_sector;
c911c46c
YY
6154 logical_sector += RAID5_STRIPE_SECTORS(conf),
6155 sector += RAID5_STRIPE_SECTORS(conf),
387bb173 6156 scnt++) {
46031f9a 6157
0472a42b 6158 if (scnt < offset)
46031f9a
RBJ
6159 /* already done this stripe */
6160 continue;
6161
6d036f7d 6162 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
6163
6164 if (!sh) {
6165 /* failed to get a stripe - must wait */
46031f9a 6166 conf->retry_read_aligned = raid_bio;
0472a42b 6167 conf->retry_read_offset = scnt;
46031f9a
RBJ
6168 return handled;
6169 }
6170
da41ba65 6171 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 6172 raid5_release_stripe(sh);
387bb173 6173 conf->retry_read_aligned = raid_bio;
0472a42b 6174 conf->retry_read_offset = scnt;
387bb173
NB
6175 return handled;
6176 }
6177
3f9e7c14 6178 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 6179 handle_stripe(sh);
6d036f7d 6180 raid5_release_stripe(sh);
46031f9a
RBJ
6181 handled++;
6182 }
016c76ac
N
6183
6184 bio_endio(raid_bio);
6185
46031f9a 6186 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 6187 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
6188 return handled;
6189}
6190
bfc90cb0 6191static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
6192 struct r5worker *worker,
6193 struct list_head *temp_inactive_list)
efcd487c
CH
6194 __releases(&conf->device_lock)
6195 __acquires(&conf->device_lock)
46a06401
SL
6196{
6197 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
6198 int i, batch_size = 0, hash;
6199 bool release_inactive = false;
46a06401
SL
6200
6201 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 6202 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
6203 batch[batch_size++] = sh;
6204
566c09c5
SL
6205 if (batch_size == 0) {
6206 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6207 if (!list_empty(temp_inactive_list + i))
6208 break;
a8c34f91
SL
6209 if (i == NR_STRIPE_HASH_LOCKS) {
6210 spin_unlock_irq(&conf->device_lock);
1532d9e8 6211 log_flush_stripe_to_raid(conf);
a8c34f91 6212 spin_lock_irq(&conf->device_lock);
566c09c5 6213 return batch_size;
a8c34f91 6214 }
566c09c5
SL
6215 release_inactive = true;
6216 }
46a06401
SL
6217 spin_unlock_irq(&conf->device_lock);
6218
566c09c5
SL
6219 release_inactive_stripe_list(conf, temp_inactive_list,
6220 NR_STRIPE_HASH_LOCKS);
6221
a8c34f91 6222 r5l_flush_stripe_to_raid(conf->log);
566c09c5
SL
6223 if (release_inactive) {
6224 spin_lock_irq(&conf->device_lock);
6225 return 0;
6226 }
6227
46a06401
SL
6228 for (i = 0; i < batch_size; i++)
6229 handle_stripe(batch[i]);
ff875738 6230 log_write_stripe_run(conf);
46a06401
SL
6231
6232 cond_resched();
6233
6234 spin_lock_irq(&conf->device_lock);
566c09c5
SL
6235 for (i = 0; i < batch_size; i++) {
6236 hash = batch[i]->hash_lock_index;
6237 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6238 }
46a06401
SL
6239 return batch_size;
6240}
46031f9a 6241
851c30c9
SL
6242static void raid5_do_work(struct work_struct *work)
6243{
6244 struct r5worker *worker = container_of(work, struct r5worker, work);
6245 struct r5worker_group *group = worker->group;
6246 struct r5conf *conf = group->conf;
16d997b7 6247 struct mddev *mddev = conf->mddev;
851c30c9
SL
6248 int group_id = group - conf->worker_groups;
6249 int handled;
6250 struct blk_plug plug;
6251
6252 pr_debug("+++ raid5worker active\n");
6253
6254 blk_start_plug(&plug);
6255 handled = 0;
6256 spin_lock_irq(&conf->device_lock);
6257 while (1) {
6258 int batch_size, released;
6259
566c09c5 6260 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 6261
566c09c5
SL
6262 batch_size = handle_active_stripes(conf, group_id, worker,
6263 worker->temp_inactive_list);
bfc90cb0 6264 worker->working = false;
851c30c9
SL
6265 if (!batch_size && !released)
6266 break;
6267 handled += batch_size;
16d997b7
N
6268 wait_event_lock_irq(mddev->sb_wait,
6269 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6270 conf->device_lock);
851c30c9
SL
6271 }
6272 pr_debug("%d stripes handled\n", handled);
6273
6274 spin_unlock_irq(&conf->device_lock);
7e96d559 6275
9c72a18e
SL
6276 flush_deferred_bios(conf);
6277
6278 r5l_flush_stripe_to_raid(conf->log);
6279
7e96d559 6280 async_tx_issue_pending_all();
851c30c9
SL
6281 blk_finish_plug(&plug);
6282
6283 pr_debug("--- raid5worker inactive\n");
6284}
6285
1da177e4
LT
6286/*
6287 * This is our raid5 kernel thread.
6288 *
6289 * We scan the hash table for stripes which can be handled now.
6290 * During the scan, completed stripes are saved for us by the interrupt
6291 * handler, so that they will not have to wait for our next wakeup.
6292 */
4ed8731d 6293static void raid5d(struct md_thread *thread)
1da177e4 6294{
4ed8731d 6295 struct mddev *mddev = thread->mddev;
d1688a6d 6296 struct r5conf *conf = mddev->private;
1da177e4 6297 int handled;
e1dfa0a2 6298 struct blk_plug plug;
1da177e4 6299
45b4233c 6300 pr_debug("+++ raid5d active\n");
1da177e4
LT
6301
6302 md_check_recovery(mddev);
1da177e4 6303
e1dfa0a2 6304 blk_start_plug(&plug);
1da177e4
LT
6305 handled = 0;
6306 spin_lock_irq(&conf->device_lock);
6307 while (1) {
46031f9a 6308 struct bio *bio;
773ca82f 6309 int batch_size, released;
0472a42b 6310 unsigned int offset;
773ca82f 6311
566c09c5 6312 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
6313 if (released)
6314 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 6315
0021b7bc 6316 if (
7c13edc8
N
6317 !list_empty(&conf->bitmap_list)) {
6318 /* Now is a good time to flush some bitmap updates */
6319 conf->seq_flush++;
700e432d 6320 spin_unlock_irq(&conf->device_lock);
e64e4018 6321 md_bitmap_unplug(mddev->bitmap);
700e432d 6322 spin_lock_irq(&conf->device_lock);
7c13edc8 6323 conf->seq_write = conf->seq_flush;
566c09c5 6324 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 6325 }
0021b7bc 6326 raid5_activate_delayed(conf);
72626685 6327
0472a42b 6328 while ((bio = remove_bio_from_retry(conf, &offset))) {
46031f9a
RBJ
6329 int ok;
6330 spin_unlock_irq(&conf->device_lock);
0472a42b 6331 ok = retry_aligned_read(conf, bio, offset);
46031f9a
RBJ
6332 spin_lock_irq(&conf->device_lock);
6333 if (!ok)
6334 break;
6335 handled++;
6336 }
6337
566c09c5
SL
6338 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6339 conf->temp_inactive_list);
773ca82f 6340 if (!batch_size && !released)
1da177e4 6341 break;
46a06401 6342 handled += batch_size;
1da177e4 6343
2953079c 6344 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
46a06401 6345 spin_unlock_irq(&conf->device_lock);
de393cde 6346 md_check_recovery(mddev);
46a06401
SL
6347 spin_lock_irq(&conf->device_lock);
6348 }
1da177e4 6349 }
45b4233c 6350 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
6351
6352 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
6353 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6354 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
6355 grow_one_stripe(conf, __GFP_NOWARN);
6356 /* Set flag even if allocation failed. This helps
6357 * slow down allocation requests when mem is short
6358 */
6359 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 6360 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 6361 }
1da177e4 6362
765d704d
SL
6363 flush_deferred_bios(conf);
6364
0576b1c6
SL
6365 r5l_flush_stripe_to_raid(conf->log);
6366
c9f21aaf 6367 async_tx_issue_pending_all();
e1dfa0a2 6368 blk_finish_plug(&plug);
1da177e4 6369
45b4233c 6370 pr_debug("--- raid5d inactive\n");
1da177e4
LT
6371}
6372
3f294f4f 6373static ssize_t
fd01b88c 6374raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 6375{
7b1485ba
N
6376 struct r5conf *conf;
6377 int ret = 0;
6378 spin_lock(&mddev->lock);
6379 conf = mddev->private;
96de1e66 6380 if (conf)
edbe83ab 6381 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
6382 spin_unlock(&mddev->lock);
6383 return ret;
3f294f4f
N
6384}
6385
c41d4ac4 6386int
fd01b88c 6387raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 6388{
483cbbed 6389 int result = 0;
d1688a6d 6390 struct r5conf *conf = mddev->private;
b5470dc5 6391
c41d4ac4 6392 if (size <= 16 || size > 32768)
3f294f4f 6393 return -EINVAL;
486f0644 6394
edbe83ab 6395 conf->min_nr_stripes = size;
2d5b569b 6396 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6397 while (size < conf->max_nr_stripes &&
6398 drop_one_stripe(conf))
6399 ;
2d5b569b 6400 mutex_unlock(&conf->cache_size_mutex);
486f0644 6401
2214c260 6402 md_allow_write(mddev);
486f0644 6403
2d5b569b 6404 mutex_lock(&conf->cache_size_mutex);
486f0644 6405 while (size > conf->max_nr_stripes)
483cbbed
AN
6406 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6407 conf->min_nr_stripes = conf->max_nr_stripes;
6408 result = -ENOMEM;
486f0644 6409 break;
483cbbed 6410 }
2d5b569b 6411 mutex_unlock(&conf->cache_size_mutex);
486f0644 6412
483cbbed 6413 return result;
c41d4ac4
N
6414}
6415EXPORT_SYMBOL(raid5_set_cache_size);
6416
6417static ssize_t
fd01b88c 6418raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 6419{
6791875e 6420 struct r5conf *conf;
c41d4ac4
N
6421 unsigned long new;
6422 int err;
6423
6424 if (len >= PAGE_SIZE)
6425 return -EINVAL;
b29bebd6 6426 if (kstrtoul(page, 10, &new))
c41d4ac4 6427 return -EINVAL;
6791875e 6428 err = mddev_lock(mddev);
c41d4ac4
N
6429 if (err)
6430 return err;
6791875e
N
6431 conf = mddev->private;
6432 if (!conf)
6433 err = -ENODEV;
6434 else
6435 err = raid5_set_cache_size(mddev, new);
6436 mddev_unlock(mddev);
6437
6438 return err ?: len;
3f294f4f 6439}
007583c9 6440
96de1e66
N
6441static struct md_sysfs_entry
6442raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6443 raid5_show_stripe_cache_size,
6444 raid5_store_stripe_cache_size);
3f294f4f 6445
d06f191f
MS
6446static ssize_t
6447raid5_show_rmw_level(struct mddev *mddev, char *page)
6448{
6449 struct r5conf *conf = mddev->private;
6450 if (conf)
6451 return sprintf(page, "%d\n", conf->rmw_level);
6452 else
6453 return 0;
6454}
6455
6456static ssize_t
6457raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6458{
6459 struct r5conf *conf = mddev->private;
6460 unsigned long new;
6461
6462 if (!conf)
6463 return -ENODEV;
6464
6465 if (len >= PAGE_SIZE)
6466 return -EINVAL;
6467
6468 if (kstrtoul(page, 10, &new))
6469 return -EINVAL;
6470
6471 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6472 return -EINVAL;
6473
6474 if (new != PARITY_DISABLE_RMW &&
6475 new != PARITY_ENABLE_RMW &&
6476 new != PARITY_PREFER_RMW)
6477 return -EINVAL;
6478
6479 conf->rmw_level = new;
6480 return len;
6481}
6482
6483static struct md_sysfs_entry
6484raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6485 raid5_show_rmw_level,
6486 raid5_store_rmw_level);
6487
3b5408b9
YY
6488static ssize_t
6489raid5_show_stripe_size(struct mddev *mddev, char *page)
6490{
6491 struct r5conf *conf;
6492 int ret = 0;
6493
6494 spin_lock(&mddev->lock);
6495 conf = mddev->private;
6496 if (conf)
6497 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6498 spin_unlock(&mddev->lock);
6499 return ret;
6500}
6501
6502#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6503static ssize_t
6504raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6505{
6506 struct r5conf *conf;
6507 unsigned long new;
6508 int err;
6509
6510 if (len >= PAGE_SIZE)
6511 return -EINVAL;
6512 if (kstrtoul(page, 10, &new))
6513 return -EINVAL;
6514
6515 /*
6516 * The value should not be bigger than PAGE_SIZE. It requires to
6517 * be multiple of DEFAULT_STRIPE_SIZE.
6518 */
6519 if (new % DEFAULT_STRIPE_SIZE != 0 || new > PAGE_SIZE || new == 0)
6520 return -EINVAL;
6521
6522 err = mddev_lock(mddev);
6523 if (err)
6524 return err;
6525
6526 conf = mddev->private;
6527 if (!conf) {
6528 err = -ENODEV;
6529 goto out_unlock;
6530 }
6531
6532 if (new == conf->stripe_size)
6533 goto out_unlock;
6534
6535 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6536 conf->stripe_size, new);
6537
6538 mddev_suspend(mddev);
6539 conf->stripe_size = new;
6540 conf->stripe_shift = ilog2(new) - 9;
6541 conf->stripe_sectors = new >> 9;
6542 mddev_resume(mddev);
6543
6544out_unlock:
6545 mddev_unlock(mddev);
6546 return err ?: len;
6547}
6548
6549static struct md_sysfs_entry
6550raid5_stripe_size = __ATTR(stripe_size, 0644,
6551 raid5_show_stripe_size,
6552 raid5_store_stripe_size);
6553#else
6554static struct md_sysfs_entry
6555raid5_stripe_size = __ATTR(stripe_size, 0444,
6556 raid5_show_stripe_size,
6557 NULL);
6558#endif
d06f191f 6559
8b3e6cdc 6560static ssize_t
fd01b88c 6561raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 6562{
7b1485ba
N
6563 struct r5conf *conf;
6564 int ret = 0;
6565 spin_lock(&mddev->lock);
6566 conf = mddev->private;
8b3e6cdc 6567 if (conf)
7b1485ba
N
6568 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6569 spin_unlock(&mddev->lock);
6570 return ret;
8b3e6cdc
DW
6571}
6572
6573static ssize_t
fd01b88c 6574raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6575{
6791875e 6576 struct r5conf *conf;
4ef197d8 6577 unsigned long new;
6791875e
N
6578 int err;
6579
8b3e6cdc
DW
6580 if (len >= PAGE_SIZE)
6581 return -EINVAL;
b29bebd6 6582 if (kstrtoul(page, 10, &new))
8b3e6cdc 6583 return -EINVAL;
6791875e
N
6584
6585 err = mddev_lock(mddev);
6586 if (err)
6587 return err;
6588 conf = mddev->private;
6589 if (!conf)
6590 err = -ENODEV;
edbe83ab 6591 else if (new > conf->min_nr_stripes)
6791875e
N
6592 err = -EINVAL;
6593 else
6594 conf->bypass_threshold = new;
6595 mddev_unlock(mddev);
6596 return err ?: len;
8b3e6cdc
DW
6597}
6598
6599static struct md_sysfs_entry
6600raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6601 S_IRUGO | S_IWUSR,
6602 raid5_show_preread_threshold,
6603 raid5_store_preread_threshold);
6604
d592a996
SL
6605static ssize_t
6606raid5_show_skip_copy(struct mddev *mddev, char *page)
6607{
7b1485ba
N
6608 struct r5conf *conf;
6609 int ret = 0;
6610 spin_lock(&mddev->lock);
6611 conf = mddev->private;
d592a996 6612 if (conf)
7b1485ba
N
6613 ret = sprintf(page, "%d\n", conf->skip_copy);
6614 spin_unlock(&mddev->lock);
6615 return ret;
d592a996
SL
6616}
6617
6618static ssize_t
6619raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6620{
6791875e 6621 struct r5conf *conf;
d592a996 6622 unsigned long new;
6791875e
N
6623 int err;
6624
d592a996
SL
6625 if (len >= PAGE_SIZE)
6626 return -EINVAL;
d592a996
SL
6627 if (kstrtoul(page, 10, &new))
6628 return -EINVAL;
6629 new = !!new;
6791875e
N
6630
6631 err = mddev_lock(mddev);
6632 if (err)
6633 return err;
6634 conf = mddev->private;
6635 if (!conf)
6636 err = -ENODEV;
6637 else if (new != conf->skip_copy) {
6638 mddev_suspend(mddev);
6639 conf->skip_copy = new;
6640 if (new)
dc3b17cc 6641 mddev->queue->backing_dev_info->capabilities |=
6791875e
N
6642 BDI_CAP_STABLE_WRITES;
6643 else
dc3b17cc 6644 mddev->queue->backing_dev_info->capabilities &=
6791875e
N
6645 ~BDI_CAP_STABLE_WRITES;
6646 mddev_resume(mddev);
6647 }
6648 mddev_unlock(mddev);
6649 return err ?: len;
d592a996
SL
6650}
6651
6652static struct md_sysfs_entry
6653raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6654 raid5_show_skip_copy,
6655 raid5_store_skip_copy);
6656
3f294f4f 6657static ssize_t
fd01b88c 6658stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6659{
d1688a6d 6660 struct r5conf *conf = mddev->private;
96de1e66
N
6661 if (conf)
6662 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6663 else
6664 return 0;
3f294f4f
N
6665}
6666
96de1e66
N
6667static struct md_sysfs_entry
6668raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6669
b721420e
SL
6670static ssize_t
6671raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6672{
7b1485ba
N
6673 struct r5conf *conf;
6674 int ret = 0;
6675 spin_lock(&mddev->lock);
6676 conf = mddev->private;
b721420e 6677 if (conf)
7b1485ba
N
6678 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6679 spin_unlock(&mddev->lock);
6680 return ret;
b721420e
SL
6681}
6682
60aaf933 6683static int alloc_thread_groups(struct r5conf *conf, int cnt,
6684 int *group_cnt,
60aaf933 6685 struct r5worker_group **worker_groups);
b721420e
SL
6686static ssize_t
6687raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6688{
6791875e 6689 struct r5conf *conf;
7d5d7b50 6690 unsigned int new;
b721420e 6691 int err;
60aaf933 6692 struct r5worker_group *new_groups, *old_groups;
d2c9ad41 6693 int group_cnt;
b721420e
SL
6694
6695 if (len >= PAGE_SIZE)
6696 return -EINVAL;
7d5d7b50
SL
6697 if (kstrtouint(page, 10, &new))
6698 return -EINVAL;
6699 /* 8192 should be big enough */
6700 if (new > 8192)
b721420e
SL
6701 return -EINVAL;
6702
6791875e
N
6703 err = mddev_lock(mddev);
6704 if (err)
6705 return err;
6706 conf = mddev->private;
6707 if (!conf)
6708 err = -ENODEV;
6709 else if (new != conf->worker_cnt_per_group) {
6710 mddev_suspend(mddev);
b721420e 6711
6791875e
N
6712 old_groups = conf->worker_groups;
6713 if (old_groups)
6714 flush_workqueue(raid5_wq);
d206dcfa 6715
d2c9ad41 6716 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6791875e
N
6717 if (!err) {
6718 spin_lock_irq(&conf->device_lock);
6719 conf->group_cnt = group_cnt;
d2c9ad41 6720 conf->worker_cnt_per_group = new;
6791875e
N
6721 conf->worker_groups = new_groups;
6722 spin_unlock_irq(&conf->device_lock);
b721420e 6723
6791875e
N
6724 if (old_groups)
6725 kfree(old_groups[0].workers);
6726 kfree(old_groups);
6727 }
6728 mddev_resume(mddev);
b721420e 6729 }
6791875e 6730 mddev_unlock(mddev);
b721420e 6731
6791875e 6732 return err ?: len;
b721420e
SL
6733}
6734
6735static struct md_sysfs_entry
6736raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6737 raid5_show_group_thread_cnt,
6738 raid5_store_group_thread_cnt);
6739
007583c9 6740static struct attribute *raid5_attrs[] = {
3f294f4f
N
6741 &raid5_stripecache_size.attr,
6742 &raid5_stripecache_active.attr,
8b3e6cdc 6743 &raid5_preread_bypass_threshold.attr,
b721420e 6744 &raid5_group_thread_cnt.attr,
d592a996 6745 &raid5_skip_copy.attr,
d06f191f 6746 &raid5_rmw_level.attr,
3b5408b9 6747 &raid5_stripe_size.attr,
2c7da14b 6748 &r5c_journal_mode.attr,
a596d086 6749 &ppl_write_hint.attr,
3f294f4f
N
6750 NULL,
6751};
007583c9
N
6752static struct attribute_group raid5_attrs_group = {
6753 .name = NULL,
6754 .attrs = raid5_attrs,
3f294f4f
N
6755};
6756
d2c9ad41 6757static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
60aaf933 6758 struct r5worker_group **worker_groups)
851c30c9 6759{
566c09c5 6760 int i, j, k;
851c30c9
SL
6761 ssize_t size;
6762 struct r5worker *workers;
6763
851c30c9 6764 if (cnt == 0) {
60aaf933 6765 *group_cnt = 0;
6766 *worker_groups = NULL;
851c30c9
SL
6767 return 0;
6768 }
60aaf933 6769 *group_cnt = num_possible_nodes();
851c30c9 6770 size = sizeof(struct r5worker) * cnt;
6396bb22
KC
6771 workers = kcalloc(size, *group_cnt, GFP_NOIO);
6772 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6773 GFP_NOIO);
60aaf933 6774 if (!*worker_groups || !workers) {
851c30c9 6775 kfree(workers);
60aaf933 6776 kfree(*worker_groups);
851c30c9
SL
6777 return -ENOMEM;
6778 }
6779
60aaf933 6780 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6781 struct r5worker_group *group;
6782
0c775d52 6783 group = &(*worker_groups)[i];
851c30c9 6784 INIT_LIST_HEAD(&group->handle_list);
535ae4eb 6785 INIT_LIST_HEAD(&group->loprio_list);
851c30c9
SL
6786 group->conf = conf;
6787 group->workers = workers + i * cnt;
6788
6789 for (j = 0; j < cnt; j++) {
566c09c5
SL
6790 struct r5worker *worker = group->workers + j;
6791 worker->group = group;
6792 INIT_WORK(&worker->work, raid5_do_work);
6793
6794 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6795 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6796 }
6797 }
6798
6799 return 0;
6800}
6801
6802static void free_thread_groups(struct r5conf *conf)
6803{
6804 if (conf->worker_groups)
6805 kfree(conf->worker_groups[0].workers);
6806 kfree(conf->worker_groups);
6807 conf->worker_groups = NULL;
6808}
6809
80c3a6ce 6810static sector_t
fd01b88c 6811raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6812{
d1688a6d 6813 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6814
6815 if (!sectors)
6816 sectors = mddev->dev_sectors;
5e5e3e78 6817 if (!raid_disks)
7ec05478 6818 /* size is defined by the smallest of previous and new size */
5e5e3e78 6819 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6820
3cb5edf4
N
6821 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6822 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
6823 return sectors * (raid_disks - conf->max_degraded);
6824}
6825
789b5e03
ON
6826static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6827{
6828 safe_put_page(percpu->spare_page);
789b5e03 6829 percpu->spare_page = NULL;
b330e6a4 6830 kvfree(percpu->scribble);
789b5e03
ON
6831 percpu->scribble = NULL;
6832}
6833
6834static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6835{
b330e6a4 6836 if (conf->level == 6 && !percpu->spare_page) {
789b5e03 6837 percpu->spare_page = alloc_page(GFP_KERNEL);
b330e6a4
KO
6838 if (!percpu->spare_page)
6839 return -ENOMEM;
6840 }
6841
6842 if (scribble_alloc(percpu,
6843 max(conf->raid_disks,
6844 conf->previous_raid_disks),
6845 max(conf->chunk_sectors,
6846 conf->prev_chunk_sectors)
c911c46c 6847 / RAID5_STRIPE_SECTORS(conf))) {
789b5e03
ON
6848 free_scratch_buffer(conf, percpu);
6849 return -ENOMEM;
6850 }
6851
6852 return 0;
6853}
6854
29c6d1bb 6855static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
36d1c647 6856{
29c6d1bb
SAS
6857 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6858
6859 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6860 return 0;
6861}
36d1c647 6862
29c6d1bb
SAS
6863static void raid5_free_percpu(struct r5conf *conf)
6864{
36d1c647
DW
6865 if (!conf->percpu)
6866 return;
6867
29c6d1bb 6868 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
36d1c647
DW
6869 free_percpu(conf->percpu);
6870}
6871
d1688a6d 6872static void free_conf(struct r5conf *conf)
95fc17aa 6873{
d7bd398e
SL
6874 int i;
6875
ff875738
AP
6876 log_exit(conf);
6877
565e0450 6878 unregister_shrinker(&conf->shrinker);
851c30c9 6879 free_thread_groups(conf);
95fc17aa 6880 shrink_stripes(conf);
36d1c647 6881 raid5_free_percpu(conf);
d7bd398e
SL
6882 for (i = 0; i < conf->pool_size; i++)
6883 if (conf->disks[i].extra_page)
6884 put_page(conf->disks[i].extra_page);
95fc17aa 6885 kfree(conf->disks);
afeee514 6886 bioset_exit(&conf->bio_split);
95fc17aa 6887 kfree(conf->stripe_hashtbl);
aaf9f12e 6888 kfree(conf->pending_data);
95fc17aa
DW
6889 kfree(conf);
6890}
6891
29c6d1bb 6892static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
36d1c647 6893{
29c6d1bb 6894 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
36d1c647
DW
6895 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6896
29c6d1bb 6897 if (alloc_scratch_buffer(conf, percpu)) {
cc6167b4
N
6898 pr_warn("%s: failed memory allocation for cpu%u\n",
6899 __func__, cpu);
29c6d1bb 6900 return -ENOMEM;
36d1c647 6901 }
29c6d1bb 6902 return 0;
36d1c647 6903}
36d1c647 6904
d1688a6d 6905static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647 6906{
789b5e03 6907 int err = 0;
36d1c647 6908
789b5e03
ON
6909 conf->percpu = alloc_percpu(struct raid5_percpu);
6910 if (!conf->percpu)
36d1c647 6911 return -ENOMEM;
789b5e03 6912
29c6d1bb 6913 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
27a353c0
SL
6914 if (!err) {
6915 conf->scribble_disks = max(conf->raid_disks,
6916 conf->previous_raid_disks);
6917 conf->scribble_sectors = max(conf->chunk_sectors,
6918 conf->prev_chunk_sectors);
6919 }
36d1c647
DW
6920 return err;
6921}
6922
edbe83ab
N
6923static unsigned long raid5_cache_scan(struct shrinker *shrink,
6924 struct shrink_control *sc)
6925{
6926 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
6927 unsigned long ret = SHRINK_STOP;
6928
6929 if (mutex_trylock(&conf->cache_size_mutex)) {
6930 ret= 0;
49895bcc
N
6931 while (ret < sc->nr_to_scan &&
6932 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
6933 if (drop_one_stripe(conf) == 0) {
6934 ret = SHRINK_STOP;
6935 break;
6936 }
6937 ret++;
6938 }
6939 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
6940 }
6941 return ret;
6942}
6943
6944static unsigned long raid5_cache_count(struct shrinker *shrink,
6945 struct shrink_control *sc)
6946{
6947 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6948
6949 if (conf->max_nr_stripes < conf->min_nr_stripes)
6950 /* unlikely, but not impossible */
6951 return 0;
6952 return conf->max_nr_stripes - conf->min_nr_stripes;
6953}
6954
d1688a6d 6955static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6956{
d1688a6d 6957 struct r5conf *conf;
5e5e3e78 6958 int raid_disk, memory, max_disks;
3cb03002 6959 struct md_rdev *rdev;
1da177e4 6960 struct disk_info *disk;
0232605d 6961 char pers_name[6];
566c09c5 6962 int i;
d2c9ad41 6963 int group_cnt;
60aaf933 6964 struct r5worker_group *new_group;
afeee514 6965 int ret;
1da177e4 6966
91adb564
N
6967 if (mddev->new_level != 5
6968 && mddev->new_level != 4
6969 && mddev->new_level != 6) {
cc6167b4
N
6970 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6971 mdname(mddev), mddev->new_level);
91adb564 6972 return ERR_PTR(-EIO);
1da177e4 6973 }
91adb564
N
6974 if ((mddev->new_level == 5
6975 && !algorithm_valid_raid5(mddev->new_layout)) ||
6976 (mddev->new_level == 6
6977 && !algorithm_valid_raid6(mddev->new_layout))) {
cc6167b4
N
6978 pr_warn("md/raid:%s: layout %d not supported\n",
6979 mdname(mddev), mddev->new_layout);
91adb564 6980 return ERR_PTR(-EIO);
99c0fb5f 6981 }
91adb564 6982 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
cc6167b4
N
6983 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6984 mdname(mddev), mddev->raid_disks);
91adb564 6985 return ERR_PTR(-EINVAL);
4bbf3771
N
6986 }
6987
664e7c41
AN
6988 if (!mddev->new_chunk_sectors ||
6989 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6990 !is_power_of_2(mddev->new_chunk_sectors)) {
cc6167b4
N
6991 pr_warn("md/raid:%s: invalid chunk size %d\n",
6992 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6993 return ERR_PTR(-EINVAL);
f6705578
N
6994 }
6995
d1688a6d 6996 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6997 if (conf == NULL)
1da177e4 6998 goto abort;
c911c46c 6999
e2368582
YY
7000#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7001 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7002 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7003 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7004#endif
aaf9f12e
SL
7005 INIT_LIST_HEAD(&conf->free_list);
7006 INIT_LIST_HEAD(&conf->pending_list);
6396bb22
KC
7007 conf->pending_data = kcalloc(PENDING_IO_MAX,
7008 sizeof(struct r5pending_data),
7009 GFP_KERNEL);
aaf9f12e
SL
7010 if (!conf->pending_data)
7011 goto abort;
7012 for (i = 0; i < PENDING_IO_MAX; i++)
7013 list_add(&conf->pending_data[i].sibling, &conf->free_list);
851c30c9 7014 /* Don't enable multi-threading by default*/
d2c9ad41 7015 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
60aaf933 7016 conf->group_cnt = group_cnt;
d2c9ad41 7017 conf->worker_cnt_per_group = 0;
60aaf933 7018 conf->worker_groups = new_group;
7019 } else
851c30c9 7020 goto abort;
f5efd45a 7021 spin_lock_init(&conf->device_lock);
0a87b25f 7022 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
2d5b569b 7023 mutex_init(&conf->cache_size_mutex);
b1b46486 7024 init_waitqueue_head(&conf->wait_for_quiescent);
6ab2a4b8 7025 init_waitqueue_head(&conf->wait_for_stripe);
f5efd45a
DW
7026 init_waitqueue_head(&conf->wait_for_overlap);
7027 INIT_LIST_HEAD(&conf->handle_list);
535ae4eb 7028 INIT_LIST_HEAD(&conf->loprio_list);
f5efd45a
DW
7029 INIT_LIST_HEAD(&conf->hold_list);
7030 INIT_LIST_HEAD(&conf->delayed_list);
7031 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 7032 init_llist_head(&conf->released_stripes);
f5efd45a
DW
7033 atomic_set(&conf->active_stripes, 0);
7034 atomic_set(&conf->preread_active_stripes, 0);
7035 atomic_set(&conf->active_aligned_reads, 0);
765d704d
SL
7036 spin_lock_init(&conf->pending_bios_lock);
7037 conf->batch_bio_dispatch = true;
7038 rdev_for_each(rdev, mddev) {
7039 if (test_bit(Journal, &rdev->flags))
7040 continue;
7041 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
7042 conf->batch_bio_dispatch = false;
7043 break;
7044 }
7045 }
7046
f5efd45a 7047 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 7048 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
7049
7050 conf->raid_disks = mddev->raid_disks;
7051 if (mddev->reshape_position == MaxSector)
7052 conf->previous_raid_disks = mddev->raid_disks;
7053 else
f6705578 7054 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 7055 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 7056
6396bb22 7057 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
b55e6bfc 7058 GFP_KERNEL);
d7bd398e 7059
b55e6bfc
N
7060 if (!conf->disks)
7061 goto abort;
9ffae0cf 7062
d7bd398e
SL
7063 for (i = 0; i < max_disks; i++) {
7064 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7065 if (!conf->disks[i].extra_page)
7066 goto abort;
7067 }
7068
afeee514
KO
7069 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7070 if (ret)
dd7a8f5d 7071 goto abort;
1da177e4
LT
7072 conf->mddev = mddev;
7073
fccddba0 7074 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 7075 goto abort;
1da177e4 7076
566c09c5
SL
7077 /* We init hash_locks[0] separately to that it can be used
7078 * as the reference lock in the spin_lock_nest_lock() call
7079 * in lock_all_device_hash_locks_irq in order to convince
7080 * lockdep that we know what we are doing.
7081 */
7082 spin_lock_init(conf->hash_locks);
7083 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7084 spin_lock_init(conf->hash_locks + i);
7085
7086 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7087 INIT_LIST_HEAD(conf->inactive_list + i);
7088
7089 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7090 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7091
1e6d690b
SL
7092 atomic_set(&conf->r5c_cached_full_stripes, 0);
7093 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7094 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7095 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
e33fbb9c
SL
7096 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7097 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
1e6d690b 7098
36d1c647 7099 conf->level = mddev->new_level;
46d5b785 7100 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
7101 if (raid5_alloc_percpu(conf) != 0)
7102 goto abort;
7103
0c55e022 7104 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 7105
dafb20fa 7106 rdev_for_each(rdev, mddev) {
1da177e4 7107 raid_disk = rdev->raid_disk;
5e5e3e78 7108 if (raid_disk >= max_disks
f2076e7d 7109 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
1da177e4
LT
7110 continue;
7111 disk = conf->disks + raid_disk;
7112
17045f52
N
7113 if (test_bit(Replacement, &rdev->flags)) {
7114 if (disk->replacement)
7115 goto abort;
7116 disk->replacement = rdev;
7117 } else {
7118 if (disk->rdev)
7119 goto abort;
7120 disk->rdev = rdev;
7121 }
1da177e4 7122
b2d444d7 7123 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 7124 char b[BDEVNAME_SIZE];
cc6167b4
N
7125 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7126 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 7127 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
7128 /* Cannot rely on bitmap to complete recovery */
7129 conf->fullsync = 1;
1da177e4
LT
7130 }
7131
91adb564 7132 conf->level = mddev->new_level;
584acdd4 7133 if (conf->level == 6) {
16a53ecc 7134 conf->max_degraded = 2;
584acdd4
MS
7135 if (raid6_call.xor_syndrome)
7136 conf->rmw_level = PARITY_ENABLE_RMW;
7137 else
7138 conf->rmw_level = PARITY_DISABLE_RMW;
7139 } else {
16a53ecc 7140 conf->max_degraded = 1;
584acdd4
MS
7141 conf->rmw_level = PARITY_ENABLE_RMW;
7142 }
91adb564 7143 conf->algorithm = mddev->new_layout;
fef9c61f 7144 conf->reshape_progress = mddev->reshape_position;
e183eaed 7145 if (conf->reshape_progress != MaxSector) {
09c9e5fa 7146 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 7147 conf->prev_algo = mddev->layout;
5cac6bcb
N
7148 } else {
7149 conf->prev_chunk_sectors = conf->chunk_sectors;
7150 conf->prev_algo = conf->algorithm;
e183eaed 7151 }
1da177e4 7152
edbe83ab 7153 conf->min_nr_stripes = NR_STRIPES;
ad5b0f76
SL
7154 if (mddev->reshape_position != MaxSector) {
7155 int stripes = max_t(int,
c911c46c
YY
7156 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7157 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
ad5b0f76
SL
7158 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7159 if (conf->min_nr_stripes != NR_STRIPES)
cc6167b4 7160 pr_info("md/raid:%s: force stripe size %d for reshape\n",
ad5b0f76
SL
7161 mdname(mddev), conf->min_nr_stripes);
7162 }
edbe83ab 7163 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 7164 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 7165 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 7166 if (grow_stripes(conf, conf->min_nr_stripes)) {
cc6167b4
N
7167 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7168 mdname(mddev), memory);
91adb564
N
7169 goto abort;
7170 } else
cc6167b4 7171 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
edbe83ab
N
7172 /*
7173 * Losing a stripe head costs more than the time to refill it,
7174 * it reduces the queue depth and so can hurt throughput.
7175 * So set it rather large, scaled by number of devices.
7176 */
7177 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7178 conf->shrinker.scan_objects = raid5_cache_scan;
7179 conf->shrinker.count_objects = raid5_cache_count;
7180 conf->shrinker.batch = 128;
7181 conf->shrinker.flags = 0;
6a0f53ff 7182 if (register_shrinker(&conf->shrinker)) {
cc6167b4
N
7183 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7184 mdname(mddev));
6a0f53ff
CY
7185 goto abort;
7186 }
1da177e4 7187
0232605d
N
7188 sprintf(pers_name, "raid%d", mddev->new_level);
7189 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564 7190 if (!conf->thread) {
cc6167b4
N
7191 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7192 mdname(mddev));
16a53ecc
N
7193 goto abort;
7194 }
91adb564
N
7195
7196 return conf;
7197
7198 abort:
7199 if (conf) {
95fc17aa 7200 free_conf(conf);
91adb564
N
7201 return ERR_PTR(-EIO);
7202 } else
7203 return ERR_PTR(-ENOMEM);
7204}
7205
c148ffdc
N
7206static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7207{
7208 switch (algo) {
7209 case ALGORITHM_PARITY_0:
7210 if (raid_disk < max_degraded)
7211 return 1;
7212 break;
7213 case ALGORITHM_PARITY_N:
7214 if (raid_disk >= raid_disks - max_degraded)
7215 return 1;
7216 break;
7217 case ALGORITHM_PARITY_0_6:
f72ffdd6 7218 if (raid_disk == 0 ||
c148ffdc
N
7219 raid_disk == raid_disks - 1)
7220 return 1;
7221 break;
7222 case ALGORITHM_LEFT_ASYMMETRIC_6:
7223 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7224 case ALGORITHM_LEFT_SYMMETRIC_6:
7225 case ALGORITHM_RIGHT_SYMMETRIC_6:
7226 if (raid_disk == raid_disks - 1)
7227 return 1;
7228 }
7229 return 0;
7230}
7231
849674e4 7232static int raid5_run(struct mddev *mddev)
91adb564 7233{
d1688a6d 7234 struct r5conf *conf;
9f7c2220 7235 int working_disks = 0;
c148ffdc 7236 int dirty_parity_disks = 0;
3cb03002 7237 struct md_rdev *rdev;
713cf5a6 7238 struct md_rdev *journal_dev = NULL;
c148ffdc 7239 sector_t reshape_offset = 0;
17045f52 7240 int i;
b5254dd5
N
7241 long long min_offset_diff = 0;
7242 int first = 1;
91adb564 7243
a415c0f1
N
7244 if (mddev_init_writes_pending(mddev) < 0)
7245 return -ENOMEM;
7246
8c6ac868 7247 if (mddev->recovery_cp != MaxSector)
cc6167b4
N
7248 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7249 mdname(mddev));
b5254dd5
N
7250
7251 rdev_for_each(rdev, mddev) {
7252 long long diff;
713cf5a6 7253
f2076e7d 7254 if (test_bit(Journal, &rdev->flags)) {
713cf5a6 7255 journal_dev = rdev;
f2076e7d
SL
7256 continue;
7257 }
b5254dd5
N
7258 if (rdev->raid_disk < 0)
7259 continue;
7260 diff = (rdev->new_data_offset - rdev->data_offset);
7261 if (first) {
7262 min_offset_diff = diff;
7263 first = 0;
7264 } else if (mddev->reshape_backwards &&
7265 diff < min_offset_diff)
7266 min_offset_diff = diff;
7267 else if (!mddev->reshape_backwards &&
7268 diff > min_offset_diff)
7269 min_offset_diff = diff;
7270 }
7271
230b55fa
N
7272 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7273 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7274 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7275 mdname(mddev));
7276 return -EINVAL;
7277 }
7278
91adb564
N
7279 if (mddev->reshape_position != MaxSector) {
7280 /* Check that we can continue the reshape.
b5254dd5
N
7281 * Difficulties arise if the stripe we would write to
7282 * next is at or after the stripe we would read from next.
7283 * For a reshape that changes the number of devices, this
7284 * is only possible for a very short time, and mdadm makes
7285 * sure that time appears to have past before assembling
7286 * the array. So we fail if that time hasn't passed.
7287 * For a reshape that keeps the number of devices the same
7288 * mdadm must be monitoring the reshape can keeping the
7289 * critical areas read-only and backed up. It will start
7290 * the array in read-only mode, so we check for that.
91adb564
N
7291 */
7292 sector_t here_new, here_old;
7293 int old_disks;
18b00334 7294 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
7295 int chunk_sectors;
7296 int new_data_disks;
91adb564 7297
713cf5a6 7298 if (journal_dev) {
cc6167b4
N
7299 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7300 mdname(mddev));
713cf5a6
SL
7301 return -EINVAL;
7302 }
7303
88ce4930 7304 if (mddev->new_level != mddev->level) {
cc6167b4
N
7305 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7306 mdname(mddev));
91adb564
N
7307 return -EINVAL;
7308 }
91adb564
N
7309 old_disks = mddev->raid_disks - mddev->delta_disks;
7310 /* reshape_position must be on a new-stripe boundary, and one
7311 * further up in new geometry must map after here in old
7312 * geometry.
05256d98
N
7313 * If the chunk sizes are different, then as we perform reshape
7314 * in units of the largest of the two, reshape_position needs
7315 * be a multiple of the largest chunk size times new data disks.
91adb564
N
7316 */
7317 here_new = mddev->reshape_position;
05256d98
N
7318 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7319 new_data_disks = mddev->raid_disks - max_degraded;
7320 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
cc6167b4
N
7321 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7322 mdname(mddev));
91adb564
N
7323 return -EINVAL;
7324 }
05256d98 7325 reshape_offset = here_new * chunk_sectors;
91adb564
N
7326 /* here_new is the stripe we will write to */
7327 here_old = mddev->reshape_position;
05256d98 7328 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
7329 /* here_old is the first stripe that we might need to read
7330 * from */
67ac6011
N
7331 if (mddev->delta_disks == 0) {
7332 /* We cannot be sure it is safe to start an in-place
b5254dd5 7333 * reshape. It is only safe if user-space is monitoring
67ac6011
N
7334 * and taking constant backups.
7335 * mdadm always starts a situation like this in
7336 * readonly mode so it can take control before
7337 * allowing any writes. So just check for that.
7338 */
b5254dd5
N
7339 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7340 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7341 /* not really in-place - so OK */;
7342 else if (mddev->ro == 0) {
cc6167b4
N
7343 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7344 mdname(mddev));
67ac6011
N
7345 return -EINVAL;
7346 }
2c810cdd 7347 } else if (mddev->reshape_backwards
05256d98
N
7348 ? (here_new * chunk_sectors + min_offset_diff <=
7349 here_old * chunk_sectors)
7350 : (here_new * chunk_sectors >=
7351 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 7352 /* Reading from the same stripe as writing to - bad */
cc6167b4
N
7353 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7354 mdname(mddev));
91adb564
N
7355 return -EINVAL;
7356 }
cc6167b4 7357 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
91adb564
N
7358 /* OK, we should be able to continue; */
7359 } else {
7360 BUG_ON(mddev->level != mddev->new_level);
7361 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 7362 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 7363 BUG_ON(mddev->delta_disks != 0);
1da177e4 7364 }
91adb564 7365
3418d036
AP
7366 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7367 test_bit(MD_HAS_PPL, &mddev->flags)) {
7368 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7369 mdname(mddev));
7370 clear_bit(MD_HAS_PPL, &mddev->flags);
ddc08823 7371 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
3418d036
AP
7372 }
7373
245f46c2
N
7374 if (mddev->private == NULL)
7375 conf = setup_conf(mddev);
7376 else
7377 conf = mddev->private;
7378
91adb564
N
7379 if (IS_ERR(conf))
7380 return PTR_ERR(conf);
7381
486b0f7b
SL
7382 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7383 if (!journal_dev) {
cc6167b4
N
7384 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7385 mdname(mddev));
486b0f7b
SL
7386 mddev->ro = 1;
7387 set_disk_ro(mddev->gendisk, 1);
7388 } else if (mddev->recovery_cp == MaxSector)
7389 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7dde2ad3
SL
7390 }
7391
b5254dd5 7392 conf->min_offset_diff = min_offset_diff;
91adb564
N
7393 mddev->thread = conf->thread;
7394 conf->thread = NULL;
7395 mddev->private = conf;
7396
17045f52
N
7397 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7398 i++) {
7399 rdev = conf->disks[i].rdev;
7400 if (!rdev && conf->disks[i].replacement) {
7401 /* The replacement is all we have yet */
7402 rdev = conf->disks[i].replacement;
7403 conf->disks[i].replacement = NULL;
7404 clear_bit(Replacement, &rdev->flags);
7405 conf->disks[i].rdev = rdev;
7406 }
7407 if (!rdev)
c148ffdc 7408 continue;
17045f52
N
7409 if (conf->disks[i].replacement &&
7410 conf->reshape_progress != MaxSector) {
7411 /* replacements and reshape simply do not mix. */
cc6167b4 7412 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
17045f52
N
7413 goto abort;
7414 }
2f115882 7415 if (test_bit(In_sync, &rdev->flags)) {
91adb564 7416 working_disks++;
2f115882
N
7417 continue;
7418 }
c148ffdc
N
7419 /* This disc is not fully in-sync. However if it
7420 * just stored parity (beyond the recovery_offset),
7421 * when we don't need to be concerned about the
7422 * array being dirty.
7423 * When reshape goes 'backwards', we never have
7424 * partially completed devices, so we only need
7425 * to worry about reshape going forwards.
7426 */
7427 /* Hack because v0.91 doesn't store recovery_offset properly. */
7428 if (mddev->major_version == 0 &&
7429 mddev->minor_version > 90)
7430 rdev->recovery_offset = reshape_offset;
5026d7a9 7431
c148ffdc
N
7432 if (rdev->recovery_offset < reshape_offset) {
7433 /* We need to check old and new layout */
7434 if (!only_parity(rdev->raid_disk,
7435 conf->algorithm,
7436 conf->raid_disks,
7437 conf->max_degraded))
7438 continue;
7439 }
7440 if (!only_parity(rdev->raid_disk,
7441 conf->prev_algo,
7442 conf->previous_raid_disks,
7443 conf->max_degraded))
7444 continue;
7445 dirty_parity_disks++;
7446 }
91adb564 7447
17045f52
N
7448 /*
7449 * 0 for a fully functional array, 1 or 2 for a degraded array.
7450 */
2e38a37f 7451 mddev->degraded = raid5_calc_degraded(conf);
91adb564 7452
674806d6 7453 if (has_failed(conf)) {
cc6167b4 7454 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
02c2de8c 7455 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
7456 goto abort;
7457 }
7458
91adb564 7459 /* device size must be a multiple of chunk size */
9d8f0363 7460 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
7461 mddev->resync_max_sectors = mddev->dev_sectors;
7462
c148ffdc 7463 if (mddev->degraded > dirty_parity_disks &&
1da177e4 7464 mddev->recovery_cp != MaxSector) {
4536bf9b
AP
7465 if (test_bit(MD_HAS_PPL, &mddev->flags))
7466 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7467 mdname(mddev));
7468 else if (mddev->ok_start_degraded)
cc6167b4
N
7469 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7470 mdname(mddev));
6ff8d8ec 7471 else {
cc6167b4
N
7472 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7473 mdname(mddev));
6ff8d8ec
N
7474 goto abort;
7475 }
1da177e4
LT
7476 }
7477
cc6167b4
N
7478 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7479 mdname(mddev), conf->level,
7480 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7481 mddev->new_layout);
1da177e4
LT
7482
7483 print_raid5_conf(conf);
7484
fef9c61f 7485 if (conf->reshape_progress != MaxSector) {
fef9c61f 7486 conf->reshape_safe = conf->reshape_progress;
f6705578
N
7487 atomic_set(&conf->reshape_stripes, 0);
7488 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7489 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7490 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7491 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7492 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7493 "reshape");
e406f12d
AP
7494 if (!mddev->sync_thread)
7495 goto abort;
f6705578
N
7496 }
7497
1da177e4 7498 /* Ok, everything is just fine now */
a64c876f
N
7499 if (mddev->to_remove == &raid5_attrs_group)
7500 mddev->to_remove = NULL;
00bcb4ac
N
7501 else if (mddev->kobj.sd &&
7502 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
cc6167b4
N
7503 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7504 mdname(mddev));
4a5add49 7505 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 7506
4a5add49 7507 if (mddev->queue) {
9f7c2220 7508 int chunk_size;
4a5add49
N
7509 /* read-ahead size must cover two whole stripes, which
7510 * is 2 * (datadisks) * chunksize where 'n' is the
7511 * number of raid devices
7512 */
7513 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7514 int stripe = data_disks *
7515 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
dc3b17cc
JK
7516 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7517 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
91adb564 7518
9f7c2220
N
7519 chunk_size = mddev->chunk_sectors << 9;
7520 blk_queue_io_min(mddev->queue, chunk_size);
7521 blk_queue_io_opt(mddev->queue, chunk_size *
7522 (conf->raid_disks - conf->max_degraded));
c78afc62 7523 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
7524 /*
7525 * We can only discard a whole stripe. It doesn't make sense to
7526 * discard data disk but write parity disk
7527 */
7528 stripe = stripe * PAGE_SIZE;
4ac6875e
N
7529 /* Round up to power of 2, as discard handling
7530 * currently assumes that */
7531 while ((stripe-1) & stripe)
7532 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
7533 mddev->queue->limits.discard_alignment = stripe;
7534 mddev->queue->limits.discard_granularity = stripe;
e8d7c332 7535
5026d7a9 7536 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7 7537 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
5026d7a9 7538
05616be5 7539 rdev_for_each(rdev, mddev) {
9f7c2220
N
7540 disk_stack_limits(mddev->gendisk, rdev->bdev,
7541 rdev->data_offset << 9);
05616be5
N
7542 disk_stack_limits(mddev->gendisk, rdev->bdev,
7543 rdev->new_data_offset << 9);
7544 }
620125f2 7545
48920ff2
CH
7546 /*
7547 * zeroing is required, otherwise data
7548 * could be lost. Consider a scenario: discard a stripe
7549 * (the stripe could be inconsistent if
7550 * discard_zeroes_data is 0); write one disk of the
7551 * stripe (the stripe could be inconsistent again
7552 * depending on which disks are used to calculate
7553 * parity); the disk is broken; The stripe data of this
7554 * disk is lost.
7555 *
7556 * We only allow DISCARD if the sysadmin has confirmed that
7557 * only safe devices are in use by setting a module parameter.
7558 * A better idea might be to turn DISCARD into WRITE_ZEROES
7559 * requests, as that is required to be safe.
7560 */
7561 if (devices_handle_discard_safely &&
e7597e69
JS
7562 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7563 mddev->queue->limits.discard_granularity >= stripe)
8b904b5b 7564 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
620125f2
SL
7565 mddev->queue);
7566 else
8b904b5b 7567 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
620125f2 7568 mddev->queue);
1dffdddd
SL
7569
7570 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
9f7c2220 7571 }
23032a0e 7572
845b9e22 7573 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
ff875738 7574 goto abort;
5c7e81c3 7575
1da177e4
LT
7576 return 0;
7577abort:
01f96c0a 7578 md_unregister_thread(&mddev->thread);
e4f869d9
N
7579 print_raid5_conf(conf);
7580 free_conf(conf);
1da177e4 7581 mddev->private = NULL;
cc6167b4 7582 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
7583 return -EIO;
7584}
7585
afa0f557 7586static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 7587{
afa0f557 7588 struct r5conf *conf = priv;
1da177e4 7589
95fc17aa 7590 free_conf(conf);
a64c876f 7591 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
7592}
7593
849674e4 7594static void raid5_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 7595{
d1688a6d 7596 struct r5conf *conf = mddev->private;
1da177e4
LT
7597 int i;
7598
9d8f0363 7599 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 7600 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 7601 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5fd13351
N
7602 rcu_read_lock();
7603 for (i = 0; i < conf->raid_disks; i++) {
7604 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7605 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7606 }
7607 rcu_read_unlock();
1da177e4 7608 seq_printf (seq, "]");
1da177e4
LT
7609}
7610
d1688a6d 7611static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
7612{
7613 int i;
7614 struct disk_info *tmp;
7615
cc6167b4 7616 pr_debug("RAID conf printout:\n");
1da177e4 7617 if (!conf) {
cc6167b4 7618 pr_debug("(conf==NULL)\n");
1da177e4
LT
7619 return;
7620 }
cc6167b4 7621 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
0c55e022
N
7622 conf->raid_disks,
7623 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
7624
7625 for (i = 0; i < conf->raid_disks; i++) {
7626 char b[BDEVNAME_SIZE];
7627 tmp = conf->disks + i;
7628 if (tmp->rdev)
cc6167b4 7629 pr_debug(" disk %d, o:%d, dev:%s\n",
0c55e022
N
7630 i, !test_bit(Faulty, &tmp->rdev->flags),
7631 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7632 }
7633}
7634
fd01b88c 7635static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7636{
7637 int i;
d1688a6d 7638 struct r5conf *conf = mddev->private;
1da177e4 7639 struct disk_info *tmp;
6b965620
N
7640 int count = 0;
7641 unsigned long flags;
1da177e4
LT
7642
7643 for (i = 0; i < conf->raid_disks; i++) {
7644 tmp = conf->disks + i;
dd054fce
N
7645 if (tmp->replacement
7646 && tmp->replacement->recovery_offset == MaxSector
7647 && !test_bit(Faulty, &tmp->replacement->flags)
7648 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7649 /* Replacement has just become active. */
7650 if (!tmp->rdev
7651 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7652 count++;
7653 if (tmp->rdev) {
7654 /* Replaced device not technically faulty,
7655 * but we need to be sure it gets removed
7656 * and never re-added.
7657 */
7658 set_bit(Faulty, &tmp->rdev->flags);
7659 sysfs_notify_dirent_safe(
7660 tmp->rdev->sysfs_state);
7661 }
7662 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7663 } else if (tmp->rdev
70fffd0b 7664 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7665 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7666 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7667 count++;
43c73ca4 7668 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7669 }
7670 }
6b965620 7671 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7672 mddev->degraded = raid5_calc_degraded(conf);
6b965620 7673 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7674 print_raid5_conf(conf);
6b965620 7675 return count;
1da177e4
LT
7676}
7677
b8321b68 7678static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7679{
d1688a6d 7680 struct r5conf *conf = mddev->private;
1da177e4 7681 int err = 0;
b8321b68 7682 int number = rdev->raid_disk;
657e3e4d 7683 struct md_rdev **rdevp;
1da177e4
LT
7684 struct disk_info *p = conf->disks + number;
7685
7686 print_raid5_conf(conf);
f6b6ec5c 7687 if (test_bit(Journal, &rdev->flags) && conf->log) {
c2bb6242 7688 /*
f6b6ec5c
SL
7689 * we can't wait pending write here, as this is called in
7690 * raid5d, wait will deadlock.
84dd97a6
N
7691 * neilb: there is no locking about new writes here,
7692 * so this cannot be safe.
c2bb6242 7693 */
70d466f7
SL
7694 if (atomic_read(&conf->active_stripes) ||
7695 atomic_read(&conf->r5c_cached_full_stripes) ||
7696 atomic_read(&conf->r5c_cached_partial_stripes)) {
f6b6ec5c 7697 return -EBUSY;
84dd97a6 7698 }
ff875738 7699 log_exit(conf);
f6b6ec5c 7700 return 0;
c2bb6242 7701 }
657e3e4d
N
7702 if (rdev == p->rdev)
7703 rdevp = &p->rdev;
7704 else if (rdev == p->replacement)
7705 rdevp = &p->replacement;
7706 else
7707 return 0;
7708
7709 if (number >= conf->raid_disks &&
7710 conf->reshape_progress == MaxSector)
7711 clear_bit(In_sync, &rdev->flags);
7712
7713 if (test_bit(In_sync, &rdev->flags) ||
7714 atomic_read(&rdev->nr_pending)) {
7715 err = -EBUSY;
7716 goto abort;
7717 }
7718 /* Only remove non-faulty devices if recovery
7719 * isn't possible.
7720 */
7721 if (!test_bit(Faulty, &rdev->flags) &&
7722 mddev->recovery_disabled != conf->recovery_disabled &&
7723 !has_failed(conf) &&
dd054fce 7724 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7725 number < conf->raid_disks) {
7726 err = -EBUSY;
7727 goto abort;
7728 }
7729 *rdevp = NULL;
d787be40
N
7730 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7731 synchronize_rcu();
7732 if (atomic_read(&rdev->nr_pending)) {
7733 /* lost the race, try later */
7734 err = -EBUSY;
7735 *rdevp = rdev;
7736 }
7737 }
6358c239
AP
7738 if (!err) {
7739 err = log_modify(conf, rdev, false);
7740 if (err)
7741 goto abort;
7742 }
d787be40 7743 if (p->replacement) {
dd054fce
N
7744 /* We must have just cleared 'rdev' */
7745 p->rdev = p->replacement;
7746 clear_bit(Replacement, &p->replacement->flags);
7747 smp_mb(); /* Make sure other CPUs may see both as identical
7748 * but will never see neither - if they are careful
7749 */
7750 p->replacement = NULL;
6358c239
AP
7751
7752 if (!err)
7753 err = log_modify(conf, p->rdev, true);
e5bc9c3c
GJ
7754 }
7755
7756 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7757abort:
7758
7759 print_raid5_conf(conf);
7760 return err;
7761}
7762
fd01b88c 7763static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7764{
d1688a6d 7765 struct r5conf *conf = mddev->private;
d9771f5e 7766 int ret, err = -EEXIST;
1da177e4
LT
7767 int disk;
7768 struct disk_info *p;
6c2fce2e
NB
7769 int first = 0;
7770 int last = conf->raid_disks - 1;
1da177e4 7771
f6b6ec5c 7772 if (test_bit(Journal, &rdev->flags)) {
f6b6ec5c
SL
7773 if (conf->log)
7774 return -EBUSY;
7775
7776 rdev->raid_disk = 0;
7777 /*
7778 * The array is in readonly mode if journal is missing, so no
7779 * write requests running. We should be safe
7780 */
d9771f5e
XN
7781 ret = log_init(conf, rdev, false);
7782 if (ret)
7783 return ret;
7784
7785 ret = r5l_start(conf->log);
7786 if (ret)
7787 return ret;
7788
f6b6ec5c
SL
7789 return 0;
7790 }
7f0da59b
N
7791 if (mddev->recovery_disabled == conf->recovery_disabled)
7792 return -EBUSY;
7793
dc10c643 7794 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7795 /* no point adding a device */
199050ea 7796 return -EINVAL;
1da177e4 7797
6c2fce2e
NB
7798 if (rdev->raid_disk >= 0)
7799 first = last = rdev->raid_disk;
1da177e4
LT
7800
7801 /*
16a53ecc
N
7802 * find the disk ... but prefer rdev->saved_raid_disk
7803 * if possible.
1da177e4 7804 */
16a53ecc 7805 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7806 rdev->saved_raid_disk >= first &&
16a53ecc 7807 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7808 first = rdev->saved_raid_disk;
7809
7810 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7811 p = conf->disks + disk;
7812 if (p->rdev == NULL) {
b2d444d7 7813 clear_bit(In_sync, &rdev->flags);
1da177e4 7814 rdev->raid_disk = disk;
72626685
N
7815 if (rdev->saved_raid_disk != disk)
7816 conf->fullsync = 1;
d6065f7b 7817 rcu_assign_pointer(p->rdev, rdev);
6358c239
AP
7818
7819 err = log_modify(conf, rdev, true);
7820
5cfb22a1 7821 goto out;
1da177e4 7822 }
5cfb22a1
N
7823 }
7824 for (disk = first; disk <= last; disk++) {
7825 p = conf->disks + disk;
7bfec5f3
N
7826 if (test_bit(WantReplacement, &p->rdev->flags) &&
7827 p->replacement == NULL) {
7828 clear_bit(In_sync, &rdev->flags);
7829 set_bit(Replacement, &rdev->flags);
7830 rdev->raid_disk = disk;
7831 err = 0;
7832 conf->fullsync = 1;
7833 rcu_assign_pointer(p->replacement, rdev);
7834 break;
7835 }
7836 }
5cfb22a1 7837out:
1da177e4 7838 print_raid5_conf(conf);
199050ea 7839 return err;
1da177e4
LT
7840}
7841
fd01b88c 7842static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7843{
7844 /* no resync is happening, and there is enough space
7845 * on all devices, so we can resize.
7846 * We need to make sure resync covers any new space.
7847 * If the array is shrinking we should possibly wait until
7848 * any io in the removed space completes, but it hardly seems
7849 * worth it.
7850 */
a4a6125a 7851 sector_t newsize;
3cb5edf4
N
7852 struct r5conf *conf = mddev->private;
7853
e254de6b 7854 if (raid5_has_log(conf) || raid5_has_ppl(conf))
713cf5a6 7855 return -EINVAL;
3cb5edf4 7856 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
7857 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7858 if (mddev->external_size &&
7859 mddev->array_sectors > newsize)
b522adcd 7860 return -EINVAL;
a4a6125a 7861 if (mddev->bitmap) {
e64e4018 7862 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
a4a6125a
N
7863 if (ret)
7864 return ret;
7865 }
7866 md_set_array_sectors(mddev, newsize);
b098636c
N
7867 if (sectors > mddev->dev_sectors &&
7868 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7869 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7870 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7871 }
58c0fed4 7872 mddev->dev_sectors = sectors;
4b5c7ae8 7873 mddev->resync_max_sectors = sectors;
1da177e4
LT
7874 return 0;
7875}
7876
fd01b88c 7877static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7878{
7879 /* Can only proceed if there are plenty of stripe_heads.
7880 * We need a minimum of one full stripe,, and for sensible progress
7881 * it is best to have about 4 times that.
7882 * If we require 4 times, then the default 256 4K stripe_heads will
7883 * allow for chunk sizes up to 256K, which is probably OK.
7884 * If the chunk size is greater, user-space should request more
7885 * stripe_heads first.
7886 */
d1688a6d 7887 struct r5conf *conf = mddev->private;
c911c46c 7888 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
edbe83ab 7889 > conf->min_nr_stripes ||
c911c46c 7890 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
edbe83ab 7891 > conf->min_nr_stripes) {
cc6167b4
N
7892 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7893 mdname(mddev),
7894 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
c911c46c 7895 / RAID5_STRIPE_SIZE(conf))*4);
01ee22b4
N
7896 return 0;
7897 }
7898 return 1;
7899}
7900
fd01b88c 7901static int check_reshape(struct mddev *mddev)
29269553 7902{
d1688a6d 7903 struct r5conf *conf = mddev->private;
29269553 7904
e254de6b 7905 if (raid5_has_log(conf) || raid5_has_ppl(conf))
713cf5a6 7906 return -EINVAL;
88ce4930
N
7907 if (mddev->delta_disks == 0 &&
7908 mddev->new_layout == mddev->layout &&
664e7c41 7909 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7910 return 0; /* nothing to do */
674806d6 7911 if (has_failed(conf))
ec32a2bd 7912 return -EINVAL;
fdcfbbb6 7913 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7914 /* We might be able to shrink, but the devices must
7915 * be made bigger first.
7916 * For raid6, 4 is the minimum size.
7917 * Otherwise 2 is the minimum
7918 */
7919 int min = 2;
7920 if (mddev->level == 6)
7921 min = 4;
7922 if (mddev->raid_disks + mddev->delta_disks < min)
7923 return -EINVAL;
7924 }
29269553 7925
01ee22b4 7926 if (!check_stripe_cache(mddev))
29269553 7927 return -ENOSPC;
29269553 7928
738a2738
N
7929 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7930 mddev->delta_disks > 0)
7931 if (resize_chunks(conf,
7932 conf->previous_raid_disks
7933 + max(0, mddev->delta_disks),
7934 max(mddev->new_chunk_sectors,
7935 mddev->chunk_sectors)
7936 ) < 0)
7937 return -ENOMEM;
845b9e22
AP
7938
7939 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7940 return 0; /* never bother to shrink */
e56108d6
N
7941 return resize_stripes(conf, (conf->previous_raid_disks
7942 + mddev->delta_disks));
63c70c4f
N
7943}
7944
fd01b88c 7945static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7946{
d1688a6d 7947 struct r5conf *conf = mddev->private;
3cb03002 7948 struct md_rdev *rdev;
63c70c4f 7949 int spares = 0;
c04be0aa 7950 unsigned long flags;
63c70c4f 7951
f416885e 7952 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7953 return -EBUSY;
7954
01ee22b4
N
7955 if (!check_stripe_cache(mddev))
7956 return -ENOSPC;
7957
30b67645
N
7958 if (has_failed(conf))
7959 return -EINVAL;
7960
c6563a8c 7961 rdev_for_each(rdev, mddev) {
469518a3
N
7962 if (!test_bit(In_sync, &rdev->flags)
7963 && !test_bit(Faulty, &rdev->flags))
29269553 7964 spares++;
c6563a8c 7965 }
63c70c4f 7966
f416885e 7967 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7968 /* Not enough devices even to make a degraded array
7969 * of that size
7970 */
7971 return -EINVAL;
7972
ec32a2bd
N
7973 /* Refuse to reduce size of the array. Any reductions in
7974 * array size must be through explicit setting of array_size
7975 * attribute.
7976 */
7977 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7978 < mddev->array_sectors) {
cc6167b4
N
7979 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7980 mdname(mddev));
ec32a2bd
N
7981 return -EINVAL;
7982 }
7983
f6705578 7984 atomic_set(&conf->reshape_stripes, 0);
29269553 7985 spin_lock_irq(&conf->device_lock);
c46501b2 7986 write_seqcount_begin(&conf->gen_lock);
29269553 7987 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7988 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7989 conf->prev_chunk_sectors = conf->chunk_sectors;
7990 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7991 conf->prev_algo = conf->algorithm;
7992 conf->algorithm = mddev->new_layout;
05616be5
N
7993 conf->generation++;
7994 /* Code that selects data_offset needs to see the generation update
7995 * if reshape_progress has been set - so a memory barrier needed.
7996 */
7997 smp_mb();
2c810cdd 7998 if (mddev->reshape_backwards)
fef9c61f
N
7999 conf->reshape_progress = raid5_size(mddev, 0, 0);
8000 else
8001 conf->reshape_progress = 0;
8002 conf->reshape_safe = conf->reshape_progress;
c46501b2 8003 write_seqcount_end(&conf->gen_lock);
29269553
N
8004 spin_unlock_irq(&conf->device_lock);
8005
4d77e3ba
N
8006 /* Now make sure any requests that proceeded on the assumption
8007 * the reshape wasn't running - like Discard or Read - have
8008 * completed.
8009 */
8010 mddev_suspend(mddev);
8011 mddev_resume(mddev);
8012
29269553
N
8013 /* Add some new drives, as many as will fit.
8014 * We know there are enough to make the newly sized array work.
3424bf6a
N
8015 * Don't add devices if we are reducing the number of
8016 * devices in the array. This is because it is not possible
8017 * to correctly record the "partially reconstructed" state of
8018 * such devices during the reshape and confusion could result.
29269553 8019 */
87a8dec9 8020 if (mddev->delta_disks >= 0) {
dafb20fa 8021 rdev_for_each(rdev, mddev)
87a8dec9
N
8022 if (rdev->raid_disk < 0 &&
8023 !test_bit(Faulty, &rdev->flags)) {
8024 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 8025 if (rdev->raid_disk
9d4c7d87 8026 >= conf->previous_raid_disks)
87a8dec9 8027 set_bit(In_sync, &rdev->flags);
9d4c7d87 8028 else
87a8dec9 8029 rdev->recovery_offset = 0;
36fad858 8030
2aada5b1
DLM
8031 /* Failure here is OK */
8032 sysfs_link_rdev(mddev, rdev);
50da0840 8033 }
87a8dec9
N
8034 } else if (rdev->raid_disk >= conf->previous_raid_disks
8035 && !test_bit(Faulty, &rdev->flags)) {
8036 /* This is a spare that was manually added */
8037 set_bit(In_sync, &rdev->flags);
87a8dec9 8038 }
29269553 8039
87a8dec9
N
8040 /* When a reshape changes the number of devices,
8041 * ->degraded is measured against the larger of the
8042 * pre and post number of devices.
8043 */
ec32a2bd 8044 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 8045 mddev->degraded = raid5_calc_degraded(conf);
ec32a2bd
N
8046 spin_unlock_irqrestore(&conf->device_lock, flags);
8047 }
63c70c4f 8048 mddev->raid_disks = conf->raid_disks;
e516402c 8049 mddev->reshape_position = conf->reshape_progress;
2953079c 8050 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
f6705578 8051
29269553
N
8052 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8053 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 8054 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
8055 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8056 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8057 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 8058 "reshape");
29269553
N
8059 if (!mddev->sync_thread) {
8060 mddev->recovery = 0;
8061 spin_lock_irq(&conf->device_lock);
ba8805b9 8062 write_seqcount_begin(&conf->gen_lock);
29269553 8063 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
8064 mddev->new_chunk_sectors =
8065 conf->chunk_sectors = conf->prev_chunk_sectors;
8066 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
8067 rdev_for_each(rdev, mddev)
8068 rdev->new_data_offset = rdev->data_offset;
8069 smp_wmb();
ba8805b9 8070 conf->generation --;
fef9c61f 8071 conf->reshape_progress = MaxSector;
1e3fa9bd 8072 mddev->reshape_position = MaxSector;
ba8805b9 8073 write_seqcount_end(&conf->gen_lock);
29269553
N
8074 spin_unlock_irq(&conf->device_lock);
8075 return -EAGAIN;
8076 }
c8f517c4 8077 conf->reshape_checkpoint = jiffies;
29269553
N
8078 md_wakeup_thread(mddev->sync_thread);
8079 md_new_event(mddev);
8080 return 0;
8081}
29269553 8082
ec32a2bd
N
8083/* This is called from the reshape thread and should make any
8084 * changes needed in 'conf'
8085 */
d1688a6d 8086static void end_reshape(struct r5conf *conf)
29269553 8087{
29269553 8088
f6705578 8089 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
db0505d3 8090 struct md_rdev *rdev;
f6705578 8091
f6705578 8092 spin_lock_irq(&conf->device_lock);
cea9c228 8093 conf->previous_raid_disks = conf->raid_disks;
b5d27718 8094 md_finish_reshape(conf->mddev);
05616be5 8095 smp_wmb();
fef9c61f 8096 conf->reshape_progress = MaxSector;
6cbd8148 8097 conf->mddev->reshape_position = MaxSector;
db0505d3
N
8098 rdev_for_each(rdev, conf->mddev)
8099 if (rdev->raid_disk >= 0 &&
8100 !test_bit(Journal, &rdev->flags) &&
8101 !test_bit(In_sync, &rdev->flags))
8102 rdev->recovery_offset = MaxSector;
f6705578 8103 spin_unlock_irq(&conf->device_lock);
b0f9ec04 8104 wake_up(&conf->wait_for_overlap);
16a53ecc
N
8105
8106 /* read-ahead size must cover two whole stripes, which is
8107 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8108 */
4a5add49 8109 if (conf->mddev->queue) {
cea9c228 8110 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 8111 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 8112 / PAGE_SIZE);
dc3b17cc
JK
8113 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8114 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
16a53ecc 8115 }
29269553 8116 }
29269553
N
8117}
8118
ec32a2bd
N
8119/* This is called from the raid5d thread with mddev_lock held.
8120 * It makes config changes to the device.
8121 */
fd01b88c 8122static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 8123{
d1688a6d 8124 struct r5conf *conf = mddev->private;
cea9c228
N
8125
8126 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8127
8876391e 8128 if (mddev->delta_disks <= 0) {
ec32a2bd 8129 int d;
908f4fbd 8130 spin_lock_irq(&conf->device_lock);
2e38a37f 8131 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd 8132 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
8133 for (d = conf->raid_disks ;
8134 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 8135 d++) {
3cb03002 8136 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
8137 if (rdev)
8138 clear_bit(In_sync, &rdev->flags);
8139 rdev = conf->disks[d].replacement;
8140 if (rdev)
8141 clear_bit(In_sync, &rdev->flags);
1a67dde0 8142 }
cea9c228 8143 }
88ce4930 8144 mddev->layout = conf->algorithm;
09c9e5fa 8145 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
8146 mddev->reshape_position = MaxSector;
8147 mddev->delta_disks = 0;
2c810cdd 8148 mddev->reshape_backwards = 0;
cea9c228
N
8149 }
8150}
8151
b03e0ccb 8152static void raid5_quiesce(struct mddev *mddev, int quiesce)
72626685 8153{
d1688a6d 8154 struct r5conf *conf = mddev->private;
72626685 8155
b03e0ccb
N
8156 if (quiesce) {
8157 /* stop all writes */
566c09c5 8158 lock_all_device_hash_locks_irq(conf);
64bd660b
N
8159 /* '2' tells resync/reshape to pause so that all
8160 * active stripes can drain
8161 */
a39f7afd 8162 r5c_flush_cache(conf, INT_MAX);
64bd660b 8163 conf->quiesce = 2;
b1b46486 8164 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
8165 atomic_read(&conf->active_stripes) == 0 &&
8166 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
8167 unlock_all_device_hash_locks_irq(conf),
8168 lock_all_device_hash_locks_irq(conf));
64bd660b 8169 conf->quiesce = 1;
566c09c5 8170 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
8171 /* allow reshape to continue */
8172 wake_up(&conf->wait_for_overlap);
b03e0ccb
N
8173 } else {
8174 /* re-enable writes */
566c09c5 8175 lock_all_device_hash_locks_irq(conf);
72626685 8176 conf->quiesce = 0;
b1b46486 8177 wake_up(&conf->wait_for_quiescent);
e464eafd 8178 wake_up(&conf->wait_for_overlap);
566c09c5 8179 unlock_all_device_hash_locks_irq(conf);
72626685 8180 }
1532d9e8 8181 log_quiesce(conf, quiesce);
72626685 8182}
b15c2e57 8183
fd01b88c 8184static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 8185{
e373ab10 8186 struct r0conf *raid0_conf = mddev->private;
d76c8420 8187 sector_t sectors;
54071b38 8188
f1b29bca 8189 /* for raid0 takeover only one zone is supported */
e373ab10 8190 if (raid0_conf->nr_strip_zones > 1) {
cc6167b4
N
8191 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8192 mdname(mddev));
f1b29bca
DW
8193 return ERR_PTR(-EINVAL);
8194 }
8195
e373ab10
N
8196 sectors = raid0_conf->strip_zone[0].zone_end;
8197 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 8198 mddev->dev_sectors = sectors;
f1b29bca 8199 mddev->new_level = level;
54071b38
TM
8200 mddev->new_layout = ALGORITHM_PARITY_N;
8201 mddev->new_chunk_sectors = mddev->chunk_sectors;
8202 mddev->raid_disks += 1;
8203 mddev->delta_disks = 1;
8204 /* make sure it will be not marked as dirty */
8205 mddev->recovery_cp = MaxSector;
8206
8207 return setup_conf(mddev);
8208}
8209
fd01b88c 8210static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
8211{
8212 int chunksect;
6995f0b2 8213 void *ret;
d562b0c4
N
8214
8215 if (mddev->raid_disks != 2 ||
8216 mddev->degraded > 1)
8217 return ERR_PTR(-EINVAL);
8218
8219 /* Should check if there are write-behind devices? */
8220
8221 chunksect = 64*2; /* 64K by default */
8222
8223 /* The array must be an exact multiple of chunksize */
8224 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8225 chunksect >>= 1;
8226
c911c46c 8227 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
d562b0c4
N
8228 /* array size does not allow a suitable chunk size */
8229 return ERR_PTR(-EINVAL);
8230
8231 mddev->new_level = 5;
8232 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 8233 mddev->new_chunk_sectors = chunksect;
d562b0c4 8234
6995f0b2 8235 ret = setup_conf(mddev);
32cd7cbb 8236 if (!IS_ERR(ret))
394ed8e4
SL
8237 mddev_clear_unsupported_flags(mddev,
8238 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 8239 return ret;
d562b0c4
N
8240}
8241
fd01b88c 8242static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
8243{
8244 int new_layout;
8245
8246 switch (mddev->layout) {
8247 case ALGORITHM_LEFT_ASYMMETRIC_6:
8248 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8249 break;
8250 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8251 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8252 break;
8253 case ALGORITHM_LEFT_SYMMETRIC_6:
8254 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8255 break;
8256 case ALGORITHM_RIGHT_SYMMETRIC_6:
8257 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8258 break;
8259 case ALGORITHM_PARITY_0_6:
8260 new_layout = ALGORITHM_PARITY_0;
8261 break;
8262 case ALGORITHM_PARITY_N:
8263 new_layout = ALGORITHM_PARITY_N;
8264 break;
8265 default:
8266 return ERR_PTR(-EINVAL);
8267 }
8268 mddev->new_level = 5;
8269 mddev->new_layout = new_layout;
8270 mddev->delta_disks = -1;
8271 mddev->raid_disks -= 1;
8272 return setup_conf(mddev);
8273}
8274
fd01b88c 8275static int raid5_check_reshape(struct mddev *mddev)
b3546035 8276{
88ce4930
N
8277 /* For a 2-drive array, the layout and chunk size can be changed
8278 * immediately as not restriping is needed.
8279 * For larger arrays we record the new value - after validation
8280 * to be used by a reshape pass.
b3546035 8281 */
d1688a6d 8282 struct r5conf *conf = mddev->private;
597a711b 8283 int new_chunk = mddev->new_chunk_sectors;
b3546035 8284
597a711b 8285 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
8286 return -EINVAL;
8287 if (new_chunk > 0) {
0ba459d2 8288 if (!is_power_of_2(new_chunk))
b3546035 8289 return -EINVAL;
597a711b 8290 if (new_chunk < (PAGE_SIZE>>9))
b3546035 8291 return -EINVAL;
597a711b 8292 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
8293 /* not factor of array size */
8294 return -EINVAL;
8295 }
8296
8297 /* They look valid */
8298
88ce4930 8299 if (mddev->raid_disks == 2) {
597a711b
N
8300 /* can make the change immediately */
8301 if (mddev->new_layout >= 0) {
8302 conf->algorithm = mddev->new_layout;
8303 mddev->layout = mddev->new_layout;
88ce4930
N
8304 }
8305 if (new_chunk > 0) {
597a711b
N
8306 conf->chunk_sectors = new_chunk ;
8307 mddev->chunk_sectors = new_chunk;
88ce4930 8308 }
2953079c 8309 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
88ce4930 8310 md_wakeup_thread(mddev->thread);
b3546035 8311 }
50ac168a 8312 return check_reshape(mddev);
88ce4930
N
8313}
8314
fd01b88c 8315static int raid6_check_reshape(struct mddev *mddev)
88ce4930 8316{
597a711b 8317 int new_chunk = mddev->new_chunk_sectors;
50ac168a 8318
597a711b 8319 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 8320 return -EINVAL;
b3546035 8321 if (new_chunk > 0) {
0ba459d2 8322 if (!is_power_of_2(new_chunk))
88ce4930 8323 return -EINVAL;
597a711b 8324 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 8325 return -EINVAL;
597a711b 8326 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
8327 /* not factor of array size */
8328 return -EINVAL;
b3546035 8329 }
88ce4930
N
8330
8331 /* They look valid */
50ac168a 8332 return check_reshape(mddev);
b3546035
N
8333}
8334
fd01b88c 8335static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
8336{
8337 /* raid5 can take over:
f1b29bca 8338 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
8339 * raid1 - if there are two drives. We need to know the chunk size
8340 * raid4 - trivial - just use a raid4 layout.
8341 * raid6 - Providing it is a *_6 layout
d562b0c4 8342 */
f1b29bca
DW
8343 if (mddev->level == 0)
8344 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
8345 if (mddev->level == 1)
8346 return raid5_takeover_raid1(mddev);
e9d4758f
N
8347 if (mddev->level == 4) {
8348 mddev->new_layout = ALGORITHM_PARITY_N;
8349 mddev->new_level = 5;
8350 return setup_conf(mddev);
8351 }
fc9739c6
N
8352 if (mddev->level == 6)
8353 return raid5_takeover_raid6(mddev);
d562b0c4
N
8354
8355 return ERR_PTR(-EINVAL);
8356}
8357
fd01b88c 8358static void *raid4_takeover(struct mddev *mddev)
a78d38a1 8359{
f1b29bca
DW
8360 /* raid4 can take over:
8361 * raid0 - if there is only one strip zone
8362 * raid5 - if layout is right
a78d38a1 8363 */
f1b29bca
DW
8364 if (mddev->level == 0)
8365 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
8366 if (mddev->level == 5 &&
8367 mddev->layout == ALGORITHM_PARITY_N) {
8368 mddev->new_layout = 0;
8369 mddev->new_level = 4;
8370 return setup_conf(mddev);
8371 }
8372 return ERR_PTR(-EINVAL);
8373}
d562b0c4 8374
84fc4b56 8375static struct md_personality raid5_personality;
245f46c2 8376
fd01b88c 8377static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
8378{
8379 /* Currently can only take over a raid5. We map the
8380 * personality to an equivalent raid6 personality
8381 * with the Q block at the end.
8382 */
8383 int new_layout;
8384
8385 if (mddev->pers != &raid5_personality)
8386 return ERR_PTR(-EINVAL);
8387 if (mddev->degraded > 1)
8388 return ERR_PTR(-EINVAL);
8389 if (mddev->raid_disks > 253)
8390 return ERR_PTR(-EINVAL);
8391 if (mddev->raid_disks < 3)
8392 return ERR_PTR(-EINVAL);
8393
8394 switch (mddev->layout) {
8395 case ALGORITHM_LEFT_ASYMMETRIC:
8396 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8397 break;
8398 case ALGORITHM_RIGHT_ASYMMETRIC:
8399 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8400 break;
8401 case ALGORITHM_LEFT_SYMMETRIC:
8402 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8403 break;
8404 case ALGORITHM_RIGHT_SYMMETRIC:
8405 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8406 break;
8407 case ALGORITHM_PARITY_0:
8408 new_layout = ALGORITHM_PARITY_0_6;
8409 break;
8410 case ALGORITHM_PARITY_N:
8411 new_layout = ALGORITHM_PARITY_N;
8412 break;
8413 default:
8414 return ERR_PTR(-EINVAL);
8415 }
8416 mddev->new_level = 6;
8417 mddev->new_layout = new_layout;
8418 mddev->delta_disks = 1;
8419 mddev->raid_disks += 1;
8420 return setup_conf(mddev);
8421}
8422
ba903a3e
AP
8423static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8424{
8425 struct r5conf *conf;
8426 int err;
8427
8428 err = mddev_lock(mddev);
8429 if (err)
8430 return err;
8431 conf = mddev->private;
8432 if (!conf) {
8433 mddev_unlock(mddev);
8434 return -ENODEV;
8435 }
8436
845b9e22 8437 if (strncmp(buf, "ppl", 3) == 0) {
0bb0c105 8438 /* ppl only works with RAID 5 */
845b9e22
AP
8439 if (!raid5_has_ppl(conf) && conf->level == 5) {
8440 err = log_init(conf, NULL, true);
8441 if (!err) {
8442 err = resize_stripes(conf, conf->pool_size);
8443 if (err)
8444 log_exit(conf);
8445 }
0bb0c105
SL
8446 } else
8447 err = -EINVAL;
8448 } else if (strncmp(buf, "resync", 6) == 0) {
8449 if (raid5_has_ppl(conf)) {
8450 mddev_suspend(mddev);
8451 log_exit(conf);
0bb0c105 8452 mddev_resume(mddev);
845b9e22 8453 err = resize_stripes(conf, conf->pool_size);
0bb0c105
SL
8454 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8455 r5l_log_disk_error(conf)) {
8456 bool journal_dev_exists = false;
8457 struct md_rdev *rdev;
8458
8459 rdev_for_each(rdev, mddev)
8460 if (test_bit(Journal, &rdev->flags)) {
8461 journal_dev_exists = true;
8462 break;
8463 }
8464
8465 if (!journal_dev_exists) {
8466 mddev_suspend(mddev);
8467 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8468 mddev_resume(mddev);
8469 } else /* need remove journal device first */
8470 err = -EBUSY;
8471 } else
8472 err = -EINVAL;
ba903a3e
AP
8473 } else {
8474 err = -EINVAL;
8475 }
8476
8477 if (!err)
8478 md_update_sb(mddev, 1);
8479
8480 mddev_unlock(mddev);
8481
8482 return err;
8483}
8484
d5d885fd
SL
8485static int raid5_start(struct mddev *mddev)
8486{
8487 struct r5conf *conf = mddev->private;
8488
8489 return r5l_start(conf->log);
8490}
8491
84fc4b56 8492static struct md_personality raid6_personality =
16a53ecc
N
8493{
8494 .name = "raid6",
8495 .level = 6,
8496 .owner = THIS_MODULE,
849674e4
SL
8497 .make_request = raid5_make_request,
8498 .run = raid5_run,
d5d885fd 8499 .start = raid5_start,
afa0f557 8500 .free = raid5_free,
849674e4
SL
8501 .status = raid5_status,
8502 .error_handler = raid5_error,
16a53ecc
N
8503 .hot_add_disk = raid5_add_disk,
8504 .hot_remove_disk= raid5_remove_disk,
8505 .spare_active = raid5_spare_active,
849674e4 8506 .sync_request = raid5_sync_request,
16a53ecc 8507 .resize = raid5_resize,
80c3a6ce 8508 .size = raid5_size,
50ac168a 8509 .check_reshape = raid6_check_reshape,
f416885e 8510 .start_reshape = raid5_start_reshape,
cea9c228 8511 .finish_reshape = raid5_finish_reshape,
16a53ecc 8512 .quiesce = raid5_quiesce,
245f46c2 8513 .takeover = raid6_takeover,
0bb0c105 8514 .change_consistency_policy = raid5_change_consistency_policy,
16a53ecc 8515};
84fc4b56 8516static struct md_personality raid5_personality =
1da177e4
LT
8517{
8518 .name = "raid5",
2604b703 8519 .level = 5,
1da177e4 8520 .owner = THIS_MODULE,
849674e4
SL
8521 .make_request = raid5_make_request,
8522 .run = raid5_run,
d5d885fd 8523 .start = raid5_start,
afa0f557 8524 .free = raid5_free,
849674e4
SL
8525 .status = raid5_status,
8526 .error_handler = raid5_error,
1da177e4
LT
8527 .hot_add_disk = raid5_add_disk,
8528 .hot_remove_disk= raid5_remove_disk,
8529 .spare_active = raid5_spare_active,
849674e4 8530 .sync_request = raid5_sync_request,
1da177e4 8531 .resize = raid5_resize,
80c3a6ce 8532 .size = raid5_size,
63c70c4f
N
8533 .check_reshape = raid5_check_reshape,
8534 .start_reshape = raid5_start_reshape,
cea9c228 8535 .finish_reshape = raid5_finish_reshape,
72626685 8536 .quiesce = raid5_quiesce,
d562b0c4 8537 .takeover = raid5_takeover,
ba903a3e 8538 .change_consistency_policy = raid5_change_consistency_policy,
1da177e4
LT
8539};
8540
84fc4b56 8541static struct md_personality raid4_personality =
1da177e4 8542{
2604b703
N
8543 .name = "raid4",
8544 .level = 4,
8545 .owner = THIS_MODULE,
849674e4
SL
8546 .make_request = raid5_make_request,
8547 .run = raid5_run,
d5d885fd 8548 .start = raid5_start,
afa0f557 8549 .free = raid5_free,
849674e4
SL
8550 .status = raid5_status,
8551 .error_handler = raid5_error,
2604b703
N
8552 .hot_add_disk = raid5_add_disk,
8553 .hot_remove_disk= raid5_remove_disk,
8554 .spare_active = raid5_spare_active,
849674e4 8555 .sync_request = raid5_sync_request,
2604b703 8556 .resize = raid5_resize,
80c3a6ce 8557 .size = raid5_size,
3d37890b
N
8558 .check_reshape = raid5_check_reshape,
8559 .start_reshape = raid5_start_reshape,
cea9c228 8560 .finish_reshape = raid5_finish_reshape,
2604b703 8561 .quiesce = raid5_quiesce,
a78d38a1 8562 .takeover = raid4_takeover,
0bb0c105 8563 .change_consistency_policy = raid5_change_consistency_policy,
2604b703
N
8564};
8565
8566static int __init raid5_init(void)
8567{
29c6d1bb
SAS
8568 int ret;
8569
851c30c9
SL
8570 raid5_wq = alloc_workqueue("raid5wq",
8571 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8572 if (!raid5_wq)
8573 return -ENOMEM;
29c6d1bb
SAS
8574
8575 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8576 "md/raid5:prepare",
8577 raid456_cpu_up_prepare,
8578 raid456_cpu_dead);
8579 if (ret) {
8580 destroy_workqueue(raid5_wq);
8581 return ret;
8582 }
16a53ecc 8583 register_md_personality(&raid6_personality);
2604b703
N
8584 register_md_personality(&raid5_personality);
8585 register_md_personality(&raid4_personality);
8586 return 0;
1da177e4
LT
8587}
8588
2604b703 8589static void raid5_exit(void)
1da177e4 8590{
16a53ecc 8591 unregister_md_personality(&raid6_personality);
2604b703
N
8592 unregister_md_personality(&raid5_personality);
8593 unregister_md_personality(&raid4_personality);
29c6d1bb 8594 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
851c30c9 8595 destroy_workqueue(raid5_wq);
1da177e4
LT
8596}
8597
8598module_init(raid5_init);
8599module_exit(raid5_exit);
8600MODULE_LICENSE("GPL");
0efb9e61 8601MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 8602MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
8603MODULE_ALIAS("md-raid5");
8604MODULE_ALIAS("md-raid4");
2604b703
N
8605MODULE_ALIAS("md-level-5");
8606MODULE_ALIAS("md-level-4");
16a53ecc
N
8607MODULE_ALIAS("md-personality-8"); /* RAID6 */
8608MODULE_ALIAS("md-raid6");
8609MODULE_ALIAS("md-level-6");
8610
8611/* This used to be two separate modules, they were: */
8612MODULE_ALIAS("raid5");
8613MODULE_ALIAS("raid6");