]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid5.c
[PATCH] tty: Remove include of screen_info.h from tty.h
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21
1da177e4
LT
22#include <linux/module.h>
23#include <linux/slab.h>
1da177e4
LT
24#include <linux/highmem.h>
25#include <linux/bitops.h>
f6705578 26#include <linux/kthread.h>
1da177e4 27#include <asm/atomic.h>
16a53ecc 28#include "raid6.h"
1da177e4 29
72626685
N
30#include <linux/raid/bitmap.h>
31
1da177e4
LT
32/*
33 * Stripe cache
34 */
35
36#define NR_STRIPES 256
37#define STRIPE_SIZE PAGE_SIZE
38#define STRIPE_SHIFT (PAGE_SHIFT - 9)
39#define STRIPE_SECTORS (STRIPE_SIZE>>9)
40#define IO_THRESHOLD 1
fccddba0 41#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
42#define HASH_MASK (NR_HASH - 1)
43
fccddba0 44#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
45
46/* bio's attached to a stripe+device for I/O are linked together in bi_sector
47 * order without overlap. There may be several bio's per stripe+device, and
48 * a bio could span several devices.
49 * When walking this list for a particular stripe+device, we must never proceed
50 * beyond a bio that extends past this device, as the next bio might no longer
51 * be valid.
52 * This macro is used to determine the 'next' bio in the list, given the sector
53 * of the current stripe+device
54 */
55#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
56/*
57 * The following can be used to debug the driver
58 */
59#define RAID5_DEBUG 0
60#define RAID5_PARANOIA 1
61#if RAID5_PARANOIA && defined(CONFIG_SMP)
62# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
63#else
64# define CHECK_DEVLOCK()
65#endif
66
67#define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
68#if RAID5_DEBUG
69#define inline
70#define __inline__
71#endif
72
16a53ecc
N
73#if !RAID6_USE_EMPTY_ZERO_PAGE
74/* In .bss so it's zeroed */
75const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
76#endif
77
78static inline int raid6_next_disk(int disk, int raid_disks)
79{
80 disk++;
81 return (disk < raid_disks) ? disk : 0;
82}
1da177e4
LT
83static void print_raid5_conf (raid5_conf_t *conf);
84
858119e1 85static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
86{
87 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
88 BUG_ON(!list_empty(&sh->lru));
89 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4
LT
90 if (test_bit(STRIPE_HANDLE, &sh->state)) {
91 if (test_bit(STRIPE_DELAYED, &sh->state))
92 list_add_tail(&sh->lru, &conf->delayed_list);
72626685
N
93 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
94 conf->seq_write == sh->bm_seq)
95 list_add_tail(&sh->lru, &conf->bitmap_list);
96 else {
97 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 98 list_add_tail(&sh->lru, &conf->handle_list);
72626685 99 }
1da177e4
LT
100 md_wakeup_thread(conf->mddev->thread);
101 } else {
102 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
103 atomic_dec(&conf->preread_active_stripes);
104 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
105 md_wakeup_thread(conf->mddev->thread);
106 }
1da177e4 107 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
108 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
109 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 110 wake_up(&conf->wait_for_stripe);
ccfcc3c1 111 }
1da177e4
LT
112 }
113 }
114}
115static void release_stripe(struct stripe_head *sh)
116{
117 raid5_conf_t *conf = sh->raid_conf;
118 unsigned long flags;
16a53ecc 119
1da177e4
LT
120 spin_lock_irqsave(&conf->device_lock, flags);
121 __release_stripe(conf, sh);
122 spin_unlock_irqrestore(&conf->device_lock, flags);
123}
124
fccddba0 125static inline void remove_hash(struct stripe_head *sh)
1da177e4
LT
126{
127 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
128
fccddba0 129 hlist_del_init(&sh->hash);
1da177e4
LT
130}
131
16a53ecc 132static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 133{
fccddba0 134 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4
LT
135
136 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
137
138 CHECK_DEVLOCK();
fccddba0 139 hlist_add_head(&sh->hash, hp);
1da177e4
LT
140}
141
142
143/* find an idle stripe, make sure it is unhashed, and return it. */
144static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
145{
146 struct stripe_head *sh = NULL;
147 struct list_head *first;
148
149 CHECK_DEVLOCK();
150 if (list_empty(&conf->inactive_list))
151 goto out;
152 first = conf->inactive_list.next;
153 sh = list_entry(first, struct stripe_head, lru);
154 list_del_init(first);
155 remove_hash(sh);
156 atomic_inc(&conf->active_stripes);
157out:
158 return sh;
159}
160
161static void shrink_buffers(struct stripe_head *sh, int num)
162{
163 struct page *p;
164 int i;
165
166 for (i=0; i<num ; i++) {
167 p = sh->dev[i].page;
168 if (!p)
169 continue;
170 sh->dev[i].page = NULL;
2d1f3b5d 171 put_page(p);
1da177e4
LT
172 }
173}
174
175static int grow_buffers(struct stripe_head *sh, int num)
176{
177 int i;
178
179 for (i=0; i<num; i++) {
180 struct page *page;
181
182 if (!(page = alloc_page(GFP_KERNEL))) {
183 return 1;
184 }
185 sh->dev[i].page = page;
186 }
187 return 0;
188}
189
190static void raid5_build_block (struct stripe_head *sh, int i);
191
7ecaa1e6 192static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
1da177e4
LT
193{
194 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 195 int i;
1da177e4 196
78bafebd
ES
197 BUG_ON(atomic_read(&sh->count) != 0);
198 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1da177e4
LT
199
200 CHECK_DEVLOCK();
201 PRINTK("init_stripe called, stripe %llu\n",
202 (unsigned long long)sh->sector);
203
204 remove_hash(sh);
16a53ecc 205
1da177e4
LT
206 sh->sector = sector;
207 sh->pd_idx = pd_idx;
208 sh->state = 0;
209
7ecaa1e6
N
210 sh->disks = disks;
211
212 for (i = sh->disks; i--; ) {
1da177e4
LT
213 struct r5dev *dev = &sh->dev[i];
214
215 if (dev->toread || dev->towrite || dev->written ||
216 test_bit(R5_LOCKED, &dev->flags)) {
217 printk("sector=%llx i=%d %p %p %p %d\n",
218 (unsigned long long)sh->sector, i, dev->toread,
219 dev->towrite, dev->written,
220 test_bit(R5_LOCKED, &dev->flags));
221 BUG();
222 }
223 dev->flags = 0;
224 raid5_build_block(sh, i);
225 }
226 insert_hash(conf, sh);
227}
228
7ecaa1e6 229static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
1da177e4
LT
230{
231 struct stripe_head *sh;
fccddba0 232 struct hlist_node *hn;
1da177e4
LT
233
234 CHECK_DEVLOCK();
235 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 236 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
7ecaa1e6 237 if (sh->sector == sector && sh->disks == disks)
1da177e4
LT
238 return sh;
239 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
240 return NULL;
241}
242
243static void unplug_slaves(mddev_t *mddev);
244static void raid5_unplug_device(request_queue_t *q);
245
7ecaa1e6
N
246static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
247 int pd_idx, int noblock)
1da177e4
LT
248{
249 struct stripe_head *sh;
250
251 PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
252
253 spin_lock_irq(&conf->device_lock);
254
255 do {
72626685
N
256 wait_event_lock_irq(conf->wait_for_stripe,
257 conf->quiesce == 0,
258 conf->device_lock, /* nothing */);
7ecaa1e6 259 sh = __find_stripe(conf, sector, disks);
1da177e4
LT
260 if (!sh) {
261 if (!conf->inactive_blocked)
262 sh = get_free_stripe(conf);
263 if (noblock && sh == NULL)
264 break;
265 if (!sh) {
266 conf->inactive_blocked = 1;
267 wait_event_lock_irq(conf->wait_for_stripe,
268 !list_empty(&conf->inactive_list) &&
5036805b
N
269 (atomic_read(&conf->active_stripes)
270 < (conf->max_nr_stripes *3/4)
1da177e4
LT
271 || !conf->inactive_blocked),
272 conf->device_lock,
b3b46be3 273 unplug_slaves(conf->mddev)
1da177e4
LT
274 );
275 conf->inactive_blocked = 0;
276 } else
7ecaa1e6 277 init_stripe(sh, sector, pd_idx, disks);
1da177e4
LT
278 } else {
279 if (atomic_read(&sh->count)) {
78bafebd 280 BUG_ON(!list_empty(&sh->lru));
1da177e4
LT
281 } else {
282 if (!test_bit(STRIPE_HANDLE, &sh->state))
283 atomic_inc(&conf->active_stripes);
16a53ecc
N
284 if (list_empty(&sh->lru))
285 BUG();
286 list_del_init(&sh->lru);
1da177e4
LT
287 }
288 }
289 } while (sh == NULL);
290
291 if (sh)
292 atomic_inc(&sh->count);
293
294 spin_unlock_irq(&conf->device_lock);
295 return sh;
296}
297
3f294f4f 298static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
299{
300 struct stripe_head *sh;
3f294f4f
N
301 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
302 if (!sh)
303 return 0;
304 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
305 sh->raid_conf = conf;
306 spin_lock_init(&sh->lock);
307
308 if (grow_buffers(sh, conf->raid_disks)) {
309 shrink_buffers(sh, conf->raid_disks);
310 kmem_cache_free(conf->slab_cache, sh);
311 return 0;
312 }
7ecaa1e6 313 sh->disks = conf->raid_disks;
3f294f4f
N
314 /* we just created an active stripe so... */
315 atomic_set(&sh->count, 1);
316 atomic_inc(&conf->active_stripes);
317 INIT_LIST_HEAD(&sh->lru);
318 release_stripe(sh);
319 return 1;
320}
321
322static int grow_stripes(raid5_conf_t *conf, int num)
323{
1da177e4
LT
324 kmem_cache_t *sc;
325 int devs = conf->raid_disks;
326
ad01c9e3
N
327 sprintf(conf->cache_name[0], "raid5/%s", mdname(conf->mddev));
328 sprintf(conf->cache_name[1], "raid5/%s-alt", mdname(conf->mddev));
329 conf->active_name = 0;
330 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4
LT
331 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
332 0, 0, NULL, NULL);
333 if (!sc)
334 return 1;
335 conf->slab_cache = sc;
ad01c9e3 336 conf->pool_size = devs;
16a53ecc 337 while (num--)
3f294f4f 338 if (!grow_one_stripe(conf))
1da177e4 339 return 1;
1da177e4
LT
340 return 0;
341}
29269553
N
342
343#ifdef CONFIG_MD_RAID5_RESHAPE
ad01c9e3
N
344static int resize_stripes(raid5_conf_t *conf, int newsize)
345{
346 /* Make all the stripes able to hold 'newsize' devices.
347 * New slots in each stripe get 'page' set to a new page.
348 *
349 * This happens in stages:
350 * 1/ create a new kmem_cache and allocate the required number of
351 * stripe_heads.
352 * 2/ gather all the old stripe_heads and tranfer the pages across
353 * to the new stripe_heads. This will have the side effect of
354 * freezing the array as once all stripe_heads have been collected,
355 * no IO will be possible. Old stripe heads are freed once their
356 * pages have been transferred over, and the old kmem_cache is
357 * freed when all stripes are done.
358 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
359 * we simple return a failre status - no need to clean anything up.
360 * 4/ allocate new pages for the new slots in the new stripe_heads.
361 * If this fails, we don't bother trying the shrink the
362 * stripe_heads down again, we just leave them as they are.
363 * As each stripe_head is processed the new one is released into
364 * active service.
365 *
366 * Once step2 is started, we cannot afford to wait for a write,
367 * so we use GFP_NOIO allocations.
368 */
369 struct stripe_head *osh, *nsh;
370 LIST_HEAD(newstripes);
371 struct disk_info *ndisks;
372 int err = 0;
373 kmem_cache_t *sc;
374 int i;
375
376 if (newsize <= conf->pool_size)
377 return 0; /* never bother to shrink */
378
379 /* Step 1 */
380 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
381 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
382 0, 0, NULL, NULL);
383 if (!sc)
384 return -ENOMEM;
385
386 for (i = conf->max_nr_stripes; i; i--) {
387 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
388 if (!nsh)
389 break;
390
391 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
392
393 nsh->raid_conf = conf;
394 spin_lock_init(&nsh->lock);
395
396 list_add(&nsh->lru, &newstripes);
397 }
398 if (i) {
399 /* didn't get enough, give up */
400 while (!list_empty(&newstripes)) {
401 nsh = list_entry(newstripes.next, struct stripe_head, lru);
402 list_del(&nsh->lru);
403 kmem_cache_free(sc, nsh);
404 }
405 kmem_cache_destroy(sc);
406 return -ENOMEM;
407 }
408 /* Step 2 - Must use GFP_NOIO now.
409 * OK, we have enough stripes, start collecting inactive
410 * stripes and copying them over
411 */
412 list_for_each_entry(nsh, &newstripes, lru) {
413 spin_lock_irq(&conf->device_lock);
414 wait_event_lock_irq(conf->wait_for_stripe,
415 !list_empty(&conf->inactive_list),
416 conf->device_lock,
b3b46be3 417 unplug_slaves(conf->mddev)
ad01c9e3
N
418 );
419 osh = get_free_stripe(conf);
420 spin_unlock_irq(&conf->device_lock);
421 atomic_set(&nsh->count, 1);
422 for(i=0; i<conf->pool_size; i++)
423 nsh->dev[i].page = osh->dev[i].page;
424 for( ; i<newsize; i++)
425 nsh->dev[i].page = NULL;
426 kmem_cache_free(conf->slab_cache, osh);
427 }
428 kmem_cache_destroy(conf->slab_cache);
429
430 /* Step 3.
431 * At this point, we are holding all the stripes so the array
432 * is completely stalled, so now is a good time to resize
433 * conf->disks.
434 */
435 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
436 if (ndisks) {
437 for (i=0; i<conf->raid_disks; i++)
438 ndisks[i] = conf->disks[i];
439 kfree(conf->disks);
440 conf->disks = ndisks;
441 } else
442 err = -ENOMEM;
443
444 /* Step 4, return new stripes to service */
445 while(!list_empty(&newstripes)) {
446 nsh = list_entry(newstripes.next, struct stripe_head, lru);
447 list_del_init(&nsh->lru);
448 for (i=conf->raid_disks; i < newsize; i++)
449 if (nsh->dev[i].page == NULL) {
450 struct page *p = alloc_page(GFP_NOIO);
451 nsh->dev[i].page = p;
452 if (!p)
453 err = -ENOMEM;
454 }
455 release_stripe(nsh);
456 }
457 /* critical section pass, GFP_NOIO no longer needed */
458
459 conf->slab_cache = sc;
460 conf->active_name = 1-conf->active_name;
461 conf->pool_size = newsize;
462 return err;
463}
29269553 464#endif
1da177e4 465
3f294f4f 466static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
467{
468 struct stripe_head *sh;
469
3f294f4f
N
470 spin_lock_irq(&conf->device_lock);
471 sh = get_free_stripe(conf);
472 spin_unlock_irq(&conf->device_lock);
473 if (!sh)
474 return 0;
78bafebd 475 BUG_ON(atomic_read(&sh->count));
ad01c9e3 476 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
477 kmem_cache_free(conf->slab_cache, sh);
478 atomic_dec(&conf->active_stripes);
479 return 1;
480}
481
482static void shrink_stripes(raid5_conf_t *conf)
483{
484 while (drop_one_stripe(conf))
485 ;
486
29fc7e3e
N
487 if (conf->slab_cache)
488 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
489 conf->slab_cache = NULL;
490}
491
4e5314b5 492static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
1da177e4
LT
493 int error)
494{
495 struct stripe_head *sh = bi->bi_private;
496 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 497 int disks = sh->disks, i;
1da177e4
LT
498 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
499
500 if (bi->bi_size)
501 return 1;
502
503 for (i=0 ; i<disks; i++)
504 if (bi == &sh->dev[i].req)
505 break;
506
507 PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
508 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
509 uptodate);
510 if (i == disks) {
511 BUG();
512 return 0;
513 }
514
515 if (uptodate) {
516#if 0
517 struct bio *bio;
518 unsigned long flags;
519 spin_lock_irqsave(&conf->device_lock, flags);
520 /* we can return a buffer if we bypassed the cache or
521 * if the top buffer is not in highmem. If there are
522 * multiple buffers, leave the extra work to
523 * handle_stripe
524 */
525 buffer = sh->bh_read[i];
526 if (buffer &&
527 (!PageHighMem(buffer->b_page)
528 || buffer->b_page == bh->b_page )
529 ) {
530 sh->bh_read[i] = buffer->b_reqnext;
531 buffer->b_reqnext = NULL;
532 } else
533 buffer = NULL;
534 spin_unlock_irqrestore(&conf->device_lock, flags);
535 if (sh->bh_page[i]==bh->b_page)
536 set_buffer_uptodate(bh);
537 if (buffer) {
538 if (buffer->b_page != bh->b_page)
539 memcpy(buffer->b_data, bh->b_data, bh->b_size);
540 buffer->b_end_io(buffer, 1);
541 }
542#else
543 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5
N
544#endif
545 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14f8d26b 546 printk(KERN_INFO "raid5: read error corrected!!\n");
4e5314b5
N
547 clear_bit(R5_ReadError, &sh->dev[i].flags);
548 clear_bit(R5_ReWrite, &sh->dev[i].flags);
549 }
ba22dcbf
N
550 if (atomic_read(&conf->disks[i].rdev->read_errors))
551 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 552 } else {
ba22dcbf 553 int retry = 0;
1da177e4 554 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
ba22dcbf
N
555 atomic_inc(&conf->disks[i].rdev->read_errors);
556 if (conf->mddev->degraded)
14f8d26b 557 printk(KERN_WARNING "raid5: read error not correctable.\n");
ba22dcbf 558 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 559 /* Oh, no!!! */
14f8d26b 560 printk(KERN_WARNING "raid5: read error NOT corrected!!\n");
ba22dcbf
N
561 else if (atomic_read(&conf->disks[i].rdev->read_errors)
562 > conf->max_nr_stripes)
14f8d26b
N
563 printk(KERN_WARNING
564 "raid5: Too many read errors, failing device.\n");
ba22dcbf
N
565 else
566 retry = 1;
567 if (retry)
568 set_bit(R5_ReadError, &sh->dev[i].flags);
569 else {
4e5314b5
N
570 clear_bit(R5_ReadError, &sh->dev[i].flags);
571 clear_bit(R5_ReWrite, &sh->dev[i].flags);
572 md_error(conf->mddev, conf->disks[i].rdev);
ba22dcbf 573 }
1da177e4
LT
574 }
575 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
576#if 0
577 /* must restore b_page before unlocking buffer... */
578 if (sh->bh_page[i] != bh->b_page) {
579 bh->b_page = sh->bh_page[i];
580 bh->b_data = page_address(bh->b_page);
581 clear_buffer_uptodate(bh);
582 }
583#endif
584 clear_bit(R5_LOCKED, &sh->dev[i].flags);
585 set_bit(STRIPE_HANDLE, &sh->state);
586 release_stripe(sh);
587 return 0;
588}
589
590static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
591 int error)
592{
593 struct stripe_head *sh = bi->bi_private;
594 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 595 int disks = sh->disks, i;
1da177e4
LT
596 unsigned long flags;
597 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
598
599 if (bi->bi_size)
600 return 1;
601
602 for (i=0 ; i<disks; i++)
603 if (bi == &sh->dev[i].req)
604 break;
605
606 PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
607 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
608 uptodate);
609 if (i == disks) {
610 BUG();
611 return 0;
612 }
613
614 spin_lock_irqsave(&conf->device_lock, flags);
615 if (!uptodate)
616 md_error(conf->mddev, conf->disks[i].rdev);
617
618 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
619
620 clear_bit(R5_LOCKED, &sh->dev[i].flags);
621 set_bit(STRIPE_HANDLE, &sh->state);
622 __release_stripe(conf, sh);
623 spin_unlock_irqrestore(&conf->device_lock, flags);
624 return 0;
625}
626
627
628static sector_t compute_blocknr(struct stripe_head *sh, int i);
629
630static void raid5_build_block (struct stripe_head *sh, int i)
631{
632 struct r5dev *dev = &sh->dev[i];
633
634 bio_init(&dev->req);
635 dev->req.bi_io_vec = &dev->vec;
636 dev->req.bi_vcnt++;
637 dev->req.bi_max_vecs++;
638 dev->vec.bv_page = dev->page;
639 dev->vec.bv_len = STRIPE_SIZE;
640 dev->vec.bv_offset = 0;
641
642 dev->req.bi_sector = sh->sector;
643 dev->req.bi_private = sh;
644
645 dev->flags = 0;
16a53ecc 646 dev->sector = compute_blocknr(sh, i);
1da177e4
LT
647}
648
649static void error(mddev_t *mddev, mdk_rdev_t *rdev)
650{
651 char b[BDEVNAME_SIZE];
652 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
653 PRINTK("raid5: error called\n");
654
b2d444d7 655 if (!test_bit(Faulty, &rdev->flags)) {
1da177e4 656 mddev->sb_dirty = 1;
b2d444d7 657 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
658 conf->working_disks--;
659 mddev->degraded++;
660 conf->failed_disks++;
b2d444d7 661 clear_bit(In_sync, &rdev->flags);
1da177e4
LT
662 /*
663 * if recovery was running, make sure it aborts.
664 */
665 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
666 }
b2d444d7 667 set_bit(Faulty, &rdev->flags);
1da177e4
LT
668 printk (KERN_ALERT
669 "raid5: Disk failure on %s, disabling device."
670 " Operation continuing on %d devices\n",
671 bdevname(rdev->bdev,b), conf->working_disks);
672 }
16a53ecc 673}
1da177e4
LT
674
675/*
676 * Input: a 'big' sector number,
677 * Output: index of the data and parity disk, and the sector # in them.
678 */
679static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
680 unsigned int data_disks, unsigned int * dd_idx,
681 unsigned int * pd_idx, raid5_conf_t *conf)
682{
683 long stripe;
684 unsigned long chunk_number;
685 unsigned int chunk_offset;
686 sector_t new_sector;
687 int sectors_per_chunk = conf->chunk_size >> 9;
688
689 /* First compute the information on this sector */
690
691 /*
692 * Compute the chunk number and the sector offset inside the chunk
693 */
694 chunk_offset = sector_div(r_sector, sectors_per_chunk);
695 chunk_number = r_sector;
696 BUG_ON(r_sector != chunk_number);
697
698 /*
699 * Compute the stripe number
700 */
701 stripe = chunk_number / data_disks;
702
703 /*
704 * Compute the data disk and parity disk indexes inside the stripe
705 */
706 *dd_idx = chunk_number % data_disks;
707
708 /*
709 * Select the parity disk based on the user selected algorithm.
710 */
16a53ecc
N
711 switch(conf->level) {
712 case 4:
1da177e4 713 *pd_idx = data_disks;
16a53ecc
N
714 break;
715 case 5:
716 switch (conf->algorithm) {
1da177e4
LT
717 case ALGORITHM_LEFT_ASYMMETRIC:
718 *pd_idx = data_disks - stripe % raid_disks;
719 if (*dd_idx >= *pd_idx)
720 (*dd_idx)++;
721 break;
722 case ALGORITHM_RIGHT_ASYMMETRIC:
723 *pd_idx = stripe % raid_disks;
724 if (*dd_idx >= *pd_idx)
725 (*dd_idx)++;
726 break;
727 case ALGORITHM_LEFT_SYMMETRIC:
728 *pd_idx = data_disks - stripe % raid_disks;
729 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
730 break;
731 case ALGORITHM_RIGHT_SYMMETRIC:
732 *pd_idx = stripe % raid_disks;
733 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
734 break;
735 default:
14f8d26b 736 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1da177e4 737 conf->algorithm);
16a53ecc
N
738 }
739 break;
740 case 6:
741
742 /**** FIX THIS ****/
743 switch (conf->algorithm) {
744 case ALGORITHM_LEFT_ASYMMETRIC:
745 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
746 if (*pd_idx == raid_disks-1)
747 (*dd_idx)++; /* Q D D D P */
748 else if (*dd_idx >= *pd_idx)
749 (*dd_idx) += 2; /* D D P Q D */
750 break;
751 case ALGORITHM_RIGHT_ASYMMETRIC:
752 *pd_idx = stripe % raid_disks;
753 if (*pd_idx == raid_disks-1)
754 (*dd_idx)++; /* Q D D D P */
755 else if (*dd_idx >= *pd_idx)
756 (*dd_idx) += 2; /* D D P Q D */
757 break;
758 case ALGORITHM_LEFT_SYMMETRIC:
759 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
760 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
761 break;
762 case ALGORITHM_RIGHT_SYMMETRIC:
763 *pd_idx = stripe % raid_disks;
764 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
765 break;
766 default:
767 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
768 conf->algorithm);
769 }
770 break;
1da177e4
LT
771 }
772
773 /*
774 * Finally, compute the new sector number
775 */
776 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
777 return new_sector;
778}
779
780
781static sector_t compute_blocknr(struct stripe_head *sh, int i)
782{
783 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 784 int raid_disks = sh->disks, data_disks = raid_disks - 1;
1da177e4
LT
785 sector_t new_sector = sh->sector, check;
786 int sectors_per_chunk = conf->chunk_size >> 9;
787 sector_t stripe;
788 int chunk_offset;
789 int chunk_number, dummy1, dummy2, dd_idx = i;
790 sector_t r_sector;
791
16a53ecc 792
1da177e4
LT
793 chunk_offset = sector_div(new_sector, sectors_per_chunk);
794 stripe = new_sector;
795 BUG_ON(new_sector != stripe);
796
16a53ecc
N
797 if (i == sh->pd_idx)
798 return 0;
799 switch(conf->level) {
800 case 4: break;
801 case 5:
802 switch (conf->algorithm) {
1da177e4
LT
803 case ALGORITHM_LEFT_ASYMMETRIC:
804 case ALGORITHM_RIGHT_ASYMMETRIC:
805 if (i > sh->pd_idx)
806 i--;
807 break;
808 case ALGORITHM_LEFT_SYMMETRIC:
809 case ALGORITHM_RIGHT_SYMMETRIC:
810 if (i < sh->pd_idx)
811 i += raid_disks;
812 i -= (sh->pd_idx + 1);
813 break;
814 default:
14f8d26b 815 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
16a53ecc
N
816 conf->algorithm);
817 }
818 break;
819 case 6:
820 data_disks = raid_disks - 2;
821 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
822 return 0; /* It is the Q disk */
823 switch (conf->algorithm) {
824 case ALGORITHM_LEFT_ASYMMETRIC:
825 case ALGORITHM_RIGHT_ASYMMETRIC:
826 if (sh->pd_idx == raid_disks-1)
827 i--; /* Q D D D P */
828 else if (i > sh->pd_idx)
829 i -= 2; /* D D P Q D */
830 break;
831 case ALGORITHM_LEFT_SYMMETRIC:
832 case ALGORITHM_RIGHT_SYMMETRIC:
833 if (sh->pd_idx == raid_disks-1)
834 i--; /* Q D D D P */
835 else {
836 /* D D P Q D */
837 if (i < sh->pd_idx)
838 i += raid_disks;
839 i -= (sh->pd_idx + 2);
840 }
841 break;
842 default:
843 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1da177e4 844 conf->algorithm);
16a53ecc
N
845 }
846 break;
1da177e4
LT
847 }
848
849 chunk_number = stripe * data_disks + i;
850 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
851
852 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
853 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
14f8d26b 854 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
855 return 0;
856 }
857 return r_sector;
858}
859
860
861
862/*
16a53ecc
N
863 * Copy data between a page in the stripe cache, and one or more bion
864 * The page could align with the middle of the bio, or there could be
865 * several bion, each with several bio_vecs, which cover part of the page
866 * Multiple bion are linked together on bi_next. There may be extras
867 * at the end of this list. We ignore them.
1da177e4
LT
868 */
869static void copy_data(int frombio, struct bio *bio,
870 struct page *page,
871 sector_t sector)
872{
873 char *pa = page_address(page);
874 struct bio_vec *bvl;
875 int i;
876 int page_offset;
877
878 if (bio->bi_sector >= sector)
879 page_offset = (signed)(bio->bi_sector - sector) * 512;
880 else
881 page_offset = (signed)(sector - bio->bi_sector) * -512;
882 bio_for_each_segment(bvl, bio, i) {
883 int len = bio_iovec_idx(bio,i)->bv_len;
884 int clen;
885 int b_offset = 0;
886
887 if (page_offset < 0) {
888 b_offset = -page_offset;
889 page_offset += b_offset;
890 len -= b_offset;
891 }
892
893 if (len > 0 && page_offset + len > STRIPE_SIZE)
894 clen = STRIPE_SIZE - page_offset;
895 else clen = len;
16a53ecc 896
1da177e4
LT
897 if (clen > 0) {
898 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
899 if (frombio)
900 memcpy(pa+page_offset, ba+b_offset, clen);
901 else
902 memcpy(ba+b_offset, pa+page_offset, clen);
903 __bio_kunmap_atomic(ba, KM_USER0);
904 }
905 if (clen < len) /* hit end of page */
906 break;
907 page_offset += len;
908 }
909}
910
911#define check_xor() do { \
912 if (count == MAX_XOR_BLOCKS) { \
913 xor_block(count, STRIPE_SIZE, ptr); \
914 count = 1; \
915 } \
916 } while(0)
917
918
919static void compute_block(struct stripe_head *sh, int dd_idx)
920{
7ecaa1e6 921 int i, count, disks = sh->disks;
1da177e4
LT
922 void *ptr[MAX_XOR_BLOCKS], *p;
923
924 PRINTK("compute_block, stripe %llu, idx %d\n",
925 (unsigned long long)sh->sector, dd_idx);
926
927 ptr[0] = page_address(sh->dev[dd_idx].page);
928 memset(ptr[0], 0, STRIPE_SIZE);
929 count = 1;
930 for (i = disks ; i--; ) {
931 if (i == dd_idx)
932 continue;
933 p = page_address(sh->dev[i].page);
934 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
935 ptr[count++] = p;
936 else
14f8d26b 937 printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
1da177e4
LT
938 " not present\n", dd_idx,
939 (unsigned long long)sh->sector, i);
940
941 check_xor();
942 }
943 if (count != 1)
944 xor_block(count, STRIPE_SIZE, ptr);
945 set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
946}
947
16a53ecc 948static void compute_parity5(struct stripe_head *sh, int method)
1da177e4
LT
949{
950 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 951 int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
1da177e4
LT
952 void *ptr[MAX_XOR_BLOCKS];
953 struct bio *chosen;
954
16a53ecc 955 PRINTK("compute_parity5, stripe %llu, method %d\n",
1da177e4
LT
956 (unsigned long long)sh->sector, method);
957
958 count = 1;
959 ptr[0] = page_address(sh->dev[pd_idx].page);
960 switch(method) {
961 case READ_MODIFY_WRITE:
78bafebd 962 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags));
1da177e4
LT
963 for (i=disks ; i-- ;) {
964 if (i==pd_idx)
965 continue;
966 if (sh->dev[i].towrite &&
967 test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
968 ptr[count++] = page_address(sh->dev[i].page);
969 chosen = sh->dev[i].towrite;
970 sh->dev[i].towrite = NULL;
971
972 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
973 wake_up(&conf->wait_for_overlap);
974
78bafebd 975 BUG_ON(sh->dev[i].written);
1da177e4
LT
976 sh->dev[i].written = chosen;
977 check_xor();
978 }
979 }
980 break;
981 case RECONSTRUCT_WRITE:
982 memset(ptr[0], 0, STRIPE_SIZE);
983 for (i= disks; i-- ;)
984 if (i!=pd_idx && sh->dev[i].towrite) {
985 chosen = sh->dev[i].towrite;
986 sh->dev[i].towrite = NULL;
987
988 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
989 wake_up(&conf->wait_for_overlap);
990
78bafebd 991 BUG_ON(sh->dev[i].written);
1da177e4
LT
992 sh->dev[i].written = chosen;
993 }
994 break;
995 case CHECK_PARITY:
996 break;
997 }
998 if (count>1) {
999 xor_block(count, STRIPE_SIZE, ptr);
1000 count = 1;
1001 }
1002
1003 for (i = disks; i--;)
1004 if (sh->dev[i].written) {
1005 sector_t sector = sh->dev[i].sector;
1006 struct bio *wbi = sh->dev[i].written;
1007 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1008 copy_data(1, wbi, sh->dev[i].page, sector);
1009 wbi = r5_next_bio(wbi, sector);
1010 }
1011
1012 set_bit(R5_LOCKED, &sh->dev[i].flags);
1013 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1014 }
1015
1016 switch(method) {
1017 case RECONSTRUCT_WRITE:
1018 case CHECK_PARITY:
1019 for (i=disks; i--;)
1020 if (i != pd_idx) {
1021 ptr[count++] = page_address(sh->dev[i].page);
1022 check_xor();
1023 }
1024 break;
1025 case READ_MODIFY_WRITE:
1026 for (i = disks; i--;)
1027 if (sh->dev[i].written) {
1028 ptr[count++] = page_address(sh->dev[i].page);
1029 check_xor();
1030 }
1031 }
1032 if (count != 1)
1033 xor_block(count, STRIPE_SIZE, ptr);
1034
1035 if (method != CHECK_PARITY) {
1036 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1037 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1038 } else
1039 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1040}
1041
16a53ecc
N
1042static void compute_parity6(struct stripe_head *sh, int method)
1043{
1044 raid6_conf_t *conf = sh->raid_conf;
1045 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count;
1046 struct bio *chosen;
1047 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1048 void *ptrs[disks];
1049
1050 qd_idx = raid6_next_disk(pd_idx, disks);
1051 d0_idx = raid6_next_disk(qd_idx, disks);
1052
1053 PRINTK("compute_parity, stripe %llu, method %d\n",
1054 (unsigned long long)sh->sector, method);
1055
1056 switch(method) {
1057 case READ_MODIFY_WRITE:
1058 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1059 case RECONSTRUCT_WRITE:
1060 for (i= disks; i-- ;)
1061 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1062 chosen = sh->dev[i].towrite;
1063 sh->dev[i].towrite = NULL;
1064
1065 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1066 wake_up(&conf->wait_for_overlap);
1067
1068 if (sh->dev[i].written) BUG();
1069 sh->dev[i].written = chosen;
1070 }
1071 break;
1072 case CHECK_PARITY:
1073 BUG(); /* Not implemented yet */
1074 }
1075
1076 for (i = disks; i--;)
1077 if (sh->dev[i].written) {
1078 sector_t sector = sh->dev[i].sector;
1079 struct bio *wbi = sh->dev[i].written;
1080 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1081 copy_data(1, wbi, sh->dev[i].page, sector);
1082 wbi = r5_next_bio(wbi, sector);
1083 }
1084
1085 set_bit(R5_LOCKED, &sh->dev[i].flags);
1086 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1087 }
1088
1089// switch(method) {
1090// case RECONSTRUCT_WRITE:
1091// case CHECK_PARITY:
1092// case UPDATE_PARITY:
1093 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1094 /* FIX: Is this ordering of drives even remotely optimal? */
1095 count = 0;
1096 i = d0_idx;
1097 do {
1098 ptrs[count++] = page_address(sh->dev[i].page);
1099 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1100 printk("block %d/%d not uptodate on parity calc\n", i,count);
1101 i = raid6_next_disk(i, disks);
1102 } while ( i != d0_idx );
1103// break;
1104// }
1105
1106 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1107
1108 switch(method) {
1109 case RECONSTRUCT_WRITE:
1110 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1111 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1112 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1113 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1114 break;
1115 case UPDATE_PARITY:
1116 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1117 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1118 break;
1119 }
1120}
1121
1122
1123/* Compute one missing block */
1124static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1125{
1126 raid6_conf_t *conf = sh->raid_conf;
1127 int i, count, disks = conf->raid_disks;
1128 void *ptr[MAX_XOR_BLOCKS], *p;
1129 int pd_idx = sh->pd_idx;
1130 int qd_idx = raid6_next_disk(pd_idx, disks);
1131
1132 PRINTK("compute_block_1, stripe %llu, idx %d\n",
1133 (unsigned long long)sh->sector, dd_idx);
1134
1135 if ( dd_idx == qd_idx ) {
1136 /* We're actually computing the Q drive */
1137 compute_parity6(sh, UPDATE_PARITY);
1138 } else {
1139 ptr[0] = page_address(sh->dev[dd_idx].page);
1140 if (!nozero) memset(ptr[0], 0, STRIPE_SIZE);
1141 count = 1;
1142 for (i = disks ; i--; ) {
1143 if (i == dd_idx || i == qd_idx)
1144 continue;
1145 p = page_address(sh->dev[i].page);
1146 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1147 ptr[count++] = p;
1148 else
1149 printk("compute_block() %d, stripe %llu, %d"
1150 " not present\n", dd_idx,
1151 (unsigned long long)sh->sector, i);
1152
1153 check_xor();
1154 }
1155 if (count != 1)
1156 xor_block(count, STRIPE_SIZE, ptr);
1157 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1158 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1159 }
1160}
1161
1162/* Compute two missing blocks */
1163static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1164{
1165 raid6_conf_t *conf = sh->raid_conf;
1166 int i, count, disks = conf->raid_disks;
1167 int pd_idx = sh->pd_idx;
1168 int qd_idx = raid6_next_disk(pd_idx, disks);
1169 int d0_idx = raid6_next_disk(qd_idx, disks);
1170 int faila, failb;
1171
1172 /* faila and failb are disk numbers relative to d0_idx */
1173 /* pd_idx become disks-2 and qd_idx become disks-1 */
1174 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1175 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1176
1177 BUG_ON(faila == failb);
1178 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1179
1180 PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1181 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1182
1183 if ( failb == disks-1 ) {
1184 /* Q disk is one of the missing disks */
1185 if ( faila == disks-2 ) {
1186 /* Missing P+Q, just recompute */
1187 compute_parity6(sh, UPDATE_PARITY);
1188 return;
1189 } else {
1190 /* We're missing D+Q; recompute D from P */
1191 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1192 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1193 return;
1194 }
1195 }
1196
1197 /* We're missing D+P or D+D; build pointer table */
1198 {
1199 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1200 void *ptrs[disks];
1201
1202 count = 0;
1203 i = d0_idx;
1204 do {
1205 ptrs[count++] = page_address(sh->dev[i].page);
1206 i = raid6_next_disk(i, disks);
1207 if (i != dd_idx1 && i != dd_idx2 &&
1208 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1209 printk("compute_2 with missing block %d/%d\n", count, i);
1210 } while ( i != d0_idx );
1211
1212 if ( failb == disks-2 ) {
1213 /* We're missing D+P. */
1214 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1215 } else {
1216 /* We're missing D+D. */
1217 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1218 }
1219
1220 /* Both the above update both missing blocks */
1221 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1222 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1223 }
1224}
1225
1226
1227
1da177e4
LT
1228/*
1229 * Each stripe/dev can have one or more bion attached.
16a53ecc 1230 * toread/towrite point to the first in a chain.
1da177e4
LT
1231 * The bi_next chain must be in order.
1232 */
1233static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1234{
1235 struct bio **bip;
1236 raid5_conf_t *conf = sh->raid_conf;
72626685 1237 int firstwrite=0;
1da177e4
LT
1238
1239 PRINTK("adding bh b#%llu to stripe s#%llu\n",
1240 (unsigned long long)bi->bi_sector,
1241 (unsigned long long)sh->sector);
1242
1243
1244 spin_lock(&sh->lock);
1245 spin_lock_irq(&conf->device_lock);
72626685 1246 if (forwrite) {
1da177e4 1247 bip = &sh->dev[dd_idx].towrite;
72626685
N
1248 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1249 firstwrite = 1;
1250 } else
1da177e4
LT
1251 bip = &sh->dev[dd_idx].toread;
1252 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1253 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1254 goto overlap;
1255 bip = & (*bip)->bi_next;
1256 }
1257 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1258 goto overlap;
1259
78bafebd 1260 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
1261 if (*bip)
1262 bi->bi_next = *bip;
1263 *bip = bi;
1264 bi->bi_phys_segments ++;
1265 spin_unlock_irq(&conf->device_lock);
1266 spin_unlock(&sh->lock);
1267
1268 PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1269 (unsigned long long)bi->bi_sector,
1270 (unsigned long long)sh->sector, dd_idx);
1271
72626685
N
1272 if (conf->mddev->bitmap && firstwrite) {
1273 sh->bm_seq = conf->seq_write;
1274 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1275 STRIPE_SECTORS, 0);
1276 set_bit(STRIPE_BIT_DELAY, &sh->state);
1277 }
1278
1da177e4
LT
1279 if (forwrite) {
1280 /* check if page is covered */
1281 sector_t sector = sh->dev[dd_idx].sector;
1282 for (bi=sh->dev[dd_idx].towrite;
1283 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1284 bi && bi->bi_sector <= sector;
1285 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1286 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1287 sector = bi->bi_sector + (bi->bi_size>>9);
1288 }
1289 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1290 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1291 }
1292 return 1;
1293
1294 overlap:
1295 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1296 spin_unlock_irq(&conf->device_lock);
1297 spin_unlock(&sh->lock);
1298 return 0;
1299}
1300
29269553
N
1301static void end_reshape(raid5_conf_t *conf);
1302
16a53ecc
N
1303static int page_is_zero(struct page *p)
1304{
1305 char *a = page_address(p);
1306 return ((*(u32*)a) == 0 &&
1307 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1308}
1309
ccfcc3c1
N
1310static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1311{
1312 int sectors_per_chunk = conf->chunk_size >> 9;
1313 sector_t x = stripe;
1314 int pd_idx, dd_idx;
1315 int chunk_offset = sector_div(x, sectors_per_chunk);
1316 stripe = x;
1317 raid5_compute_sector(stripe*(disks-1)*sectors_per_chunk
1318 + chunk_offset, disks, disks-1, &dd_idx, &pd_idx, conf);
1319 return pd_idx;
1320}
1321
1da177e4
LT
1322
1323/*
1324 * handle_stripe - do things to a stripe.
1325 *
1326 * We lock the stripe and then examine the state of various bits
1327 * to see what needs to be done.
1328 * Possible results:
1329 * return some read request which now have data
1330 * return some write requests which are safely on disc
1331 * schedule a read on some buffers
1332 * schedule a write of some buffers
1333 * return confirmation of parity correctness
1334 *
1335 * Parity calculations are done inside the stripe lock
1336 * buffers are taken off read_list or write_list, and bh_cache buffers
1337 * get BH_Lock set before the stripe lock is released.
1338 *
1339 */
1340
16a53ecc 1341static void handle_stripe5(struct stripe_head *sh)
1da177e4
LT
1342{
1343 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1344 int disks = sh->disks;
1da177e4
LT
1345 struct bio *return_bi= NULL;
1346 struct bio *bi;
1347 int i;
ccfcc3c1 1348 int syncing, expanding, expanded;
1da177e4
LT
1349 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1350 int non_overwrite = 0;
1351 int failed_num=0;
1352 struct r5dev *dev;
1353
1354 PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1355 (unsigned long long)sh->sector, atomic_read(&sh->count),
1356 sh->pd_idx);
1357
1358 spin_lock(&sh->lock);
1359 clear_bit(STRIPE_HANDLE, &sh->state);
1360 clear_bit(STRIPE_DELAYED, &sh->state);
1361
1362 syncing = test_bit(STRIPE_SYNCING, &sh->state);
ccfcc3c1
N
1363 expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1364 expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1da177e4
LT
1365 /* Now to look around and see what can be done */
1366
9910f16a 1367 rcu_read_lock();
1da177e4
LT
1368 for (i=disks; i--; ) {
1369 mdk_rdev_t *rdev;
1370 dev = &sh->dev[i];
1371 clear_bit(R5_Insync, &dev->flags);
1da177e4
LT
1372
1373 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1374 i, dev->flags, dev->toread, dev->towrite, dev->written);
1375 /* maybe we can reply to a read */
1376 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1377 struct bio *rbi, *rbi2;
1378 PRINTK("Return read for disc %d\n", i);
1379 spin_lock_irq(&conf->device_lock);
1380 rbi = dev->toread;
1381 dev->toread = NULL;
1382 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1383 wake_up(&conf->wait_for_overlap);
1384 spin_unlock_irq(&conf->device_lock);
1385 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1386 copy_data(0, rbi, dev->page, dev->sector);
1387 rbi2 = r5_next_bio(rbi, dev->sector);
1388 spin_lock_irq(&conf->device_lock);
1389 if (--rbi->bi_phys_segments == 0) {
1390 rbi->bi_next = return_bi;
1391 return_bi = rbi;
1392 }
1393 spin_unlock_irq(&conf->device_lock);
1394 rbi = rbi2;
1395 }
1396 }
1397
1398 /* now count some things */
1399 if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1400 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1401
1402
1403 if (dev->toread) to_read++;
1404 if (dev->towrite) {
1405 to_write++;
1406 if (!test_bit(R5_OVERWRITE, &dev->flags))
1407 non_overwrite++;
1408 }
1409 if (dev->written) written++;
9910f16a 1410 rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 1411 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 1412 /* The ReadError flag will just be confusing now */
4e5314b5
N
1413 clear_bit(R5_ReadError, &dev->flags);
1414 clear_bit(R5_ReWrite, &dev->flags);
1415 }
b2d444d7 1416 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 1417 || test_bit(R5_ReadError, &dev->flags)) {
1da177e4
LT
1418 failed++;
1419 failed_num = i;
1420 } else
1421 set_bit(R5_Insync, &dev->flags);
1422 }
9910f16a 1423 rcu_read_unlock();
1da177e4
LT
1424 PRINTK("locked=%d uptodate=%d to_read=%d"
1425 " to_write=%d failed=%d failed_num=%d\n",
1426 locked, uptodate, to_read, to_write, failed, failed_num);
1427 /* check if the array has lost two devices and, if so, some requests might
1428 * need to be failed
1429 */
1430 if (failed > 1 && to_read+to_write+written) {
1da177e4 1431 for (i=disks; i--; ) {
72626685 1432 int bitmap_end = 0;
4e5314b5
N
1433
1434 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
9910f16a
N
1435 mdk_rdev_t *rdev;
1436 rcu_read_lock();
1437 rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 1438 if (rdev && test_bit(In_sync, &rdev->flags))
4e5314b5
N
1439 /* multiple read failures in one stripe */
1440 md_error(conf->mddev, rdev);
9910f16a 1441 rcu_read_unlock();
4e5314b5
N
1442 }
1443
72626685 1444 spin_lock_irq(&conf->device_lock);
1da177e4
LT
1445 /* fail all writes first */
1446 bi = sh->dev[i].towrite;
1447 sh->dev[i].towrite = NULL;
72626685 1448 if (bi) { to_write--; bitmap_end = 1; }
1da177e4
LT
1449
1450 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1451 wake_up(&conf->wait_for_overlap);
1452
1453 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1454 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1455 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1456 if (--bi->bi_phys_segments == 0) {
1457 md_write_end(conf->mddev);
1458 bi->bi_next = return_bi;
1459 return_bi = bi;
1460 }
1461 bi = nextbi;
1462 }
1463 /* and fail all 'written' */
1464 bi = sh->dev[i].written;
1465 sh->dev[i].written = NULL;
72626685 1466 if (bi) bitmap_end = 1;
1da177e4
LT
1467 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1468 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1469 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1470 if (--bi->bi_phys_segments == 0) {
1471 md_write_end(conf->mddev);
1472 bi->bi_next = return_bi;
1473 return_bi = bi;
1474 }
1475 bi = bi2;
1476 }
1477
1478 /* fail any reads if this device is non-operational */
4e5314b5
N
1479 if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1480 test_bit(R5_ReadError, &sh->dev[i].flags)) {
1da177e4
LT
1481 bi = sh->dev[i].toread;
1482 sh->dev[i].toread = NULL;
1483 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1484 wake_up(&conf->wait_for_overlap);
1485 if (bi) to_read--;
1486 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1487 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1488 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1489 if (--bi->bi_phys_segments == 0) {
1490 bi->bi_next = return_bi;
1491 return_bi = bi;
1492 }
1493 bi = nextbi;
1494 }
1495 }
72626685
N
1496 spin_unlock_irq(&conf->device_lock);
1497 if (bitmap_end)
1498 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1499 STRIPE_SECTORS, 0, 0);
1da177e4 1500 }
1da177e4
LT
1501 }
1502 if (failed > 1 && syncing) {
1503 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1504 clear_bit(STRIPE_SYNCING, &sh->state);
1505 syncing = 0;
1506 }
1507
1508 /* might be able to return some write requests if the parity block
1509 * is safe, or on a failed drive
1510 */
1511 dev = &sh->dev[sh->pd_idx];
1512 if ( written &&
1513 ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
1514 test_bit(R5_UPTODATE, &dev->flags))
1515 || (failed == 1 && failed_num == sh->pd_idx))
1516 ) {
1517 /* any written block on an uptodate or failed drive can be returned.
1518 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1519 * never LOCKED, so we don't need to test 'failed' directly.
1520 */
1521 for (i=disks; i--; )
1522 if (sh->dev[i].written) {
1523 dev = &sh->dev[i];
1524 if (!test_bit(R5_LOCKED, &dev->flags) &&
1525 test_bit(R5_UPTODATE, &dev->flags) ) {
1526 /* We can return any write requests */
1527 struct bio *wbi, *wbi2;
72626685 1528 int bitmap_end = 0;
1da177e4
LT
1529 PRINTK("Return write for disc %d\n", i);
1530 spin_lock_irq(&conf->device_lock);
1531 wbi = dev->written;
1532 dev->written = NULL;
1533 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1534 wbi2 = r5_next_bio(wbi, dev->sector);
1535 if (--wbi->bi_phys_segments == 0) {
1536 md_write_end(conf->mddev);
1537 wbi->bi_next = return_bi;
1538 return_bi = wbi;
1539 }
1540 wbi = wbi2;
1541 }
72626685
N
1542 if (dev->towrite == NULL)
1543 bitmap_end = 1;
1da177e4 1544 spin_unlock_irq(&conf->device_lock);
72626685
N
1545 if (bitmap_end)
1546 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1547 STRIPE_SECTORS,
1548 !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1da177e4
LT
1549 }
1550 }
1551 }
1552
1553 /* Now we might consider reading some blocks, either to check/generate
1554 * parity, or to satisfy requests
1555 * or to load a block that is being partially written.
1556 */
ccfcc3c1 1557 if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) {
1da177e4
LT
1558 for (i=disks; i--;) {
1559 dev = &sh->dev[i];
1560 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1561 (dev->toread ||
1562 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1563 syncing ||
ccfcc3c1 1564 expanding ||
1da177e4
LT
1565 (failed && (sh->dev[failed_num].toread ||
1566 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
1567 )
1568 ) {
1569 /* we would like to get this block, possibly
1570 * by computing it, but we might not be able to
1571 */
1572 if (uptodate == disks-1) {
1573 PRINTK("Computing block %d\n", i);
1574 compute_block(sh, i);
1575 uptodate++;
1576 } else if (test_bit(R5_Insync, &dev->flags)) {
1577 set_bit(R5_LOCKED, &dev->flags);
1578 set_bit(R5_Wantread, &dev->flags);
1579#if 0
1580 /* if I am just reading this block and we don't have
1581 a failed drive, or any pending writes then sidestep the cache */
1582 if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
1583 ! syncing && !failed && !to_write) {
1584 sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page;
1585 sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data;
1586 }
1587#endif
1588 locked++;
1589 PRINTK("Reading block %d (sync=%d)\n",
1590 i, syncing);
1da177e4
LT
1591 }
1592 }
1593 }
1594 set_bit(STRIPE_HANDLE, &sh->state);
1595 }
1596
1597 /* now to consider writing and what else, if anything should be read */
1598 if (to_write) {
1599 int rmw=0, rcw=0;
1600 for (i=disks ; i--;) {
1601 /* would I have to read this buffer for read_modify_write */
1602 dev = &sh->dev[i];
1603 if ((dev->towrite || i == sh->pd_idx) &&
1604 (!test_bit(R5_LOCKED, &dev->flags)
1605#if 0
1606|| sh->bh_page[i]!=bh->b_page
1607#endif
1608 ) &&
1609 !test_bit(R5_UPTODATE, &dev->flags)) {
1610 if (test_bit(R5_Insync, &dev->flags)
1611/* && !(!mddev->insync && i == sh->pd_idx) */
1612 )
1613 rmw++;
1614 else rmw += 2*disks; /* cannot read it */
1615 }
1616 /* Would I have to read this buffer for reconstruct_write */
1617 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1618 (!test_bit(R5_LOCKED, &dev->flags)
1619#if 0
1620|| sh->bh_page[i] != bh->b_page
1621#endif
1622 ) &&
1623 !test_bit(R5_UPTODATE, &dev->flags)) {
1624 if (test_bit(R5_Insync, &dev->flags)) rcw++;
1625 else rcw += 2*disks;
1626 }
1627 }
1628 PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1629 (unsigned long long)sh->sector, rmw, rcw);
1630 set_bit(STRIPE_HANDLE, &sh->state);
1631 if (rmw < rcw && rmw > 0)
1632 /* prefer read-modify-write, but need to get some data */
1633 for (i=disks; i--;) {
1634 dev = &sh->dev[i];
1635 if ((dev->towrite || i == sh->pd_idx) &&
1636 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1637 test_bit(R5_Insync, &dev->flags)) {
1638 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1639 {
1640 PRINTK("Read_old block %d for r-m-w\n", i);
1641 set_bit(R5_LOCKED, &dev->flags);
1642 set_bit(R5_Wantread, &dev->flags);
1643 locked++;
1644 } else {
1645 set_bit(STRIPE_DELAYED, &sh->state);
1646 set_bit(STRIPE_HANDLE, &sh->state);
1647 }
1648 }
1649 }
1650 if (rcw <= rmw && rcw > 0)
1651 /* want reconstruct write, but need to get some data */
1652 for (i=disks; i--;) {
1653 dev = &sh->dev[i];
1654 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1655 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1656 test_bit(R5_Insync, &dev->flags)) {
1657 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1658 {
1659 PRINTK("Read_old block %d for Reconstruct\n", i);
1660 set_bit(R5_LOCKED, &dev->flags);
1661 set_bit(R5_Wantread, &dev->flags);
1662 locked++;
1663 } else {
1664 set_bit(STRIPE_DELAYED, &sh->state);
1665 set_bit(STRIPE_HANDLE, &sh->state);
1666 }
1667 }
1668 }
1669 /* now if nothing is locked, and if we have enough data, we can start a write request */
72626685
N
1670 if (locked == 0 && (rcw == 0 ||rmw == 0) &&
1671 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1da177e4 1672 PRINTK("Computing parity...\n");
16a53ecc 1673 compute_parity5(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1da177e4
LT
1674 /* now every locked buffer is ready to be written */
1675 for (i=disks; i--;)
1676 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1677 PRINTK("Writing block %d\n", i);
1678 locked++;
1679 set_bit(R5_Wantwrite, &sh->dev[i].flags);
1680 if (!test_bit(R5_Insync, &sh->dev[i].flags)
1681 || (i==sh->pd_idx && failed == 0))
1682 set_bit(STRIPE_INSYNC, &sh->state);
1683 }
1684 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1685 atomic_dec(&conf->preread_active_stripes);
1686 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1687 md_wakeup_thread(conf->mddev->thread);
1688 }
1689 }
1690 }
1691
1692 /* maybe we need to check and possibly fix the parity for this stripe
1693 * Any reads will already have been scheduled, so we just see if enough data
1694 * is available
1695 */
1696 if (syncing && locked == 0 &&
14f8d26b 1697 !test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
1698 set_bit(STRIPE_HANDLE, &sh->state);
1699 if (failed == 0) {
78bafebd 1700 BUG_ON(uptodate != disks);
16a53ecc 1701 compute_parity5(sh, CHECK_PARITY);
1da177e4 1702 uptodate--;
16a53ecc 1703 if (page_is_zero(sh->dev[sh->pd_idx].page)) {
1da177e4
LT
1704 /* parity is correct (on disc, not in buffer any more) */
1705 set_bit(STRIPE_INSYNC, &sh->state);
9d88883e
N
1706 } else {
1707 conf->mddev->resync_mismatches += STRIPE_SECTORS;
1708 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1709 /* don't try to repair!! */
1710 set_bit(STRIPE_INSYNC, &sh->state);
14f8d26b
N
1711 else {
1712 compute_block(sh, sh->pd_idx);
1713 uptodate++;
1714 }
1da177e4
LT
1715 }
1716 }
1717 if (!test_bit(STRIPE_INSYNC, &sh->state)) {
14f8d26b 1718 /* either failed parity check, or recovery is happening */
1da177e4
LT
1719 if (failed==0)
1720 failed_num = sh->pd_idx;
1da177e4 1721 dev = &sh->dev[failed_num];
14f8d26b
N
1722 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
1723 BUG_ON(uptodate != disks);
1724
1da177e4
LT
1725 set_bit(R5_LOCKED, &dev->flags);
1726 set_bit(R5_Wantwrite, &dev->flags);
72626685 1727 clear_bit(STRIPE_DEGRADED, &sh->state);
1da177e4
LT
1728 locked++;
1729 set_bit(STRIPE_INSYNC, &sh->state);
1da177e4
LT
1730 }
1731 }
1732 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1733 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1734 clear_bit(STRIPE_SYNCING, &sh->state);
1735 }
4e5314b5
N
1736
1737 /* If the failed drive is just a ReadError, then we might need to progress
1738 * the repair/check process
1739 */
ba22dcbf
N
1740 if (failed == 1 && ! conf->mddev->ro &&
1741 test_bit(R5_ReadError, &sh->dev[failed_num].flags)
4e5314b5
N
1742 && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
1743 && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
1744 ) {
1745 dev = &sh->dev[failed_num];
1746 if (!test_bit(R5_ReWrite, &dev->flags)) {
1747 set_bit(R5_Wantwrite, &dev->flags);
1748 set_bit(R5_ReWrite, &dev->flags);
1749 set_bit(R5_LOCKED, &dev->flags);
ccfcc3c1 1750 locked++;
4e5314b5
N
1751 } else {
1752 /* let's read it back */
1753 set_bit(R5_Wantread, &dev->flags);
1754 set_bit(R5_LOCKED, &dev->flags);
ccfcc3c1 1755 locked++;
4e5314b5
N
1756 }
1757 }
1758
ccfcc3c1
N
1759 if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
1760 /* Need to write out all blocks after computing parity */
1761 sh->disks = conf->raid_disks;
1762 sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks);
16a53ecc 1763 compute_parity5(sh, RECONSTRUCT_WRITE);
ccfcc3c1
N
1764 for (i= conf->raid_disks; i--;) {
1765 set_bit(R5_LOCKED, &sh->dev[i].flags);
1766 locked++;
1767 set_bit(R5_Wantwrite, &sh->dev[i].flags);
1768 }
1769 clear_bit(STRIPE_EXPANDING, &sh->state);
1770 } else if (expanded) {
1771 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 1772 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
1773 wake_up(&conf->wait_for_overlap);
1774 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
1775 }
1776
1777 if (expanding && locked == 0) {
1778 /* We have read all the blocks in this stripe and now we need to
1779 * copy some of them into a target stripe for expand.
1780 */
1781 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1782 for (i=0; i< sh->disks; i++)
1783 if (i != sh->pd_idx) {
1784 int dd_idx, pd_idx, j;
1785 struct stripe_head *sh2;
1786
1787 sector_t bn = compute_blocknr(sh, i);
1788 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
1789 conf->raid_disks-1,
1790 &dd_idx, &pd_idx, conf);
1791 sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1);
1792 if (sh2 == NULL)
1793 /* so far only the early blocks of this stripe
1794 * have been requested. When later blocks
1795 * get requested, we will try again
1796 */
1797 continue;
1798 if(!test_bit(STRIPE_EXPANDING, &sh2->state) ||
1799 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
1800 /* must have already done this block */
1801 release_stripe(sh2);
1802 continue;
1803 }
1804 memcpy(page_address(sh2->dev[dd_idx].page),
1805 page_address(sh->dev[i].page),
1806 STRIPE_SIZE);
1807 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
1808 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
1809 for (j=0; j<conf->raid_disks; j++)
1810 if (j != sh2->pd_idx &&
1811 !test_bit(R5_Expanded, &sh2->dev[j].flags))
1812 break;
1813 if (j == conf->raid_disks) {
1814 set_bit(STRIPE_EXPAND_READY, &sh2->state);
1815 set_bit(STRIPE_HANDLE, &sh2->state);
1816 }
1817 release_stripe(sh2);
1818 }
1819 }
1820
1da177e4
LT
1821 spin_unlock(&sh->lock);
1822
1823 while ((bi=return_bi)) {
1824 int bytes = bi->bi_size;
1825
1826 return_bi = bi->bi_next;
1827 bi->bi_next = NULL;
1828 bi->bi_size = 0;
1829 bi->bi_end_io(bi, bytes, 0);
1830 }
1831 for (i=disks; i-- ;) {
1832 int rw;
1833 struct bio *bi;
1834 mdk_rdev_t *rdev;
1835 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1836 rw = 1;
1837 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1838 rw = 0;
1839 else
1840 continue;
1841
1842 bi = &sh->dev[i].req;
1843
1844 bi->bi_rw = rw;
1845 if (rw)
1846 bi->bi_end_io = raid5_end_write_request;
1847 else
1848 bi->bi_end_io = raid5_end_read_request;
1849
1850 rcu_read_lock();
d6065f7b 1851 rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 1852 if (rdev && test_bit(Faulty, &rdev->flags))
1da177e4
LT
1853 rdev = NULL;
1854 if (rdev)
1855 atomic_inc(&rdev->nr_pending);
1856 rcu_read_unlock();
1857
1858 if (rdev) {
ccfcc3c1 1859 if (syncing || expanding || expanded)
1da177e4
LT
1860 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1861
1862 bi->bi_bdev = rdev->bdev;
1863 PRINTK("for %llu schedule op %ld on disc %d\n",
1864 (unsigned long long)sh->sector, bi->bi_rw, i);
1865 atomic_inc(&sh->count);
1866 bi->bi_sector = sh->sector + rdev->data_offset;
1867 bi->bi_flags = 1 << BIO_UPTODATE;
1868 bi->bi_vcnt = 1;
1869 bi->bi_max_vecs = 1;
1870 bi->bi_idx = 0;
1871 bi->bi_io_vec = &sh->dev[i].vec;
1872 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1873 bi->bi_io_vec[0].bv_offset = 0;
1874 bi->bi_size = STRIPE_SIZE;
1875 bi->bi_next = NULL;
4dbcdc75
N
1876 if (rw == WRITE &&
1877 test_bit(R5_ReWrite, &sh->dev[i].flags))
1878 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1da177e4
LT
1879 generic_make_request(bi);
1880 } else {
72626685
N
1881 if (rw == 1)
1882 set_bit(STRIPE_DEGRADED, &sh->state);
1da177e4
LT
1883 PRINTK("skip op %ld on disc %d for sector %llu\n",
1884 bi->bi_rw, i, (unsigned long long)sh->sector);
1885 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1886 set_bit(STRIPE_HANDLE, &sh->state);
1887 }
1888 }
1889}
1890
16a53ecc 1891static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1da177e4 1892{
16a53ecc
N
1893 raid6_conf_t *conf = sh->raid_conf;
1894 int disks = conf->raid_disks;
1895 struct bio *return_bi= NULL;
1896 struct bio *bi;
1897 int i;
1898 int syncing;
1899 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1900 int non_overwrite = 0;
1901 int failed_num[2] = {0, 0};
1902 struct r5dev *dev, *pdev, *qdev;
1903 int pd_idx = sh->pd_idx;
1904 int qd_idx = raid6_next_disk(pd_idx, disks);
1905 int p_failed, q_failed;
1da177e4 1906
16a53ecc
N
1907 PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
1908 (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count),
1909 pd_idx, qd_idx);
72626685 1910
16a53ecc
N
1911 spin_lock(&sh->lock);
1912 clear_bit(STRIPE_HANDLE, &sh->state);
1913 clear_bit(STRIPE_DELAYED, &sh->state);
1914
1915 syncing = test_bit(STRIPE_SYNCING, &sh->state);
1916 /* Now to look around and see what can be done */
1da177e4
LT
1917
1918 rcu_read_lock();
16a53ecc
N
1919 for (i=disks; i--; ) {
1920 mdk_rdev_t *rdev;
1921 dev = &sh->dev[i];
1922 clear_bit(R5_Insync, &dev->flags);
1da177e4 1923
16a53ecc
N
1924 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1925 i, dev->flags, dev->toread, dev->towrite, dev->written);
1926 /* maybe we can reply to a read */
1927 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1928 struct bio *rbi, *rbi2;
1929 PRINTK("Return read for disc %d\n", i);
1930 spin_lock_irq(&conf->device_lock);
1931 rbi = dev->toread;
1932 dev->toread = NULL;
1933 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1934 wake_up(&conf->wait_for_overlap);
1935 spin_unlock_irq(&conf->device_lock);
1936 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1937 copy_data(0, rbi, dev->page, dev->sector);
1938 rbi2 = r5_next_bio(rbi, dev->sector);
1939 spin_lock_irq(&conf->device_lock);
1940 if (--rbi->bi_phys_segments == 0) {
1941 rbi->bi_next = return_bi;
1942 return_bi = rbi;
1943 }
1944 spin_unlock_irq(&conf->device_lock);
1945 rbi = rbi2;
1946 }
1947 }
1da177e4 1948
16a53ecc
N
1949 /* now count some things */
1950 if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1951 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1da177e4 1952
16a53ecc
N
1953
1954 if (dev->toread) to_read++;
1955 if (dev->towrite) {
1956 to_write++;
1957 if (!test_bit(R5_OVERWRITE, &dev->flags))
1958 non_overwrite++;
1959 }
1960 if (dev->written) written++;
1961 rdev = rcu_dereference(conf->disks[i].rdev);
1962 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1963 /* The ReadError flag will just be confusing now */
1964 clear_bit(R5_ReadError, &dev->flags);
1965 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 1966 }
16a53ecc
N
1967 if (!rdev || !test_bit(In_sync, &rdev->flags)
1968 || test_bit(R5_ReadError, &dev->flags)) {
1969 if ( failed < 2 )
1970 failed_num[failed] = i;
1971 failed++;
1972 } else
1973 set_bit(R5_Insync, &dev->flags);
1da177e4
LT
1974 }
1975 rcu_read_unlock();
16a53ecc
N
1976 PRINTK("locked=%d uptodate=%d to_read=%d"
1977 " to_write=%d failed=%d failed_num=%d,%d\n",
1978 locked, uptodate, to_read, to_write, failed,
1979 failed_num[0], failed_num[1]);
1980 /* check if the array has lost >2 devices and, if so, some requests might
1981 * need to be failed
1982 */
1983 if (failed > 2 && to_read+to_write+written) {
1984 for (i=disks; i--; ) {
1985 int bitmap_end = 0;
1da177e4 1986
16a53ecc
N
1987 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1988 mdk_rdev_t *rdev;
1989 rcu_read_lock();
1990 rdev = rcu_dereference(conf->disks[i].rdev);
1991 if (rdev && test_bit(In_sync, &rdev->flags))
1992 /* multiple read failures in one stripe */
1993 md_error(conf->mddev, rdev);
1994 rcu_read_unlock();
1995 }
1da177e4 1996
16a53ecc
N
1997 spin_lock_irq(&conf->device_lock);
1998 /* fail all writes first */
1999 bi = sh->dev[i].towrite;
2000 sh->dev[i].towrite = NULL;
2001 if (bi) { to_write--; bitmap_end = 1; }
1da177e4 2002
16a53ecc
N
2003 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2004 wake_up(&conf->wait_for_overlap);
2005
2006 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2007 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2008 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2009 if (--bi->bi_phys_segments == 0) {
2010 md_write_end(conf->mddev);
2011 bi->bi_next = return_bi;
2012 return_bi = bi;
2013 }
2014 bi = nextbi;
2015 }
2016 /* and fail all 'written' */
2017 bi = sh->dev[i].written;
2018 sh->dev[i].written = NULL;
2019 if (bi) bitmap_end = 1;
2020 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
2021 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2022 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2023 if (--bi->bi_phys_segments == 0) {
2024 md_write_end(conf->mddev);
2025 bi->bi_next = return_bi;
2026 return_bi = bi;
2027 }
2028 bi = bi2;
2029 }
2030
2031 /* fail any reads if this device is non-operational */
2032 if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2033 test_bit(R5_ReadError, &sh->dev[i].flags)) {
2034 bi = sh->dev[i].toread;
2035 sh->dev[i].toread = NULL;
2036 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2037 wake_up(&conf->wait_for_overlap);
2038 if (bi) to_read--;
2039 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2040 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2041 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2042 if (--bi->bi_phys_segments == 0) {
2043 bi->bi_next = return_bi;
2044 return_bi = bi;
2045 }
2046 bi = nextbi;
2047 }
2048 }
2049 spin_unlock_irq(&conf->device_lock);
2050 if (bitmap_end)
2051 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2052 STRIPE_SECTORS, 0, 0);
2053 }
2054 }
2055 if (failed > 2 && syncing) {
2056 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2057 clear_bit(STRIPE_SYNCING, &sh->state);
2058 syncing = 0;
2059 }
2060
2061 /*
2062 * might be able to return some write requests if the parity blocks
2063 * are safe, or on a failed drive
2064 */
2065 pdev = &sh->dev[pd_idx];
2066 p_failed = (failed >= 1 && failed_num[0] == pd_idx)
2067 || (failed >= 2 && failed_num[1] == pd_idx);
2068 qdev = &sh->dev[qd_idx];
2069 q_failed = (failed >= 1 && failed_num[0] == qd_idx)
2070 || (failed >= 2 && failed_num[1] == qd_idx);
2071
2072 if ( written &&
2073 ( p_failed || ((test_bit(R5_Insync, &pdev->flags)
2074 && !test_bit(R5_LOCKED, &pdev->flags)
2075 && test_bit(R5_UPTODATE, &pdev->flags))) ) &&
2076 ( q_failed || ((test_bit(R5_Insync, &qdev->flags)
2077 && !test_bit(R5_LOCKED, &qdev->flags)
2078 && test_bit(R5_UPTODATE, &qdev->flags))) ) ) {
2079 /* any written block on an uptodate or failed drive can be
2080 * returned. Note that if we 'wrote' to a failed drive,
2081 * it will be UPTODATE, but never LOCKED, so we don't need
2082 * to test 'failed' directly.
2083 */
2084 for (i=disks; i--; )
2085 if (sh->dev[i].written) {
2086 dev = &sh->dev[i];
2087 if (!test_bit(R5_LOCKED, &dev->flags) &&
2088 test_bit(R5_UPTODATE, &dev->flags) ) {
2089 /* We can return any write requests */
2090 int bitmap_end = 0;
2091 struct bio *wbi, *wbi2;
2092 PRINTK("Return write for stripe %llu disc %d\n",
2093 (unsigned long long)sh->sector, i);
2094 spin_lock_irq(&conf->device_lock);
2095 wbi = dev->written;
2096 dev->written = NULL;
2097 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2098 wbi2 = r5_next_bio(wbi, dev->sector);
2099 if (--wbi->bi_phys_segments == 0) {
2100 md_write_end(conf->mddev);
2101 wbi->bi_next = return_bi;
2102 return_bi = wbi;
2103 }
2104 wbi = wbi2;
2105 }
2106 if (dev->towrite == NULL)
2107 bitmap_end = 1;
2108 spin_unlock_irq(&conf->device_lock);
2109 if (bitmap_end)
2110 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2111 STRIPE_SECTORS,
2112 !test_bit(STRIPE_DEGRADED, &sh->state), 0);
2113 }
2114 }
2115 }
2116
2117 /* Now we might consider reading some blocks, either to check/generate
2118 * parity, or to satisfy requests
2119 * or to load a block that is being partially written.
2120 */
2121 if (to_read || non_overwrite || (to_write && failed) || (syncing && (uptodate < disks))) {
2122 for (i=disks; i--;) {
2123 dev = &sh->dev[i];
2124 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2125 (dev->toread ||
2126 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2127 syncing ||
2128 (failed >= 1 && (sh->dev[failed_num[0]].toread || to_write)) ||
2129 (failed >= 2 && (sh->dev[failed_num[1]].toread || to_write))
2130 )
2131 ) {
2132 /* we would like to get this block, possibly
2133 * by computing it, but we might not be able to
2134 */
2135 if (uptodate == disks-1) {
2136 PRINTK("Computing stripe %llu block %d\n",
2137 (unsigned long long)sh->sector, i);
2138 compute_block_1(sh, i, 0);
2139 uptodate++;
2140 } else if ( uptodate == disks-2 && failed >= 2 ) {
2141 /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
2142 int other;
2143 for (other=disks; other--;) {
2144 if ( other == i )
2145 continue;
2146 if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) )
2147 break;
2148 }
2149 BUG_ON(other < 0);
2150 PRINTK("Computing stripe %llu blocks %d,%d\n",
2151 (unsigned long long)sh->sector, i, other);
2152 compute_block_2(sh, i, other);
2153 uptodate += 2;
2154 } else if (test_bit(R5_Insync, &dev->flags)) {
2155 set_bit(R5_LOCKED, &dev->flags);
2156 set_bit(R5_Wantread, &dev->flags);
2157#if 0
2158 /* if I am just reading this block and we don't have
2159 a failed drive, or any pending writes then sidestep the cache */
2160 if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
2161 ! syncing && !failed && !to_write) {
2162 sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page;
2163 sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data;
2164 }
2165#endif
2166 locked++;
2167 PRINTK("Reading block %d (sync=%d)\n",
2168 i, syncing);
2169 }
2170 }
2171 }
2172 set_bit(STRIPE_HANDLE, &sh->state);
2173 }
2174
2175 /* now to consider writing and what else, if anything should be read */
2176 if (to_write) {
2177 int rcw=0, must_compute=0;
2178 for (i=disks ; i--;) {
2179 dev = &sh->dev[i];
2180 /* Would I have to read this buffer for reconstruct_write */
2181 if (!test_bit(R5_OVERWRITE, &dev->flags)
2182 && i != pd_idx && i != qd_idx
2183 && (!test_bit(R5_LOCKED, &dev->flags)
2184#if 0
2185 || sh->bh_page[i] != bh->b_page
2186#endif
2187 ) &&
2188 !test_bit(R5_UPTODATE, &dev->flags)) {
2189 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2190 else {
2191 PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags);
2192 must_compute++;
2193 }
2194 }
2195 }
2196 PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
2197 (unsigned long long)sh->sector, rcw, must_compute);
2198 set_bit(STRIPE_HANDLE, &sh->state);
2199
2200 if (rcw > 0)
2201 /* want reconstruct write, but need to get some data */
2202 for (i=disks; i--;) {
2203 dev = &sh->dev[i];
2204 if (!test_bit(R5_OVERWRITE, &dev->flags)
2205 && !(failed == 0 && (i == pd_idx || i == qd_idx))
2206 && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2207 test_bit(R5_Insync, &dev->flags)) {
2208 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2209 {
2210 PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
2211 (unsigned long long)sh->sector, i);
2212 set_bit(R5_LOCKED, &dev->flags);
2213 set_bit(R5_Wantread, &dev->flags);
2214 locked++;
2215 } else {
2216 PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
2217 (unsigned long long)sh->sector, i);
2218 set_bit(STRIPE_DELAYED, &sh->state);
2219 set_bit(STRIPE_HANDLE, &sh->state);
2220 }
2221 }
2222 }
2223 /* now if nothing is locked, and if we have enough data, we can start a write request */
2224 if (locked == 0 && rcw == 0 &&
2225 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2226 if ( must_compute > 0 ) {
2227 /* We have failed blocks and need to compute them */
2228 switch ( failed ) {
2229 case 0: BUG();
2230 case 1: compute_block_1(sh, failed_num[0], 0); break;
2231 case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break;
2232 default: BUG(); /* This request should have been failed? */
2233 }
2234 }
2235
2236 PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector);
2237 compute_parity6(sh, RECONSTRUCT_WRITE);
2238 /* now every locked buffer is ready to be written */
2239 for (i=disks; i--;)
2240 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2241 PRINTK("Writing stripe %llu block %d\n",
2242 (unsigned long long)sh->sector, i);
2243 locked++;
2244 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2245 }
2246 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2247 set_bit(STRIPE_INSYNC, &sh->state);
2248
2249 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2250 atomic_dec(&conf->preread_active_stripes);
2251 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
2252 md_wakeup_thread(conf->mddev->thread);
2253 }
2254 }
2255 }
2256
2257 /* maybe we need to check and possibly fix the parity for this stripe
2258 * Any reads will already have been scheduled, so we just see if enough data
2259 * is available
2260 */
2261 if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) {
2262 int update_p = 0, update_q = 0;
2263 struct r5dev *dev;
2264
2265 set_bit(STRIPE_HANDLE, &sh->state);
2266
2267 BUG_ON(failed>2);
2268 BUG_ON(uptodate < disks);
2269 /* Want to check and possibly repair P and Q.
2270 * However there could be one 'failed' device, in which
2271 * case we can only check one of them, possibly using the
2272 * other to generate missing data
2273 */
2274
2275 /* If !tmp_page, we cannot do the calculations,
2276 * but as we have set STRIPE_HANDLE, we will soon be called
2277 * by stripe_handle with a tmp_page - just wait until then.
2278 */
2279 if (tmp_page) {
2280 if (failed == q_failed) {
2281 /* The only possible failed device holds 'Q', so it makes
2282 * sense to check P (If anything else were failed, we would
2283 * have used P to recreate it).
2284 */
2285 compute_block_1(sh, pd_idx, 1);
2286 if (!page_is_zero(sh->dev[pd_idx].page)) {
2287 compute_block_1(sh,pd_idx,0);
2288 update_p = 1;
2289 }
2290 }
2291 if (!q_failed && failed < 2) {
2292 /* q is not failed, and we didn't use it to generate
2293 * anything, so it makes sense to check it
2294 */
2295 memcpy(page_address(tmp_page),
2296 page_address(sh->dev[qd_idx].page),
2297 STRIPE_SIZE);
2298 compute_parity6(sh, UPDATE_PARITY);
2299 if (memcmp(page_address(tmp_page),
2300 page_address(sh->dev[qd_idx].page),
2301 STRIPE_SIZE)!= 0) {
2302 clear_bit(STRIPE_INSYNC, &sh->state);
2303 update_q = 1;
2304 }
2305 }
2306 if (update_p || update_q) {
2307 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2308 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2309 /* don't try to repair!! */
2310 update_p = update_q = 0;
2311 }
2312
2313 /* now write out any block on a failed drive,
2314 * or P or Q if they need it
2315 */
2316
2317 if (failed == 2) {
2318 dev = &sh->dev[failed_num[1]];
2319 locked++;
2320 set_bit(R5_LOCKED, &dev->flags);
2321 set_bit(R5_Wantwrite, &dev->flags);
2322 }
2323 if (failed >= 1) {
2324 dev = &sh->dev[failed_num[0]];
2325 locked++;
2326 set_bit(R5_LOCKED, &dev->flags);
2327 set_bit(R5_Wantwrite, &dev->flags);
2328 }
2329
2330 if (update_p) {
2331 dev = &sh->dev[pd_idx];
2332 locked ++;
2333 set_bit(R5_LOCKED, &dev->flags);
2334 set_bit(R5_Wantwrite, &dev->flags);
2335 }
2336 if (update_q) {
2337 dev = &sh->dev[qd_idx];
2338 locked++;
2339 set_bit(R5_LOCKED, &dev->flags);
2340 set_bit(R5_Wantwrite, &dev->flags);
2341 }
2342 clear_bit(STRIPE_DEGRADED, &sh->state);
2343
2344 set_bit(STRIPE_INSYNC, &sh->state);
2345 }
2346 }
2347
2348 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2349 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2350 clear_bit(STRIPE_SYNCING, &sh->state);
2351 }
2352
2353 /* If the failed drives are just a ReadError, then we might need
2354 * to progress the repair/check process
2355 */
2356 if (failed <= 2 && ! conf->mddev->ro)
2357 for (i=0; i<failed;i++) {
2358 dev = &sh->dev[failed_num[i]];
2359 if (test_bit(R5_ReadError, &dev->flags)
2360 && !test_bit(R5_LOCKED, &dev->flags)
2361 && test_bit(R5_UPTODATE, &dev->flags)
2362 ) {
2363 if (!test_bit(R5_ReWrite, &dev->flags)) {
2364 set_bit(R5_Wantwrite, &dev->flags);
2365 set_bit(R5_ReWrite, &dev->flags);
2366 set_bit(R5_LOCKED, &dev->flags);
2367 } else {
2368 /* let's read it back */
2369 set_bit(R5_Wantread, &dev->flags);
2370 set_bit(R5_LOCKED, &dev->flags);
2371 }
2372 }
2373 }
2374 spin_unlock(&sh->lock);
2375
2376 while ((bi=return_bi)) {
2377 int bytes = bi->bi_size;
2378
2379 return_bi = bi->bi_next;
2380 bi->bi_next = NULL;
2381 bi->bi_size = 0;
2382 bi->bi_end_io(bi, bytes, 0);
2383 }
2384 for (i=disks; i-- ;) {
2385 int rw;
2386 struct bio *bi;
2387 mdk_rdev_t *rdev;
2388 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
2389 rw = 1;
2390 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
2391 rw = 0;
2392 else
2393 continue;
2394
2395 bi = &sh->dev[i].req;
2396
2397 bi->bi_rw = rw;
2398 if (rw)
2399 bi->bi_end_io = raid5_end_write_request;
2400 else
2401 bi->bi_end_io = raid5_end_read_request;
2402
2403 rcu_read_lock();
2404 rdev = rcu_dereference(conf->disks[i].rdev);
2405 if (rdev && test_bit(Faulty, &rdev->flags))
2406 rdev = NULL;
2407 if (rdev)
2408 atomic_inc(&rdev->nr_pending);
2409 rcu_read_unlock();
2410
2411 if (rdev) {
2412 if (syncing)
2413 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
2414
2415 bi->bi_bdev = rdev->bdev;
2416 PRINTK("for %llu schedule op %ld on disc %d\n",
2417 (unsigned long long)sh->sector, bi->bi_rw, i);
2418 atomic_inc(&sh->count);
2419 bi->bi_sector = sh->sector + rdev->data_offset;
2420 bi->bi_flags = 1 << BIO_UPTODATE;
2421 bi->bi_vcnt = 1;
2422 bi->bi_max_vecs = 1;
2423 bi->bi_idx = 0;
2424 bi->bi_io_vec = &sh->dev[i].vec;
2425 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
2426 bi->bi_io_vec[0].bv_offset = 0;
2427 bi->bi_size = STRIPE_SIZE;
2428 bi->bi_next = NULL;
2429 if (rw == WRITE &&
2430 test_bit(R5_ReWrite, &sh->dev[i].flags))
2431 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2432 generic_make_request(bi);
2433 } else {
2434 if (rw == 1)
2435 set_bit(STRIPE_DEGRADED, &sh->state);
2436 PRINTK("skip op %ld on disc %d for sector %llu\n",
2437 bi->bi_rw, i, (unsigned long long)sh->sector);
2438 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2439 set_bit(STRIPE_HANDLE, &sh->state);
2440 }
2441 }
2442}
2443
2444static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
2445{
2446 if (sh->raid_conf->level == 6)
2447 handle_stripe6(sh, tmp_page);
2448 else
2449 handle_stripe5(sh);
2450}
2451
2452
2453
2454static void raid5_activate_delayed(raid5_conf_t *conf)
2455{
2456 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
2457 while (!list_empty(&conf->delayed_list)) {
2458 struct list_head *l = conf->delayed_list.next;
2459 struct stripe_head *sh;
2460 sh = list_entry(l, struct stripe_head, lru);
2461 list_del_init(l);
2462 clear_bit(STRIPE_DELAYED, &sh->state);
2463 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2464 atomic_inc(&conf->preread_active_stripes);
2465 list_add_tail(&sh->lru, &conf->handle_list);
2466 }
2467 }
2468}
2469
2470static void activate_bit_delay(raid5_conf_t *conf)
2471{
2472 /* device_lock is held */
2473 struct list_head head;
2474 list_add(&head, &conf->bitmap_list);
2475 list_del_init(&conf->bitmap_list);
2476 while (!list_empty(&head)) {
2477 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
2478 list_del_init(&sh->lru);
2479 atomic_inc(&sh->count);
2480 __release_stripe(conf, sh);
2481 }
2482}
2483
2484static void unplug_slaves(mddev_t *mddev)
2485{
2486 raid5_conf_t *conf = mddev_to_conf(mddev);
2487 int i;
2488
2489 rcu_read_lock();
2490 for (i=0; i<mddev->raid_disks; i++) {
2491 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2492 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
2493 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
2494
2495 atomic_inc(&rdev->nr_pending);
2496 rcu_read_unlock();
2497
2498 if (r_queue->unplug_fn)
2499 r_queue->unplug_fn(r_queue);
2500
2501 rdev_dec_pending(rdev, mddev);
2502 rcu_read_lock();
2503 }
2504 }
2505 rcu_read_unlock();
2506}
2507
2508static void raid5_unplug_device(request_queue_t *q)
2509{
2510 mddev_t *mddev = q->queuedata;
2511 raid5_conf_t *conf = mddev_to_conf(mddev);
2512 unsigned long flags;
2513
2514 spin_lock_irqsave(&conf->device_lock, flags);
2515
2516 if (blk_remove_plug(q)) {
2517 conf->seq_flush++;
2518 raid5_activate_delayed(conf);
72626685 2519 }
1da177e4
LT
2520 md_wakeup_thread(mddev->thread);
2521
2522 spin_unlock_irqrestore(&conf->device_lock, flags);
2523
2524 unplug_slaves(mddev);
2525}
2526
2527static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
2528 sector_t *error_sector)
2529{
2530 mddev_t *mddev = q->queuedata;
2531 raid5_conf_t *conf = mddev_to_conf(mddev);
2532 int i, ret = 0;
2533
2534 rcu_read_lock();
2535 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
d6065f7b 2536 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 2537 if (rdev && !test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
2538 struct block_device *bdev = rdev->bdev;
2539 request_queue_t *r_queue = bdev_get_queue(bdev);
2540
2541 if (!r_queue->issue_flush_fn)
2542 ret = -EOPNOTSUPP;
2543 else {
2544 atomic_inc(&rdev->nr_pending);
2545 rcu_read_unlock();
2546 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
2547 error_sector);
2548 rdev_dec_pending(rdev, mddev);
2549 rcu_read_lock();
2550 }
2551 }
2552 }
2553 rcu_read_unlock();
2554 return ret;
2555}
2556
2557static inline void raid5_plug_device(raid5_conf_t *conf)
2558{
2559 spin_lock_irq(&conf->device_lock);
2560 blk_plug_device(conf->mddev->queue);
2561 spin_unlock_irq(&conf->device_lock);
2562}
2563
7ecaa1e6 2564static int make_request(request_queue_t *q, struct bio * bi)
1da177e4
LT
2565{
2566 mddev_t *mddev = q->queuedata;
2567 raid5_conf_t *conf = mddev_to_conf(mddev);
1da177e4
LT
2568 unsigned int dd_idx, pd_idx;
2569 sector_t new_sector;
2570 sector_t logical_sector, last_sector;
2571 struct stripe_head *sh;
a362357b 2572 const int rw = bio_data_dir(bi);
f6344757 2573 int remaining;
1da177e4 2574
e5dcdd80
N
2575 if (unlikely(bio_barrier(bi))) {
2576 bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
2577 return 0;
2578 }
2579
3d310eb7 2580 md_write_start(mddev, bi);
06d91a5f 2581
a362357b
JA
2582 disk_stat_inc(mddev->gendisk, ios[rw]);
2583 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
1da177e4
LT
2584
2585 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
2586 last_sector = bi->bi_sector + (bi->bi_size>>9);
2587 bi->bi_next = NULL;
2588 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 2589
1da177e4
LT
2590 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
2591 DEFINE_WAIT(w);
16a53ecc 2592 int disks, data_disks;
b578d55f 2593
7ecaa1e6 2594 retry:
b578d55f 2595 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
7ecaa1e6
N
2596 if (likely(conf->expand_progress == MaxSector))
2597 disks = conf->raid_disks;
2598 else {
df8e7f76
N
2599 /* spinlock is needed as expand_progress may be
2600 * 64bit on a 32bit platform, and so it might be
2601 * possible to see a half-updated value
2602 * Ofcourse expand_progress could change after
2603 * the lock is dropped, so once we get a reference
2604 * to the stripe that we think it is, we will have
2605 * to check again.
2606 */
7ecaa1e6
N
2607 spin_lock_irq(&conf->device_lock);
2608 disks = conf->raid_disks;
2609 if (logical_sector >= conf->expand_progress)
2610 disks = conf->previous_raid_disks;
b578d55f
N
2611 else {
2612 if (logical_sector >= conf->expand_lo) {
2613 spin_unlock_irq(&conf->device_lock);
2614 schedule();
2615 goto retry;
2616 }
2617 }
7ecaa1e6
N
2618 spin_unlock_irq(&conf->device_lock);
2619 }
16a53ecc
N
2620 data_disks = disks - conf->max_degraded;
2621
2622 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
7ecaa1e6 2623 &dd_idx, &pd_idx, conf);
1da177e4
LT
2624 PRINTK("raid5: make_request, sector %llu logical %llu\n",
2625 (unsigned long long)new_sector,
2626 (unsigned long long)logical_sector);
2627
7ecaa1e6 2628 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
1da177e4 2629 if (sh) {
7ecaa1e6
N
2630 if (unlikely(conf->expand_progress != MaxSector)) {
2631 /* expansion might have moved on while waiting for a
df8e7f76
N
2632 * stripe, so we must do the range check again.
2633 * Expansion could still move past after this
2634 * test, but as we are holding a reference to
2635 * 'sh', we know that if that happens,
2636 * STRIPE_EXPANDING will get set and the expansion
2637 * won't proceed until we finish with the stripe.
7ecaa1e6
N
2638 */
2639 int must_retry = 0;
2640 spin_lock_irq(&conf->device_lock);
2641 if (logical_sector < conf->expand_progress &&
2642 disks == conf->previous_raid_disks)
2643 /* mismatch, need to try again */
2644 must_retry = 1;
2645 spin_unlock_irq(&conf->device_lock);
2646 if (must_retry) {
2647 release_stripe(sh);
2648 goto retry;
2649 }
2650 }
e464eafd
N
2651 /* FIXME what if we get a false positive because these
2652 * are being updated.
2653 */
2654 if (logical_sector >= mddev->suspend_lo &&
2655 logical_sector < mddev->suspend_hi) {
2656 release_stripe(sh);
2657 schedule();
2658 goto retry;
2659 }
7ecaa1e6
N
2660
2661 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
2662 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
2663 /* Stripe is busy expanding or
2664 * add failed due to overlap. Flush everything
1da177e4
LT
2665 * and wait a while
2666 */
2667 raid5_unplug_device(mddev->queue);
2668 release_stripe(sh);
2669 schedule();
2670 goto retry;
2671 }
2672 finish_wait(&conf->wait_for_overlap, &w);
2673 raid5_plug_device(conf);
16a53ecc 2674 handle_stripe(sh, NULL);
1da177e4 2675 release_stripe(sh);
1da177e4
LT
2676 } else {
2677 /* cannot get stripe for read-ahead, just give-up */
2678 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2679 finish_wait(&conf->wait_for_overlap, &w);
2680 break;
2681 }
2682
2683 }
2684 spin_lock_irq(&conf->device_lock);
f6344757
N
2685 remaining = --bi->bi_phys_segments;
2686 spin_unlock_irq(&conf->device_lock);
2687 if (remaining == 0) {
1da177e4
LT
2688 int bytes = bi->bi_size;
2689
16a53ecc 2690 if ( rw == WRITE )
1da177e4
LT
2691 md_write_end(mddev);
2692 bi->bi_size = 0;
2693 bi->bi_end_io(bi, bytes, 0);
2694 }
1da177e4
LT
2695 return 0;
2696}
2697
52c03291 2698static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 2699{
52c03291
N
2700 /* reshaping is quite different to recovery/resync so it is
2701 * handled quite separately ... here.
2702 *
2703 * On each call to sync_request, we gather one chunk worth of
2704 * destination stripes and flag them as expanding.
2705 * Then we find all the source stripes and request reads.
2706 * As the reads complete, handle_stripe will copy the data
2707 * into the destination stripe and release that stripe.
2708 */
1da177e4
LT
2709 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2710 struct stripe_head *sh;
ccfcc3c1
N
2711 int pd_idx;
2712 sector_t first_sector, last_sector;
52c03291
N
2713 int raid_disks;
2714 int data_disks;
2715 int i;
2716 int dd_idx;
2717 sector_t writepos, safepos, gap;
2718
2719 if (sector_nr == 0 &&
2720 conf->expand_progress != 0) {
2721 /* restarting in the middle, skip the initial sectors */
2722 sector_nr = conf->expand_progress;
2723 sector_div(sector_nr, conf->raid_disks-1);
2724 *skipped = 1;
2725 return sector_nr;
2726 }
2727
2728 /* we update the metadata when there is more than 3Meg
2729 * in the block range (that is rather arbitrary, should
2730 * probably be time based) or when the data about to be
2731 * copied would over-write the source of the data at
2732 * the front of the range.
2733 * i.e. one new_stripe forward from expand_progress new_maps
2734 * to after where expand_lo old_maps to
2735 */
2736 writepos = conf->expand_progress +
2737 conf->chunk_size/512*(conf->raid_disks-1);
2738 sector_div(writepos, conf->raid_disks-1);
2739 safepos = conf->expand_lo;
2740 sector_div(safepos, conf->previous_raid_disks-1);
2741 gap = conf->expand_progress - conf->expand_lo;
2742
2743 if (writepos >= safepos ||
2744 gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) {
2745 /* Cannot proceed until we've updated the superblock... */
2746 wait_event(conf->wait_for_overlap,
2747 atomic_read(&conf->reshape_stripes)==0);
2748 mddev->reshape_position = conf->expand_progress;
2749 mddev->sb_dirty = 1;
2750 md_wakeup_thread(mddev->thread);
2751 wait_event(mddev->sb_wait, mddev->sb_dirty == 0 ||
2752 kthread_should_stop());
2753 spin_lock_irq(&conf->device_lock);
2754 conf->expand_lo = mddev->reshape_position;
2755 spin_unlock_irq(&conf->device_lock);
2756 wake_up(&conf->wait_for_overlap);
2757 }
2758
2759 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
2760 int j;
2761 int skipped = 0;
2762 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
2763 sh = get_active_stripe(conf, sector_nr+i,
2764 conf->raid_disks, pd_idx, 0);
2765 set_bit(STRIPE_EXPANDING, &sh->state);
2766 atomic_inc(&conf->reshape_stripes);
2767 /* If any of this stripe is beyond the end of the old
2768 * array, then we need to zero those blocks
2769 */
2770 for (j=sh->disks; j--;) {
2771 sector_t s;
2772 if (j == sh->pd_idx)
2773 continue;
2774 s = compute_blocknr(sh, j);
2775 if (s < (mddev->array_size<<1)) {
2776 skipped = 1;
2777 continue;
2778 }
2779 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
2780 set_bit(R5_Expanded, &sh->dev[j].flags);
2781 set_bit(R5_UPTODATE, &sh->dev[j].flags);
2782 }
2783 if (!skipped) {
2784 set_bit(STRIPE_EXPAND_READY, &sh->state);
2785 set_bit(STRIPE_HANDLE, &sh->state);
2786 }
2787 release_stripe(sh);
2788 }
2789 spin_lock_irq(&conf->device_lock);
2790 conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1);
2791 spin_unlock_irq(&conf->device_lock);
2792 /* Ok, those stripe are ready. We can start scheduling
2793 * reads on the source stripes.
2794 * The source stripes are determined by mapping the first and last
2795 * block on the destination stripes.
2796 */
2797 raid_disks = conf->previous_raid_disks;
2798 data_disks = raid_disks - 1;
2799 first_sector =
2800 raid5_compute_sector(sector_nr*(conf->raid_disks-1),
2801 raid_disks, data_disks,
2802 &dd_idx, &pd_idx, conf);
2803 last_sector =
2804 raid5_compute_sector((sector_nr+conf->chunk_size/512)
2805 *(conf->raid_disks-1) -1,
2806 raid_disks, data_disks,
2807 &dd_idx, &pd_idx, conf);
2808 if (last_sector >= (mddev->size<<1))
2809 last_sector = (mddev->size<<1)-1;
2810 while (first_sector <= last_sector) {
2811 pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks);
2812 sh = get_active_stripe(conf, first_sector,
2813 conf->previous_raid_disks, pd_idx, 0);
2814 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2815 set_bit(STRIPE_HANDLE, &sh->state);
2816 release_stripe(sh);
2817 first_sector += STRIPE_SECTORS;
2818 }
2819 return conf->chunk_size>>9;
2820}
2821
2822/* FIXME go_faster isn't used */
2823static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
2824{
2825 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2826 struct stripe_head *sh;
2827 int pd_idx;
1da177e4 2828 int raid_disks = conf->raid_disks;
72626685
N
2829 sector_t max_sector = mddev->size << 1;
2830 int sync_blocks;
16a53ecc
N
2831 int still_degraded = 0;
2832 int i;
1da177e4 2833
72626685 2834 if (sector_nr >= max_sector) {
1da177e4
LT
2835 /* just being told to finish up .. nothing much to do */
2836 unplug_slaves(mddev);
29269553
N
2837 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2838 end_reshape(conf);
2839 return 0;
2840 }
72626685
N
2841
2842 if (mddev->curr_resync < max_sector) /* aborted */
2843 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2844 &sync_blocks, 1);
16a53ecc 2845 else /* completed sync */
72626685
N
2846 conf->fullsync = 0;
2847 bitmap_close_sync(mddev->bitmap);
2848
1da177e4
LT
2849 return 0;
2850 }
ccfcc3c1 2851
52c03291
N
2852 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2853 return reshape_request(mddev, sector_nr, skipped);
f6705578 2854
16a53ecc 2855 /* if there is too many failed drives and we are trying
1da177e4
LT
2856 * to resync, then assert that we are finished, because there is
2857 * nothing we can do.
2858 */
3285edf1 2859 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 2860 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
57afd89f
N
2861 sector_t rv = (mddev->size << 1) - sector_nr;
2862 *skipped = 1;
1da177e4
LT
2863 return rv;
2864 }
72626685 2865 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 2866 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
2867 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
2868 /* we can skip this block, and probably more */
2869 sync_blocks /= STRIPE_SECTORS;
2870 *skipped = 1;
2871 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
2872 }
1da177e4 2873
ccfcc3c1 2874 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
7ecaa1e6 2875 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
1da177e4 2876 if (sh == NULL) {
7ecaa1e6 2877 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
1da177e4 2878 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 2879 * is trying to get access
1da177e4 2880 */
66c006a5 2881 schedule_timeout_uninterruptible(1);
1da177e4 2882 }
16a53ecc
N
2883 /* Need to check if array will still be degraded after recovery/resync
2884 * We don't need to check the 'failed' flag as when that gets set,
2885 * recovery aborts.
2886 */
2887 for (i=0; i<mddev->raid_disks; i++)
2888 if (conf->disks[i].rdev == NULL)
2889 still_degraded = 1;
2890
2891 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
2892
2893 spin_lock(&sh->lock);
1da177e4
LT
2894 set_bit(STRIPE_SYNCING, &sh->state);
2895 clear_bit(STRIPE_INSYNC, &sh->state);
2896 spin_unlock(&sh->lock);
2897
16a53ecc 2898 handle_stripe(sh, NULL);
1da177e4
LT
2899 release_stripe(sh);
2900
2901 return STRIPE_SECTORS;
2902}
2903
2904/*
2905 * This is our raid5 kernel thread.
2906 *
2907 * We scan the hash table for stripes which can be handled now.
2908 * During the scan, completed stripes are saved for us by the interrupt
2909 * handler, so that they will not have to wait for our next wakeup.
2910 */
2911static void raid5d (mddev_t *mddev)
2912{
2913 struct stripe_head *sh;
2914 raid5_conf_t *conf = mddev_to_conf(mddev);
2915 int handled;
2916
2917 PRINTK("+++ raid5d active\n");
2918
2919 md_check_recovery(mddev);
1da177e4
LT
2920
2921 handled = 0;
2922 spin_lock_irq(&conf->device_lock);
2923 while (1) {
2924 struct list_head *first;
2925
72626685
N
2926 if (conf->seq_flush - conf->seq_write > 0) {
2927 int seq = conf->seq_flush;
700e432d 2928 spin_unlock_irq(&conf->device_lock);
72626685 2929 bitmap_unplug(mddev->bitmap);
700e432d 2930 spin_lock_irq(&conf->device_lock);
72626685
N
2931 conf->seq_write = seq;
2932 activate_bit_delay(conf);
2933 }
2934
1da177e4
LT
2935 if (list_empty(&conf->handle_list) &&
2936 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
2937 !blk_queue_plugged(mddev->queue) &&
2938 !list_empty(&conf->delayed_list))
2939 raid5_activate_delayed(conf);
2940
2941 if (list_empty(&conf->handle_list))
2942 break;
2943
2944 first = conf->handle_list.next;
2945 sh = list_entry(first, struct stripe_head, lru);
2946
2947 list_del_init(first);
2948 atomic_inc(&sh->count);
78bafebd 2949 BUG_ON(atomic_read(&sh->count)!= 1);
1da177e4
LT
2950 spin_unlock_irq(&conf->device_lock);
2951
2952 handled++;
16a53ecc 2953 handle_stripe(sh, conf->spare_page);
1da177e4
LT
2954 release_stripe(sh);
2955
2956 spin_lock_irq(&conf->device_lock);
2957 }
2958 PRINTK("%d stripes handled\n", handled);
2959
2960 spin_unlock_irq(&conf->device_lock);
2961
2962 unplug_slaves(mddev);
2963
2964 PRINTK("--- raid5d inactive\n");
2965}
2966
3f294f4f 2967static ssize_t
007583c9 2968raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 2969{
007583c9 2970 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
2971 if (conf)
2972 return sprintf(page, "%d\n", conf->max_nr_stripes);
2973 else
2974 return 0;
3f294f4f
N
2975}
2976
2977static ssize_t
007583c9 2978raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 2979{
007583c9 2980 raid5_conf_t *conf = mddev_to_conf(mddev);
3f294f4f
N
2981 char *end;
2982 int new;
2983 if (len >= PAGE_SIZE)
2984 return -EINVAL;
96de1e66
N
2985 if (!conf)
2986 return -ENODEV;
3f294f4f
N
2987
2988 new = simple_strtoul(page, &end, 10);
2989 if (!*page || (*end && *end != '\n') )
2990 return -EINVAL;
2991 if (new <= 16 || new > 32768)
2992 return -EINVAL;
2993 while (new < conf->max_nr_stripes) {
2994 if (drop_one_stripe(conf))
2995 conf->max_nr_stripes--;
2996 else
2997 break;
2998 }
2999 while (new > conf->max_nr_stripes) {
3000 if (grow_one_stripe(conf))
3001 conf->max_nr_stripes++;
3002 else break;
3003 }
3004 return len;
3005}
007583c9 3006
96de1e66
N
3007static struct md_sysfs_entry
3008raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3009 raid5_show_stripe_cache_size,
3010 raid5_store_stripe_cache_size);
3f294f4f
N
3011
3012static ssize_t
96de1e66 3013stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 3014{
007583c9 3015 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
3016 if (conf)
3017 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3018 else
3019 return 0;
3f294f4f
N
3020}
3021
96de1e66
N
3022static struct md_sysfs_entry
3023raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 3024
007583c9 3025static struct attribute *raid5_attrs[] = {
3f294f4f
N
3026 &raid5_stripecache_size.attr,
3027 &raid5_stripecache_active.attr,
3028 NULL,
3029};
007583c9
N
3030static struct attribute_group raid5_attrs_group = {
3031 .name = NULL,
3032 .attrs = raid5_attrs,
3f294f4f
N
3033};
3034
72626685 3035static int run(mddev_t *mddev)
1da177e4
LT
3036{
3037 raid5_conf_t *conf;
3038 int raid_disk, memory;
3039 mdk_rdev_t *rdev;
3040 struct disk_info *disk;
3041 struct list_head *tmp;
3042
16a53ecc
N
3043 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
3044 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
14f8d26b 3045 mdname(mddev), mddev->level);
1da177e4
LT
3046 return -EIO;
3047 }
3048
f6705578
N
3049 if (mddev->reshape_position != MaxSector) {
3050 /* Check that we can continue the reshape.
3051 * Currently only disks can change, it must
3052 * increase, and we must be past the point where
3053 * a stripe over-writes itself
3054 */
3055 sector_t here_new, here_old;
3056 int old_disks;
3057
3058 if (mddev->new_level != mddev->level ||
3059 mddev->new_layout != mddev->layout ||
3060 mddev->new_chunk != mddev->chunk_size) {
3061 printk(KERN_ERR "raid5: %s: unsupported reshape required - aborting.\n",
3062 mdname(mddev));
3063 return -EINVAL;
3064 }
3065 if (mddev->delta_disks <= 0) {
3066 printk(KERN_ERR "raid5: %s: unsupported reshape (reduce disks) required - aborting.\n",
3067 mdname(mddev));
3068 return -EINVAL;
3069 }
3070 old_disks = mddev->raid_disks - mddev->delta_disks;
3071 /* reshape_position must be on a new-stripe boundary, and one
3072 * further up in new geometry must map after here in old geometry.
3073 */
3074 here_new = mddev->reshape_position;
3075 if (sector_div(here_new, (mddev->chunk_size>>9)*(mddev->raid_disks-1))) {
3076 printk(KERN_ERR "raid5: reshape_position not on a stripe boundary\n");
3077 return -EINVAL;
3078 }
3079 /* here_new is the stripe we will write to */
3080 here_old = mddev->reshape_position;
3081 sector_div(here_old, (mddev->chunk_size>>9)*(old_disks-1));
3082 /* here_old is the first stripe that we might need to read from */
3083 if (here_new >= here_old) {
3084 /* Reading from the same stripe as writing to - bad */
3085 printk(KERN_ERR "raid5: reshape_position too early for auto-recovery - aborting.\n");
3086 return -EINVAL;
3087 }
3088 printk(KERN_INFO "raid5: reshape will continue\n");
3089 /* OK, we should be able to continue; */
3090 }
3091
3092
b55e6bfc 3093 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
1da177e4
LT
3094 if ((conf = mddev->private) == NULL)
3095 goto abort;
f6705578
N
3096 if (mddev->reshape_position == MaxSector) {
3097 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
3098 } else {
3099 conf->raid_disks = mddev->raid_disks;
3100 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
3101 }
3102
3103 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
b55e6bfc
N
3104 GFP_KERNEL);
3105 if (!conf->disks)
3106 goto abort;
9ffae0cf 3107
1da177e4
LT
3108 conf->mddev = mddev;
3109
fccddba0 3110 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 3111 goto abort;
1da177e4 3112
16a53ecc
N
3113 if (mddev->level == 6) {
3114 conf->spare_page = alloc_page(GFP_KERNEL);
3115 if (!conf->spare_page)
3116 goto abort;
3117 }
1da177e4
LT
3118 spin_lock_init(&conf->device_lock);
3119 init_waitqueue_head(&conf->wait_for_stripe);
3120 init_waitqueue_head(&conf->wait_for_overlap);
3121 INIT_LIST_HEAD(&conf->handle_list);
3122 INIT_LIST_HEAD(&conf->delayed_list);
72626685 3123 INIT_LIST_HEAD(&conf->bitmap_list);
1da177e4
LT
3124 INIT_LIST_HEAD(&conf->inactive_list);
3125 atomic_set(&conf->active_stripes, 0);
3126 atomic_set(&conf->preread_active_stripes, 0);
3127
1da177e4
LT
3128 PRINTK("raid5: run(%s) called.\n", mdname(mddev));
3129
3130 ITERATE_RDEV(mddev,rdev,tmp) {
3131 raid_disk = rdev->raid_disk;
f6705578 3132 if (raid_disk >= conf->raid_disks
1da177e4
LT
3133 || raid_disk < 0)
3134 continue;
3135 disk = conf->disks + raid_disk;
3136
3137 disk->rdev = rdev;
3138
b2d444d7 3139 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
3140 char b[BDEVNAME_SIZE];
3141 printk(KERN_INFO "raid5: device %s operational as raid"
3142 " disk %d\n", bdevname(rdev->bdev,b),
3143 raid_disk);
3144 conf->working_disks++;
3145 }
3146 }
3147
1da177e4 3148 /*
16a53ecc 3149 * 0 for a fully functional array, 1 or 2 for a degraded array.
1da177e4
LT
3150 */
3151 mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks;
3152 conf->mddev = mddev;
3153 conf->chunk_size = mddev->chunk_size;
3154 conf->level = mddev->level;
16a53ecc
N
3155 if (conf->level == 6)
3156 conf->max_degraded = 2;
3157 else
3158 conf->max_degraded = 1;
1da177e4
LT
3159 conf->algorithm = mddev->layout;
3160 conf->max_nr_stripes = NR_STRIPES;
f6705578 3161 conf->expand_progress = mddev->reshape_position;
1da177e4
LT
3162
3163 /* device size must be a multiple of chunk size */
3164 mddev->size &= ~(mddev->chunk_size/1024 -1);
b1581566 3165 mddev->resync_max_sectors = mddev->size << 1;
1da177e4 3166
16a53ecc
N
3167 if (conf->level == 6 && conf->raid_disks < 4) {
3168 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
3169 mdname(mddev), conf->raid_disks);
3170 goto abort;
3171 }
1da177e4
LT
3172 if (!conf->chunk_size || conf->chunk_size % 4) {
3173 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
3174 conf->chunk_size, mdname(mddev));
3175 goto abort;
3176 }
3177 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
3178 printk(KERN_ERR
3179 "raid5: unsupported parity algorithm %d for %s\n",
3180 conf->algorithm, mdname(mddev));
3181 goto abort;
3182 }
16a53ecc 3183 if (mddev->degraded > conf->max_degraded) {
1da177e4
LT
3184 printk(KERN_ERR "raid5: not enough operational devices for %s"
3185 " (%d/%d failed)\n",
3186 mdname(mddev), conf->failed_disks, conf->raid_disks);
3187 goto abort;
3188 }
3189
16a53ecc 3190 if (mddev->degraded > 0 &&
1da177e4 3191 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
3192 if (mddev->ok_start_degraded)
3193 printk(KERN_WARNING
3194 "raid5: starting dirty degraded array: %s"
3195 "- data corruption possible.\n",
3196 mdname(mddev));
3197 else {
3198 printk(KERN_ERR
3199 "raid5: cannot start dirty degraded array for %s\n",
3200 mdname(mddev));
3201 goto abort;
3202 }
1da177e4
LT
3203 }
3204
3205 {
3206 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
3207 if (!mddev->thread) {
3208 printk(KERN_ERR
3209 "raid5: couldn't allocate thread for %s\n",
3210 mdname(mddev));
3211 goto abort;
3212 }
3213 }
5036805b 3214 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
1da177e4
LT
3215 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
3216 if (grow_stripes(conf, conf->max_nr_stripes)) {
3217 printk(KERN_ERR
3218 "raid5: couldn't allocate %dkB for buffers\n", memory);
3219 shrink_stripes(conf);
3220 md_unregister_thread(mddev->thread);
3221 goto abort;
3222 } else
3223 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
3224 memory, mdname(mddev));
3225
3226 if (mddev->degraded == 0)
3227 printk("raid5: raid level %d set %s active with %d out of %d"
3228 " devices, algorithm %d\n", conf->level, mdname(mddev),
3229 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
3230 conf->algorithm);
3231 else
3232 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
3233 " out of %d devices, algorithm %d\n", conf->level,
3234 mdname(mddev), mddev->raid_disks - mddev->degraded,
3235 mddev->raid_disks, conf->algorithm);
3236
3237 print_raid5_conf(conf);
3238
f6705578
N
3239 if (conf->expand_progress != MaxSector) {
3240 printk("...ok start reshape thread\n");
b578d55f 3241 conf->expand_lo = conf->expand_progress;
f6705578
N
3242 atomic_set(&conf->reshape_stripes, 0);
3243 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3244 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3245 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3246 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3247 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3248 "%s_reshape");
3249 /* FIXME if md_register_thread fails?? */
3250 md_wakeup_thread(mddev->sync_thread);
3251
3252 }
3253
1da177e4 3254 /* read-ahead size must cover two whole stripes, which is
16a53ecc 3255 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
3256 */
3257 {
16a53ecc
N
3258 int data_disks = conf->previous_raid_disks - conf->max_degraded;
3259 int stripe = data_disks *
8932c2e0 3260 (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
3261 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3262 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3263 }
3264
3265 /* Ok, everything is just fine now */
007583c9 3266 sysfs_create_group(&mddev->kobj, &raid5_attrs_group);
7a5febe9
N
3267
3268 mddev->queue->unplug_fn = raid5_unplug_device;
3269 mddev->queue->issue_flush_fn = raid5_issue_flush;
16a53ecc
N
3270 mddev->array_size = mddev->size * (conf->previous_raid_disks -
3271 conf->max_degraded);
7a5febe9 3272
1da177e4
LT
3273 return 0;
3274abort:
3275 if (conf) {
3276 print_raid5_conf(conf);
16a53ecc 3277 safe_put_page(conf->spare_page);
b55e6bfc 3278 kfree(conf->disks);
fccddba0 3279 kfree(conf->stripe_hashtbl);
1da177e4
LT
3280 kfree(conf);
3281 }
3282 mddev->private = NULL;
3283 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
3284 return -EIO;
3285}
3286
3287
3288
3f294f4f 3289static int stop(mddev_t *mddev)
1da177e4
LT
3290{
3291 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3292
3293 md_unregister_thread(mddev->thread);
3294 mddev->thread = NULL;
3295 shrink_stripes(conf);
fccddba0 3296 kfree(conf->stripe_hashtbl);
1da177e4 3297 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
007583c9 3298 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
b55e6bfc 3299 kfree(conf->disks);
96de1e66 3300 kfree(conf);
1da177e4
LT
3301 mddev->private = NULL;
3302 return 0;
3303}
3304
3305#if RAID5_DEBUG
16a53ecc 3306static void print_sh (struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
3307{
3308 int i;
3309
16a53ecc
N
3310 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
3311 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
3312 seq_printf(seq, "sh %llu, count %d.\n",
3313 (unsigned long long)sh->sector, atomic_read(&sh->count));
3314 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 3315 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
3316 seq_printf(seq, "(cache%d: %p %ld) ",
3317 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 3318 }
16a53ecc 3319 seq_printf(seq, "\n");
1da177e4
LT
3320}
3321
16a53ecc 3322static void printall (struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
3323{
3324 struct stripe_head *sh;
fccddba0 3325 struct hlist_node *hn;
1da177e4
LT
3326 int i;
3327
3328 spin_lock_irq(&conf->device_lock);
3329 for (i = 0; i < NR_HASH; i++) {
fccddba0 3330 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
3331 if (sh->raid_conf != conf)
3332 continue;
16a53ecc 3333 print_sh(seq, sh);
1da177e4
LT
3334 }
3335 }
3336 spin_unlock_irq(&conf->device_lock);
3337}
3338#endif
3339
3340static void status (struct seq_file *seq, mddev_t *mddev)
3341{
3342 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3343 int i;
3344
3345 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
3346 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks);
3347 for (i = 0; i < conf->raid_disks; i++)
3348 seq_printf (seq, "%s",
3349 conf->disks[i].rdev &&
b2d444d7 3350 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4
LT
3351 seq_printf (seq, "]");
3352#if RAID5_DEBUG
16a53ecc
N
3353 seq_printf (seq, "\n");
3354 printall(seq, conf);
1da177e4
LT
3355#endif
3356}
3357
3358static void print_raid5_conf (raid5_conf_t *conf)
3359{
3360 int i;
3361 struct disk_info *tmp;
3362
3363 printk("RAID5 conf printout:\n");
3364 if (!conf) {
3365 printk("(conf==NULL)\n");
3366 return;
3367 }
3368 printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks,
3369 conf->working_disks, conf->failed_disks);
3370
3371 for (i = 0; i < conf->raid_disks; i++) {
3372 char b[BDEVNAME_SIZE];
3373 tmp = conf->disks + i;
3374 if (tmp->rdev)
3375 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 3376 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
3377 bdevname(tmp->rdev->bdev,b));
3378 }
3379}
3380
3381static int raid5_spare_active(mddev_t *mddev)
3382{
3383 int i;
3384 raid5_conf_t *conf = mddev->private;
3385 struct disk_info *tmp;
3386
3387 for (i = 0; i < conf->raid_disks; i++) {
3388 tmp = conf->disks + i;
3389 if (tmp->rdev
b2d444d7
N
3390 && !test_bit(Faulty, &tmp->rdev->flags)
3391 && !test_bit(In_sync, &tmp->rdev->flags)) {
1da177e4
LT
3392 mddev->degraded--;
3393 conf->failed_disks--;
3394 conf->working_disks++;
b2d444d7 3395 set_bit(In_sync, &tmp->rdev->flags);
1da177e4
LT
3396 }
3397 }
3398 print_raid5_conf(conf);
3399 return 0;
3400}
3401
3402static int raid5_remove_disk(mddev_t *mddev, int number)
3403{
3404 raid5_conf_t *conf = mddev->private;
3405 int err = 0;
3406 mdk_rdev_t *rdev;
3407 struct disk_info *p = conf->disks + number;
3408
3409 print_raid5_conf(conf);
3410 rdev = p->rdev;
3411 if (rdev) {
b2d444d7 3412 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
3413 atomic_read(&rdev->nr_pending)) {
3414 err = -EBUSY;
3415 goto abort;
3416 }
3417 p->rdev = NULL;
fbd568a3 3418 synchronize_rcu();
1da177e4
LT
3419 if (atomic_read(&rdev->nr_pending)) {
3420 /* lost the race, try later */
3421 err = -EBUSY;
3422 p->rdev = rdev;
3423 }
3424 }
3425abort:
3426
3427 print_raid5_conf(conf);
3428 return err;
3429}
3430
3431static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
3432{
3433 raid5_conf_t *conf = mddev->private;
3434 int found = 0;
3435 int disk;
3436 struct disk_info *p;
3437
16a53ecc 3438 if (mddev->degraded > conf->max_degraded)
1da177e4
LT
3439 /* no point adding a device */
3440 return 0;
3441
3442 /*
16a53ecc
N
3443 * find the disk ... but prefer rdev->saved_raid_disk
3444 * if possible.
1da177e4 3445 */
16a53ecc
N
3446 if (rdev->saved_raid_disk >= 0 &&
3447 conf->disks[rdev->saved_raid_disk].rdev == NULL)
3448 disk = rdev->saved_raid_disk;
3449 else
3450 disk = 0;
3451 for ( ; disk < conf->raid_disks; disk++)
1da177e4 3452 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 3453 clear_bit(In_sync, &rdev->flags);
1da177e4
LT
3454 rdev->raid_disk = disk;
3455 found = 1;
72626685
N
3456 if (rdev->saved_raid_disk != disk)
3457 conf->fullsync = 1;
d6065f7b 3458 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
3459 break;
3460 }
3461 print_raid5_conf(conf);
3462 return found;
3463}
3464
3465static int raid5_resize(mddev_t *mddev, sector_t sectors)
3466{
3467 /* no resync is happening, and there is enough space
3468 * on all devices, so we can resize.
3469 * We need to make sure resync covers any new space.
3470 * If the array is shrinking we should possibly wait until
3471 * any io in the removed space completes, but it hardly seems
3472 * worth it.
3473 */
16a53ecc
N
3474 raid5_conf_t *conf = mddev_to_conf(mddev);
3475
1da177e4 3476 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
16a53ecc 3477 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
1da177e4
LT
3478 set_capacity(mddev->gendisk, mddev->array_size << 1);
3479 mddev->changed = 1;
3480 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
3481 mddev->recovery_cp = mddev->size << 1;
3482 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3483 }
3484 mddev->size = sectors /2;
4b5c7ae8 3485 mddev->resync_max_sectors = sectors;
1da177e4
LT
3486 return 0;
3487}
3488
29269553 3489#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f 3490static int raid5_check_reshape(mddev_t *mddev)
29269553
N
3491{
3492 raid5_conf_t *conf = mddev_to_conf(mddev);
3493 int err;
29269553 3494
63c70c4f
N
3495 if (mddev->delta_disks < 0 ||
3496 mddev->new_level != mddev->level)
3497 return -EINVAL; /* Cannot shrink array or change level yet */
3498 if (mddev->delta_disks == 0)
29269553
N
3499 return 0; /* nothing to do */
3500
3501 /* Can only proceed if there are plenty of stripe_heads.
3502 * We need a minimum of one full stripe,, and for sensible progress
3503 * it is best to have about 4 times that.
3504 * If we require 4 times, then the default 256 4K stripe_heads will
3505 * allow for chunk sizes up to 256K, which is probably OK.
3506 * If the chunk size is greater, user-space should request more
3507 * stripe_heads first.
3508 */
63c70c4f
N
3509 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
3510 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
29269553
N
3511 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
3512 (mddev->chunk_size / STRIPE_SIZE)*4);
3513 return -ENOSPC;
3514 }
3515
63c70c4f
N
3516 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
3517 if (err)
3518 return err;
3519
3520 /* looks like we might be able to manage this */
3521 return 0;
3522}
3523
3524static int raid5_start_reshape(mddev_t *mddev)
3525{
3526 raid5_conf_t *conf = mddev_to_conf(mddev);
3527 mdk_rdev_t *rdev;
3528 struct list_head *rtmp;
3529 int spares = 0;
3530 int added_devices = 0;
3531
3532 if (mddev->degraded ||
3533 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3534 return -EBUSY;
3535
29269553
N
3536 ITERATE_RDEV(mddev, rdev, rtmp)
3537 if (rdev->raid_disk < 0 &&
3538 !test_bit(Faulty, &rdev->flags))
3539 spares++;
63c70c4f
N
3540
3541 if (spares < mddev->delta_disks-1)
29269553
N
3542 /* Not enough devices even to make a degraded array
3543 * of that size
3544 */
3545 return -EINVAL;
3546
f6705578 3547 atomic_set(&conf->reshape_stripes, 0);
29269553
N
3548 spin_lock_irq(&conf->device_lock);
3549 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 3550 conf->raid_disks += mddev->delta_disks;
29269553 3551 conf->expand_progress = 0;
b578d55f 3552 conf->expand_lo = 0;
29269553
N
3553 spin_unlock_irq(&conf->device_lock);
3554
3555 /* Add some new drives, as many as will fit.
3556 * We know there are enough to make the newly sized array work.
3557 */
3558 ITERATE_RDEV(mddev, rdev, rtmp)
3559 if (rdev->raid_disk < 0 &&
3560 !test_bit(Faulty, &rdev->flags)) {
3561 if (raid5_add_disk(mddev, rdev)) {
3562 char nm[20];
3563 set_bit(In_sync, &rdev->flags);
3564 conf->working_disks++;
3565 added_devices++;
5fd6c1dc 3566 rdev->recovery_offset = 0;
29269553
N
3567 sprintf(nm, "rd%d", rdev->raid_disk);
3568 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3569 } else
3570 break;
3571 }
3572
63c70c4f
N
3573 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
3574 mddev->raid_disks = conf->raid_disks;
f6705578
N
3575 mddev->reshape_position = 0;
3576 mddev->sb_dirty = 1;
3577
29269553
N
3578 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3579 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3580 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3581 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3582 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3583 "%s_reshape");
3584 if (!mddev->sync_thread) {
3585 mddev->recovery = 0;
3586 spin_lock_irq(&conf->device_lock);
3587 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
3588 conf->expand_progress = MaxSector;
3589 spin_unlock_irq(&conf->device_lock);
3590 return -EAGAIN;
3591 }
3592 md_wakeup_thread(mddev->sync_thread);
3593 md_new_event(mddev);
3594 return 0;
3595}
3596#endif
3597
3598static void end_reshape(raid5_conf_t *conf)
3599{
3600 struct block_device *bdev;
3601
f6705578
N
3602 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
3603 conf->mddev->array_size = conf->mddev->size * (conf->raid_disks-1);
3604 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
3605 conf->mddev->changed = 1;
3606
3607 bdev = bdget_disk(conf->mddev->gendisk, 0);
3608 if (bdev) {
3609 mutex_lock(&bdev->bd_inode->i_mutex);
3610 i_size_write(bdev->bd_inode, conf->mddev->array_size << 10);
3611 mutex_unlock(&bdev->bd_inode->i_mutex);
3612 bdput(bdev);
3613 }
3614 spin_lock_irq(&conf->device_lock);
3615 conf->expand_progress = MaxSector;
3616 spin_unlock_irq(&conf->device_lock);
3617 conf->mddev->reshape_position = MaxSector;
16a53ecc
N
3618
3619 /* read-ahead size must cover two whole stripes, which is
3620 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3621 */
3622 {
3623 int data_disks = conf->previous_raid_disks - conf->max_degraded;
3624 int stripe = data_disks *
3625 (conf->mddev->chunk_size / PAGE_SIZE);
3626 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3627 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3628 }
29269553 3629 }
29269553
N
3630}
3631
72626685
N
3632static void raid5_quiesce(mddev_t *mddev, int state)
3633{
3634 raid5_conf_t *conf = mddev_to_conf(mddev);
3635
3636 switch(state) {
e464eafd
N
3637 case 2: /* resume for a suspend */
3638 wake_up(&conf->wait_for_overlap);
3639 break;
3640
72626685
N
3641 case 1: /* stop all writes */
3642 spin_lock_irq(&conf->device_lock);
3643 conf->quiesce = 1;
3644 wait_event_lock_irq(conf->wait_for_stripe,
3645 atomic_read(&conf->active_stripes) == 0,
3646 conf->device_lock, /* nothing */);
3647 spin_unlock_irq(&conf->device_lock);
3648 break;
3649
3650 case 0: /* re-enable writes */
3651 spin_lock_irq(&conf->device_lock);
3652 conf->quiesce = 0;
3653 wake_up(&conf->wait_for_stripe);
e464eafd 3654 wake_up(&conf->wait_for_overlap);
72626685
N
3655 spin_unlock_irq(&conf->device_lock);
3656 break;
3657 }
72626685 3658}
b15c2e57 3659
16a53ecc
N
3660static struct mdk_personality raid6_personality =
3661{
3662 .name = "raid6",
3663 .level = 6,
3664 .owner = THIS_MODULE,
3665 .make_request = make_request,
3666 .run = run,
3667 .stop = stop,
3668 .status = status,
3669 .error_handler = error,
3670 .hot_add_disk = raid5_add_disk,
3671 .hot_remove_disk= raid5_remove_disk,
3672 .spare_active = raid5_spare_active,
3673 .sync_request = sync_request,
3674 .resize = raid5_resize,
3675 .quiesce = raid5_quiesce,
3676};
2604b703 3677static struct mdk_personality raid5_personality =
1da177e4
LT
3678{
3679 .name = "raid5",
2604b703 3680 .level = 5,
1da177e4
LT
3681 .owner = THIS_MODULE,
3682 .make_request = make_request,
3683 .run = run,
3684 .stop = stop,
3685 .status = status,
3686 .error_handler = error,
3687 .hot_add_disk = raid5_add_disk,
3688 .hot_remove_disk= raid5_remove_disk,
3689 .spare_active = raid5_spare_active,
3690 .sync_request = sync_request,
3691 .resize = raid5_resize,
29269553 3692#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f
N
3693 .check_reshape = raid5_check_reshape,
3694 .start_reshape = raid5_start_reshape,
29269553 3695#endif
72626685 3696 .quiesce = raid5_quiesce,
1da177e4
LT
3697};
3698
2604b703 3699static struct mdk_personality raid4_personality =
1da177e4 3700{
2604b703
N
3701 .name = "raid4",
3702 .level = 4,
3703 .owner = THIS_MODULE,
3704 .make_request = make_request,
3705 .run = run,
3706 .stop = stop,
3707 .status = status,
3708 .error_handler = error,
3709 .hot_add_disk = raid5_add_disk,
3710 .hot_remove_disk= raid5_remove_disk,
3711 .spare_active = raid5_spare_active,
3712 .sync_request = sync_request,
3713 .resize = raid5_resize,
3714 .quiesce = raid5_quiesce,
3715};
3716
3717static int __init raid5_init(void)
3718{
16a53ecc
N
3719 int e;
3720
3721 e = raid6_select_algo();
3722 if ( e )
3723 return e;
3724 register_md_personality(&raid6_personality);
2604b703
N
3725 register_md_personality(&raid5_personality);
3726 register_md_personality(&raid4_personality);
3727 return 0;
1da177e4
LT
3728}
3729
2604b703 3730static void raid5_exit(void)
1da177e4 3731{
16a53ecc 3732 unregister_md_personality(&raid6_personality);
2604b703
N
3733 unregister_md_personality(&raid5_personality);
3734 unregister_md_personality(&raid4_personality);
1da177e4
LT
3735}
3736
3737module_init(raid5_init);
3738module_exit(raid5_exit);
3739MODULE_LICENSE("GPL");
3740MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
3741MODULE_ALIAS("md-raid5");
3742MODULE_ALIAS("md-raid4");
2604b703
N
3743MODULE_ALIAS("md-level-5");
3744MODULE_ALIAS("md-level-4");
16a53ecc
N
3745MODULE_ALIAS("md-personality-8"); /* RAID6 */
3746MODULE_ALIAS("md-raid6");
3747MODULE_ALIAS("md-level-6");
3748
3749/* This used to be two separate modules, they were: */
3750MODULE_ALIAS("raid5");
3751MODULE_ALIAS("raid6");