]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/md/raid5.c
md/raid5: writes should get directed to replacement as well as original.
[mirror_ubuntu-jammy-kernel.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
43b2e5d8 56#include "md.h"
bff61975 57#include "raid5.h"
54071b38 58#include "raid0.h"
ef740c37 59#include "bitmap.h"
72626685 60
1da177e4
LT
61/*
62 * Stripe cache
63 */
64
65#define NR_STRIPES 256
66#define STRIPE_SIZE PAGE_SIZE
67#define STRIPE_SHIFT (PAGE_SHIFT - 9)
68#define STRIPE_SECTORS (STRIPE_SIZE>>9)
69#define IO_THRESHOLD 1
8b3e6cdc 70#define BYPASS_THRESHOLD 1
fccddba0 71#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
72#define HASH_MASK (NR_HASH - 1)
73
d1688a6d 74static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
75{
76 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
78}
1da177e4
LT
79
80/* bio's attached to a stripe+device for I/O are linked together in bi_sector
81 * order without overlap. There may be several bio's per stripe+device, and
82 * a bio could span several devices.
83 * When walking this list for a particular stripe+device, we must never proceed
84 * beyond a bio that extends past this device, as the next bio might no longer
85 * be valid.
db298e19 86 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
87 * of the current stripe+device
88 */
db298e19
N
89static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90{
91 int sectors = bio->bi_size >> 9;
92 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 return bio->bi_next;
94 else
95 return NULL;
96}
1da177e4 97
960e739d 98/*
5b99c2ff
JA
99 * We maintain a biased count of active stripes in the bottom 16 bits of
100 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
101 */
102static inline int raid5_bi_phys_segments(struct bio *bio)
103{
5b99c2ff 104 return bio->bi_phys_segments & 0xffff;
960e739d
JA
105}
106
107static inline int raid5_bi_hw_segments(struct bio *bio)
108{
5b99c2ff 109 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
110}
111
112static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113{
114 --bio->bi_phys_segments;
115 return raid5_bi_phys_segments(bio);
116}
117
118static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119{
120 unsigned short val = raid5_bi_hw_segments(bio);
121
122 --val;
5b99c2ff 123 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
124 return val;
125}
126
127static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128{
9b2dc8b6 129 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
960e739d
JA
130}
131
d0dabf7e
N
132/* Find first data disk in a raid6 stripe */
133static inline int raid6_d0(struct stripe_head *sh)
134{
67cc2b81
N
135 if (sh->ddf_layout)
136 /* ddf always start from first device */
137 return 0;
138 /* md starts just after Q block */
d0dabf7e
N
139 if (sh->qd_idx == sh->disks - 1)
140 return 0;
141 else
142 return sh->qd_idx + 1;
143}
16a53ecc
N
144static inline int raid6_next_disk(int disk, int raid_disks)
145{
146 disk++;
147 return (disk < raid_disks) ? disk : 0;
148}
a4456856 149
d0dabf7e
N
150/* When walking through the disks in a raid5, starting at raid6_d0,
151 * We need to map each disk to a 'slot', where the data disks are slot
152 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153 * is raid_disks-1. This help does that mapping.
154 */
67cc2b81
N
155static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156 int *count, int syndrome_disks)
d0dabf7e 157{
6629542e 158 int slot = *count;
67cc2b81 159
e4424fee 160 if (sh->ddf_layout)
6629542e 161 (*count)++;
d0dabf7e 162 if (idx == sh->pd_idx)
67cc2b81 163 return syndrome_disks;
d0dabf7e 164 if (idx == sh->qd_idx)
67cc2b81 165 return syndrome_disks + 1;
e4424fee 166 if (!sh->ddf_layout)
6629542e 167 (*count)++;
d0dabf7e
N
168 return slot;
169}
170
a4456856
DW
171static void return_io(struct bio *return_bi)
172{
173 struct bio *bi = return_bi;
174 while (bi) {
a4456856
DW
175
176 return_bi = bi->bi_next;
177 bi->bi_next = NULL;
178 bi->bi_size = 0;
0e13fe23 179 bio_endio(bi, 0);
a4456856
DW
180 bi = return_bi;
181 }
182}
183
d1688a6d 184static void print_raid5_conf (struct r5conf *conf);
1da177e4 185
600aa109
DW
186static int stripe_operations_active(struct stripe_head *sh)
187{
188 return sh->check_state || sh->reconstruct_state ||
189 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191}
192
d1688a6d 193static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
1da177e4
LT
194{
195 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
196 BUG_ON(!list_empty(&sh->lru));
197 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 198 if (test_bit(STRIPE_HANDLE, &sh->state)) {
482c0834 199 if (test_bit(STRIPE_DELAYED, &sh->state))
1da177e4 200 list_add_tail(&sh->lru, &conf->delayed_list);
482c0834
N
201 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
202 sh->bm_seq - conf->seq_write > 0)
72626685 203 list_add_tail(&sh->lru, &conf->bitmap_list);
482c0834 204 else {
72626685 205 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 206 list_add_tail(&sh->lru, &conf->handle_list);
72626685 207 }
1da177e4
LT
208 md_wakeup_thread(conf->mddev->thread);
209 } else {
600aa109 210 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
211 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
212 atomic_dec(&conf->preread_active_stripes);
213 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
214 md_wakeup_thread(conf->mddev->thread);
215 }
1da177e4 216 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
217 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
218 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 219 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
220 if (conf->retry_read_aligned)
221 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 222 }
1da177e4
LT
223 }
224 }
225}
d0dabf7e 226
1da177e4
LT
227static void release_stripe(struct stripe_head *sh)
228{
d1688a6d 229 struct r5conf *conf = sh->raid_conf;
1da177e4 230 unsigned long flags;
16a53ecc 231
1da177e4
LT
232 spin_lock_irqsave(&conf->device_lock, flags);
233 __release_stripe(conf, sh);
234 spin_unlock_irqrestore(&conf->device_lock, flags);
235}
236
fccddba0 237static inline void remove_hash(struct stripe_head *sh)
1da177e4 238{
45b4233c
DW
239 pr_debug("remove_hash(), stripe %llu\n",
240 (unsigned long long)sh->sector);
1da177e4 241
fccddba0 242 hlist_del_init(&sh->hash);
1da177e4
LT
243}
244
d1688a6d 245static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 246{
fccddba0 247 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 248
45b4233c
DW
249 pr_debug("insert_hash(), stripe %llu\n",
250 (unsigned long long)sh->sector);
1da177e4 251
fccddba0 252 hlist_add_head(&sh->hash, hp);
1da177e4
LT
253}
254
255
256/* find an idle stripe, make sure it is unhashed, and return it. */
d1688a6d 257static struct stripe_head *get_free_stripe(struct r5conf *conf)
1da177e4
LT
258{
259 struct stripe_head *sh = NULL;
260 struct list_head *first;
261
1da177e4
LT
262 if (list_empty(&conf->inactive_list))
263 goto out;
264 first = conf->inactive_list.next;
265 sh = list_entry(first, struct stripe_head, lru);
266 list_del_init(first);
267 remove_hash(sh);
268 atomic_inc(&conf->active_stripes);
269out:
270 return sh;
271}
272
e4e11e38 273static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
274{
275 struct page *p;
276 int i;
e4e11e38 277 int num = sh->raid_conf->pool_size;
1da177e4 278
e4e11e38 279 for (i = 0; i < num ; i++) {
1da177e4
LT
280 p = sh->dev[i].page;
281 if (!p)
282 continue;
283 sh->dev[i].page = NULL;
2d1f3b5d 284 put_page(p);
1da177e4
LT
285 }
286}
287
e4e11e38 288static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
289{
290 int i;
e4e11e38 291 int num = sh->raid_conf->pool_size;
1da177e4 292
e4e11e38 293 for (i = 0; i < num; i++) {
1da177e4
LT
294 struct page *page;
295
296 if (!(page = alloc_page(GFP_KERNEL))) {
297 return 1;
298 }
299 sh->dev[i].page = page;
300 }
301 return 0;
302}
303
784052ec 304static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 305static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 306 struct stripe_head *sh);
1da177e4 307
b5663ba4 308static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 309{
d1688a6d 310 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 311 int i;
1da177e4 312
78bafebd
ES
313 BUG_ON(atomic_read(&sh->count) != 0);
314 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 315 BUG_ON(stripe_operations_active(sh));
d84e0f10 316
45b4233c 317 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
318 (unsigned long long)sh->sector);
319
320 remove_hash(sh);
16a53ecc 321
86b42c71 322 sh->generation = conf->generation - previous;
b5663ba4 323 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 324 sh->sector = sector;
911d4ee8 325 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
326 sh->state = 0;
327
7ecaa1e6
N
328
329 for (i = sh->disks; i--; ) {
1da177e4
LT
330 struct r5dev *dev = &sh->dev[i];
331
d84e0f10 332 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 333 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 334 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 335 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 336 dev->read, dev->towrite, dev->written,
1da177e4 337 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 338 WARN_ON(1);
1da177e4
LT
339 }
340 dev->flags = 0;
784052ec 341 raid5_build_block(sh, i, previous);
1da177e4
LT
342 }
343 insert_hash(conf, sh);
344}
345
d1688a6d 346static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 347 short generation)
1da177e4
LT
348{
349 struct stripe_head *sh;
fccddba0 350 struct hlist_node *hn;
1da177e4 351
45b4233c 352 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 353 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 354 if (sh->sector == sector && sh->generation == generation)
1da177e4 355 return sh;
45b4233c 356 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
357 return NULL;
358}
359
674806d6
N
360/*
361 * Need to check if array has failed when deciding whether to:
362 * - start an array
363 * - remove non-faulty devices
364 * - add a spare
365 * - allow a reshape
366 * This determination is simple when no reshape is happening.
367 * However if there is a reshape, we need to carefully check
368 * both the before and after sections.
369 * This is because some failed devices may only affect one
370 * of the two sections, and some non-in_sync devices may
371 * be insync in the section most affected by failed devices.
372 */
908f4fbd 373static int calc_degraded(struct r5conf *conf)
674806d6 374{
908f4fbd 375 int degraded, degraded2;
674806d6 376 int i;
674806d6
N
377
378 rcu_read_lock();
379 degraded = 0;
380 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 381 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
674806d6
N
382 if (!rdev || test_bit(Faulty, &rdev->flags))
383 degraded++;
384 else if (test_bit(In_sync, &rdev->flags))
385 ;
386 else
387 /* not in-sync or faulty.
388 * If the reshape increases the number of devices,
389 * this is being recovered by the reshape, so
390 * this 'previous' section is not in_sync.
391 * If the number of devices is being reduced however,
392 * the device can only be part of the array if
393 * we are reverting a reshape, so this section will
394 * be in-sync.
395 */
396 if (conf->raid_disks >= conf->previous_raid_disks)
397 degraded++;
398 }
399 rcu_read_unlock();
908f4fbd
N
400 if (conf->raid_disks == conf->previous_raid_disks)
401 return degraded;
674806d6 402 rcu_read_lock();
908f4fbd 403 degraded2 = 0;
674806d6 404 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 405 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
674806d6 406 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 407 degraded2++;
674806d6
N
408 else if (test_bit(In_sync, &rdev->flags))
409 ;
410 else
411 /* not in-sync or faulty.
412 * If reshape increases the number of devices, this
413 * section has already been recovered, else it
414 * almost certainly hasn't.
415 */
416 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 417 degraded2++;
674806d6
N
418 }
419 rcu_read_unlock();
908f4fbd
N
420 if (degraded2 > degraded)
421 return degraded2;
422 return degraded;
423}
424
425static int has_failed(struct r5conf *conf)
426{
427 int degraded;
428
429 if (conf->mddev->reshape_position == MaxSector)
430 return conf->mddev->degraded > conf->max_degraded;
431
432 degraded = calc_degraded(conf);
674806d6
N
433 if (degraded > conf->max_degraded)
434 return 1;
435 return 0;
436}
437
b5663ba4 438static struct stripe_head *
d1688a6d 439get_active_stripe(struct r5conf *conf, sector_t sector,
a8c906ca 440 int previous, int noblock, int noquiesce)
1da177e4
LT
441{
442 struct stripe_head *sh;
443
45b4233c 444 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
445
446 spin_lock_irq(&conf->device_lock);
447
448 do {
72626685 449 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 450 conf->quiesce == 0 || noquiesce,
72626685 451 conf->device_lock, /* nothing */);
86b42c71 452 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
453 if (!sh) {
454 if (!conf->inactive_blocked)
455 sh = get_free_stripe(conf);
456 if (noblock && sh == NULL)
457 break;
458 if (!sh) {
459 conf->inactive_blocked = 1;
460 wait_event_lock_irq(conf->wait_for_stripe,
461 !list_empty(&conf->inactive_list) &&
5036805b
N
462 (atomic_read(&conf->active_stripes)
463 < (conf->max_nr_stripes *3/4)
1da177e4
LT
464 || !conf->inactive_blocked),
465 conf->device_lock,
7c13edc8 466 );
1da177e4
LT
467 conf->inactive_blocked = 0;
468 } else
b5663ba4 469 init_stripe(sh, sector, previous);
1da177e4
LT
470 } else {
471 if (atomic_read(&sh->count)) {
ab69ae12
N
472 BUG_ON(!list_empty(&sh->lru)
473 && !test_bit(STRIPE_EXPANDING, &sh->state));
1da177e4
LT
474 } else {
475 if (!test_bit(STRIPE_HANDLE, &sh->state))
476 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
477 if (list_empty(&sh->lru) &&
478 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
479 BUG();
480 list_del_init(&sh->lru);
1da177e4
LT
481 }
482 }
483 } while (sh == NULL);
484
485 if (sh)
486 atomic_inc(&sh->count);
487
488 spin_unlock_irq(&conf->device_lock);
489 return sh;
490}
491
6712ecf8
N
492static void
493raid5_end_read_request(struct bio *bi, int error);
494static void
495raid5_end_write_request(struct bio *bi, int error);
91c00924 496
c4e5ac0a 497static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 498{
d1688a6d 499 struct r5conf *conf = sh->raid_conf;
91c00924
DW
500 int i, disks = sh->disks;
501
502 might_sleep();
503
504 for (i = disks; i--; ) {
505 int rw;
977df362
N
506 struct bio *bi, *rbi;
507 struct md_rdev *rdev, *rrdev = NULL;
e9c7469b
TH
508 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
509 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
510 rw = WRITE_FUA;
511 else
512 rw = WRITE;
513 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924
DW
514 rw = READ;
515 else
516 continue;
517
518 bi = &sh->dev[i].req;
977df362 519 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924
DW
520
521 bi->bi_rw = rw;
977df362
N
522 rbi->bi_rw = rw;
523 if (rw & WRITE) {
91c00924 524 bi->bi_end_io = raid5_end_write_request;
977df362
N
525 rbi->bi_end_io = raid5_end_write_request;
526 } else
91c00924
DW
527 bi->bi_end_io = raid5_end_read_request;
528
529 rcu_read_lock();
977df362
N
530 rdev = rcu_dereference(conf->disks[i].rdev);
531 if (rw & WRITE)
532 rrdev = rcu_dereference(conf->disks[i].replacement);
533 else if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
14a75d3e 534 rdev = rcu_dereference(conf->disks[i].replacement);
977df362 535
91c00924
DW
536 if (rdev && test_bit(Faulty, &rdev->flags))
537 rdev = NULL;
538 if (rdev)
539 atomic_inc(&rdev->nr_pending);
977df362
N
540 if (rrdev && test_bit(Faulty, &rrdev->flags))
541 rrdev = NULL;
542 if (rrdev)
543 atomic_inc(&rrdev->nr_pending);
91c00924
DW
544 rcu_read_unlock();
545
73e92e51 546 /* We have already checked bad blocks for reads. Now
977df362
N
547 * need to check for writes. We never accept write errors
548 * on the replacement, so we don't to check rrdev.
73e92e51
N
549 */
550 while ((rw & WRITE) && rdev &&
551 test_bit(WriteErrorSeen, &rdev->flags)) {
552 sector_t first_bad;
553 int bad_sectors;
554 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
555 &first_bad, &bad_sectors);
556 if (!bad)
557 break;
558
559 if (bad < 0) {
560 set_bit(BlockedBadBlocks, &rdev->flags);
561 if (!conf->mddev->external &&
562 conf->mddev->flags) {
563 /* It is very unlikely, but we might
564 * still need to write out the
565 * bad block log - better give it
566 * a chance*/
567 md_check_recovery(conf->mddev);
568 }
569 md_wait_for_blocked_rdev(rdev, conf->mddev);
570 } else {
571 /* Acknowledged bad block - skip the write */
572 rdev_dec_pending(rdev, conf->mddev);
573 rdev = NULL;
574 }
575 }
576
91c00924 577 if (rdev) {
c4e5ac0a 578 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
579 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
580
2b7497f0
DW
581 set_bit(STRIPE_IO_STARTED, &sh->state);
582
91c00924
DW
583 bi->bi_bdev = rdev->bdev;
584 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 585 __func__, (unsigned long long)sh->sector,
91c00924
DW
586 bi->bi_rw, i);
587 atomic_inc(&sh->count);
588 bi->bi_sector = sh->sector + rdev->data_offset;
589 bi->bi_flags = 1 << BIO_UPTODATE;
91c00924 590 bi->bi_idx = 0;
91c00924
DW
591 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
592 bi->bi_io_vec[0].bv_offset = 0;
593 bi->bi_size = STRIPE_SIZE;
594 bi->bi_next = NULL;
977df362
N
595 if (rrdev)
596 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
91c00924 597 generic_make_request(bi);
977df362
N
598 }
599 if (rrdev) {
600 if (s->syncing || s->expanding || s->expanded)
601 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
602
603 set_bit(STRIPE_IO_STARTED, &sh->state);
604
605 rbi->bi_bdev = rrdev->bdev;
606 pr_debug("%s: for %llu schedule op %ld on "
607 "replacement disc %d\n",
608 __func__, (unsigned long long)sh->sector,
609 rbi->bi_rw, i);
610 atomic_inc(&sh->count);
611 rbi->bi_sector = sh->sector + rrdev->data_offset;
612 rbi->bi_flags = 1 << BIO_UPTODATE;
613 rbi->bi_idx = 0;
614 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
615 rbi->bi_io_vec[0].bv_offset = 0;
616 rbi->bi_size = STRIPE_SIZE;
617 rbi->bi_next = NULL;
618 generic_make_request(rbi);
619 }
620 if (!rdev && !rrdev) {
b062962e 621 if (rw & WRITE)
91c00924
DW
622 set_bit(STRIPE_DEGRADED, &sh->state);
623 pr_debug("skip op %ld on disc %d for sector %llu\n",
624 bi->bi_rw, i, (unsigned long long)sh->sector);
625 clear_bit(R5_LOCKED, &sh->dev[i].flags);
626 set_bit(STRIPE_HANDLE, &sh->state);
627 }
628 }
629}
630
631static struct dma_async_tx_descriptor *
632async_copy_data(int frombio, struct bio *bio, struct page *page,
633 sector_t sector, struct dma_async_tx_descriptor *tx)
634{
635 struct bio_vec *bvl;
636 struct page *bio_page;
637 int i;
638 int page_offset;
a08abd8c 639 struct async_submit_ctl submit;
0403e382 640 enum async_tx_flags flags = 0;
91c00924
DW
641
642 if (bio->bi_sector >= sector)
643 page_offset = (signed)(bio->bi_sector - sector) * 512;
644 else
645 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c 646
0403e382
DW
647 if (frombio)
648 flags |= ASYNC_TX_FENCE;
649 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
650
91c00924 651 bio_for_each_segment(bvl, bio, i) {
fcde9075 652 int len = bvl->bv_len;
91c00924
DW
653 int clen;
654 int b_offset = 0;
655
656 if (page_offset < 0) {
657 b_offset = -page_offset;
658 page_offset += b_offset;
659 len -= b_offset;
660 }
661
662 if (len > 0 && page_offset + len > STRIPE_SIZE)
663 clen = STRIPE_SIZE - page_offset;
664 else
665 clen = len;
666
667 if (clen > 0) {
fcde9075
NK
668 b_offset += bvl->bv_offset;
669 bio_page = bvl->bv_page;
91c00924
DW
670 if (frombio)
671 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 672 b_offset, clen, &submit);
91c00924
DW
673 else
674 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 675 page_offset, clen, &submit);
91c00924 676 }
a08abd8c
DW
677 /* chain the operations */
678 submit.depend_tx = tx;
679
91c00924
DW
680 if (clen < len) /* hit end of page */
681 break;
682 page_offset += len;
683 }
684
685 return tx;
686}
687
688static void ops_complete_biofill(void *stripe_head_ref)
689{
690 struct stripe_head *sh = stripe_head_ref;
691 struct bio *return_bi = NULL;
d1688a6d 692 struct r5conf *conf = sh->raid_conf;
e4d84909 693 int i;
91c00924 694
e46b272b 695 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
696 (unsigned long long)sh->sector);
697
698 /* clear completed biofills */
83de75cc 699 spin_lock_irq(&conf->device_lock);
91c00924
DW
700 for (i = sh->disks; i--; ) {
701 struct r5dev *dev = &sh->dev[i];
91c00924
DW
702
703 /* acknowledge completion of a biofill operation */
e4d84909
DW
704 /* and check if we need to reply to a read request,
705 * new R5_Wantfill requests are held off until
83de75cc 706 * !STRIPE_BIOFILL_RUN
e4d84909
DW
707 */
708 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 709 struct bio *rbi, *rbi2;
91c00924 710
91c00924
DW
711 BUG_ON(!dev->read);
712 rbi = dev->read;
713 dev->read = NULL;
714 while (rbi && rbi->bi_sector <
715 dev->sector + STRIPE_SECTORS) {
716 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 717 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
718 rbi->bi_next = return_bi;
719 return_bi = rbi;
720 }
91c00924
DW
721 rbi = rbi2;
722 }
723 }
724 }
83de75cc
DW
725 spin_unlock_irq(&conf->device_lock);
726 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
727
728 return_io(return_bi);
729
e4d84909 730 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
731 release_stripe(sh);
732}
733
734static void ops_run_biofill(struct stripe_head *sh)
735{
736 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 737 struct r5conf *conf = sh->raid_conf;
a08abd8c 738 struct async_submit_ctl submit;
91c00924
DW
739 int i;
740
e46b272b 741 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
742 (unsigned long long)sh->sector);
743
744 for (i = sh->disks; i--; ) {
745 struct r5dev *dev = &sh->dev[i];
746 if (test_bit(R5_Wantfill, &dev->flags)) {
747 struct bio *rbi;
748 spin_lock_irq(&conf->device_lock);
749 dev->read = rbi = dev->toread;
750 dev->toread = NULL;
751 spin_unlock_irq(&conf->device_lock);
752 while (rbi && rbi->bi_sector <
753 dev->sector + STRIPE_SECTORS) {
754 tx = async_copy_data(0, rbi, dev->page,
755 dev->sector, tx);
756 rbi = r5_next_bio(rbi, dev->sector);
757 }
758 }
759 }
760
761 atomic_inc(&sh->count);
a08abd8c
DW
762 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
763 async_trigger_callback(&submit);
91c00924
DW
764}
765
4e7d2c0a 766static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 767{
4e7d2c0a 768 struct r5dev *tgt;
91c00924 769
4e7d2c0a
DW
770 if (target < 0)
771 return;
91c00924 772
4e7d2c0a 773 tgt = &sh->dev[target];
91c00924
DW
774 set_bit(R5_UPTODATE, &tgt->flags);
775 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
776 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
777}
778
ac6b53b6 779static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
780{
781 struct stripe_head *sh = stripe_head_ref;
91c00924 782
e46b272b 783 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
784 (unsigned long long)sh->sector);
785
ac6b53b6 786 /* mark the computed target(s) as uptodate */
4e7d2c0a 787 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 788 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 789
ecc65c9b
DW
790 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
791 if (sh->check_state == check_state_compute_run)
792 sh->check_state = check_state_compute_result;
91c00924
DW
793 set_bit(STRIPE_HANDLE, &sh->state);
794 release_stripe(sh);
795}
796
d6f38f31
DW
797/* return a pointer to the address conversion region of the scribble buffer */
798static addr_conv_t *to_addr_conv(struct stripe_head *sh,
799 struct raid5_percpu *percpu)
800{
801 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
802}
803
804static struct dma_async_tx_descriptor *
805ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 806{
91c00924 807 int disks = sh->disks;
d6f38f31 808 struct page **xor_srcs = percpu->scribble;
91c00924
DW
809 int target = sh->ops.target;
810 struct r5dev *tgt = &sh->dev[target];
811 struct page *xor_dest = tgt->page;
812 int count = 0;
813 struct dma_async_tx_descriptor *tx;
a08abd8c 814 struct async_submit_ctl submit;
91c00924
DW
815 int i;
816
817 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 818 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
819 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
820
821 for (i = disks; i--; )
822 if (i != target)
823 xor_srcs[count++] = sh->dev[i].page;
824
825 atomic_inc(&sh->count);
826
0403e382 827 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 828 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 829 if (unlikely(count == 1))
a08abd8c 830 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 831 else
a08abd8c 832 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 833
91c00924
DW
834 return tx;
835}
836
ac6b53b6
DW
837/* set_syndrome_sources - populate source buffers for gen_syndrome
838 * @srcs - (struct page *) array of size sh->disks
839 * @sh - stripe_head to parse
840 *
841 * Populates srcs in proper layout order for the stripe and returns the
842 * 'count' of sources to be used in a call to async_gen_syndrome. The P
843 * destination buffer is recorded in srcs[count] and the Q destination
844 * is recorded in srcs[count+1]].
845 */
846static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
847{
848 int disks = sh->disks;
849 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
850 int d0_idx = raid6_d0(sh);
851 int count;
852 int i;
853
854 for (i = 0; i < disks; i++)
5dd33c9a 855 srcs[i] = NULL;
ac6b53b6
DW
856
857 count = 0;
858 i = d0_idx;
859 do {
860 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
861
862 srcs[slot] = sh->dev[i].page;
863 i = raid6_next_disk(i, disks);
864 } while (i != d0_idx);
ac6b53b6 865
e4424fee 866 return syndrome_disks;
ac6b53b6
DW
867}
868
869static struct dma_async_tx_descriptor *
870ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
871{
872 int disks = sh->disks;
873 struct page **blocks = percpu->scribble;
874 int target;
875 int qd_idx = sh->qd_idx;
876 struct dma_async_tx_descriptor *tx;
877 struct async_submit_ctl submit;
878 struct r5dev *tgt;
879 struct page *dest;
880 int i;
881 int count;
882
883 if (sh->ops.target < 0)
884 target = sh->ops.target2;
885 else if (sh->ops.target2 < 0)
886 target = sh->ops.target;
91c00924 887 else
ac6b53b6
DW
888 /* we should only have one valid target */
889 BUG();
890 BUG_ON(target < 0);
891 pr_debug("%s: stripe %llu block: %d\n",
892 __func__, (unsigned long long)sh->sector, target);
893
894 tgt = &sh->dev[target];
895 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
896 dest = tgt->page;
897
898 atomic_inc(&sh->count);
899
900 if (target == qd_idx) {
901 count = set_syndrome_sources(blocks, sh);
902 blocks[count] = NULL; /* regenerating p is not necessary */
903 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
904 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
905 ops_complete_compute, sh,
ac6b53b6
DW
906 to_addr_conv(sh, percpu));
907 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
908 } else {
909 /* Compute any data- or p-drive using XOR */
910 count = 0;
911 for (i = disks; i-- ; ) {
912 if (i == target || i == qd_idx)
913 continue;
914 blocks[count++] = sh->dev[i].page;
915 }
916
0403e382
DW
917 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
918 NULL, ops_complete_compute, sh,
ac6b53b6
DW
919 to_addr_conv(sh, percpu));
920 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
921 }
91c00924 922
91c00924
DW
923 return tx;
924}
925
ac6b53b6
DW
926static struct dma_async_tx_descriptor *
927ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
928{
929 int i, count, disks = sh->disks;
930 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
931 int d0_idx = raid6_d0(sh);
932 int faila = -1, failb = -1;
933 int target = sh->ops.target;
934 int target2 = sh->ops.target2;
935 struct r5dev *tgt = &sh->dev[target];
936 struct r5dev *tgt2 = &sh->dev[target2];
937 struct dma_async_tx_descriptor *tx;
938 struct page **blocks = percpu->scribble;
939 struct async_submit_ctl submit;
940
941 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
942 __func__, (unsigned long long)sh->sector, target, target2);
943 BUG_ON(target < 0 || target2 < 0);
944 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
945 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
946
6c910a78 947 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
948 * slot number conversion for 'faila' and 'failb'
949 */
950 for (i = 0; i < disks ; i++)
5dd33c9a 951 blocks[i] = NULL;
ac6b53b6
DW
952 count = 0;
953 i = d0_idx;
954 do {
955 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
956
957 blocks[slot] = sh->dev[i].page;
958
959 if (i == target)
960 faila = slot;
961 if (i == target2)
962 failb = slot;
963 i = raid6_next_disk(i, disks);
964 } while (i != d0_idx);
ac6b53b6
DW
965
966 BUG_ON(faila == failb);
967 if (failb < faila)
968 swap(faila, failb);
969 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
970 __func__, (unsigned long long)sh->sector, faila, failb);
971
972 atomic_inc(&sh->count);
973
974 if (failb == syndrome_disks+1) {
975 /* Q disk is one of the missing disks */
976 if (faila == syndrome_disks) {
977 /* Missing P+Q, just recompute */
0403e382
DW
978 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
979 ops_complete_compute, sh,
980 to_addr_conv(sh, percpu));
e4424fee 981 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
982 STRIPE_SIZE, &submit);
983 } else {
984 struct page *dest;
985 int data_target;
986 int qd_idx = sh->qd_idx;
987
988 /* Missing D+Q: recompute D from P, then recompute Q */
989 if (target == qd_idx)
990 data_target = target2;
991 else
992 data_target = target;
993
994 count = 0;
995 for (i = disks; i-- ; ) {
996 if (i == data_target || i == qd_idx)
997 continue;
998 blocks[count++] = sh->dev[i].page;
999 }
1000 dest = sh->dev[data_target].page;
0403e382
DW
1001 init_async_submit(&submit,
1002 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1003 NULL, NULL, NULL,
1004 to_addr_conv(sh, percpu));
ac6b53b6
DW
1005 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1006 &submit);
1007
1008 count = set_syndrome_sources(blocks, sh);
0403e382
DW
1009 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1010 ops_complete_compute, sh,
1011 to_addr_conv(sh, percpu));
ac6b53b6
DW
1012 return async_gen_syndrome(blocks, 0, count+2,
1013 STRIPE_SIZE, &submit);
1014 }
ac6b53b6 1015 } else {
6c910a78
DW
1016 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1017 ops_complete_compute, sh,
1018 to_addr_conv(sh, percpu));
1019 if (failb == syndrome_disks) {
1020 /* We're missing D+P. */
1021 return async_raid6_datap_recov(syndrome_disks+2,
1022 STRIPE_SIZE, faila,
1023 blocks, &submit);
1024 } else {
1025 /* We're missing D+D. */
1026 return async_raid6_2data_recov(syndrome_disks+2,
1027 STRIPE_SIZE, faila, failb,
1028 blocks, &submit);
1029 }
ac6b53b6
DW
1030 }
1031}
1032
1033
91c00924
DW
1034static void ops_complete_prexor(void *stripe_head_ref)
1035{
1036 struct stripe_head *sh = stripe_head_ref;
1037
e46b272b 1038 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1039 (unsigned long long)sh->sector);
91c00924
DW
1040}
1041
1042static struct dma_async_tx_descriptor *
d6f38f31
DW
1043ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1044 struct dma_async_tx_descriptor *tx)
91c00924 1045{
91c00924 1046 int disks = sh->disks;
d6f38f31 1047 struct page **xor_srcs = percpu->scribble;
91c00924 1048 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1049 struct async_submit_ctl submit;
91c00924
DW
1050
1051 /* existing parity data subtracted */
1052 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1053
e46b272b 1054 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1055 (unsigned long long)sh->sector);
1056
1057 for (i = disks; i--; ) {
1058 struct r5dev *dev = &sh->dev[i];
1059 /* Only process blocks that are known to be uptodate */
d8ee0728 1060 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1061 xor_srcs[count++] = dev->page;
1062 }
1063
0403e382 1064 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 1065 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 1066 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1067
1068 return tx;
1069}
1070
1071static struct dma_async_tx_descriptor *
d8ee0728 1072ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1073{
1074 int disks = sh->disks;
d8ee0728 1075 int i;
91c00924 1076
e46b272b 1077 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1078 (unsigned long long)sh->sector);
1079
1080 for (i = disks; i--; ) {
1081 struct r5dev *dev = &sh->dev[i];
1082 struct bio *chosen;
91c00924 1083
d8ee0728 1084 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
1085 struct bio *wbi;
1086
cbe47ec5 1087 spin_lock_irq(&sh->raid_conf->device_lock);
91c00924
DW
1088 chosen = dev->towrite;
1089 dev->towrite = NULL;
1090 BUG_ON(dev->written);
1091 wbi = dev->written = chosen;
cbe47ec5 1092 spin_unlock_irq(&sh->raid_conf->device_lock);
91c00924
DW
1093
1094 while (wbi && wbi->bi_sector <
1095 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1096 if (wbi->bi_rw & REQ_FUA)
1097 set_bit(R5_WantFUA, &dev->flags);
91c00924
DW
1098 tx = async_copy_data(1, wbi, dev->page,
1099 dev->sector, tx);
1100 wbi = r5_next_bio(wbi, dev->sector);
1101 }
1102 }
1103 }
1104
1105 return tx;
1106}
1107
ac6b53b6 1108static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1109{
1110 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1111 int disks = sh->disks;
1112 int pd_idx = sh->pd_idx;
1113 int qd_idx = sh->qd_idx;
1114 int i;
e9c7469b 1115 bool fua = false;
91c00924 1116
e46b272b 1117 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1118 (unsigned long long)sh->sector);
1119
e9c7469b
TH
1120 for (i = disks; i--; )
1121 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1122
91c00924
DW
1123 for (i = disks; i--; ) {
1124 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1125
e9c7469b 1126 if (dev->written || i == pd_idx || i == qd_idx) {
91c00924 1127 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1128 if (fua)
1129 set_bit(R5_WantFUA, &dev->flags);
1130 }
91c00924
DW
1131 }
1132
d8ee0728
DW
1133 if (sh->reconstruct_state == reconstruct_state_drain_run)
1134 sh->reconstruct_state = reconstruct_state_drain_result;
1135 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1136 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1137 else {
1138 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1139 sh->reconstruct_state = reconstruct_state_result;
1140 }
91c00924
DW
1141
1142 set_bit(STRIPE_HANDLE, &sh->state);
1143 release_stripe(sh);
1144}
1145
1146static void
ac6b53b6
DW
1147ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1148 struct dma_async_tx_descriptor *tx)
91c00924 1149{
91c00924 1150 int disks = sh->disks;
d6f38f31 1151 struct page **xor_srcs = percpu->scribble;
a08abd8c 1152 struct async_submit_ctl submit;
91c00924
DW
1153 int count = 0, pd_idx = sh->pd_idx, i;
1154 struct page *xor_dest;
d8ee0728 1155 int prexor = 0;
91c00924 1156 unsigned long flags;
91c00924 1157
e46b272b 1158 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1159 (unsigned long long)sh->sector);
1160
1161 /* check if prexor is active which means only process blocks
1162 * that are part of a read-modify-write (written)
1163 */
d8ee0728
DW
1164 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1165 prexor = 1;
91c00924
DW
1166 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1167 for (i = disks; i--; ) {
1168 struct r5dev *dev = &sh->dev[i];
1169 if (dev->written)
1170 xor_srcs[count++] = dev->page;
1171 }
1172 } else {
1173 xor_dest = sh->dev[pd_idx].page;
1174 for (i = disks; i--; ) {
1175 struct r5dev *dev = &sh->dev[i];
1176 if (i != pd_idx)
1177 xor_srcs[count++] = dev->page;
1178 }
1179 }
1180
91c00924
DW
1181 /* 1/ if we prexor'd then the dest is reused as a source
1182 * 2/ if we did not prexor then we are redoing the parity
1183 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1184 * for the synchronous xor case
1185 */
88ba2aa5 1186 flags = ASYNC_TX_ACK |
91c00924
DW
1187 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1188
1189 atomic_inc(&sh->count);
1190
ac6b53b6 1191 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1192 to_addr_conv(sh, percpu));
a08abd8c
DW
1193 if (unlikely(count == 1))
1194 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1195 else
1196 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1197}
1198
ac6b53b6
DW
1199static void
1200ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1201 struct dma_async_tx_descriptor *tx)
1202{
1203 struct async_submit_ctl submit;
1204 struct page **blocks = percpu->scribble;
1205 int count;
1206
1207 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1208
1209 count = set_syndrome_sources(blocks, sh);
1210
1211 atomic_inc(&sh->count);
1212
1213 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1214 sh, to_addr_conv(sh, percpu));
1215 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1216}
1217
1218static void ops_complete_check(void *stripe_head_ref)
1219{
1220 struct stripe_head *sh = stripe_head_ref;
91c00924 1221
e46b272b 1222 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1223 (unsigned long long)sh->sector);
1224
ecc65c9b 1225 sh->check_state = check_state_check_result;
91c00924
DW
1226 set_bit(STRIPE_HANDLE, &sh->state);
1227 release_stripe(sh);
1228}
1229
ac6b53b6 1230static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1231{
91c00924 1232 int disks = sh->disks;
ac6b53b6
DW
1233 int pd_idx = sh->pd_idx;
1234 int qd_idx = sh->qd_idx;
1235 struct page *xor_dest;
d6f38f31 1236 struct page **xor_srcs = percpu->scribble;
91c00924 1237 struct dma_async_tx_descriptor *tx;
a08abd8c 1238 struct async_submit_ctl submit;
ac6b53b6
DW
1239 int count;
1240 int i;
91c00924 1241
e46b272b 1242 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1243 (unsigned long long)sh->sector);
1244
ac6b53b6
DW
1245 count = 0;
1246 xor_dest = sh->dev[pd_idx].page;
1247 xor_srcs[count++] = xor_dest;
91c00924 1248 for (i = disks; i--; ) {
ac6b53b6
DW
1249 if (i == pd_idx || i == qd_idx)
1250 continue;
1251 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1252 }
1253
d6f38f31
DW
1254 init_async_submit(&submit, 0, NULL, NULL, NULL,
1255 to_addr_conv(sh, percpu));
099f53cb 1256 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1257 &sh->ops.zero_sum_result, &submit);
91c00924 1258
91c00924 1259 atomic_inc(&sh->count);
a08abd8c
DW
1260 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1261 tx = async_trigger_callback(&submit);
91c00924
DW
1262}
1263
ac6b53b6
DW
1264static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1265{
1266 struct page **srcs = percpu->scribble;
1267 struct async_submit_ctl submit;
1268 int count;
1269
1270 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1271 (unsigned long long)sh->sector, checkp);
1272
1273 count = set_syndrome_sources(srcs, sh);
1274 if (!checkp)
1275 srcs[count] = NULL;
91c00924 1276
91c00924 1277 atomic_inc(&sh->count);
ac6b53b6
DW
1278 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1279 sh, to_addr_conv(sh, percpu));
1280 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1281 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1282}
1283
417b8d4a 1284static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1285{
1286 int overlap_clear = 0, i, disks = sh->disks;
1287 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1288 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1289 int level = conf->level;
d6f38f31
DW
1290 struct raid5_percpu *percpu;
1291 unsigned long cpu;
91c00924 1292
d6f38f31
DW
1293 cpu = get_cpu();
1294 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1295 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1296 ops_run_biofill(sh);
1297 overlap_clear++;
1298 }
1299
7b3a871e 1300 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1301 if (level < 6)
1302 tx = ops_run_compute5(sh, percpu);
1303 else {
1304 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1305 tx = ops_run_compute6_1(sh, percpu);
1306 else
1307 tx = ops_run_compute6_2(sh, percpu);
1308 }
1309 /* terminate the chain if reconstruct is not set to be run */
1310 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1311 async_tx_ack(tx);
1312 }
91c00924 1313
600aa109 1314 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1315 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1316
600aa109 1317 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1318 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1319 overlap_clear++;
1320 }
1321
ac6b53b6
DW
1322 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1323 if (level < 6)
1324 ops_run_reconstruct5(sh, percpu, tx);
1325 else
1326 ops_run_reconstruct6(sh, percpu, tx);
1327 }
91c00924 1328
ac6b53b6
DW
1329 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1330 if (sh->check_state == check_state_run)
1331 ops_run_check_p(sh, percpu);
1332 else if (sh->check_state == check_state_run_q)
1333 ops_run_check_pq(sh, percpu, 0);
1334 else if (sh->check_state == check_state_run_pq)
1335 ops_run_check_pq(sh, percpu, 1);
1336 else
1337 BUG();
1338 }
91c00924 1339
91c00924
DW
1340 if (overlap_clear)
1341 for (i = disks; i--; ) {
1342 struct r5dev *dev = &sh->dev[i];
1343 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1344 wake_up(&sh->raid_conf->wait_for_overlap);
1345 }
d6f38f31 1346 put_cpu();
91c00924
DW
1347}
1348
417b8d4a
DW
1349#ifdef CONFIG_MULTICORE_RAID456
1350static void async_run_ops(void *param, async_cookie_t cookie)
1351{
1352 struct stripe_head *sh = param;
1353 unsigned long ops_request = sh->ops.request;
1354
1355 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1356 wake_up(&sh->ops.wait_for_ops);
1357
1358 __raid_run_ops(sh, ops_request);
1359 release_stripe(sh);
1360}
1361
1362static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1363{
1364 /* since handle_stripe can be called outside of raid5d context
1365 * we need to ensure sh->ops.request is de-staged before another
1366 * request arrives
1367 */
1368 wait_event(sh->ops.wait_for_ops,
1369 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1370 sh->ops.request = ops_request;
1371
1372 atomic_inc(&sh->count);
1373 async_schedule(async_run_ops, sh);
1374}
1375#else
1376#define raid_run_ops __raid_run_ops
1377#endif
1378
d1688a6d 1379static int grow_one_stripe(struct r5conf *conf)
1da177e4
LT
1380{
1381 struct stripe_head *sh;
6ce32846 1382 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
3f294f4f
N
1383 if (!sh)
1384 return 0;
6ce32846 1385
3f294f4f 1386 sh->raid_conf = conf;
417b8d4a
DW
1387 #ifdef CONFIG_MULTICORE_RAID456
1388 init_waitqueue_head(&sh->ops.wait_for_ops);
1389 #endif
3f294f4f 1390
e4e11e38
N
1391 if (grow_buffers(sh)) {
1392 shrink_buffers(sh);
3f294f4f
N
1393 kmem_cache_free(conf->slab_cache, sh);
1394 return 0;
1395 }
1396 /* we just created an active stripe so... */
1397 atomic_set(&sh->count, 1);
1398 atomic_inc(&conf->active_stripes);
1399 INIT_LIST_HEAD(&sh->lru);
1400 release_stripe(sh);
1401 return 1;
1402}
1403
d1688a6d 1404static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 1405{
e18b890b 1406 struct kmem_cache *sc;
5e5e3e78 1407 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 1408
f4be6b43
N
1409 if (conf->mddev->gendisk)
1410 sprintf(conf->cache_name[0],
1411 "raid%d-%s", conf->level, mdname(conf->mddev));
1412 else
1413 sprintf(conf->cache_name[0],
1414 "raid%d-%p", conf->level, conf->mddev);
1415 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1416
ad01c9e3
N
1417 conf->active_name = 0;
1418 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1419 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1420 0, 0, NULL);
1da177e4
LT
1421 if (!sc)
1422 return 1;
1423 conf->slab_cache = sc;
ad01c9e3 1424 conf->pool_size = devs;
16a53ecc 1425 while (num--)
3f294f4f 1426 if (!grow_one_stripe(conf))
1da177e4 1427 return 1;
1da177e4
LT
1428 return 0;
1429}
29269553 1430
d6f38f31
DW
1431/**
1432 * scribble_len - return the required size of the scribble region
1433 * @num - total number of disks in the array
1434 *
1435 * The size must be enough to contain:
1436 * 1/ a struct page pointer for each device in the array +2
1437 * 2/ room to convert each entry in (1) to its corresponding dma
1438 * (dma_map_page()) or page (page_address()) address.
1439 *
1440 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1441 * calculate over all devices (not just the data blocks), using zeros in place
1442 * of the P and Q blocks.
1443 */
1444static size_t scribble_len(int num)
1445{
1446 size_t len;
1447
1448 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1449
1450 return len;
1451}
1452
d1688a6d 1453static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
1454{
1455 /* Make all the stripes able to hold 'newsize' devices.
1456 * New slots in each stripe get 'page' set to a new page.
1457 *
1458 * This happens in stages:
1459 * 1/ create a new kmem_cache and allocate the required number of
1460 * stripe_heads.
1461 * 2/ gather all the old stripe_heads and tranfer the pages across
1462 * to the new stripe_heads. This will have the side effect of
1463 * freezing the array as once all stripe_heads have been collected,
1464 * no IO will be possible. Old stripe heads are freed once their
1465 * pages have been transferred over, and the old kmem_cache is
1466 * freed when all stripes are done.
1467 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1468 * we simple return a failre status - no need to clean anything up.
1469 * 4/ allocate new pages for the new slots in the new stripe_heads.
1470 * If this fails, we don't bother trying the shrink the
1471 * stripe_heads down again, we just leave them as they are.
1472 * As each stripe_head is processed the new one is released into
1473 * active service.
1474 *
1475 * Once step2 is started, we cannot afford to wait for a write,
1476 * so we use GFP_NOIO allocations.
1477 */
1478 struct stripe_head *osh, *nsh;
1479 LIST_HEAD(newstripes);
1480 struct disk_info *ndisks;
d6f38f31 1481 unsigned long cpu;
b5470dc5 1482 int err;
e18b890b 1483 struct kmem_cache *sc;
ad01c9e3
N
1484 int i;
1485
1486 if (newsize <= conf->pool_size)
1487 return 0; /* never bother to shrink */
1488
b5470dc5
DW
1489 err = md_allow_write(conf->mddev);
1490 if (err)
1491 return err;
2a2275d6 1492
ad01c9e3
N
1493 /* Step 1 */
1494 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1495 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1496 0, 0, NULL);
ad01c9e3
N
1497 if (!sc)
1498 return -ENOMEM;
1499
1500 for (i = conf->max_nr_stripes; i; i--) {
6ce32846 1501 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
ad01c9e3
N
1502 if (!nsh)
1503 break;
1504
ad01c9e3 1505 nsh->raid_conf = conf;
417b8d4a
DW
1506 #ifdef CONFIG_MULTICORE_RAID456
1507 init_waitqueue_head(&nsh->ops.wait_for_ops);
1508 #endif
ad01c9e3
N
1509
1510 list_add(&nsh->lru, &newstripes);
1511 }
1512 if (i) {
1513 /* didn't get enough, give up */
1514 while (!list_empty(&newstripes)) {
1515 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1516 list_del(&nsh->lru);
1517 kmem_cache_free(sc, nsh);
1518 }
1519 kmem_cache_destroy(sc);
1520 return -ENOMEM;
1521 }
1522 /* Step 2 - Must use GFP_NOIO now.
1523 * OK, we have enough stripes, start collecting inactive
1524 * stripes and copying them over
1525 */
1526 list_for_each_entry(nsh, &newstripes, lru) {
1527 spin_lock_irq(&conf->device_lock);
1528 wait_event_lock_irq(conf->wait_for_stripe,
1529 !list_empty(&conf->inactive_list),
1530 conf->device_lock,
482c0834 1531 );
ad01c9e3
N
1532 osh = get_free_stripe(conf);
1533 spin_unlock_irq(&conf->device_lock);
1534 atomic_set(&nsh->count, 1);
1535 for(i=0; i<conf->pool_size; i++)
1536 nsh->dev[i].page = osh->dev[i].page;
1537 for( ; i<newsize; i++)
1538 nsh->dev[i].page = NULL;
1539 kmem_cache_free(conf->slab_cache, osh);
1540 }
1541 kmem_cache_destroy(conf->slab_cache);
1542
1543 /* Step 3.
1544 * At this point, we are holding all the stripes so the array
1545 * is completely stalled, so now is a good time to resize
d6f38f31 1546 * conf->disks and the scribble region
ad01c9e3
N
1547 */
1548 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1549 if (ndisks) {
1550 for (i=0; i<conf->raid_disks; i++)
1551 ndisks[i] = conf->disks[i];
1552 kfree(conf->disks);
1553 conf->disks = ndisks;
1554 } else
1555 err = -ENOMEM;
1556
d6f38f31
DW
1557 get_online_cpus();
1558 conf->scribble_len = scribble_len(newsize);
1559 for_each_present_cpu(cpu) {
1560 struct raid5_percpu *percpu;
1561 void *scribble;
1562
1563 percpu = per_cpu_ptr(conf->percpu, cpu);
1564 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1565
1566 if (scribble) {
1567 kfree(percpu->scribble);
1568 percpu->scribble = scribble;
1569 } else {
1570 err = -ENOMEM;
1571 break;
1572 }
1573 }
1574 put_online_cpus();
1575
ad01c9e3
N
1576 /* Step 4, return new stripes to service */
1577 while(!list_empty(&newstripes)) {
1578 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1579 list_del_init(&nsh->lru);
d6f38f31 1580
ad01c9e3
N
1581 for (i=conf->raid_disks; i < newsize; i++)
1582 if (nsh->dev[i].page == NULL) {
1583 struct page *p = alloc_page(GFP_NOIO);
1584 nsh->dev[i].page = p;
1585 if (!p)
1586 err = -ENOMEM;
1587 }
1588 release_stripe(nsh);
1589 }
1590 /* critical section pass, GFP_NOIO no longer needed */
1591
1592 conf->slab_cache = sc;
1593 conf->active_name = 1-conf->active_name;
1594 conf->pool_size = newsize;
1595 return err;
1596}
1da177e4 1597
d1688a6d 1598static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
1599{
1600 struct stripe_head *sh;
1601
3f294f4f
N
1602 spin_lock_irq(&conf->device_lock);
1603 sh = get_free_stripe(conf);
1604 spin_unlock_irq(&conf->device_lock);
1605 if (!sh)
1606 return 0;
78bafebd 1607 BUG_ON(atomic_read(&sh->count));
e4e11e38 1608 shrink_buffers(sh);
3f294f4f
N
1609 kmem_cache_free(conf->slab_cache, sh);
1610 atomic_dec(&conf->active_stripes);
1611 return 1;
1612}
1613
d1688a6d 1614static void shrink_stripes(struct r5conf *conf)
3f294f4f
N
1615{
1616 while (drop_one_stripe(conf))
1617 ;
1618
29fc7e3e
N
1619 if (conf->slab_cache)
1620 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1621 conf->slab_cache = NULL;
1622}
1623
6712ecf8 1624static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1625{
99c0fb5f 1626 struct stripe_head *sh = bi->bi_private;
d1688a6d 1627 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1628 int disks = sh->disks, i;
1da177e4 1629 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432 1630 char b[BDEVNAME_SIZE];
3cb03002 1631 struct md_rdev *rdev;
1da177e4 1632
1da177e4
LT
1633
1634 for (i=0 ; i<disks; i++)
1635 if (bi == &sh->dev[i].req)
1636 break;
1637
45b4233c
DW
1638 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1639 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1640 uptodate);
1641 if (i == disks) {
1642 BUG();
6712ecf8 1643 return;
1da177e4 1644 }
14a75d3e
N
1645 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1646 rdev = conf->disks[i].replacement;
1647 else
1648 rdev = conf->disks[i].rdev;
1da177e4
LT
1649
1650 if (uptodate) {
1da177e4 1651 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1652 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
1653 /* Note that this cannot happen on a
1654 * replacement device. We just fail those on
1655 * any error
1656 */
8bda470e
CD
1657 printk_ratelimited(
1658 KERN_INFO
1659 "md/raid:%s: read error corrected"
1660 " (%lu sectors at %llu on %s)\n",
1661 mdname(conf->mddev), STRIPE_SECTORS,
1662 (unsigned long long)(sh->sector
1663 + rdev->data_offset),
1664 bdevname(rdev->bdev, b));
ddd5115f 1665 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
1666 clear_bit(R5_ReadError, &sh->dev[i].flags);
1667 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1668 }
14a75d3e
N
1669 if (atomic_read(&rdev->read_errors))
1670 atomic_set(&rdev->read_errors, 0);
1da177e4 1671 } else {
14a75d3e 1672 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 1673 int retry = 0;
d6950432 1674
1da177e4 1675 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1676 atomic_inc(&rdev->read_errors);
14a75d3e
N
1677 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1678 printk_ratelimited(
1679 KERN_WARNING
1680 "md/raid:%s: read error on replacement device "
1681 "(sector %llu on %s).\n",
1682 mdname(conf->mddev),
1683 (unsigned long long)(sh->sector
1684 + rdev->data_offset),
1685 bdn);
1686 else if (conf->mddev->degraded >= conf->max_degraded)
8bda470e
CD
1687 printk_ratelimited(
1688 KERN_WARNING
1689 "md/raid:%s: read error not correctable "
1690 "(sector %llu on %s).\n",
1691 mdname(conf->mddev),
1692 (unsigned long long)(sh->sector
1693 + rdev->data_offset),
1694 bdn);
ba22dcbf 1695 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1696 /* Oh, no!!! */
8bda470e
CD
1697 printk_ratelimited(
1698 KERN_WARNING
1699 "md/raid:%s: read error NOT corrected!! "
1700 "(sector %llu on %s).\n",
1701 mdname(conf->mddev),
1702 (unsigned long long)(sh->sector
1703 + rdev->data_offset),
1704 bdn);
d6950432 1705 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1706 > conf->max_nr_stripes)
14f8d26b 1707 printk(KERN_WARNING
0c55e022 1708 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 1709 mdname(conf->mddev), bdn);
ba22dcbf
N
1710 else
1711 retry = 1;
1712 if (retry)
1713 set_bit(R5_ReadError, &sh->dev[i].flags);
1714 else {
4e5314b5
N
1715 clear_bit(R5_ReadError, &sh->dev[i].flags);
1716 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1717 md_error(conf->mddev, rdev);
ba22dcbf 1718 }
1da177e4 1719 }
14a75d3e 1720 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
1721 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1722 set_bit(STRIPE_HANDLE, &sh->state);
1723 release_stripe(sh);
1da177e4
LT
1724}
1725
d710e138 1726static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1727{
99c0fb5f 1728 struct stripe_head *sh = bi->bi_private;
d1688a6d 1729 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1730 int disks = sh->disks, i;
977df362 1731 struct md_rdev *uninitialized_var(rdev);
1da177e4 1732 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
b84db560
N
1733 sector_t first_bad;
1734 int bad_sectors;
977df362 1735 int replacement = 0;
1da177e4 1736
977df362
N
1737 for (i = 0 ; i < disks; i++) {
1738 if (bi == &sh->dev[i].req) {
1739 rdev = conf->disks[i].rdev;
1da177e4 1740 break;
977df362
N
1741 }
1742 if (bi == &sh->dev[i].rreq) {
1743 rdev = conf->disks[i].replacement;
1744 replacement = 1;
1745 break;
1746 }
1747 }
45b4233c 1748 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1749 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1750 uptodate);
1751 if (i == disks) {
1752 BUG();
6712ecf8 1753 return;
1da177e4
LT
1754 }
1755
977df362
N
1756 if (replacement) {
1757 if (!uptodate)
1758 md_error(conf->mddev, rdev);
1759 else if (is_badblock(rdev, sh->sector,
1760 STRIPE_SECTORS,
1761 &first_bad, &bad_sectors))
1762 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1763 } else {
1764 if (!uptodate) {
1765 set_bit(WriteErrorSeen, &rdev->flags);
1766 set_bit(R5_WriteError, &sh->dev[i].flags);
1767 } else if (is_badblock(rdev, sh->sector,
1768 STRIPE_SECTORS,
1769 &first_bad, &bad_sectors))
1770 set_bit(R5_MadeGood, &sh->dev[i].flags);
1771 }
1772 rdev_dec_pending(rdev, conf->mddev);
1da177e4 1773
977df362
N
1774 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1775 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 1776 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1777 release_stripe(sh);
1da177e4
LT
1778}
1779
784052ec 1780static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1781
784052ec 1782static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1783{
1784 struct r5dev *dev = &sh->dev[i];
1785
1786 bio_init(&dev->req);
1787 dev->req.bi_io_vec = &dev->vec;
1788 dev->req.bi_vcnt++;
1789 dev->req.bi_max_vecs++;
1da177e4 1790 dev->req.bi_private = sh;
995c4275 1791 dev->vec.bv_page = dev->page;
1da177e4 1792
977df362
N
1793 bio_init(&dev->rreq);
1794 dev->rreq.bi_io_vec = &dev->rvec;
1795 dev->rreq.bi_vcnt++;
1796 dev->rreq.bi_max_vecs++;
1797 dev->rreq.bi_private = sh;
1798 dev->rvec.bv_page = dev->page;
1799
1da177e4 1800 dev->flags = 0;
784052ec 1801 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1802}
1803
fd01b88c 1804static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1805{
1806 char b[BDEVNAME_SIZE];
d1688a6d 1807 struct r5conf *conf = mddev->private;
908f4fbd 1808 unsigned long flags;
0c55e022 1809 pr_debug("raid456: error called\n");
1da177e4 1810
908f4fbd
N
1811 spin_lock_irqsave(&conf->device_lock, flags);
1812 clear_bit(In_sync, &rdev->flags);
1813 mddev->degraded = calc_degraded(conf);
1814 spin_unlock_irqrestore(&conf->device_lock, flags);
1815 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1816
de393cde 1817 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
1818 set_bit(Faulty, &rdev->flags);
1819 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1820 printk(KERN_ALERT
1821 "md/raid:%s: Disk failure on %s, disabling device.\n"
1822 "md/raid:%s: Operation continuing on %d devices.\n",
1823 mdname(mddev),
1824 bdevname(rdev->bdev, b),
1825 mdname(mddev),
1826 conf->raid_disks - mddev->degraded);
16a53ecc 1827}
1da177e4
LT
1828
1829/*
1830 * Input: a 'big' sector number,
1831 * Output: index of the data and parity disk, and the sector # in them.
1832 */
d1688a6d 1833static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
911d4ee8
N
1834 int previous, int *dd_idx,
1835 struct stripe_head *sh)
1da177e4 1836{
6e3b96ed 1837 sector_t stripe, stripe2;
35f2a591 1838 sector_t chunk_number;
1da177e4 1839 unsigned int chunk_offset;
911d4ee8 1840 int pd_idx, qd_idx;
67cc2b81 1841 int ddf_layout = 0;
1da177e4 1842 sector_t new_sector;
e183eaed
N
1843 int algorithm = previous ? conf->prev_algo
1844 : conf->algorithm;
09c9e5fa
AN
1845 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1846 : conf->chunk_sectors;
112bf897
N
1847 int raid_disks = previous ? conf->previous_raid_disks
1848 : conf->raid_disks;
1849 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1850
1851 /* First compute the information on this sector */
1852
1853 /*
1854 * Compute the chunk number and the sector offset inside the chunk
1855 */
1856 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1857 chunk_number = r_sector;
1da177e4
LT
1858
1859 /*
1860 * Compute the stripe number
1861 */
35f2a591
N
1862 stripe = chunk_number;
1863 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 1864 stripe2 = stripe;
1da177e4
LT
1865 /*
1866 * Select the parity disk based on the user selected algorithm.
1867 */
84789554 1868 pd_idx = qd_idx = -1;
16a53ecc
N
1869 switch(conf->level) {
1870 case 4:
911d4ee8 1871 pd_idx = data_disks;
16a53ecc
N
1872 break;
1873 case 5:
e183eaed 1874 switch (algorithm) {
1da177e4 1875 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1876 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1877 if (*dd_idx >= pd_idx)
1da177e4
LT
1878 (*dd_idx)++;
1879 break;
1880 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1881 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1882 if (*dd_idx >= pd_idx)
1da177e4
LT
1883 (*dd_idx)++;
1884 break;
1885 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1886 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1887 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1888 break;
1889 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1890 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1891 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1892 break;
99c0fb5f
N
1893 case ALGORITHM_PARITY_0:
1894 pd_idx = 0;
1895 (*dd_idx)++;
1896 break;
1897 case ALGORITHM_PARITY_N:
1898 pd_idx = data_disks;
1899 break;
1da177e4 1900 default:
99c0fb5f 1901 BUG();
16a53ecc
N
1902 }
1903 break;
1904 case 6:
1905
e183eaed 1906 switch (algorithm) {
16a53ecc 1907 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1908 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1909 qd_idx = pd_idx + 1;
1910 if (pd_idx == raid_disks-1) {
99c0fb5f 1911 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1912 qd_idx = 0;
1913 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1914 (*dd_idx) += 2; /* D D P Q D */
1915 break;
1916 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1917 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1918 qd_idx = pd_idx + 1;
1919 if (pd_idx == raid_disks-1) {
99c0fb5f 1920 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1921 qd_idx = 0;
1922 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1923 (*dd_idx) += 2; /* D D P Q D */
1924 break;
1925 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1926 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1927 qd_idx = (pd_idx + 1) % raid_disks;
1928 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1929 break;
1930 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1931 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1932 qd_idx = (pd_idx + 1) % raid_disks;
1933 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 1934 break;
99c0fb5f
N
1935
1936 case ALGORITHM_PARITY_0:
1937 pd_idx = 0;
1938 qd_idx = 1;
1939 (*dd_idx) += 2;
1940 break;
1941 case ALGORITHM_PARITY_N:
1942 pd_idx = data_disks;
1943 qd_idx = data_disks + 1;
1944 break;
1945
1946 case ALGORITHM_ROTATING_ZERO_RESTART:
1947 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1948 * of blocks for computing Q is different.
1949 */
6e3b96ed 1950 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
1951 qd_idx = pd_idx + 1;
1952 if (pd_idx == raid_disks-1) {
1953 (*dd_idx)++; /* Q D D D P */
1954 qd_idx = 0;
1955 } else if (*dd_idx >= pd_idx)
1956 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1957 ddf_layout = 1;
99c0fb5f
N
1958 break;
1959
1960 case ALGORITHM_ROTATING_N_RESTART:
1961 /* Same a left_asymmetric, by first stripe is
1962 * D D D P Q rather than
1963 * Q D D D P
1964 */
6e3b96ed
N
1965 stripe2 += 1;
1966 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1967 qd_idx = pd_idx + 1;
1968 if (pd_idx == raid_disks-1) {
1969 (*dd_idx)++; /* Q D D D P */
1970 qd_idx = 0;
1971 } else if (*dd_idx >= pd_idx)
1972 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1973 ddf_layout = 1;
99c0fb5f
N
1974 break;
1975
1976 case ALGORITHM_ROTATING_N_CONTINUE:
1977 /* Same as left_symmetric but Q is before P */
6e3b96ed 1978 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1979 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1980 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 1981 ddf_layout = 1;
99c0fb5f
N
1982 break;
1983
1984 case ALGORITHM_LEFT_ASYMMETRIC_6:
1985 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 1986 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1987 if (*dd_idx >= pd_idx)
1988 (*dd_idx)++;
1989 qd_idx = raid_disks - 1;
1990 break;
1991
1992 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 1993 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1994 if (*dd_idx >= pd_idx)
1995 (*dd_idx)++;
1996 qd_idx = raid_disks - 1;
1997 break;
1998
1999 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2000 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2001 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2002 qd_idx = raid_disks - 1;
2003 break;
2004
2005 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2006 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2007 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2008 qd_idx = raid_disks - 1;
2009 break;
2010
2011 case ALGORITHM_PARITY_0_6:
2012 pd_idx = 0;
2013 (*dd_idx)++;
2014 qd_idx = raid_disks - 1;
2015 break;
2016
16a53ecc 2017 default:
99c0fb5f 2018 BUG();
16a53ecc
N
2019 }
2020 break;
1da177e4
LT
2021 }
2022
911d4ee8
N
2023 if (sh) {
2024 sh->pd_idx = pd_idx;
2025 sh->qd_idx = qd_idx;
67cc2b81 2026 sh->ddf_layout = ddf_layout;
911d4ee8 2027 }
1da177e4
LT
2028 /*
2029 * Finally, compute the new sector number
2030 */
2031 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2032 return new_sector;
2033}
2034
2035
784052ec 2036static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2037{
d1688a6d 2038 struct r5conf *conf = sh->raid_conf;
b875e531
N
2039 int raid_disks = sh->disks;
2040 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2041 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2042 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2043 : conf->chunk_sectors;
e183eaed
N
2044 int algorithm = previous ? conf->prev_algo
2045 : conf->algorithm;
1da177e4
LT
2046 sector_t stripe;
2047 int chunk_offset;
35f2a591
N
2048 sector_t chunk_number;
2049 int dummy1, dd_idx = i;
1da177e4 2050 sector_t r_sector;
911d4ee8 2051 struct stripe_head sh2;
1da177e4 2052
16a53ecc 2053
1da177e4
LT
2054 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2055 stripe = new_sector;
1da177e4 2056
16a53ecc
N
2057 if (i == sh->pd_idx)
2058 return 0;
2059 switch(conf->level) {
2060 case 4: break;
2061 case 5:
e183eaed 2062 switch (algorithm) {
1da177e4
LT
2063 case ALGORITHM_LEFT_ASYMMETRIC:
2064 case ALGORITHM_RIGHT_ASYMMETRIC:
2065 if (i > sh->pd_idx)
2066 i--;
2067 break;
2068 case ALGORITHM_LEFT_SYMMETRIC:
2069 case ALGORITHM_RIGHT_SYMMETRIC:
2070 if (i < sh->pd_idx)
2071 i += raid_disks;
2072 i -= (sh->pd_idx + 1);
2073 break;
99c0fb5f
N
2074 case ALGORITHM_PARITY_0:
2075 i -= 1;
2076 break;
2077 case ALGORITHM_PARITY_N:
2078 break;
1da177e4 2079 default:
99c0fb5f 2080 BUG();
16a53ecc
N
2081 }
2082 break;
2083 case 6:
d0dabf7e 2084 if (i == sh->qd_idx)
16a53ecc 2085 return 0; /* It is the Q disk */
e183eaed 2086 switch (algorithm) {
16a53ecc
N
2087 case ALGORITHM_LEFT_ASYMMETRIC:
2088 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2089 case ALGORITHM_ROTATING_ZERO_RESTART:
2090 case ALGORITHM_ROTATING_N_RESTART:
2091 if (sh->pd_idx == raid_disks-1)
2092 i--; /* Q D D D P */
16a53ecc
N
2093 else if (i > sh->pd_idx)
2094 i -= 2; /* D D P Q D */
2095 break;
2096 case ALGORITHM_LEFT_SYMMETRIC:
2097 case ALGORITHM_RIGHT_SYMMETRIC:
2098 if (sh->pd_idx == raid_disks-1)
2099 i--; /* Q D D D P */
2100 else {
2101 /* D D P Q D */
2102 if (i < sh->pd_idx)
2103 i += raid_disks;
2104 i -= (sh->pd_idx + 2);
2105 }
2106 break;
99c0fb5f
N
2107 case ALGORITHM_PARITY_0:
2108 i -= 2;
2109 break;
2110 case ALGORITHM_PARITY_N:
2111 break;
2112 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2113 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2114 if (sh->pd_idx == 0)
2115 i--; /* P D D D Q */
e4424fee
N
2116 else {
2117 /* D D Q P D */
2118 if (i < sh->pd_idx)
2119 i += raid_disks;
2120 i -= (sh->pd_idx + 1);
2121 }
99c0fb5f
N
2122 break;
2123 case ALGORITHM_LEFT_ASYMMETRIC_6:
2124 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2125 if (i > sh->pd_idx)
2126 i--;
2127 break;
2128 case ALGORITHM_LEFT_SYMMETRIC_6:
2129 case ALGORITHM_RIGHT_SYMMETRIC_6:
2130 if (i < sh->pd_idx)
2131 i += data_disks + 1;
2132 i -= (sh->pd_idx + 1);
2133 break;
2134 case ALGORITHM_PARITY_0_6:
2135 i -= 1;
2136 break;
16a53ecc 2137 default:
99c0fb5f 2138 BUG();
16a53ecc
N
2139 }
2140 break;
1da177e4
LT
2141 }
2142
2143 chunk_number = stripe * data_disks + i;
35f2a591 2144 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2145
112bf897 2146 check = raid5_compute_sector(conf, r_sector,
784052ec 2147 previous, &dummy1, &sh2);
911d4ee8
N
2148 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2149 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2150 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2151 mdname(conf->mddev));
1da177e4
LT
2152 return 0;
2153 }
2154 return r_sector;
2155}
2156
2157
600aa109 2158static void
c0f7bddb 2159schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2160 int rcw, int expand)
e33129d8
DW
2161{
2162 int i, pd_idx = sh->pd_idx, disks = sh->disks;
d1688a6d 2163 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2164 int level = conf->level;
e33129d8
DW
2165
2166 if (rcw) {
2167 /* if we are not expanding this is a proper write request, and
2168 * there will be bios with new data to be drained into the
2169 * stripe cache
2170 */
2171 if (!expand) {
600aa109
DW
2172 sh->reconstruct_state = reconstruct_state_drain_run;
2173 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2174 } else
2175 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 2176
ac6b53b6 2177 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2178
2179 for (i = disks; i--; ) {
2180 struct r5dev *dev = &sh->dev[i];
2181
2182 if (dev->towrite) {
2183 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2184 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2185 if (!expand)
2186 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2187 s->locked++;
e33129d8
DW
2188 }
2189 }
c0f7bddb 2190 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2191 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2192 atomic_inc(&conf->pending_full_writes);
e33129d8 2193 } else {
c0f7bddb 2194 BUG_ON(level == 6);
e33129d8
DW
2195 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2196 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2197
d8ee0728 2198 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
2199 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2200 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
ac6b53b6 2201 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2202
2203 for (i = disks; i--; ) {
2204 struct r5dev *dev = &sh->dev[i];
2205 if (i == pd_idx)
2206 continue;
2207
e33129d8
DW
2208 if (dev->towrite &&
2209 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2210 test_bit(R5_Wantcompute, &dev->flags))) {
2211 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2212 set_bit(R5_LOCKED, &dev->flags);
2213 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2214 s->locked++;
e33129d8
DW
2215 }
2216 }
2217 }
2218
c0f7bddb 2219 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2220 * are in flight
2221 */
2222 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2223 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2224 s->locked++;
e33129d8 2225
c0f7bddb
YT
2226 if (level == 6) {
2227 int qd_idx = sh->qd_idx;
2228 struct r5dev *dev = &sh->dev[qd_idx];
2229
2230 set_bit(R5_LOCKED, &dev->flags);
2231 clear_bit(R5_UPTODATE, &dev->flags);
2232 s->locked++;
2233 }
2234
600aa109 2235 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2236 __func__, (unsigned long long)sh->sector,
600aa109 2237 s->locked, s->ops_request);
e33129d8 2238}
16a53ecc 2239
1da177e4
LT
2240/*
2241 * Each stripe/dev can have one or more bion attached.
16a53ecc 2242 * toread/towrite point to the first in a chain.
1da177e4
LT
2243 * The bi_next chain must be in order.
2244 */
2245static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2246{
2247 struct bio **bip;
d1688a6d 2248 struct r5conf *conf = sh->raid_conf;
72626685 2249 int firstwrite=0;
1da177e4 2250
cbe47ec5 2251 pr_debug("adding bi b#%llu to stripe s#%llu\n",
1da177e4
LT
2252 (unsigned long long)bi->bi_sector,
2253 (unsigned long long)sh->sector);
2254
2255
1da177e4 2256 spin_lock_irq(&conf->device_lock);
72626685 2257 if (forwrite) {
1da177e4 2258 bip = &sh->dev[dd_idx].towrite;
72626685
N
2259 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2260 firstwrite = 1;
2261 } else
1da177e4
LT
2262 bip = &sh->dev[dd_idx].toread;
2263 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2264 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2265 goto overlap;
2266 bip = & (*bip)->bi_next;
2267 }
2268 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2269 goto overlap;
2270
78bafebd 2271 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2272 if (*bip)
2273 bi->bi_next = *bip;
2274 *bip = bi;
960e739d 2275 bi->bi_phys_segments++;
72626685 2276
1da177e4
LT
2277 if (forwrite) {
2278 /* check if page is covered */
2279 sector_t sector = sh->dev[dd_idx].sector;
2280 for (bi=sh->dev[dd_idx].towrite;
2281 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2282 bi && bi->bi_sector <= sector;
2283 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2284 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2285 sector = bi->bi_sector + (bi->bi_size>>9);
2286 }
2287 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2288 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2289 }
cbe47ec5 2290 spin_unlock_irq(&conf->device_lock);
cbe47ec5
N
2291
2292 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2293 (unsigned long long)(*bip)->bi_sector,
2294 (unsigned long long)sh->sector, dd_idx);
2295
2296 if (conf->mddev->bitmap && firstwrite) {
2297 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2298 STRIPE_SECTORS, 0);
2299 sh->bm_seq = conf->seq_flush+1;
2300 set_bit(STRIPE_BIT_DELAY, &sh->state);
2301 }
1da177e4
LT
2302 return 1;
2303
2304 overlap:
2305 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2306 spin_unlock_irq(&conf->device_lock);
1da177e4
LT
2307 return 0;
2308}
2309
d1688a6d 2310static void end_reshape(struct r5conf *conf);
29269553 2311
d1688a6d 2312static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 2313 struct stripe_head *sh)
ccfcc3c1 2314{
784052ec 2315 int sectors_per_chunk =
09c9e5fa 2316 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2317 int dd_idx;
2d2063ce 2318 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2319 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2320
112bf897
N
2321 raid5_compute_sector(conf,
2322 stripe * (disks - conf->max_degraded)
b875e531 2323 *sectors_per_chunk + chunk_offset,
112bf897 2324 previous,
911d4ee8 2325 &dd_idx, sh);
ccfcc3c1
N
2326}
2327
a4456856 2328static void
d1688a6d 2329handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2330 struct stripe_head_state *s, int disks,
2331 struct bio **return_bi)
2332{
2333 int i;
2334 for (i = disks; i--; ) {
2335 struct bio *bi;
2336 int bitmap_end = 0;
2337
2338 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 2339 struct md_rdev *rdev;
a4456856
DW
2340 rcu_read_lock();
2341 rdev = rcu_dereference(conf->disks[i].rdev);
2342 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
2343 atomic_inc(&rdev->nr_pending);
2344 else
2345 rdev = NULL;
a4456856 2346 rcu_read_unlock();
7f0da59b
N
2347 if (rdev) {
2348 if (!rdev_set_badblocks(
2349 rdev,
2350 sh->sector,
2351 STRIPE_SECTORS, 0))
2352 md_error(conf->mddev, rdev);
2353 rdev_dec_pending(rdev, conf->mddev);
2354 }
a4456856
DW
2355 }
2356 spin_lock_irq(&conf->device_lock);
2357 /* fail all writes first */
2358 bi = sh->dev[i].towrite;
2359 sh->dev[i].towrite = NULL;
2360 if (bi) {
2361 s->to_write--;
2362 bitmap_end = 1;
2363 }
2364
2365 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2366 wake_up(&conf->wait_for_overlap);
2367
2368 while (bi && bi->bi_sector <
2369 sh->dev[i].sector + STRIPE_SECTORS) {
2370 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2371 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2372 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2373 md_write_end(conf->mddev);
2374 bi->bi_next = *return_bi;
2375 *return_bi = bi;
2376 }
2377 bi = nextbi;
2378 }
2379 /* and fail all 'written' */
2380 bi = sh->dev[i].written;
2381 sh->dev[i].written = NULL;
2382 if (bi) bitmap_end = 1;
2383 while (bi && bi->bi_sector <
2384 sh->dev[i].sector + STRIPE_SECTORS) {
2385 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2386 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2387 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2388 md_write_end(conf->mddev);
2389 bi->bi_next = *return_bi;
2390 *return_bi = bi;
2391 }
2392 bi = bi2;
2393 }
2394
b5e98d65
DW
2395 /* fail any reads if this device is non-operational and
2396 * the data has not reached the cache yet.
2397 */
2398 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2399 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2400 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2401 bi = sh->dev[i].toread;
2402 sh->dev[i].toread = NULL;
2403 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2404 wake_up(&conf->wait_for_overlap);
2405 if (bi) s->to_read--;
2406 while (bi && bi->bi_sector <
2407 sh->dev[i].sector + STRIPE_SECTORS) {
2408 struct bio *nextbi =
2409 r5_next_bio(bi, sh->dev[i].sector);
2410 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2411 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2412 bi->bi_next = *return_bi;
2413 *return_bi = bi;
2414 }
2415 bi = nextbi;
2416 }
2417 }
2418 spin_unlock_irq(&conf->device_lock);
2419 if (bitmap_end)
2420 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2421 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
2422 /* If we were in the middle of a write the parity block might
2423 * still be locked - so just clear all R5_LOCKED flags
2424 */
2425 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
2426 }
2427
8b3e6cdc
DW
2428 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2429 if (atomic_dec_and_test(&conf->pending_full_writes))
2430 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2431}
2432
7f0da59b 2433static void
d1688a6d 2434handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
2435 struct stripe_head_state *s)
2436{
2437 int abort = 0;
2438 int i;
2439
2440 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2441 clear_bit(STRIPE_SYNCING, &sh->state);
2442 s->syncing = 0;
2443 /* There is nothing more to do for sync/check/repair.
2444 * For recover we need to record a bad block on all
2445 * non-sync devices, or abort the recovery
2446 */
2447 if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2448 return;
2449 /* During recovery devices cannot be removed, so locking and
2450 * refcounting of rdevs is not needed
2451 */
2452 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 2453 struct md_rdev *rdev = conf->disks[i].rdev;
7f0da59b
N
2454 if (!rdev
2455 || test_bit(Faulty, &rdev->flags)
2456 || test_bit(In_sync, &rdev->flags))
2457 continue;
2458 if (!rdev_set_badblocks(rdev, sh->sector,
2459 STRIPE_SECTORS, 0))
2460 abort = 1;
2461 }
2462 if (abort) {
2463 conf->recovery_disabled = conf->mddev->recovery_disabled;
2464 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2465 }
2466}
2467
93b3dbce 2468/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
2469 * to be read or computed to satisfy a request.
2470 *
2471 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 2472 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 2473 */
93b3dbce
N
2474static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2475 int disk_idx, int disks)
a4456856 2476{
5599becc 2477 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
2478 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2479 &sh->dev[s->failed_num[1]] };
5599becc 2480
93b3dbce 2481 /* is the data in this block needed, and can we get it? */
5599becc
YT
2482 if (!test_bit(R5_LOCKED, &dev->flags) &&
2483 !test_bit(R5_UPTODATE, &dev->flags) &&
2484 (dev->toread ||
2485 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2486 s->syncing || s->expanding ||
5d35e09c
N
2487 (s->failed >= 1 && fdev[0]->toread) ||
2488 (s->failed >= 2 && fdev[1]->toread) ||
93b3dbce
N
2489 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2490 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2491 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
5599becc
YT
2492 /* we would like to get this block, possibly by computing it,
2493 * otherwise read it if the backing disk is insync
2494 */
2495 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2496 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2497 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
2498 (s->failed && (disk_idx == s->failed_num[0] ||
2499 disk_idx == s->failed_num[1]))) {
5599becc
YT
2500 /* have disk failed, and we're requested to fetch it;
2501 * do compute it
a4456856 2502 */
5599becc
YT
2503 pr_debug("Computing stripe %llu block %d\n",
2504 (unsigned long long)sh->sector, disk_idx);
2505 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2506 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2507 set_bit(R5_Wantcompute, &dev->flags);
2508 sh->ops.target = disk_idx;
2509 sh->ops.target2 = -1; /* no 2nd target */
2510 s->req_compute = 1;
93b3dbce
N
2511 /* Careful: from this point on 'uptodate' is in the eye
2512 * of raid_run_ops which services 'compute' operations
2513 * before writes. R5_Wantcompute flags a block that will
2514 * be R5_UPTODATE by the time it is needed for a
2515 * subsequent operation.
2516 */
5599becc
YT
2517 s->uptodate++;
2518 return 1;
2519 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2520 /* Computing 2-failure is *very* expensive; only
2521 * do it if failed >= 2
2522 */
2523 int other;
2524 for (other = disks; other--; ) {
2525 if (other == disk_idx)
2526 continue;
2527 if (!test_bit(R5_UPTODATE,
2528 &sh->dev[other].flags))
2529 break;
a4456856 2530 }
5599becc
YT
2531 BUG_ON(other < 0);
2532 pr_debug("Computing stripe %llu blocks %d,%d\n",
2533 (unsigned long long)sh->sector,
2534 disk_idx, other);
2535 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2536 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2537 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2538 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2539 sh->ops.target = disk_idx;
2540 sh->ops.target2 = other;
2541 s->uptodate += 2;
2542 s->req_compute = 1;
2543 return 1;
2544 } else if (test_bit(R5_Insync, &dev->flags)) {
2545 set_bit(R5_LOCKED, &dev->flags);
2546 set_bit(R5_Wantread, &dev->flags);
2547 s->locked++;
2548 pr_debug("Reading block %d (sync=%d)\n",
2549 disk_idx, s->syncing);
a4456856
DW
2550 }
2551 }
5599becc
YT
2552
2553 return 0;
2554}
2555
2556/**
93b3dbce 2557 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 2558 */
93b3dbce
N
2559static void handle_stripe_fill(struct stripe_head *sh,
2560 struct stripe_head_state *s,
2561 int disks)
5599becc
YT
2562{
2563 int i;
2564
2565 /* look for blocks to read/compute, skip this if a compute
2566 * is already in flight, or if the stripe contents are in the
2567 * midst of changing due to a write
2568 */
2569 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2570 !sh->reconstruct_state)
2571 for (i = disks; i--; )
93b3dbce 2572 if (fetch_block(sh, s, i, disks))
5599becc 2573 break;
a4456856
DW
2574 set_bit(STRIPE_HANDLE, &sh->state);
2575}
2576
2577
1fe797e6 2578/* handle_stripe_clean_event
a4456856
DW
2579 * any written block on an uptodate or failed drive can be returned.
2580 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2581 * never LOCKED, so we don't need to test 'failed' directly.
2582 */
d1688a6d 2583static void handle_stripe_clean_event(struct r5conf *conf,
a4456856
DW
2584 struct stripe_head *sh, int disks, struct bio **return_bi)
2585{
2586 int i;
2587 struct r5dev *dev;
2588
2589 for (i = disks; i--; )
2590 if (sh->dev[i].written) {
2591 dev = &sh->dev[i];
2592 if (!test_bit(R5_LOCKED, &dev->flags) &&
2593 test_bit(R5_UPTODATE, &dev->flags)) {
2594 /* We can return any write requests */
2595 struct bio *wbi, *wbi2;
2596 int bitmap_end = 0;
45b4233c 2597 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2598 spin_lock_irq(&conf->device_lock);
2599 wbi = dev->written;
2600 dev->written = NULL;
2601 while (wbi && wbi->bi_sector <
2602 dev->sector + STRIPE_SECTORS) {
2603 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2604 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2605 md_write_end(conf->mddev);
2606 wbi->bi_next = *return_bi;
2607 *return_bi = wbi;
2608 }
2609 wbi = wbi2;
2610 }
2611 if (dev->towrite == NULL)
2612 bitmap_end = 1;
2613 spin_unlock_irq(&conf->device_lock);
2614 if (bitmap_end)
2615 bitmap_endwrite(conf->mddev->bitmap,
2616 sh->sector,
2617 STRIPE_SECTORS,
2618 !test_bit(STRIPE_DEGRADED, &sh->state),
2619 0);
2620 }
2621 }
8b3e6cdc
DW
2622
2623 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2624 if (atomic_dec_and_test(&conf->pending_full_writes))
2625 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2626}
2627
d1688a6d 2628static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
2629 struct stripe_head *sh,
2630 struct stripe_head_state *s,
2631 int disks)
a4456856
DW
2632{
2633 int rmw = 0, rcw = 0, i;
c8ac1803
N
2634 if (conf->max_degraded == 2) {
2635 /* RAID6 requires 'rcw' in current implementation
2636 * Calculate the real rcw later - for now fake it
2637 * look like rcw is cheaper
2638 */
2639 rcw = 1; rmw = 2;
2640 } else for (i = disks; i--; ) {
a4456856
DW
2641 /* would I have to read this buffer for read_modify_write */
2642 struct r5dev *dev = &sh->dev[i];
2643 if ((dev->towrite || i == sh->pd_idx) &&
2644 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2645 !(test_bit(R5_UPTODATE, &dev->flags) ||
2646 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2647 if (test_bit(R5_Insync, &dev->flags))
2648 rmw++;
2649 else
2650 rmw += 2*disks; /* cannot read it */
2651 }
2652 /* Would I have to read this buffer for reconstruct_write */
2653 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2654 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2655 !(test_bit(R5_UPTODATE, &dev->flags) ||
2656 test_bit(R5_Wantcompute, &dev->flags))) {
2657 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2658 else
2659 rcw += 2*disks;
2660 }
2661 }
45b4233c 2662 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2663 (unsigned long long)sh->sector, rmw, rcw);
2664 set_bit(STRIPE_HANDLE, &sh->state);
2665 if (rmw < rcw && rmw > 0)
2666 /* prefer read-modify-write, but need to get some data */
2667 for (i = disks; i--; ) {
2668 struct r5dev *dev = &sh->dev[i];
2669 if ((dev->towrite || i == sh->pd_idx) &&
2670 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2671 !(test_bit(R5_UPTODATE, &dev->flags) ||
2672 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2673 test_bit(R5_Insync, &dev->flags)) {
2674 if (
2675 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2676 pr_debug("Read_old block "
a4456856
DW
2677 "%d for r-m-w\n", i);
2678 set_bit(R5_LOCKED, &dev->flags);
2679 set_bit(R5_Wantread, &dev->flags);
2680 s->locked++;
2681 } else {
2682 set_bit(STRIPE_DELAYED, &sh->state);
2683 set_bit(STRIPE_HANDLE, &sh->state);
2684 }
2685 }
2686 }
c8ac1803 2687 if (rcw <= rmw && rcw > 0) {
a4456856 2688 /* want reconstruct write, but need to get some data */
c8ac1803 2689 rcw = 0;
a4456856
DW
2690 for (i = disks; i--; ) {
2691 struct r5dev *dev = &sh->dev[i];
2692 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 2693 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 2694 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 2695 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
2696 test_bit(R5_Wantcompute, &dev->flags))) {
2697 rcw++;
2698 if (!test_bit(R5_Insync, &dev->flags))
2699 continue; /* it's a failed drive */
a4456856
DW
2700 if (
2701 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2702 pr_debug("Read_old block "
a4456856
DW
2703 "%d for Reconstruct\n", i);
2704 set_bit(R5_LOCKED, &dev->flags);
2705 set_bit(R5_Wantread, &dev->flags);
2706 s->locked++;
2707 } else {
2708 set_bit(STRIPE_DELAYED, &sh->state);
2709 set_bit(STRIPE_HANDLE, &sh->state);
2710 }
2711 }
2712 }
c8ac1803 2713 }
a4456856
DW
2714 /* now if nothing is locked, and if we have enough data,
2715 * we can start a write request
2716 */
f38e1219
DW
2717 /* since handle_stripe can be called at any time we need to handle the
2718 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
2719 * subsequent call wants to start a write request. raid_run_ops only
2720 * handles the case where compute block and reconstruct are requested
f38e1219
DW
2721 * simultaneously. If this is not the case then new writes need to be
2722 * held off until the compute completes.
2723 */
976ea8d4
DW
2724 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2725 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2726 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 2727 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
2728}
2729
d1688a6d 2730static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2731 struct stripe_head_state *s, int disks)
2732{
ecc65c9b 2733 struct r5dev *dev = NULL;
bd2ab670 2734
a4456856 2735 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2736
ecc65c9b
DW
2737 switch (sh->check_state) {
2738 case check_state_idle:
2739 /* start a new check operation if there are no failures */
bd2ab670 2740 if (s->failed == 0) {
bd2ab670 2741 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2742 sh->check_state = check_state_run;
2743 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2744 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2745 s->uptodate--;
ecc65c9b 2746 break;
bd2ab670 2747 }
f2b3b44d 2748 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
2749 /* fall through */
2750 case check_state_compute_result:
2751 sh->check_state = check_state_idle;
2752 if (!dev)
2753 dev = &sh->dev[sh->pd_idx];
2754
2755 /* check that a write has not made the stripe insync */
2756 if (test_bit(STRIPE_INSYNC, &sh->state))
2757 break;
c8894419 2758
a4456856 2759 /* either failed parity check, or recovery is happening */
a4456856
DW
2760 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2761 BUG_ON(s->uptodate != disks);
2762
2763 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2764 s->locked++;
a4456856 2765 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2766
a4456856 2767 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2768 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2769 break;
2770 case check_state_run:
2771 break; /* we will be called again upon completion */
2772 case check_state_check_result:
2773 sh->check_state = check_state_idle;
2774
2775 /* if a failure occurred during the check operation, leave
2776 * STRIPE_INSYNC not set and let the stripe be handled again
2777 */
2778 if (s->failed)
2779 break;
2780
2781 /* handle a successful check operation, if parity is correct
2782 * we are done. Otherwise update the mismatch count and repair
2783 * parity if !MD_RECOVERY_CHECK
2784 */
ad283ea4 2785 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
2786 /* parity is correct (on disc,
2787 * not in buffer any more)
2788 */
2789 set_bit(STRIPE_INSYNC, &sh->state);
2790 else {
2791 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2792 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2793 /* don't try to repair!! */
2794 set_bit(STRIPE_INSYNC, &sh->state);
2795 else {
2796 sh->check_state = check_state_compute_run;
976ea8d4 2797 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2798 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2799 set_bit(R5_Wantcompute,
2800 &sh->dev[sh->pd_idx].flags);
2801 sh->ops.target = sh->pd_idx;
ac6b53b6 2802 sh->ops.target2 = -1;
ecc65c9b
DW
2803 s->uptodate++;
2804 }
2805 }
2806 break;
2807 case check_state_compute_run:
2808 break;
2809 default:
2810 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2811 __func__, sh->check_state,
2812 (unsigned long long) sh->sector);
2813 BUG();
a4456856
DW
2814 }
2815}
2816
2817
d1688a6d 2818static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 2819 struct stripe_head_state *s,
f2b3b44d 2820 int disks)
a4456856 2821{
a4456856 2822 int pd_idx = sh->pd_idx;
34e04e87 2823 int qd_idx = sh->qd_idx;
d82dfee0 2824 struct r5dev *dev;
a4456856
DW
2825
2826 set_bit(STRIPE_HANDLE, &sh->state);
2827
2828 BUG_ON(s->failed > 2);
d82dfee0 2829
a4456856
DW
2830 /* Want to check and possibly repair P and Q.
2831 * However there could be one 'failed' device, in which
2832 * case we can only check one of them, possibly using the
2833 * other to generate missing data
2834 */
2835
d82dfee0
DW
2836 switch (sh->check_state) {
2837 case check_state_idle:
2838 /* start a new check operation if there are < 2 failures */
f2b3b44d 2839 if (s->failed == s->q_failed) {
d82dfee0 2840 /* The only possible failed device holds Q, so it
a4456856
DW
2841 * makes sense to check P (If anything else were failed,
2842 * we would have used P to recreate it).
2843 */
d82dfee0 2844 sh->check_state = check_state_run;
a4456856 2845 }
f2b3b44d 2846 if (!s->q_failed && s->failed < 2) {
d82dfee0 2847 /* Q is not failed, and we didn't use it to generate
a4456856
DW
2848 * anything, so it makes sense to check it
2849 */
d82dfee0
DW
2850 if (sh->check_state == check_state_run)
2851 sh->check_state = check_state_run_pq;
2852 else
2853 sh->check_state = check_state_run_q;
a4456856 2854 }
a4456856 2855
d82dfee0
DW
2856 /* discard potentially stale zero_sum_result */
2857 sh->ops.zero_sum_result = 0;
a4456856 2858
d82dfee0
DW
2859 if (sh->check_state == check_state_run) {
2860 /* async_xor_zero_sum destroys the contents of P */
2861 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2862 s->uptodate--;
a4456856 2863 }
d82dfee0
DW
2864 if (sh->check_state >= check_state_run &&
2865 sh->check_state <= check_state_run_pq) {
2866 /* async_syndrome_zero_sum preserves P and Q, so
2867 * no need to mark them !uptodate here
2868 */
2869 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2870 break;
a4456856
DW
2871 }
2872
d82dfee0
DW
2873 /* we have 2-disk failure */
2874 BUG_ON(s->failed != 2);
2875 /* fall through */
2876 case check_state_compute_result:
2877 sh->check_state = check_state_idle;
a4456856 2878
d82dfee0
DW
2879 /* check that a write has not made the stripe insync */
2880 if (test_bit(STRIPE_INSYNC, &sh->state))
2881 break;
a4456856
DW
2882
2883 /* now write out any block on a failed drive,
d82dfee0 2884 * or P or Q if they were recomputed
a4456856 2885 */
d82dfee0 2886 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 2887 if (s->failed == 2) {
f2b3b44d 2888 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
2889 s->locked++;
2890 set_bit(R5_LOCKED, &dev->flags);
2891 set_bit(R5_Wantwrite, &dev->flags);
2892 }
2893 if (s->failed >= 1) {
f2b3b44d 2894 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
2895 s->locked++;
2896 set_bit(R5_LOCKED, &dev->flags);
2897 set_bit(R5_Wantwrite, &dev->flags);
2898 }
d82dfee0 2899 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
2900 dev = &sh->dev[pd_idx];
2901 s->locked++;
2902 set_bit(R5_LOCKED, &dev->flags);
2903 set_bit(R5_Wantwrite, &dev->flags);
2904 }
d82dfee0 2905 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
2906 dev = &sh->dev[qd_idx];
2907 s->locked++;
2908 set_bit(R5_LOCKED, &dev->flags);
2909 set_bit(R5_Wantwrite, &dev->flags);
2910 }
2911 clear_bit(STRIPE_DEGRADED, &sh->state);
2912
2913 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
2914 break;
2915 case check_state_run:
2916 case check_state_run_q:
2917 case check_state_run_pq:
2918 break; /* we will be called again upon completion */
2919 case check_state_check_result:
2920 sh->check_state = check_state_idle;
2921
2922 /* handle a successful check operation, if parity is correct
2923 * we are done. Otherwise update the mismatch count and repair
2924 * parity if !MD_RECOVERY_CHECK
2925 */
2926 if (sh->ops.zero_sum_result == 0) {
2927 /* both parities are correct */
2928 if (!s->failed)
2929 set_bit(STRIPE_INSYNC, &sh->state);
2930 else {
2931 /* in contrast to the raid5 case we can validate
2932 * parity, but still have a failure to write
2933 * back
2934 */
2935 sh->check_state = check_state_compute_result;
2936 /* Returning at this point means that we may go
2937 * off and bring p and/or q uptodate again so
2938 * we make sure to check zero_sum_result again
2939 * to verify if p or q need writeback
2940 */
2941 }
2942 } else {
2943 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2944 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2945 /* don't try to repair!! */
2946 set_bit(STRIPE_INSYNC, &sh->state);
2947 else {
2948 int *target = &sh->ops.target;
2949
2950 sh->ops.target = -1;
2951 sh->ops.target2 = -1;
2952 sh->check_state = check_state_compute_run;
2953 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2954 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2955 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2956 set_bit(R5_Wantcompute,
2957 &sh->dev[pd_idx].flags);
2958 *target = pd_idx;
2959 target = &sh->ops.target2;
2960 s->uptodate++;
2961 }
2962 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2963 set_bit(R5_Wantcompute,
2964 &sh->dev[qd_idx].flags);
2965 *target = qd_idx;
2966 s->uptodate++;
2967 }
2968 }
2969 }
2970 break;
2971 case check_state_compute_run:
2972 break;
2973 default:
2974 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2975 __func__, sh->check_state,
2976 (unsigned long long) sh->sector);
2977 BUG();
a4456856
DW
2978 }
2979}
2980
d1688a6d 2981static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
2982{
2983 int i;
2984
2985 /* We have read all the blocks in this stripe and now we need to
2986 * copy some of them into a target stripe for expand.
2987 */
f0a50d37 2988 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2989 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2990 for (i = 0; i < sh->disks; i++)
34e04e87 2991 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 2992 int dd_idx, j;
a4456856 2993 struct stripe_head *sh2;
a08abd8c 2994 struct async_submit_ctl submit;
a4456856 2995
784052ec 2996 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
2997 sector_t s = raid5_compute_sector(conf, bn, 0,
2998 &dd_idx, NULL);
a8c906ca 2999 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3000 if (sh2 == NULL)
3001 /* so far only the early blocks of this stripe
3002 * have been requested. When later blocks
3003 * get requested, we will try again
3004 */
3005 continue;
3006 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3007 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3008 /* must have already done this block */
3009 release_stripe(sh2);
3010 continue;
3011 }
f0a50d37
DW
3012
3013 /* place all the copies on one channel */
a08abd8c 3014 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3015 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3016 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3017 &submit);
f0a50d37 3018
a4456856
DW
3019 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3020 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3021 for (j = 0; j < conf->raid_disks; j++)
3022 if (j != sh2->pd_idx &&
86c374ba 3023 j != sh2->qd_idx &&
a4456856
DW
3024 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3025 break;
3026 if (j == conf->raid_disks) {
3027 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3028 set_bit(STRIPE_HANDLE, &sh2->state);
3029 }
3030 release_stripe(sh2);
f0a50d37 3031
a4456856 3032 }
a2e08551
N
3033 /* done submitting copies, wait for them to complete */
3034 if (tx) {
3035 async_tx_ack(tx);
3036 dma_wait_for_async_tx(tx);
3037 }
a4456856 3038}
1da177e4 3039
6bfe0b49 3040
1da177e4
LT
3041/*
3042 * handle_stripe - do things to a stripe.
3043 *
3044 * We lock the stripe and then examine the state of various bits
3045 * to see what needs to be done.
3046 * Possible results:
3047 * return some read request which now have data
3048 * return some write requests which are safely on disc
3049 * schedule a read on some buffers
3050 * schedule a write of some buffers
3051 * return confirmation of parity correctness
3052 *
1da177e4
LT
3053 * buffers are taken off read_list or write_list, and bh_cache buffers
3054 * get BH_Lock set before the stripe lock is released.
3055 *
3056 */
a4456856 3057
acfe726b 3058static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 3059{
d1688a6d 3060 struct r5conf *conf = sh->raid_conf;
f416885e 3061 int disks = sh->disks;
474af965
N
3062 struct r5dev *dev;
3063 int i;
1da177e4 3064
acfe726b
N
3065 memset(s, 0, sizeof(*s));
3066
3067 s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
3068 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3069 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3070 s->failed_num[0] = -1;
3071 s->failed_num[1] = -1;
1da177e4 3072
acfe726b 3073 /* Now to look around and see what can be done */
1da177e4 3074 rcu_read_lock();
c4c1663b 3075 spin_lock_irq(&conf->device_lock);
16a53ecc 3076 for (i=disks; i--; ) {
3cb03002 3077 struct md_rdev *rdev;
31c176ec
N
3078 sector_t first_bad;
3079 int bad_sectors;
3080 int is_bad = 0;
acfe726b 3081
16a53ecc 3082 dev = &sh->dev[i];
1da177e4 3083
45b4233c 3084 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc 3085 i, dev->flags, dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3086 /* maybe we can reply to a read
3087 *
3088 * new wantfill requests are only permitted while
3089 * ops_complete_biofill is guaranteed to be inactive
3090 */
3091 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3092 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3093 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3094
16a53ecc 3095 /* now count some things */
cc94015a
N
3096 if (test_bit(R5_LOCKED, &dev->flags))
3097 s->locked++;
3098 if (test_bit(R5_UPTODATE, &dev->flags))
3099 s->uptodate++;
2d6e4ecc 3100 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
3101 s->compute++;
3102 BUG_ON(s->compute > 2);
2d6e4ecc 3103 }
1da177e4 3104
acfe726b 3105 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 3106 s->to_fill++;
acfe726b 3107 else if (dev->toread)
cc94015a 3108 s->to_read++;
16a53ecc 3109 if (dev->towrite) {
cc94015a 3110 s->to_write++;
16a53ecc 3111 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 3112 s->non_overwrite++;
16a53ecc 3113 }
a4456856 3114 if (dev->written)
cc94015a 3115 s->written++;
14a75d3e
N
3116 /* Prefer to use the replacement for reads, but only
3117 * if it is recovered enough and has no bad blocks.
3118 */
3119 rdev = rcu_dereference(conf->disks[i].replacement);
3120 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3121 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3122 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3123 &first_bad, &bad_sectors))
3124 set_bit(R5_ReadRepl, &dev->flags);
3125 else {
3126 rdev = rcu_dereference(conf->disks[i].rdev);
3127 clear_bit(R5_ReadRepl, &dev->flags);
3128 }
9283d8c5
N
3129 if (rdev && test_bit(Faulty, &rdev->flags))
3130 rdev = NULL;
31c176ec
N
3131 if (rdev) {
3132 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3133 &first_bad, &bad_sectors);
3134 if (s->blocked_rdev == NULL
3135 && (test_bit(Blocked, &rdev->flags)
3136 || is_bad < 0)) {
3137 if (is_bad < 0)
3138 set_bit(BlockedBadBlocks,
3139 &rdev->flags);
3140 s->blocked_rdev = rdev;
3141 atomic_inc(&rdev->nr_pending);
3142 }
6bfe0b49 3143 }
415e72d0
N
3144 clear_bit(R5_Insync, &dev->flags);
3145 if (!rdev)
3146 /* Not in-sync */;
31c176ec
N
3147 else if (is_bad) {
3148 /* also not in-sync */
3149 if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3150 /* treat as in-sync, but with a read error
3151 * which we can now try to correct
3152 */
3153 set_bit(R5_Insync, &dev->flags);
3154 set_bit(R5_ReadError, &dev->flags);
3155 }
3156 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 3157 set_bit(R5_Insync, &dev->flags);
30d7a483 3158 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 3159 /* in sync if before recovery_offset */
30d7a483
N
3160 set_bit(R5_Insync, &dev->flags);
3161 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3162 test_bit(R5_Expanded, &dev->flags))
3163 /* If we've reshaped into here, we assume it is Insync.
3164 * We will shortly update recovery_offset to make
3165 * it official.
3166 */
3167 set_bit(R5_Insync, &dev->flags);
3168
5d8c71f9 3169 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
3170 /* This flag does not apply to '.replacement'
3171 * only to .rdev, so make sure to check that*/
3172 struct md_rdev *rdev2 = rcu_dereference(
3173 conf->disks[i].rdev);
3174 if (rdev2 == rdev)
3175 clear_bit(R5_Insync, &dev->flags);
3176 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 3177 s->handle_bad_blocks = 1;
14a75d3e 3178 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
3179 } else
3180 clear_bit(R5_WriteError, &dev->flags);
3181 }
5d8c71f9 3182 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
3183 /* This flag does not apply to '.replacement'
3184 * only to .rdev, so make sure to check that*/
3185 struct md_rdev *rdev2 = rcu_dereference(
3186 conf->disks[i].rdev);
3187 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 3188 s->handle_bad_blocks = 1;
14a75d3e 3189 atomic_inc(&rdev2->nr_pending);
b84db560
N
3190 } else
3191 clear_bit(R5_MadeGood, &dev->flags);
3192 }
977df362
N
3193 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3194 struct md_rdev *rdev2 = rcu_dereference(
3195 conf->disks[i].replacement);
3196 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3197 s->handle_bad_blocks = 1;
3198 atomic_inc(&rdev2->nr_pending);
3199 } else
3200 clear_bit(R5_MadeGoodRepl, &dev->flags);
3201 }
415e72d0 3202 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
3203 /* The ReadError flag will just be confusing now */
3204 clear_bit(R5_ReadError, &dev->flags);
3205 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3206 }
415e72d0
N
3207 if (test_bit(R5_ReadError, &dev->flags))
3208 clear_bit(R5_Insync, &dev->flags);
3209 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
3210 if (s->failed < 2)
3211 s->failed_num[s->failed] = i;
3212 s->failed++;
415e72d0 3213 }
1da177e4 3214 }
c4c1663b 3215 spin_unlock_irq(&conf->device_lock);
1da177e4 3216 rcu_read_unlock();
cc94015a
N
3217}
3218
3219static void handle_stripe(struct stripe_head *sh)
3220{
3221 struct stripe_head_state s;
d1688a6d 3222 struct r5conf *conf = sh->raid_conf;
3687c061 3223 int i;
84789554
N
3224 int prexor;
3225 int disks = sh->disks;
474af965 3226 struct r5dev *pdev, *qdev;
cc94015a
N
3227
3228 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 3229 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
3230 /* already being handled, ensure it gets handled
3231 * again when current action finishes */
3232 set_bit(STRIPE_HANDLE, &sh->state);
3233 return;
3234 }
3235
3236 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3237 set_bit(STRIPE_SYNCING, &sh->state);
3238 clear_bit(STRIPE_INSYNC, &sh->state);
3239 }
3240 clear_bit(STRIPE_DELAYED, &sh->state);
3241
3242 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3243 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3244 (unsigned long long)sh->sector, sh->state,
3245 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3246 sh->check_state, sh->reconstruct_state);
3687c061 3247
acfe726b 3248 analyse_stripe(sh, &s);
c5a31000 3249
bc2607f3
N
3250 if (s.handle_bad_blocks) {
3251 set_bit(STRIPE_HANDLE, &sh->state);
3252 goto finish;
3253 }
3254
474af965
N
3255 if (unlikely(s.blocked_rdev)) {
3256 if (s.syncing || s.expanding || s.expanded ||
3257 s.to_write || s.written) {
3258 set_bit(STRIPE_HANDLE, &sh->state);
3259 goto finish;
3260 }
3261 /* There is nothing for the blocked_rdev to block */
3262 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3263 s.blocked_rdev = NULL;
3264 }
3265
3266 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3267 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3268 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3269 }
3270
3271 pr_debug("locked=%d uptodate=%d to_read=%d"
3272 " to_write=%d failed=%d failed_num=%d,%d\n",
3273 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3274 s.failed_num[0], s.failed_num[1]);
3275 /* check if the array has lost more than max_degraded devices and,
3276 * if so, some requests might need to be failed.
3277 */
9a3f530f
N
3278 if (s.failed > conf->max_degraded) {
3279 sh->check_state = 0;
3280 sh->reconstruct_state = 0;
3281 if (s.to_read+s.to_write+s.written)
3282 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3283 if (s.syncing)
3284 handle_failed_sync(conf, sh, &s);
3285 }
474af965
N
3286
3287 /*
3288 * might be able to return some write requests if the parity blocks
3289 * are safe, or on a failed drive
3290 */
3291 pdev = &sh->dev[sh->pd_idx];
3292 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3293 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3294 qdev = &sh->dev[sh->qd_idx];
3295 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3296 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3297 || conf->level < 6;
3298
3299 if (s.written &&
3300 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3301 && !test_bit(R5_LOCKED, &pdev->flags)
3302 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3303 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3304 && !test_bit(R5_LOCKED, &qdev->flags)
3305 && test_bit(R5_UPTODATE, &qdev->flags)))))
3306 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3307
3308 /* Now we might consider reading some blocks, either to check/generate
3309 * parity, or to satisfy requests
3310 * or to load a block that is being partially written.
3311 */
3312 if (s.to_read || s.non_overwrite
3313 || (conf->level == 6 && s.to_write && s.failed)
3314 || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3315 handle_stripe_fill(sh, &s, disks);
3316
84789554
N
3317 /* Now we check to see if any write operations have recently
3318 * completed
3319 */
3320 prexor = 0;
3321 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3322 prexor = 1;
3323 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3324 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3325 sh->reconstruct_state = reconstruct_state_idle;
3326
3327 /* All the 'written' buffers and the parity block are ready to
3328 * be written back to disk
3329 */
3330 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3331 BUG_ON(sh->qd_idx >= 0 &&
3332 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3333 for (i = disks; i--; ) {
3334 struct r5dev *dev = &sh->dev[i];
3335 if (test_bit(R5_LOCKED, &dev->flags) &&
3336 (i == sh->pd_idx || i == sh->qd_idx ||
3337 dev->written)) {
3338 pr_debug("Writing block %d\n", i);
3339 set_bit(R5_Wantwrite, &dev->flags);
3340 if (prexor)
3341 continue;
3342 if (!test_bit(R5_Insync, &dev->flags) ||
3343 ((i == sh->pd_idx || i == sh->qd_idx) &&
3344 s.failed == 0))
3345 set_bit(STRIPE_INSYNC, &sh->state);
3346 }
3347 }
3348 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3349 s.dec_preread_active = 1;
3350 }
3351
3352 /* Now to consider new write requests and what else, if anything
3353 * should be read. We do not handle new writes when:
3354 * 1/ A 'write' operation (copy+xor) is already in flight.
3355 * 2/ A 'check' operation is in flight, as it may clobber the parity
3356 * block.
3357 */
3358 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3359 handle_stripe_dirtying(conf, sh, &s, disks);
3360
3361 /* maybe we need to check and possibly fix the parity for this stripe
3362 * Any reads will already have been scheduled, so we just see if enough
3363 * data is available. The parity check is held off while parity
3364 * dependent operations are in flight.
3365 */
3366 if (sh->check_state ||
3367 (s.syncing && s.locked == 0 &&
3368 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3369 !test_bit(STRIPE_INSYNC, &sh->state))) {
3370 if (conf->level == 6)
3371 handle_parity_checks6(conf, sh, &s, disks);
3372 else
3373 handle_parity_checks5(conf, sh, &s, disks);
3374 }
c5a31000
N
3375
3376 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3377 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3378 clear_bit(STRIPE_SYNCING, &sh->state);
3379 }
3380
3381 /* If the failed drives are just a ReadError, then we might need
3382 * to progress the repair/check process
3383 */
3384 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3385 for (i = 0; i < s.failed; i++) {
3386 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3387 if (test_bit(R5_ReadError, &dev->flags)
3388 && !test_bit(R5_LOCKED, &dev->flags)
3389 && test_bit(R5_UPTODATE, &dev->flags)
3390 ) {
3391 if (!test_bit(R5_ReWrite, &dev->flags)) {
3392 set_bit(R5_Wantwrite, &dev->flags);
3393 set_bit(R5_ReWrite, &dev->flags);
3394 set_bit(R5_LOCKED, &dev->flags);
3395 s.locked++;
3396 } else {
3397 /* let's read it back */
3398 set_bit(R5_Wantread, &dev->flags);
3399 set_bit(R5_LOCKED, &dev->flags);
3400 s.locked++;
3401 }
3402 }
3403 }
3404
3405
3687c061
N
3406 /* Finish reconstruct operations initiated by the expansion process */
3407 if (sh->reconstruct_state == reconstruct_state_result) {
3408 struct stripe_head *sh_src
3409 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3410 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3411 /* sh cannot be written until sh_src has been read.
3412 * so arrange for sh to be delayed a little
3413 */
3414 set_bit(STRIPE_DELAYED, &sh->state);
3415 set_bit(STRIPE_HANDLE, &sh->state);
3416 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3417 &sh_src->state))
3418 atomic_inc(&conf->preread_active_stripes);
3419 release_stripe(sh_src);
3420 goto finish;
3421 }
3422 if (sh_src)
3423 release_stripe(sh_src);
3424
3425 sh->reconstruct_state = reconstruct_state_idle;
3426 clear_bit(STRIPE_EXPANDING, &sh->state);
3427 for (i = conf->raid_disks; i--; ) {
3428 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3429 set_bit(R5_LOCKED, &sh->dev[i].flags);
3430 s.locked++;
3431 }
3432 }
f416885e 3433
3687c061
N
3434 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3435 !sh->reconstruct_state) {
3436 /* Need to write out all blocks after computing parity */
3437 sh->disks = conf->raid_disks;
3438 stripe_set_idx(sh->sector, conf, 0, sh);
3439 schedule_reconstruction(sh, &s, 1, 1);
3440 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3441 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3442 atomic_dec(&conf->reshape_stripes);
3443 wake_up(&conf->wait_for_overlap);
3444 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3445 }
3446
3447 if (s.expanding && s.locked == 0 &&
3448 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3449 handle_stripe_expansion(conf, sh);
16a53ecc 3450
3687c061 3451finish:
6bfe0b49 3452 /* wait for this device to become unblocked */
43220aa0 3453 if (conf->mddev->external && unlikely(s.blocked_rdev))
c5709ef6 3454 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
6bfe0b49 3455
bc2607f3
N
3456 if (s.handle_bad_blocks)
3457 for (i = disks; i--; ) {
3cb03002 3458 struct md_rdev *rdev;
bc2607f3
N
3459 struct r5dev *dev = &sh->dev[i];
3460 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3461 /* We own a safe reference to the rdev */
3462 rdev = conf->disks[i].rdev;
3463 if (!rdev_set_badblocks(rdev, sh->sector,
3464 STRIPE_SECTORS, 0))
3465 md_error(conf->mddev, rdev);
3466 rdev_dec_pending(rdev, conf->mddev);
3467 }
b84db560
N
3468 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3469 rdev = conf->disks[i].rdev;
3470 rdev_clear_badblocks(rdev, sh->sector,
3471 STRIPE_SECTORS);
3472 rdev_dec_pending(rdev, conf->mddev);
3473 }
977df362
N
3474 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3475 rdev = conf->disks[i].replacement;
3476 rdev_clear_badblocks(rdev, sh->sector,
3477 STRIPE_SECTORS);
3478 rdev_dec_pending(rdev, conf->mddev);
3479 }
bc2607f3
N
3480 }
3481
6c0069c0
YT
3482 if (s.ops_request)
3483 raid_run_ops(sh, s.ops_request);
3484
f0e43bcd 3485 ops_run_io(sh, &s);
16a53ecc 3486
c5709ef6 3487 if (s.dec_preread_active) {
729a1866 3488 /* We delay this until after ops_run_io so that if make_request
e9c7469b 3489 * is waiting on a flush, it won't continue until the writes
729a1866
N
3490 * have actually been submitted.
3491 */
3492 atomic_dec(&conf->preread_active_stripes);
3493 if (atomic_read(&conf->preread_active_stripes) <
3494 IO_THRESHOLD)
3495 md_wakeup_thread(conf->mddev->thread);
3496 }
3497
c5709ef6 3498 return_io(s.return_bi);
16a53ecc 3499
257a4b42 3500 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
3501}
3502
d1688a6d 3503static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
3504{
3505 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3506 while (!list_empty(&conf->delayed_list)) {
3507 struct list_head *l = conf->delayed_list.next;
3508 struct stripe_head *sh;
3509 sh = list_entry(l, struct stripe_head, lru);
3510 list_del_init(l);
3511 clear_bit(STRIPE_DELAYED, &sh->state);
3512 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3513 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3514 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3515 }
482c0834 3516 }
16a53ecc
N
3517}
3518
d1688a6d 3519static void activate_bit_delay(struct r5conf *conf)
16a53ecc
N
3520{
3521 /* device_lock is held */
3522 struct list_head head;
3523 list_add(&head, &conf->bitmap_list);
3524 list_del_init(&conf->bitmap_list);
3525 while (!list_empty(&head)) {
3526 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3527 list_del_init(&sh->lru);
3528 atomic_inc(&sh->count);
3529 __release_stripe(conf, sh);
3530 }
3531}
3532
fd01b88c 3533int md_raid5_congested(struct mddev *mddev, int bits)
f022b2fd 3534{
d1688a6d 3535 struct r5conf *conf = mddev->private;
f022b2fd
N
3536
3537 /* No difference between reads and writes. Just check
3538 * how busy the stripe_cache is
3539 */
3fa841d7 3540
f022b2fd
N
3541 if (conf->inactive_blocked)
3542 return 1;
3543 if (conf->quiesce)
3544 return 1;
3545 if (list_empty_careful(&conf->inactive_list))
3546 return 1;
3547
3548 return 0;
3549}
11d8a6e3
N
3550EXPORT_SYMBOL_GPL(md_raid5_congested);
3551
3552static int raid5_congested(void *data, int bits)
3553{
fd01b88c 3554 struct mddev *mddev = data;
11d8a6e3
N
3555
3556 return mddev_congested(mddev, bits) ||
3557 md_raid5_congested(mddev, bits);
3558}
f022b2fd 3559
23032a0e
RBJ
3560/* We want read requests to align with chunks where possible,
3561 * but write requests don't need to.
3562 */
cc371e66
AK
3563static int raid5_mergeable_bvec(struct request_queue *q,
3564 struct bvec_merge_data *bvm,
3565 struct bio_vec *biovec)
23032a0e 3566{
fd01b88c 3567 struct mddev *mddev = q->queuedata;
cc371e66 3568 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 3569 int max;
9d8f0363 3570 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 3571 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3572
cc371e66 3573 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3574 return biovec->bv_len; /* always allow writes to be mergeable */
3575
664e7c41
AN
3576 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3577 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
3578 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3579 if (max < 0) max = 0;
3580 if (max <= biovec->bv_len && bio_sectors == 0)
3581 return biovec->bv_len;
3582 else
3583 return max;
3584}
3585
f679623f 3586
fd01b88c 3587static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f
RBJ
3588{
3589 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 3590 unsigned int chunk_sectors = mddev->chunk_sectors;
f679623f
RBJ
3591 unsigned int bio_sectors = bio->bi_size >> 9;
3592
664e7c41
AN
3593 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3594 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
3595 return chunk_sectors >=
3596 ((sector & (chunk_sectors - 1)) + bio_sectors);
3597}
3598
46031f9a
RBJ
3599/*
3600 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3601 * later sampled by raid5d.
3602 */
d1688a6d 3603static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
3604{
3605 unsigned long flags;
3606
3607 spin_lock_irqsave(&conf->device_lock, flags);
3608
3609 bi->bi_next = conf->retry_read_aligned_list;
3610 conf->retry_read_aligned_list = bi;
3611
3612 spin_unlock_irqrestore(&conf->device_lock, flags);
3613 md_wakeup_thread(conf->mddev->thread);
3614}
3615
3616
d1688a6d 3617static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
3618{
3619 struct bio *bi;
3620
3621 bi = conf->retry_read_aligned;
3622 if (bi) {
3623 conf->retry_read_aligned = NULL;
3624 return bi;
3625 }
3626 bi = conf->retry_read_aligned_list;
3627 if(bi) {
387bb173 3628 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3629 bi->bi_next = NULL;
960e739d
JA
3630 /*
3631 * this sets the active strip count to 1 and the processed
3632 * strip count to zero (upper 8 bits)
3633 */
46031f9a 3634 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3635 }
3636
3637 return bi;
3638}
3639
3640
f679623f
RBJ
3641/*
3642 * The "raid5_align_endio" should check if the read succeeded and if it
3643 * did, call bio_endio on the original bio (having bio_put the new bio
3644 * first).
3645 * If the read failed..
3646 */
6712ecf8 3647static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3648{
3649 struct bio* raid_bi = bi->bi_private;
fd01b88c 3650 struct mddev *mddev;
d1688a6d 3651 struct r5conf *conf;
46031f9a 3652 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3cb03002 3653 struct md_rdev *rdev;
46031f9a 3654
f679623f 3655 bio_put(bi);
46031f9a 3656
46031f9a
RBJ
3657 rdev = (void*)raid_bi->bi_next;
3658 raid_bi->bi_next = NULL;
2b7f2228
N
3659 mddev = rdev->mddev;
3660 conf = mddev->private;
46031f9a
RBJ
3661
3662 rdev_dec_pending(rdev, conf->mddev);
3663
3664 if (!error && uptodate) {
6712ecf8 3665 bio_endio(raid_bi, 0);
46031f9a
RBJ
3666 if (atomic_dec_and_test(&conf->active_aligned_reads))
3667 wake_up(&conf->wait_for_stripe);
6712ecf8 3668 return;
46031f9a
RBJ
3669 }
3670
3671
45b4233c 3672 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3673
3674 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3675}
3676
387bb173
NB
3677static int bio_fits_rdev(struct bio *bi)
3678{
165125e1 3679 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 3680
ae03bf63 3681 if ((bi->bi_size>>9) > queue_max_sectors(q))
387bb173
NB
3682 return 0;
3683 blk_recount_segments(q, bi);
8a78362c 3684 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
3685 return 0;
3686
3687 if (q->merge_bvec_fn)
3688 /* it's too hard to apply the merge_bvec_fn at this stage,
3689 * just just give up
3690 */
3691 return 0;
3692
3693 return 1;
3694}
3695
3696
fd01b88c 3697static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
f679623f 3698{
d1688a6d 3699 struct r5conf *conf = mddev->private;
8553fe7e 3700 int dd_idx;
f679623f 3701 struct bio* align_bi;
3cb03002 3702 struct md_rdev *rdev;
671488cc 3703 sector_t end_sector;
f679623f
RBJ
3704
3705 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3706 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3707 return 0;
3708 }
3709 /*
a167f663 3710 * use bio_clone_mddev to make a copy of the bio
f679623f 3711 */
a167f663 3712 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
3713 if (!align_bi)
3714 return 0;
3715 /*
3716 * set bi_end_io to a new function, and set bi_private to the
3717 * original bio.
3718 */
3719 align_bi->bi_end_io = raid5_align_endio;
3720 align_bi->bi_private = raid_bio;
3721 /*
3722 * compute position
3723 */
112bf897
N
3724 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3725 0,
911d4ee8 3726 &dd_idx, NULL);
f679623f 3727
671488cc 3728 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
f679623f 3729 rcu_read_lock();
671488cc
N
3730 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3731 if (!rdev || test_bit(Faulty, &rdev->flags) ||
3732 rdev->recovery_offset < end_sector) {
3733 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3734 if (rdev &&
3735 (test_bit(Faulty, &rdev->flags) ||
3736 !(test_bit(In_sync, &rdev->flags) ||
3737 rdev->recovery_offset >= end_sector)))
3738 rdev = NULL;
3739 }
3740 if (rdev) {
31c176ec
N
3741 sector_t first_bad;
3742 int bad_sectors;
3743
f679623f
RBJ
3744 atomic_inc(&rdev->nr_pending);
3745 rcu_read_unlock();
46031f9a
RBJ
3746 raid_bio->bi_next = (void*)rdev;
3747 align_bi->bi_bdev = rdev->bdev;
3748 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3749 align_bi->bi_sector += rdev->data_offset;
3750
31c176ec
N
3751 if (!bio_fits_rdev(align_bi) ||
3752 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3753 &first_bad, &bad_sectors)) {
3754 /* too big in some way, or has a known bad block */
387bb173
NB
3755 bio_put(align_bi);
3756 rdev_dec_pending(rdev, mddev);
3757 return 0;
3758 }
3759
46031f9a
RBJ
3760 spin_lock_irq(&conf->device_lock);
3761 wait_event_lock_irq(conf->wait_for_stripe,
3762 conf->quiesce == 0,
3763 conf->device_lock, /* nothing */);
3764 atomic_inc(&conf->active_aligned_reads);
3765 spin_unlock_irq(&conf->device_lock);
3766
f679623f
RBJ
3767 generic_make_request(align_bi);
3768 return 1;
3769 } else {
3770 rcu_read_unlock();
46031f9a 3771 bio_put(align_bi);
f679623f
RBJ
3772 return 0;
3773 }
3774}
3775
8b3e6cdc
DW
3776/* __get_priority_stripe - get the next stripe to process
3777 *
3778 * Full stripe writes are allowed to pass preread active stripes up until
3779 * the bypass_threshold is exceeded. In general the bypass_count
3780 * increments when the handle_list is handled before the hold_list; however, it
3781 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3782 * stripe with in flight i/o. The bypass_count will be reset when the
3783 * head of the hold_list has changed, i.e. the head was promoted to the
3784 * handle_list.
3785 */
d1688a6d 3786static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
8b3e6cdc
DW
3787{
3788 struct stripe_head *sh;
3789
3790 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3791 __func__,
3792 list_empty(&conf->handle_list) ? "empty" : "busy",
3793 list_empty(&conf->hold_list) ? "empty" : "busy",
3794 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3795
3796 if (!list_empty(&conf->handle_list)) {
3797 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3798
3799 if (list_empty(&conf->hold_list))
3800 conf->bypass_count = 0;
3801 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3802 if (conf->hold_list.next == conf->last_hold)
3803 conf->bypass_count++;
3804 else {
3805 conf->last_hold = conf->hold_list.next;
3806 conf->bypass_count -= conf->bypass_threshold;
3807 if (conf->bypass_count < 0)
3808 conf->bypass_count = 0;
3809 }
3810 }
3811 } else if (!list_empty(&conf->hold_list) &&
3812 ((conf->bypass_threshold &&
3813 conf->bypass_count > conf->bypass_threshold) ||
3814 atomic_read(&conf->pending_full_writes) == 0)) {
3815 sh = list_entry(conf->hold_list.next,
3816 typeof(*sh), lru);
3817 conf->bypass_count -= conf->bypass_threshold;
3818 if (conf->bypass_count < 0)
3819 conf->bypass_count = 0;
3820 } else
3821 return NULL;
3822
3823 list_del_init(&sh->lru);
3824 atomic_inc(&sh->count);
3825 BUG_ON(atomic_read(&sh->count) != 1);
3826 return sh;
3827}
f679623f 3828
b4fdcb02 3829static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 3830{
d1688a6d 3831 struct r5conf *conf = mddev->private;
911d4ee8 3832 int dd_idx;
1da177e4
LT
3833 sector_t new_sector;
3834 sector_t logical_sector, last_sector;
3835 struct stripe_head *sh;
a362357b 3836 const int rw = bio_data_dir(bi);
49077326 3837 int remaining;
7c13edc8 3838 int plugged;
1da177e4 3839
e9c7469b
TH
3840 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3841 md_flush_request(mddev, bi);
5a7bbad2 3842 return;
e5dcdd80
N
3843 }
3844
3d310eb7 3845 md_write_start(mddev, bi);
06d91a5f 3846
802ba064 3847 if (rw == READ &&
52488615 3848 mddev->reshape_position == MaxSector &&
21a52c6d 3849 chunk_aligned_read(mddev,bi))
5a7bbad2 3850 return;
52488615 3851
1da177e4
LT
3852 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3853 last_sector = bi->bi_sector + (bi->bi_size>>9);
3854 bi->bi_next = NULL;
3855 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3856
7c13edc8 3857 plugged = mddev_check_plugged(mddev);
1da177e4
LT
3858 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3859 DEFINE_WAIT(w);
16a53ecc 3860 int disks, data_disks;
b5663ba4 3861 int previous;
b578d55f 3862
7ecaa1e6 3863 retry:
b5663ba4 3864 previous = 0;
b0f9ec04 3865 disks = conf->raid_disks;
b578d55f 3866 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 3867 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 3868 /* spinlock is needed as reshape_progress may be
df8e7f76
N
3869 * 64bit on a 32bit platform, and so it might be
3870 * possible to see a half-updated value
aeb878b0 3871 * Of course reshape_progress could change after
df8e7f76
N
3872 * the lock is dropped, so once we get a reference
3873 * to the stripe that we think it is, we will have
3874 * to check again.
3875 */
7ecaa1e6 3876 spin_lock_irq(&conf->device_lock);
fef9c61f
N
3877 if (mddev->delta_disks < 0
3878 ? logical_sector < conf->reshape_progress
3879 : logical_sector >= conf->reshape_progress) {
7ecaa1e6 3880 disks = conf->previous_raid_disks;
b5663ba4
N
3881 previous = 1;
3882 } else {
fef9c61f
N
3883 if (mddev->delta_disks < 0
3884 ? logical_sector < conf->reshape_safe
3885 : logical_sector >= conf->reshape_safe) {
b578d55f
N
3886 spin_unlock_irq(&conf->device_lock);
3887 schedule();
3888 goto retry;
3889 }
3890 }
7ecaa1e6
N
3891 spin_unlock_irq(&conf->device_lock);
3892 }
16a53ecc
N
3893 data_disks = disks - conf->max_degraded;
3894
112bf897
N
3895 new_sector = raid5_compute_sector(conf, logical_sector,
3896 previous,
911d4ee8 3897 &dd_idx, NULL);
0c55e022 3898 pr_debug("raid456: make_request, sector %llu logical %llu\n",
1da177e4
LT
3899 (unsigned long long)new_sector,
3900 (unsigned long long)logical_sector);
3901
b5663ba4 3902 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 3903 (bi->bi_rw&RWA_MASK), 0);
1da177e4 3904 if (sh) {
b0f9ec04 3905 if (unlikely(previous)) {
7ecaa1e6 3906 /* expansion might have moved on while waiting for a
df8e7f76
N
3907 * stripe, so we must do the range check again.
3908 * Expansion could still move past after this
3909 * test, but as we are holding a reference to
3910 * 'sh', we know that if that happens,
3911 * STRIPE_EXPANDING will get set and the expansion
3912 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3913 */
3914 int must_retry = 0;
3915 spin_lock_irq(&conf->device_lock);
b0f9ec04
N
3916 if (mddev->delta_disks < 0
3917 ? logical_sector >= conf->reshape_progress
3918 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
3919 /* mismatch, need to try again */
3920 must_retry = 1;
3921 spin_unlock_irq(&conf->device_lock);
3922 if (must_retry) {
3923 release_stripe(sh);
7a3ab908 3924 schedule();
7ecaa1e6
N
3925 goto retry;
3926 }
3927 }
e62e58a5 3928
ffd96e35 3929 if (rw == WRITE &&
a5c308d4 3930 logical_sector >= mddev->suspend_lo &&
e464eafd
N
3931 logical_sector < mddev->suspend_hi) {
3932 release_stripe(sh);
e62e58a5
N
3933 /* As the suspend_* range is controlled by
3934 * userspace, we want an interruptible
3935 * wait.
3936 */
3937 flush_signals(current);
3938 prepare_to_wait(&conf->wait_for_overlap,
3939 &w, TASK_INTERRUPTIBLE);
3940 if (logical_sector >= mddev->suspend_lo &&
3941 logical_sector < mddev->suspend_hi)
3942 schedule();
e464eafd
N
3943 goto retry;
3944 }
7ecaa1e6
N
3945
3946 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
ffd96e35 3947 !add_stripe_bio(sh, bi, dd_idx, rw)) {
7ecaa1e6
N
3948 /* Stripe is busy expanding or
3949 * add failed due to overlap. Flush everything
1da177e4
LT
3950 * and wait a while
3951 */
482c0834 3952 md_wakeup_thread(mddev->thread);
1da177e4
LT
3953 release_stripe(sh);
3954 schedule();
3955 goto retry;
3956 }
3957 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
3958 set_bit(STRIPE_HANDLE, &sh->state);
3959 clear_bit(STRIPE_DELAYED, &sh->state);
e9c7469b 3960 if ((bi->bi_rw & REQ_SYNC) &&
729a1866
N
3961 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3962 atomic_inc(&conf->preread_active_stripes);
1da177e4 3963 release_stripe(sh);
1da177e4
LT
3964 } else {
3965 /* cannot get stripe for read-ahead, just give-up */
3966 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3967 finish_wait(&conf->wait_for_overlap, &w);
3968 break;
3969 }
3970
3971 }
7c13edc8
N
3972 if (!plugged)
3973 md_wakeup_thread(mddev->thread);
3974
1da177e4 3975 spin_lock_irq(&conf->device_lock);
960e739d 3976 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
3977 spin_unlock_irq(&conf->device_lock);
3978 if (remaining == 0) {
1da177e4 3979
16a53ecc 3980 if ( rw == WRITE )
1da177e4 3981 md_write_end(mddev);
6712ecf8 3982
0e13fe23 3983 bio_endio(bi, 0);
1da177e4 3984 }
1da177e4
LT
3985}
3986
fd01b88c 3987static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 3988
fd01b88c 3989static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 3990{
52c03291
N
3991 /* reshaping is quite different to recovery/resync so it is
3992 * handled quite separately ... here.
3993 *
3994 * On each call to sync_request, we gather one chunk worth of
3995 * destination stripes and flag them as expanding.
3996 * Then we find all the source stripes and request reads.
3997 * As the reads complete, handle_stripe will copy the data
3998 * into the destination stripe and release that stripe.
3999 */
d1688a6d 4000 struct r5conf *conf = mddev->private;
1da177e4 4001 struct stripe_head *sh;
ccfcc3c1 4002 sector_t first_sector, last_sector;
f416885e
N
4003 int raid_disks = conf->previous_raid_disks;
4004 int data_disks = raid_disks - conf->max_degraded;
4005 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
4006 int i;
4007 int dd_idx;
c8f517c4 4008 sector_t writepos, readpos, safepos;
ec32a2bd 4009 sector_t stripe_addr;
7a661381 4010 int reshape_sectors;
ab69ae12 4011 struct list_head stripes;
52c03291 4012
fef9c61f
N
4013 if (sector_nr == 0) {
4014 /* If restarting in the middle, skip the initial sectors */
4015 if (mddev->delta_disks < 0 &&
4016 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4017 sector_nr = raid5_size(mddev, 0, 0)
4018 - conf->reshape_progress;
a639755c 4019 } else if (mddev->delta_disks >= 0 &&
fef9c61f
N
4020 conf->reshape_progress > 0)
4021 sector_nr = conf->reshape_progress;
f416885e 4022 sector_div(sector_nr, new_data_disks);
fef9c61f 4023 if (sector_nr) {
8dee7211
N
4024 mddev->curr_resync_completed = sector_nr;
4025 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
4026 *skipped = 1;
4027 return sector_nr;
4028 }
52c03291
N
4029 }
4030
7a661381
N
4031 /* We need to process a full chunk at a time.
4032 * If old and new chunk sizes differ, we need to process the
4033 * largest of these
4034 */
664e7c41
AN
4035 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4036 reshape_sectors = mddev->new_chunk_sectors;
7a661381 4037 else
9d8f0363 4038 reshape_sectors = mddev->chunk_sectors;
7a661381 4039
52c03291
N
4040 /* we update the metadata when there is more than 3Meg
4041 * in the block range (that is rather arbitrary, should
4042 * probably be time based) or when the data about to be
4043 * copied would over-write the source of the data at
4044 * the front of the range.
fef9c61f
N
4045 * i.e. one new_stripe along from reshape_progress new_maps
4046 * to after where reshape_safe old_maps to
52c03291 4047 */
fef9c61f 4048 writepos = conf->reshape_progress;
f416885e 4049 sector_div(writepos, new_data_disks);
c8f517c4
N
4050 readpos = conf->reshape_progress;
4051 sector_div(readpos, data_disks);
fef9c61f 4052 safepos = conf->reshape_safe;
f416885e 4053 sector_div(safepos, data_disks);
fef9c61f 4054 if (mddev->delta_disks < 0) {
ed37d83e 4055 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 4056 readpos += reshape_sectors;
7a661381 4057 safepos += reshape_sectors;
fef9c61f 4058 } else {
7a661381 4059 writepos += reshape_sectors;
ed37d83e
N
4060 readpos -= min_t(sector_t, reshape_sectors, readpos);
4061 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 4062 }
52c03291 4063
c8f517c4
N
4064 /* 'writepos' is the most advanced device address we might write.
4065 * 'readpos' is the least advanced device address we might read.
4066 * 'safepos' is the least address recorded in the metadata as having
4067 * been reshaped.
4068 * If 'readpos' is behind 'writepos', then there is no way that we can
4069 * ensure safety in the face of a crash - that must be done by userspace
4070 * making a backup of the data. So in that case there is no particular
4071 * rush to update metadata.
4072 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4073 * update the metadata to advance 'safepos' to match 'readpos' so that
4074 * we can be safe in the event of a crash.
4075 * So we insist on updating metadata if safepos is behind writepos and
4076 * readpos is beyond writepos.
4077 * In any case, update the metadata every 10 seconds.
4078 * Maybe that number should be configurable, but I'm not sure it is
4079 * worth it.... maybe it could be a multiple of safemode_delay???
4080 */
fef9c61f 4081 if ((mddev->delta_disks < 0
c8f517c4
N
4082 ? (safepos > writepos && readpos < writepos)
4083 : (safepos < writepos && readpos > writepos)) ||
4084 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
4085 /* Cannot proceed until we've updated the superblock... */
4086 wait_event(conf->wait_for_overlap,
4087 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 4088 mddev->reshape_position = conf->reshape_progress;
75d3da43 4089 mddev->curr_resync_completed = sector_nr;
c8f517c4 4090 conf->reshape_checkpoint = jiffies;
850b2b42 4091 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 4092 md_wakeup_thread(mddev->thread);
850b2b42 4093 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
4094 kthread_should_stop());
4095 spin_lock_irq(&conf->device_lock);
fef9c61f 4096 conf->reshape_safe = mddev->reshape_position;
52c03291
N
4097 spin_unlock_irq(&conf->device_lock);
4098 wake_up(&conf->wait_for_overlap);
acb180b0 4099 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
4100 }
4101
ec32a2bd
N
4102 if (mddev->delta_disks < 0) {
4103 BUG_ON(conf->reshape_progress == 0);
4104 stripe_addr = writepos;
4105 BUG_ON((mddev->dev_sectors &
7a661381
N
4106 ~((sector_t)reshape_sectors - 1))
4107 - reshape_sectors - stripe_addr
ec32a2bd
N
4108 != sector_nr);
4109 } else {
7a661381 4110 BUG_ON(writepos != sector_nr + reshape_sectors);
ec32a2bd
N
4111 stripe_addr = sector_nr;
4112 }
ab69ae12 4113 INIT_LIST_HEAD(&stripes);
7a661381 4114 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 4115 int j;
a9f326eb 4116 int skipped_disk = 0;
a8c906ca 4117 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
4118 set_bit(STRIPE_EXPANDING, &sh->state);
4119 atomic_inc(&conf->reshape_stripes);
4120 /* If any of this stripe is beyond the end of the old
4121 * array, then we need to zero those blocks
4122 */
4123 for (j=sh->disks; j--;) {
4124 sector_t s;
4125 if (j == sh->pd_idx)
4126 continue;
f416885e 4127 if (conf->level == 6 &&
d0dabf7e 4128 j == sh->qd_idx)
f416885e 4129 continue;
784052ec 4130 s = compute_blocknr(sh, j, 0);
b522adcd 4131 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 4132 skipped_disk = 1;
52c03291
N
4133 continue;
4134 }
4135 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4136 set_bit(R5_Expanded, &sh->dev[j].flags);
4137 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4138 }
a9f326eb 4139 if (!skipped_disk) {
52c03291
N
4140 set_bit(STRIPE_EXPAND_READY, &sh->state);
4141 set_bit(STRIPE_HANDLE, &sh->state);
4142 }
ab69ae12 4143 list_add(&sh->lru, &stripes);
52c03291
N
4144 }
4145 spin_lock_irq(&conf->device_lock);
fef9c61f 4146 if (mddev->delta_disks < 0)
7a661381 4147 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4148 else
7a661381 4149 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4150 spin_unlock_irq(&conf->device_lock);
4151 /* Ok, those stripe are ready. We can start scheduling
4152 * reads on the source stripes.
4153 * The source stripes are determined by mapping the first and last
4154 * block on the destination stripes.
4155 */
52c03291 4156 first_sector =
ec32a2bd 4157 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4158 1, &dd_idx, NULL);
52c03291 4159 last_sector =
0e6e0271 4160 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 4161 * new_data_disks - 1),
911d4ee8 4162 1, &dd_idx, NULL);
58c0fed4
AN
4163 if (last_sector >= mddev->dev_sectors)
4164 last_sector = mddev->dev_sectors - 1;
52c03291 4165 while (first_sector <= last_sector) {
a8c906ca 4166 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
4167 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4168 set_bit(STRIPE_HANDLE, &sh->state);
4169 release_stripe(sh);
4170 first_sector += STRIPE_SECTORS;
4171 }
ab69ae12
N
4172 /* Now that the sources are clearly marked, we can release
4173 * the destination stripes
4174 */
4175 while (!list_empty(&stripes)) {
4176 sh = list_entry(stripes.next, struct stripe_head, lru);
4177 list_del_init(&sh->lru);
4178 release_stripe(sh);
4179 }
c6207277
N
4180 /* If this takes us to the resync_max point where we have to pause,
4181 * then we need to write out the superblock.
4182 */
7a661381 4183 sector_nr += reshape_sectors;
c03f6a19
N
4184 if ((sector_nr - mddev->curr_resync_completed) * 2
4185 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
4186 /* Cannot proceed until we've updated the superblock... */
4187 wait_event(conf->wait_for_overlap,
4188 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 4189 mddev->reshape_position = conf->reshape_progress;
75d3da43 4190 mddev->curr_resync_completed = sector_nr;
c8f517c4 4191 conf->reshape_checkpoint = jiffies;
c6207277
N
4192 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4193 md_wakeup_thread(mddev->thread);
4194 wait_event(mddev->sb_wait,
4195 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4196 || kthread_should_stop());
4197 spin_lock_irq(&conf->device_lock);
fef9c61f 4198 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4199 spin_unlock_irq(&conf->device_lock);
4200 wake_up(&conf->wait_for_overlap);
acb180b0 4201 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 4202 }
7a661381 4203 return reshape_sectors;
52c03291
N
4204}
4205
4206/* FIXME go_faster isn't used */
fd01b88c 4207static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
52c03291 4208{
d1688a6d 4209 struct r5conf *conf = mddev->private;
52c03291 4210 struct stripe_head *sh;
58c0fed4 4211 sector_t max_sector = mddev->dev_sectors;
57dab0bd 4212 sector_t sync_blocks;
16a53ecc
N
4213 int still_degraded = 0;
4214 int i;
1da177e4 4215
72626685 4216 if (sector_nr >= max_sector) {
1da177e4 4217 /* just being told to finish up .. nothing much to do */
cea9c228 4218
29269553
N
4219 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4220 end_reshape(conf);
4221 return 0;
4222 }
72626685
N
4223
4224 if (mddev->curr_resync < max_sector) /* aborted */
4225 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4226 &sync_blocks, 1);
16a53ecc 4227 else /* completed sync */
72626685
N
4228 conf->fullsync = 0;
4229 bitmap_close_sync(mddev->bitmap);
4230
1da177e4
LT
4231 return 0;
4232 }
ccfcc3c1 4233
64bd660b
N
4234 /* Allow raid5_quiesce to complete */
4235 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4236
52c03291
N
4237 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4238 return reshape_request(mddev, sector_nr, skipped);
f6705578 4239
c6207277
N
4240 /* No need to check resync_max as we never do more than one
4241 * stripe, and as resync_max will always be on a chunk boundary,
4242 * if the check in md_do_sync didn't fire, there is no chance
4243 * of overstepping resync_max here
4244 */
4245
16a53ecc 4246 /* if there is too many failed drives and we are trying
1da177e4
LT
4247 * to resync, then assert that we are finished, because there is
4248 * nothing we can do.
4249 */
3285edf1 4250 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4251 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4252 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4253 *skipped = 1;
1da177e4
LT
4254 return rv;
4255 }
72626685 4256 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4257 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4258 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4259 /* we can skip this block, and probably more */
4260 sync_blocks /= STRIPE_SECTORS;
4261 *skipped = 1;
4262 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4263 }
1da177e4 4264
b47490c9
N
4265
4266 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4267
a8c906ca 4268 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 4269 if (sh == NULL) {
a8c906ca 4270 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 4271 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4272 * is trying to get access
1da177e4 4273 */
66c006a5 4274 schedule_timeout_uninterruptible(1);
1da177e4 4275 }
16a53ecc
N
4276 /* Need to check if array will still be degraded after recovery/resync
4277 * We don't need to check the 'failed' flag as when that gets set,
4278 * recovery aborts.
4279 */
f001a70c 4280 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
4281 if (conf->disks[i].rdev == NULL)
4282 still_degraded = 1;
4283
4284 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4285
83206d66 4286 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
1da177e4 4287
1442577b 4288 handle_stripe(sh);
1da177e4
LT
4289 release_stripe(sh);
4290
4291 return STRIPE_SECTORS;
4292}
4293
d1688a6d 4294static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
4295{
4296 /* We may not be able to submit a whole bio at once as there
4297 * may not be enough stripe_heads available.
4298 * We cannot pre-allocate enough stripe_heads as we may need
4299 * more than exist in the cache (if we allow ever large chunks).
4300 * So we do one stripe head at a time and record in
4301 * ->bi_hw_segments how many have been done.
4302 *
4303 * We *know* that this entire raid_bio is in one chunk, so
4304 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4305 */
4306 struct stripe_head *sh;
911d4ee8 4307 int dd_idx;
46031f9a
RBJ
4308 sector_t sector, logical_sector, last_sector;
4309 int scnt = 0;
4310 int remaining;
4311 int handled = 0;
4312
4313 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4314 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4315 0, &dd_idx, NULL);
46031f9a
RBJ
4316 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4317
4318 for (; logical_sector < last_sector;
387bb173
NB
4319 logical_sector += STRIPE_SECTORS,
4320 sector += STRIPE_SECTORS,
4321 scnt++) {
46031f9a 4322
960e739d 4323 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4324 /* already done this stripe */
4325 continue;
4326
a8c906ca 4327 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
4328
4329 if (!sh) {
4330 /* failed to get a stripe - must wait */
960e739d 4331 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4332 conf->retry_read_aligned = raid_bio;
4333 return handled;
4334 }
4335
387bb173
NB
4336 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4337 release_stripe(sh);
960e739d 4338 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4339 conf->retry_read_aligned = raid_bio;
4340 return handled;
4341 }
4342
36d1c647 4343 handle_stripe(sh);
46031f9a
RBJ
4344 release_stripe(sh);
4345 handled++;
4346 }
4347 spin_lock_irq(&conf->device_lock);
960e739d 4348 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4349 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4350 if (remaining == 0)
4351 bio_endio(raid_bio, 0);
46031f9a
RBJ
4352 if (atomic_dec_and_test(&conf->active_aligned_reads))
4353 wake_up(&conf->wait_for_stripe);
4354 return handled;
4355}
4356
46031f9a 4357
1da177e4
LT
4358/*
4359 * This is our raid5 kernel thread.
4360 *
4361 * We scan the hash table for stripes which can be handled now.
4362 * During the scan, completed stripes are saved for us by the interrupt
4363 * handler, so that they will not have to wait for our next wakeup.
4364 */
fd01b88c 4365static void raid5d(struct mddev *mddev)
1da177e4
LT
4366{
4367 struct stripe_head *sh;
d1688a6d 4368 struct r5conf *conf = mddev->private;
1da177e4 4369 int handled;
e1dfa0a2 4370 struct blk_plug plug;
1da177e4 4371
45b4233c 4372 pr_debug("+++ raid5d active\n");
1da177e4
LT
4373
4374 md_check_recovery(mddev);
1da177e4 4375
e1dfa0a2 4376 blk_start_plug(&plug);
1da177e4
LT
4377 handled = 0;
4378 spin_lock_irq(&conf->device_lock);
4379 while (1) {
46031f9a 4380 struct bio *bio;
1da177e4 4381
7c13edc8
N
4382 if (atomic_read(&mddev->plug_cnt) == 0 &&
4383 !list_empty(&conf->bitmap_list)) {
4384 /* Now is a good time to flush some bitmap updates */
4385 conf->seq_flush++;
700e432d 4386 spin_unlock_irq(&conf->device_lock);
72626685 4387 bitmap_unplug(mddev->bitmap);
700e432d 4388 spin_lock_irq(&conf->device_lock);
7c13edc8 4389 conf->seq_write = conf->seq_flush;
72626685
N
4390 activate_bit_delay(conf);
4391 }
7c13edc8
N
4392 if (atomic_read(&mddev->plug_cnt) == 0)
4393 raid5_activate_delayed(conf);
72626685 4394
46031f9a
RBJ
4395 while ((bio = remove_bio_from_retry(conf))) {
4396 int ok;
4397 spin_unlock_irq(&conf->device_lock);
4398 ok = retry_aligned_read(conf, bio);
4399 spin_lock_irq(&conf->device_lock);
4400 if (!ok)
4401 break;
4402 handled++;
4403 }
4404
8b3e6cdc
DW
4405 sh = __get_priority_stripe(conf);
4406
c9f21aaf 4407 if (!sh)
1da177e4 4408 break;
1da177e4
LT
4409 spin_unlock_irq(&conf->device_lock);
4410
4411 handled++;
417b8d4a
DW
4412 handle_stripe(sh);
4413 release_stripe(sh);
4414 cond_resched();
1da177e4 4415
de393cde
N
4416 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4417 md_check_recovery(mddev);
4418
1da177e4
LT
4419 spin_lock_irq(&conf->device_lock);
4420 }
45b4233c 4421 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4422
4423 spin_unlock_irq(&conf->device_lock);
4424
c9f21aaf 4425 async_tx_issue_pending_all();
e1dfa0a2 4426 blk_finish_plug(&plug);
1da177e4 4427
45b4233c 4428 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4429}
4430
3f294f4f 4431static ssize_t
fd01b88c 4432raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 4433{
d1688a6d 4434 struct r5conf *conf = mddev->private;
96de1e66
N
4435 if (conf)
4436 return sprintf(page, "%d\n", conf->max_nr_stripes);
4437 else
4438 return 0;
3f294f4f
N
4439}
4440
c41d4ac4 4441int
fd01b88c 4442raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 4443{
d1688a6d 4444 struct r5conf *conf = mddev->private;
b5470dc5
DW
4445 int err;
4446
c41d4ac4 4447 if (size <= 16 || size > 32768)
3f294f4f 4448 return -EINVAL;
c41d4ac4 4449 while (size < conf->max_nr_stripes) {
3f294f4f
N
4450 if (drop_one_stripe(conf))
4451 conf->max_nr_stripes--;
4452 else
4453 break;
4454 }
b5470dc5
DW
4455 err = md_allow_write(mddev);
4456 if (err)
4457 return err;
c41d4ac4 4458 while (size > conf->max_nr_stripes) {
3f294f4f
N
4459 if (grow_one_stripe(conf))
4460 conf->max_nr_stripes++;
4461 else break;
4462 }
c41d4ac4
N
4463 return 0;
4464}
4465EXPORT_SYMBOL(raid5_set_cache_size);
4466
4467static ssize_t
fd01b88c 4468raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 4469{
d1688a6d 4470 struct r5conf *conf = mddev->private;
c41d4ac4
N
4471 unsigned long new;
4472 int err;
4473
4474 if (len >= PAGE_SIZE)
4475 return -EINVAL;
4476 if (!conf)
4477 return -ENODEV;
4478
4479 if (strict_strtoul(page, 10, &new))
4480 return -EINVAL;
4481 err = raid5_set_cache_size(mddev, new);
4482 if (err)
4483 return err;
3f294f4f
N
4484 return len;
4485}
007583c9 4486
96de1e66
N
4487static struct md_sysfs_entry
4488raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4489 raid5_show_stripe_cache_size,
4490 raid5_store_stripe_cache_size);
3f294f4f 4491
8b3e6cdc 4492static ssize_t
fd01b88c 4493raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 4494{
d1688a6d 4495 struct r5conf *conf = mddev->private;
8b3e6cdc
DW
4496 if (conf)
4497 return sprintf(page, "%d\n", conf->bypass_threshold);
4498 else
4499 return 0;
4500}
4501
4502static ssize_t
fd01b88c 4503raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 4504{
d1688a6d 4505 struct r5conf *conf = mddev->private;
4ef197d8 4506 unsigned long new;
8b3e6cdc
DW
4507 if (len >= PAGE_SIZE)
4508 return -EINVAL;
4509 if (!conf)
4510 return -ENODEV;
4511
4ef197d8 4512 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4513 return -EINVAL;
4ef197d8 4514 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4515 return -EINVAL;
4516 conf->bypass_threshold = new;
4517 return len;
4518}
4519
4520static struct md_sysfs_entry
4521raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4522 S_IRUGO | S_IWUSR,
4523 raid5_show_preread_threshold,
4524 raid5_store_preread_threshold);
4525
3f294f4f 4526static ssize_t
fd01b88c 4527stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 4528{
d1688a6d 4529 struct r5conf *conf = mddev->private;
96de1e66
N
4530 if (conf)
4531 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4532 else
4533 return 0;
3f294f4f
N
4534}
4535
96de1e66
N
4536static struct md_sysfs_entry
4537raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4538
007583c9 4539static struct attribute *raid5_attrs[] = {
3f294f4f
N
4540 &raid5_stripecache_size.attr,
4541 &raid5_stripecache_active.attr,
8b3e6cdc 4542 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4543 NULL,
4544};
007583c9
N
4545static struct attribute_group raid5_attrs_group = {
4546 .name = NULL,
4547 .attrs = raid5_attrs,
3f294f4f
N
4548};
4549
80c3a6ce 4550static sector_t
fd01b88c 4551raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 4552{
d1688a6d 4553 struct r5conf *conf = mddev->private;
80c3a6ce
DW
4554
4555 if (!sectors)
4556 sectors = mddev->dev_sectors;
5e5e3e78 4557 if (!raid_disks)
7ec05478 4558 /* size is defined by the smallest of previous and new size */
5e5e3e78 4559 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 4560
9d8f0363 4561 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 4562 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
4563 return sectors * (raid_disks - conf->max_degraded);
4564}
4565
d1688a6d 4566static void raid5_free_percpu(struct r5conf *conf)
36d1c647
DW
4567{
4568 struct raid5_percpu *percpu;
4569 unsigned long cpu;
4570
4571 if (!conf->percpu)
4572 return;
4573
4574 get_online_cpus();
4575 for_each_possible_cpu(cpu) {
4576 percpu = per_cpu_ptr(conf->percpu, cpu);
4577 safe_put_page(percpu->spare_page);
d6f38f31 4578 kfree(percpu->scribble);
36d1c647
DW
4579 }
4580#ifdef CONFIG_HOTPLUG_CPU
4581 unregister_cpu_notifier(&conf->cpu_notify);
4582#endif
4583 put_online_cpus();
4584
4585 free_percpu(conf->percpu);
4586}
4587
d1688a6d 4588static void free_conf(struct r5conf *conf)
95fc17aa
DW
4589{
4590 shrink_stripes(conf);
36d1c647 4591 raid5_free_percpu(conf);
95fc17aa
DW
4592 kfree(conf->disks);
4593 kfree(conf->stripe_hashtbl);
4594 kfree(conf);
4595}
4596
36d1c647
DW
4597#ifdef CONFIG_HOTPLUG_CPU
4598static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4599 void *hcpu)
4600{
d1688a6d 4601 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
4602 long cpu = (long)hcpu;
4603 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4604
4605 switch (action) {
4606 case CPU_UP_PREPARE:
4607 case CPU_UP_PREPARE_FROZEN:
d6f38f31 4608 if (conf->level == 6 && !percpu->spare_page)
36d1c647 4609 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
4610 if (!percpu->scribble)
4611 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4612
4613 if (!percpu->scribble ||
4614 (conf->level == 6 && !percpu->spare_page)) {
4615 safe_put_page(percpu->spare_page);
4616 kfree(percpu->scribble);
36d1c647
DW
4617 pr_err("%s: failed memory allocation for cpu%ld\n",
4618 __func__, cpu);
55af6bb5 4619 return notifier_from_errno(-ENOMEM);
36d1c647
DW
4620 }
4621 break;
4622 case CPU_DEAD:
4623 case CPU_DEAD_FROZEN:
4624 safe_put_page(percpu->spare_page);
d6f38f31 4625 kfree(percpu->scribble);
36d1c647 4626 percpu->spare_page = NULL;
d6f38f31 4627 percpu->scribble = NULL;
36d1c647
DW
4628 break;
4629 default:
4630 break;
4631 }
4632 return NOTIFY_OK;
4633}
4634#endif
4635
d1688a6d 4636static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
4637{
4638 unsigned long cpu;
4639 struct page *spare_page;
a29d8b8e 4640 struct raid5_percpu __percpu *allcpus;
d6f38f31 4641 void *scribble;
36d1c647
DW
4642 int err;
4643
36d1c647
DW
4644 allcpus = alloc_percpu(struct raid5_percpu);
4645 if (!allcpus)
4646 return -ENOMEM;
4647 conf->percpu = allcpus;
4648
4649 get_online_cpus();
4650 err = 0;
4651 for_each_present_cpu(cpu) {
d6f38f31
DW
4652 if (conf->level == 6) {
4653 spare_page = alloc_page(GFP_KERNEL);
4654 if (!spare_page) {
4655 err = -ENOMEM;
4656 break;
4657 }
4658 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4659 }
5e5e3e78 4660 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
d6f38f31 4661 if (!scribble) {
36d1c647
DW
4662 err = -ENOMEM;
4663 break;
4664 }
d6f38f31 4665 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
4666 }
4667#ifdef CONFIG_HOTPLUG_CPU
4668 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4669 conf->cpu_notify.priority = 0;
4670 if (err == 0)
4671 err = register_cpu_notifier(&conf->cpu_notify);
4672#endif
4673 put_online_cpus();
4674
4675 return err;
4676}
4677
d1688a6d 4678static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 4679{
d1688a6d 4680 struct r5conf *conf;
5e5e3e78 4681 int raid_disk, memory, max_disks;
3cb03002 4682 struct md_rdev *rdev;
1da177e4 4683 struct disk_info *disk;
1da177e4 4684
91adb564
N
4685 if (mddev->new_level != 5
4686 && mddev->new_level != 4
4687 && mddev->new_level != 6) {
0c55e022 4688 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4689 mdname(mddev), mddev->new_level);
4690 return ERR_PTR(-EIO);
1da177e4 4691 }
91adb564
N
4692 if ((mddev->new_level == 5
4693 && !algorithm_valid_raid5(mddev->new_layout)) ||
4694 (mddev->new_level == 6
4695 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 4696 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
4697 mdname(mddev), mddev->new_layout);
4698 return ERR_PTR(-EIO);
99c0fb5f 4699 }
91adb564 4700 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 4701 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
4702 mdname(mddev), mddev->raid_disks);
4703 return ERR_PTR(-EINVAL);
4bbf3771
N
4704 }
4705
664e7c41
AN
4706 if (!mddev->new_chunk_sectors ||
4707 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4708 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
4709 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4710 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 4711 return ERR_PTR(-EINVAL);
f6705578
N
4712 }
4713
d1688a6d 4714 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 4715 if (conf == NULL)
1da177e4 4716 goto abort;
f5efd45a
DW
4717 spin_lock_init(&conf->device_lock);
4718 init_waitqueue_head(&conf->wait_for_stripe);
4719 init_waitqueue_head(&conf->wait_for_overlap);
4720 INIT_LIST_HEAD(&conf->handle_list);
4721 INIT_LIST_HEAD(&conf->hold_list);
4722 INIT_LIST_HEAD(&conf->delayed_list);
4723 INIT_LIST_HEAD(&conf->bitmap_list);
4724 INIT_LIST_HEAD(&conf->inactive_list);
4725 atomic_set(&conf->active_stripes, 0);
4726 atomic_set(&conf->preread_active_stripes, 0);
4727 atomic_set(&conf->active_aligned_reads, 0);
4728 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 4729 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
4730
4731 conf->raid_disks = mddev->raid_disks;
4732 if (mddev->reshape_position == MaxSector)
4733 conf->previous_raid_disks = mddev->raid_disks;
4734 else
f6705578 4735 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
4736 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4737 conf->scribble_len = scribble_len(max_disks);
f6705578 4738
5e5e3e78 4739 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
4740 GFP_KERNEL);
4741 if (!conf->disks)
4742 goto abort;
9ffae0cf 4743
1da177e4
LT
4744 conf->mddev = mddev;
4745
fccddba0 4746 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4747 goto abort;
1da177e4 4748
36d1c647
DW
4749 conf->level = mddev->new_level;
4750 if (raid5_alloc_percpu(conf) != 0)
4751 goto abort;
4752
0c55e022 4753 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 4754
159ec1fc 4755 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 4756 raid_disk = rdev->raid_disk;
5e5e3e78 4757 if (raid_disk >= max_disks
1da177e4
LT
4758 || raid_disk < 0)
4759 continue;
4760 disk = conf->disks + raid_disk;
4761
4762 disk->rdev = rdev;
4763
b2d444d7 4764 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 4765 char b[BDEVNAME_SIZE];
0c55e022
N
4766 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4767 " disk %d\n",
4768 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 4769 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
4770 /* Cannot rely on bitmap to complete recovery */
4771 conf->fullsync = 1;
1da177e4
LT
4772 }
4773
09c9e5fa 4774 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 4775 conf->level = mddev->new_level;
16a53ecc
N
4776 if (conf->level == 6)
4777 conf->max_degraded = 2;
4778 else
4779 conf->max_degraded = 1;
91adb564 4780 conf->algorithm = mddev->new_layout;
1da177e4 4781 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4782 conf->reshape_progress = mddev->reshape_position;
e183eaed 4783 if (conf->reshape_progress != MaxSector) {
09c9e5fa 4784 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
4785 conf->prev_algo = mddev->layout;
4786 }
1da177e4 4787
91adb564 4788 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 4789 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
91adb564
N
4790 if (grow_stripes(conf, conf->max_nr_stripes)) {
4791 printk(KERN_ERR
0c55e022
N
4792 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4793 mdname(mddev), memory);
91adb564
N
4794 goto abort;
4795 } else
0c55e022
N
4796 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4797 mdname(mddev), memory);
1da177e4 4798
0da3c619 4799 conf->thread = md_register_thread(raid5d, mddev, NULL);
91adb564
N
4800 if (!conf->thread) {
4801 printk(KERN_ERR
0c55e022 4802 "md/raid:%s: couldn't allocate thread.\n",
91adb564 4803 mdname(mddev));
16a53ecc
N
4804 goto abort;
4805 }
91adb564
N
4806
4807 return conf;
4808
4809 abort:
4810 if (conf) {
95fc17aa 4811 free_conf(conf);
91adb564
N
4812 return ERR_PTR(-EIO);
4813 } else
4814 return ERR_PTR(-ENOMEM);
4815}
4816
c148ffdc
N
4817
4818static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4819{
4820 switch (algo) {
4821 case ALGORITHM_PARITY_0:
4822 if (raid_disk < max_degraded)
4823 return 1;
4824 break;
4825 case ALGORITHM_PARITY_N:
4826 if (raid_disk >= raid_disks - max_degraded)
4827 return 1;
4828 break;
4829 case ALGORITHM_PARITY_0_6:
4830 if (raid_disk == 0 ||
4831 raid_disk == raid_disks - 1)
4832 return 1;
4833 break;
4834 case ALGORITHM_LEFT_ASYMMETRIC_6:
4835 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4836 case ALGORITHM_LEFT_SYMMETRIC_6:
4837 case ALGORITHM_RIGHT_SYMMETRIC_6:
4838 if (raid_disk == raid_disks - 1)
4839 return 1;
4840 }
4841 return 0;
4842}
4843
fd01b88c 4844static int run(struct mddev *mddev)
91adb564 4845{
d1688a6d 4846 struct r5conf *conf;
9f7c2220 4847 int working_disks = 0;
c148ffdc 4848 int dirty_parity_disks = 0;
3cb03002 4849 struct md_rdev *rdev;
c148ffdc 4850 sector_t reshape_offset = 0;
91adb564 4851
8c6ac868 4852 if (mddev->recovery_cp != MaxSector)
0c55e022 4853 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
4854 " -- starting background reconstruction\n",
4855 mdname(mddev));
91adb564
N
4856 if (mddev->reshape_position != MaxSector) {
4857 /* Check that we can continue the reshape.
4858 * Currently only disks can change, it must
4859 * increase, and we must be past the point where
4860 * a stripe over-writes itself
4861 */
4862 sector_t here_new, here_old;
4863 int old_disks;
18b00334 4864 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 4865
88ce4930 4866 if (mddev->new_level != mddev->level) {
0c55e022 4867 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
4868 "required - aborting.\n",
4869 mdname(mddev));
4870 return -EINVAL;
4871 }
91adb564
N
4872 old_disks = mddev->raid_disks - mddev->delta_disks;
4873 /* reshape_position must be on a new-stripe boundary, and one
4874 * further up in new geometry must map after here in old
4875 * geometry.
4876 */
4877 here_new = mddev->reshape_position;
664e7c41 4878 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 4879 (mddev->raid_disks - max_degraded))) {
0c55e022
N
4880 printk(KERN_ERR "md/raid:%s: reshape_position not "
4881 "on a stripe boundary\n", mdname(mddev));
91adb564
N
4882 return -EINVAL;
4883 }
c148ffdc 4884 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
4885 /* here_new is the stripe we will write to */
4886 here_old = mddev->reshape_position;
9d8f0363 4887 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
4888 (old_disks-max_degraded));
4889 /* here_old is the first stripe that we might need to read
4890 * from */
67ac6011
N
4891 if (mddev->delta_disks == 0) {
4892 /* We cannot be sure it is safe to start an in-place
4893 * reshape. It is only safe if user-space if monitoring
4894 * and taking constant backups.
4895 * mdadm always starts a situation like this in
4896 * readonly mode so it can take control before
4897 * allowing any writes. So just check for that.
4898 */
4899 if ((here_new * mddev->new_chunk_sectors !=
4900 here_old * mddev->chunk_sectors) ||
4901 mddev->ro == 0) {
0c55e022
N
4902 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4903 " in read-only mode - aborting\n",
4904 mdname(mddev));
67ac6011
N
4905 return -EINVAL;
4906 }
4907 } else if (mddev->delta_disks < 0
4908 ? (here_new * mddev->new_chunk_sectors <=
4909 here_old * mddev->chunk_sectors)
4910 : (here_new * mddev->new_chunk_sectors >=
4911 here_old * mddev->chunk_sectors)) {
91adb564 4912 /* Reading from the same stripe as writing to - bad */
0c55e022
N
4913 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4914 "auto-recovery - aborting.\n",
4915 mdname(mddev));
91adb564
N
4916 return -EINVAL;
4917 }
0c55e022
N
4918 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4919 mdname(mddev));
91adb564
N
4920 /* OK, we should be able to continue; */
4921 } else {
4922 BUG_ON(mddev->level != mddev->new_level);
4923 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 4924 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 4925 BUG_ON(mddev->delta_disks != 0);
1da177e4 4926 }
91adb564 4927
245f46c2
N
4928 if (mddev->private == NULL)
4929 conf = setup_conf(mddev);
4930 else
4931 conf = mddev->private;
4932
91adb564
N
4933 if (IS_ERR(conf))
4934 return PTR_ERR(conf);
4935
4936 mddev->thread = conf->thread;
4937 conf->thread = NULL;
4938 mddev->private = conf;
4939
4940 /*
4941 * 0 for a fully functional array, 1 or 2 for a degraded array.
4942 */
c148ffdc
N
4943 list_for_each_entry(rdev, &mddev->disks, same_set) {
4944 if (rdev->raid_disk < 0)
4945 continue;
2f115882 4946 if (test_bit(In_sync, &rdev->flags)) {
91adb564 4947 working_disks++;
2f115882
N
4948 continue;
4949 }
c148ffdc
N
4950 /* This disc is not fully in-sync. However if it
4951 * just stored parity (beyond the recovery_offset),
4952 * when we don't need to be concerned about the
4953 * array being dirty.
4954 * When reshape goes 'backwards', we never have
4955 * partially completed devices, so we only need
4956 * to worry about reshape going forwards.
4957 */
4958 /* Hack because v0.91 doesn't store recovery_offset properly. */
4959 if (mddev->major_version == 0 &&
4960 mddev->minor_version > 90)
4961 rdev->recovery_offset = reshape_offset;
4962
c148ffdc
N
4963 if (rdev->recovery_offset < reshape_offset) {
4964 /* We need to check old and new layout */
4965 if (!only_parity(rdev->raid_disk,
4966 conf->algorithm,
4967 conf->raid_disks,
4968 conf->max_degraded))
4969 continue;
4970 }
4971 if (!only_parity(rdev->raid_disk,
4972 conf->prev_algo,
4973 conf->previous_raid_disks,
4974 conf->max_degraded))
4975 continue;
4976 dirty_parity_disks++;
4977 }
91adb564 4978
908f4fbd 4979 mddev->degraded = calc_degraded(conf);
91adb564 4980
674806d6 4981 if (has_failed(conf)) {
0c55e022 4982 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 4983 " (%d/%d failed)\n",
02c2de8c 4984 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4985 goto abort;
4986 }
4987
91adb564 4988 /* device size must be a multiple of chunk size */
9d8f0363 4989 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
4990 mddev->resync_max_sectors = mddev->dev_sectors;
4991
c148ffdc 4992 if (mddev->degraded > dirty_parity_disks &&
1da177e4 4993 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4994 if (mddev->ok_start_degraded)
4995 printk(KERN_WARNING
0c55e022
N
4996 "md/raid:%s: starting dirty degraded array"
4997 " - data corruption possible.\n",
6ff8d8ec
N
4998 mdname(mddev));
4999 else {
5000 printk(KERN_ERR
0c55e022 5001 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
5002 mdname(mddev));
5003 goto abort;
5004 }
1da177e4
LT
5005 }
5006
1da177e4 5007 if (mddev->degraded == 0)
0c55e022
N
5008 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5009 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
5010 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5011 mddev->new_layout);
1da177e4 5012 else
0c55e022
N
5013 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5014 " out of %d devices, algorithm %d\n",
5015 mdname(mddev), conf->level,
5016 mddev->raid_disks - mddev->degraded,
5017 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
5018
5019 print_raid5_conf(conf);
5020
fef9c61f 5021 if (conf->reshape_progress != MaxSector) {
fef9c61f 5022 conf->reshape_safe = conf->reshape_progress;
f6705578
N
5023 atomic_set(&conf->reshape_stripes, 0);
5024 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5025 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5026 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5027 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5028 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5029 "reshape");
f6705578
N
5030 }
5031
1da177e4
LT
5032
5033 /* Ok, everything is just fine now */
a64c876f
N
5034 if (mddev->to_remove == &raid5_attrs_group)
5035 mddev->to_remove = NULL;
00bcb4ac
N
5036 else if (mddev->kobj.sd &&
5037 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 5038 printk(KERN_WARNING
4a5add49 5039 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 5040 mdname(mddev));
4a5add49 5041 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 5042
4a5add49 5043 if (mddev->queue) {
9f7c2220 5044 int chunk_size;
4a5add49
N
5045 /* read-ahead size must cover two whole stripes, which
5046 * is 2 * (datadisks) * chunksize where 'n' is the
5047 * number of raid devices
5048 */
5049 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5050 int stripe = data_disks *
5051 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5052 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5053 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 5054
4a5add49 5055 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
f022b2fd 5056
11d8a6e3
N
5057 mddev->queue->backing_dev_info.congested_data = mddev;
5058 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
7a5febe9 5059
9f7c2220
N
5060 chunk_size = mddev->chunk_sectors << 9;
5061 blk_queue_io_min(mddev->queue, chunk_size);
5062 blk_queue_io_opt(mddev->queue, chunk_size *
5063 (conf->raid_disks - conf->max_degraded));
8f6c2e4b 5064
9f7c2220
N
5065 list_for_each_entry(rdev, &mddev->disks, same_set)
5066 disk_stack_limits(mddev->gendisk, rdev->bdev,
5067 rdev->data_offset << 9);
5068 }
23032a0e 5069
1da177e4
LT
5070 return 0;
5071abort:
01f96c0a 5072 md_unregister_thread(&mddev->thread);
e4f869d9
N
5073 print_raid5_conf(conf);
5074 free_conf(conf);
1da177e4 5075 mddev->private = NULL;
0c55e022 5076 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
5077 return -EIO;
5078}
5079
fd01b88c 5080static int stop(struct mddev *mddev)
1da177e4 5081{
d1688a6d 5082 struct r5conf *conf = mddev->private;
1da177e4 5083
01f96c0a 5084 md_unregister_thread(&mddev->thread);
11d8a6e3
N
5085 if (mddev->queue)
5086 mddev->queue->backing_dev_info.congested_fn = NULL;
95fc17aa 5087 free_conf(conf);
a64c876f
N
5088 mddev->private = NULL;
5089 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
5090 return 0;
5091}
5092
fd01b88c 5093static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 5094{
d1688a6d 5095 struct r5conf *conf = mddev->private;
1da177e4
LT
5096 int i;
5097
9d8f0363
AN
5098 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5099 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 5100 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
5101 for (i = 0; i < conf->raid_disks; i++)
5102 seq_printf (seq, "%s",
5103 conf->disks[i].rdev &&
b2d444d7 5104 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 5105 seq_printf (seq, "]");
1da177e4
LT
5106}
5107
d1688a6d 5108static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
5109{
5110 int i;
5111 struct disk_info *tmp;
5112
0c55e022 5113 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
5114 if (!conf) {
5115 printk("(conf==NULL)\n");
5116 return;
5117 }
0c55e022
N
5118 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5119 conf->raid_disks,
5120 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
5121
5122 for (i = 0; i < conf->raid_disks; i++) {
5123 char b[BDEVNAME_SIZE];
5124 tmp = conf->disks + i;
5125 if (tmp->rdev)
0c55e022
N
5126 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5127 i, !test_bit(Faulty, &tmp->rdev->flags),
5128 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
5129 }
5130}
5131
fd01b88c 5132static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
5133{
5134 int i;
d1688a6d 5135 struct r5conf *conf = mddev->private;
1da177e4 5136 struct disk_info *tmp;
6b965620
N
5137 int count = 0;
5138 unsigned long flags;
1da177e4
LT
5139
5140 for (i = 0; i < conf->raid_disks; i++) {
5141 tmp = conf->disks + i;
5142 if (tmp->rdev
70fffd0b 5143 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 5144 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 5145 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 5146 count++;
43c73ca4 5147 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
5148 }
5149 }
6b965620 5150 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 5151 mddev->degraded = calc_degraded(conf);
6b965620 5152 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 5153 print_raid5_conf(conf);
6b965620 5154 return count;
1da177e4
LT
5155}
5156
b8321b68 5157static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 5158{
d1688a6d 5159 struct r5conf *conf = mddev->private;
1da177e4 5160 int err = 0;
b8321b68 5161 int number = rdev->raid_disk;
657e3e4d 5162 struct md_rdev **rdevp;
1da177e4
LT
5163 struct disk_info *p = conf->disks + number;
5164
5165 print_raid5_conf(conf);
657e3e4d
N
5166 if (rdev == p->rdev)
5167 rdevp = &p->rdev;
5168 else if (rdev == p->replacement)
5169 rdevp = &p->replacement;
5170 else
5171 return 0;
5172
5173 if (number >= conf->raid_disks &&
5174 conf->reshape_progress == MaxSector)
5175 clear_bit(In_sync, &rdev->flags);
5176
5177 if (test_bit(In_sync, &rdev->flags) ||
5178 atomic_read(&rdev->nr_pending)) {
5179 err = -EBUSY;
5180 goto abort;
5181 }
5182 /* Only remove non-faulty devices if recovery
5183 * isn't possible.
5184 */
5185 if (!test_bit(Faulty, &rdev->flags) &&
5186 mddev->recovery_disabled != conf->recovery_disabled &&
5187 !has_failed(conf) &&
5188 number < conf->raid_disks) {
5189 err = -EBUSY;
5190 goto abort;
5191 }
5192 *rdevp = NULL;
5193 synchronize_rcu();
5194 if (atomic_read(&rdev->nr_pending)) {
5195 /* lost the race, try later */
5196 err = -EBUSY;
5197 *rdevp = rdev;
1da177e4
LT
5198 }
5199abort:
5200
5201 print_raid5_conf(conf);
5202 return err;
5203}
5204
fd01b88c 5205static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 5206{
d1688a6d 5207 struct r5conf *conf = mddev->private;
199050ea 5208 int err = -EEXIST;
1da177e4
LT
5209 int disk;
5210 struct disk_info *p;
6c2fce2e
NB
5211 int first = 0;
5212 int last = conf->raid_disks - 1;
1da177e4 5213
7f0da59b
N
5214 if (mddev->recovery_disabled == conf->recovery_disabled)
5215 return -EBUSY;
5216
674806d6 5217 if (has_failed(conf))
1da177e4 5218 /* no point adding a device */
199050ea 5219 return -EINVAL;
1da177e4 5220
6c2fce2e
NB
5221 if (rdev->raid_disk >= 0)
5222 first = last = rdev->raid_disk;
1da177e4
LT
5223
5224 /*
16a53ecc
N
5225 * find the disk ... but prefer rdev->saved_raid_disk
5226 * if possible.
1da177e4 5227 */
16a53ecc 5228 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 5229 rdev->saved_raid_disk >= first &&
16a53ecc
N
5230 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5231 disk = rdev->saved_raid_disk;
5232 else
6c2fce2e
NB
5233 disk = first;
5234 for ( ; disk <= last ; disk++)
1da177e4 5235 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 5236 clear_bit(In_sync, &rdev->flags);
1da177e4 5237 rdev->raid_disk = disk;
199050ea 5238 err = 0;
72626685
N
5239 if (rdev->saved_raid_disk != disk)
5240 conf->fullsync = 1;
d6065f7b 5241 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
5242 break;
5243 }
5244 print_raid5_conf(conf);
199050ea 5245 return err;
1da177e4
LT
5246}
5247
fd01b88c 5248static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
5249{
5250 /* no resync is happening, and there is enough space
5251 * on all devices, so we can resize.
5252 * We need to make sure resync covers any new space.
5253 * If the array is shrinking we should possibly wait until
5254 * any io in the removed space completes, but it hardly seems
5255 * worth it.
5256 */
9d8f0363 5257 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
1f403624
DW
5258 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5259 mddev->raid_disks));
b522adcd
DW
5260 if (mddev->array_sectors >
5261 raid5_size(mddev, sectors, mddev->raid_disks))
5262 return -EINVAL;
f233ea5c 5263 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5264 revalidate_disk(mddev->gendisk);
b098636c
N
5265 if (sectors > mddev->dev_sectors &&
5266 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 5267 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
5268 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5269 }
58c0fed4 5270 mddev->dev_sectors = sectors;
4b5c7ae8 5271 mddev->resync_max_sectors = sectors;
1da177e4
LT
5272 return 0;
5273}
5274
fd01b88c 5275static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
5276{
5277 /* Can only proceed if there are plenty of stripe_heads.
5278 * We need a minimum of one full stripe,, and for sensible progress
5279 * it is best to have about 4 times that.
5280 * If we require 4 times, then the default 256 4K stripe_heads will
5281 * allow for chunk sizes up to 256K, which is probably OK.
5282 * If the chunk size is greater, user-space should request more
5283 * stripe_heads first.
5284 */
d1688a6d 5285 struct r5conf *conf = mddev->private;
01ee22b4
N
5286 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5287 > conf->max_nr_stripes ||
5288 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5289 > conf->max_nr_stripes) {
0c55e022
N
5290 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5291 mdname(mddev),
01ee22b4
N
5292 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5293 / STRIPE_SIZE)*4);
5294 return 0;
5295 }
5296 return 1;
5297}
5298
fd01b88c 5299static int check_reshape(struct mddev *mddev)
29269553 5300{
d1688a6d 5301 struct r5conf *conf = mddev->private;
29269553 5302
88ce4930
N
5303 if (mddev->delta_disks == 0 &&
5304 mddev->new_layout == mddev->layout &&
664e7c41 5305 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 5306 return 0; /* nothing to do */
dba034ee
N
5307 if (mddev->bitmap)
5308 /* Cannot grow a bitmap yet */
5309 return -EBUSY;
674806d6 5310 if (has_failed(conf))
ec32a2bd
N
5311 return -EINVAL;
5312 if (mddev->delta_disks < 0) {
5313 /* We might be able to shrink, but the devices must
5314 * be made bigger first.
5315 * For raid6, 4 is the minimum size.
5316 * Otherwise 2 is the minimum
5317 */
5318 int min = 2;
5319 if (mddev->level == 6)
5320 min = 4;
5321 if (mddev->raid_disks + mddev->delta_disks < min)
5322 return -EINVAL;
5323 }
29269553 5324
01ee22b4 5325 if (!check_stripe_cache(mddev))
29269553 5326 return -ENOSPC;
29269553 5327
ec32a2bd 5328 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
5329}
5330
fd01b88c 5331static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 5332{
d1688a6d 5333 struct r5conf *conf = mddev->private;
3cb03002 5334 struct md_rdev *rdev;
63c70c4f 5335 int spares = 0;
c04be0aa 5336 unsigned long flags;
63c70c4f 5337
f416885e 5338 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
5339 return -EBUSY;
5340
01ee22b4
N
5341 if (!check_stripe_cache(mddev))
5342 return -ENOSPC;
5343
159ec1fc 5344 list_for_each_entry(rdev, &mddev->disks, same_set)
469518a3
N
5345 if (!test_bit(In_sync, &rdev->flags)
5346 && !test_bit(Faulty, &rdev->flags))
29269553 5347 spares++;
63c70c4f 5348
f416885e 5349 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
5350 /* Not enough devices even to make a degraded array
5351 * of that size
5352 */
5353 return -EINVAL;
5354
ec32a2bd
N
5355 /* Refuse to reduce size of the array. Any reductions in
5356 * array size must be through explicit setting of array_size
5357 * attribute.
5358 */
5359 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5360 < mddev->array_sectors) {
0c55e022 5361 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
5362 "before number of disks\n", mdname(mddev));
5363 return -EINVAL;
5364 }
5365
f6705578 5366 atomic_set(&conf->reshape_stripes, 0);
29269553
N
5367 spin_lock_irq(&conf->device_lock);
5368 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 5369 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
5370 conf->prev_chunk_sectors = conf->chunk_sectors;
5371 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
5372 conf->prev_algo = conf->algorithm;
5373 conf->algorithm = mddev->new_layout;
fef9c61f
N
5374 if (mddev->delta_disks < 0)
5375 conf->reshape_progress = raid5_size(mddev, 0, 0);
5376 else
5377 conf->reshape_progress = 0;
5378 conf->reshape_safe = conf->reshape_progress;
86b42c71 5379 conf->generation++;
29269553
N
5380 spin_unlock_irq(&conf->device_lock);
5381
5382 /* Add some new drives, as many as will fit.
5383 * We know there are enough to make the newly sized array work.
3424bf6a
N
5384 * Don't add devices if we are reducing the number of
5385 * devices in the array. This is because it is not possible
5386 * to correctly record the "partially reconstructed" state of
5387 * such devices during the reshape and confusion could result.
29269553 5388 */
87a8dec9
N
5389 if (mddev->delta_disks >= 0) {
5390 int added_devices = 0;
5391 list_for_each_entry(rdev, &mddev->disks, same_set)
5392 if (rdev->raid_disk < 0 &&
5393 !test_bit(Faulty, &rdev->flags)) {
5394 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9
N
5395 if (rdev->raid_disk
5396 >= conf->previous_raid_disks) {
5397 set_bit(In_sync, &rdev->flags);
5398 added_devices++;
5399 } else
5400 rdev->recovery_offset = 0;
36fad858
NK
5401
5402 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 5403 /* Failure here is OK */;
50da0840 5404 }
87a8dec9
N
5405 } else if (rdev->raid_disk >= conf->previous_raid_disks
5406 && !test_bit(Faulty, &rdev->flags)) {
5407 /* This is a spare that was manually added */
5408 set_bit(In_sync, &rdev->flags);
5409 added_devices++;
5410 }
29269553 5411
87a8dec9
N
5412 /* When a reshape changes the number of devices,
5413 * ->degraded is measured against the larger of the
5414 * pre and post number of devices.
5415 */
ec32a2bd 5416 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 5417 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
5418 spin_unlock_irqrestore(&conf->device_lock, flags);
5419 }
63c70c4f 5420 mddev->raid_disks = conf->raid_disks;
e516402c 5421 mddev->reshape_position = conf->reshape_progress;
850b2b42 5422 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 5423
29269553
N
5424 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5425 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5426 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5427 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5428 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5429 "reshape");
29269553
N
5430 if (!mddev->sync_thread) {
5431 mddev->recovery = 0;
5432 spin_lock_irq(&conf->device_lock);
5433 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
fef9c61f 5434 conf->reshape_progress = MaxSector;
29269553
N
5435 spin_unlock_irq(&conf->device_lock);
5436 return -EAGAIN;
5437 }
c8f517c4 5438 conf->reshape_checkpoint = jiffies;
29269553
N
5439 md_wakeup_thread(mddev->sync_thread);
5440 md_new_event(mddev);
5441 return 0;
5442}
29269553 5443
ec32a2bd
N
5444/* This is called from the reshape thread and should make any
5445 * changes needed in 'conf'
5446 */
d1688a6d 5447static void end_reshape(struct r5conf *conf)
29269553 5448{
29269553 5449
f6705578 5450 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f6705578 5451
f6705578 5452 spin_lock_irq(&conf->device_lock);
cea9c228 5453 conf->previous_raid_disks = conf->raid_disks;
fef9c61f 5454 conf->reshape_progress = MaxSector;
f6705578 5455 spin_unlock_irq(&conf->device_lock);
b0f9ec04 5456 wake_up(&conf->wait_for_overlap);
16a53ecc
N
5457
5458 /* read-ahead size must cover two whole stripes, which is
5459 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5460 */
4a5add49 5461 if (conf->mddev->queue) {
cea9c228 5462 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 5463 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 5464 / PAGE_SIZE);
16a53ecc
N
5465 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5466 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5467 }
29269553 5468 }
29269553
N
5469}
5470
ec32a2bd
N
5471/* This is called from the raid5d thread with mddev_lock held.
5472 * It makes config changes to the device.
5473 */
fd01b88c 5474static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 5475{
d1688a6d 5476 struct r5conf *conf = mddev->private;
cea9c228
N
5477
5478 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5479
ec32a2bd
N
5480 if (mddev->delta_disks > 0) {
5481 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5482 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5483 revalidate_disk(mddev->gendisk);
ec32a2bd
N
5484 } else {
5485 int d;
908f4fbd
N
5486 spin_lock_irq(&conf->device_lock);
5487 mddev->degraded = calc_degraded(conf);
5488 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
5489 for (d = conf->raid_disks ;
5490 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 5491 d++) {
3cb03002 5492 struct md_rdev *rdev = conf->disks[d].rdev;
b8321b68
N
5493 if (rdev &&
5494 raid5_remove_disk(mddev, rdev) == 0) {
36fad858 5495 sysfs_unlink_rdev(mddev, rdev);
1a67dde0
N
5496 rdev->raid_disk = -1;
5497 }
5498 }
cea9c228 5499 }
88ce4930 5500 mddev->layout = conf->algorithm;
09c9e5fa 5501 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
5502 mddev->reshape_position = MaxSector;
5503 mddev->delta_disks = 0;
cea9c228
N
5504 }
5505}
5506
fd01b88c 5507static void raid5_quiesce(struct mddev *mddev, int state)
72626685 5508{
d1688a6d 5509 struct r5conf *conf = mddev->private;
72626685
N
5510
5511 switch(state) {
e464eafd
N
5512 case 2: /* resume for a suspend */
5513 wake_up(&conf->wait_for_overlap);
5514 break;
5515
72626685
N
5516 case 1: /* stop all writes */
5517 spin_lock_irq(&conf->device_lock);
64bd660b
N
5518 /* '2' tells resync/reshape to pause so that all
5519 * active stripes can drain
5520 */
5521 conf->quiesce = 2;
72626685 5522 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
5523 atomic_read(&conf->active_stripes) == 0 &&
5524 atomic_read(&conf->active_aligned_reads) == 0,
72626685 5525 conf->device_lock, /* nothing */);
64bd660b 5526 conf->quiesce = 1;
72626685 5527 spin_unlock_irq(&conf->device_lock);
64bd660b
N
5528 /* allow reshape to continue */
5529 wake_up(&conf->wait_for_overlap);
72626685
N
5530 break;
5531
5532 case 0: /* re-enable writes */
5533 spin_lock_irq(&conf->device_lock);
5534 conf->quiesce = 0;
5535 wake_up(&conf->wait_for_stripe);
e464eafd 5536 wake_up(&conf->wait_for_overlap);
72626685
N
5537 spin_unlock_irq(&conf->device_lock);
5538 break;
5539 }
72626685 5540}
b15c2e57 5541
d562b0c4 5542
fd01b88c 5543static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 5544{
e373ab10 5545 struct r0conf *raid0_conf = mddev->private;
d76c8420 5546 sector_t sectors;
54071b38 5547
f1b29bca 5548 /* for raid0 takeover only one zone is supported */
e373ab10 5549 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
5550 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5551 mdname(mddev));
f1b29bca
DW
5552 return ERR_PTR(-EINVAL);
5553 }
5554
e373ab10
N
5555 sectors = raid0_conf->strip_zone[0].zone_end;
5556 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 5557 mddev->dev_sectors = sectors;
f1b29bca 5558 mddev->new_level = level;
54071b38
TM
5559 mddev->new_layout = ALGORITHM_PARITY_N;
5560 mddev->new_chunk_sectors = mddev->chunk_sectors;
5561 mddev->raid_disks += 1;
5562 mddev->delta_disks = 1;
5563 /* make sure it will be not marked as dirty */
5564 mddev->recovery_cp = MaxSector;
5565
5566 return setup_conf(mddev);
5567}
5568
5569
fd01b88c 5570static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
5571{
5572 int chunksect;
5573
5574 if (mddev->raid_disks != 2 ||
5575 mddev->degraded > 1)
5576 return ERR_PTR(-EINVAL);
5577
5578 /* Should check if there are write-behind devices? */
5579
5580 chunksect = 64*2; /* 64K by default */
5581
5582 /* The array must be an exact multiple of chunksize */
5583 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5584 chunksect >>= 1;
5585
5586 if ((chunksect<<9) < STRIPE_SIZE)
5587 /* array size does not allow a suitable chunk size */
5588 return ERR_PTR(-EINVAL);
5589
5590 mddev->new_level = 5;
5591 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 5592 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
5593
5594 return setup_conf(mddev);
5595}
5596
fd01b88c 5597static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
5598{
5599 int new_layout;
5600
5601 switch (mddev->layout) {
5602 case ALGORITHM_LEFT_ASYMMETRIC_6:
5603 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5604 break;
5605 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5606 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5607 break;
5608 case ALGORITHM_LEFT_SYMMETRIC_6:
5609 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5610 break;
5611 case ALGORITHM_RIGHT_SYMMETRIC_6:
5612 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5613 break;
5614 case ALGORITHM_PARITY_0_6:
5615 new_layout = ALGORITHM_PARITY_0;
5616 break;
5617 case ALGORITHM_PARITY_N:
5618 new_layout = ALGORITHM_PARITY_N;
5619 break;
5620 default:
5621 return ERR_PTR(-EINVAL);
5622 }
5623 mddev->new_level = 5;
5624 mddev->new_layout = new_layout;
5625 mddev->delta_disks = -1;
5626 mddev->raid_disks -= 1;
5627 return setup_conf(mddev);
5628}
5629
d562b0c4 5630
fd01b88c 5631static int raid5_check_reshape(struct mddev *mddev)
b3546035 5632{
88ce4930
N
5633 /* For a 2-drive array, the layout and chunk size can be changed
5634 * immediately as not restriping is needed.
5635 * For larger arrays we record the new value - after validation
5636 * to be used by a reshape pass.
b3546035 5637 */
d1688a6d 5638 struct r5conf *conf = mddev->private;
597a711b 5639 int new_chunk = mddev->new_chunk_sectors;
b3546035 5640
597a711b 5641 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
5642 return -EINVAL;
5643 if (new_chunk > 0) {
0ba459d2 5644 if (!is_power_of_2(new_chunk))
b3546035 5645 return -EINVAL;
597a711b 5646 if (new_chunk < (PAGE_SIZE>>9))
b3546035 5647 return -EINVAL;
597a711b 5648 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
5649 /* not factor of array size */
5650 return -EINVAL;
5651 }
5652
5653 /* They look valid */
5654
88ce4930 5655 if (mddev->raid_disks == 2) {
597a711b
N
5656 /* can make the change immediately */
5657 if (mddev->new_layout >= 0) {
5658 conf->algorithm = mddev->new_layout;
5659 mddev->layout = mddev->new_layout;
88ce4930
N
5660 }
5661 if (new_chunk > 0) {
597a711b
N
5662 conf->chunk_sectors = new_chunk ;
5663 mddev->chunk_sectors = new_chunk;
88ce4930
N
5664 }
5665 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5666 md_wakeup_thread(mddev->thread);
b3546035 5667 }
50ac168a 5668 return check_reshape(mddev);
88ce4930
N
5669}
5670
fd01b88c 5671static int raid6_check_reshape(struct mddev *mddev)
88ce4930 5672{
597a711b 5673 int new_chunk = mddev->new_chunk_sectors;
50ac168a 5674
597a711b 5675 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 5676 return -EINVAL;
b3546035 5677 if (new_chunk > 0) {
0ba459d2 5678 if (!is_power_of_2(new_chunk))
88ce4930 5679 return -EINVAL;
597a711b 5680 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 5681 return -EINVAL;
597a711b 5682 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
5683 /* not factor of array size */
5684 return -EINVAL;
b3546035 5685 }
88ce4930
N
5686
5687 /* They look valid */
50ac168a 5688 return check_reshape(mddev);
b3546035
N
5689}
5690
fd01b88c 5691static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
5692{
5693 /* raid5 can take over:
f1b29bca 5694 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
5695 * raid1 - if there are two drives. We need to know the chunk size
5696 * raid4 - trivial - just use a raid4 layout.
5697 * raid6 - Providing it is a *_6 layout
d562b0c4 5698 */
f1b29bca
DW
5699 if (mddev->level == 0)
5700 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
5701 if (mddev->level == 1)
5702 return raid5_takeover_raid1(mddev);
e9d4758f
N
5703 if (mddev->level == 4) {
5704 mddev->new_layout = ALGORITHM_PARITY_N;
5705 mddev->new_level = 5;
5706 return setup_conf(mddev);
5707 }
fc9739c6
N
5708 if (mddev->level == 6)
5709 return raid5_takeover_raid6(mddev);
d562b0c4
N
5710
5711 return ERR_PTR(-EINVAL);
5712}
5713
fd01b88c 5714static void *raid4_takeover(struct mddev *mddev)
a78d38a1 5715{
f1b29bca
DW
5716 /* raid4 can take over:
5717 * raid0 - if there is only one strip zone
5718 * raid5 - if layout is right
a78d38a1 5719 */
f1b29bca
DW
5720 if (mddev->level == 0)
5721 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
5722 if (mddev->level == 5 &&
5723 mddev->layout == ALGORITHM_PARITY_N) {
5724 mddev->new_layout = 0;
5725 mddev->new_level = 4;
5726 return setup_conf(mddev);
5727 }
5728 return ERR_PTR(-EINVAL);
5729}
d562b0c4 5730
84fc4b56 5731static struct md_personality raid5_personality;
245f46c2 5732
fd01b88c 5733static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
5734{
5735 /* Currently can only take over a raid5. We map the
5736 * personality to an equivalent raid6 personality
5737 * with the Q block at the end.
5738 */
5739 int new_layout;
5740
5741 if (mddev->pers != &raid5_personality)
5742 return ERR_PTR(-EINVAL);
5743 if (mddev->degraded > 1)
5744 return ERR_PTR(-EINVAL);
5745 if (mddev->raid_disks > 253)
5746 return ERR_PTR(-EINVAL);
5747 if (mddev->raid_disks < 3)
5748 return ERR_PTR(-EINVAL);
5749
5750 switch (mddev->layout) {
5751 case ALGORITHM_LEFT_ASYMMETRIC:
5752 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5753 break;
5754 case ALGORITHM_RIGHT_ASYMMETRIC:
5755 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5756 break;
5757 case ALGORITHM_LEFT_SYMMETRIC:
5758 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5759 break;
5760 case ALGORITHM_RIGHT_SYMMETRIC:
5761 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5762 break;
5763 case ALGORITHM_PARITY_0:
5764 new_layout = ALGORITHM_PARITY_0_6;
5765 break;
5766 case ALGORITHM_PARITY_N:
5767 new_layout = ALGORITHM_PARITY_N;
5768 break;
5769 default:
5770 return ERR_PTR(-EINVAL);
5771 }
5772 mddev->new_level = 6;
5773 mddev->new_layout = new_layout;
5774 mddev->delta_disks = 1;
5775 mddev->raid_disks += 1;
5776 return setup_conf(mddev);
5777}
5778
5779
84fc4b56 5780static struct md_personality raid6_personality =
16a53ecc
N
5781{
5782 .name = "raid6",
5783 .level = 6,
5784 .owner = THIS_MODULE,
5785 .make_request = make_request,
5786 .run = run,
5787 .stop = stop,
5788 .status = status,
5789 .error_handler = error,
5790 .hot_add_disk = raid5_add_disk,
5791 .hot_remove_disk= raid5_remove_disk,
5792 .spare_active = raid5_spare_active,
5793 .sync_request = sync_request,
5794 .resize = raid5_resize,
80c3a6ce 5795 .size = raid5_size,
50ac168a 5796 .check_reshape = raid6_check_reshape,
f416885e 5797 .start_reshape = raid5_start_reshape,
cea9c228 5798 .finish_reshape = raid5_finish_reshape,
16a53ecc 5799 .quiesce = raid5_quiesce,
245f46c2 5800 .takeover = raid6_takeover,
16a53ecc 5801};
84fc4b56 5802static struct md_personality raid5_personality =
1da177e4
LT
5803{
5804 .name = "raid5",
2604b703 5805 .level = 5,
1da177e4
LT
5806 .owner = THIS_MODULE,
5807 .make_request = make_request,
5808 .run = run,
5809 .stop = stop,
5810 .status = status,
5811 .error_handler = error,
5812 .hot_add_disk = raid5_add_disk,
5813 .hot_remove_disk= raid5_remove_disk,
5814 .spare_active = raid5_spare_active,
5815 .sync_request = sync_request,
5816 .resize = raid5_resize,
80c3a6ce 5817 .size = raid5_size,
63c70c4f
N
5818 .check_reshape = raid5_check_reshape,
5819 .start_reshape = raid5_start_reshape,
cea9c228 5820 .finish_reshape = raid5_finish_reshape,
72626685 5821 .quiesce = raid5_quiesce,
d562b0c4 5822 .takeover = raid5_takeover,
1da177e4
LT
5823};
5824
84fc4b56 5825static struct md_personality raid4_personality =
1da177e4 5826{
2604b703
N
5827 .name = "raid4",
5828 .level = 4,
5829 .owner = THIS_MODULE,
5830 .make_request = make_request,
5831 .run = run,
5832 .stop = stop,
5833 .status = status,
5834 .error_handler = error,
5835 .hot_add_disk = raid5_add_disk,
5836 .hot_remove_disk= raid5_remove_disk,
5837 .spare_active = raid5_spare_active,
5838 .sync_request = sync_request,
5839 .resize = raid5_resize,
80c3a6ce 5840 .size = raid5_size,
3d37890b
N
5841 .check_reshape = raid5_check_reshape,
5842 .start_reshape = raid5_start_reshape,
cea9c228 5843 .finish_reshape = raid5_finish_reshape,
2604b703 5844 .quiesce = raid5_quiesce,
a78d38a1 5845 .takeover = raid4_takeover,
2604b703
N
5846};
5847
5848static int __init raid5_init(void)
5849{
16a53ecc 5850 register_md_personality(&raid6_personality);
2604b703
N
5851 register_md_personality(&raid5_personality);
5852 register_md_personality(&raid4_personality);
5853 return 0;
1da177e4
LT
5854}
5855
2604b703 5856static void raid5_exit(void)
1da177e4 5857{
16a53ecc 5858 unregister_md_personality(&raid6_personality);
2604b703
N
5859 unregister_md_personality(&raid5_personality);
5860 unregister_md_personality(&raid4_personality);
1da177e4
LT
5861}
5862
5863module_init(raid5_init);
5864module_exit(raid5_exit);
5865MODULE_LICENSE("GPL");
0efb9e61 5866MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 5867MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
5868MODULE_ALIAS("md-raid5");
5869MODULE_ALIAS("md-raid4");
2604b703
N
5870MODULE_ALIAS("md-level-5");
5871MODULE_ALIAS("md-level-4");
16a53ecc
N
5872MODULE_ALIAS("md-personality-8"); /* RAID6 */
5873MODULE_ALIAS("md-raid6");
5874MODULE_ALIAS("md-level-6");
5875
5876/* This used to be two separate modules, they were: */
5877MODULE_ALIAS("raid5");
5878MODULE_ALIAS("raid6");