]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/md/raid5.c
md/raid10: reformat some loops with less indenting.
[mirror_ubuntu-zesty-kernel.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
07a3b417 50#include <linux/async.h>
bff61975 51#include <linux/seq_file.h>
36d1c647 52#include <linux/cpu.h>
5a0e3ad6 53#include <linux/slab.h>
43b2e5d8 54#include "md.h"
bff61975 55#include "raid5.h"
54071b38 56#include "raid0.h"
ef740c37 57#include "bitmap.h"
72626685 58
1da177e4
LT
59/*
60 * Stripe cache
61 */
62
63#define NR_STRIPES 256
64#define STRIPE_SIZE PAGE_SIZE
65#define STRIPE_SHIFT (PAGE_SHIFT - 9)
66#define STRIPE_SECTORS (STRIPE_SIZE>>9)
67#define IO_THRESHOLD 1
8b3e6cdc 68#define BYPASS_THRESHOLD 1
fccddba0 69#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
70#define HASH_MASK (NR_HASH - 1)
71
fccddba0 72#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
73
74/* bio's attached to a stripe+device for I/O are linked together in bi_sector
75 * order without overlap. There may be several bio's per stripe+device, and
76 * a bio could span several devices.
77 * When walking this list for a particular stripe+device, we must never proceed
78 * beyond a bio that extends past this device, as the next bio might no longer
79 * be valid.
80 * This macro is used to determine the 'next' bio in the list, given the sector
81 * of the current stripe+device
82 */
83#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84/*
85 * The following can be used to debug the driver
86 */
1da177e4
LT
87#define RAID5_PARANOIA 1
88#if RAID5_PARANOIA && defined(CONFIG_SMP)
89# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90#else
91# define CHECK_DEVLOCK()
92#endif
93
45b4233c 94#ifdef DEBUG
1da177e4
LT
95#define inline
96#define __inline__
97#endif
98
6be9d494
BS
99#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
960e739d 101/*
5b99c2ff
JA
102 * We maintain a biased count of active stripes in the bottom 16 bits of
103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
104 */
105static inline int raid5_bi_phys_segments(struct bio *bio)
106{
5b99c2ff 107 return bio->bi_phys_segments & 0xffff;
960e739d
JA
108}
109
110static inline int raid5_bi_hw_segments(struct bio *bio)
111{
5b99c2ff 112 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
113}
114
115static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116{
117 --bio->bi_phys_segments;
118 return raid5_bi_phys_segments(bio);
119}
120
121static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122{
123 unsigned short val = raid5_bi_hw_segments(bio);
124
125 --val;
5b99c2ff 126 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
127 return val;
128}
129
130static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131{
5b99c2ff 132 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
960e739d
JA
133}
134
d0dabf7e
N
135/* Find first data disk in a raid6 stripe */
136static inline int raid6_d0(struct stripe_head *sh)
137{
67cc2b81
N
138 if (sh->ddf_layout)
139 /* ddf always start from first device */
140 return 0;
141 /* md starts just after Q block */
d0dabf7e
N
142 if (sh->qd_idx == sh->disks - 1)
143 return 0;
144 else
145 return sh->qd_idx + 1;
146}
16a53ecc
N
147static inline int raid6_next_disk(int disk, int raid_disks)
148{
149 disk++;
150 return (disk < raid_disks) ? disk : 0;
151}
a4456856 152
d0dabf7e
N
153/* When walking through the disks in a raid5, starting at raid6_d0,
154 * We need to map each disk to a 'slot', where the data disks are slot
155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156 * is raid_disks-1. This help does that mapping.
157 */
67cc2b81
N
158static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 int *count, int syndrome_disks)
d0dabf7e 160{
6629542e 161 int slot = *count;
67cc2b81 162
e4424fee 163 if (sh->ddf_layout)
6629542e 164 (*count)++;
d0dabf7e 165 if (idx == sh->pd_idx)
67cc2b81 166 return syndrome_disks;
d0dabf7e 167 if (idx == sh->qd_idx)
67cc2b81 168 return syndrome_disks + 1;
e4424fee 169 if (!sh->ddf_layout)
6629542e 170 (*count)++;
d0dabf7e
N
171 return slot;
172}
173
a4456856
DW
174static void return_io(struct bio *return_bi)
175{
176 struct bio *bi = return_bi;
177 while (bi) {
a4456856
DW
178
179 return_bi = bi->bi_next;
180 bi->bi_next = NULL;
181 bi->bi_size = 0;
0e13fe23 182 bio_endio(bi, 0);
a4456856
DW
183 bi = return_bi;
184 }
185}
186
1da177e4
LT
187static void print_raid5_conf (raid5_conf_t *conf);
188
600aa109
DW
189static int stripe_operations_active(struct stripe_head *sh)
190{
191 return sh->check_state || sh->reconstruct_state ||
192 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194}
195
858119e1 196static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
197{
198 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
199 BUG_ON(!list_empty(&sh->lru));
200 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 201 if (test_bit(STRIPE_HANDLE, &sh->state)) {
482c0834 202 if (test_bit(STRIPE_DELAYED, &sh->state))
1da177e4 203 list_add_tail(&sh->lru, &conf->delayed_list);
482c0834
N
204 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205 sh->bm_seq - conf->seq_write > 0)
72626685 206 list_add_tail(&sh->lru, &conf->bitmap_list);
482c0834 207 else {
72626685 208 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 209 list_add_tail(&sh->lru, &conf->handle_list);
72626685 210 }
1da177e4
LT
211 md_wakeup_thread(conf->mddev->thread);
212 } else {
600aa109 213 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
214 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215 atomic_dec(&conf->preread_active_stripes);
216 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217 md_wakeup_thread(conf->mddev->thread);
218 }
1da177e4 219 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
220 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 222 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
223 if (conf->retry_read_aligned)
224 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 225 }
1da177e4
LT
226 }
227 }
228}
d0dabf7e 229
1da177e4
LT
230static void release_stripe(struct stripe_head *sh)
231{
232 raid5_conf_t *conf = sh->raid_conf;
233 unsigned long flags;
16a53ecc 234
1da177e4
LT
235 spin_lock_irqsave(&conf->device_lock, flags);
236 __release_stripe(conf, sh);
237 spin_unlock_irqrestore(&conf->device_lock, flags);
238}
239
fccddba0 240static inline void remove_hash(struct stripe_head *sh)
1da177e4 241{
45b4233c
DW
242 pr_debug("remove_hash(), stripe %llu\n",
243 (unsigned long long)sh->sector);
1da177e4 244
fccddba0 245 hlist_del_init(&sh->hash);
1da177e4
LT
246}
247
16a53ecc 248static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 249{
fccddba0 250 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 251
45b4233c
DW
252 pr_debug("insert_hash(), stripe %llu\n",
253 (unsigned long long)sh->sector);
1da177e4
LT
254
255 CHECK_DEVLOCK();
fccddba0 256 hlist_add_head(&sh->hash, hp);
1da177e4
LT
257}
258
259
260/* find an idle stripe, make sure it is unhashed, and return it. */
261static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
262{
263 struct stripe_head *sh = NULL;
264 struct list_head *first;
265
266 CHECK_DEVLOCK();
267 if (list_empty(&conf->inactive_list))
268 goto out;
269 first = conf->inactive_list.next;
270 sh = list_entry(first, struct stripe_head, lru);
271 list_del_init(first);
272 remove_hash(sh);
273 atomic_inc(&conf->active_stripes);
274out:
275 return sh;
276}
277
e4e11e38 278static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
279{
280 struct page *p;
281 int i;
e4e11e38 282 int num = sh->raid_conf->pool_size;
1da177e4 283
e4e11e38 284 for (i = 0; i < num ; i++) {
1da177e4
LT
285 p = sh->dev[i].page;
286 if (!p)
287 continue;
288 sh->dev[i].page = NULL;
2d1f3b5d 289 put_page(p);
1da177e4
LT
290 }
291}
292
e4e11e38 293static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
294{
295 int i;
e4e11e38 296 int num = sh->raid_conf->pool_size;
1da177e4 297
e4e11e38 298 for (i = 0; i < num; i++) {
1da177e4
LT
299 struct page *page;
300
301 if (!(page = alloc_page(GFP_KERNEL))) {
302 return 1;
303 }
304 sh->dev[i].page = page;
305 }
306 return 0;
307}
308
784052ec 309static void raid5_build_block(struct stripe_head *sh, int i, int previous);
911d4ee8
N
310static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
311 struct stripe_head *sh);
1da177e4 312
b5663ba4 313static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4
LT
314{
315 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 316 int i;
1da177e4 317
78bafebd
ES
318 BUG_ON(atomic_read(&sh->count) != 0);
319 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 320 BUG_ON(stripe_operations_active(sh));
d84e0f10 321
1da177e4 322 CHECK_DEVLOCK();
45b4233c 323 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
324 (unsigned long long)sh->sector);
325
326 remove_hash(sh);
16a53ecc 327
86b42c71 328 sh->generation = conf->generation - previous;
b5663ba4 329 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 330 sh->sector = sector;
911d4ee8 331 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
332 sh->state = 0;
333
7ecaa1e6
N
334
335 for (i = sh->disks; i--; ) {
1da177e4
LT
336 struct r5dev *dev = &sh->dev[i];
337
d84e0f10 338 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 339 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 340 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 341 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 342 dev->read, dev->towrite, dev->written,
1da177e4
LT
343 test_bit(R5_LOCKED, &dev->flags));
344 BUG();
345 }
346 dev->flags = 0;
784052ec 347 raid5_build_block(sh, i, previous);
1da177e4
LT
348 }
349 insert_hash(conf, sh);
350}
351
86b42c71
N
352static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
353 short generation)
1da177e4
LT
354{
355 struct stripe_head *sh;
fccddba0 356 struct hlist_node *hn;
1da177e4
LT
357
358 CHECK_DEVLOCK();
45b4233c 359 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 360 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 361 if (sh->sector == sector && sh->generation == generation)
1da177e4 362 return sh;
45b4233c 363 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
364 return NULL;
365}
366
674806d6
N
367/*
368 * Need to check if array has failed when deciding whether to:
369 * - start an array
370 * - remove non-faulty devices
371 * - add a spare
372 * - allow a reshape
373 * This determination is simple when no reshape is happening.
374 * However if there is a reshape, we need to carefully check
375 * both the before and after sections.
376 * This is because some failed devices may only affect one
377 * of the two sections, and some non-in_sync devices may
378 * be insync in the section most affected by failed devices.
379 */
380static int has_failed(raid5_conf_t *conf)
381{
382 int degraded;
383 int i;
384 if (conf->mddev->reshape_position == MaxSector)
385 return conf->mddev->degraded > conf->max_degraded;
386
387 rcu_read_lock();
388 degraded = 0;
389 for (i = 0; i < conf->previous_raid_disks; i++) {
390 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
391 if (!rdev || test_bit(Faulty, &rdev->flags))
392 degraded++;
393 else if (test_bit(In_sync, &rdev->flags))
394 ;
395 else
396 /* not in-sync or faulty.
397 * If the reshape increases the number of devices,
398 * this is being recovered by the reshape, so
399 * this 'previous' section is not in_sync.
400 * If the number of devices is being reduced however,
401 * the device can only be part of the array if
402 * we are reverting a reshape, so this section will
403 * be in-sync.
404 */
405 if (conf->raid_disks >= conf->previous_raid_disks)
406 degraded++;
407 }
408 rcu_read_unlock();
409 if (degraded > conf->max_degraded)
410 return 1;
411 rcu_read_lock();
412 degraded = 0;
413 for (i = 0; i < conf->raid_disks; i++) {
414 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
415 if (!rdev || test_bit(Faulty, &rdev->flags))
416 degraded++;
417 else if (test_bit(In_sync, &rdev->flags))
418 ;
419 else
420 /* not in-sync or faulty.
421 * If reshape increases the number of devices, this
422 * section has already been recovered, else it
423 * almost certainly hasn't.
424 */
425 if (conf->raid_disks <= conf->previous_raid_disks)
426 degraded++;
427 }
428 rcu_read_unlock();
429 if (degraded > conf->max_degraded)
430 return 1;
431 return 0;
432}
433
b5663ba4
N
434static struct stripe_head *
435get_active_stripe(raid5_conf_t *conf, sector_t sector,
a8c906ca 436 int previous, int noblock, int noquiesce)
1da177e4
LT
437{
438 struct stripe_head *sh;
439
45b4233c 440 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
441
442 spin_lock_irq(&conf->device_lock);
443
444 do {
72626685 445 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 446 conf->quiesce == 0 || noquiesce,
72626685 447 conf->device_lock, /* nothing */);
86b42c71 448 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
449 if (!sh) {
450 if (!conf->inactive_blocked)
451 sh = get_free_stripe(conf);
452 if (noblock && sh == NULL)
453 break;
454 if (!sh) {
455 conf->inactive_blocked = 1;
456 wait_event_lock_irq(conf->wait_for_stripe,
457 !list_empty(&conf->inactive_list) &&
5036805b
N
458 (atomic_read(&conf->active_stripes)
459 < (conf->max_nr_stripes *3/4)
1da177e4
LT
460 || !conf->inactive_blocked),
461 conf->device_lock,
7c13edc8 462 );
1da177e4
LT
463 conf->inactive_blocked = 0;
464 } else
b5663ba4 465 init_stripe(sh, sector, previous);
1da177e4
LT
466 } else {
467 if (atomic_read(&sh->count)) {
ab69ae12
N
468 BUG_ON(!list_empty(&sh->lru)
469 && !test_bit(STRIPE_EXPANDING, &sh->state));
1da177e4
LT
470 } else {
471 if (!test_bit(STRIPE_HANDLE, &sh->state))
472 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
473 if (list_empty(&sh->lru) &&
474 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
475 BUG();
476 list_del_init(&sh->lru);
1da177e4
LT
477 }
478 }
479 } while (sh == NULL);
480
481 if (sh)
482 atomic_inc(&sh->count);
483
484 spin_unlock_irq(&conf->device_lock);
485 return sh;
486}
487
6712ecf8
N
488static void
489raid5_end_read_request(struct bio *bi, int error);
490static void
491raid5_end_write_request(struct bio *bi, int error);
91c00924 492
c4e5ac0a 493static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924
DW
494{
495 raid5_conf_t *conf = sh->raid_conf;
496 int i, disks = sh->disks;
497
498 might_sleep();
499
500 for (i = disks; i--; ) {
501 int rw;
502 struct bio *bi;
503 mdk_rdev_t *rdev;
e9c7469b
TH
504 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
505 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
506 rw = WRITE_FUA;
507 else
508 rw = WRITE;
509 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924
DW
510 rw = READ;
511 else
512 continue;
513
514 bi = &sh->dev[i].req;
515
516 bi->bi_rw = rw;
517 if (rw == WRITE)
518 bi->bi_end_io = raid5_end_write_request;
519 else
520 bi->bi_end_io = raid5_end_read_request;
521
522 rcu_read_lock();
523 rdev = rcu_dereference(conf->disks[i].rdev);
524 if (rdev && test_bit(Faulty, &rdev->flags))
525 rdev = NULL;
526 if (rdev)
527 atomic_inc(&rdev->nr_pending);
528 rcu_read_unlock();
529
530 if (rdev) {
c4e5ac0a 531 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
532 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
533
2b7497f0
DW
534 set_bit(STRIPE_IO_STARTED, &sh->state);
535
91c00924
DW
536 bi->bi_bdev = rdev->bdev;
537 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 538 __func__, (unsigned long long)sh->sector,
91c00924
DW
539 bi->bi_rw, i);
540 atomic_inc(&sh->count);
541 bi->bi_sector = sh->sector + rdev->data_offset;
542 bi->bi_flags = 1 << BIO_UPTODATE;
543 bi->bi_vcnt = 1;
544 bi->bi_max_vecs = 1;
545 bi->bi_idx = 0;
546 bi->bi_io_vec = &sh->dev[i].vec;
547 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
548 bi->bi_io_vec[0].bv_offset = 0;
549 bi->bi_size = STRIPE_SIZE;
550 bi->bi_next = NULL;
551 if (rw == WRITE &&
552 test_bit(R5_ReWrite, &sh->dev[i].flags))
553 atomic_add(STRIPE_SECTORS,
554 &rdev->corrected_errors);
555 generic_make_request(bi);
556 } else {
557 if (rw == WRITE)
558 set_bit(STRIPE_DEGRADED, &sh->state);
559 pr_debug("skip op %ld on disc %d for sector %llu\n",
560 bi->bi_rw, i, (unsigned long long)sh->sector);
561 clear_bit(R5_LOCKED, &sh->dev[i].flags);
562 set_bit(STRIPE_HANDLE, &sh->state);
563 }
564 }
565}
566
567static struct dma_async_tx_descriptor *
568async_copy_data(int frombio, struct bio *bio, struct page *page,
569 sector_t sector, struct dma_async_tx_descriptor *tx)
570{
571 struct bio_vec *bvl;
572 struct page *bio_page;
573 int i;
574 int page_offset;
a08abd8c 575 struct async_submit_ctl submit;
0403e382 576 enum async_tx_flags flags = 0;
91c00924
DW
577
578 if (bio->bi_sector >= sector)
579 page_offset = (signed)(bio->bi_sector - sector) * 512;
580 else
581 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c 582
0403e382
DW
583 if (frombio)
584 flags |= ASYNC_TX_FENCE;
585 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
586
91c00924
DW
587 bio_for_each_segment(bvl, bio, i) {
588 int len = bio_iovec_idx(bio, i)->bv_len;
589 int clen;
590 int b_offset = 0;
591
592 if (page_offset < 0) {
593 b_offset = -page_offset;
594 page_offset += b_offset;
595 len -= b_offset;
596 }
597
598 if (len > 0 && page_offset + len > STRIPE_SIZE)
599 clen = STRIPE_SIZE - page_offset;
600 else
601 clen = len;
602
603 if (clen > 0) {
604 b_offset += bio_iovec_idx(bio, i)->bv_offset;
605 bio_page = bio_iovec_idx(bio, i)->bv_page;
606 if (frombio)
607 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 608 b_offset, clen, &submit);
91c00924
DW
609 else
610 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 611 page_offset, clen, &submit);
91c00924 612 }
a08abd8c
DW
613 /* chain the operations */
614 submit.depend_tx = tx;
615
91c00924
DW
616 if (clen < len) /* hit end of page */
617 break;
618 page_offset += len;
619 }
620
621 return tx;
622}
623
624static void ops_complete_biofill(void *stripe_head_ref)
625{
626 struct stripe_head *sh = stripe_head_ref;
627 struct bio *return_bi = NULL;
628 raid5_conf_t *conf = sh->raid_conf;
e4d84909 629 int i;
91c00924 630
e46b272b 631 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
632 (unsigned long long)sh->sector);
633
634 /* clear completed biofills */
83de75cc 635 spin_lock_irq(&conf->device_lock);
91c00924
DW
636 for (i = sh->disks; i--; ) {
637 struct r5dev *dev = &sh->dev[i];
91c00924
DW
638
639 /* acknowledge completion of a biofill operation */
e4d84909
DW
640 /* and check if we need to reply to a read request,
641 * new R5_Wantfill requests are held off until
83de75cc 642 * !STRIPE_BIOFILL_RUN
e4d84909
DW
643 */
644 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 645 struct bio *rbi, *rbi2;
91c00924 646
91c00924
DW
647 BUG_ON(!dev->read);
648 rbi = dev->read;
649 dev->read = NULL;
650 while (rbi && rbi->bi_sector <
651 dev->sector + STRIPE_SECTORS) {
652 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 653 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
654 rbi->bi_next = return_bi;
655 return_bi = rbi;
656 }
91c00924
DW
657 rbi = rbi2;
658 }
659 }
660 }
83de75cc
DW
661 spin_unlock_irq(&conf->device_lock);
662 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
663
664 return_io(return_bi);
665
e4d84909 666 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
667 release_stripe(sh);
668}
669
670static void ops_run_biofill(struct stripe_head *sh)
671{
672 struct dma_async_tx_descriptor *tx = NULL;
673 raid5_conf_t *conf = sh->raid_conf;
a08abd8c 674 struct async_submit_ctl submit;
91c00924
DW
675 int i;
676
e46b272b 677 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
678 (unsigned long long)sh->sector);
679
680 for (i = sh->disks; i--; ) {
681 struct r5dev *dev = &sh->dev[i];
682 if (test_bit(R5_Wantfill, &dev->flags)) {
683 struct bio *rbi;
684 spin_lock_irq(&conf->device_lock);
685 dev->read = rbi = dev->toread;
686 dev->toread = NULL;
687 spin_unlock_irq(&conf->device_lock);
688 while (rbi && rbi->bi_sector <
689 dev->sector + STRIPE_SECTORS) {
690 tx = async_copy_data(0, rbi, dev->page,
691 dev->sector, tx);
692 rbi = r5_next_bio(rbi, dev->sector);
693 }
694 }
695 }
696
697 atomic_inc(&sh->count);
a08abd8c
DW
698 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
699 async_trigger_callback(&submit);
91c00924
DW
700}
701
4e7d2c0a 702static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 703{
4e7d2c0a 704 struct r5dev *tgt;
91c00924 705
4e7d2c0a
DW
706 if (target < 0)
707 return;
91c00924 708
4e7d2c0a 709 tgt = &sh->dev[target];
91c00924
DW
710 set_bit(R5_UPTODATE, &tgt->flags);
711 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
712 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
713}
714
ac6b53b6 715static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
716{
717 struct stripe_head *sh = stripe_head_ref;
91c00924 718
e46b272b 719 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
720 (unsigned long long)sh->sector);
721
ac6b53b6 722 /* mark the computed target(s) as uptodate */
4e7d2c0a 723 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 724 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 725
ecc65c9b
DW
726 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
727 if (sh->check_state == check_state_compute_run)
728 sh->check_state = check_state_compute_result;
91c00924
DW
729 set_bit(STRIPE_HANDLE, &sh->state);
730 release_stripe(sh);
731}
732
d6f38f31
DW
733/* return a pointer to the address conversion region of the scribble buffer */
734static addr_conv_t *to_addr_conv(struct stripe_head *sh,
735 struct raid5_percpu *percpu)
736{
737 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
738}
739
740static struct dma_async_tx_descriptor *
741ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 742{
91c00924 743 int disks = sh->disks;
d6f38f31 744 struct page **xor_srcs = percpu->scribble;
91c00924
DW
745 int target = sh->ops.target;
746 struct r5dev *tgt = &sh->dev[target];
747 struct page *xor_dest = tgt->page;
748 int count = 0;
749 struct dma_async_tx_descriptor *tx;
a08abd8c 750 struct async_submit_ctl submit;
91c00924
DW
751 int i;
752
753 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 754 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
755 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
756
757 for (i = disks; i--; )
758 if (i != target)
759 xor_srcs[count++] = sh->dev[i].page;
760
761 atomic_inc(&sh->count);
762
0403e382 763 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 764 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 765 if (unlikely(count == 1))
a08abd8c 766 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 767 else
a08abd8c 768 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 769
91c00924
DW
770 return tx;
771}
772
ac6b53b6
DW
773/* set_syndrome_sources - populate source buffers for gen_syndrome
774 * @srcs - (struct page *) array of size sh->disks
775 * @sh - stripe_head to parse
776 *
777 * Populates srcs in proper layout order for the stripe and returns the
778 * 'count' of sources to be used in a call to async_gen_syndrome. The P
779 * destination buffer is recorded in srcs[count] and the Q destination
780 * is recorded in srcs[count+1]].
781 */
782static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
783{
784 int disks = sh->disks;
785 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
786 int d0_idx = raid6_d0(sh);
787 int count;
788 int i;
789
790 for (i = 0; i < disks; i++)
5dd33c9a 791 srcs[i] = NULL;
ac6b53b6
DW
792
793 count = 0;
794 i = d0_idx;
795 do {
796 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
797
798 srcs[slot] = sh->dev[i].page;
799 i = raid6_next_disk(i, disks);
800 } while (i != d0_idx);
ac6b53b6 801
e4424fee 802 return syndrome_disks;
ac6b53b6
DW
803}
804
805static struct dma_async_tx_descriptor *
806ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
807{
808 int disks = sh->disks;
809 struct page **blocks = percpu->scribble;
810 int target;
811 int qd_idx = sh->qd_idx;
812 struct dma_async_tx_descriptor *tx;
813 struct async_submit_ctl submit;
814 struct r5dev *tgt;
815 struct page *dest;
816 int i;
817 int count;
818
819 if (sh->ops.target < 0)
820 target = sh->ops.target2;
821 else if (sh->ops.target2 < 0)
822 target = sh->ops.target;
91c00924 823 else
ac6b53b6
DW
824 /* we should only have one valid target */
825 BUG();
826 BUG_ON(target < 0);
827 pr_debug("%s: stripe %llu block: %d\n",
828 __func__, (unsigned long long)sh->sector, target);
829
830 tgt = &sh->dev[target];
831 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
832 dest = tgt->page;
833
834 atomic_inc(&sh->count);
835
836 if (target == qd_idx) {
837 count = set_syndrome_sources(blocks, sh);
838 blocks[count] = NULL; /* regenerating p is not necessary */
839 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
840 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
841 ops_complete_compute, sh,
ac6b53b6
DW
842 to_addr_conv(sh, percpu));
843 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
844 } else {
845 /* Compute any data- or p-drive using XOR */
846 count = 0;
847 for (i = disks; i-- ; ) {
848 if (i == target || i == qd_idx)
849 continue;
850 blocks[count++] = sh->dev[i].page;
851 }
852
0403e382
DW
853 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
854 NULL, ops_complete_compute, sh,
ac6b53b6
DW
855 to_addr_conv(sh, percpu));
856 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
857 }
91c00924 858
91c00924
DW
859 return tx;
860}
861
ac6b53b6
DW
862static struct dma_async_tx_descriptor *
863ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
864{
865 int i, count, disks = sh->disks;
866 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
867 int d0_idx = raid6_d0(sh);
868 int faila = -1, failb = -1;
869 int target = sh->ops.target;
870 int target2 = sh->ops.target2;
871 struct r5dev *tgt = &sh->dev[target];
872 struct r5dev *tgt2 = &sh->dev[target2];
873 struct dma_async_tx_descriptor *tx;
874 struct page **blocks = percpu->scribble;
875 struct async_submit_ctl submit;
876
877 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
878 __func__, (unsigned long long)sh->sector, target, target2);
879 BUG_ON(target < 0 || target2 < 0);
880 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
881 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
882
6c910a78 883 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
884 * slot number conversion for 'faila' and 'failb'
885 */
886 for (i = 0; i < disks ; i++)
5dd33c9a 887 blocks[i] = NULL;
ac6b53b6
DW
888 count = 0;
889 i = d0_idx;
890 do {
891 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
892
893 blocks[slot] = sh->dev[i].page;
894
895 if (i == target)
896 faila = slot;
897 if (i == target2)
898 failb = slot;
899 i = raid6_next_disk(i, disks);
900 } while (i != d0_idx);
ac6b53b6
DW
901
902 BUG_ON(faila == failb);
903 if (failb < faila)
904 swap(faila, failb);
905 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
906 __func__, (unsigned long long)sh->sector, faila, failb);
907
908 atomic_inc(&sh->count);
909
910 if (failb == syndrome_disks+1) {
911 /* Q disk is one of the missing disks */
912 if (faila == syndrome_disks) {
913 /* Missing P+Q, just recompute */
0403e382
DW
914 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
915 ops_complete_compute, sh,
916 to_addr_conv(sh, percpu));
e4424fee 917 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
918 STRIPE_SIZE, &submit);
919 } else {
920 struct page *dest;
921 int data_target;
922 int qd_idx = sh->qd_idx;
923
924 /* Missing D+Q: recompute D from P, then recompute Q */
925 if (target == qd_idx)
926 data_target = target2;
927 else
928 data_target = target;
929
930 count = 0;
931 for (i = disks; i-- ; ) {
932 if (i == data_target || i == qd_idx)
933 continue;
934 blocks[count++] = sh->dev[i].page;
935 }
936 dest = sh->dev[data_target].page;
0403e382
DW
937 init_async_submit(&submit,
938 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
939 NULL, NULL, NULL,
940 to_addr_conv(sh, percpu));
ac6b53b6
DW
941 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
942 &submit);
943
944 count = set_syndrome_sources(blocks, sh);
0403e382
DW
945 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
946 ops_complete_compute, sh,
947 to_addr_conv(sh, percpu));
ac6b53b6
DW
948 return async_gen_syndrome(blocks, 0, count+2,
949 STRIPE_SIZE, &submit);
950 }
ac6b53b6 951 } else {
6c910a78
DW
952 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
953 ops_complete_compute, sh,
954 to_addr_conv(sh, percpu));
955 if (failb == syndrome_disks) {
956 /* We're missing D+P. */
957 return async_raid6_datap_recov(syndrome_disks+2,
958 STRIPE_SIZE, faila,
959 blocks, &submit);
960 } else {
961 /* We're missing D+D. */
962 return async_raid6_2data_recov(syndrome_disks+2,
963 STRIPE_SIZE, faila, failb,
964 blocks, &submit);
965 }
ac6b53b6
DW
966 }
967}
968
969
91c00924
DW
970static void ops_complete_prexor(void *stripe_head_ref)
971{
972 struct stripe_head *sh = stripe_head_ref;
973
e46b272b 974 pr_debug("%s: stripe %llu\n", __func__,
91c00924 975 (unsigned long long)sh->sector);
91c00924
DW
976}
977
978static struct dma_async_tx_descriptor *
d6f38f31
DW
979ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
980 struct dma_async_tx_descriptor *tx)
91c00924 981{
91c00924 982 int disks = sh->disks;
d6f38f31 983 struct page **xor_srcs = percpu->scribble;
91c00924 984 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 985 struct async_submit_ctl submit;
91c00924
DW
986
987 /* existing parity data subtracted */
988 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
989
e46b272b 990 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
991 (unsigned long long)sh->sector);
992
993 for (i = disks; i--; ) {
994 struct r5dev *dev = &sh->dev[i];
995 /* Only process blocks that are known to be uptodate */
d8ee0728 996 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
997 xor_srcs[count++] = dev->page;
998 }
999
0403e382 1000 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 1001 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 1002 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1003
1004 return tx;
1005}
1006
1007static struct dma_async_tx_descriptor *
d8ee0728 1008ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1009{
1010 int disks = sh->disks;
d8ee0728 1011 int i;
91c00924 1012
e46b272b 1013 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1014 (unsigned long long)sh->sector);
1015
1016 for (i = disks; i--; ) {
1017 struct r5dev *dev = &sh->dev[i];
1018 struct bio *chosen;
91c00924 1019
d8ee0728 1020 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
1021 struct bio *wbi;
1022
1023 spin_lock(&sh->lock);
1024 chosen = dev->towrite;
1025 dev->towrite = NULL;
1026 BUG_ON(dev->written);
1027 wbi = dev->written = chosen;
1028 spin_unlock(&sh->lock);
1029
1030 while (wbi && wbi->bi_sector <
1031 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1032 if (wbi->bi_rw & REQ_FUA)
1033 set_bit(R5_WantFUA, &dev->flags);
91c00924
DW
1034 tx = async_copy_data(1, wbi, dev->page,
1035 dev->sector, tx);
1036 wbi = r5_next_bio(wbi, dev->sector);
1037 }
1038 }
1039 }
1040
1041 return tx;
1042}
1043
ac6b53b6 1044static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1045{
1046 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1047 int disks = sh->disks;
1048 int pd_idx = sh->pd_idx;
1049 int qd_idx = sh->qd_idx;
1050 int i;
e9c7469b 1051 bool fua = false;
91c00924 1052
e46b272b 1053 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1054 (unsigned long long)sh->sector);
1055
e9c7469b
TH
1056 for (i = disks; i--; )
1057 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1058
91c00924
DW
1059 for (i = disks; i--; ) {
1060 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1061
e9c7469b 1062 if (dev->written || i == pd_idx || i == qd_idx) {
91c00924 1063 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1064 if (fua)
1065 set_bit(R5_WantFUA, &dev->flags);
1066 }
91c00924
DW
1067 }
1068
d8ee0728
DW
1069 if (sh->reconstruct_state == reconstruct_state_drain_run)
1070 sh->reconstruct_state = reconstruct_state_drain_result;
1071 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1072 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1073 else {
1074 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1075 sh->reconstruct_state = reconstruct_state_result;
1076 }
91c00924
DW
1077
1078 set_bit(STRIPE_HANDLE, &sh->state);
1079 release_stripe(sh);
1080}
1081
1082static void
ac6b53b6
DW
1083ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1084 struct dma_async_tx_descriptor *tx)
91c00924 1085{
91c00924 1086 int disks = sh->disks;
d6f38f31 1087 struct page **xor_srcs = percpu->scribble;
a08abd8c 1088 struct async_submit_ctl submit;
91c00924
DW
1089 int count = 0, pd_idx = sh->pd_idx, i;
1090 struct page *xor_dest;
d8ee0728 1091 int prexor = 0;
91c00924 1092 unsigned long flags;
91c00924 1093
e46b272b 1094 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1095 (unsigned long long)sh->sector);
1096
1097 /* check if prexor is active which means only process blocks
1098 * that are part of a read-modify-write (written)
1099 */
d8ee0728
DW
1100 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1101 prexor = 1;
91c00924
DW
1102 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1103 for (i = disks; i--; ) {
1104 struct r5dev *dev = &sh->dev[i];
1105 if (dev->written)
1106 xor_srcs[count++] = dev->page;
1107 }
1108 } else {
1109 xor_dest = sh->dev[pd_idx].page;
1110 for (i = disks; i--; ) {
1111 struct r5dev *dev = &sh->dev[i];
1112 if (i != pd_idx)
1113 xor_srcs[count++] = dev->page;
1114 }
1115 }
1116
91c00924
DW
1117 /* 1/ if we prexor'd then the dest is reused as a source
1118 * 2/ if we did not prexor then we are redoing the parity
1119 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1120 * for the synchronous xor case
1121 */
88ba2aa5 1122 flags = ASYNC_TX_ACK |
91c00924
DW
1123 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1124
1125 atomic_inc(&sh->count);
1126
ac6b53b6 1127 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1128 to_addr_conv(sh, percpu));
a08abd8c
DW
1129 if (unlikely(count == 1))
1130 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1131 else
1132 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1133}
1134
ac6b53b6
DW
1135static void
1136ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1137 struct dma_async_tx_descriptor *tx)
1138{
1139 struct async_submit_ctl submit;
1140 struct page **blocks = percpu->scribble;
1141 int count;
1142
1143 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1144
1145 count = set_syndrome_sources(blocks, sh);
1146
1147 atomic_inc(&sh->count);
1148
1149 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1150 sh, to_addr_conv(sh, percpu));
1151 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1152}
1153
1154static void ops_complete_check(void *stripe_head_ref)
1155{
1156 struct stripe_head *sh = stripe_head_ref;
91c00924 1157
e46b272b 1158 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1159 (unsigned long long)sh->sector);
1160
ecc65c9b 1161 sh->check_state = check_state_check_result;
91c00924
DW
1162 set_bit(STRIPE_HANDLE, &sh->state);
1163 release_stripe(sh);
1164}
1165
ac6b53b6 1166static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1167{
91c00924 1168 int disks = sh->disks;
ac6b53b6
DW
1169 int pd_idx = sh->pd_idx;
1170 int qd_idx = sh->qd_idx;
1171 struct page *xor_dest;
d6f38f31 1172 struct page **xor_srcs = percpu->scribble;
91c00924 1173 struct dma_async_tx_descriptor *tx;
a08abd8c 1174 struct async_submit_ctl submit;
ac6b53b6
DW
1175 int count;
1176 int i;
91c00924 1177
e46b272b 1178 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1179 (unsigned long long)sh->sector);
1180
ac6b53b6
DW
1181 count = 0;
1182 xor_dest = sh->dev[pd_idx].page;
1183 xor_srcs[count++] = xor_dest;
91c00924 1184 for (i = disks; i--; ) {
ac6b53b6
DW
1185 if (i == pd_idx || i == qd_idx)
1186 continue;
1187 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1188 }
1189
d6f38f31
DW
1190 init_async_submit(&submit, 0, NULL, NULL, NULL,
1191 to_addr_conv(sh, percpu));
099f53cb 1192 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1193 &sh->ops.zero_sum_result, &submit);
91c00924 1194
91c00924 1195 atomic_inc(&sh->count);
a08abd8c
DW
1196 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1197 tx = async_trigger_callback(&submit);
91c00924
DW
1198}
1199
ac6b53b6
DW
1200static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1201{
1202 struct page **srcs = percpu->scribble;
1203 struct async_submit_ctl submit;
1204 int count;
1205
1206 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1207 (unsigned long long)sh->sector, checkp);
1208
1209 count = set_syndrome_sources(srcs, sh);
1210 if (!checkp)
1211 srcs[count] = NULL;
91c00924 1212
91c00924 1213 atomic_inc(&sh->count);
ac6b53b6
DW
1214 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1215 sh, to_addr_conv(sh, percpu));
1216 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1217 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1218}
1219
417b8d4a 1220static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1221{
1222 int overlap_clear = 0, i, disks = sh->disks;
1223 struct dma_async_tx_descriptor *tx = NULL;
d6f38f31 1224 raid5_conf_t *conf = sh->raid_conf;
ac6b53b6 1225 int level = conf->level;
d6f38f31
DW
1226 struct raid5_percpu *percpu;
1227 unsigned long cpu;
91c00924 1228
d6f38f31
DW
1229 cpu = get_cpu();
1230 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1231 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1232 ops_run_biofill(sh);
1233 overlap_clear++;
1234 }
1235
7b3a871e 1236 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1237 if (level < 6)
1238 tx = ops_run_compute5(sh, percpu);
1239 else {
1240 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1241 tx = ops_run_compute6_1(sh, percpu);
1242 else
1243 tx = ops_run_compute6_2(sh, percpu);
1244 }
1245 /* terminate the chain if reconstruct is not set to be run */
1246 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1247 async_tx_ack(tx);
1248 }
91c00924 1249
600aa109 1250 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1251 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1252
600aa109 1253 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1254 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1255 overlap_clear++;
1256 }
1257
ac6b53b6
DW
1258 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1259 if (level < 6)
1260 ops_run_reconstruct5(sh, percpu, tx);
1261 else
1262 ops_run_reconstruct6(sh, percpu, tx);
1263 }
91c00924 1264
ac6b53b6
DW
1265 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1266 if (sh->check_state == check_state_run)
1267 ops_run_check_p(sh, percpu);
1268 else if (sh->check_state == check_state_run_q)
1269 ops_run_check_pq(sh, percpu, 0);
1270 else if (sh->check_state == check_state_run_pq)
1271 ops_run_check_pq(sh, percpu, 1);
1272 else
1273 BUG();
1274 }
91c00924 1275
91c00924
DW
1276 if (overlap_clear)
1277 for (i = disks; i--; ) {
1278 struct r5dev *dev = &sh->dev[i];
1279 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1280 wake_up(&sh->raid_conf->wait_for_overlap);
1281 }
d6f38f31 1282 put_cpu();
91c00924
DW
1283}
1284
417b8d4a
DW
1285#ifdef CONFIG_MULTICORE_RAID456
1286static void async_run_ops(void *param, async_cookie_t cookie)
1287{
1288 struct stripe_head *sh = param;
1289 unsigned long ops_request = sh->ops.request;
1290
1291 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1292 wake_up(&sh->ops.wait_for_ops);
1293
1294 __raid_run_ops(sh, ops_request);
1295 release_stripe(sh);
1296}
1297
1298static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1299{
1300 /* since handle_stripe can be called outside of raid5d context
1301 * we need to ensure sh->ops.request is de-staged before another
1302 * request arrives
1303 */
1304 wait_event(sh->ops.wait_for_ops,
1305 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1306 sh->ops.request = ops_request;
1307
1308 atomic_inc(&sh->count);
1309 async_schedule(async_run_ops, sh);
1310}
1311#else
1312#define raid_run_ops __raid_run_ops
1313#endif
1314
3f294f4f 1315static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1316{
1317 struct stripe_head *sh;
3f294f4f
N
1318 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1319 if (!sh)
1320 return 0;
e4e11e38 1321 memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
3f294f4f
N
1322 sh->raid_conf = conf;
1323 spin_lock_init(&sh->lock);
417b8d4a
DW
1324 #ifdef CONFIG_MULTICORE_RAID456
1325 init_waitqueue_head(&sh->ops.wait_for_ops);
1326 #endif
3f294f4f 1327
e4e11e38
N
1328 if (grow_buffers(sh)) {
1329 shrink_buffers(sh);
3f294f4f
N
1330 kmem_cache_free(conf->slab_cache, sh);
1331 return 0;
1332 }
1333 /* we just created an active stripe so... */
1334 atomic_set(&sh->count, 1);
1335 atomic_inc(&conf->active_stripes);
1336 INIT_LIST_HEAD(&sh->lru);
1337 release_stripe(sh);
1338 return 1;
1339}
1340
1341static int grow_stripes(raid5_conf_t *conf, int num)
1342{
e18b890b 1343 struct kmem_cache *sc;
5e5e3e78 1344 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 1345
f4be6b43
N
1346 if (conf->mddev->gendisk)
1347 sprintf(conf->cache_name[0],
1348 "raid%d-%s", conf->level, mdname(conf->mddev));
1349 else
1350 sprintf(conf->cache_name[0],
1351 "raid%d-%p", conf->level, conf->mddev);
1352 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1353
ad01c9e3
N
1354 conf->active_name = 0;
1355 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1356 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1357 0, 0, NULL);
1da177e4
LT
1358 if (!sc)
1359 return 1;
1360 conf->slab_cache = sc;
ad01c9e3 1361 conf->pool_size = devs;
16a53ecc 1362 while (num--)
3f294f4f 1363 if (!grow_one_stripe(conf))
1da177e4 1364 return 1;
1da177e4
LT
1365 return 0;
1366}
29269553 1367
d6f38f31
DW
1368/**
1369 * scribble_len - return the required size of the scribble region
1370 * @num - total number of disks in the array
1371 *
1372 * The size must be enough to contain:
1373 * 1/ a struct page pointer for each device in the array +2
1374 * 2/ room to convert each entry in (1) to its corresponding dma
1375 * (dma_map_page()) or page (page_address()) address.
1376 *
1377 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1378 * calculate over all devices (not just the data blocks), using zeros in place
1379 * of the P and Q blocks.
1380 */
1381static size_t scribble_len(int num)
1382{
1383 size_t len;
1384
1385 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1386
1387 return len;
1388}
1389
ad01c9e3
N
1390static int resize_stripes(raid5_conf_t *conf, int newsize)
1391{
1392 /* Make all the stripes able to hold 'newsize' devices.
1393 * New slots in each stripe get 'page' set to a new page.
1394 *
1395 * This happens in stages:
1396 * 1/ create a new kmem_cache and allocate the required number of
1397 * stripe_heads.
1398 * 2/ gather all the old stripe_heads and tranfer the pages across
1399 * to the new stripe_heads. This will have the side effect of
1400 * freezing the array as once all stripe_heads have been collected,
1401 * no IO will be possible. Old stripe heads are freed once their
1402 * pages have been transferred over, and the old kmem_cache is
1403 * freed when all stripes are done.
1404 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1405 * we simple return a failre status - no need to clean anything up.
1406 * 4/ allocate new pages for the new slots in the new stripe_heads.
1407 * If this fails, we don't bother trying the shrink the
1408 * stripe_heads down again, we just leave them as they are.
1409 * As each stripe_head is processed the new one is released into
1410 * active service.
1411 *
1412 * Once step2 is started, we cannot afford to wait for a write,
1413 * so we use GFP_NOIO allocations.
1414 */
1415 struct stripe_head *osh, *nsh;
1416 LIST_HEAD(newstripes);
1417 struct disk_info *ndisks;
d6f38f31 1418 unsigned long cpu;
b5470dc5 1419 int err;
e18b890b 1420 struct kmem_cache *sc;
ad01c9e3
N
1421 int i;
1422
1423 if (newsize <= conf->pool_size)
1424 return 0; /* never bother to shrink */
1425
b5470dc5
DW
1426 err = md_allow_write(conf->mddev);
1427 if (err)
1428 return err;
2a2275d6 1429
ad01c9e3
N
1430 /* Step 1 */
1431 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1432 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1433 0, 0, NULL);
ad01c9e3
N
1434 if (!sc)
1435 return -ENOMEM;
1436
1437 for (i = conf->max_nr_stripes; i; i--) {
1438 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1439 if (!nsh)
1440 break;
1441
1442 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1443
1444 nsh->raid_conf = conf;
1445 spin_lock_init(&nsh->lock);
417b8d4a
DW
1446 #ifdef CONFIG_MULTICORE_RAID456
1447 init_waitqueue_head(&nsh->ops.wait_for_ops);
1448 #endif
ad01c9e3
N
1449
1450 list_add(&nsh->lru, &newstripes);
1451 }
1452 if (i) {
1453 /* didn't get enough, give up */
1454 while (!list_empty(&newstripes)) {
1455 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1456 list_del(&nsh->lru);
1457 kmem_cache_free(sc, nsh);
1458 }
1459 kmem_cache_destroy(sc);
1460 return -ENOMEM;
1461 }
1462 /* Step 2 - Must use GFP_NOIO now.
1463 * OK, we have enough stripes, start collecting inactive
1464 * stripes and copying them over
1465 */
1466 list_for_each_entry(nsh, &newstripes, lru) {
1467 spin_lock_irq(&conf->device_lock);
1468 wait_event_lock_irq(conf->wait_for_stripe,
1469 !list_empty(&conf->inactive_list),
1470 conf->device_lock,
482c0834 1471 );
ad01c9e3
N
1472 osh = get_free_stripe(conf);
1473 spin_unlock_irq(&conf->device_lock);
1474 atomic_set(&nsh->count, 1);
1475 for(i=0; i<conf->pool_size; i++)
1476 nsh->dev[i].page = osh->dev[i].page;
1477 for( ; i<newsize; i++)
1478 nsh->dev[i].page = NULL;
1479 kmem_cache_free(conf->slab_cache, osh);
1480 }
1481 kmem_cache_destroy(conf->slab_cache);
1482
1483 /* Step 3.
1484 * At this point, we are holding all the stripes so the array
1485 * is completely stalled, so now is a good time to resize
d6f38f31 1486 * conf->disks and the scribble region
ad01c9e3
N
1487 */
1488 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1489 if (ndisks) {
1490 for (i=0; i<conf->raid_disks; i++)
1491 ndisks[i] = conf->disks[i];
1492 kfree(conf->disks);
1493 conf->disks = ndisks;
1494 } else
1495 err = -ENOMEM;
1496
d6f38f31
DW
1497 get_online_cpus();
1498 conf->scribble_len = scribble_len(newsize);
1499 for_each_present_cpu(cpu) {
1500 struct raid5_percpu *percpu;
1501 void *scribble;
1502
1503 percpu = per_cpu_ptr(conf->percpu, cpu);
1504 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1505
1506 if (scribble) {
1507 kfree(percpu->scribble);
1508 percpu->scribble = scribble;
1509 } else {
1510 err = -ENOMEM;
1511 break;
1512 }
1513 }
1514 put_online_cpus();
1515
ad01c9e3
N
1516 /* Step 4, return new stripes to service */
1517 while(!list_empty(&newstripes)) {
1518 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1519 list_del_init(&nsh->lru);
d6f38f31 1520
ad01c9e3
N
1521 for (i=conf->raid_disks; i < newsize; i++)
1522 if (nsh->dev[i].page == NULL) {
1523 struct page *p = alloc_page(GFP_NOIO);
1524 nsh->dev[i].page = p;
1525 if (!p)
1526 err = -ENOMEM;
1527 }
1528 release_stripe(nsh);
1529 }
1530 /* critical section pass, GFP_NOIO no longer needed */
1531
1532 conf->slab_cache = sc;
1533 conf->active_name = 1-conf->active_name;
1534 conf->pool_size = newsize;
1535 return err;
1536}
1da177e4 1537
3f294f4f 1538static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1539{
1540 struct stripe_head *sh;
1541
3f294f4f
N
1542 spin_lock_irq(&conf->device_lock);
1543 sh = get_free_stripe(conf);
1544 spin_unlock_irq(&conf->device_lock);
1545 if (!sh)
1546 return 0;
78bafebd 1547 BUG_ON(atomic_read(&sh->count));
e4e11e38 1548 shrink_buffers(sh);
3f294f4f
N
1549 kmem_cache_free(conf->slab_cache, sh);
1550 atomic_dec(&conf->active_stripes);
1551 return 1;
1552}
1553
1554static void shrink_stripes(raid5_conf_t *conf)
1555{
1556 while (drop_one_stripe(conf))
1557 ;
1558
29fc7e3e
N
1559 if (conf->slab_cache)
1560 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1561 conf->slab_cache = NULL;
1562}
1563
6712ecf8 1564static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1565{
99c0fb5f 1566 struct stripe_head *sh = bi->bi_private;
1da177e4 1567 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1568 int disks = sh->disks, i;
1da177e4 1569 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1570 char b[BDEVNAME_SIZE];
1571 mdk_rdev_t *rdev;
1da177e4 1572
1da177e4
LT
1573
1574 for (i=0 ; i<disks; i++)
1575 if (bi == &sh->dev[i].req)
1576 break;
1577
45b4233c
DW
1578 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1579 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1580 uptodate);
1581 if (i == disks) {
1582 BUG();
6712ecf8 1583 return;
1da177e4
LT
1584 }
1585
1586 if (uptodate) {
1da177e4 1587 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1588 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1589 rdev = conf->disks[i].rdev;
0c55e022 1590 printk_rl(KERN_INFO "md/raid:%s: read error corrected"
6be9d494
BS
1591 " (%lu sectors at %llu on %s)\n",
1592 mdname(conf->mddev), STRIPE_SECTORS,
1593 (unsigned long long)(sh->sector
1594 + rdev->data_offset),
1595 bdevname(rdev->bdev, b));
4e5314b5
N
1596 clear_bit(R5_ReadError, &sh->dev[i].flags);
1597 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1598 }
ba22dcbf
N
1599 if (atomic_read(&conf->disks[i].rdev->read_errors))
1600 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1601 } else {
d6950432 1602 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1603 int retry = 0;
d6950432
N
1604 rdev = conf->disks[i].rdev;
1605
1da177e4 1606 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1607 atomic_inc(&rdev->read_errors);
7b0bb536 1608 if (conf->mddev->degraded >= conf->max_degraded)
6be9d494 1609 printk_rl(KERN_WARNING
0c55e022 1610 "md/raid:%s: read error not correctable "
6be9d494
BS
1611 "(sector %llu on %s).\n",
1612 mdname(conf->mddev),
1613 (unsigned long long)(sh->sector
1614 + rdev->data_offset),
1615 bdn);
ba22dcbf 1616 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1617 /* Oh, no!!! */
6be9d494 1618 printk_rl(KERN_WARNING
0c55e022 1619 "md/raid:%s: read error NOT corrected!! "
6be9d494
BS
1620 "(sector %llu on %s).\n",
1621 mdname(conf->mddev),
1622 (unsigned long long)(sh->sector
1623 + rdev->data_offset),
1624 bdn);
d6950432 1625 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1626 > conf->max_nr_stripes)
14f8d26b 1627 printk(KERN_WARNING
0c55e022 1628 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 1629 mdname(conf->mddev), bdn);
ba22dcbf
N
1630 else
1631 retry = 1;
1632 if (retry)
1633 set_bit(R5_ReadError, &sh->dev[i].flags);
1634 else {
4e5314b5
N
1635 clear_bit(R5_ReadError, &sh->dev[i].flags);
1636 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1637 md_error(conf->mddev, rdev);
ba22dcbf 1638 }
1da177e4
LT
1639 }
1640 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1641 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1642 set_bit(STRIPE_HANDLE, &sh->state);
1643 release_stripe(sh);
1da177e4
LT
1644}
1645
d710e138 1646static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1647{
99c0fb5f 1648 struct stripe_head *sh = bi->bi_private;
1da177e4 1649 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1650 int disks = sh->disks, i;
1da177e4
LT
1651 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1652
1da177e4
LT
1653 for (i=0 ; i<disks; i++)
1654 if (bi == &sh->dev[i].req)
1655 break;
1656
45b4233c 1657 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1658 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1659 uptodate);
1660 if (i == disks) {
1661 BUG();
6712ecf8 1662 return;
1da177e4
LT
1663 }
1664
1da177e4
LT
1665 if (!uptodate)
1666 md_error(conf->mddev, conf->disks[i].rdev);
1667
1668 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1669
1670 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1671 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1672 release_stripe(sh);
1da177e4
LT
1673}
1674
1675
784052ec 1676static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1677
784052ec 1678static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1679{
1680 struct r5dev *dev = &sh->dev[i];
1681
1682 bio_init(&dev->req);
1683 dev->req.bi_io_vec = &dev->vec;
1684 dev->req.bi_vcnt++;
1685 dev->req.bi_max_vecs++;
1686 dev->vec.bv_page = dev->page;
1687 dev->vec.bv_len = STRIPE_SIZE;
1688 dev->vec.bv_offset = 0;
1689
1690 dev->req.bi_sector = sh->sector;
1691 dev->req.bi_private = sh;
1692
1693 dev->flags = 0;
784052ec 1694 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1695}
1696
1697static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1698{
1699 char b[BDEVNAME_SIZE];
7b92813c 1700 raid5_conf_t *conf = mddev->private;
0c55e022 1701 pr_debug("raid456: error called\n");
1da177e4 1702
6f8d0c77
N
1703 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1704 unsigned long flags;
1705 spin_lock_irqsave(&conf->device_lock, flags);
1706 mddev->degraded++;
1707 spin_unlock_irqrestore(&conf->device_lock, flags);
1708 /*
1709 * if recovery was running, make sure it aborts.
1710 */
1711 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1712 }
6f8d0c77
N
1713 set_bit(Faulty, &rdev->flags);
1714 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1715 printk(KERN_ALERT
1716 "md/raid:%s: Disk failure on %s, disabling device.\n"
1717 "md/raid:%s: Operation continuing on %d devices.\n",
1718 mdname(mddev),
1719 bdevname(rdev->bdev, b),
1720 mdname(mddev),
1721 conf->raid_disks - mddev->degraded);
16a53ecc 1722}
1da177e4
LT
1723
1724/*
1725 * Input: a 'big' sector number,
1726 * Output: index of the data and parity disk, and the sector # in them.
1727 */
112bf897 1728static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
911d4ee8
N
1729 int previous, int *dd_idx,
1730 struct stripe_head *sh)
1da177e4 1731{
6e3b96ed 1732 sector_t stripe, stripe2;
35f2a591 1733 sector_t chunk_number;
1da177e4 1734 unsigned int chunk_offset;
911d4ee8 1735 int pd_idx, qd_idx;
67cc2b81 1736 int ddf_layout = 0;
1da177e4 1737 sector_t new_sector;
e183eaed
N
1738 int algorithm = previous ? conf->prev_algo
1739 : conf->algorithm;
09c9e5fa
AN
1740 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1741 : conf->chunk_sectors;
112bf897
N
1742 int raid_disks = previous ? conf->previous_raid_disks
1743 : conf->raid_disks;
1744 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1745
1746 /* First compute the information on this sector */
1747
1748 /*
1749 * Compute the chunk number and the sector offset inside the chunk
1750 */
1751 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1752 chunk_number = r_sector;
1da177e4
LT
1753
1754 /*
1755 * Compute the stripe number
1756 */
35f2a591
N
1757 stripe = chunk_number;
1758 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 1759 stripe2 = stripe;
1da177e4
LT
1760 /*
1761 * Select the parity disk based on the user selected algorithm.
1762 */
911d4ee8 1763 pd_idx = qd_idx = ~0;
16a53ecc
N
1764 switch(conf->level) {
1765 case 4:
911d4ee8 1766 pd_idx = data_disks;
16a53ecc
N
1767 break;
1768 case 5:
e183eaed 1769 switch (algorithm) {
1da177e4 1770 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1771 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1772 if (*dd_idx >= pd_idx)
1da177e4
LT
1773 (*dd_idx)++;
1774 break;
1775 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1776 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1777 if (*dd_idx >= pd_idx)
1da177e4
LT
1778 (*dd_idx)++;
1779 break;
1780 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1781 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1782 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1783 break;
1784 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1785 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1786 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1787 break;
99c0fb5f
N
1788 case ALGORITHM_PARITY_0:
1789 pd_idx = 0;
1790 (*dd_idx)++;
1791 break;
1792 case ALGORITHM_PARITY_N:
1793 pd_idx = data_disks;
1794 break;
1da177e4 1795 default:
99c0fb5f 1796 BUG();
16a53ecc
N
1797 }
1798 break;
1799 case 6:
1800
e183eaed 1801 switch (algorithm) {
16a53ecc 1802 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1803 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1804 qd_idx = pd_idx + 1;
1805 if (pd_idx == raid_disks-1) {
99c0fb5f 1806 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1807 qd_idx = 0;
1808 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1809 (*dd_idx) += 2; /* D D P Q D */
1810 break;
1811 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1812 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1813 qd_idx = pd_idx + 1;
1814 if (pd_idx == raid_disks-1) {
99c0fb5f 1815 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1816 qd_idx = 0;
1817 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1818 (*dd_idx) += 2; /* D D P Q D */
1819 break;
1820 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1821 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1822 qd_idx = (pd_idx + 1) % raid_disks;
1823 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1824 break;
1825 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1826 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1827 qd_idx = (pd_idx + 1) % raid_disks;
1828 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 1829 break;
99c0fb5f
N
1830
1831 case ALGORITHM_PARITY_0:
1832 pd_idx = 0;
1833 qd_idx = 1;
1834 (*dd_idx) += 2;
1835 break;
1836 case ALGORITHM_PARITY_N:
1837 pd_idx = data_disks;
1838 qd_idx = data_disks + 1;
1839 break;
1840
1841 case ALGORITHM_ROTATING_ZERO_RESTART:
1842 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1843 * of blocks for computing Q is different.
1844 */
6e3b96ed 1845 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
1846 qd_idx = pd_idx + 1;
1847 if (pd_idx == raid_disks-1) {
1848 (*dd_idx)++; /* Q D D D P */
1849 qd_idx = 0;
1850 } else if (*dd_idx >= pd_idx)
1851 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1852 ddf_layout = 1;
99c0fb5f
N
1853 break;
1854
1855 case ALGORITHM_ROTATING_N_RESTART:
1856 /* Same a left_asymmetric, by first stripe is
1857 * D D D P Q rather than
1858 * Q D D D P
1859 */
6e3b96ed
N
1860 stripe2 += 1;
1861 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1862 qd_idx = pd_idx + 1;
1863 if (pd_idx == raid_disks-1) {
1864 (*dd_idx)++; /* Q D D D P */
1865 qd_idx = 0;
1866 } else if (*dd_idx >= pd_idx)
1867 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1868 ddf_layout = 1;
99c0fb5f
N
1869 break;
1870
1871 case ALGORITHM_ROTATING_N_CONTINUE:
1872 /* Same as left_symmetric but Q is before P */
6e3b96ed 1873 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1874 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1875 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 1876 ddf_layout = 1;
99c0fb5f
N
1877 break;
1878
1879 case ALGORITHM_LEFT_ASYMMETRIC_6:
1880 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 1881 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1882 if (*dd_idx >= pd_idx)
1883 (*dd_idx)++;
1884 qd_idx = raid_disks - 1;
1885 break;
1886
1887 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 1888 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1889 if (*dd_idx >= pd_idx)
1890 (*dd_idx)++;
1891 qd_idx = raid_disks - 1;
1892 break;
1893
1894 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 1895 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1896 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1897 qd_idx = raid_disks - 1;
1898 break;
1899
1900 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 1901 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1902 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1903 qd_idx = raid_disks - 1;
1904 break;
1905
1906 case ALGORITHM_PARITY_0_6:
1907 pd_idx = 0;
1908 (*dd_idx)++;
1909 qd_idx = raid_disks - 1;
1910 break;
1911
16a53ecc 1912 default:
99c0fb5f 1913 BUG();
16a53ecc
N
1914 }
1915 break;
1da177e4
LT
1916 }
1917
911d4ee8
N
1918 if (sh) {
1919 sh->pd_idx = pd_idx;
1920 sh->qd_idx = qd_idx;
67cc2b81 1921 sh->ddf_layout = ddf_layout;
911d4ee8 1922 }
1da177e4
LT
1923 /*
1924 * Finally, compute the new sector number
1925 */
1926 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1927 return new_sector;
1928}
1929
1930
784052ec 1931static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1932{
1933 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1934 int raid_disks = sh->disks;
1935 int data_disks = raid_disks - conf->max_degraded;
1da177e4 1936 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
1937 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1938 : conf->chunk_sectors;
e183eaed
N
1939 int algorithm = previous ? conf->prev_algo
1940 : conf->algorithm;
1da177e4
LT
1941 sector_t stripe;
1942 int chunk_offset;
35f2a591
N
1943 sector_t chunk_number;
1944 int dummy1, dd_idx = i;
1da177e4 1945 sector_t r_sector;
911d4ee8 1946 struct stripe_head sh2;
1da177e4 1947
16a53ecc 1948
1da177e4
LT
1949 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1950 stripe = new_sector;
1da177e4 1951
16a53ecc
N
1952 if (i == sh->pd_idx)
1953 return 0;
1954 switch(conf->level) {
1955 case 4: break;
1956 case 5:
e183eaed 1957 switch (algorithm) {
1da177e4
LT
1958 case ALGORITHM_LEFT_ASYMMETRIC:
1959 case ALGORITHM_RIGHT_ASYMMETRIC:
1960 if (i > sh->pd_idx)
1961 i--;
1962 break;
1963 case ALGORITHM_LEFT_SYMMETRIC:
1964 case ALGORITHM_RIGHT_SYMMETRIC:
1965 if (i < sh->pd_idx)
1966 i += raid_disks;
1967 i -= (sh->pd_idx + 1);
1968 break;
99c0fb5f
N
1969 case ALGORITHM_PARITY_0:
1970 i -= 1;
1971 break;
1972 case ALGORITHM_PARITY_N:
1973 break;
1da177e4 1974 default:
99c0fb5f 1975 BUG();
16a53ecc
N
1976 }
1977 break;
1978 case 6:
d0dabf7e 1979 if (i == sh->qd_idx)
16a53ecc 1980 return 0; /* It is the Q disk */
e183eaed 1981 switch (algorithm) {
16a53ecc
N
1982 case ALGORITHM_LEFT_ASYMMETRIC:
1983 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
1984 case ALGORITHM_ROTATING_ZERO_RESTART:
1985 case ALGORITHM_ROTATING_N_RESTART:
1986 if (sh->pd_idx == raid_disks-1)
1987 i--; /* Q D D D P */
16a53ecc
N
1988 else if (i > sh->pd_idx)
1989 i -= 2; /* D D P Q D */
1990 break;
1991 case ALGORITHM_LEFT_SYMMETRIC:
1992 case ALGORITHM_RIGHT_SYMMETRIC:
1993 if (sh->pd_idx == raid_disks-1)
1994 i--; /* Q D D D P */
1995 else {
1996 /* D D P Q D */
1997 if (i < sh->pd_idx)
1998 i += raid_disks;
1999 i -= (sh->pd_idx + 2);
2000 }
2001 break;
99c0fb5f
N
2002 case ALGORITHM_PARITY_0:
2003 i -= 2;
2004 break;
2005 case ALGORITHM_PARITY_N:
2006 break;
2007 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2008 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2009 if (sh->pd_idx == 0)
2010 i--; /* P D D D Q */
e4424fee
N
2011 else {
2012 /* D D Q P D */
2013 if (i < sh->pd_idx)
2014 i += raid_disks;
2015 i -= (sh->pd_idx + 1);
2016 }
99c0fb5f
N
2017 break;
2018 case ALGORITHM_LEFT_ASYMMETRIC_6:
2019 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2020 if (i > sh->pd_idx)
2021 i--;
2022 break;
2023 case ALGORITHM_LEFT_SYMMETRIC_6:
2024 case ALGORITHM_RIGHT_SYMMETRIC_6:
2025 if (i < sh->pd_idx)
2026 i += data_disks + 1;
2027 i -= (sh->pd_idx + 1);
2028 break;
2029 case ALGORITHM_PARITY_0_6:
2030 i -= 1;
2031 break;
16a53ecc 2032 default:
99c0fb5f 2033 BUG();
16a53ecc
N
2034 }
2035 break;
1da177e4
LT
2036 }
2037
2038 chunk_number = stripe * data_disks + i;
35f2a591 2039 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2040
112bf897 2041 check = raid5_compute_sector(conf, r_sector,
784052ec 2042 previous, &dummy1, &sh2);
911d4ee8
N
2043 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2044 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2045 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2046 mdname(conf->mddev));
1da177e4
LT
2047 return 0;
2048 }
2049 return r_sector;
2050}
2051
2052
600aa109 2053static void
c0f7bddb 2054schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2055 int rcw, int expand)
e33129d8
DW
2056{
2057 int i, pd_idx = sh->pd_idx, disks = sh->disks;
c0f7bddb
YT
2058 raid5_conf_t *conf = sh->raid_conf;
2059 int level = conf->level;
e33129d8
DW
2060
2061 if (rcw) {
2062 /* if we are not expanding this is a proper write request, and
2063 * there will be bios with new data to be drained into the
2064 * stripe cache
2065 */
2066 if (!expand) {
600aa109
DW
2067 sh->reconstruct_state = reconstruct_state_drain_run;
2068 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2069 } else
2070 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 2071
ac6b53b6 2072 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2073
2074 for (i = disks; i--; ) {
2075 struct r5dev *dev = &sh->dev[i];
2076
2077 if (dev->towrite) {
2078 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2079 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2080 if (!expand)
2081 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2082 s->locked++;
e33129d8
DW
2083 }
2084 }
c0f7bddb 2085 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2086 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2087 atomic_inc(&conf->pending_full_writes);
e33129d8 2088 } else {
c0f7bddb 2089 BUG_ON(level == 6);
e33129d8
DW
2090 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2091 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2092
d8ee0728 2093 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
2094 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2095 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
ac6b53b6 2096 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2097
2098 for (i = disks; i--; ) {
2099 struct r5dev *dev = &sh->dev[i];
2100 if (i == pd_idx)
2101 continue;
2102
e33129d8
DW
2103 if (dev->towrite &&
2104 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2105 test_bit(R5_Wantcompute, &dev->flags))) {
2106 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2107 set_bit(R5_LOCKED, &dev->flags);
2108 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2109 s->locked++;
e33129d8
DW
2110 }
2111 }
2112 }
2113
c0f7bddb 2114 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2115 * are in flight
2116 */
2117 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2118 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2119 s->locked++;
e33129d8 2120
c0f7bddb
YT
2121 if (level == 6) {
2122 int qd_idx = sh->qd_idx;
2123 struct r5dev *dev = &sh->dev[qd_idx];
2124
2125 set_bit(R5_LOCKED, &dev->flags);
2126 clear_bit(R5_UPTODATE, &dev->flags);
2127 s->locked++;
2128 }
2129
600aa109 2130 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2131 __func__, (unsigned long long)sh->sector,
600aa109 2132 s->locked, s->ops_request);
e33129d8 2133}
16a53ecc 2134
1da177e4
LT
2135/*
2136 * Each stripe/dev can have one or more bion attached.
16a53ecc 2137 * toread/towrite point to the first in a chain.
1da177e4
LT
2138 * The bi_next chain must be in order.
2139 */
2140static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2141{
2142 struct bio **bip;
2143 raid5_conf_t *conf = sh->raid_conf;
72626685 2144 int firstwrite=0;
1da177e4 2145
45b4233c 2146 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1da177e4
LT
2147 (unsigned long long)bi->bi_sector,
2148 (unsigned long long)sh->sector);
2149
2150
2151 spin_lock(&sh->lock);
2152 spin_lock_irq(&conf->device_lock);
72626685 2153 if (forwrite) {
1da177e4 2154 bip = &sh->dev[dd_idx].towrite;
72626685
N
2155 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2156 firstwrite = 1;
2157 } else
1da177e4
LT
2158 bip = &sh->dev[dd_idx].toread;
2159 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2160 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2161 goto overlap;
2162 bip = & (*bip)->bi_next;
2163 }
2164 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2165 goto overlap;
2166
78bafebd 2167 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2168 if (*bip)
2169 bi->bi_next = *bip;
2170 *bip = bi;
960e739d 2171 bi->bi_phys_segments++;
1da177e4
LT
2172 spin_unlock_irq(&conf->device_lock);
2173 spin_unlock(&sh->lock);
2174
45b4233c 2175 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1da177e4
LT
2176 (unsigned long long)bi->bi_sector,
2177 (unsigned long long)sh->sector, dd_idx);
2178
72626685 2179 if (conf->mddev->bitmap && firstwrite) {
72626685
N
2180 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2181 STRIPE_SECTORS, 0);
ae3c20cc 2182 sh->bm_seq = conf->seq_flush+1;
72626685
N
2183 set_bit(STRIPE_BIT_DELAY, &sh->state);
2184 }
2185
1da177e4
LT
2186 if (forwrite) {
2187 /* check if page is covered */
2188 sector_t sector = sh->dev[dd_idx].sector;
2189 for (bi=sh->dev[dd_idx].towrite;
2190 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2191 bi && bi->bi_sector <= sector;
2192 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2193 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2194 sector = bi->bi_sector + (bi->bi_size>>9);
2195 }
2196 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2197 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2198 }
2199 return 1;
2200
2201 overlap:
2202 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2203 spin_unlock_irq(&conf->device_lock);
2204 spin_unlock(&sh->lock);
2205 return 0;
2206}
2207
29269553
N
2208static void end_reshape(raid5_conf_t *conf);
2209
911d4ee8
N
2210static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2211 struct stripe_head *sh)
ccfcc3c1 2212{
784052ec 2213 int sectors_per_chunk =
09c9e5fa 2214 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2215 int dd_idx;
2d2063ce 2216 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2217 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2218
112bf897
N
2219 raid5_compute_sector(conf,
2220 stripe * (disks - conf->max_degraded)
b875e531 2221 *sectors_per_chunk + chunk_offset,
112bf897 2222 previous,
911d4ee8 2223 &dd_idx, sh);
ccfcc3c1
N
2224}
2225
a4456856 2226static void
1fe797e6 2227handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
a4456856
DW
2228 struct stripe_head_state *s, int disks,
2229 struct bio **return_bi)
2230{
2231 int i;
2232 for (i = disks; i--; ) {
2233 struct bio *bi;
2234 int bitmap_end = 0;
2235
2236 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2237 mdk_rdev_t *rdev;
2238 rcu_read_lock();
2239 rdev = rcu_dereference(conf->disks[i].rdev);
2240 if (rdev && test_bit(In_sync, &rdev->flags))
2241 /* multiple read failures in one stripe */
2242 md_error(conf->mddev, rdev);
2243 rcu_read_unlock();
2244 }
2245 spin_lock_irq(&conf->device_lock);
2246 /* fail all writes first */
2247 bi = sh->dev[i].towrite;
2248 sh->dev[i].towrite = NULL;
2249 if (bi) {
2250 s->to_write--;
2251 bitmap_end = 1;
2252 }
2253
2254 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2255 wake_up(&conf->wait_for_overlap);
2256
2257 while (bi && bi->bi_sector <
2258 sh->dev[i].sector + STRIPE_SECTORS) {
2259 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2260 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2261 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2262 md_write_end(conf->mddev);
2263 bi->bi_next = *return_bi;
2264 *return_bi = bi;
2265 }
2266 bi = nextbi;
2267 }
2268 /* and fail all 'written' */
2269 bi = sh->dev[i].written;
2270 sh->dev[i].written = NULL;
2271 if (bi) bitmap_end = 1;
2272 while (bi && bi->bi_sector <
2273 sh->dev[i].sector + STRIPE_SECTORS) {
2274 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2275 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2276 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2277 md_write_end(conf->mddev);
2278 bi->bi_next = *return_bi;
2279 *return_bi = bi;
2280 }
2281 bi = bi2;
2282 }
2283
b5e98d65
DW
2284 /* fail any reads if this device is non-operational and
2285 * the data has not reached the cache yet.
2286 */
2287 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2288 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2289 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2290 bi = sh->dev[i].toread;
2291 sh->dev[i].toread = NULL;
2292 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2293 wake_up(&conf->wait_for_overlap);
2294 if (bi) s->to_read--;
2295 while (bi && bi->bi_sector <
2296 sh->dev[i].sector + STRIPE_SECTORS) {
2297 struct bio *nextbi =
2298 r5_next_bio(bi, sh->dev[i].sector);
2299 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2300 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2301 bi->bi_next = *return_bi;
2302 *return_bi = bi;
2303 }
2304 bi = nextbi;
2305 }
2306 }
2307 spin_unlock_irq(&conf->device_lock);
2308 if (bitmap_end)
2309 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2310 STRIPE_SECTORS, 0, 0);
2311 }
2312
8b3e6cdc
DW
2313 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2314 if (atomic_dec_and_test(&conf->pending_full_writes))
2315 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2316}
2317
1fe797e6
DW
2318/* fetch_block5 - checks the given member device to see if its data needs
2319 * to be read or computed to satisfy a request.
2320 *
2321 * Returns 1 when no more member devices need to be checked, otherwise returns
2322 * 0 to tell the loop in handle_stripe_fill5 to continue
f38e1219 2323 */
1fe797e6
DW
2324static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2325 int disk_idx, int disks)
f38e1219
DW
2326{
2327 struct r5dev *dev = &sh->dev[disk_idx];
2328 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2329
f38e1219
DW
2330 /* is the data in this block needed, and can we get it? */
2331 if (!test_bit(R5_LOCKED, &dev->flags) &&
1fe797e6
DW
2332 !test_bit(R5_UPTODATE, &dev->flags) &&
2333 (dev->toread ||
2334 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2335 s->syncing || s->expanding ||
2336 (s->failed &&
2337 (failed_dev->toread ||
2338 (failed_dev->towrite &&
2339 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
976ea8d4
DW
2340 /* We would like to get this block, possibly by computing it,
2341 * otherwise read it if the backing disk is insync
f38e1219
DW
2342 */
2343 if ((s->uptodate == disks - 1) &&
ecc65c9b 2344 (s->failed && disk_idx == s->failed_num)) {
976ea8d4
DW
2345 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2346 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
f38e1219
DW
2347 set_bit(R5_Wantcompute, &dev->flags);
2348 sh->ops.target = disk_idx;
ac6b53b6 2349 sh->ops.target2 = -1;
f38e1219 2350 s->req_compute = 1;
f38e1219 2351 /* Careful: from this point on 'uptodate' is in the eye
ac6b53b6 2352 * of raid_run_ops which services 'compute' operations
f38e1219
DW
2353 * before writes. R5_Wantcompute flags a block that will
2354 * be R5_UPTODATE by the time it is needed for a
2355 * subsequent operation.
2356 */
2357 s->uptodate++;
1fe797e6 2358 return 1; /* uptodate + compute == disks */
7a1fc53c 2359 } else if (test_bit(R5_Insync, &dev->flags)) {
f38e1219
DW
2360 set_bit(R5_LOCKED, &dev->flags);
2361 set_bit(R5_Wantread, &dev->flags);
f38e1219
DW
2362 s->locked++;
2363 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2364 s->syncing);
2365 }
2366 }
2367
1fe797e6 2368 return 0;
f38e1219
DW
2369}
2370
1fe797e6
DW
2371/**
2372 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2373 */
2374static void handle_stripe_fill5(struct stripe_head *sh,
a4456856
DW
2375 struct stripe_head_state *s, int disks)
2376{
2377 int i;
f38e1219 2378
f38e1219
DW
2379 /* look for blocks to read/compute, skip this if a compute
2380 * is already in flight, or if the stripe contents are in the
2381 * midst of changing due to a write
2382 */
976ea8d4 2383 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1fe797e6 2384 !sh->reconstruct_state)
f38e1219 2385 for (i = disks; i--; )
1fe797e6 2386 if (fetch_block5(sh, s, i, disks))
f38e1219 2387 break;
a4456856
DW
2388 set_bit(STRIPE_HANDLE, &sh->state);
2389}
2390
5599becc
YT
2391/* fetch_block6 - checks the given member device to see if its data needs
2392 * to be read or computed to satisfy a request.
2393 *
2394 * Returns 1 when no more member devices need to be checked, otherwise returns
2395 * 0 to tell the loop in handle_stripe_fill6 to continue
2396 */
2397static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2398 struct r6_state *r6s, int disk_idx, int disks)
a4456856 2399{
5599becc
YT
2400 struct r5dev *dev = &sh->dev[disk_idx];
2401 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2402 &sh->dev[r6s->failed_num[1]] };
2403
2404 if (!test_bit(R5_LOCKED, &dev->flags) &&
2405 !test_bit(R5_UPTODATE, &dev->flags) &&
2406 (dev->toread ||
2407 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2408 s->syncing || s->expanding ||
2409 (s->failed >= 1 &&
2410 (fdev[0]->toread || s->to_write)) ||
2411 (s->failed >= 2 &&
2412 (fdev[1]->toread || s->to_write)))) {
2413 /* we would like to get this block, possibly by computing it,
2414 * otherwise read it if the backing disk is insync
2415 */
2416 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2417 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2418 if ((s->uptodate == disks - 1) &&
2419 (s->failed && (disk_idx == r6s->failed_num[0] ||
2420 disk_idx == r6s->failed_num[1]))) {
2421 /* have disk failed, and we're requested to fetch it;
2422 * do compute it
a4456856 2423 */
5599becc
YT
2424 pr_debug("Computing stripe %llu block %d\n",
2425 (unsigned long long)sh->sector, disk_idx);
2426 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2427 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2428 set_bit(R5_Wantcompute, &dev->flags);
2429 sh->ops.target = disk_idx;
2430 sh->ops.target2 = -1; /* no 2nd target */
2431 s->req_compute = 1;
2432 s->uptodate++;
2433 return 1;
2434 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2435 /* Computing 2-failure is *very* expensive; only
2436 * do it if failed >= 2
2437 */
2438 int other;
2439 for (other = disks; other--; ) {
2440 if (other == disk_idx)
2441 continue;
2442 if (!test_bit(R5_UPTODATE,
2443 &sh->dev[other].flags))
2444 break;
a4456856 2445 }
5599becc
YT
2446 BUG_ON(other < 0);
2447 pr_debug("Computing stripe %llu blocks %d,%d\n",
2448 (unsigned long long)sh->sector,
2449 disk_idx, other);
2450 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2451 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2452 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2453 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2454 sh->ops.target = disk_idx;
2455 sh->ops.target2 = other;
2456 s->uptodate += 2;
2457 s->req_compute = 1;
2458 return 1;
2459 } else if (test_bit(R5_Insync, &dev->flags)) {
2460 set_bit(R5_LOCKED, &dev->flags);
2461 set_bit(R5_Wantread, &dev->flags);
2462 s->locked++;
2463 pr_debug("Reading block %d (sync=%d)\n",
2464 disk_idx, s->syncing);
a4456856
DW
2465 }
2466 }
5599becc
YT
2467
2468 return 0;
2469}
2470
2471/**
2472 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2473 */
2474static void handle_stripe_fill6(struct stripe_head *sh,
2475 struct stripe_head_state *s, struct r6_state *r6s,
2476 int disks)
2477{
2478 int i;
2479
2480 /* look for blocks to read/compute, skip this if a compute
2481 * is already in flight, or if the stripe contents are in the
2482 * midst of changing due to a write
2483 */
2484 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2485 !sh->reconstruct_state)
2486 for (i = disks; i--; )
2487 if (fetch_block6(sh, s, r6s, i, disks))
2488 break;
a4456856
DW
2489 set_bit(STRIPE_HANDLE, &sh->state);
2490}
2491
2492
1fe797e6 2493/* handle_stripe_clean_event
a4456856
DW
2494 * any written block on an uptodate or failed drive can be returned.
2495 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2496 * never LOCKED, so we don't need to test 'failed' directly.
2497 */
1fe797e6 2498static void handle_stripe_clean_event(raid5_conf_t *conf,
a4456856
DW
2499 struct stripe_head *sh, int disks, struct bio **return_bi)
2500{
2501 int i;
2502 struct r5dev *dev;
2503
2504 for (i = disks; i--; )
2505 if (sh->dev[i].written) {
2506 dev = &sh->dev[i];
2507 if (!test_bit(R5_LOCKED, &dev->flags) &&
2508 test_bit(R5_UPTODATE, &dev->flags)) {
2509 /* We can return any write requests */
2510 struct bio *wbi, *wbi2;
2511 int bitmap_end = 0;
45b4233c 2512 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2513 spin_lock_irq(&conf->device_lock);
2514 wbi = dev->written;
2515 dev->written = NULL;
2516 while (wbi && wbi->bi_sector <
2517 dev->sector + STRIPE_SECTORS) {
2518 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2519 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2520 md_write_end(conf->mddev);
2521 wbi->bi_next = *return_bi;
2522 *return_bi = wbi;
2523 }
2524 wbi = wbi2;
2525 }
2526 if (dev->towrite == NULL)
2527 bitmap_end = 1;
2528 spin_unlock_irq(&conf->device_lock);
2529 if (bitmap_end)
2530 bitmap_endwrite(conf->mddev->bitmap,
2531 sh->sector,
2532 STRIPE_SECTORS,
2533 !test_bit(STRIPE_DEGRADED, &sh->state),
2534 0);
2535 }
2536 }
8b3e6cdc
DW
2537
2538 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2539 if (atomic_dec_and_test(&conf->pending_full_writes))
2540 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2541}
2542
1fe797e6 2543static void handle_stripe_dirtying5(raid5_conf_t *conf,
a4456856
DW
2544 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2545{
2546 int rmw = 0, rcw = 0, i;
2547 for (i = disks; i--; ) {
2548 /* would I have to read this buffer for read_modify_write */
2549 struct r5dev *dev = &sh->dev[i];
2550 if ((dev->towrite || i == sh->pd_idx) &&
2551 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2552 !(test_bit(R5_UPTODATE, &dev->flags) ||
2553 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2554 if (test_bit(R5_Insync, &dev->flags))
2555 rmw++;
2556 else
2557 rmw += 2*disks; /* cannot read it */
2558 }
2559 /* Would I have to read this buffer for reconstruct_write */
2560 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2561 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2562 !(test_bit(R5_UPTODATE, &dev->flags) ||
2563 test_bit(R5_Wantcompute, &dev->flags))) {
2564 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2565 else
2566 rcw += 2*disks;
2567 }
2568 }
45b4233c 2569 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2570 (unsigned long long)sh->sector, rmw, rcw);
2571 set_bit(STRIPE_HANDLE, &sh->state);
2572 if (rmw < rcw && rmw > 0)
2573 /* prefer read-modify-write, but need to get some data */
2574 for (i = disks; i--; ) {
2575 struct r5dev *dev = &sh->dev[i];
2576 if ((dev->towrite || i == sh->pd_idx) &&
2577 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2578 !(test_bit(R5_UPTODATE, &dev->flags) ||
2579 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2580 test_bit(R5_Insync, &dev->flags)) {
2581 if (
2582 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2583 pr_debug("Read_old block "
a4456856
DW
2584 "%d for r-m-w\n", i);
2585 set_bit(R5_LOCKED, &dev->flags);
2586 set_bit(R5_Wantread, &dev->flags);
2587 s->locked++;
2588 } else {
2589 set_bit(STRIPE_DELAYED, &sh->state);
2590 set_bit(STRIPE_HANDLE, &sh->state);
2591 }
2592 }
2593 }
2594 if (rcw <= rmw && rcw > 0)
2595 /* want reconstruct write, but need to get some data */
2596 for (i = disks; i--; ) {
2597 struct r5dev *dev = &sh->dev[i];
2598 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2599 i != sh->pd_idx &&
2600 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2601 !(test_bit(R5_UPTODATE, &dev->flags) ||
2602 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2603 test_bit(R5_Insync, &dev->flags)) {
2604 if (
2605 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2606 pr_debug("Read_old block "
a4456856
DW
2607 "%d for Reconstruct\n", i);
2608 set_bit(R5_LOCKED, &dev->flags);
2609 set_bit(R5_Wantread, &dev->flags);
2610 s->locked++;
2611 } else {
2612 set_bit(STRIPE_DELAYED, &sh->state);
2613 set_bit(STRIPE_HANDLE, &sh->state);
2614 }
2615 }
2616 }
2617 /* now if nothing is locked, and if we have enough data,
2618 * we can start a write request
2619 */
f38e1219
DW
2620 /* since handle_stripe can be called at any time we need to handle the
2621 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
2622 * subsequent call wants to start a write request. raid_run_ops only
2623 * handles the case where compute block and reconstruct are requested
f38e1219
DW
2624 * simultaneously. If this is not the case then new writes need to be
2625 * held off until the compute completes.
2626 */
976ea8d4
DW
2627 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2628 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2629 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 2630 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
2631}
2632
1fe797e6 2633static void handle_stripe_dirtying6(raid5_conf_t *conf,
a4456856
DW
2634 struct stripe_head *sh, struct stripe_head_state *s,
2635 struct r6_state *r6s, int disks)
2636{
a9b39a74 2637 int rcw = 0, pd_idx = sh->pd_idx, i;
34e04e87 2638 int qd_idx = sh->qd_idx;
a9b39a74
YT
2639
2640 set_bit(STRIPE_HANDLE, &sh->state);
a4456856
DW
2641 for (i = disks; i--; ) {
2642 struct r5dev *dev = &sh->dev[i];
a9b39a74
YT
2643 /* check if we haven't enough data */
2644 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2645 i != pd_idx && i != qd_idx &&
2646 !test_bit(R5_LOCKED, &dev->flags) &&
2647 !(test_bit(R5_UPTODATE, &dev->flags) ||
2648 test_bit(R5_Wantcompute, &dev->flags))) {
2649 rcw++;
2650 if (!test_bit(R5_Insync, &dev->flags))
2651 continue; /* it's a failed drive */
2652
2653 if (
2654 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2655 pr_debug("Read_old stripe %llu "
2656 "block %d for Reconstruct\n",
2657 (unsigned long long)sh->sector, i);
2658 set_bit(R5_LOCKED, &dev->flags);
2659 set_bit(R5_Wantread, &dev->flags);
2660 s->locked++;
2661 } else {
2662 pr_debug("Request delayed stripe %llu "
2663 "block %d for Reconstruct\n",
2664 (unsigned long long)sh->sector, i);
2665 set_bit(STRIPE_DELAYED, &sh->state);
2666 set_bit(STRIPE_HANDLE, &sh->state);
a4456856
DW
2667 }
2668 }
2669 }
a4456856
DW
2670 /* now if nothing is locked, and if we have enough data, we can start a
2671 * write request
2672 */
a9b39a74
YT
2673 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2674 s->locked == 0 && rcw == 0 &&
a4456856 2675 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
a9b39a74 2676 schedule_reconstruction(sh, s, 1, 0);
a4456856
DW
2677 }
2678}
2679
2680static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2681 struct stripe_head_state *s, int disks)
2682{
ecc65c9b 2683 struct r5dev *dev = NULL;
bd2ab670 2684
a4456856 2685 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2686
ecc65c9b
DW
2687 switch (sh->check_state) {
2688 case check_state_idle:
2689 /* start a new check operation if there are no failures */
bd2ab670 2690 if (s->failed == 0) {
bd2ab670 2691 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2692 sh->check_state = check_state_run;
2693 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2694 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2695 s->uptodate--;
ecc65c9b 2696 break;
bd2ab670 2697 }
ecc65c9b
DW
2698 dev = &sh->dev[s->failed_num];
2699 /* fall through */
2700 case check_state_compute_result:
2701 sh->check_state = check_state_idle;
2702 if (!dev)
2703 dev = &sh->dev[sh->pd_idx];
2704
2705 /* check that a write has not made the stripe insync */
2706 if (test_bit(STRIPE_INSYNC, &sh->state))
2707 break;
c8894419 2708
a4456856 2709 /* either failed parity check, or recovery is happening */
a4456856
DW
2710 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2711 BUG_ON(s->uptodate != disks);
2712
2713 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2714 s->locked++;
a4456856 2715 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2716
a4456856 2717 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2718 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2719 break;
2720 case check_state_run:
2721 break; /* we will be called again upon completion */
2722 case check_state_check_result:
2723 sh->check_state = check_state_idle;
2724
2725 /* if a failure occurred during the check operation, leave
2726 * STRIPE_INSYNC not set and let the stripe be handled again
2727 */
2728 if (s->failed)
2729 break;
2730
2731 /* handle a successful check operation, if parity is correct
2732 * we are done. Otherwise update the mismatch count and repair
2733 * parity if !MD_RECOVERY_CHECK
2734 */
ad283ea4 2735 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
2736 /* parity is correct (on disc,
2737 * not in buffer any more)
2738 */
2739 set_bit(STRIPE_INSYNC, &sh->state);
2740 else {
2741 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2742 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2743 /* don't try to repair!! */
2744 set_bit(STRIPE_INSYNC, &sh->state);
2745 else {
2746 sh->check_state = check_state_compute_run;
976ea8d4 2747 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2748 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2749 set_bit(R5_Wantcompute,
2750 &sh->dev[sh->pd_idx].flags);
2751 sh->ops.target = sh->pd_idx;
ac6b53b6 2752 sh->ops.target2 = -1;
ecc65c9b
DW
2753 s->uptodate++;
2754 }
2755 }
2756 break;
2757 case check_state_compute_run:
2758 break;
2759 default:
2760 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2761 __func__, sh->check_state,
2762 (unsigned long long) sh->sector);
2763 BUG();
a4456856
DW
2764 }
2765}
2766
2767
2768static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
36d1c647
DW
2769 struct stripe_head_state *s,
2770 struct r6_state *r6s, int disks)
a4456856 2771{
a4456856 2772 int pd_idx = sh->pd_idx;
34e04e87 2773 int qd_idx = sh->qd_idx;
d82dfee0 2774 struct r5dev *dev;
a4456856
DW
2775
2776 set_bit(STRIPE_HANDLE, &sh->state);
2777
2778 BUG_ON(s->failed > 2);
d82dfee0 2779
a4456856
DW
2780 /* Want to check and possibly repair P and Q.
2781 * However there could be one 'failed' device, in which
2782 * case we can only check one of them, possibly using the
2783 * other to generate missing data
2784 */
2785
d82dfee0
DW
2786 switch (sh->check_state) {
2787 case check_state_idle:
2788 /* start a new check operation if there are < 2 failures */
a4456856 2789 if (s->failed == r6s->q_failed) {
d82dfee0 2790 /* The only possible failed device holds Q, so it
a4456856
DW
2791 * makes sense to check P (If anything else were failed,
2792 * we would have used P to recreate it).
2793 */
d82dfee0 2794 sh->check_state = check_state_run;
a4456856
DW
2795 }
2796 if (!r6s->q_failed && s->failed < 2) {
d82dfee0 2797 /* Q is not failed, and we didn't use it to generate
a4456856
DW
2798 * anything, so it makes sense to check it
2799 */
d82dfee0
DW
2800 if (sh->check_state == check_state_run)
2801 sh->check_state = check_state_run_pq;
2802 else
2803 sh->check_state = check_state_run_q;
a4456856 2804 }
a4456856 2805
d82dfee0
DW
2806 /* discard potentially stale zero_sum_result */
2807 sh->ops.zero_sum_result = 0;
a4456856 2808
d82dfee0
DW
2809 if (sh->check_state == check_state_run) {
2810 /* async_xor_zero_sum destroys the contents of P */
2811 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2812 s->uptodate--;
a4456856 2813 }
d82dfee0
DW
2814 if (sh->check_state >= check_state_run &&
2815 sh->check_state <= check_state_run_pq) {
2816 /* async_syndrome_zero_sum preserves P and Q, so
2817 * no need to mark them !uptodate here
2818 */
2819 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2820 break;
a4456856
DW
2821 }
2822
d82dfee0
DW
2823 /* we have 2-disk failure */
2824 BUG_ON(s->failed != 2);
2825 /* fall through */
2826 case check_state_compute_result:
2827 sh->check_state = check_state_idle;
a4456856 2828
d82dfee0
DW
2829 /* check that a write has not made the stripe insync */
2830 if (test_bit(STRIPE_INSYNC, &sh->state))
2831 break;
a4456856
DW
2832
2833 /* now write out any block on a failed drive,
d82dfee0 2834 * or P or Q if they were recomputed
a4456856 2835 */
d82dfee0 2836 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856
DW
2837 if (s->failed == 2) {
2838 dev = &sh->dev[r6s->failed_num[1]];
2839 s->locked++;
2840 set_bit(R5_LOCKED, &dev->flags);
2841 set_bit(R5_Wantwrite, &dev->flags);
2842 }
2843 if (s->failed >= 1) {
2844 dev = &sh->dev[r6s->failed_num[0]];
2845 s->locked++;
2846 set_bit(R5_LOCKED, &dev->flags);
2847 set_bit(R5_Wantwrite, &dev->flags);
2848 }
d82dfee0 2849 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
2850 dev = &sh->dev[pd_idx];
2851 s->locked++;
2852 set_bit(R5_LOCKED, &dev->flags);
2853 set_bit(R5_Wantwrite, &dev->flags);
2854 }
d82dfee0 2855 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
2856 dev = &sh->dev[qd_idx];
2857 s->locked++;
2858 set_bit(R5_LOCKED, &dev->flags);
2859 set_bit(R5_Wantwrite, &dev->flags);
2860 }
2861 clear_bit(STRIPE_DEGRADED, &sh->state);
2862
2863 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
2864 break;
2865 case check_state_run:
2866 case check_state_run_q:
2867 case check_state_run_pq:
2868 break; /* we will be called again upon completion */
2869 case check_state_check_result:
2870 sh->check_state = check_state_idle;
2871
2872 /* handle a successful check operation, if parity is correct
2873 * we are done. Otherwise update the mismatch count and repair
2874 * parity if !MD_RECOVERY_CHECK
2875 */
2876 if (sh->ops.zero_sum_result == 0) {
2877 /* both parities are correct */
2878 if (!s->failed)
2879 set_bit(STRIPE_INSYNC, &sh->state);
2880 else {
2881 /* in contrast to the raid5 case we can validate
2882 * parity, but still have a failure to write
2883 * back
2884 */
2885 sh->check_state = check_state_compute_result;
2886 /* Returning at this point means that we may go
2887 * off and bring p and/or q uptodate again so
2888 * we make sure to check zero_sum_result again
2889 * to verify if p or q need writeback
2890 */
2891 }
2892 } else {
2893 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2894 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2895 /* don't try to repair!! */
2896 set_bit(STRIPE_INSYNC, &sh->state);
2897 else {
2898 int *target = &sh->ops.target;
2899
2900 sh->ops.target = -1;
2901 sh->ops.target2 = -1;
2902 sh->check_state = check_state_compute_run;
2903 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2904 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2905 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2906 set_bit(R5_Wantcompute,
2907 &sh->dev[pd_idx].flags);
2908 *target = pd_idx;
2909 target = &sh->ops.target2;
2910 s->uptodate++;
2911 }
2912 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2913 set_bit(R5_Wantcompute,
2914 &sh->dev[qd_idx].flags);
2915 *target = qd_idx;
2916 s->uptodate++;
2917 }
2918 }
2919 }
2920 break;
2921 case check_state_compute_run:
2922 break;
2923 default:
2924 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2925 __func__, sh->check_state,
2926 (unsigned long long) sh->sector);
2927 BUG();
a4456856
DW
2928 }
2929}
2930
2931static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2932 struct r6_state *r6s)
2933{
2934 int i;
2935
2936 /* We have read all the blocks in this stripe and now we need to
2937 * copy some of them into a target stripe for expand.
2938 */
f0a50d37 2939 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2940 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2941 for (i = 0; i < sh->disks; i++)
34e04e87 2942 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 2943 int dd_idx, j;
a4456856 2944 struct stripe_head *sh2;
a08abd8c 2945 struct async_submit_ctl submit;
a4456856 2946
784052ec 2947 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
2948 sector_t s = raid5_compute_sector(conf, bn, 0,
2949 &dd_idx, NULL);
a8c906ca 2950 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
2951 if (sh2 == NULL)
2952 /* so far only the early blocks of this stripe
2953 * have been requested. When later blocks
2954 * get requested, we will try again
2955 */
2956 continue;
2957 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2958 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2959 /* must have already done this block */
2960 release_stripe(sh2);
2961 continue;
2962 }
f0a50d37
DW
2963
2964 /* place all the copies on one channel */
a08abd8c 2965 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 2966 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 2967 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 2968 &submit);
f0a50d37 2969
a4456856
DW
2970 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2971 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2972 for (j = 0; j < conf->raid_disks; j++)
2973 if (j != sh2->pd_idx &&
d0dabf7e 2974 (!r6s || j != sh2->qd_idx) &&
a4456856
DW
2975 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2976 break;
2977 if (j == conf->raid_disks) {
2978 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2979 set_bit(STRIPE_HANDLE, &sh2->state);
2980 }
2981 release_stripe(sh2);
f0a50d37 2982
a4456856 2983 }
a2e08551
N
2984 /* done submitting copies, wait for them to complete */
2985 if (tx) {
2986 async_tx_ack(tx);
2987 dma_wait_for_async_tx(tx);
2988 }
a4456856 2989}
1da177e4 2990
6bfe0b49 2991
1da177e4
LT
2992/*
2993 * handle_stripe - do things to a stripe.
2994 *
2995 * We lock the stripe and then examine the state of various bits
2996 * to see what needs to be done.
2997 * Possible results:
2998 * return some read request which now have data
2999 * return some write requests which are safely on disc
3000 * schedule a read on some buffers
3001 * schedule a write of some buffers
3002 * return confirmation of parity correctness
3003 *
1da177e4
LT
3004 * buffers are taken off read_list or write_list, and bh_cache buffers
3005 * get BH_Lock set before the stripe lock is released.
3006 *
3007 */
a4456856 3008
1442577b 3009static void handle_stripe5(struct stripe_head *sh)
1da177e4
LT
3010{
3011 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
3012 int disks = sh->disks, i;
3013 struct bio *return_bi = NULL;
3014 struct stripe_head_state s;
1da177e4 3015 struct r5dev *dev;
6bfe0b49 3016 mdk_rdev_t *blocked_rdev = NULL;
e0a115e5 3017 int prexor;
729a1866 3018 int dec_preread_active = 0;
1da177e4 3019
a4456856 3020 memset(&s, 0, sizeof(s));
600aa109
DW
3021 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3022 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3023 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3024 sh->reconstruct_state);
1da177e4
LT
3025
3026 spin_lock(&sh->lock);
3027 clear_bit(STRIPE_HANDLE, &sh->state);
3028 clear_bit(STRIPE_DELAYED, &sh->state);
3029
a4456856
DW
3030 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3031 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3032 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
def6ae26 3033
83de75cc 3034 /* Now to look around and see what can be done */
9910f16a 3035 rcu_read_lock();
1da177e4
LT
3036 for (i=disks; i--; ) {
3037 mdk_rdev_t *rdev;
a9f326eb
N
3038
3039 dev = &sh->dev[i];
1da177e4 3040
b5e98d65
DW
3041 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3042 "written %p\n", i, dev->flags, dev->toread, dev->read,
3043 dev->towrite, dev->written);
3044
3045 /* maybe we can request a biofill operation
3046 *
3047 * new wantfill requests are only permitted while
83de75cc 3048 * ops_complete_biofill is guaranteed to be inactive
b5e98d65
DW
3049 */
3050 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
83de75cc 3051 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
b5e98d65 3052 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
3053
3054 /* now count some things */
a4456856
DW
3055 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3056 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 3057 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 3058
b5e98d65
DW
3059 if (test_bit(R5_Wantfill, &dev->flags))
3060 s.to_fill++;
3061 else if (dev->toread)
a4456856 3062 s.to_read++;
1da177e4 3063 if (dev->towrite) {
a4456856 3064 s.to_write++;
1da177e4 3065 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 3066 s.non_overwrite++;
1da177e4 3067 }
a4456856
DW
3068 if (dev->written)
3069 s.written++;
9910f16a 3070 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
3071 if (blocked_rdev == NULL &&
3072 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
3073 blocked_rdev = rdev;
3074 atomic_inc(&rdev->nr_pending);
6bfe0b49 3075 }
415e72d0
N
3076 clear_bit(R5_Insync, &dev->flags);
3077 if (!rdev)
3078 /* Not in-sync */;
3079 else if (test_bit(In_sync, &rdev->flags))
3080 set_bit(R5_Insync, &dev->flags);
3081 else {
3082 /* could be in-sync depending on recovery/reshape status */
3083 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3084 set_bit(R5_Insync, &dev->flags);
3085 }
3086 if (!test_bit(R5_Insync, &dev->flags)) {
14f8d26b 3087 /* The ReadError flag will just be confusing now */
4e5314b5
N
3088 clear_bit(R5_ReadError, &dev->flags);
3089 clear_bit(R5_ReWrite, &dev->flags);
3090 }
415e72d0
N
3091 if (test_bit(R5_ReadError, &dev->flags))
3092 clear_bit(R5_Insync, &dev->flags);
3093 if (!test_bit(R5_Insync, &dev->flags)) {
a4456856
DW
3094 s.failed++;
3095 s.failed_num = i;
415e72d0 3096 }
1da177e4 3097 }
9910f16a 3098 rcu_read_unlock();
b5e98d65 3099
6bfe0b49 3100 if (unlikely(blocked_rdev)) {
ac4090d2
N
3101 if (s.syncing || s.expanding || s.expanded ||
3102 s.to_write || s.written) {
3103 set_bit(STRIPE_HANDLE, &sh->state);
3104 goto unlock;
3105 }
3106 /* There is nothing for the blocked_rdev to block */
3107 rdev_dec_pending(blocked_rdev, conf->mddev);
3108 blocked_rdev = NULL;
6bfe0b49
DW
3109 }
3110
83de75cc
DW
3111 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3112 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3113 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3114 }
b5e98d65 3115
45b4233c 3116 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 3117 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
3118 s.locked, s.uptodate, s.to_read, s.to_write,
3119 s.failed, s.failed_num);
1da177e4
LT
3120 /* check if the array has lost two devices and, if so, some requests might
3121 * need to be failed
3122 */
a4456856 3123 if (s.failed > 1 && s.to_read+s.to_write+s.written)
1fe797e6 3124 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 3125 if (s.failed > 1 && s.syncing) {
1da177e4
LT
3126 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3127 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3128 s.syncing = 0;
1da177e4
LT
3129 }
3130
3131 /* might be able to return some write requests if the parity block
3132 * is safe, or on a failed drive
3133 */
3134 dev = &sh->dev[sh->pd_idx];
a4456856
DW
3135 if ( s.written &&
3136 ((test_bit(R5_Insync, &dev->flags) &&
3137 !test_bit(R5_LOCKED, &dev->flags) &&
3138 test_bit(R5_UPTODATE, &dev->flags)) ||
3139 (s.failed == 1 && s.failed_num == sh->pd_idx)))
1fe797e6 3140 handle_stripe_clean_event(conf, sh, disks, &return_bi);
1da177e4
LT
3141
3142 /* Now we might consider reading some blocks, either to check/generate
3143 * parity, or to satisfy requests
3144 * or to load a block that is being partially written.
3145 */
a4456856 3146 if (s.to_read || s.non_overwrite ||
976ea8d4 3147 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
1fe797e6 3148 handle_stripe_fill5(sh, &s, disks);
1da177e4 3149
e33129d8
DW
3150 /* Now we check to see if any write operations have recently
3151 * completed
3152 */
e0a115e5 3153 prexor = 0;
d8ee0728 3154 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
e0a115e5 3155 prexor = 1;
d8ee0728
DW
3156 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3157 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
600aa109 3158 sh->reconstruct_state = reconstruct_state_idle;
e33129d8
DW
3159
3160 /* All the 'written' buffers and the parity block are ready to
3161 * be written back to disk
3162 */
3163 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3164 for (i = disks; i--; ) {
3165 dev = &sh->dev[i];
3166 if (test_bit(R5_LOCKED, &dev->flags) &&
3167 (i == sh->pd_idx || dev->written)) {
3168 pr_debug("Writing block %d\n", i);
3169 set_bit(R5_Wantwrite, &dev->flags);
e0a115e5
DW
3170 if (prexor)
3171 continue;
e33129d8
DW
3172 if (!test_bit(R5_Insync, &dev->flags) ||
3173 (i == sh->pd_idx && s.failed == 0))
3174 set_bit(STRIPE_INSYNC, &sh->state);
3175 }
3176 }
729a1866
N
3177 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3178 dec_preread_active = 1;
e33129d8
DW
3179 }
3180
3181 /* Now to consider new write requests and what else, if anything
3182 * should be read. We do not handle new writes when:
3183 * 1/ A 'write' operation (copy+xor) is already in flight.
3184 * 2/ A 'check' operation is in flight, as it may clobber the parity
3185 * block.
3186 */
600aa109 3187 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
1fe797e6 3188 handle_stripe_dirtying5(conf, sh, &s, disks);
1da177e4
LT
3189
3190 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
3191 * Any reads will already have been scheduled, so we just see if enough
3192 * data is available. The parity check is held off while parity
3193 * dependent operations are in flight.
1da177e4 3194 */
ecc65c9b
DW
3195 if (sh->check_state ||
3196 (s.syncing && s.locked == 0 &&
976ea8d4 3197 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
ecc65c9b 3198 !test_bit(STRIPE_INSYNC, &sh->state)))
a4456856 3199 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 3200
a4456856 3201 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
3202 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3203 clear_bit(STRIPE_SYNCING, &sh->state);
3204 }
4e5314b5
N
3205
3206 /* If the failed drive is just a ReadError, then we might need to progress
3207 * the repair/check process
3208 */
a4456856
DW
3209 if (s.failed == 1 && !conf->mddev->ro &&
3210 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3211 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3212 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 3213 ) {
a4456856 3214 dev = &sh->dev[s.failed_num];
4e5314b5
N
3215 if (!test_bit(R5_ReWrite, &dev->flags)) {
3216 set_bit(R5_Wantwrite, &dev->flags);
3217 set_bit(R5_ReWrite, &dev->flags);
3218 set_bit(R5_LOCKED, &dev->flags);
a4456856 3219 s.locked++;
4e5314b5
N
3220 } else {
3221 /* let's read it back */
3222 set_bit(R5_Wantread, &dev->flags);
3223 set_bit(R5_LOCKED, &dev->flags);
a4456856 3224 s.locked++;
4e5314b5
N
3225 }
3226 }
3227
600aa109
DW
3228 /* Finish reconstruct operations initiated by the expansion process */
3229 if (sh->reconstruct_state == reconstruct_state_result) {
ab69ae12 3230 struct stripe_head *sh2
a8c906ca 3231 = get_active_stripe(conf, sh->sector, 1, 1, 1);
ab69ae12
N
3232 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3233 /* sh cannot be written until sh2 has been read.
3234 * so arrange for sh to be delayed a little
3235 */
3236 set_bit(STRIPE_DELAYED, &sh->state);
3237 set_bit(STRIPE_HANDLE, &sh->state);
3238 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3239 &sh2->state))
3240 atomic_inc(&conf->preread_active_stripes);
3241 release_stripe(sh2);
3242 goto unlock;
3243 }
3244 if (sh2)
3245 release_stripe(sh2);
3246
600aa109 3247 sh->reconstruct_state = reconstruct_state_idle;
f0a50d37 3248 clear_bit(STRIPE_EXPANDING, &sh->state);
23397883 3249 for (i = conf->raid_disks; i--; ) {
ccfcc3c1 3250 set_bit(R5_Wantwrite, &sh->dev[i].flags);
23397883 3251 set_bit(R5_LOCKED, &sh->dev[i].flags);
efe31143 3252 s.locked++;
23397883 3253 }
f0a50d37
DW
3254 }
3255
3256 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
600aa109 3257 !sh->reconstruct_state) {
f0a50d37
DW
3258 /* Need to write out all blocks after computing parity */
3259 sh->disks = conf->raid_disks;
911d4ee8 3260 stripe_set_idx(sh->sector, conf, 0, sh);
c0f7bddb 3261 schedule_reconstruction(sh, &s, 1, 1);
600aa109 3262 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
ccfcc3c1 3263 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 3264 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
3265 wake_up(&conf->wait_for_overlap);
3266 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3267 }
3268
0f94e87c 3269 if (s.expanding && s.locked == 0 &&
976ea8d4 3270 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3271 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 3272
6bfe0b49 3273 unlock:
1da177e4
LT
3274 spin_unlock(&sh->lock);
3275
6bfe0b49
DW
3276 /* wait for this device to become unblocked */
3277 if (unlikely(blocked_rdev))
3278 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3279
600aa109 3280 if (s.ops_request)
ac6b53b6 3281 raid_run_ops(sh, s.ops_request);
d84e0f10 3282
c4e5ac0a 3283 ops_run_io(sh, &s);
1da177e4 3284
729a1866
N
3285 if (dec_preread_active) {
3286 /* We delay this until after ops_run_io so that if make_request
e9c7469b 3287 * is waiting on a flush, it won't continue until the writes
729a1866
N
3288 * have actually been submitted.
3289 */
3290 atomic_dec(&conf->preread_active_stripes);
3291 if (atomic_read(&conf->preread_active_stripes) <
3292 IO_THRESHOLD)
3293 md_wakeup_thread(conf->mddev->thread);
3294 }
a4456856 3295 return_io(return_bi);
1da177e4
LT
3296}
3297
1442577b 3298static void handle_stripe6(struct stripe_head *sh)
1da177e4 3299{
bff61975 3300 raid5_conf_t *conf = sh->raid_conf;
f416885e 3301 int disks = sh->disks;
a4456856 3302 struct bio *return_bi = NULL;
34e04e87 3303 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
a4456856
DW
3304 struct stripe_head_state s;
3305 struct r6_state r6s;
16a53ecc 3306 struct r5dev *dev, *pdev, *qdev;
6bfe0b49 3307 mdk_rdev_t *blocked_rdev = NULL;
729a1866 3308 int dec_preread_active = 0;
1da177e4 3309
45b4233c 3310 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
6c0069c0 3311 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
a4456856 3312 (unsigned long long)sh->sector, sh->state,
6c0069c0
YT
3313 atomic_read(&sh->count), pd_idx, qd_idx,
3314 sh->check_state, sh->reconstruct_state);
a4456856 3315 memset(&s, 0, sizeof(s));
72626685 3316
16a53ecc
N
3317 spin_lock(&sh->lock);
3318 clear_bit(STRIPE_HANDLE, &sh->state);
3319 clear_bit(STRIPE_DELAYED, &sh->state);
3320
a4456856
DW
3321 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3322 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3323 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 3324 /* Now to look around and see what can be done */
1da177e4
LT
3325
3326 rcu_read_lock();
16a53ecc
N
3327 for (i=disks; i--; ) {
3328 mdk_rdev_t *rdev;
3329 dev = &sh->dev[i];
1da177e4 3330
45b4233c 3331 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc 3332 i, dev->flags, dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3333 /* maybe we can reply to a read
3334 *
3335 * new wantfill requests are only permitted while
3336 * ops_complete_biofill is guaranteed to be inactive
3337 */
3338 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3339 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3340 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3341
16a53ecc 3342 /* now count some things */
a4456856
DW
3343 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3344 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2d6e4ecc
DW
3345 if (test_bit(R5_Wantcompute, &dev->flags)) {
3346 s.compute++;
3347 BUG_ON(s.compute > 2);
3348 }
1da177e4 3349
6c0069c0
YT
3350 if (test_bit(R5_Wantfill, &dev->flags)) {
3351 s.to_fill++;
3352 } else if (dev->toread)
a4456856 3353 s.to_read++;
16a53ecc 3354 if (dev->towrite) {
a4456856 3355 s.to_write++;
16a53ecc 3356 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 3357 s.non_overwrite++;
16a53ecc 3358 }
a4456856
DW
3359 if (dev->written)
3360 s.written++;
16a53ecc 3361 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
3362 if (blocked_rdev == NULL &&
3363 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
3364 blocked_rdev = rdev;
3365 atomic_inc(&rdev->nr_pending);
6bfe0b49 3366 }
415e72d0
N
3367 clear_bit(R5_Insync, &dev->flags);
3368 if (!rdev)
3369 /* Not in-sync */;
3370 else if (test_bit(In_sync, &rdev->flags))
3371 set_bit(R5_Insync, &dev->flags);
3372 else {
3373 /* in sync if before recovery_offset */
3374 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3375 set_bit(R5_Insync, &dev->flags);
3376 }
3377 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
3378 /* The ReadError flag will just be confusing now */
3379 clear_bit(R5_ReadError, &dev->flags);
3380 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3381 }
415e72d0
N
3382 if (test_bit(R5_ReadError, &dev->flags))
3383 clear_bit(R5_Insync, &dev->flags);
3384 if (!test_bit(R5_Insync, &dev->flags)) {
a4456856
DW
3385 if (s.failed < 2)
3386 r6s.failed_num[s.failed] = i;
3387 s.failed++;
415e72d0 3388 }
1da177e4
LT
3389 }
3390 rcu_read_unlock();
6bfe0b49
DW
3391
3392 if (unlikely(blocked_rdev)) {
ac4090d2
N
3393 if (s.syncing || s.expanding || s.expanded ||
3394 s.to_write || s.written) {
3395 set_bit(STRIPE_HANDLE, &sh->state);
3396 goto unlock;
3397 }
3398 /* There is nothing for the blocked_rdev to block */
3399 rdev_dec_pending(blocked_rdev, conf->mddev);
3400 blocked_rdev = NULL;
6bfe0b49 3401 }
ac4090d2 3402
6c0069c0
YT
3403 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3404 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3405 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3406 }
3407
45b4233c 3408 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 3409 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
3410 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3411 r6s.failed_num[0], r6s.failed_num[1]);
3412 /* check if the array has lost >2 devices and, if so, some requests
3413 * might need to be failed
16a53ecc 3414 */
a4456856 3415 if (s.failed > 2 && s.to_read+s.to_write+s.written)
1fe797e6 3416 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 3417 if (s.failed > 2 && s.syncing) {
16a53ecc
N
3418 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3419 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3420 s.syncing = 0;
16a53ecc
N
3421 }
3422
3423 /*
3424 * might be able to return some write requests if the parity blocks
3425 * are safe, or on a failed drive
3426 */
3427 pdev = &sh->dev[pd_idx];
a4456856
DW
3428 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3429 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
34e04e87
N
3430 qdev = &sh->dev[qd_idx];
3431 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3432 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
a4456856
DW
3433
3434 if ( s.written &&
3435 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 3436 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
3437 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3438 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 3439 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856 3440 && test_bit(R5_UPTODATE, &qdev->flags)))))
1fe797e6 3441 handle_stripe_clean_event(conf, sh, disks, &return_bi);
16a53ecc
N
3442
3443 /* Now we might consider reading some blocks, either to check/generate
3444 * parity, or to satisfy requests
3445 * or to load a block that is being partially written.
3446 */
a4456856 3447 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
6c0069c0 3448 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
1fe797e6 3449 handle_stripe_fill6(sh, &s, &r6s, disks);
16a53ecc 3450
6c0069c0
YT
3451 /* Now we check to see if any write operations have recently
3452 * completed
3453 */
3454 if (sh->reconstruct_state == reconstruct_state_drain_result) {
6c0069c0
YT
3455
3456 sh->reconstruct_state = reconstruct_state_idle;
3457 /* All the 'written' buffers and the parity blocks are ready to
3458 * be written back to disk
3459 */
3460 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3461 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3462 for (i = disks; i--; ) {
3463 dev = &sh->dev[i];
3464 if (test_bit(R5_LOCKED, &dev->flags) &&
3465 (i == sh->pd_idx || i == qd_idx ||
3466 dev->written)) {
3467 pr_debug("Writing block %d\n", i);
3468 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3469 set_bit(R5_Wantwrite, &dev->flags);
3470 if (!test_bit(R5_Insync, &dev->flags) ||
3471 ((i == sh->pd_idx || i == qd_idx) &&
3472 s.failed == 0))
3473 set_bit(STRIPE_INSYNC, &sh->state);
3474 }
3475 }
729a1866
N
3476 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3477 dec_preread_active = 1;
6c0069c0
YT
3478 }
3479
a9b39a74
YT
3480 /* Now to consider new write requests and what else, if anything
3481 * should be read. We do not handle new writes when:
3482 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3483 * 2/ A 'check' operation is in flight, as it may clobber the parity
3484 * block.
3485 */
3486 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
1fe797e6 3487 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
16a53ecc
N
3488
3489 /* maybe we need to check and possibly fix the parity for this stripe
a4456856 3490 * Any reads will already have been scheduled, so we just see if enough
6c0069c0
YT
3491 * data is available. The parity check is held off while parity
3492 * dependent operations are in flight.
16a53ecc 3493 */
6c0069c0
YT
3494 if (sh->check_state ||
3495 (s.syncing && s.locked == 0 &&
3496 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3497 !test_bit(STRIPE_INSYNC, &sh->state)))
36d1c647 3498 handle_parity_checks6(conf, sh, &s, &r6s, disks);
16a53ecc 3499
a4456856 3500 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
3501 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3502 clear_bit(STRIPE_SYNCING, &sh->state);
3503 }
3504
3505 /* If the failed drives are just a ReadError, then we might need
3506 * to progress the repair/check process
3507 */
a4456856
DW
3508 if (s.failed <= 2 && !conf->mddev->ro)
3509 for (i = 0; i < s.failed; i++) {
3510 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
3511 if (test_bit(R5_ReadError, &dev->flags)
3512 && !test_bit(R5_LOCKED, &dev->flags)
3513 && test_bit(R5_UPTODATE, &dev->flags)
3514 ) {
3515 if (!test_bit(R5_ReWrite, &dev->flags)) {
3516 set_bit(R5_Wantwrite, &dev->flags);
3517 set_bit(R5_ReWrite, &dev->flags);
3518 set_bit(R5_LOCKED, &dev->flags);
6c0069c0 3519 s.locked++;
16a53ecc
N
3520 } else {
3521 /* let's read it back */
3522 set_bit(R5_Wantread, &dev->flags);
3523 set_bit(R5_LOCKED, &dev->flags);
6c0069c0 3524 s.locked++;
16a53ecc
N
3525 }
3526 }
3527 }
f416885e 3528
6c0069c0
YT
3529 /* Finish reconstruct operations initiated by the expansion process */
3530 if (sh->reconstruct_state == reconstruct_state_result) {
3531 sh->reconstruct_state = reconstruct_state_idle;
3532 clear_bit(STRIPE_EXPANDING, &sh->state);
3533 for (i = conf->raid_disks; i--; ) {
3534 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3535 set_bit(R5_LOCKED, &sh->dev[i].flags);
3536 s.locked++;
3537 }
3538 }
3539
3540 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3541 !sh->reconstruct_state) {
ab69ae12 3542 struct stripe_head *sh2
a8c906ca 3543 = get_active_stripe(conf, sh->sector, 1, 1, 1);
ab69ae12
N
3544 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3545 /* sh cannot be written until sh2 has been read.
3546 * so arrange for sh to be delayed a little
3547 */
3548 set_bit(STRIPE_DELAYED, &sh->state);
3549 set_bit(STRIPE_HANDLE, &sh->state);
3550 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3551 &sh2->state))
3552 atomic_inc(&conf->preread_active_stripes);
3553 release_stripe(sh2);
3554 goto unlock;
3555 }
3556 if (sh2)
3557 release_stripe(sh2);
3558
f416885e
N
3559 /* Need to write out all blocks after computing P&Q */
3560 sh->disks = conf->raid_disks;
911d4ee8 3561 stripe_set_idx(sh->sector, conf, 0, sh);
6c0069c0
YT
3562 schedule_reconstruction(sh, &s, 1, 1);
3563 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
f416885e
N
3564 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3565 atomic_dec(&conf->reshape_stripes);
3566 wake_up(&conf->wait_for_overlap);
3567 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3568 }
3569
0f94e87c 3570 if (s.expanding && s.locked == 0 &&
976ea8d4 3571 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3572 handle_stripe_expansion(conf, sh, &r6s);
f416885e 3573
6bfe0b49 3574 unlock:
16a53ecc
N
3575 spin_unlock(&sh->lock);
3576
6bfe0b49
DW
3577 /* wait for this device to become unblocked */
3578 if (unlikely(blocked_rdev))
3579 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3580
6c0069c0
YT
3581 if (s.ops_request)
3582 raid_run_ops(sh, s.ops_request);
3583
f0e43bcd 3584 ops_run_io(sh, &s);
16a53ecc 3585
729a1866
N
3586
3587 if (dec_preread_active) {
3588 /* We delay this until after ops_run_io so that if make_request
e9c7469b 3589 * is waiting on a flush, it won't continue until the writes
729a1866
N
3590 * have actually been submitted.
3591 */
3592 atomic_dec(&conf->preread_active_stripes);
3593 if (atomic_read(&conf->preread_active_stripes) <
3594 IO_THRESHOLD)
3595 md_wakeup_thread(conf->mddev->thread);
3596 }
3597
f0e43bcd 3598 return_io(return_bi);
16a53ecc
N
3599}
3600
1442577b 3601static void handle_stripe(struct stripe_head *sh)
16a53ecc
N
3602{
3603 if (sh->raid_conf->level == 6)
1442577b 3604 handle_stripe6(sh);
16a53ecc 3605 else
1442577b 3606 handle_stripe5(sh);
16a53ecc
N
3607}
3608
16a53ecc
N
3609static void raid5_activate_delayed(raid5_conf_t *conf)
3610{
3611 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3612 while (!list_empty(&conf->delayed_list)) {
3613 struct list_head *l = conf->delayed_list.next;
3614 struct stripe_head *sh;
3615 sh = list_entry(l, struct stripe_head, lru);
3616 list_del_init(l);
3617 clear_bit(STRIPE_DELAYED, &sh->state);
3618 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3619 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3620 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3621 }
482c0834 3622 }
16a53ecc
N
3623}
3624
3625static void activate_bit_delay(raid5_conf_t *conf)
3626{
3627 /* device_lock is held */
3628 struct list_head head;
3629 list_add(&head, &conf->bitmap_list);
3630 list_del_init(&conf->bitmap_list);
3631 while (!list_empty(&head)) {
3632 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3633 list_del_init(&sh->lru);
3634 atomic_inc(&sh->count);
3635 __release_stripe(conf, sh);
3636 }
3637}
3638
11d8a6e3 3639int md_raid5_congested(mddev_t *mddev, int bits)
f022b2fd 3640{
070ec55d 3641 raid5_conf_t *conf = mddev->private;
f022b2fd
N
3642
3643 /* No difference between reads and writes. Just check
3644 * how busy the stripe_cache is
3645 */
3fa841d7 3646
f022b2fd
N
3647 if (conf->inactive_blocked)
3648 return 1;
3649 if (conf->quiesce)
3650 return 1;
3651 if (list_empty_careful(&conf->inactive_list))
3652 return 1;
3653
3654 return 0;
3655}
11d8a6e3
N
3656EXPORT_SYMBOL_GPL(md_raid5_congested);
3657
3658static int raid5_congested(void *data, int bits)
3659{
3660 mddev_t *mddev = data;
3661
3662 return mddev_congested(mddev, bits) ||
3663 md_raid5_congested(mddev, bits);
3664}
f022b2fd 3665
23032a0e
RBJ
3666/* We want read requests to align with chunks where possible,
3667 * but write requests don't need to.
3668 */
cc371e66
AK
3669static int raid5_mergeable_bvec(struct request_queue *q,
3670 struct bvec_merge_data *bvm,
3671 struct bio_vec *biovec)
23032a0e
RBJ
3672{
3673 mddev_t *mddev = q->queuedata;
cc371e66 3674 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 3675 int max;
9d8f0363 3676 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 3677 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3678
cc371e66 3679 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3680 return biovec->bv_len; /* always allow writes to be mergeable */
3681
664e7c41
AN
3682 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3683 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
3684 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3685 if (max < 0) max = 0;
3686 if (max <= biovec->bv_len && bio_sectors == 0)
3687 return biovec->bv_len;
3688 else
3689 return max;
3690}
3691
f679623f
RBJ
3692
3693static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3694{
3695 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 3696 unsigned int chunk_sectors = mddev->chunk_sectors;
f679623f
RBJ
3697 unsigned int bio_sectors = bio->bi_size >> 9;
3698
664e7c41
AN
3699 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3700 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
3701 return chunk_sectors >=
3702 ((sector & (chunk_sectors - 1)) + bio_sectors);
3703}
3704
46031f9a
RBJ
3705/*
3706 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3707 * later sampled by raid5d.
3708 */
3709static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3710{
3711 unsigned long flags;
3712
3713 spin_lock_irqsave(&conf->device_lock, flags);
3714
3715 bi->bi_next = conf->retry_read_aligned_list;
3716 conf->retry_read_aligned_list = bi;
3717
3718 spin_unlock_irqrestore(&conf->device_lock, flags);
3719 md_wakeup_thread(conf->mddev->thread);
3720}
3721
3722
3723static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3724{
3725 struct bio *bi;
3726
3727 bi = conf->retry_read_aligned;
3728 if (bi) {
3729 conf->retry_read_aligned = NULL;
3730 return bi;
3731 }
3732 bi = conf->retry_read_aligned_list;
3733 if(bi) {
387bb173 3734 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3735 bi->bi_next = NULL;
960e739d
JA
3736 /*
3737 * this sets the active strip count to 1 and the processed
3738 * strip count to zero (upper 8 bits)
3739 */
46031f9a 3740 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3741 }
3742
3743 return bi;
3744}
3745
3746
f679623f
RBJ
3747/*
3748 * The "raid5_align_endio" should check if the read succeeded and if it
3749 * did, call bio_endio on the original bio (having bio_put the new bio
3750 * first).
3751 * If the read failed..
3752 */
6712ecf8 3753static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3754{
3755 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3756 mddev_t *mddev;
3757 raid5_conf_t *conf;
3758 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3759 mdk_rdev_t *rdev;
3760
f679623f 3761 bio_put(bi);
46031f9a 3762
46031f9a
RBJ
3763 rdev = (void*)raid_bi->bi_next;
3764 raid_bi->bi_next = NULL;
2b7f2228
N
3765 mddev = rdev->mddev;
3766 conf = mddev->private;
46031f9a
RBJ
3767
3768 rdev_dec_pending(rdev, conf->mddev);
3769
3770 if (!error && uptodate) {
6712ecf8 3771 bio_endio(raid_bi, 0);
46031f9a
RBJ
3772 if (atomic_dec_and_test(&conf->active_aligned_reads))
3773 wake_up(&conf->wait_for_stripe);
6712ecf8 3774 return;
46031f9a
RBJ
3775 }
3776
3777
45b4233c 3778 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3779
3780 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3781}
3782
387bb173
NB
3783static int bio_fits_rdev(struct bio *bi)
3784{
165125e1 3785 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 3786
ae03bf63 3787 if ((bi->bi_size>>9) > queue_max_sectors(q))
387bb173
NB
3788 return 0;
3789 blk_recount_segments(q, bi);
8a78362c 3790 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
3791 return 0;
3792
3793 if (q->merge_bvec_fn)
3794 /* it's too hard to apply the merge_bvec_fn at this stage,
3795 * just just give up
3796 */
3797 return 0;
3798
3799 return 1;
3800}
3801
3802
21a52c6d 3803static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
f679623f 3804{
070ec55d 3805 raid5_conf_t *conf = mddev->private;
8553fe7e 3806 int dd_idx;
f679623f
RBJ
3807 struct bio* align_bi;
3808 mdk_rdev_t *rdev;
3809
3810 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3811 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3812 return 0;
3813 }
3814 /*
a167f663 3815 * use bio_clone_mddev to make a copy of the bio
f679623f 3816 */
a167f663 3817 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
3818 if (!align_bi)
3819 return 0;
3820 /*
3821 * set bi_end_io to a new function, and set bi_private to the
3822 * original bio.
3823 */
3824 align_bi->bi_end_io = raid5_align_endio;
3825 align_bi->bi_private = raid_bio;
3826 /*
3827 * compute position
3828 */
112bf897
N
3829 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3830 0,
911d4ee8 3831 &dd_idx, NULL);
f679623f
RBJ
3832
3833 rcu_read_lock();
3834 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3835 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3836 atomic_inc(&rdev->nr_pending);
3837 rcu_read_unlock();
46031f9a
RBJ
3838 raid_bio->bi_next = (void*)rdev;
3839 align_bi->bi_bdev = rdev->bdev;
3840 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3841 align_bi->bi_sector += rdev->data_offset;
3842
387bb173
NB
3843 if (!bio_fits_rdev(align_bi)) {
3844 /* too big in some way */
3845 bio_put(align_bi);
3846 rdev_dec_pending(rdev, mddev);
3847 return 0;
3848 }
3849
46031f9a
RBJ
3850 spin_lock_irq(&conf->device_lock);
3851 wait_event_lock_irq(conf->wait_for_stripe,
3852 conf->quiesce == 0,
3853 conf->device_lock, /* nothing */);
3854 atomic_inc(&conf->active_aligned_reads);
3855 spin_unlock_irq(&conf->device_lock);
3856
f679623f
RBJ
3857 generic_make_request(align_bi);
3858 return 1;
3859 } else {
3860 rcu_read_unlock();
46031f9a 3861 bio_put(align_bi);
f679623f
RBJ
3862 return 0;
3863 }
3864}
3865
8b3e6cdc
DW
3866/* __get_priority_stripe - get the next stripe to process
3867 *
3868 * Full stripe writes are allowed to pass preread active stripes up until
3869 * the bypass_threshold is exceeded. In general the bypass_count
3870 * increments when the handle_list is handled before the hold_list; however, it
3871 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3872 * stripe with in flight i/o. The bypass_count will be reset when the
3873 * head of the hold_list has changed, i.e. the head was promoted to the
3874 * handle_list.
3875 */
3876static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3877{
3878 struct stripe_head *sh;
3879
3880 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3881 __func__,
3882 list_empty(&conf->handle_list) ? "empty" : "busy",
3883 list_empty(&conf->hold_list) ? "empty" : "busy",
3884 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3885
3886 if (!list_empty(&conf->handle_list)) {
3887 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3888
3889 if (list_empty(&conf->hold_list))
3890 conf->bypass_count = 0;
3891 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3892 if (conf->hold_list.next == conf->last_hold)
3893 conf->bypass_count++;
3894 else {
3895 conf->last_hold = conf->hold_list.next;
3896 conf->bypass_count -= conf->bypass_threshold;
3897 if (conf->bypass_count < 0)
3898 conf->bypass_count = 0;
3899 }
3900 }
3901 } else if (!list_empty(&conf->hold_list) &&
3902 ((conf->bypass_threshold &&
3903 conf->bypass_count > conf->bypass_threshold) ||
3904 atomic_read(&conf->pending_full_writes) == 0)) {
3905 sh = list_entry(conf->hold_list.next,
3906 typeof(*sh), lru);
3907 conf->bypass_count -= conf->bypass_threshold;
3908 if (conf->bypass_count < 0)
3909 conf->bypass_count = 0;
3910 } else
3911 return NULL;
3912
3913 list_del_init(&sh->lru);
3914 atomic_inc(&sh->count);
3915 BUG_ON(atomic_read(&sh->count) != 1);
3916 return sh;
3917}
f679623f 3918
21a52c6d 3919static int make_request(mddev_t *mddev, struct bio * bi)
1da177e4 3920{
070ec55d 3921 raid5_conf_t *conf = mddev->private;
911d4ee8 3922 int dd_idx;
1da177e4
LT
3923 sector_t new_sector;
3924 sector_t logical_sector, last_sector;
3925 struct stripe_head *sh;
a362357b 3926 const int rw = bio_data_dir(bi);
49077326 3927 int remaining;
7c13edc8 3928 int plugged;
1da177e4 3929
e9c7469b
TH
3930 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3931 md_flush_request(mddev, bi);
e5dcdd80
N
3932 return 0;
3933 }
3934
3d310eb7 3935 md_write_start(mddev, bi);
06d91a5f 3936
802ba064 3937 if (rw == READ &&
52488615 3938 mddev->reshape_position == MaxSector &&
21a52c6d 3939 chunk_aligned_read(mddev,bi))
99c0fb5f 3940 return 0;
52488615 3941
1da177e4
LT
3942 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3943 last_sector = bi->bi_sector + (bi->bi_size>>9);
3944 bi->bi_next = NULL;
3945 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3946
7c13edc8 3947 plugged = mddev_check_plugged(mddev);
1da177e4
LT
3948 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3949 DEFINE_WAIT(w);
16a53ecc 3950 int disks, data_disks;
b5663ba4 3951 int previous;
b578d55f 3952
7ecaa1e6 3953 retry:
b5663ba4 3954 previous = 0;
b0f9ec04 3955 disks = conf->raid_disks;
b578d55f 3956 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 3957 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 3958 /* spinlock is needed as reshape_progress may be
df8e7f76
N
3959 * 64bit on a 32bit platform, and so it might be
3960 * possible to see a half-updated value
fef9c61f 3961 * Ofcourse reshape_progress could change after
df8e7f76
N
3962 * the lock is dropped, so once we get a reference
3963 * to the stripe that we think it is, we will have
3964 * to check again.
3965 */
7ecaa1e6 3966 spin_lock_irq(&conf->device_lock);
fef9c61f
N
3967 if (mddev->delta_disks < 0
3968 ? logical_sector < conf->reshape_progress
3969 : logical_sector >= conf->reshape_progress) {
7ecaa1e6 3970 disks = conf->previous_raid_disks;
b5663ba4
N
3971 previous = 1;
3972 } else {
fef9c61f
N
3973 if (mddev->delta_disks < 0
3974 ? logical_sector < conf->reshape_safe
3975 : logical_sector >= conf->reshape_safe) {
b578d55f
N
3976 spin_unlock_irq(&conf->device_lock);
3977 schedule();
3978 goto retry;
3979 }
3980 }
7ecaa1e6
N
3981 spin_unlock_irq(&conf->device_lock);
3982 }
16a53ecc
N
3983 data_disks = disks - conf->max_degraded;
3984
112bf897
N
3985 new_sector = raid5_compute_sector(conf, logical_sector,
3986 previous,
911d4ee8 3987 &dd_idx, NULL);
0c55e022 3988 pr_debug("raid456: make_request, sector %llu logical %llu\n",
1da177e4
LT
3989 (unsigned long long)new_sector,
3990 (unsigned long long)logical_sector);
3991
b5663ba4 3992 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 3993 (bi->bi_rw&RWA_MASK), 0);
1da177e4 3994 if (sh) {
b0f9ec04 3995 if (unlikely(previous)) {
7ecaa1e6 3996 /* expansion might have moved on while waiting for a
df8e7f76
N
3997 * stripe, so we must do the range check again.
3998 * Expansion could still move past after this
3999 * test, but as we are holding a reference to
4000 * 'sh', we know that if that happens,
4001 * STRIPE_EXPANDING will get set and the expansion
4002 * won't proceed until we finish with the stripe.
7ecaa1e6
N
4003 */
4004 int must_retry = 0;
4005 spin_lock_irq(&conf->device_lock);
b0f9ec04
N
4006 if (mddev->delta_disks < 0
4007 ? logical_sector >= conf->reshape_progress
4008 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
4009 /* mismatch, need to try again */
4010 must_retry = 1;
4011 spin_unlock_irq(&conf->device_lock);
4012 if (must_retry) {
4013 release_stripe(sh);
7a3ab908 4014 schedule();
7ecaa1e6
N
4015 goto retry;
4016 }
4017 }
e62e58a5 4018
a5c308d4
N
4019 if (bio_data_dir(bi) == WRITE &&
4020 logical_sector >= mddev->suspend_lo &&
e464eafd
N
4021 logical_sector < mddev->suspend_hi) {
4022 release_stripe(sh);
e62e58a5
N
4023 /* As the suspend_* range is controlled by
4024 * userspace, we want an interruptible
4025 * wait.
4026 */
4027 flush_signals(current);
4028 prepare_to_wait(&conf->wait_for_overlap,
4029 &w, TASK_INTERRUPTIBLE);
4030 if (logical_sector >= mddev->suspend_lo &&
4031 logical_sector < mddev->suspend_hi)
4032 schedule();
e464eafd
N
4033 goto retry;
4034 }
7ecaa1e6
N
4035
4036 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4037 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4038 /* Stripe is busy expanding or
4039 * add failed due to overlap. Flush everything
1da177e4
LT
4040 * and wait a while
4041 */
482c0834 4042 md_wakeup_thread(mddev->thread);
1da177e4
LT
4043 release_stripe(sh);
4044 schedule();
4045 goto retry;
4046 }
4047 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
4048 set_bit(STRIPE_HANDLE, &sh->state);
4049 clear_bit(STRIPE_DELAYED, &sh->state);
e9c7469b 4050 if ((bi->bi_rw & REQ_SYNC) &&
729a1866
N
4051 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4052 atomic_inc(&conf->preread_active_stripes);
1da177e4 4053 release_stripe(sh);
1da177e4
LT
4054 } else {
4055 /* cannot get stripe for read-ahead, just give-up */
4056 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4057 finish_wait(&conf->wait_for_overlap, &w);
4058 break;
4059 }
4060
4061 }
7c13edc8
N
4062 if (!plugged)
4063 md_wakeup_thread(mddev->thread);
4064
1da177e4 4065 spin_lock_irq(&conf->device_lock);
960e739d 4066 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
4067 spin_unlock_irq(&conf->device_lock);
4068 if (remaining == 0) {
1da177e4 4069
16a53ecc 4070 if ( rw == WRITE )
1da177e4 4071 md_write_end(mddev);
6712ecf8 4072
0e13fe23 4073 bio_endio(bi, 0);
1da177e4 4074 }
729a1866 4075
1da177e4
LT
4076 return 0;
4077}
4078
b522adcd
DW
4079static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4080
52c03291 4081static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 4082{
52c03291
N
4083 /* reshaping is quite different to recovery/resync so it is
4084 * handled quite separately ... here.
4085 *
4086 * On each call to sync_request, we gather one chunk worth of
4087 * destination stripes and flag them as expanding.
4088 * Then we find all the source stripes and request reads.
4089 * As the reads complete, handle_stripe will copy the data
4090 * into the destination stripe and release that stripe.
4091 */
7b92813c 4092 raid5_conf_t *conf = mddev->private;
1da177e4 4093 struct stripe_head *sh;
ccfcc3c1 4094 sector_t first_sector, last_sector;
f416885e
N
4095 int raid_disks = conf->previous_raid_disks;
4096 int data_disks = raid_disks - conf->max_degraded;
4097 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
4098 int i;
4099 int dd_idx;
c8f517c4 4100 sector_t writepos, readpos, safepos;
ec32a2bd 4101 sector_t stripe_addr;
7a661381 4102 int reshape_sectors;
ab69ae12 4103 struct list_head stripes;
52c03291 4104
fef9c61f
N
4105 if (sector_nr == 0) {
4106 /* If restarting in the middle, skip the initial sectors */
4107 if (mddev->delta_disks < 0 &&
4108 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4109 sector_nr = raid5_size(mddev, 0, 0)
4110 - conf->reshape_progress;
a639755c 4111 } else if (mddev->delta_disks >= 0 &&
fef9c61f
N
4112 conf->reshape_progress > 0)
4113 sector_nr = conf->reshape_progress;
f416885e 4114 sector_div(sector_nr, new_data_disks);
fef9c61f 4115 if (sector_nr) {
8dee7211
N
4116 mddev->curr_resync_completed = sector_nr;
4117 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
4118 *skipped = 1;
4119 return sector_nr;
4120 }
52c03291
N
4121 }
4122
7a661381
N
4123 /* We need to process a full chunk at a time.
4124 * If old and new chunk sizes differ, we need to process the
4125 * largest of these
4126 */
664e7c41
AN
4127 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4128 reshape_sectors = mddev->new_chunk_sectors;
7a661381 4129 else
9d8f0363 4130 reshape_sectors = mddev->chunk_sectors;
7a661381 4131
52c03291
N
4132 /* we update the metadata when there is more than 3Meg
4133 * in the block range (that is rather arbitrary, should
4134 * probably be time based) or when the data about to be
4135 * copied would over-write the source of the data at
4136 * the front of the range.
fef9c61f
N
4137 * i.e. one new_stripe along from reshape_progress new_maps
4138 * to after where reshape_safe old_maps to
52c03291 4139 */
fef9c61f 4140 writepos = conf->reshape_progress;
f416885e 4141 sector_div(writepos, new_data_disks);
c8f517c4
N
4142 readpos = conf->reshape_progress;
4143 sector_div(readpos, data_disks);
fef9c61f 4144 safepos = conf->reshape_safe;
f416885e 4145 sector_div(safepos, data_disks);
fef9c61f 4146 if (mddev->delta_disks < 0) {
ed37d83e 4147 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 4148 readpos += reshape_sectors;
7a661381 4149 safepos += reshape_sectors;
fef9c61f 4150 } else {
7a661381 4151 writepos += reshape_sectors;
ed37d83e
N
4152 readpos -= min_t(sector_t, reshape_sectors, readpos);
4153 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 4154 }
52c03291 4155
c8f517c4
N
4156 /* 'writepos' is the most advanced device address we might write.
4157 * 'readpos' is the least advanced device address we might read.
4158 * 'safepos' is the least address recorded in the metadata as having
4159 * been reshaped.
4160 * If 'readpos' is behind 'writepos', then there is no way that we can
4161 * ensure safety in the face of a crash - that must be done by userspace
4162 * making a backup of the data. So in that case there is no particular
4163 * rush to update metadata.
4164 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4165 * update the metadata to advance 'safepos' to match 'readpos' so that
4166 * we can be safe in the event of a crash.
4167 * So we insist on updating metadata if safepos is behind writepos and
4168 * readpos is beyond writepos.
4169 * In any case, update the metadata every 10 seconds.
4170 * Maybe that number should be configurable, but I'm not sure it is
4171 * worth it.... maybe it could be a multiple of safemode_delay???
4172 */
fef9c61f 4173 if ((mddev->delta_disks < 0
c8f517c4
N
4174 ? (safepos > writepos && readpos < writepos)
4175 : (safepos < writepos && readpos > writepos)) ||
4176 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
4177 /* Cannot proceed until we've updated the superblock... */
4178 wait_event(conf->wait_for_overlap,
4179 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 4180 mddev->reshape_position = conf->reshape_progress;
75d3da43 4181 mddev->curr_resync_completed = sector_nr;
c8f517c4 4182 conf->reshape_checkpoint = jiffies;
850b2b42 4183 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 4184 md_wakeup_thread(mddev->thread);
850b2b42 4185 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
4186 kthread_should_stop());
4187 spin_lock_irq(&conf->device_lock);
fef9c61f 4188 conf->reshape_safe = mddev->reshape_position;
52c03291
N
4189 spin_unlock_irq(&conf->device_lock);
4190 wake_up(&conf->wait_for_overlap);
acb180b0 4191 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
4192 }
4193
ec32a2bd
N
4194 if (mddev->delta_disks < 0) {
4195 BUG_ON(conf->reshape_progress == 0);
4196 stripe_addr = writepos;
4197 BUG_ON((mddev->dev_sectors &
7a661381
N
4198 ~((sector_t)reshape_sectors - 1))
4199 - reshape_sectors - stripe_addr
ec32a2bd
N
4200 != sector_nr);
4201 } else {
7a661381 4202 BUG_ON(writepos != sector_nr + reshape_sectors);
ec32a2bd
N
4203 stripe_addr = sector_nr;
4204 }
ab69ae12 4205 INIT_LIST_HEAD(&stripes);
7a661381 4206 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 4207 int j;
a9f326eb 4208 int skipped_disk = 0;
a8c906ca 4209 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
4210 set_bit(STRIPE_EXPANDING, &sh->state);
4211 atomic_inc(&conf->reshape_stripes);
4212 /* If any of this stripe is beyond the end of the old
4213 * array, then we need to zero those blocks
4214 */
4215 for (j=sh->disks; j--;) {
4216 sector_t s;
4217 if (j == sh->pd_idx)
4218 continue;
f416885e 4219 if (conf->level == 6 &&
d0dabf7e 4220 j == sh->qd_idx)
f416885e 4221 continue;
784052ec 4222 s = compute_blocknr(sh, j, 0);
b522adcd 4223 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 4224 skipped_disk = 1;
52c03291
N
4225 continue;
4226 }
4227 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4228 set_bit(R5_Expanded, &sh->dev[j].flags);
4229 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4230 }
a9f326eb 4231 if (!skipped_disk) {
52c03291
N
4232 set_bit(STRIPE_EXPAND_READY, &sh->state);
4233 set_bit(STRIPE_HANDLE, &sh->state);
4234 }
ab69ae12 4235 list_add(&sh->lru, &stripes);
52c03291
N
4236 }
4237 spin_lock_irq(&conf->device_lock);
fef9c61f 4238 if (mddev->delta_disks < 0)
7a661381 4239 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4240 else
7a661381 4241 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4242 spin_unlock_irq(&conf->device_lock);
4243 /* Ok, those stripe are ready. We can start scheduling
4244 * reads on the source stripes.
4245 * The source stripes are determined by mapping the first and last
4246 * block on the destination stripes.
4247 */
52c03291 4248 first_sector =
ec32a2bd 4249 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4250 1, &dd_idx, NULL);
52c03291 4251 last_sector =
0e6e0271 4252 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 4253 * new_data_disks - 1),
911d4ee8 4254 1, &dd_idx, NULL);
58c0fed4
AN
4255 if (last_sector >= mddev->dev_sectors)
4256 last_sector = mddev->dev_sectors - 1;
52c03291 4257 while (first_sector <= last_sector) {
a8c906ca 4258 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
4259 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4260 set_bit(STRIPE_HANDLE, &sh->state);
4261 release_stripe(sh);
4262 first_sector += STRIPE_SECTORS;
4263 }
ab69ae12
N
4264 /* Now that the sources are clearly marked, we can release
4265 * the destination stripes
4266 */
4267 while (!list_empty(&stripes)) {
4268 sh = list_entry(stripes.next, struct stripe_head, lru);
4269 list_del_init(&sh->lru);
4270 release_stripe(sh);
4271 }
c6207277
N
4272 /* If this takes us to the resync_max point where we have to pause,
4273 * then we need to write out the superblock.
4274 */
7a661381 4275 sector_nr += reshape_sectors;
c03f6a19
N
4276 if ((sector_nr - mddev->curr_resync_completed) * 2
4277 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
4278 /* Cannot proceed until we've updated the superblock... */
4279 wait_event(conf->wait_for_overlap,
4280 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 4281 mddev->reshape_position = conf->reshape_progress;
75d3da43 4282 mddev->curr_resync_completed = sector_nr;
c8f517c4 4283 conf->reshape_checkpoint = jiffies;
c6207277
N
4284 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4285 md_wakeup_thread(mddev->thread);
4286 wait_event(mddev->sb_wait,
4287 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4288 || kthread_should_stop());
4289 spin_lock_irq(&conf->device_lock);
fef9c61f 4290 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4291 spin_unlock_irq(&conf->device_lock);
4292 wake_up(&conf->wait_for_overlap);
acb180b0 4293 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 4294 }
7a661381 4295 return reshape_sectors;
52c03291
N
4296}
4297
4298/* FIXME go_faster isn't used */
4299static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4300{
7b92813c 4301 raid5_conf_t *conf = mddev->private;
52c03291 4302 struct stripe_head *sh;
58c0fed4 4303 sector_t max_sector = mddev->dev_sectors;
57dab0bd 4304 sector_t sync_blocks;
16a53ecc
N
4305 int still_degraded = 0;
4306 int i;
1da177e4 4307
72626685 4308 if (sector_nr >= max_sector) {
1da177e4 4309 /* just being told to finish up .. nothing much to do */
cea9c228 4310
29269553
N
4311 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4312 end_reshape(conf);
4313 return 0;
4314 }
72626685
N
4315
4316 if (mddev->curr_resync < max_sector) /* aborted */
4317 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4318 &sync_blocks, 1);
16a53ecc 4319 else /* completed sync */
72626685
N
4320 conf->fullsync = 0;
4321 bitmap_close_sync(mddev->bitmap);
4322
1da177e4
LT
4323 return 0;
4324 }
ccfcc3c1 4325
64bd660b
N
4326 /* Allow raid5_quiesce to complete */
4327 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4328
52c03291
N
4329 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4330 return reshape_request(mddev, sector_nr, skipped);
f6705578 4331
c6207277
N
4332 /* No need to check resync_max as we never do more than one
4333 * stripe, and as resync_max will always be on a chunk boundary,
4334 * if the check in md_do_sync didn't fire, there is no chance
4335 * of overstepping resync_max here
4336 */
4337
16a53ecc 4338 /* if there is too many failed drives and we are trying
1da177e4
LT
4339 * to resync, then assert that we are finished, because there is
4340 * nothing we can do.
4341 */
3285edf1 4342 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4343 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4344 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4345 *skipped = 1;
1da177e4
LT
4346 return rv;
4347 }
72626685 4348 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4349 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4350 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4351 /* we can skip this block, and probably more */
4352 sync_blocks /= STRIPE_SECTORS;
4353 *skipped = 1;
4354 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4355 }
1da177e4 4356
b47490c9
N
4357
4358 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4359
a8c906ca 4360 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 4361 if (sh == NULL) {
a8c906ca 4362 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 4363 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4364 * is trying to get access
1da177e4 4365 */
66c006a5 4366 schedule_timeout_uninterruptible(1);
1da177e4 4367 }
16a53ecc
N
4368 /* Need to check if array will still be degraded after recovery/resync
4369 * We don't need to check the 'failed' flag as when that gets set,
4370 * recovery aborts.
4371 */
f001a70c 4372 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
4373 if (conf->disks[i].rdev == NULL)
4374 still_degraded = 1;
4375
4376 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4377
4378 spin_lock(&sh->lock);
1da177e4
LT
4379 set_bit(STRIPE_SYNCING, &sh->state);
4380 clear_bit(STRIPE_INSYNC, &sh->state);
4381 spin_unlock(&sh->lock);
4382
1442577b 4383 handle_stripe(sh);
1da177e4
LT
4384 release_stripe(sh);
4385
4386 return STRIPE_SECTORS;
4387}
4388
46031f9a
RBJ
4389static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4390{
4391 /* We may not be able to submit a whole bio at once as there
4392 * may not be enough stripe_heads available.
4393 * We cannot pre-allocate enough stripe_heads as we may need
4394 * more than exist in the cache (if we allow ever large chunks).
4395 * So we do one stripe head at a time and record in
4396 * ->bi_hw_segments how many have been done.
4397 *
4398 * We *know* that this entire raid_bio is in one chunk, so
4399 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4400 */
4401 struct stripe_head *sh;
911d4ee8 4402 int dd_idx;
46031f9a
RBJ
4403 sector_t sector, logical_sector, last_sector;
4404 int scnt = 0;
4405 int remaining;
4406 int handled = 0;
4407
4408 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4409 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4410 0, &dd_idx, NULL);
46031f9a
RBJ
4411 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4412
4413 for (; logical_sector < last_sector;
387bb173
NB
4414 logical_sector += STRIPE_SECTORS,
4415 sector += STRIPE_SECTORS,
4416 scnt++) {
46031f9a 4417
960e739d 4418 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4419 /* already done this stripe */
4420 continue;
4421
a8c906ca 4422 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
4423
4424 if (!sh) {
4425 /* failed to get a stripe - must wait */
960e739d 4426 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4427 conf->retry_read_aligned = raid_bio;
4428 return handled;
4429 }
4430
4431 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
4432 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4433 release_stripe(sh);
960e739d 4434 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4435 conf->retry_read_aligned = raid_bio;
4436 return handled;
4437 }
4438
36d1c647 4439 handle_stripe(sh);
46031f9a
RBJ
4440 release_stripe(sh);
4441 handled++;
4442 }
4443 spin_lock_irq(&conf->device_lock);
960e739d 4444 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4445 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4446 if (remaining == 0)
4447 bio_endio(raid_bio, 0);
46031f9a
RBJ
4448 if (atomic_dec_and_test(&conf->active_aligned_reads))
4449 wake_up(&conf->wait_for_stripe);
4450 return handled;
4451}
4452
46031f9a 4453
1da177e4
LT
4454/*
4455 * This is our raid5 kernel thread.
4456 *
4457 * We scan the hash table for stripes which can be handled now.
4458 * During the scan, completed stripes are saved for us by the interrupt
4459 * handler, so that they will not have to wait for our next wakeup.
4460 */
6ed3003c 4461static void raid5d(mddev_t *mddev)
1da177e4
LT
4462{
4463 struct stripe_head *sh;
070ec55d 4464 raid5_conf_t *conf = mddev->private;
1da177e4 4465 int handled;
e1dfa0a2 4466 struct blk_plug plug;
1da177e4 4467
45b4233c 4468 pr_debug("+++ raid5d active\n");
1da177e4
LT
4469
4470 md_check_recovery(mddev);
1da177e4 4471
e1dfa0a2 4472 blk_start_plug(&plug);
1da177e4
LT
4473 handled = 0;
4474 spin_lock_irq(&conf->device_lock);
4475 while (1) {
46031f9a 4476 struct bio *bio;
1da177e4 4477
7c13edc8
N
4478 if (atomic_read(&mddev->plug_cnt) == 0 &&
4479 !list_empty(&conf->bitmap_list)) {
4480 /* Now is a good time to flush some bitmap updates */
4481 conf->seq_flush++;
700e432d 4482 spin_unlock_irq(&conf->device_lock);
72626685 4483 bitmap_unplug(mddev->bitmap);
700e432d 4484 spin_lock_irq(&conf->device_lock);
7c13edc8 4485 conf->seq_write = conf->seq_flush;
72626685
N
4486 activate_bit_delay(conf);
4487 }
7c13edc8
N
4488 if (atomic_read(&mddev->plug_cnt) == 0)
4489 raid5_activate_delayed(conf);
72626685 4490
46031f9a
RBJ
4491 while ((bio = remove_bio_from_retry(conf))) {
4492 int ok;
4493 spin_unlock_irq(&conf->device_lock);
4494 ok = retry_aligned_read(conf, bio);
4495 spin_lock_irq(&conf->device_lock);
4496 if (!ok)
4497 break;
4498 handled++;
4499 }
4500
8b3e6cdc
DW
4501 sh = __get_priority_stripe(conf);
4502
c9f21aaf 4503 if (!sh)
1da177e4 4504 break;
1da177e4
LT
4505 spin_unlock_irq(&conf->device_lock);
4506
4507 handled++;
417b8d4a
DW
4508 handle_stripe(sh);
4509 release_stripe(sh);
4510 cond_resched();
1da177e4
LT
4511
4512 spin_lock_irq(&conf->device_lock);
4513 }
45b4233c 4514 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4515
4516 spin_unlock_irq(&conf->device_lock);
4517
c9f21aaf 4518 async_tx_issue_pending_all();
e1dfa0a2 4519 blk_finish_plug(&plug);
1da177e4 4520
45b4233c 4521 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4522}
4523
3f294f4f 4524static ssize_t
007583c9 4525raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 4526{
070ec55d 4527 raid5_conf_t *conf = mddev->private;
96de1e66
N
4528 if (conf)
4529 return sprintf(page, "%d\n", conf->max_nr_stripes);
4530 else
4531 return 0;
3f294f4f
N
4532}
4533
c41d4ac4
N
4534int
4535raid5_set_cache_size(mddev_t *mddev, int size)
3f294f4f 4536{
070ec55d 4537 raid5_conf_t *conf = mddev->private;
b5470dc5
DW
4538 int err;
4539
c41d4ac4 4540 if (size <= 16 || size > 32768)
3f294f4f 4541 return -EINVAL;
c41d4ac4 4542 while (size < conf->max_nr_stripes) {
3f294f4f
N
4543 if (drop_one_stripe(conf))
4544 conf->max_nr_stripes--;
4545 else
4546 break;
4547 }
b5470dc5
DW
4548 err = md_allow_write(mddev);
4549 if (err)
4550 return err;
c41d4ac4 4551 while (size > conf->max_nr_stripes) {
3f294f4f
N
4552 if (grow_one_stripe(conf))
4553 conf->max_nr_stripes++;
4554 else break;
4555 }
c41d4ac4
N
4556 return 0;
4557}
4558EXPORT_SYMBOL(raid5_set_cache_size);
4559
4560static ssize_t
4561raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4562{
4563 raid5_conf_t *conf = mddev->private;
4564 unsigned long new;
4565 int err;
4566
4567 if (len >= PAGE_SIZE)
4568 return -EINVAL;
4569 if (!conf)
4570 return -ENODEV;
4571
4572 if (strict_strtoul(page, 10, &new))
4573 return -EINVAL;
4574 err = raid5_set_cache_size(mddev, new);
4575 if (err)
4576 return err;
3f294f4f
N
4577 return len;
4578}
007583c9 4579
96de1e66
N
4580static struct md_sysfs_entry
4581raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4582 raid5_show_stripe_cache_size,
4583 raid5_store_stripe_cache_size);
3f294f4f 4584
8b3e6cdc
DW
4585static ssize_t
4586raid5_show_preread_threshold(mddev_t *mddev, char *page)
4587{
070ec55d 4588 raid5_conf_t *conf = mddev->private;
8b3e6cdc
DW
4589 if (conf)
4590 return sprintf(page, "%d\n", conf->bypass_threshold);
4591 else
4592 return 0;
4593}
4594
4595static ssize_t
4596raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4597{
070ec55d 4598 raid5_conf_t *conf = mddev->private;
4ef197d8 4599 unsigned long new;
8b3e6cdc
DW
4600 if (len >= PAGE_SIZE)
4601 return -EINVAL;
4602 if (!conf)
4603 return -ENODEV;
4604
4ef197d8 4605 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4606 return -EINVAL;
4ef197d8 4607 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4608 return -EINVAL;
4609 conf->bypass_threshold = new;
4610 return len;
4611}
4612
4613static struct md_sysfs_entry
4614raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4615 S_IRUGO | S_IWUSR,
4616 raid5_show_preread_threshold,
4617 raid5_store_preread_threshold);
4618
3f294f4f 4619static ssize_t
96de1e66 4620stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4621{
070ec55d 4622 raid5_conf_t *conf = mddev->private;
96de1e66
N
4623 if (conf)
4624 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4625 else
4626 return 0;
3f294f4f
N
4627}
4628
96de1e66
N
4629static struct md_sysfs_entry
4630raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4631
007583c9 4632static struct attribute *raid5_attrs[] = {
3f294f4f
N
4633 &raid5_stripecache_size.attr,
4634 &raid5_stripecache_active.attr,
8b3e6cdc 4635 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4636 NULL,
4637};
007583c9
N
4638static struct attribute_group raid5_attrs_group = {
4639 .name = NULL,
4640 .attrs = raid5_attrs,
3f294f4f
N
4641};
4642
80c3a6ce
DW
4643static sector_t
4644raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4645{
070ec55d 4646 raid5_conf_t *conf = mddev->private;
80c3a6ce
DW
4647
4648 if (!sectors)
4649 sectors = mddev->dev_sectors;
5e5e3e78 4650 if (!raid_disks)
7ec05478 4651 /* size is defined by the smallest of previous and new size */
5e5e3e78 4652 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 4653
9d8f0363 4654 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 4655 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
4656 return sectors * (raid_disks - conf->max_degraded);
4657}
4658
36d1c647
DW
4659static void raid5_free_percpu(raid5_conf_t *conf)
4660{
4661 struct raid5_percpu *percpu;
4662 unsigned long cpu;
4663
4664 if (!conf->percpu)
4665 return;
4666
4667 get_online_cpus();
4668 for_each_possible_cpu(cpu) {
4669 percpu = per_cpu_ptr(conf->percpu, cpu);
4670 safe_put_page(percpu->spare_page);
d6f38f31 4671 kfree(percpu->scribble);
36d1c647
DW
4672 }
4673#ifdef CONFIG_HOTPLUG_CPU
4674 unregister_cpu_notifier(&conf->cpu_notify);
4675#endif
4676 put_online_cpus();
4677
4678 free_percpu(conf->percpu);
4679}
4680
95fc17aa
DW
4681static void free_conf(raid5_conf_t *conf)
4682{
4683 shrink_stripes(conf);
36d1c647 4684 raid5_free_percpu(conf);
95fc17aa
DW
4685 kfree(conf->disks);
4686 kfree(conf->stripe_hashtbl);
4687 kfree(conf);
4688}
4689
36d1c647
DW
4690#ifdef CONFIG_HOTPLUG_CPU
4691static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4692 void *hcpu)
4693{
4694 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4695 long cpu = (long)hcpu;
4696 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4697
4698 switch (action) {
4699 case CPU_UP_PREPARE:
4700 case CPU_UP_PREPARE_FROZEN:
d6f38f31 4701 if (conf->level == 6 && !percpu->spare_page)
36d1c647 4702 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
4703 if (!percpu->scribble)
4704 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4705
4706 if (!percpu->scribble ||
4707 (conf->level == 6 && !percpu->spare_page)) {
4708 safe_put_page(percpu->spare_page);
4709 kfree(percpu->scribble);
36d1c647
DW
4710 pr_err("%s: failed memory allocation for cpu%ld\n",
4711 __func__, cpu);
55af6bb5 4712 return notifier_from_errno(-ENOMEM);
36d1c647
DW
4713 }
4714 break;
4715 case CPU_DEAD:
4716 case CPU_DEAD_FROZEN:
4717 safe_put_page(percpu->spare_page);
d6f38f31 4718 kfree(percpu->scribble);
36d1c647 4719 percpu->spare_page = NULL;
d6f38f31 4720 percpu->scribble = NULL;
36d1c647
DW
4721 break;
4722 default:
4723 break;
4724 }
4725 return NOTIFY_OK;
4726}
4727#endif
4728
4729static int raid5_alloc_percpu(raid5_conf_t *conf)
4730{
4731 unsigned long cpu;
4732 struct page *spare_page;
a29d8b8e 4733 struct raid5_percpu __percpu *allcpus;
d6f38f31 4734 void *scribble;
36d1c647
DW
4735 int err;
4736
36d1c647
DW
4737 allcpus = alloc_percpu(struct raid5_percpu);
4738 if (!allcpus)
4739 return -ENOMEM;
4740 conf->percpu = allcpus;
4741
4742 get_online_cpus();
4743 err = 0;
4744 for_each_present_cpu(cpu) {
d6f38f31
DW
4745 if (conf->level == 6) {
4746 spare_page = alloc_page(GFP_KERNEL);
4747 if (!spare_page) {
4748 err = -ENOMEM;
4749 break;
4750 }
4751 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4752 }
5e5e3e78 4753 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
d6f38f31 4754 if (!scribble) {
36d1c647
DW
4755 err = -ENOMEM;
4756 break;
4757 }
d6f38f31 4758 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
4759 }
4760#ifdef CONFIG_HOTPLUG_CPU
4761 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4762 conf->cpu_notify.priority = 0;
4763 if (err == 0)
4764 err = register_cpu_notifier(&conf->cpu_notify);
4765#endif
4766 put_online_cpus();
4767
4768 return err;
4769}
4770
91adb564 4771static raid5_conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
4772{
4773 raid5_conf_t *conf;
5e5e3e78 4774 int raid_disk, memory, max_disks;
1da177e4
LT
4775 mdk_rdev_t *rdev;
4776 struct disk_info *disk;
1da177e4 4777
91adb564
N
4778 if (mddev->new_level != 5
4779 && mddev->new_level != 4
4780 && mddev->new_level != 6) {
0c55e022 4781 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4782 mdname(mddev), mddev->new_level);
4783 return ERR_PTR(-EIO);
1da177e4 4784 }
91adb564
N
4785 if ((mddev->new_level == 5
4786 && !algorithm_valid_raid5(mddev->new_layout)) ||
4787 (mddev->new_level == 6
4788 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 4789 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
4790 mdname(mddev), mddev->new_layout);
4791 return ERR_PTR(-EIO);
99c0fb5f 4792 }
91adb564 4793 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 4794 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
4795 mdname(mddev), mddev->raid_disks);
4796 return ERR_PTR(-EINVAL);
4bbf3771
N
4797 }
4798
664e7c41
AN
4799 if (!mddev->new_chunk_sectors ||
4800 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4801 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
4802 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4803 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 4804 return ERR_PTR(-EINVAL);
f6705578
N
4805 }
4806
91adb564
N
4807 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4808 if (conf == NULL)
1da177e4 4809 goto abort;
f5efd45a
DW
4810 spin_lock_init(&conf->device_lock);
4811 init_waitqueue_head(&conf->wait_for_stripe);
4812 init_waitqueue_head(&conf->wait_for_overlap);
4813 INIT_LIST_HEAD(&conf->handle_list);
4814 INIT_LIST_HEAD(&conf->hold_list);
4815 INIT_LIST_HEAD(&conf->delayed_list);
4816 INIT_LIST_HEAD(&conf->bitmap_list);
4817 INIT_LIST_HEAD(&conf->inactive_list);
4818 atomic_set(&conf->active_stripes, 0);
4819 atomic_set(&conf->preread_active_stripes, 0);
4820 atomic_set(&conf->active_aligned_reads, 0);
4821 conf->bypass_threshold = BYPASS_THRESHOLD;
91adb564
N
4822
4823 conf->raid_disks = mddev->raid_disks;
4824 if (mddev->reshape_position == MaxSector)
4825 conf->previous_raid_disks = mddev->raid_disks;
4826 else
f6705578 4827 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
4828 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4829 conf->scribble_len = scribble_len(max_disks);
f6705578 4830
5e5e3e78 4831 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
4832 GFP_KERNEL);
4833 if (!conf->disks)
4834 goto abort;
9ffae0cf 4835
1da177e4
LT
4836 conf->mddev = mddev;
4837
fccddba0 4838 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4839 goto abort;
1da177e4 4840
36d1c647
DW
4841 conf->level = mddev->new_level;
4842 if (raid5_alloc_percpu(conf) != 0)
4843 goto abort;
4844
0c55e022 4845 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 4846
159ec1fc 4847 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 4848 raid_disk = rdev->raid_disk;
5e5e3e78 4849 if (raid_disk >= max_disks
1da177e4
LT
4850 || raid_disk < 0)
4851 continue;
4852 disk = conf->disks + raid_disk;
4853
4854 disk->rdev = rdev;
4855
b2d444d7 4856 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 4857 char b[BDEVNAME_SIZE];
0c55e022
N
4858 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4859 " disk %d\n",
4860 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
8c2e870a
NB
4861 } else
4862 /* Cannot rely on bitmap to complete recovery */
4863 conf->fullsync = 1;
1da177e4
LT
4864 }
4865
09c9e5fa 4866 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 4867 conf->level = mddev->new_level;
16a53ecc
N
4868 if (conf->level == 6)
4869 conf->max_degraded = 2;
4870 else
4871 conf->max_degraded = 1;
91adb564 4872 conf->algorithm = mddev->new_layout;
1da177e4 4873 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4874 conf->reshape_progress = mddev->reshape_position;
e183eaed 4875 if (conf->reshape_progress != MaxSector) {
09c9e5fa 4876 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
4877 conf->prev_algo = mddev->layout;
4878 }
1da177e4 4879
91adb564 4880 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 4881 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
91adb564
N
4882 if (grow_stripes(conf, conf->max_nr_stripes)) {
4883 printk(KERN_ERR
0c55e022
N
4884 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4885 mdname(mddev), memory);
91adb564
N
4886 goto abort;
4887 } else
0c55e022
N
4888 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4889 mdname(mddev), memory);
1da177e4 4890
0da3c619 4891 conf->thread = md_register_thread(raid5d, mddev, NULL);
91adb564
N
4892 if (!conf->thread) {
4893 printk(KERN_ERR
0c55e022 4894 "md/raid:%s: couldn't allocate thread.\n",
91adb564 4895 mdname(mddev));
16a53ecc
N
4896 goto abort;
4897 }
91adb564
N
4898
4899 return conf;
4900
4901 abort:
4902 if (conf) {
95fc17aa 4903 free_conf(conf);
91adb564
N
4904 return ERR_PTR(-EIO);
4905 } else
4906 return ERR_PTR(-ENOMEM);
4907}
4908
c148ffdc
N
4909
4910static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4911{
4912 switch (algo) {
4913 case ALGORITHM_PARITY_0:
4914 if (raid_disk < max_degraded)
4915 return 1;
4916 break;
4917 case ALGORITHM_PARITY_N:
4918 if (raid_disk >= raid_disks - max_degraded)
4919 return 1;
4920 break;
4921 case ALGORITHM_PARITY_0_6:
4922 if (raid_disk == 0 ||
4923 raid_disk == raid_disks - 1)
4924 return 1;
4925 break;
4926 case ALGORITHM_LEFT_ASYMMETRIC_6:
4927 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4928 case ALGORITHM_LEFT_SYMMETRIC_6:
4929 case ALGORITHM_RIGHT_SYMMETRIC_6:
4930 if (raid_disk == raid_disks - 1)
4931 return 1;
4932 }
4933 return 0;
4934}
4935
91adb564
N
4936static int run(mddev_t *mddev)
4937{
4938 raid5_conf_t *conf;
9f7c2220 4939 int working_disks = 0;
c148ffdc 4940 int dirty_parity_disks = 0;
91adb564 4941 mdk_rdev_t *rdev;
c148ffdc 4942 sector_t reshape_offset = 0;
91adb564 4943
8c6ac868 4944 if (mddev->recovery_cp != MaxSector)
0c55e022 4945 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
4946 " -- starting background reconstruction\n",
4947 mdname(mddev));
91adb564
N
4948 if (mddev->reshape_position != MaxSector) {
4949 /* Check that we can continue the reshape.
4950 * Currently only disks can change, it must
4951 * increase, and we must be past the point where
4952 * a stripe over-writes itself
4953 */
4954 sector_t here_new, here_old;
4955 int old_disks;
18b00334 4956 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 4957
88ce4930 4958 if (mddev->new_level != mddev->level) {
0c55e022 4959 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
4960 "required - aborting.\n",
4961 mdname(mddev));
4962 return -EINVAL;
4963 }
91adb564
N
4964 old_disks = mddev->raid_disks - mddev->delta_disks;
4965 /* reshape_position must be on a new-stripe boundary, and one
4966 * further up in new geometry must map after here in old
4967 * geometry.
4968 */
4969 here_new = mddev->reshape_position;
664e7c41 4970 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 4971 (mddev->raid_disks - max_degraded))) {
0c55e022
N
4972 printk(KERN_ERR "md/raid:%s: reshape_position not "
4973 "on a stripe boundary\n", mdname(mddev));
91adb564
N
4974 return -EINVAL;
4975 }
c148ffdc 4976 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
4977 /* here_new is the stripe we will write to */
4978 here_old = mddev->reshape_position;
9d8f0363 4979 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
4980 (old_disks-max_degraded));
4981 /* here_old is the first stripe that we might need to read
4982 * from */
67ac6011
N
4983 if (mddev->delta_disks == 0) {
4984 /* We cannot be sure it is safe to start an in-place
4985 * reshape. It is only safe if user-space if monitoring
4986 * and taking constant backups.
4987 * mdadm always starts a situation like this in
4988 * readonly mode so it can take control before
4989 * allowing any writes. So just check for that.
4990 */
4991 if ((here_new * mddev->new_chunk_sectors !=
4992 here_old * mddev->chunk_sectors) ||
4993 mddev->ro == 0) {
0c55e022
N
4994 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4995 " in read-only mode - aborting\n",
4996 mdname(mddev));
67ac6011
N
4997 return -EINVAL;
4998 }
4999 } else if (mddev->delta_disks < 0
5000 ? (here_new * mddev->new_chunk_sectors <=
5001 here_old * mddev->chunk_sectors)
5002 : (here_new * mddev->new_chunk_sectors >=
5003 here_old * mddev->chunk_sectors)) {
91adb564 5004 /* Reading from the same stripe as writing to - bad */
0c55e022
N
5005 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5006 "auto-recovery - aborting.\n",
5007 mdname(mddev));
91adb564
N
5008 return -EINVAL;
5009 }
0c55e022
N
5010 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5011 mdname(mddev));
91adb564
N
5012 /* OK, we should be able to continue; */
5013 } else {
5014 BUG_ON(mddev->level != mddev->new_level);
5015 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 5016 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 5017 BUG_ON(mddev->delta_disks != 0);
1da177e4 5018 }
91adb564 5019
245f46c2
N
5020 if (mddev->private == NULL)
5021 conf = setup_conf(mddev);
5022 else
5023 conf = mddev->private;
5024
91adb564
N
5025 if (IS_ERR(conf))
5026 return PTR_ERR(conf);
5027
5028 mddev->thread = conf->thread;
5029 conf->thread = NULL;
5030 mddev->private = conf;
5031
5032 /*
5033 * 0 for a fully functional array, 1 or 2 for a degraded array.
5034 */
c148ffdc
N
5035 list_for_each_entry(rdev, &mddev->disks, same_set) {
5036 if (rdev->raid_disk < 0)
5037 continue;
2f115882 5038 if (test_bit(In_sync, &rdev->flags)) {
91adb564 5039 working_disks++;
2f115882
N
5040 continue;
5041 }
c148ffdc
N
5042 /* This disc is not fully in-sync. However if it
5043 * just stored parity (beyond the recovery_offset),
5044 * when we don't need to be concerned about the
5045 * array being dirty.
5046 * When reshape goes 'backwards', we never have
5047 * partially completed devices, so we only need
5048 * to worry about reshape going forwards.
5049 */
5050 /* Hack because v0.91 doesn't store recovery_offset properly. */
5051 if (mddev->major_version == 0 &&
5052 mddev->minor_version > 90)
5053 rdev->recovery_offset = reshape_offset;
5054
c148ffdc
N
5055 if (rdev->recovery_offset < reshape_offset) {
5056 /* We need to check old and new layout */
5057 if (!only_parity(rdev->raid_disk,
5058 conf->algorithm,
5059 conf->raid_disks,
5060 conf->max_degraded))
5061 continue;
5062 }
5063 if (!only_parity(rdev->raid_disk,
5064 conf->prev_algo,
5065 conf->previous_raid_disks,
5066 conf->max_degraded))
5067 continue;
5068 dirty_parity_disks++;
5069 }
91adb564 5070
5e5e3e78
N
5071 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5072 - working_disks);
91adb564 5073
674806d6 5074 if (has_failed(conf)) {
0c55e022 5075 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 5076 " (%d/%d failed)\n",
02c2de8c 5077 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
5078 goto abort;
5079 }
5080
91adb564 5081 /* device size must be a multiple of chunk size */
9d8f0363 5082 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
5083 mddev->resync_max_sectors = mddev->dev_sectors;
5084
c148ffdc 5085 if (mddev->degraded > dirty_parity_disks &&
1da177e4 5086 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
5087 if (mddev->ok_start_degraded)
5088 printk(KERN_WARNING
0c55e022
N
5089 "md/raid:%s: starting dirty degraded array"
5090 " - data corruption possible.\n",
6ff8d8ec
N
5091 mdname(mddev));
5092 else {
5093 printk(KERN_ERR
0c55e022 5094 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
5095 mdname(mddev));
5096 goto abort;
5097 }
1da177e4
LT
5098 }
5099
1da177e4 5100 if (mddev->degraded == 0)
0c55e022
N
5101 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5102 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
5103 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5104 mddev->new_layout);
1da177e4 5105 else
0c55e022
N
5106 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5107 " out of %d devices, algorithm %d\n",
5108 mdname(mddev), conf->level,
5109 mddev->raid_disks - mddev->degraded,
5110 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
5111
5112 print_raid5_conf(conf);
5113
fef9c61f 5114 if (conf->reshape_progress != MaxSector) {
fef9c61f 5115 conf->reshape_safe = conf->reshape_progress;
f6705578
N
5116 atomic_set(&conf->reshape_stripes, 0);
5117 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5118 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5119 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5120 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5121 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5122 "reshape");
f6705578
N
5123 }
5124
1da177e4
LT
5125
5126 /* Ok, everything is just fine now */
a64c876f
N
5127 if (mddev->to_remove == &raid5_attrs_group)
5128 mddev->to_remove = NULL;
00bcb4ac
N
5129 else if (mddev->kobj.sd &&
5130 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 5131 printk(KERN_WARNING
4a5add49 5132 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 5133 mdname(mddev));
4a5add49 5134 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 5135
4a5add49 5136 if (mddev->queue) {
9f7c2220 5137 int chunk_size;
4a5add49
N
5138 /* read-ahead size must cover two whole stripes, which
5139 * is 2 * (datadisks) * chunksize where 'n' is the
5140 * number of raid devices
5141 */
5142 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5143 int stripe = data_disks *
5144 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5145 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5146 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 5147
4a5add49 5148 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
f022b2fd 5149
11d8a6e3
N
5150 mddev->queue->backing_dev_info.congested_data = mddev;
5151 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
7a5febe9 5152
9f7c2220
N
5153 chunk_size = mddev->chunk_sectors << 9;
5154 blk_queue_io_min(mddev->queue, chunk_size);
5155 blk_queue_io_opt(mddev->queue, chunk_size *
5156 (conf->raid_disks - conf->max_degraded));
8f6c2e4b 5157
9f7c2220
N
5158 list_for_each_entry(rdev, &mddev->disks, same_set)
5159 disk_stack_limits(mddev->gendisk, rdev->bdev,
5160 rdev->data_offset << 9);
5161 }
23032a0e 5162
1da177e4
LT
5163 return 0;
5164abort:
e0cf8f04 5165 md_unregister_thread(mddev->thread);
91adb564 5166 mddev->thread = NULL;
1da177e4
LT
5167 if (conf) {
5168 print_raid5_conf(conf);
95fc17aa 5169 free_conf(conf);
1da177e4
LT
5170 }
5171 mddev->private = NULL;
0c55e022 5172 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
5173 return -EIO;
5174}
5175
3f294f4f 5176static int stop(mddev_t *mddev)
1da177e4 5177{
7b92813c 5178 raid5_conf_t *conf = mddev->private;
1da177e4
LT
5179
5180 md_unregister_thread(mddev->thread);
5181 mddev->thread = NULL;
11d8a6e3
N
5182 if (mddev->queue)
5183 mddev->queue->backing_dev_info.congested_fn = NULL;
95fc17aa 5184 free_conf(conf);
a64c876f
N
5185 mddev->private = NULL;
5186 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
5187 return 0;
5188}
5189
45b4233c 5190#ifdef DEBUG
d710e138 5191static void print_sh(struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
5192{
5193 int i;
5194
16a53ecc
N
5195 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5196 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5197 seq_printf(seq, "sh %llu, count %d.\n",
5198 (unsigned long long)sh->sector, atomic_read(&sh->count));
5199 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 5200 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
5201 seq_printf(seq, "(cache%d: %p %ld) ",
5202 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 5203 }
16a53ecc 5204 seq_printf(seq, "\n");
1da177e4
LT
5205}
5206
d710e138 5207static void printall(struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
5208{
5209 struct stripe_head *sh;
fccddba0 5210 struct hlist_node *hn;
1da177e4
LT
5211 int i;
5212
5213 spin_lock_irq(&conf->device_lock);
5214 for (i = 0; i < NR_HASH; i++) {
fccddba0 5215 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
5216 if (sh->raid_conf != conf)
5217 continue;
16a53ecc 5218 print_sh(seq, sh);
1da177e4
LT
5219 }
5220 }
5221 spin_unlock_irq(&conf->device_lock);
5222}
5223#endif
5224
d710e138 5225static void status(struct seq_file *seq, mddev_t *mddev)
1da177e4 5226{
7b92813c 5227 raid5_conf_t *conf = mddev->private;
1da177e4
LT
5228 int i;
5229
9d8f0363
AN
5230 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5231 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 5232 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
5233 for (i = 0; i < conf->raid_disks; i++)
5234 seq_printf (seq, "%s",
5235 conf->disks[i].rdev &&
b2d444d7 5236 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 5237 seq_printf (seq, "]");
45b4233c 5238#ifdef DEBUG
16a53ecc
N
5239 seq_printf (seq, "\n");
5240 printall(seq, conf);
1da177e4
LT
5241#endif
5242}
5243
5244static void print_raid5_conf (raid5_conf_t *conf)
5245{
5246 int i;
5247 struct disk_info *tmp;
5248
0c55e022 5249 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
5250 if (!conf) {
5251 printk("(conf==NULL)\n");
5252 return;
5253 }
0c55e022
N
5254 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5255 conf->raid_disks,
5256 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
5257
5258 for (i = 0; i < conf->raid_disks; i++) {
5259 char b[BDEVNAME_SIZE];
5260 tmp = conf->disks + i;
5261 if (tmp->rdev)
0c55e022
N
5262 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5263 i, !test_bit(Faulty, &tmp->rdev->flags),
5264 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
5265 }
5266}
5267
5268static int raid5_spare_active(mddev_t *mddev)
5269{
5270 int i;
5271 raid5_conf_t *conf = mddev->private;
5272 struct disk_info *tmp;
6b965620
N
5273 int count = 0;
5274 unsigned long flags;
1da177e4
LT
5275
5276 for (i = 0; i < conf->raid_disks; i++) {
5277 tmp = conf->disks + i;
5278 if (tmp->rdev
70fffd0b 5279 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 5280 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 5281 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 5282 count++;
43c73ca4 5283 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
5284 }
5285 }
6b965620
N
5286 spin_lock_irqsave(&conf->device_lock, flags);
5287 mddev->degraded -= count;
5288 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 5289 print_raid5_conf(conf);
6b965620 5290 return count;
1da177e4
LT
5291}
5292
5293static int raid5_remove_disk(mddev_t *mddev, int number)
5294{
5295 raid5_conf_t *conf = mddev->private;
5296 int err = 0;
5297 mdk_rdev_t *rdev;
5298 struct disk_info *p = conf->disks + number;
5299
5300 print_raid5_conf(conf);
5301 rdev = p->rdev;
5302 if (rdev) {
ec32a2bd
N
5303 if (number >= conf->raid_disks &&
5304 conf->reshape_progress == MaxSector)
5305 clear_bit(In_sync, &rdev->flags);
5306
b2d444d7 5307 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
5308 atomic_read(&rdev->nr_pending)) {
5309 err = -EBUSY;
5310 goto abort;
5311 }
dfc70645
N
5312 /* Only remove non-faulty devices if recovery
5313 * isn't possible.
5314 */
5315 if (!test_bit(Faulty, &rdev->flags) &&
674806d6 5316 !has_failed(conf) &&
ec32a2bd 5317 number < conf->raid_disks) {
dfc70645
N
5318 err = -EBUSY;
5319 goto abort;
5320 }
1da177e4 5321 p->rdev = NULL;
fbd568a3 5322 synchronize_rcu();
1da177e4
LT
5323 if (atomic_read(&rdev->nr_pending)) {
5324 /* lost the race, try later */
5325 err = -EBUSY;
5326 p->rdev = rdev;
5327 }
5328 }
5329abort:
5330
5331 print_raid5_conf(conf);
5332 return err;
5333}
5334
5335static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5336{
5337 raid5_conf_t *conf = mddev->private;
199050ea 5338 int err = -EEXIST;
1da177e4
LT
5339 int disk;
5340 struct disk_info *p;
6c2fce2e
NB
5341 int first = 0;
5342 int last = conf->raid_disks - 1;
1da177e4 5343
674806d6 5344 if (has_failed(conf))
1da177e4 5345 /* no point adding a device */
199050ea 5346 return -EINVAL;
1da177e4 5347
6c2fce2e
NB
5348 if (rdev->raid_disk >= 0)
5349 first = last = rdev->raid_disk;
1da177e4
LT
5350
5351 /*
16a53ecc
N
5352 * find the disk ... but prefer rdev->saved_raid_disk
5353 * if possible.
1da177e4 5354 */
16a53ecc 5355 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 5356 rdev->saved_raid_disk >= first &&
16a53ecc
N
5357 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5358 disk = rdev->saved_raid_disk;
5359 else
6c2fce2e
NB
5360 disk = first;
5361 for ( ; disk <= last ; disk++)
1da177e4 5362 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 5363 clear_bit(In_sync, &rdev->flags);
1da177e4 5364 rdev->raid_disk = disk;
199050ea 5365 err = 0;
72626685
N
5366 if (rdev->saved_raid_disk != disk)
5367 conf->fullsync = 1;
d6065f7b 5368 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
5369 break;
5370 }
5371 print_raid5_conf(conf);
199050ea 5372 return err;
1da177e4
LT
5373}
5374
5375static int raid5_resize(mddev_t *mddev, sector_t sectors)
5376{
5377 /* no resync is happening, and there is enough space
5378 * on all devices, so we can resize.
5379 * We need to make sure resync covers any new space.
5380 * If the array is shrinking we should possibly wait until
5381 * any io in the removed space completes, but it hardly seems
5382 * worth it.
5383 */
9d8f0363 5384 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
1f403624
DW
5385 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5386 mddev->raid_disks));
b522adcd
DW
5387 if (mddev->array_sectors >
5388 raid5_size(mddev, sectors, mddev->raid_disks))
5389 return -EINVAL;
f233ea5c 5390 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5391 revalidate_disk(mddev->gendisk);
58c0fed4
AN
5392 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5393 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
5394 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5395 }
58c0fed4 5396 mddev->dev_sectors = sectors;
4b5c7ae8 5397 mddev->resync_max_sectors = sectors;
1da177e4
LT
5398 return 0;
5399}
5400
01ee22b4
N
5401static int check_stripe_cache(mddev_t *mddev)
5402{
5403 /* Can only proceed if there are plenty of stripe_heads.
5404 * We need a minimum of one full stripe,, and for sensible progress
5405 * it is best to have about 4 times that.
5406 * If we require 4 times, then the default 256 4K stripe_heads will
5407 * allow for chunk sizes up to 256K, which is probably OK.
5408 * If the chunk size is greater, user-space should request more
5409 * stripe_heads first.
5410 */
5411 raid5_conf_t *conf = mddev->private;
5412 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5413 > conf->max_nr_stripes ||
5414 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5415 > conf->max_nr_stripes) {
0c55e022
N
5416 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5417 mdname(mddev),
01ee22b4
N
5418 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5419 / STRIPE_SIZE)*4);
5420 return 0;
5421 }
5422 return 1;
5423}
5424
50ac168a 5425static int check_reshape(mddev_t *mddev)
29269553 5426{
070ec55d 5427 raid5_conf_t *conf = mddev->private;
29269553 5428
88ce4930
N
5429 if (mddev->delta_disks == 0 &&
5430 mddev->new_layout == mddev->layout &&
664e7c41 5431 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 5432 return 0; /* nothing to do */
dba034ee
N
5433 if (mddev->bitmap)
5434 /* Cannot grow a bitmap yet */
5435 return -EBUSY;
674806d6 5436 if (has_failed(conf))
ec32a2bd
N
5437 return -EINVAL;
5438 if (mddev->delta_disks < 0) {
5439 /* We might be able to shrink, but the devices must
5440 * be made bigger first.
5441 * For raid6, 4 is the minimum size.
5442 * Otherwise 2 is the minimum
5443 */
5444 int min = 2;
5445 if (mddev->level == 6)
5446 min = 4;
5447 if (mddev->raid_disks + mddev->delta_disks < min)
5448 return -EINVAL;
5449 }
29269553 5450
01ee22b4 5451 if (!check_stripe_cache(mddev))
29269553 5452 return -ENOSPC;
29269553 5453
ec32a2bd 5454 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
5455}
5456
5457static int raid5_start_reshape(mddev_t *mddev)
5458{
070ec55d 5459 raid5_conf_t *conf = mddev->private;
63c70c4f 5460 mdk_rdev_t *rdev;
63c70c4f 5461 int spares = 0;
c04be0aa 5462 unsigned long flags;
63c70c4f 5463
f416885e 5464 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
5465 return -EBUSY;
5466
01ee22b4
N
5467 if (!check_stripe_cache(mddev))
5468 return -ENOSPC;
5469
159ec1fc 5470 list_for_each_entry(rdev, &mddev->disks, same_set)
469518a3
N
5471 if (!test_bit(In_sync, &rdev->flags)
5472 && !test_bit(Faulty, &rdev->flags))
29269553 5473 spares++;
63c70c4f 5474
f416885e 5475 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
5476 /* Not enough devices even to make a degraded array
5477 * of that size
5478 */
5479 return -EINVAL;
5480
ec32a2bd
N
5481 /* Refuse to reduce size of the array. Any reductions in
5482 * array size must be through explicit setting of array_size
5483 * attribute.
5484 */
5485 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5486 < mddev->array_sectors) {
0c55e022 5487 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
5488 "before number of disks\n", mdname(mddev));
5489 return -EINVAL;
5490 }
5491
f6705578 5492 atomic_set(&conf->reshape_stripes, 0);
29269553
N
5493 spin_lock_irq(&conf->device_lock);
5494 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 5495 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
5496 conf->prev_chunk_sectors = conf->chunk_sectors;
5497 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
5498 conf->prev_algo = conf->algorithm;
5499 conf->algorithm = mddev->new_layout;
fef9c61f
N
5500 if (mddev->delta_disks < 0)
5501 conf->reshape_progress = raid5_size(mddev, 0, 0);
5502 else
5503 conf->reshape_progress = 0;
5504 conf->reshape_safe = conf->reshape_progress;
86b42c71 5505 conf->generation++;
29269553
N
5506 spin_unlock_irq(&conf->device_lock);
5507
5508 /* Add some new drives, as many as will fit.
5509 * We know there are enough to make the newly sized array work.
3424bf6a
N
5510 * Don't add devices if we are reducing the number of
5511 * devices in the array. This is because it is not possible
5512 * to correctly record the "partially reconstructed" state of
5513 * such devices during the reshape and confusion could result.
29269553 5514 */
87a8dec9
N
5515 if (mddev->delta_disks >= 0) {
5516 int added_devices = 0;
5517 list_for_each_entry(rdev, &mddev->disks, same_set)
5518 if (rdev->raid_disk < 0 &&
5519 !test_bit(Faulty, &rdev->flags)) {
5520 if (raid5_add_disk(mddev, rdev) == 0) {
5521 char nm[20];
5522 if (rdev->raid_disk
5523 >= conf->previous_raid_disks) {
5524 set_bit(In_sync, &rdev->flags);
5525 added_devices++;
5526 } else
5527 rdev->recovery_offset = 0;
5528 sprintf(nm, "rd%d", rdev->raid_disk);
5529 if (sysfs_create_link(&mddev->kobj,
5530 &rdev->kobj, nm))
5531 /* Failure here is OK */;
50da0840 5532 }
87a8dec9
N
5533 } else if (rdev->raid_disk >= conf->previous_raid_disks
5534 && !test_bit(Faulty, &rdev->flags)) {
5535 /* This is a spare that was manually added */
5536 set_bit(In_sync, &rdev->flags);
5537 added_devices++;
5538 }
29269553 5539
87a8dec9
N
5540 /* When a reshape changes the number of devices,
5541 * ->degraded is measured against the larger of the
5542 * pre and post number of devices.
5543 */
ec32a2bd 5544 spin_lock_irqsave(&conf->device_lock, flags);
9eb07c25 5545 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
ec32a2bd
N
5546 - added_devices;
5547 spin_unlock_irqrestore(&conf->device_lock, flags);
5548 }
63c70c4f 5549 mddev->raid_disks = conf->raid_disks;
e516402c 5550 mddev->reshape_position = conf->reshape_progress;
850b2b42 5551 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 5552
29269553
N
5553 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5554 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5555 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5556 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5557 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5558 "reshape");
29269553
N
5559 if (!mddev->sync_thread) {
5560 mddev->recovery = 0;
5561 spin_lock_irq(&conf->device_lock);
5562 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
fef9c61f 5563 conf->reshape_progress = MaxSector;
29269553
N
5564 spin_unlock_irq(&conf->device_lock);
5565 return -EAGAIN;
5566 }
c8f517c4 5567 conf->reshape_checkpoint = jiffies;
29269553
N
5568 md_wakeup_thread(mddev->sync_thread);
5569 md_new_event(mddev);
5570 return 0;
5571}
29269553 5572
ec32a2bd
N
5573/* This is called from the reshape thread and should make any
5574 * changes needed in 'conf'
5575 */
29269553
N
5576static void end_reshape(raid5_conf_t *conf)
5577{
29269553 5578
f6705578 5579 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f6705578 5580
f6705578 5581 spin_lock_irq(&conf->device_lock);
cea9c228 5582 conf->previous_raid_disks = conf->raid_disks;
fef9c61f 5583 conf->reshape_progress = MaxSector;
f6705578 5584 spin_unlock_irq(&conf->device_lock);
b0f9ec04 5585 wake_up(&conf->wait_for_overlap);
16a53ecc
N
5586
5587 /* read-ahead size must cover two whole stripes, which is
5588 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5589 */
4a5add49 5590 if (conf->mddev->queue) {
cea9c228 5591 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 5592 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 5593 / PAGE_SIZE);
16a53ecc
N
5594 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5595 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5596 }
29269553 5597 }
29269553
N
5598}
5599
ec32a2bd
N
5600/* This is called from the raid5d thread with mddev_lock held.
5601 * It makes config changes to the device.
5602 */
cea9c228
N
5603static void raid5_finish_reshape(mddev_t *mddev)
5604{
070ec55d 5605 raid5_conf_t *conf = mddev->private;
cea9c228
N
5606
5607 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5608
ec32a2bd
N
5609 if (mddev->delta_disks > 0) {
5610 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5611 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5612 revalidate_disk(mddev->gendisk);
ec32a2bd
N
5613 } else {
5614 int d;
ec32a2bd
N
5615 mddev->degraded = conf->raid_disks;
5616 for (d = 0; d < conf->raid_disks ; d++)
5617 if (conf->disks[d].rdev &&
5618 test_bit(In_sync,
5619 &conf->disks[d].rdev->flags))
5620 mddev->degraded--;
5621 for (d = conf->raid_disks ;
5622 d < conf->raid_disks - mddev->delta_disks;
1a67dde0
N
5623 d++) {
5624 mdk_rdev_t *rdev = conf->disks[d].rdev;
5625 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5626 char nm[20];
5627 sprintf(nm, "rd%d", rdev->raid_disk);
5628 sysfs_remove_link(&mddev->kobj, nm);
5629 rdev->raid_disk = -1;
5630 }
5631 }
cea9c228 5632 }
88ce4930 5633 mddev->layout = conf->algorithm;
09c9e5fa 5634 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
5635 mddev->reshape_position = MaxSector;
5636 mddev->delta_disks = 0;
cea9c228
N
5637 }
5638}
5639
72626685
N
5640static void raid5_quiesce(mddev_t *mddev, int state)
5641{
070ec55d 5642 raid5_conf_t *conf = mddev->private;
72626685
N
5643
5644 switch(state) {
e464eafd
N
5645 case 2: /* resume for a suspend */
5646 wake_up(&conf->wait_for_overlap);
5647 break;
5648
72626685
N
5649 case 1: /* stop all writes */
5650 spin_lock_irq(&conf->device_lock);
64bd660b
N
5651 /* '2' tells resync/reshape to pause so that all
5652 * active stripes can drain
5653 */
5654 conf->quiesce = 2;
72626685 5655 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
5656 atomic_read(&conf->active_stripes) == 0 &&
5657 atomic_read(&conf->active_aligned_reads) == 0,
72626685 5658 conf->device_lock, /* nothing */);
64bd660b 5659 conf->quiesce = 1;
72626685 5660 spin_unlock_irq(&conf->device_lock);
64bd660b
N
5661 /* allow reshape to continue */
5662 wake_up(&conf->wait_for_overlap);
72626685
N
5663 break;
5664
5665 case 0: /* re-enable writes */
5666 spin_lock_irq(&conf->device_lock);
5667 conf->quiesce = 0;
5668 wake_up(&conf->wait_for_stripe);
e464eafd 5669 wake_up(&conf->wait_for_overlap);
72626685
N
5670 spin_unlock_irq(&conf->device_lock);
5671 break;
5672 }
72626685 5673}
b15c2e57 5674
d562b0c4 5675
f1b29bca 5676static void *raid45_takeover_raid0(mddev_t *mddev, int level)
54071b38 5677{
f1b29bca 5678 struct raid0_private_data *raid0_priv = mddev->private;
d76c8420 5679 sector_t sectors;
54071b38 5680
f1b29bca
DW
5681 /* for raid0 takeover only one zone is supported */
5682 if (raid0_priv->nr_strip_zones > 1) {
0c55e022
N
5683 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5684 mdname(mddev));
f1b29bca
DW
5685 return ERR_PTR(-EINVAL);
5686 }
5687
3b71bd93
N
5688 sectors = raid0_priv->strip_zone[0].zone_end;
5689 sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5690 mddev->dev_sectors = sectors;
f1b29bca 5691 mddev->new_level = level;
54071b38
TM
5692 mddev->new_layout = ALGORITHM_PARITY_N;
5693 mddev->new_chunk_sectors = mddev->chunk_sectors;
5694 mddev->raid_disks += 1;
5695 mddev->delta_disks = 1;
5696 /* make sure it will be not marked as dirty */
5697 mddev->recovery_cp = MaxSector;
5698
5699 return setup_conf(mddev);
5700}
5701
5702
d562b0c4
N
5703static void *raid5_takeover_raid1(mddev_t *mddev)
5704{
5705 int chunksect;
5706
5707 if (mddev->raid_disks != 2 ||
5708 mddev->degraded > 1)
5709 return ERR_PTR(-EINVAL);
5710
5711 /* Should check if there are write-behind devices? */
5712
5713 chunksect = 64*2; /* 64K by default */
5714
5715 /* The array must be an exact multiple of chunksize */
5716 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5717 chunksect >>= 1;
5718
5719 if ((chunksect<<9) < STRIPE_SIZE)
5720 /* array size does not allow a suitable chunk size */
5721 return ERR_PTR(-EINVAL);
5722
5723 mddev->new_level = 5;
5724 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 5725 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
5726
5727 return setup_conf(mddev);
5728}
5729
fc9739c6
N
5730static void *raid5_takeover_raid6(mddev_t *mddev)
5731{
5732 int new_layout;
5733
5734 switch (mddev->layout) {
5735 case ALGORITHM_LEFT_ASYMMETRIC_6:
5736 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5737 break;
5738 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5739 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5740 break;
5741 case ALGORITHM_LEFT_SYMMETRIC_6:
5742 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5743 break;
5744 case ALGORITHM_RIGHT_SYMMETRIC_6:
5745 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5746 break;
5747 case ALGORITHM_PARITY_0_6:
5748 new_layout = ALGORITHM_PARITY_0;
5749 break;
5750 case ALGORITHM_PARITY_N:
5751 new_layout = ALGORITHM_PARITY_N;
5752 break;
5753 default:
5754 return ERR_PTR(-EINVAL);
5755 }
5756 mddev->new_level = 5;
5757 mddev->new_layout = new_layout;
5758 mddev->delta_disks = -1;
5759 mddev->raid_disks -= 1;
5760 return setup_conf(mddev);
5761}
5762
d562b0c4 5763
50ac168a 5764static int raid5_check_reshape(mddev_t *mddev)
b3546035 5765{
88ce4930
N
5766 /* For a 2-drive array, the layout and chunk size can be changed
5767 * immediately as not restriping is needed.
5768 * For larger arrays we record the new value - after validation
5769 * to be used by a reshape pass.
b3546035 5770 */
070ec55d 5771 raid5_conf_t *conf = mddev->private;
597a711b 5772 int new_chunk = mddev->new_chunk_sectors;
b3546035 5773
597a711b 5774 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
5775 return -EINVAL;
5776 if (new_chunk > 0) {
0ba459d2 5777 if (!is_power_of_2(new_chunk))
b3546035 5778 return -EINVAL;
597a711b 5779 if (new_chunk < (PAGE_SIZE>>9))
b3546035 5780 return -EINVAL;
597a711b 5781 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
5782 /* not factor of array size */
5783 return -EINVAL;
5784 }
5785
5786 /* They look valid */
5787
88ce4930 5788 if (mddev->raid_disks == 2) {
597a711b
N
5789 /* can make the change immediately */
5790 if (mddev->new_layout >= 0) {
5791 conf->algorithm = mddev->new_layout;
5792 mddev->layout = mddev->new_layout;
88ce4930
N
5793 }
5794 if (new_chunk > 0) {
597a711b
N
5795 conf->chunk_sectors = new_chunk ;
5796 mddev->chunk_sectors = new_chunk;
88ce4930
N
5797 }
5798 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5799 md_wakeup_thread(mddev->thread);
b3546035 5800 }
50ac168a 5801 return check_reshape(mddev);
88ce4930
N
5802}
5803
50ac168a 5804static int raid6_check_reshape(mddev_t *mddev)
88ce4930 5805{
597a711b 5806 int new_chunk = mddev->new_chunk_sectors;
50ac168a 5807
597a711b 5808 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 5809 return -EINVAL;
b3546035 5810 if (new_chunk > 0) {
0ba459d2 5811 if (!is_power_of_2(new_chunk))
88ce4930 5812 return -EINVAL;
597a711b 5813 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 5814 return -EINVAL;
597a711b 5815 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
5816 /* not factor of array size */
5817 return -EINVAL;
b3546035 5818 }
88ce4930
N
5819
5820 /* They look valid */
50ac168a 5821 return check_reshape(mddev);
b3546035
N
5822}
5823
d562b0c4
N
5824static void *raid5_takeover(mddev_t *mddev)
5825{
5826 /* raid5 can take over:
f1b29bca 5827 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
5828 * raid1 - if there are two drives. We need to know the chunk size
5829 * raid4 - trivial - just use a raid4 layout.
5830 * raid6 - Providing it is a *_6 layout
d562b0c4 5831 */
f1b29bca
DW
5832 if (mddev->level == 0)
5833 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
5834 if (mddev->level == 1)
5835 return raid5_takeover_raid1(mddev);
e9d4758f
N
5836 if (mddev->level == 4) {
5837 mddev->new_layout = ALGORITHM_PARITY_N;
5838 mddev->new_level = 5;
5839 return setup_conf(mddev);
5840 }
fc9739c6
N
5841 if (mddev->level == 6)
5842 return raid5_takeover_raid6(mddev);
d562b0c4
N
5843
5844 return ERR_PTR(-EINVAL);
5845}
5846
a78d38a1
N
5847static void *raid4_takeover(mddev_t *mddev)
5848{
f1b29bca
DW
5849 /* raid4 can take over:
5850 * raid0 - if there is only one strip zone
5851 * raid5 - if layout is right
a78d38a1 5852 */
f1b29bca
DW
5853 if (mddev->level == 0)
5854 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
5855 if (mddev->level == 5 &&
5856 mddev->layout == ALGORITHM_PARITY_N) {
5857 mddev->new_layout = 0;
5858 mddev->new_level = 4;
5859 return setup_conf(mddev);
5860 }
5861 return ERR_PTR(-EINVAL);
5862}
d562b0c4 5863
245f46c2
N
5864static struct mdk_personality raid5_personality;
5865
5866static void *raid6_takeover(mddev_t *mddev)
5867{
5868 /* Currently can only take over a raid5. We map the
5869 * personality to an equivalent raid6 personality
5870 * with the Q block at the end.
5871 */
5872 int new_layout;
5873
5874 if (mddev->pers != &raid5_personality)
5875 return ERR_PTR(-EINVAL);
5876 if (mddev->degraded > 1)
5877 return ERR_PTR(-EINVAL);
5878 if (mddev->raid_disks > 253)
5879 return ERR_PTR(-EINVAL);
5880 if (mddev->raid_disks < 3)
5881 return ERR_PTR(-EINVAL);
5882
5883 switch (mddev->layout) {
5884 case ALGORITHM_LEFT_ASYMMETRIC:
5885 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5886 break;
5887 case ALGORITHM_RIGHT_ASYMMETRIC:
5888 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5889 break;
5890 case ALGORITHM_LEFT_SYMMETRIC:
5891 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5892 break;
5893 case ALGORITHM_RIGHT_SYMMETRIC:
5894 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5895 break;
5896 case ALGORITHM_PARITY_0:
5897 new_layout = ALGORITHM_PARITY_0_6;
5898 break;
5899 case ALGORITHM_PARITY_N:
5900 new_layout = ALGORITHM_PARITY_N;
5901 break;
5902 default:
5903 return ERR_PTR(-EINVAL);
5904 }
5905 mddev->new_level = 6;
5906 mddev->new_layout = new_layout;
5907 mddev->delta_disks = 1;
5908 mddev->raid_disks += 1;
5909 return setup_conf(mddev);
5910}
5911
5912
16a53ecc
N
5913static struct mdk_personality raid6_personality =
5914{
5915 .name = "raid6",
5916 .level = 6,
5917 .owner = THIS_MODULE,
5918 .make_request = make_request,
5919 .run = run,
5920 .stop = stop,
5921 .status = status,
5922 .error_handler = error,
5923 .hot_add_disk = raid5_add_disk,
5924 .hot_remove_disk= raid5_remove_disk,
5925 .spare_active = raid5_spare_active,
5926 .sync_request = sync_request,
5927 .resize = raid5_resize,
80c3a6ce 5928 .size = raid5_size,
50ac168a 5929 .check_reshape = raid6_check_reshape,
f416885e 5930 .start_reshape = raid5_start_reshape,
cea9c228 5931 .finish_reshape = raid5_finish_reshape,
16a53ecc 5932 .quiesce = raid5_quiesce,
245f46c2 5933 .takeover = raid6_takeover,
16a53ecc 5934};
2604b703 5935static struct mdk_personality raid5_personality =
1da177e4
LT
5936{
5937 .name = "raid5",
2604b703 5938 .level = 5,
1da177e4
LT
5939 .owner = THIS_MODULE,
5940 .make_request = make_request,
5941 .run = run,
5942 .stop = stop,
5943 .status = status,
5944 .error_handler = error,
5945 .hot_add_disk = raid5_add_disk,
5946 .hot_remove_disk= raid5_remove_disk,
5947 .spare_active = raid5_spare_active,
5948 .sync_request = sync_request,
5949 .resize = raid5_resize,
80c3a6ce 5950 .size = raid5_size,
63c70c4f
N
5951 .check_reshape = raid5_check_reshape,
5952 .start_reshape = raid5_start_reshape,
cea9c228 5953 .finish_reshape = raid5_finish_reshape,
72626685 5954 .quiesce = raid5_quiesce,
d562b0c4 5955 .takeover = raid5_takeover,
1da177e4
LT
5956};
5957
2604b703 5958static struct mdk_personality raid4_personality =
1da177e4 5959{
2604b703
N
5960 .name = "raid4",
5961 .level = 4,
5962 .owner = THIS_MODULE,
5963 .make_request = make_request,
5964 .run = run,
5965 .stop = stop,
5966 .status = status,
5967 .error_handler = error,
5968 .hot_add_disk = raid5_add_disk,
5969 .hot_remove_disk= raid5_remove_disk,
5970 .spare_active = raid5_spare_active,
5971 .sync_request = sync_request,
5972 .resize = raid5_resize,
80c3a6ce 5973 .size = raid5_size,
3d37890b
N
5974 .check_reshape = raid5_check_reshape,
5975 .start_reshape = raid5_start_reshape,
cea9c228 5976 .finish_reshape = raid5_finish_reshape,
2604b703 5977 .quiesce = raid5_quiesce,
a78d38a1 5978 .takeover = raid4_takeover,
2604b703
N
5979};
5980
5981static int __init raid5_init(void)
5982{
16a53ecc 5983 register_md_personality(&raid6_personality);
2604b703
N
5984 register_md_personality(&raid5_personality);
5985 register_md_personality(&raid4_personality);
5986 return 0;
1da177e4
LT
5987}
5988
2604b703 5989static void raid5_exit(void)
1da177e4 5990{
16a53ecc 5991 unregister_md_personality(&raid6_personality);
2604b703
N
5992 unregister_md_personality(&raid5_personality);
5993 unregister_md_personality(&raid4_personality);
1da177e4
LT
5994}
5995
5996module_init(raid5_init);
5997module_exit(raid5_exit);
5998MODULE_LICENSE("GPL");
0efb9e61 5999MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 6000MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
6001MODULE_ALIAS("md-raid5");
6002MODULE_ALIAS("md-raid4");
2604b703
N
6003MODULE_ALIAS("md-level-5");
6004MODULE_ALIAS("md-level-4");
16a53ecc
N
6005MODULE_ALIAS("md-personality-8"); /* RAID6 */
6006MODULE_ALIAS("md-raid6");
6007MODULE_ALIAS("md-level-6");
6008
6009/* This used to be two separate modules, they were: */
6010MODULE_ALIAS("raid5");
6011MODULE_ALIAS("raid6");