]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid5.c
md/raid5: Ensure a batch member is not handled prematurely.
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
a9add5d9
N
58#include <trace/events/block.h>
59
43b2e5d8 60#include "md.h"
bff61975 61#include "raid5.h"
54071b38 62#include "raid0.h"
ef740c37 63#include "bitmap.h"
72626685 64
851c30c9
SL
65#define cpu_to_group(cpu) cpu_to_node(cpu)
66#define ANY_GROUP NUMA_NO_NODE
67
8e0e99ba
N
68static bool devices_handle_discard_safely = false;
69module_param(devices_handle_discard_safely, bool, 0644);
70MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 72static struct workqueue_struct *raid5_wq;
1da177e4
LT
73/*
74 * Stripe cache
75 */
76
77#define NR_STRIPES 256
78#define STRIPE_SIZE PAGE_SIZE
79#define STRIPE_SHIFT (PAGE_SHIFT - 9)
80#define STRIPE_SECTORS (STRIPE_SIZE>>9)
81#define IO_THRESHOLD 1
8b3e6cdc 82#define BYPASS_THRESHOLD 1
fccddba0 83#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4 84#define HASH_MASK (NR_HASH - 1)
bfc90cb0 85#define MAX_STRIPE_BATCH 8
1da177e4 86
d1688a6d 87static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
88{
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91}
1da177e4 92
566c09c5
SL
93static inline int stripe_hash_locks_hash(sector_t sect)
94{
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96}
97
98static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99{
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102}
103
104static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105{
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108}
109
110static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111{
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118}
119
120static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121{
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127}
128
1da177e4
LT
129/* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
db298e19 135 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
136 * of the current stripe+device
137 */
db298e19
N
138static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139{
aa8b57aa 140 int sectors = bio_sectors(bio);
4f024f37 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
db298e19
N
142 return bio->bi_next;
143 else
144 return NULL;
145}
1da177e4 146
960e739d 147/*
5b99c2ff
JA
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 150 */
e7836bd6 151static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 152{
e7836bd6
SL
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
155}
156
e7836bd6 157static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 158{
e7836bd6
SL
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
161}
162
e7836bd6 163static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 164{
e7836bd6
SL
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
960e739d
JA
167}
168
e7836bd6
SL
169static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
960e739d 171{
e7836bd6
SL
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
960e739d 174
e7836bd6
SL
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
179}
180
e7836bd6 181static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 182{
e7836bd6
SL
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
960e739d
JA
185}
186
d0dabf7e
N
187/* Find first data disk in a raid6 stripe */
188static inline int raid6_d0(struct stripe_head *sh)
189{
67cc2b81
N
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
d0dabf7e
N
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198}
16a53ecc
N
199static inline int raid6_next_disk(int disk, int raid_disks)
200{
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203}
a4456856 204
d0dabf7e
N
205/* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
67cc2b81
N
210static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
d0dabf7e 212{
6629542e 213 int slot = *count;
67cc2b81 214
e4424fee 215 if (sh->ddf_layout)
6629542e 216 (*count)++;
d0dabf7e 217 if (idx == sh->pd_idx)
67cc2b81 218 return syndrome_disks;
d0dabf7e 219 if (idx == sh->qd_idx)
67cc2b81 220 return syndrome_disks + 1;
e4424fee 221 if (!sh->ddf_layout)
6629542e 222 (*count)++;
d0dabf7e
N
223 return slot;
224}
225
a4456856
DW
226static void return_io(struct bio *return_bi)
227{
228 struct bio *bi = return_bi;
229 while (bi) {
a4456856
DW
230
231 return_bi = bi->bi_next;
232 bi->bi_next = NULL;
4f024f37 233 bi->bi_iter.bi_size = 0;
0a82a8d1
LT
234 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235 bi, 0);
0e13fe23 236 bio_endio(bi, 0);
a4456856
DW
237 bi = return_bi;
238 }
239}
240
d1688a6d 241static void print_raid5_conf (struct r5conf *conf);
1da177e4 242
600aa109
DW
243static int stripe_operations_active(struct stripe_head *sh)
244{
245 return sh->check_state || sh->reconstruct_state ||
246 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248}
249
851c30c9
SL
250static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251{
252 struct r5conf *conf = sh->raid_conf;
253 struct r5worker_group *group;
bfc90cb0 254 int thread_cnt;
851c30c9
SL
255 int i, cpu = sh->cpu;
256
257 if (!cpu_online(cpu)) {
258 cpu = cpumask_any(cpu_online_mask);
259 sh->cpu = cpu;
260 }
261
262 if (list_empty(&sh->lru)) {
263 struct r5worker_group *group;
264 group = conf->worker_groups + cpu_to_group(cpu);
265 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
266 group->stripes_cnt++;
267 sh->group = group;
851c30c9
SL
268 }
269
270 if (conf->worker_cnt_per_group == 0) {
271 md_wakeup_thread(conf->mddev->thread);
272 return;
273 }
274
275 group = conf->worker_groups + cpu_to_group(sh->cpu);
276
bfc90cb0
SL
277 group->workers[0].working = true;
278 /* at least one worker should run to avoid race */
279 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282 /* wakeup more workers */
283 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284 if (group->workers[i].working == false) {
285 group->workers[i].working = true;
286 queue_work_on(sh->cpu, raid5_wq,
287 &group->workers[i].work);
288 thread_cnt--;
289 }
290 }
851c30c9
SL
291}
292
566c09c5
SL
293static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294 struct list_head *temp_inactive_list)
1da177e4 295{
4eb788df
SL
296 BUG_ON(!list_empty(&sh->lru));
297 BUG_ON(atomic_read(&conf->active_stripes)==0);
298 if (test_bit(STRIPE_HANDLE, &sh->state)) {
299 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 300 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 301 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 302 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
303 sh->bm_seq - conf->seq_write > 0)
304 list_add_tail(&sh->lru, &conf->bitmap_list);
305 else {
306 clear_bit(STRIPE_DELAYED, &sh->state);
307 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9
SL
308 if (conf->worker_cnt_per_group == 0) {
309 list_add_tail(&sh->lru, &conf->handle_list);
310 } else {
311 raid5_wakeup_stripe_thread(sh);
312 return;
313 }
4eb788df
SL
314 }
315 md_wakeup_thread(conf->mddev->thread);
316 } else {
317 BUG_ON(stripe_operations_active(sh));
318 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319 if (atomic_dec_return(&conf->preread_active_stripes)
320 < IO_THRESHOLD)
321 md_wakeup_thread(conf->mddev->thread);
322 atomic_dec(&conf->active_stripes);
566c09c5
SL
323 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324 list_add_tail(&sh->lru, temp_inactive_list);
1da177e4
LT
325 }
326}
d0dabf7e 327
566c09c5
SL
328static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329 struct list_head *temp_inactive_list)
4eb788df
SL
330{
331 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
332 do_release_stripe(conf, sh, temp_inactive_list);
333}
334
335/*
336 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337 *
338 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339 * given time. Adding stripes only takes device lock, while deleting stripes
340 * only takes hash lock.
341 */
342static void release_inactive_stripe_list(struct r5conf *conf,
343 struct list_head *temp_inactive_list,
344 int hash)
345{
346 int size;
347 bool do_wakeup = false;
348 unsigned long flags;
349
350 if (hash == NR_STRIPE_HASH_LOCKS) {
351 size = NR_STRIPE_HASH_LOCKS;
352 hash = NR_STRIPE_HASH_LOCKS - 1;
353 } else
354 size = 1;
355 while (size) {
356 struct list_head *list = &temp_inactive_list[size - 1];
357
358 /*
359 * We don't hold any lock here yet, get_active_stripe() might
360 * remove stripes from the list
361 */
362 if (!list_empty_careful(list)) {
363 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
364 if (list_empty(conf->inactive_list + hash) &&
365 !list_empty(list))
366 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5
SL
367 list_splice_tail_init(list, conf->inactive_list + hash);
368 do_wakeup = true;
369 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370 }
371 size--;
372 hash--;
373 }
374
375 if (do_wakeup) {
376 wake_up(&conf->wait_for_stripe);
377 if (conf->retry_read_aligned)
378 md_wakeup_thread(conf->mddev->thread);
379 }
4eb788df
SL
380}
381
773ca82f 382/* should hold conf->device_lock already */
566c09c5
SL
383static int release_stripe_list(struct r5conf *conf,
384 struct list_head *temp_inactive_list)
773ca82f
SL
385{
386 struct stripe_head *sh;
387 int count = 0;
388 struct llist_node *head;
389
390 head = llist_del_all(&conf->released_stripes);
d265d9dc 391 head = llist_reverse_order(head);
773ca82f 392 while (head) {
566c09c5
SL
393 int hash;
394
773ca82f
SL
395 sh = llist_entry(head, struct stripe_head, release_list);
396 head = llist_next(head);
397 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398 smp_mb();
399 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400 /*
401 * Don't worry the bit is set here, because if the bit is set
402 * again, the count is always > 1. This is true for
403 * STRIPE_ON_UNPLUG_LIST bit too.
404 */
566c09c5
SL
405 hash = sh->hash_lock_index;
406 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
407 count++;
408 }
409
410 return count;
411}
412
1da177e4
LT
413static void release_stripe(struct stripe_head *sh)
414{
d1688a6d 415 struct r5conf *conf = sh->raid_conf;
1da177e4 416 unsigned long flags;
566c09c5
SL
417 struct list_head list;
418 int hash;
773ca82f 419 bool wakeup;
16a53ecc 420
cf170f3f
ES
421 /* Avoid release_list until the last reference.
422 */
423 if (atomic_add_unless(&sh->count, -1, 1))
424 return;
425
ad4068de 426 if (unlikely(!conf->mddev->thread) ||
427 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
428 goto slow_path;
429 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430 if (wakeup)
431 md_wakeup_thread(conf->mddev->thread);
432 return;
433slow_path:
4eb788df 434 local_irq_save(flags);
773ca82f 435 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 436 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
437 INIT_LIST_HEAD(&list);
438 hash = sh->hash_lock_index;
439 do_release_stripe(conf, sh, &list);
4eb788df 440 spin_unlock(&conf->device_lock);
566c09c5 441 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
442 }
443 local_irq_restore(flags);
1da177e4
LT
444}
445
fccddba0 446static inline void remove_hash(struct stripe_head *sh)
1da177e4 447{
45b4233c
DW
448 pr_debug("remove_hash(), stripe %llu\n",
449 (unsigned long long)sh->sector);
1da177e4 450
fccddba0 451 hlist_del_init(&sh->hash);
1da177e4
LT
452}
453
d1688a6d 454static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 455{
fccddba0 456 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 457
45b4233c
DW
458 pr_debug("insert_hash(), stripe %llu\n",
459 (unsigned long long)sh->sector);
1da177e4 460
fccddba0 461 hlist_add_head(&sh->hash, hp);
1da177e4
LT
462}
463
1da177e4 464/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 465static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
466{
467 struct stripe_head *sh = NULL;
468 struct list_head *first;
469
566c09c5 470 if (list_empty(conf->inactive_list + hash))
1da177e4 471 goto out;
566c09c5 472 first = (conf->inactive_list + hash)->next;
1da177e4
LT
473 sh = list_entry(first, struct stripe_head, lru);
474 list_del_init(first);
475 remove_hash(sh);
476 atomic_inc(&conf->active_stripes);
566c09c5 477 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
478 if (list_empty(conf->inactive_list + hash))
479 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
480out:
481 return sh;
482}
483
e4e11e38 484static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
485{
486 struct page *p;
487 int i;
e4e11e38 488 int num = sh->raid_conf->pool_size;
1da177e4 489
e4e11e38 490 for (i = 0; i < num ; i++) {
d592a996 491 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
492 p = sh->dev[i].page;
493 if (!p)
494 continue;
495 sh->dev[i].page = NULL;
2d1f3b5d 496 put_page(p);
1da177e4
LT
497 }
498}
499
a9683a79 500static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
501{
502 int i;
e4e11e38 503 int num = sh->raid_conf->pool_size;
1da177e4 504
e4e11e38 505 for (i = 0; i < num; i++) {
1da177e4
LT
506 struct page *page;
507
a9683a79 508 if (!(page = alloc_page(gfp))) {
1da177e4
LT
509 return 1;
510 }
511 sh->dev[i].page = page;
d592a996 512 sh->dev[i].orig_page = page;
1da177e4
LT
513 }
514 return 0;
515}
516
784052ec 517static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 518static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 519 struct stripe_head *sh);
1da177e4 520
b5663ba4 521static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 522{
d1688a6d 523 struct r5conf *conf = sh->raid_conf;
566c09c5 524 int i, seq;
1da177e4 525
78bafebd
ES
526 BUG_ON(atomic_read(&sh->count) != 0);
527 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 528 BUG_ON(stripe_operations_active(sh));
59fc630b 529 BUG_ON(sh->batch_head);
d84e0f10 530
45b4233c 531 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 532 (unsigned long long)sector);
566c09c5
SL
533retry:
534 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 535 sh->generation = conf->generation - previous;
b5663ba4 536 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 537 sh->sector = sector;
911d4ee8 538 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
539 sh->state = 0;
540
7ecaa1e6 541 for (i = sh->disks; i--; ) {
1da177e4
LT
542 struct r5dev *dev = &sh->dev[i];
543
d84e0f10 544 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 545 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 546 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 547 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 548 dev->read, dev->towrite, dev->written,
1da177e4 549 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 550 WARN_ON(1);
1da177e4
LT
551 }
552 dev->flags = 0;
784052ec 553 raid5_build_block(sh, i, previous);
1da177e4 554 }
566c09c5
SL
555 if (read_seqcount_retry(&conf->gen_lock, seq))
556 goto retry;
7a87f434 557 sh->overwrite_disks = 0;
1da177e4 558 insert_hash(conf, sh);
851c30c9 559 sh->cpu = smp_processor_id();
da41ba65 560 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
561}
562
d1688a6d 563static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 564 short generation)
1da177e4
LT
565{
566 struct stripe_head *sh;
567
45b4233c 568 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 569 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 570 if (sh->sector == sector && sh->generation == generation)
1da177e4 571 return sh;
45b4233c 572 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
573 return NULL;
574}
575
674806d6
N
576/*
577 * Need to check if array has failed when deciding whether to:
578 * - start an array
579 * - remove non-faulty devices
580 * - add a spare
581 * - allow a reshape
582 * This determination is simple when no reshape is happening.
583 * However if there is a reshape, we need to carefully check
584 * both the before and after sections.
585 * This is because some failed devices may only affect one
586 * of the two sections, and some non-in_sync devices may
587 * be insync in the section most affected by failed devices.
588 */
908f4fbd 589static int calc_degraded(struct r5conf *conf)
674806d6 590{
908f4fbd 591 int degraded, degraded2;
674806d6 592 int i;
674806d6
N
593
594 rcu_read_lock();
595 degraded = 0;
596 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 597 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
598 if (rdev && test_bit(Faulty, &rdev->flags))
599 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
600 if (!rdev || test_bit(Faulty, &rdev->flags))
601 degraded++;
602 else if (test_bit(In_sync, &rdev->flags))
603 ;
604 else
605 /* not in-sync or faulty.
606 * If the reshape increases the number of devices,
607 * this is being recovered by the reshape, so
608 * this 'previous' section is not in_sync.
609 * If the number of devices is being reduced however,
610 * the device can only be part of the array if
611 * we are reverting a reshape, so this section will
612 * be in-sync.
613 */
614 if (conf->raid_disks >= conf->previous_raid_disks)
615 degraded++;
616 }
617 rcu_read_unlock();
908f4fbd
N
618 if (conf->raid_disks == conf->previous_raid_disks)
619 return degraded;
674806d6 620 rcu_read_lock();
908f4fbd 621 degraded2 = 0;
674806d6 622 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 623 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
624 if (rdev && test_bit(Faulty, &rdev->flags))
625 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 626 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 627 degraded2++;
674806d6
N
628 else if (test_bit(In_sync, &rdev->flags))
629 ;
630 else
631 /* not in-sync or faulty.
632 * If reshape increases the number of devices, this
633 * section has already been recovered, else it
634 * almost certainly hasn't.
635 */
636 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 637 degraded2++;
674806d6
N
638 }
639 rcu_read_unlock();
908f4fbd
N
640 if (degraded2 > degraded)
641 return degraded2;
642 return degraded;
643}
644
645static int has_failed(struct r5conf *conf)
646{
647 int degraded;
648
649 if (conf->mddev->reshape_position == MaxSector)
650 return conf->mddev->degraded > conf->max_degraded;
651
652 degraded = calc_degraded(conf);
674806d6
N
653 if (degraded > conf->max_degraded)
654 return 1;
655 return 0;
656}
657
b5663ba4 658static struct stripe_head *
d1688a6d 659get_active_stripe(struct r5conf *conf, sector_t sector,
a8c906ca 660 int previous, int noblock, int noquiesce)
1da177e4
LT
661{
662 struct stripe_head *sh;
566c09c5 663 int hash = stripe_hash_locks_hash(sector);
1da177e4 664
45b4233c 665 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 666
566c09c5 667 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
668
669 do {
72626685 670 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 671 conf->quiesce == 0 || noquiesce,
566c09c5 672 *(conf->hash_locks + hash));
86b42c71 673 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 674 if (!sh) {
edbe83ab 675 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 676 sh = get_free_stripe(conf, hash);
edbe83ab
N
677 if (!sh && llist_empty(&conf->released_stripes) &&
678 !test_bit(R5_DID_ALLOC, &conf->cache_state))
679 set_bit(R5_ALLOC_MORE,
680 &conf->cache_state);
681 }
1da177e4
LT
682 if (noblock && sh == NULL)
683 break;
684 if (!sh) {
5423399a
N
685 set_bit(R5_INACTIVE_BLOCKED,
686 &conf->cache_state);
566c09c5
SL
687 wait_event_lock_irq(
688 conf->wait_for_stripe,
689 !list_empty(conf->inactive_list + hash) &&
690 (atomic_read(&conf->active_stripes)
691 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
692 || !test_bit(R5_INACTIVE_BLOCKED,
693 &conf->cache_state)),
566c09c5 694 *(conf->hash_locks + hash));
5423399a
N
695 clear_bit(R5_INACTIVE_BLOCKED,
696 &conf->cache_state);
7da9d450 697 } else {
b5663ba4 698 init_stripe(sh, sector, previous);
7da9d450
N
699 atomic_inc(&sh->count);
700 }
e240c183 701 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 702 spin_lock(&conf->device_lock);
e240c183 703 if (!atomic_read(&sh->count)) {
1da177e4
LT
704 if (!test_bit(STRIPE_HANDLE, &sh->state))
705 atomic_inc(&conf->active_stripes);
5af9bef7
N
706 BUG_ON(list_empty(&sh->lru) &&
707 !test_bit(STRIPE_EXPANDING, &sh->state));
16a53ecc 708 list_del_init(&sh->lru);
bfc90cb0
SL
709 if (sh->group) {
710 sh->group->stripes_cnt--;
711 sh->group = NULL;
712 }
1da177e4 713 }
7da9d450 714 atomic_inc(&sh->count);
6d183de4 715 spin_unlock(&conf->device_lock);
1da177e4
LT
716 }
717 } while (sh == NULL);
718
566c09c5 719 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
720 return sh;
721}
722
7a87f434 723static bool is_full_stripe_write(struct stripe_head *sh)
724{
725 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
726 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
727}
728
59fc630b 729static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730{
731 local_irq_disable();
732 if (sh1 > sh2) {
733 spin_lock(&sh2->stripe_lock);
734 spin_lock_nested(&sh1->stripe_lock, 1);
735 } else {
736 spin_lock(&sh1->stripe_lock);
737 spin_lock_nested(&sh2->stripe_lock, 1);
738 }
739}
740
741static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
742{
743 spin_unlock(&sh1->stripe_lock);
744 spin_unlock(&sh2->stripe_lock);
745 local_irq_enable();
746}
747
748/* Only freshly new full stripe normal write stripe can be added to a batch list */
749static bool stripe_can_batch(struct stripe_head *sh)
750{
751 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 752 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 753 is_full_stripe_write(sh);
754}
755
756/* we only do back search */
757static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
758{
759 struct stripe_head *head;
760 sector_t head_sector, tmp_sec;
761 int hash;
762 int dd_idx;
763
764 if (!stripe_can_batch(sh))
765 return;
766 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767 tmp_sec = sh->sector;
768 if (!sector_div(tmp_sec, conf->chunk_sectors))
769 return;
770 head_sector = sh->sector - STRIPE_SECTORS;
771
772 hash = stripe_hash_locks_hash(head_sector);
773 spin_lock_irq(conf->hash_locks + hash);
774 head = __find_stripe(conf, head_sector, conf->generation);
775 if (head && !atomic_inc_not_zero(&head->count)) {
776 spin_lock(&conf->device_lock);
777 if (!atomic_read(&head->count)) {
778 if (!test_bit(STRIPE_HANDLE, &head->state))
779 atomic_inc(&conf->active_stripes);
780 BUG_ON(list_empty(&head->lru) &&
781 !test_bit(STRIPE_EXPANDING, &head->state));
782 list_del_init(&head->lru);
783 if (head->group) {
784 head->group->stripes_cnt--;
785 head->group = NULL;
786 }
787 }
788 atomic_inc(&head->count);
789 spin_unlock(&conf->device_lock);
790 }
791 spin_unlock_irq(conf->hash_locks + hash);
792
793 if (!head)
794 return;
795 if (!stripe_can_batch(head))
796 goto out;
797
798 lock_two_stripes(head, sh);
799 /* clear_batch_ready clear the flag */
800 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
801 goto unlock_out;
802
803 if (sh->batch_head)
804 goto unlock_out;
805
806 dd_idx = 0;
807 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
808 dd_idx++;
809 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
810 goto unlock_out;
811
812 if (head->batch_head) {
813 spin_lock(&head->batch_head->batch_lock);
814 /* This batch list is already running */
815 if (!stripe_can_batch(head)) {
816 spin_unlock(&head->batch_head->batch_lock);
817 goto unlock_out;
818 }
819
820 /*
821 * at this point, head's BATCH_READY could be cleared, but we
822 * can still add the stripe to batch list
823 */
824 list_add(&sh->batch_list, &head->batch_list);
825 spin_unlock(&head->batch_head->batch_lock);
826
827 sh->batch_head = head->batch_head;
828 } else {
829 head->batch_head = head;
830 sh->batch_head = head->batch_head;
831 spin_lock(&head->batch_lock);
832 list_add_tail(&sh->batch_list, &head->batch_list);
833 spin_unlock(&head->batch_lock);
834 }
835
836 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
837 if (atomic_dec_return(&conf->preread_active_stripes)
838 < IO_THRESHOLD)
839 md_wakeup_thread(conf->mddev->thread);
840
2b6b2457
N
841 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
842 int seq = sh->bm_seq;
843 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
844 sh->batch_head->bm_seq > seq)
845 seq = sh->batch_head->bm_seq;
846 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
847 sh->batch_head->bm_seq = seq;
848 }
849
59fc630b 850 atomic_inc(&sh->count);
851unlock_out:
852 unlock_two_stripes(head, sh);
853out:
854 release_stripe(head);
855}
856
05616be5
N
857/* Determine if 'data_offset' or 'new_data_offset' should be used
858 * in this stripe_head.
859 */
860static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
861{
862 sector_t progress = conf->reshape_progress;
863 /* Need a memory barrier to make sure we see the value
864 * of conf->generation, or ->data_offset that was set before
865 * reshape_progress was updated.
866 */
867 smp_rmb();
868 if (progress == MaxSector)
869 return 0;
870 if (sh->generation == conf->generation - 1)
871 return 0;
872 /* We are in a reshape, and this is a new-generation stripe,
873 * so use new_data_offset.
874 */
875 return 1;
876}
877
6712ecf8
N
878static void
879raid5_end_read_request(struct bio *bi, int error);
880static void
881raid5_end_write_request(struct bio *bi, int error);
91c00924 882
c4e5ac0a 883static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 884{
d1688a6d 885 struct r5conf *conf = sh->raid_conf;
91c00924 886 int i, disks = sh->disks;
59fc630b 887 struct stripe_head *head_sh = sh;
91c00924
DW
888
889 might_sleep();
890
891 for (i = disks; i--; ) {
892 int rw;
9a3e1101 893 int replace_only = 0;
977df362
N
894 struct bio *bi, *rbi;
895 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 896
897 sh = head_sh;
e9c7469b
TH
898 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
899 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
900 rw = WRITE_FUA;
901 else
902 rw = WRITE;
9e444768 903 if (test_bit(R5_Discard, &sh->dev[i].flags))
620125f2 904 rw |= REQ_DISCARD;
e9c7469b 905 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 906 rw = READ;
9a3e1101
N
907 else if (test_and_clear_bit(R5_WantReplace,
908 &sh->dev[i].flags)) {
909 rw = WRITE;
910 replace_only = 1;
911 } else
91c00924 912 continue;
bc0934f0
SL
913 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
914 rw |= REQ_SYNC;
91c00924 915
59fc630b 916again:
91c00924 917 bi = &sh->dev[i].req;
977df362 918 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 919
91c00924 920 rcu_read_lock();
9a3e1101 921 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
922 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
923 rdev = rcu_dereference(conf->disks[i].rdev);
924 if (!rdev) {
925 rdev = rrdev;
926 rrdev = NULL;
927 }
9a3e1101
N
928 if (rw & WRITE) {
929 if (replace_only)
930 rdev = NULL;
dd054fce
N
931 if (rdev == rrdev)
932 /* We raced and saw duplicates */
933 rrdev = NULL;
9a3e1101 934 } else {
59fc630b 935 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
936 rdev = rrdev;
937 rrdev = NULL;
938 }
977df362 939
91c00924
DW
940 if (rdev && test_bit(Faulty, &rdev->flags))
941 rdev = NULL;
942 if (rdev)
943 atomic_inc(&rdev->nr_pending);
977df362
N
944 if (rrdev && test_bit(Faulty, &rrdev->flags))
945 rrdev = NULL;
946 if (rrdev)
947 atomic_inc(&rrdev->nr_pending);
91c00924
DW
948 rcu_read_unlock();
949
73e92e51 950 /* We have already checked bad blocks for reads. Now
977df362
N
951 * need to check for writes. We never accept write errors
952 * on the replacement, so we don't to check rrdev.
73e92e51
N
953 */
954 while ((rw & WRITE) && rdev &&
955 test_bit(WriteErrorSeen, &rdev->flags)) {
956 sector_t first_bad;
957 int bad_sectors;
958 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
959 &first_bad, &bad_sectors);
960 if (!bad)
961 break;
962
963 if (bad < 0) {
964 set_bit(BlockedBadBlocks, &rdev->flags);
965 if (!conf->mddev->external &&
966 conf->mddev->flags) {
967 /* It is very unlikely, but we might
968 * still need to write out the
969 * bad block log - better give it
970 * a chance*/
971 md_check_recovery(conf->mddev);
972 }
1850753d 973 /*
974 * Because md_wait_for_blocked_rdev
975 * will dec nr_pending, we must
976 * increment it first.
977 */
978 atomic_inc(&rdev->nr_pending);
73e92e51
N
979 md_wait_for_blocked_rdev(rdev, conf->mddev);
980 } else {
981 /* Acknowledged bad block - skip the write */
982 rdev_dec_pending(rdev, conf->mddev);
983 rdev = NULL;
984 }
985 }
986
91c00924 987 if (rdev) {
9a3e1101
N
988 if (s->syncing || s->expanding || s->expanded
989 || s->replacing)
91c00924
DW
990 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
991
2b7497f0
DW
992 set_bit(STRIPE_IO_STARTED, &sh->state);
993
2f6db2a7 994 bio_reset(bi);
91c00924 995 bi->bi_bdev = rdev->bdev;
2f6db2a7
KO
996 bi->bi_rw = rw;
997 bi->bi_end_io = (rw & WRITE)
998 ? raid5_end_write_request
999 : raid5_end_read_request;
1000 bi->bi_private = sh;
1001
91c00924 1002 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 1003 __func__, (unsigned long long)sh->sector,
91c00924
DW
1004 bi->bi_rw, i);
1005 atomic_inc(&sh->count);
59fc630b 1006 if (sh != head_sh)
1007 atomic_inc(&head_sh->count);
05616be5 1008 if (use_new_offset(conf, sh))
4f024f37 1009 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1010 + rdev->new_data_offset);
1011 else
4f024f37 1012 bi->bi_iter.bi_sector = (sh->sector
05616be5 1013 + rdev->data_offset);
59fc630b 1014 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
e59aa23f 1015 bi->bi_rw |= REQ_NOMERGE;
3f9e7c14 1016
d592a996
SL
1017 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1018 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1019 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1020 bi->bi_vcnt = 1;
91c00924
DW
1021 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1022 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1023 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1024 /*
1025 * If this is discard request, set bi_vcnt 0. We don't
1026 * want to confuse SCSI because SCSI will replace payload
1027 */
1028 if (rw & REQ_DISCARD)
1029 bi->bi_vcnt = 0;
977df362
N
1030 if (rrdev)
1031 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1032
1033 if (conf->mddev->gendisk)
1034 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1035 bi, disk_devt(conf->mddev->gendisk),
1036 sh->dev[i].sector);
91c00924 1037 generic_make_request(bi);
977df362
N
1038 }
1039 if (rrdev) {
9a3e1101
N
1040 if (s->syncing || s->expanding || s->expanded
1041 || s->replacing)
977df362
N
1042 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1043
1044 set_bit(STRIPE_IO_STARTED, &sh->state);
1045
2f6db2a7 1046 bio_reset(rbi);
977df362 1047 rbi->bi_bdev = rrdev->bdev;
2f6db2a7
KO
1048 rbi->bi_rw = rw;
1049 BUG_ON(!(rw & WRITE));
1050 rbi->bi_end_io = raid5_end_write_request;
1051 rbi->bi_private = sh;
1052
977df362
N
1053 pr_debug("%s: for %llu schedule op %ld on "
1054 "replacement disc %d\n",
1055 __func__, (unsigned long long)sh->sector,
1056 rbi->bi_rw, i);
1057 atomic_inc(&sh->count);
59fc630b 1058 if (sh != head_sh)
1059 atomic_inc(&head_sh->count);
05616be5 1060 if (use_new_offset(conf, sh))
4f024f37 1061 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1062 + rrdev->new_data_offset);
1063 else
4f024f37 1064 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1065 + rrdev->data_offset);
d592a996
SL
1066 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1067 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1068 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1069 rbi->bi_vcnt = 1;
977df362
N
1070 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1071 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1072 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1073 /*
1074 * If this is discard request, set bi_vcnt 0. We don't
1075 * want to confuse SCSI because SCSI will replace payload
1076 */
1077 if (rw & REQ_DISCARD)
1078 rbi->bi_vcnt = 0;
e3620a3a
JB
1079 if (conf->mddev->gendisk)
1080 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1081 rbi, disk_devt(conf->mddev->gendisk),
1082 sh->dev[i].sector);
977df362
N
1083 generic_make_request(rbi);
1084 }
1085 if (!rdev && !rrdev) {
b062962e 1086 if (rw & WRITE)
91c00924
DW
1087 set_bit(STRIPE_DEGRADED, &sh->state);
1088 pr_debug("skip op %ld on disc %d for sector %llu\n",
1089 bi->bi_rw, i, (unsigned long long)sh->sector);
1090 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1091 set_bit(STRIPE_HANDLE, &sh->state);
1092 }
59fc630b 1093
1094 if (!head_sh->batch_head)
1095 continue;
1096 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1097 batch_list);
1098 if (sh != head_sh)
1099 goto again;
91c00924
DW
1100 }
1101}
1102
1103static struct dma_async_tx_descriptor *
d592a996
SL
1104async_copy_data(int frombio, struct bio *bio, struct page **page,
1105 sector_t sector, struct dma_async_tx_descriptor *tx,
1106 struct stripe_head *sh)
91c00924 1107{
7988613b
KO
1108 struct bio_vec bvl;
1109 struct bvec_iter iter;
91c00924 1110 struct page *bio_page;
91c00924 1111 int page_offset;
a08abd8c 1112 struct async_submit_ctl submit;
0403e382 1113 enum async_tx_flags flags = 0;
91c00924 1114
4f024f37
KO
1115 if (bio->bi_iter.bi_sector >= sector)
1116 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1117 else
4f024f37 1118 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1119
0403e382
DW
1120 if (frombio)
1121 flags |= ASYNC_TX_FENCE;
1122 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1123
7988613b
KO
1124 bio_for_each_segment(bvl, bio, iter) {
1125 int len = bvl.bv_len;
91c00924
DW
1126 int clen;
1127 int b_offset = 0;
1128
1129 if (page_offset < 0) {
1130 b_offset = -page_offset;
1131 page_offset += b_offset;
1132 len -= b_offset;
1133 }
1134
1135 if (len > 0 && page_offset + len > STRIPE_SIZE)
1136 clen = STRIPE_SIZE - page_offset;
1137 else
1138 clen = len;
1139
1140 if (clen > 0) {
7988613b
KO
1141 b_offset += bvl.bv_offset;
1142 bio_page = bvl.bv_page;
d592a996
SL
1143 if (frombio) {
1144 if (sh->raid_conf->skip_copy &&
1145 b_offset == 0 && page_offset == 0 &&
1146 clen == STRIPE_SIZE)
1147 *page = bio_page;
1148 else
1149 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1150 b_offset, clen, &submit);
d592a996
SL
1151 } else
1152 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1153 page_offset, clen, &submit);
91c00924 1154 }
a08abd8c
DW
1155 /* chain the operations */
1156 submit.depend_tx = tx;
1157
91c00924
DW
1158 if (clen < len) /* hit end of page */
1159 break;
1160 page_offset += len;
1161 }
1162
1163 return tx;
1164}
1165
1166static void ops_complete_biofill(void *stripe_head_ref)
1167{
1168 struct stripe_head *sh = stripe_head_ref;
1169 struct bio *return_bi = NULL;
e4d84909 1170 int i;
91c00924 1171
e46b272b 1172 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1173 (unsigned long long)sh->sector);
1174
1175 /* clear completed biofills */
1176 for (i = sh->disks; i--; ) {
1177 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1178
1179 /* acknowledge completion of a biofill operation */
e4d84909
DW
1180 /* and check if we need to reply to a read request,
1181 * new R5_Wantfill requests are held off until
83de75cc 1182 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1183 */
1184 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1185 struct bio *rbi, *rbi2;
91c00924 1186
91c00924
DW
1187 BUG_ON(!dev->read);
1188 rbi = dev->read;
1189 dev->read = NULL;
4f024f37 1190 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1191 dev->sector + STRIPE_SECTORS) {
1192 rbi2 = r5_next_bio(rbi, dev->sector);
e7836bd6 1193 if (!raid5_dec_bi_active_stripes(rbi)) {
91c00924
DW
1194 rbi->bi_next = return_bi;
1195 return_bi = rbi;
1196 }
91c00924
DW
1197 rbi = rbi2;
1198 }
1199 }
1200 }
83de75cc 1201 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
1202
1203 return_io(return_bi);
1204
e4d84909 1205 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
1206 release_stripe(sh);
1207}
1208
1209static void ops_run_biofill(struct stripe_head *sh)
1210{
1211 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1212 struct async_submit_ctl submit;
91c00924
DW
1213 int i;
1214
59fc630b 1215 BUG_ON(sh->batch_head);
e46b272b 1216 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1217 (unsigned long long)sh->sector);
1218
1219 for (i = sh->disks; i--; ) {
1220 struct r5dev *dev = &sh->dev[i];
1221 if (test_bit(R5_Wantfill, &dev->flags)) {
1222 struct bio *rbi;
b17459c0 1223 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1224 dev->read = rbi = dev->toread;
1225 dev->toread = NULL;
b17459c0 1226 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1227 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1228 dev->sector + STRIPE_SECTORS) {
d592a996
SL
1229 tx = async_copy_data(0, rbi, &dev->page,
1230 dev->sector, tx, sh);
91c00924
DW
1231 rbi = r5_next_bio(rbi, dev->sector);
1232 }
1233 }
1234 }
1235
1236 atomic_inc(&sh->count);
a08abd8c
DW
1237 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1238 async_trigger_callback(&submit);
91c00924
DW
1239}
1240
4e7d2c0a 1241static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1242{
4e7d2c0a 1243 struct r5dev *tgt;
91c00924 1244
4e7d2c0a
DW
1245 if (target < 0)
1246 return;
91c00924 1247
4e7d2c0a 1248 tgt = &sh->dev[target];
91c00924
DW
1249 set_bit(R5_UPTODATE, &tgt->flags);
1250 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1251 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1252}
1253
ac6b53b6 1254static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1255{
1256 struct stripe_head *sh = stripe_head_ref;
91c00924 1257
e46b272b 1258 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1259 (unsigned long long)sh->sector);
1260
ac6b53b6 1261 /* mark the computed target(s) as uptodate */
4e7d2c0a 1262 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1263 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1264
ecc65c9b
DW
1265 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1266 if (sh->check_state == check_state_compute_run)
1267 sh->check_state = check_state_compute_result;
91c00924
DW
1268 set_bit(STRIPE_HANDLE, &sh->state);
1269 release_stripe(sh);
1270}
1271
d6f38f31
DW
1272/* return a pointer to the address conversion region of the scribble buffer */
1273static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1274 struct raid5_percpu *percpu, int i)
d6f38f31 1275{
46d5b785 1276 void *addr;
1277
1278 addr = flex_array_get(percpu->scribble, i);
1279 return addr + sizeof(struct page *) * (sh->disks + 2);
1280}
1281
1282/* return a pointer to the address conversion region of the scribble buffer */
1283static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1284{
1285 void *addr;
1286
1287 addr = flex_array_get(percpu->scribble, i);
1288 return addr;
d6f38f31
DW
1289}
1290
1291static struct dma_async_tx_descriptor *
1292ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1293{
91c00924 1294 int disks = sh->disks;
46d5b785 1295 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1296 int target = sh->ops.target;
1297 struct r5dev *tgt = &sh->dev[target];
1298 struct page *xor_dest = tgt->page;
1299 int count = 0;
1300 struct dma_async_tx_descriptor *tx;
a08abd8c 1301 struct async_submit_ctl submit;
91c00924
DW
1302 int i;
1303
59fc630b 1304 BUG_ON(sh->batch_head);
1305
91c00924 1306 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1307 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1308 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1309
1310 for (i = disks; i--; )
1311 if (i != target)
1312 xor_srcs[count++] = sh->dev[i].page;
1313
1314 atomic_inc(&sh->count);
1315
0403e382 1316 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1317 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1318 if (unlikely(count == 1))
a08abd8c 1319 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1320 else
a08abd8c 1321 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1322
91c00924
DW
1323 return tx;
1324}
1325
ac6b53b6
DW
1326/* set_syndrome_sources - populate source buffers for gen_syndrome
1327 * @srcs - (struct page *) array of size sh->disks
1328 * @sh - stripe_head to parse
1329 *
1330 * Populates srcs in proper layout order for the stripe and returns the
1331 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1332 * destination buffer is recorded in srcs[count] and the Q destination
1333 * is recorded in srcs[count+1]].
1334 */
584acdd4
MS
1335static int set_syndrome_sources(struct page **srcs,
1336 struct stripe_head *sh,
1337 int srctype)
ac6b53b6
DW
1338{
1339 int disks = sh->disks;
1340 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1341 int d0_idx = raid6_d0(sh);
1342 int count;
1343 int i;
1344
1345 for (i = 0; i < disks; i++)
5dd33c9a 1346 srcs[i] = NULL;
ac6b53b6
DW
1347
1348 count = 0;
1349 i = d0_idx;
1350 do {
1351 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1352 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1353
584acdd4
MS
1354 if (i == sh->qd_idx || i == sh->pd_idx ||
1355 (srctype == SYNDROME_SRC_ALL) ||
1356 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1357 test_bit(R5_Wantdrain, &dev->flags)) ||
1358 (srctype == SYNDROME_SRC_WRITTEN &&
1359 dev->written))
1360 srcs[slot] = sh->dev[i].page;
ac6b53b6
DW
1361 i = raid6_next_disk(i, disks);
1362 } while (i != d0_idx);
ac6b53b6 1363
e4424fee 1364 return syndrome_disks;
ac6b53b6
DW
1365}
1366
1367static struct dma_async_tx_descriptor *
1368ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1369{
1370 int disks = sh->disks;
46d5b785 1371 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1372 int target;
1373 int qd_idx = sh->qd_idx;
1374 struct dma_async_tx_descriptor *tx;
1375 struct async_submit_ctl submit;
1376 struct r5dev *tgt;
1377 struct page *dest;
1378 int i;
1379 int count;
1380
59fc630b 1381 BUG_ON(sh->batch_head);
ac6b53b6
DW
1382 if (sh->ops.target < 0)
1383 target = sh->ops.target2;
1384 else if (sh->ops.target2 < 0)
1385 target = sh->ops.target;
91c00924 1386 else
ac6b53b6
DW
1387 /* we should only have one valid target */
1388 BUG();
1389 BUG_ON(target < 0);
1390 pr_debug("%s: stripe %llu block: %d\n",
1391 __func__, (unsigned long long)sh->sector, target);
1392
1393 tgt = &sh->dev[target];
1394 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1395 dest = tgt->page;
1396
1397 atomic_inc(&sh->count);
1398
1399 if (target == qd_idx) {
584acdd4 1400 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1401 blocks[count] = NULL; /* regenerating p is not necessary */
1402 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1403 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1404 ops_complete_compute, sh,
46d5b785 1405 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1406 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1407 } else {
1408 /* Compute any data- or p-drive using XOR */
1409 count = 0;
1410 for (i = disks; i-- ; ) {
1411 if (i == target || i == qd_idx)
1412 continue;
1413 blocks[count++] = sh->dev[i].page;
1414 }
1415
0403e382
DW
1416 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1417 NULL, ops_complete_compute, sh,
46d5b785 1418 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1419 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1420 }
91c00924 1421
91c00924
DW
1422 return tx;
1423}
1424
ac6b53b6
DW
1425static struct dma_async_tx_descriptor *
1426ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1427{
1428 int i, count, disks = sh->disks;
1429 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1430 int d0_idx = raid6_d0(sh);
1431 int faila = -1, failb = -1;
1432 int target = sh->ops.target;
1433 int target2 = sh->ops.target2;
1434 struct r5dev *tgt = &sh->dev[target];
1435 struct r5dev *tgt2 = &sh->dev[target2];
1436 struct dma_async_tx_descriptor *tx;
46d5b785 1437 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1438 struct async_submit_ctl submit;
1439
59fc630b 1440 BUG_ON(sh->batch_head);
ac6b53b6
DW
1441 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1442 __func__, (unsigned long long)sh->sector, target, target2);
1443 BUG_ON(target < 0 || target2 < 0);
1444 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1445 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1446
6c910a78 1447 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1448 * slot number conversion for 'faila' and 'failb'
1449 */
1450 for (i = 0; i < disks ; i++)
5dd33c9a 1451 blocks[i] = NULL;
ac6b53b6
DW
1452 count = 0;
1453 i = d0_idx;
1454 do {
1455 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1456
1457 blocks[slot] = sh->dev[i].page;
1458
1459 if (i == target)
1460 faila = slot;
1461 if (i == target2)
1462 failb = slot;
1463 i = raid6_next_disk(i, disks);
1464 } while (i != d0_idx);
ac6b53b6
DW
1465
1466 BUG_ON(faila == failb);
1467 if (failb < faila)
1468 swap(faila, failb);
1469 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1470 __func__, (unsigned long long)sh->sector, faila, failb);
1471
1472 atomic_inc(&sh->count);
1473
1474 if (failb == syndrome_disks+1) {
1475 /* Q disk is one of the missing disks */
1476 if (faila == syndrome_disks) {
1477 /* Missing P+Q, just recompute */
0403e382
DW
1478 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1479 ops_complete_compute, sh,
46d5b785 1480 to_addr_conv(sh, percpu, 0));
e4424fee 1481 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1482 STRIPE_SIZE, &submit);
1483 } else {
1484 struct page *dest;
1485 int data_target;
1486 int qd_idx = sh->qd_idx;
1487
1488 /* Missing D+Q: recompute D from P, then recompute Q */
1489 if (target == qd_idx)
1490 data_target = target2;
1491 else
1492 data_target = target;
1493
1494 count = 0;
1495 for (i = disks; i-- ; ) {
1496 if (i == data_target || i == qd_idx)
1497 continue;
1498 blocks[count++] = sh->dev[i].page;
1499 }
1500 dest = sh->dev[data_target].page;
0403e382
DW
1501 init_async_submit(&submit,
1502 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1503 NULL, NULL, NULL,
46d5b785 1504 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1505 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1506 &submit);
1507
584acdd4 1508 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1509 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1510 ops_complete_compute, sh,
46d5b785 1511 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1512 return async_gen_syndrome(blocks, 0, count+2,
1513 STRIPE_SIZE, &submit);
1514 }
ac6b53b6 1515 } else {
6c910a78
DW
1516 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1517 ops_complete_compute, sh,
46d5b785 1518 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1519 if (failb == syndrome_disks) {
1520 /* We're missing D+P. */
1521 return async_raid6_datap_recov(syndrome_disks+2,
1522 STRIPE_SIZE, faila,
1523 blocks, &submit);
1524 } else {
1525 /* We're missing D+D. */
1526 return async_raid6_2data_recov(syndrome_disks+2,
1527 STRIPE_SIZE, faila, failb,
1528 blocks, &submit);
1529 }
ac6b53b6
DW
1530 }
1531}
1532
91c00924
DW
1533static void ops_complete_prexor(void *stripe_head_ref)
1534{
1535 struct stripe_head *sh = stripe_head_ref;
1536
e46b272b 1537 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1538 (unsigned long long)sh->sector);
91c00924
DW
1539}
1540
1541static struct dma_async_tx_descriptor *
584acdd4
MS
1542ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1543 struct dma_async_tx_descriptor *tx)
91c00924 1544{
91c00924 1545 int disks = sh->disks;
46d5b785 1546 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1547 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1548 struct async_submit_ctl submit;
91c00924
DW
1549
1550 /* existing parity data subtracted */
1551 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1552
59fc630b 1553 BUG_ON(sh->batch_head);
e46b272b 1554 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1555 (unsigned long long)sh->sector);
1556
1557 for (i = disks; i--; ) {
1558 struct r5dev *dev = &sh->dev[i];
1559 /* Only process blocks that are known to be uptodate */
d8ee0728 1560 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1561 xor_srcs[count++] = dev->page;
1562 }
1563
0403e382 1564 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1565 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1566 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1567
1568 return tx;
1569}
1570
584acdd4
MS
1571static struct dma_async_tx_descriptor *
1572ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1573 struct dma_async_tx_descriptor *tx)
1574{
1575 struct page **blocks = to_addr_page(percpu, 0);
1576 int count;
1577 struct async_submit_ctl submit;
1578
1579 pr_debug("%s: stripe %llu\n", __func__,
1580 (unsigned long long)sh->sector);
1581
1582 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1583
1584 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1585 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1586 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1587
1588 return tx;
1589}
1590
91c00924 1591static struct dma_async_tx_descriptor *
d8ee0728 1592ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1593{
1594 int disks = sh->disks;
d8ee0728 1595 int i;
59fc630b 1596 struct stripe_head *head_sh = sh;
91c00924 1597
e46b272b 1598 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1599 (unsigned long long)sh->sector);
1600
1601 for (i = disks; i--; ) {
59fc630b 1602 struct r5dev *dev;
91c00924 1603 struct bio *chosen;
91c00924 1604
59fc630b 1605 sh = head_sh;
1606 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1607 struct bio *wbi;
1608
59fc630b 1609again:
1610 dev = &sh->dev[i];
b17459c0 1611 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1612 chosen = dev->towrite;
1613 dev->towrite = NULL;
7a87f434 1614 sh->overwrite_disks = 0;
91c00924
DW
1615 BUG_ON(dev->written);
1616 wbi = dev->written = chosen;
b17459c0 1617 spin_unlock_irq(&sh->stripe_lock);
d592a996 1618 WARN_ON(dev->page != dev->orig_page);
91c00924 1619
4f024f37 1620 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1621 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1622 if (wbi->bi_rw & REQ_FUA)
1623 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1624 if (wbi->bi_rw & REQ_SYNC)
1625 set_bit(R5_SyncIO, &dev->flags);
9e444768 1626 if (wbi->bi_rw & REQ_DISCARD)
620125f2 1627 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1628 else {
1629 tx = async_copy_data(1, wbi, &dev->page,
1630 dev->sector, tx, sh);
1631 if (dev->page != dev->orig_page) {
1632 set_bit(R5_SkipCopy, &dev->flags);
1633 clear_bit(R5_UPTODATE, &dev->flags);
1634 clear_bit(R5_OVERWRITE, &dev->flags);
1635 }
1636 }
91c00924
DW
1637 wbi = r5_next_bio(wbi, dev->sector);
1638 }
59fc630b 1639
1640 if (head_sh->batch_head) {
1641 sh = list_first_entry(&sh->batch_list,
1642 struct stripe_head,
1643 batch_list);
1644 if (sh == head_sh)
1645 continue;
1646 goto again;
1647 }
91c00924
DW
1648 }
1649 }
1650
1651 return tx;
1652}
1653
ac6b53b6 1654static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1655{
1656 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1657 int disks = sh->disks;
1658 int pd_idx = sh->pd_idx;
1659 int qd_idx = sh->qd_idx;
1660 int i;
9e444768 1661 bool fua = false, sync = false, discard = false;
91c00924 1662
e46b272b 1663 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1664 (unsigned long long)sh->sector);
1665
bc0934f0 1666 for (i = disks; i--; ) {
e9c7469b 1667 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1668 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1669 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1670 }
e9c7469b 1671
91c00924
DW
1672 for (i = disks; i--; ) {
1673 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1674
e9c7469b 1675 if (dev->written || i == pd_idx || i == qd_idx) {
d592a996 1676 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
9e444768 1677 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1678 if (fua)
1679 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1680 if (sync)
1681 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1682 }
91c00924
DW
1683 }
1684
d8ee0728
DW
1685 if (sh->reconstruct_state == reconstruct_state_drain_run)
1686 sh->reconstruct_state = reconstruct_state_drain_result;
1687 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1688 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1689 else {
1690 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1691 sh->reconstruct_state = reconstruct_state_result;
1692 }
91c00924
DW
1693
1694 set_bit(STRIPE_HANDLE, &sh->state);
1695 release_stripe(sh);
1696}
1697
1698static void
ac6b53b6
DW
1699ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1700 struct dma_async_tx_descriptor *tx)
91c00924 1701{
91c00924 1702 int disks = sh->disks;
59fc630b 1703 struct page **xor_srcs;
a08abd8c 1704 struct async_submit_ctl submit;
59fc630b 1705 int count, pd_idx = sh->pd_idx, i;
91c00924 1706 struct page *xor_dest;
d8ee0728 1707 int prexor = 0;
91c00924 1708 unsigned long flags;
59fc630b 1709 int j = 0;
1710 struct stripe_head *head_sh = sh;
1711 int last_stripe;
91c00924 1712
e46b272b 1713 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1714 (unsigned long long)sh->sector);
1715
620125f2
SL
1716 for (i = 0; i < sh->disks; i++) {
1717 if (pd_idx == i)
1718 continue;
1719 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1720 break;
1721 }
1722 if (i >= sh->disks) {
1723 atomic_inc(&sh->count);
620125f2
SL
1724 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1725 ops_complete_reconstruct(sh);
1726 return;
1727 }
59fc630b 1728again:
1729 count = 0;
1730 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1731 /* check if prexor is active which means only process blocks
1732 * that are part of a read-modify-write (written)
1733 */
59fc630b 1734 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1735 prexor = 1;
91c00924
DW
1736 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1737 for (i = disks; i--; ) {
1738 struct r5dev *dev = &sh->dev[i];
59fc630b 1739 if (head_sh->dev[i].written)
91c00924
DW
1740 xor_srcs[count++] = dev->page;
1741 }
1742 } else {
1743 xor_dest = sh->dev[pd_idx].page;
1744 for (i = disks; i--; ) {
1745 struct r5dev *dev = &sh->dev[i];
1746 if (i != pd_idx)
1747 xor_srcs[count++] = dev->page;
1748 }
1749 }
1750
91c00924
DW
1751 /* 1/ if we prexor'd then the dest is reused as a source
1752 * 2/ if we did not prexor then we are redoing the parity
1753 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1754 * for the synchronous xor case
1755 */
59fc630b 1756 last_stripe = !head_sh->batch_head ||
1757 list_first_entry(&sh->batch_list,
1758 struct stripe_head, batch_list) == head_sh;
1759 if (last_stripe) {
1760 flags = ASYNC_TX_ACK |
1761 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1762
1763 atomic_inc(&head_sh->count);
1764 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1765 to_addr_conv(sh, percpu, j));
1766 } else {
1767 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1768 init_async_submit(&submit, flags, tx, NULL, NULL,
1769 to_addr_conv(sh, percpu, j));
1770 }
91c00924 1771
a08abd8c
DW
1772 if (unlikely(count == 1))
1773 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1774 else
1775 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1776 if (!last_stripe) {
1777 j++;
1778 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1779 batch_list);
1780 goto again;
1781 }
91c00924
DW
1782}
1783
ac6b53b6
DW
1784static void
1785ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1786 struct dma_async_tx_descriptor *tx)
1787{
1788 struct async_submit_ctl submit;
59fc630b 1789 struct page **blocks;
1790 int count, i, j = 0;
1791 struct stripe_head *head_sh = sh;
1792 int last_stripe;
584acdd4
MS
1793 int synflags;
1794 unsigned long txflags;
ac6b53b6
DW
1795
1796 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1797
620125f2
SL
1798 for (i = 0; i < sh->disks; i++) {
1799 if (sh->pd_idx == i || sh->qd_idx == i)
1800 continue;
1801 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1802 break;
1803 }
1804 if (i >= sh->disks) {
1805 atomic_inc(&sh->count);
620125f2
SL
1806 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1807 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1808 ops_complete_reconstruct(sh);
1809 return;
1810 }
1811
59fc630b 1812again:
1813 blocks = to_addr_page(percpu, j);
584acdd4
MS
1814
1815 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1816 synflags = SYNDROME_SRC_WRITTEN;
1817 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1818 } else {
1819 synflags = SYNDROME_SRC_ALL;
1820 txflags = ASYNC_TX_ACK;
1821 }
1822
1823 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1824 last_stripe = !head_sh->batch_head ||
1825 list_first_entry(&sh->batch_list,
1826 struct stripe_head, batch_list) == head_sh;
1827
1828 if (last_stripe) {
1829 atomic_inc(&head_sh->count);
584acdd4 1830 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1831 head_sh, to_addr_conv(sh, percpu, j));
1832 } else
1833 init_async_submit(&submit, 0, tx, NULL, NULL,
1834 to_addr_conv(sh, percpu, j));
48769695 1835 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1836 if (!last_stripe) {
1837 j++;
1838 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1839 batch_list);
1840 goto again;
1841 }
91c00924
DW
1842}
1843
1844static void ops_complete_check(void *stripe_head_ref)
1845{
1846 struct stripe_head *sh = stripe_head_ref;
91c00924 1847
e46b272b 1848 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1849 (unsigned long long)sh->sector);
1850
ecc65c9b 1851 sh->check_state = check_state_check_result;
91c00924
DW
1852 set_bit(STRIPE_HANDLE, &sh->state);
1853 release_stripe(sh);
1854}
1855
ac6b53b6 1856static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1857{
91c00924 1858 int disks = sh->disks;
ac6b53b6
DW
1859 int pd_idx = sh->pd_idx;
1860 int qd_idx = sh->qd_idx;
1861 struct page *xor_dest;
46d5b785 1862 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1863 struct dma_async_tx_descriptor *tx;
a08abd8c 1864 struct async_submit_ctl submit;
ac6b53b6
DW
1865 int count;
1866 int i;
91c00924 1867
e46b272b 1868 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1869 (unsigned long long)sh->sector);
1870
59fc630b 1871 BUG_ON(sh->batch_head);
ac6b53b6
DW
1872 count = 0;
1873 xor_dest = sh->dev[pd_idx].page;
1874 xor_srcs[count++] = xor_dest;
91c00924 1875 for (i = disks; i--; ) {
ac6b53b6
DW
1876 if (i == pd_idx || i == qd_idx)
1877 continue;
1878 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1879 }
1880
d6f38f31 1881 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 1882 to_addr_conv(sh, percpu, 0));
099f53cb 1883 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1884 &sh->ops.zero_sum_result, &submit);
91c00924 1885
91c00924 1886 atomic_inc(&sh->count);
a08abd8c
DW
1887 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1888 tx = async_trigger_callback(&submit);
91c00924
DW
1889}
1890
ac6b53b6
DW
1891static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1892{
46d5b785 1893 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
1894 struct async_submit_ctl submit;
1895 int count;
1896
1897 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1898 (unsigned long long)sh->sector, checkp);
1899
59fc630b 1900 BUG_ON(sh->batch_head);
584acdd4 1901 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1902 if (!checkp)
1903 srcs[count] = NULL;
91c00924 1904
91c00924 1905 atomic_inc(&sh->count);
ac6b53b6 1906 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 1907 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1908 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1909 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1910}
1911
51acbcec 1912static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1913{
1914 int overlap_clear = 0, i, disks = sh->disks;
1915 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1916 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1917 int level = conf->level;
d6f38f31
DW
1918 struct raid5_percpu *percpu;
1919 unsigned long cpu;
91c00924 1920
d6f38f31
DW
1921 cpu = get_cpu();
1922 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1923 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1924 ops_run_biofill(sh);
1925 overlap_clear++;
1926 }
1927
7b3a871e 1928 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1929 if (level < 6)
1930 tx = ops_run_compute5(sh, percpu);
1931 else {
1932 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1933 tx = ops_run_compute6_1(sh, percpu);
1934 else
1935 tx = ops_run_compute6_2(sh, percpu);
1936 }
1937 /* terminate the chain if reconstruct is not set to be run */
1938 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1939 async_tx_ack(tx);
1940 }
91c00924 1941
584acdd4
MS
1942 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1943 if (level < 6)
1944 tx = ops_run_prexor5(sh, percpu, tx);
1945 else
1946 tx = ops_run_prexor6(sh, percpu, tx);
1947 }
91c00924 1948
600aa109 1949 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1950 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1951 overlap_clear++;
1952 }
1953
ac6b53b6
DW
1954 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1955 if (level < 6)
1956 ops_run_reconstruct5(sh, percpu, tx);
1957 else
1958 ops_run_reconstruct6(sh, percpu, tx);
1959 }
91c00924 1960
ac6b53b6
DW
1961 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1962 if (sh->check_state == check_state_run)
1963 ops_run_check_p(sh, percpu);
1964 else if (sh->check_state == check_state_run_q)
1965 ops_run_check_pq(sh, percpu, 0);
1966 else if (sh->check_state == check_state_run_pq)
1967 ops_run_check_pq(sh, percpu, 1);
1968 else
1969 BUG();
1970 }
91c00924 1971
59fc630b 1972 if (overlap_clear && !sh->batch_head)
91c00924
DW
1973 for (i = disks; i--; ) {
1974 struct r5dev *dev = &sh->dev[i];
1975 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1976 wake_up(&sh->raid_conf->wait_for_overlap);
1977 }
d6f38f31 1978 put_cpu();
91c00924
DW
1979}
1980
f18c1a35
N
1981static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1982{
1983 struct stripe_head *sh;
1984
1985 sh = kmem_cache_zalloc(sc, gfp);
1986 if (sh) {
1987 spin_lock_init(&sh->stripe_lock);
1988 spin_lock_init(&sh->batch_lock);
1989 INIT_LIST_HEAD(&sh->batch_list);
1990 INIT_LIST_HEAD(&sh->lru);
1991 atomic_set(&sh->count, 1);
1992 }
1993 return sh;
1994}
486f0644 1995static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
1996{
1997 struct stripe_head *sh;
f18c1a35
N
1998
1999 sh = alloc_stripe(conf->slab_cache, gfp);
3f294f4f
N
2000 if (!sh)
2001 return 0;
6ce32846 2002
3f294f4f 2003 sh->raid_conf = conf;
3f294f4f 2004
a9683a79 2005 if (grow_buffers(sh, gfp)) {
e4e11e38 2006 shrink_buffers(sh);
3f294f4f
N
2007 kmem_cache_free(conf->slab_cache, sh);
2008 return 0;
2009 }
486f0644
N
2010 sh->hash_lock_index =
2011 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2012 /* we just created an active stripe so... */
3f294f4f 2013 atomic_inc(&conf->active_stripes);
59fc630b 2014
3f294f4f 2015 release_stripe(sh);
486f0644 2016 conf->max_nr_stripes++;
3f294f4f
N
2017 return 1;
2018}
2019
d1688a6d 2020static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2021{
e18b890b 2022 struct kmem_cache *sc;
5e5e3e78 2023 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2024
f4be6b43
N
2025 if (conf->mddev->gendisk)
2026 sprintf(conf->cache_name[0],
2027 "raid%d-%s", conf->level, mdname(conf->mddev));
2028 else
2029 sprintf(conf->cache_name[0],
2030 "raid%d-%p", conf->level, conf->mddev);
2031 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2032
ad01c9e3
N
2033 conf->active_name = 0;
2034 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2035 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2036 0, 0, NULL);
1da177e4
LT
2037 if (!sc)
2038 return 1;
2039 conf->slab_cache = sc;
ad01c9e3 2040 conf->pool_size = devs;
486f0644
N
2041 while (num--)
2042 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2043 return 1;
486f0644 2044
1da177e4
LT
2045 return 0;
2046}
29269553 2047
d6f38f31
DW
2048/**
2049 * scribble_len - return the required size of the scribble region
2050 * @num - total number of disks in the array
2051 *
2052 * The size must be enough to contain:
2053 * 1/ a struct page pointer for each device in the array +2
2054 * 2/ room to convert each entry in (1) to its corresponding dma
2055 * (dma_map_page()) or page (page_address()) address.
2056 *
2057 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2058 * calculate over all devices (not just the data blocks), using zeros in place
2059 * of the P and Q blocks.
2060 */
46d5b785 2061static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2062{
46d5b785 2063 struct flex_array *ret;
d6f38f31
DW
2064 size_t len;
2065
2066 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2067 ret = flex_array_alloc(len, cnt, flags);
2068 if (!ret)
2069 return NULL;
2070 /* always prealloc all elements, so no locking is required */
2071 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2072 flex_array_free(ret);
2073 return NULL;
2074 }
2075 return ret;
d6f38f31
DW
2076}
2077
738a2738
N
2078static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2079{
2080 unsigned long cpu;
2081 int err = 0;
2082
2083 mddev_suspend(conf->mddev);
2084 get_online_cpus();
2085 for_each_present_cpu(cpu) {
2086 struct raid5_percpu *percpu;
2087 struct flex_array *scribble;
2088
2089 percpu = per_cpu_ptr(conf->percpu, cpu);
2090 scribble = scribble_alloc(new_disks,
2091 new_sectors / STRIPE_SECTORS,
2092 GFP_NOIO);
2093
2094 if (scribble) {
2095 flex_array_free(percpu->scribble);
2096 percpu->scribble = scribble;
2097 } else {
2098 err = -ENOMEM;
2099 break;
2100 }
2101 }
2102 put_online_cpus();
2103 mddev_resume(conf->mddev);
2104 return err;
2105}
2106
d1688a6d 2107static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2108{
2109 /* Make all the stripes able to hold 'newsize' devices.
2110 * New slots in each stripe get 'page' set to a new page.
2111 *
2112 * This happens in stages:
2113 * 1/ create a new kmem_cache and allocate the required number of
2114 * stripe_heads.
83f0d77a 2115 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2116 * to the new stripe_heads. This will have the side effect of
2117 * freezing the array as once all stripe_heads have been collected,
2118 * no IO will be possible. Old stripe heads are freed once their
2119 * pages have been transferred over, and the old kmem_cache is
2120 * freed when all stripes are done.
2121 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2122 * we simple return a failre status - no need to clean anything up.
2123 * 4/ allocate new pages for the new slots in the new stripe_heads.
2124 * If this fails, we don't bother trying the shrink the
2125 * stripe_heads down again, we just leave them as they are.
2126 * As each stripe_head is processed the new one is released into
2127 * active service.
2128 *
2129 * Once step2 is started, we cannot afford to wait for a write,
2130 * so we use GFP_NOIO allocations.
2131 */
2132 struct stripe_head *osh, *nsh;
2133 LIST_HEAD(newstripes);
2134 struct disk_info *ndisks;
b5470dc5 2135 int err;
e18b890b 2136 struct kmem_cache *sc;
ad01c9e3 2137 int i;
566c09c5 2138 int hash, cnt;
ad01c9e3
N
2139
2140 if (newsize <= conf->pool_size)
2141 return 0; /* never bother to shrink */
2142
b5470dc5
DW
2143 err = md_allow_write(conf->mddev);
2144 if (err)
2145 return err;
2a2275d6 2146
ad01c9e3
N
2147 /* Step 1 */
2148 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2149 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2150 0, 0, NULL);
ad01c9e3
N
2151 if (!sc)
2152 return -ENOMEM;
2153
2154 for (i = conf->max_nr_stripes; i; i--) {
f18c1a35 2155 nsh = alloc_stripe(sc, GFP_KERNEL);
ad01c9e3
N
2156 if (!nsh)
2157 break;
2158
ad01c9e3 2159 nsh->raid_conf = conf;
ad01c9e3
N
2160 list_add(&nsh->lru, &newstripes);
2161 }
2162 if (i) {
2163 /* didn't get enough, give up */
2164 while (!list_empty(&newstripes)) {
2165 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2166 list_del(&nsh->lru);
2167 kmem_cache_free(sc, nsh);
2168 }
2169 kmem_cache_destroy(sc);
2170 return -ENOMEM;
2171 }
2172 /* Step 2 - Must use GFP_NOIO now.
2173 * OK, we have enough stripes, start collecting inactive
2174 * stripes and copying them over
2175 */
566c09c5
SL
2176 hash = 0;
2177 cnt = 0;
ad01c9e3 2178 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5
SL
2179 lock_device_hash_lock(conf, hash);
2180 wait_event_cmd(conf->wait_for_stripe,
2181 !list_empty(conf->inactive_list + hash),
2182 unlock_device_hash_lock(conf, hash),
2183 lock_device_hash_lock(conf, hash));
2184 osh = get_free_stripe(conf, hash);
2185 unlock_device_hash_lock(conf, hash);
f18c1a35 2186
d592a996 2187 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2188 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2189 nsh->dev[i].orig_page = osh->dev[i].page;
2190 }
566c09c5 2191 nsh->hash_lock_index = hash;
ad01c9e3 2192 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
2193 cnt++;
2194 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2195 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2196 hash++;
2197 cnt = 0;
2198 }
ad01c9e3
N
2199 }
2200 kmem_cache_destroy(conf->slab_cache);
2201
2202 /* Step 3.
2203 * At this point, we are holding all the stripes so the array
2204 * is completely stalled, so now is a good time to resize
d6f38f31 2205 * conf->disks and the scribble region
ad01c9e3
N
2206 */
2207 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2208 if (ndisks) {
2209 for (i=0; i<conf->raid_disks; i++)
2210 ndisks[i] = conf->disks[i];
2211 kfree(conf->disks);
2212 conf->disks = ndisks;
2213 } else
2214 err = -ENOMEM;
2215
2216 /* Step 4, return new stripes to service */
2217 while(!list_empty(&newstripes)) {
2218 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2219 list_del_init(&nsh->lru);
d6f38f31 2220
ad01c9e3
N
2221 for (i=conf->raid_disks; i < newsize; i++)
2222 if (nsh->dev[i].page == NULL) {
2223 struct page *p = alloc_page(GFP_NOIO);
2224 nsh->dev[i].page = p;
d592a996 2225 nsh->dev[i].orig_page = p;
ad01c9e3
N
2226 if (!p)
2227 err = -ENOMEM;
2228 }
2229 release_stripe(nsh);
2230 }
2231 /* critical section pass, GFP_NOIO no longer needed */
2232
2233 conf->slab_cache = sc;
2234 conf->active_name = 1-conf->active_name;
6e9eac2d
N
2235 if (!err)
2236 conf->pool_size = newsize;
ad01c9e3
N
2237 return err;
2238}
1da177e4 2239
486f0644 2240static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2241{
2242 struct stripe_head *sh;
486f0644 2243 int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
1da177e4 2244
566c09c5
SL
2245 spin_lock_irq(conf->hash_locks + hash);
2246 sh = get_free_stripe(conf, hash);
2247 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2248 if (!sh)
2249 return 0;
78bafebd 2250 BUG_ON(atomic_read(&sh->count));
e4e11e38 2251 shrink_buffers(sh);
3f294f4f
N
2252 kmem_cache_free(conf->slab_cache, sh);
2253 atomic_dec(&conf->active_stripes);
486f0644 2254 conf->max_nr_stripes--;
3f294f4f
N
2255 return 1;
2256}
2257
d1688a6d 2258static void shrink_stripes(struct r5conf *conf)
3f294f4f 2259{
486f0644
N
2260 while (conf->max_nr_stripes &&
2261 drop_one_stripe(conf))
2262 ;
3f294f4f 2263
29fc7e3e
N
2264 if (conf->slab_cache)
2265 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2266 conf->slab_cache = NULL;
2267}
2268
6712ecf8 2269static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 2270{
99c0fb5f 2271 struct stripe_head *sh = bi->bi_private;
d1688a6d 2272 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2273 int disks = sh->disks, i;
1da177e4 2274 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432 2275 char b[BDEVNAME_SIZE];
dd054fce 2276 struct md_rdev *rdev = NULL;
05616be5 2277 sector_t s;
1da177e4
LT
2278
2279 for (i=0 ; i<disks; i++)
2280 if (bi == &sh->dev[i].req)
2281 break;
2282
45b4233c
DW
2283 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2284 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
2285 uptodate);
2286 if (i == disks) {
2287 BUG();
6712ecf8 2288 return;
1da177e4 2289 }
14a75d3e 2290 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2291 /* If replacement finished while this request was outstanding,
2292 * 'replacement' might be NULL already.
2293 * In that case it moved down to 'rdev'.
2294 * rdev is not removed until all requests are finished.
2295 */
14a75d3e 2296 rdev = conf->disks[i].replacement;
dd054fce 2297 if (!rdev)
14a75d3e 2298 rdev = conf->disks[i].rdev;
1da177e4 2299
05616be5
N
2300 if (use_new_offset(conf, sh))
2301 s = sh->sector + rdev->new_data_offset;
2302 else
2303 s = sh->sector + rdev->data_offset;
1da177e4 2304 if (uptodate) {
1da177e4 2305 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2306 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2307 /* Note that this cannot happen on a
2308 * replacement device. We just fail those on
2309 * any error
2310 */
8bda470e
CD
2311 printk_ratelimited(
2312 KERN_INFO
2313 "md/raid:%s: read error corrected"
2314 " (%lu sectors at %llu on %s)\n",
2315 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2316 (unsigned long long)s,
8bda470e 2317 bdevname(rdev->bdev, b));
ddd5115f 2318 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2319 clear_bit(R5_ReadError, &sh->dev[i].flags);
2320 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2321 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2322 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2323
14a75d3e
N
2324 if (atomic_read(&rdev->read_errors))
2325 atomic_set(&rdev->read_errors, 0);
1da177e4 2326 } else {
14a75d3e 2327 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2328 int retry = 0;
2e8ac303 2329 int set_bad = 0;
d6950432 2330
1da177e4 2331 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2332 atomic_inc(&rdev->read_errors);
14a75d3e
N
2333 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2334 printk_ratelimited(
2335 KERN_WARNING
2336 "md/raid:%s: read error on replacement device "
2337 "(sector %llu on %s).\n",
2338 mdname(conf->mddev),
05616be5 2339 (unsigned long long)s,
14a75d3e 2340 bdn);
2e8ac303 2341 else if (conf->mddev->degraded >= conf->max_degraded) {
2342 set_bad = 1;
8bda470e
CD
2343 printk_ratelimited(
2344 KERN_WARNING
2345 "md/raid:%s: read error not correctable "
2346 "(sector %llu on %s).\n",
2347 mdname(conf->mddev),
05616be5 2348 (unsigned long long)s,
8bda470e 2349 bdn);
2e8ac303 2350 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2351 /* Oh, no!!! */
2e8ac303 2352 set_bad = 1;
8bda470e
CD
2353 printk_ratelimited(
2354 KERN_WARNING
2355 "md/raid:%s: read error NOT corrected!! "
2356 "(sector %llu on %s).\n",
2357 mdname(conf->mddev),
05616be5 2358 (unsigned long long)s,
8bda470e 2359 bdn);
2e8ac303 2360 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2361 > conf->max_nr_stripes)
14f8d26b 2362 printk(KERN_WARNING
0c55e022 2363 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2364 mdname(conf->mddev), bdn);
ba22dcbf
N
2365 else
2366 retry = 1;
edfa1f65
BY
2367 if (set_bad && test_bit(In_sync, &rdev->flags)
2368 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2369 retry = 1;
ba22dcbf 2370 if (retry)
3f9e7c14 2371 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2372 set_bit(R5_ReadError, &sh->dev[i].flags);
2373 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2374 } else
2375 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2376 else {
4e5314b5
N
2377 clear_bit(R5_ReadError, &sh->dev[i].flags);
2378 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2379 if (!(set_bad
2380 && test_bit(In_sync, &rdev->flags)
2381 && rdev_set_badblocks(
2382 rdev, sh->sector, STRIPE_SECTORS, 0)))
2383 md_error(conf->mddev, rdev);
ba22dcbf 2384 }
1da177e4 2385 }
14a75d3e 2386 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
2387 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2388 set_bit(STRIPE_HANDLE, &sh->state);
2389 release_stripe(sh);
1da177e4
LT
2390}
2391
d710e138 2392static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 2393{
99c0fb5f 2394 struct stripe_head *sh = bi->bi_private;
d1688a6d 2395 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2396 int disks = sh->disks, i;
977df362 2397 struct md_rdev *uninitialized_var(rdev);
1da177e4 2398 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
b84db560
N
2399 sector_t first_bad;
2400 int bad_sectors;
977df362 2401 int replacement = 0;
1da177e4 2402
977df362
N
2403 for (i = 0 ; i < disks; i++) {
2404 if (bi == &sh->dev[i].req) {
2405 rdev = conf->disks[i].rdev;
1da177e4 2406 break;
977df362
N
2407 }
2408 if (bi == &sh->dev[i].rreq) {
2409 rdev = conf->disks[i].replacement;
dd054fce
N
2410 if (rdev)
2411 replacement = 1;
2412 else
2413 /* rdev was removed and 'replacement'
2414 * replaced it. rdev is not removed
2415 * until all requests are finished.
2416 */
2417 rdev = conf->disks[i].rdev;
977df362
N
2418 break;
2419 }
2420 }
45b4233c 2421 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
2422 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2423 uptodate);
2424 if (i == disks) {
2425 BUG();
6712ecf8 2426 return;
1da177e4
LT
2427 }
2428
977df362
N
2429 if (replacement) {
2430 if (!uptodate)
2431 md_error(conf->mddev, rdev);
2432 else if (is_badblock(rdev, sh->sector,
2433 STRIPE_SECTORS,
2434 &first_bad, &bad_sectors))
2435 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2436 } else {
2437 if (!uptodate) {
9f97e4b1 2438 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2439 set_bit(WriteErrorSeen, &rdev->flags);
2440 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2441 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2442 set_bit(MD_RECOVERY_NEEDED,
2443 &rdev->mddev->recovery);
977df362
N
2444 } else if (is_badblock(rdev, sh->sector,
2445 STRIPE_SECTORS,
c0b32972 2446 &first_bad, &bad_sectors)) {
977df362 2447 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2448 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2449 /* That was a successful write so make
2450 * sure it looks like we already did
2451 * a re-write.
2452 */
2453 set_bit(R5_ReWrite, &sh->dev[i].flags);
2454 }
977df362
N
2455 }
2456 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2457
bb27051f 2458 if (sh->batch_head && !uptodate && !replacement)
72ac7330 2459 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2460
977df362
N
2461 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2462 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2463 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 2464 release_stripe(sh);
59fc630b 2465
2466 if (sh->batch_head && sh != sh->batch_head)
2467 release_stripe(sh->batch_head);
1da177e4
LT
2468}
2469
784052ec 2470static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
d592a996 2471
784052ec 2472static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2473{
2474 struct r5dev *dev = &sh->dev[i];
2475
2476 bio_init(&dev->req);
2477 dev->req.bi_io_vec = &dev->vec;
d592a996 2478 dev->req.bi_max_vecs = 1;
1da177e4
LT
2479 dev->req.bi_private = sh;
2480
977df362
N
2481 bio_init(&dev->rreq);
2482 dev->rreq.bi_io_vec = &dev->rvec;
d592a996 2483 dev->rreq.bi_max_vecs = 1;
977df362 2484 dev->rreq.bi_private = sh;
977df362 2485
1da177e4 2486 dev->flags = 0;
784052ec 2487 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
2488}
2489
fd01b88c 2490static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2491{
2492 char b[BDEVNAME_SIZE];
d1688a6d 2493 struct r5conf *conf = mddev->private;
908f4fbd 2494 unsigned long flags;
0c55e022 2495 pr_debug("raid456: error called\n");
1da177e4 2496
908f4fbd
N
2497 spin_lock_irqsave(&conf->device_lock, flags);
2498 clear_bit(In_sync, &rdev->flags);
2499 mddev->degraded = calc_degraded(conf);
2500 spin_unlock_irqrestore(&conf->device_lock, flags);
2501 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2502
de393cde 2503 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
2504 set_bit(Faulty, &rdev->flags);
2505 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2506 printk(KERN_ALERT
2507 "md/raid:%s: Disk failure on %s, disabling device.\n"
2508 "md/raid:%s: Operation continuing on %d devices.\n",
2509 mdname(mddev),
2510 bdevname(rdev->bdev, b),
2511 mdname(mddev),
2512 conf->raid_disks - mddev->degraded);
16a53ecc 2513}
1da177e4
LT
2514
2515/*
2516 * Input: a 'big' sector number,
2517 * Output: index of the data and parity disk, and the sector # in them.
2518 */
d1688a6d 2519static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
911d4ee8
N
2520 int previous, int *dd_idx,
2521 struct stripe_head *sh)
1da177e4 2522{
6e3b96ed 2523 sector_t stripe, stripe2;
35f2a591 2524 sector_t chunk_number;
1da177e4 2525 unsigned int chunk_offset;
911d4ee8 2526 int pd_idx, qd_idx;
67cc2b81 2527 int ddf_layout = 0;
1da177e4 2528 sector_t new_sector;
e183eaed
N
2529 int algorithm = previous ? conf->prev_algo
2530 : conf->algorithm;
09c9e5fa
AN
2531 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2532 : conf->chunk_sectors;
112bf897
N
2533 int raid_disks = previous ? conf->previous_raid_disks
2534 : conf->raid_disks;
2535 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2536
2537 /* First compute the information on this sector */
2538
2539 /*
2540 * Compute the chunk number and the sector offset inside the chunk
2541 */
2542 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2543 chunk_number = r_sector;
1da177e4
LT
2544
2545 /*
2546 * Compute the stripe number
2547 */
35f2a591
N
2548 stripe = chunk_number;
2549 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2550 stripe2 = stripe;
1da177e4
LT
2551 /*
2552 * Select the parity disk based on the user selected algorithm.
2553 */
84789554 2554 pd_idx = qd_idx = -1;
16a53ecc
N
2555 switch(conf->level) {
2556 case 4:
911d4ee8 2557 pd_idx = data_disks;
16a53ecc
N
2558 break;
2559 case 5:
e183eaed 2560 switch (algorithm) {
1da177e4 2561 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2562 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2563 if (*dd_idx >= pd_idx)
1da177e4
LT
2564 (*dd_idx)++;
2565 break;
2566 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2567 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2568 if (*dd_idx >= pd_idx)
1da177e4
LT
2569 (*dd_idx)++;
2570 break;
2571 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2572 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2573 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2574 break;
2575 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2576 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2577 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2578 break;
99c0fb5f
N
2579 case ALGORITHM_PARITY_0:
2580 pd_idx = 0;
2581 (*dd_idx)++;
2582 break;
2583 case ALGORITHM_PARITY_N:
2584 pd_idx = data_disks;
2585 break;
1da177e4 2586 default:
99c0fb5f 2587 BUG();
16a53ecc
N
2588 }
2589 break;
2590 case 6:
2591
e183eaed 2592 switch (algorithm) {
16a53ecc 2593 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2594 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2595 qd_idx = pd_idx + 1;
2596 if (pd_idx == raid_disks-1) {
99c0fb5f 2597 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2598 qd_idx = 0;
2599 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2600 (*dd_idx) += 2; /* D D P Q D */
2601 break;
2602 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2603 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2604 qd_idx = pd_idx + 1;
2605 if (pd_idx == raid_disks-1) {
99c0fb5f 2606 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2607 qd_idx = 0;
2608 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2609 (*dd_idx) += 2; /* D D P Q D */
2610 break;
2611 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2612 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2613 qd_idx = (pd_idx + 1) % raid_disks;
2614 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2615 break;
2616 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2617 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2618 qd_idx = (pd_idx + 1) % raid_disks;
2619 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2620 break;
99c0fb5f
N
2621
2622 case ALGORITHM_PARITY_0:
2623 pd_idx = 0;
2624 qd_idx = 1;
2625 (*dd_idx) += 2;
2626 break;
2627 case ALGORITHM_PARITY_N:
2628 pd_idx = data_disks;
2629 qd_idx = data_disks + 1;
2630 break;
2631
2632 case ALGORITHM_ROTATING_ZERO_RESTART:
2633 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2634 * of blocks for computing Q is different.
2635 */
6e3b96ed 2636 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2637 qd_idx = pd_idx + 1;
2638 if (pd_idx == raid_disks-1) {
2639 (*dd_idx)++; /* Q D D D P */
2640 qd_idx = 0;
2641 } else if (*dd_idx >= pd_idx)
2642 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2643 ddf_layout = 1;
99c0fb5f
N
2644 break;
2645
2646 case ALGORITHM_ROTATING_N_RESTART:
2647 /* Same a left_asymmetric, by first stripe is
2648 * D D D P Q rather than
2649 * Q D D D P
2650 */
6e3b96ed
N
2651 stripe2 += 1;
2652 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2653 qd_idx = pd_idx + 1;
2654 if (pd_idx == raid_disks-1) {
2655 (*dd_idx)++; /* Q D D D P */
2656 qd_idx = 0;
2657 } else if (*dd_idx >= pd_idx)
2658 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2659 ddf_layout = 1;
99c0fb5f
N
2660 break;
2661
2662 case ALGORITHM_ROTATING_N_CONTINUE:
2663 /* Same as left_symmetric but Q is before P */
6e3b96ed 2664 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2665 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2666 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2667 ddf_layout = 1;
99c0fb5f
N
2668 break;
2669
2670 case ALGORITHM_LEFT_ASYMMETRIC_6:
2671 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2672 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2673 if (*dd_idx >= pd_idx)
2674 (*dd_idx)++;
2675 qd_idx = raid_disks - 1;
2676 break;
2677
2678 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2679 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2680 if (*dd_idx >= pd_idx)
2681 (*dd_idx)++;
2682 qd_idx = raid_disks - 1;
2683 break;
2684
2685 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2686 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2687 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2688 qd_idx = raid_disks - 1;
2689 break;
2690
2691 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2692 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2693 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2694 qd_idx = raid_disks - 1;
2695 break;
2696
2697 case ALGORITHM_PARITY_0_6:
2698 pd_idx = 0;
2699 (*dd_idx)++;
2700 qd_idx = raid_disks - 1;
2701 break;
2702
16a53ecc 2703 default:
99c0fb5f 2704 BUG();
16a53ecc
N
2705 }
2706 break;
1da177e4
LT
2707 }
2708
911d4ee8
N
2709 if (sh) {
2710 sh->pd_idx = pd_idx;
2711 sh->qd_idx = qd_idx;
67cc2b81 2712 sh->ddf_layout = ddf_layout;
911d4ee8 2713 }
1da177e4
LT
2714 /*
2715 * Finally, compute the new sector number
2716 */
2717 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2718 return new_sector;
2719}
2720
784052ec 2721static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2722{
d1688a6d 2723 struct r5conf *conf = sh->raid_conf;
b875e531
N
2724 int raid_disks = sh->disks;
2725 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2726 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2727 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2728 : conf->chunk_sectors;
e183eaed
N
2729 int algorithm = previous ? conf->prev_algo
2730 : conf->algorithm;
1da177e4
LT
2731 sector_t stripe;
2732 int chunk_offset;
35f2a591
N
2733 sector_t chunk_number;
2734 int dummy1, dd_idx = i;
1da177e4 2735 sector_t r_sector;
911d4ee8 2736 struct stripe_head sh2;
1da177e4
LT
2737
2738 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2739 stripe = new_sector;
1da177e4 2740
16a53ecc
N
2741 if (i == sh->pd_idx)
2742 return 0;
2743 switch(conf->level) {
2744 case 4: break;
2745 case 5:
e183eaed 2746 switch (algorithm) {
1da177e4
LT
2747 case ALGORITHM_LEFT_ASYMMETRIC:
2748 case ALGORITHM_RIGHT_ASYMMETRIC:
2749 if (i > sh->pd_idx)
2750 i--;
2751 break;
2752 case ALGORITHM_LEFT_SYMMETRIC:
2753 case ALGORITHM_RIGHT_SYMMETRIC:
2754 if (i < sh->pd_idx)
2755 i += raid_disks;
2756 i -= (sh->pd_idx + 1);
2757 break;
99c0fb5f
N
2758 case ALGORITHM_PARITY_0:
2759 i -= 1;
2760 break;
2761 case ALGORITHM_PARITY_N:
2762 break;
1da177e4 2763 default:
99c0fb5f 2764 BUG();
16a53ecc
N
2765 }
2766 break;
2767 case 6:
d0dabf7e 2768 if (i == sh->qd_idx)
16a53ecc 2769 return 0; /* It is the Q disk */
e183eaed 2770 switch (algorithm) {
16a53ecc
N
2771 case ALGORITHM_LEFT_ASYMMETRIC:
2772 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2773 case ALGORITHM_ROTATING_ZERO_RESTART:
2774 case ALGORITHM_ROTATING_N_RESTART:
2775 if (sh->pd_idx == raid_disks-1)
2776 i--; /* Q D D D P */
16a53ecc
N
2777 else if (i > sh->pd_idx)
2778 i -= 2; /* D D P Q D */
2779 break;
2780 case ALGORITHM_LEFT_SYMMETRIC:
2781 case ALGORITHM_RIGHT_SYMMETRIC:
2782 if (sh->pd_idx == raid_disks-1)
2783 i--; /* Q D D D P */
2784 else {
2785 /* D D P Q D */
2786 if (i < sh->pd_idx)
2787 i += raid_disks;
2788 i -= (sh->pd_idx + 2);
2789 }
2790 break;
99c0fb5f
N
2791 case ALGORITHM_PARITY_0:
2792 i -= 2;
2793 break;
2794 case ALGORITHM_PARITY_N:
2795 break;
2796 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2797 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2798 if (sh->pd_idx == 0)
2799 i--; /* P D D D Q */
e4424fee
N
2800 else {
2801 /* D D Q P D */
2802 if (i < sh->pd_idx)
2803 i += raid_disks;
2804 i -= (sh->pd_idx + 1);
2805 }
99c0fb5f
N
2806 break;
2807 case ALGORITHM_LEFT_ASYMMETRIC_6:
2808 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2809 if (i > sh->pd_idx)
2810 i--;
2811 break;
2812 case ALGORITHM_LEFT_SYMMETRIC_6:
2813 case ALGORITHM_RIGHT_SYMMETRIC_6:
2814 if (i < sh->pd_idx)
2815 i += data_disks + 1;
2816 i -= (sh->pd_idx + 1);
2817 break;
2818 case ALGORITHM_PARITY_0_6:
2819 i -= 1;
2820 break;
16a53ecc 2821 default:
99c0fb5f 2822 BUG();
16a53ecc
N
2823 }
2824 break;
1da177e4
LT
2825 }
2826
2827 chunk_number = stripe * data_disks + i;
35f2a591 2828 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2829
112bf897 2830 check = raid5_compute_sector(conf, r_sector,
784052ec 2831 previous, &dummy1, &sh2);
911d4ee8
N
2832 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2833 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2834 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2835 mdname(conf->mddev));
1da177e4
LT
2836 return 0;
2837 }
2838 return r_sector;
2839}
2840
600aa109 2841static void
c0f7bddb 2842schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2843 int rcw, int expand)
e33129d8 2844{
584acdd4 2845 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 2846 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2847 int level = conf->level;
e33129d8
DW
2848
2849 if (rcw) {
e33129d8
DW
2850
2851 for (i = disks; i--; ) {
2852 struct r5dev *dev = &sh->dev[i];
2853
2854 if (dev->towrite) {
2855 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2856 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2857 if (!expand)
2858 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2859 s->locked++;
e33129d8
DW
2860 }
2861 }
ce7d363a
N
2862 /* if we are not expanding this is a proper write request, and
2863 * there will be bios with new data to be drained into the
2864 * stripe cache
2865 */
2866 if (!expand) {
2867 if (!s->locked)
2868 /* False alarm, nothing to do */
2869 return;
2870 sh->reconstruct_state = reconstruct_state_drain_run;
2871 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2872 } else
2873 sh->reconstruct_state = reconstruct_state_run;
2874
2875 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2876
c0f7bddb 2877 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2878 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2879 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
2880 } else {
2881 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2882 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
2883 BUG_ON(level == 6 &&
2884 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2885 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 2886
e33129d8
DW
2887 for (i = disks; i--; ) {
2888 struct r5dev *dev = &sh->dev[i];
584acdd4 2889 if (i == pd_idx || i == qd_idx)
e33129d8
DW
2890 continue;
2891
e33129d8
DW
2892 if (dev->towrite &&
2893 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2894 test_bit(R5_Wantcompute, &dev->flags))) {
2895 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2896 set_bit(R5_LOCKED, &dev->flags);
2897 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2898 s->locked++;
e33129d8
DW
2899 }
2900 }
ce7d363a
N
2901 if (!s->locked)
2902 /* False alarm - nothing to do */
2903 return;
2904 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2905 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2906 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2907 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2908 }
2909
c0f7bddb 2910 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2911 * are in flight
2912 */
2913 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2914 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2915 s->locked++;
e33129d8 2916
c0f7bddb
YT
2917 if (level == 6) {
2918 int qd_idx = sh->qd_idx;
2919 struct r5dev *dev = &sh->dev[qd_idx];
2920
2921 set_bit(R5_LOCKED, &dev->flags);
2922 clear_bit(R5_UPTODATE, &dev->flags);
2923 s->locked++;
2924 }
2925
600aa109 2926 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2927 __func__, (unsigned long long)sh->sector,
600aa109 2928 s->locked, s->ops_request);
e33129d8 2929}
16a53ecc 2930
1da177e4
LT
2931/*
2932 * Each stripe/dev can have one or more bion attached.
16a53ecc 2933 * toread/towrite point to the first in a chain.
1da177e4
LT
2934 * The bi_next chain must be in order.
2935 */
da41ba65 2936static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2937 int forwrite, int previous)
1da177e4
LT
2938{
2939 struct bio **bip;
d1688a6d 2940 struct r5conf *conf = sh->raid_conf;
72626685 2941 int firstwrite=0;
1da177e4 2942
cbe47ec5 2943 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 2944 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
2945 (unsigned long long)sh->sector);
2946
b17459c0
SL
2947 /*
2948 * If several bio share a stripe. The bio bi_phys_segments acts as a
2949 * reference count to avoid race. The reference count should already be
2950 * increased before this function is called (for example, in
2951 * make_request()), so other bio sharing this stripe will not free the
2952 * stripe. If a stripe is owned by one stripe, the stripe lock will
2953 * protect it.
2954 */
2955 spin_lock_irq(&sh->stripe_lock);
59fc630b 2956 /* Don't allow new IO added to stripes in batch list */
2957 if (sh->batch_head)
2958 goto overlap;
72626685 2959 if (forwrite) {
1da177e4 2960 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2961 if (*bip == NULL)
72626685
N
2962 firstwrite = 1;
2963 } else
1da177e4 2964 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
2965 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2966 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
2967 goto overlap;
2968 bip = & (*bip)->bi_next;
2969 }
4f024f37 2970 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
2971 goto overlap;
2972
da41ba65 2973 if (!forwrite || previous)
2974 clear_bit(STRIPE_BATCH_READY, &sh->state);
2975
78bafebd 2976 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2977 if (*bip)
2978 bi->bi_next = *bip;
2979 *bip = bi;
e7836bd6 2980 raid5_inc_bi_active_stripes(bi);
72626685 2981
1da177e4
LT
2982 if (forwrite) {
2983 /* check if page is covered */
2984 sector_t sector = sh->dev[dd_idx].sector;
2985 for (bi=sh->dev[dd_idx].towrite;
2986 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 2987 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 2988 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
2989 if (bio_end_sector(bi) >= sector)
2990 sector = bio_end_sector(bi);
1da177e4
LT
2991 }
2992 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 2993 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2994 sh->overwrite_disks++;
1da177e4 2995 }
cbe47ec5
N
2996
2997 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 2998 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
2999 (unsigned long long)sh->sector, dd_idx);
3000
3001 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3002 /* Cannot hold spinlock over bitmap_startwrite,
3003 * but must ensure this isn't added to a batch until
3004 * we have added to the bitmap and set bm_seq.
3005 * So set STRIPE_BITMAP_PENDING to prevent
3006 * batching.
3007 * If multiple add_stripe_bio() calls race here they
3008 * much all set STRIPE_BITMAP_PENDING. So only the first one
3009 * to complete "bitmap_startwrite" gets to set
3010 * STRIPE_BIT_DELAY. This is important as once a stripe
3011 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3012 * any more.
3013 */
3014 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3015 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
3016 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3017 STRIPE_SECTORS, 0);
d0852df5
N
3018 spin_lock_irq(&sh->stripe_lock);
3019 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3020 if (!sh->batch_head) {
3021 sh->bm_seq = conf->seq_flush+1;
3022 set_bit(STRIPE_BIT_DELAY, &sh->state);
3023 }
cbe47ec5 3024 }
d0852df5 3025 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3026
3027 if (stripe_can_batch(sh))
3028 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3029 return 1;
3030
3031 overlap:
3032 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3033 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3034 return 0;
3035}
3036
d1688a6d 3037static void end_reshape(struct r5conf *conf);
29269553 3038
d1688a6d 3039static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3040 struct stripe_head *sh)
ccfcc3c1 3041{
784052ec 3042 int sectors_per_chunk =
09c9e5fa 3043 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3044 int dd_idx;
2d2063ce 3045 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3046 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3047
112bf897
N
3048 raid5_compute_sector(conf,
3049 stripe * (disks - conf->max_degraded)
b875e531 3050 *sectors_per_chunk + chunk_offset,
112bf897 3051 previous,
911d4ee8 3052 &dd_idx, sh);
ccfcc3c1
N
3053}
3054
a4456856 3055static void
d1688a6d 3056handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3057 struct stripe_head_state *s, int disks,
3058 struct bio **return_bi)
3059{
3060 int i;
59fc630b 3061 BUG_ON(sh->batch_head);
a4456856
DW
3062 for (i = disks; i--; ) {
3063 struct bio *bi;
3064 int bitmap_end = 0;
3065
3066 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3067 struct md_rdev *rdev;
a4456856
DW
3068 rcu_read_lock();
3069 rdev = rcu_dereference(conf->disks[i].rdev);
3070 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
3071 atomic_inc(&rdev->nr_pending);
3072 else
3073 rdev = NULL;
a4456856 3074 rcu_read_unlock();
7f0da59b
N
3075 if (rdev) {
3076 if (!rdev_set_badblocks(
3077 rdev,
3078 sh->sector,
3079 STRIPE_SECTORS, 0))
3080 md_error(conf->mddev, rdev);
3081 rdev_dec_pending(rdev, conf->mddev);
3082 }
a4456856 3083 }
b17459c0 3084 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3085 /* fail all writes first */
3086 bi = sh->dev[i].towrite;
3087 sh->dev[i].towrite = NULL;
7a87f434 3088 sh->overwrite_disks = 0;
b17459c0 3089 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3090 if (bi)
a4456856 3091 bitmap_end = 1;
a4456856
DW
3092
3093 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3094 wake_up(&conf->wait_for_overlap);
3095
4f024f37 3096 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3097 sh->dev[i].sector + STRIPE_SECTORS) {
3098 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3099 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 3100 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3101 md_write_end(conf->mddev);
3102 bi->bi_next = *return_bi;
3103 *return_bi = bi;
3104 }
3105 bi = nextbi;
3106 }
7eaf7e8e
SL
3107 if (bitmap_end)
3108 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3109 STRIPE_SECTORS, 0, 0);
3110 bitmap_end = 0;
a4456856
DW
3111 /* and fail all 'written' */
3112 bi = sh->dev[i].written;
3113 sh->dev[i].written = NULL;
d592a996
SL
3114 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3115 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3116 sh->dev[i].page = sh->dev[i].orig_page;
3117 }
3118
a4456856 3119 if (bi) bitmap_end = 1;
4f024f37 3120 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3121 sh->dev[i].sector + STRIPE_SECTORS) {
3122 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3123 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 3124 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3125 md_write_end(conf->mddev);
3126 bi->bi_next = *return_bi;
3127 *return_bi = bi;
3128 }
3129 bi = bi2;
3130 }
3131
b5e98d65
DW
3132 /* fail any reads if this device is non-operational and
3133 * the data has not reached the cache yet.
3134 */
3135 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3136 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3137 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3138 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3139 bi = sh->dev[i].toread;
3140 sh->dev[i].toread = NULL;
143c4d05 3141 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3142 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3143 wake_up(&conf->wait_for_overlap);
4f024f37 3144 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3145 sh->dev[i].sector + STRIPE_SECTORS) {
3146 struct bio *nextbi =
3147 r5_next_bio(bi, sh->dev[i].sector);
3148 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 3149 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3150 bi->bi_next = *return_bi;
3151 *return_bi = bi;
3152 }
3153 bi = nextbi;
3154 }
3155 }
a4456856
DW
3156 if (bitmap_end)
3157 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3158 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3159 /* If we were in the middle of a write the parity block might
3160 * still be locked - so just clear all R5_LOCKED flags
3161 */
3162 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
3163 }
3164
8b3e6cdc
DW
3165 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3166 if (atomic_dec_and_test(&conf->pending_full_writes))
3167 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3168}
3169
7f0da59b 3170static void
d1688a6d 3171handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3172 struct stripe_head_state *s)
3173{
3174 int abort = 0;
3175 int i;
3176
59fc630b 3177 BUG_ON(sh->batch_head);
7f0da59b 3178 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3179 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3180 wake_up(&conf->wait_for_overlap);
7f0da59b 3181 s->syncing = 0;
9a3e1101 3182 s->replacing = 0;
7f0da59b 3183 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3184 * Don't even need to abort as that is handled elsewhere
3185 * if needed, and not always wanted e.g. if there is a known
3186 * bad block here.
9a3e1101 3187 * For recover/replace we need to record a bad block on all
7f0da59b
N
3188 * non-sync devices, or abort the recovery
3189 */
18b9837e
N
3190 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3191 /* During recovery devices cannot be removed, so
3192 * locking and refcounting of rdevs is not needed
3193 */
3194 for (i = 0; i < conf->raid_disks; i++) {
3195 struct md_rdev *rdev = conf->disks[i].rdev;
3196 if (rdev
3197 && !test_bit(Faulty, &rdev->flags)
3198 && !test_bit(In_sync, &rdev->flags)
3199 && !rdev_set_badblocks(rdev, sh->sector,
3200 STRIPE_SECTORS, 0))
3201 abort = 1;
3202 rdev = conf->disks[i].replacement;
3203 if (rdev
3204 && !test_bit(Faulty, &rdev->flags)
3205 && !test_bit(In_sync, &rdev->flags)
3206 && !rdev_set_badblocks(rdev, sh->sector,
3207 STRIPE_SECTORS, 0))
3208 abort = 1;
3209 }
3210 if (abort)
3211 conf->recovery_disabled =
3212 conf->mddev->recovery_disabled;
7f0da59b 3213 }
18b9837e 3214 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3215}
3216
9a3e1101
N
3217static int want_replace(struct stripe_head *sh, int disk_idx)
3218{
3219 struct md_rdev *rdev;
3220 int rv = 0;
3221 /* Doing recovery so rcu locking not required */
3222 rdev = sh->raid_conf->disks[disk_idx].replacement;
3223 if (rdev
3224 && !test_bit(Faulty, &rdev->flags)
3225 && !test_bit(In_sync, &rdev->flags)
3226 && (rdev->recovery_offset <= sh->sector
3227 || rdev->mddev->recovery_cp <= sh->sector))
3228 rv = 1;
3229
3230 return rv;
3231}
3232
93b3dbce 3233/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
3234 * to be read or computed to satisfy a request.
3235 *
3236 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 3237 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 3238 */
2c58f06e
N
3239
3240static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3241 int disk_idx, int disks)
a4456856 3242{
5599becc 3243 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3244 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3245 &sh->dev[s->failed_num[1]] };
ea664c82 3246 int i;
5599becc 3247
a79cfe12
N
3248
3249 if (test_bit(R5_LOCKED, &dev->flags) ||
3250 test_bit(R5_UPTODATE, &dev->flags))
3251 /* No point reading this as we already have it or have
3252 * decided to get it.
3253 */
3254 return 0;
3255
3256 if (dev->toread ||
3257 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3258 /* We need this block to directly satisfy a request */
3259 return 1;
3260
3261 if (s->syncing || s->expanding ||
3262 (s->replacing && want_replace(sh, disk_idx)))
3263 /* When syncing, or expanding we read everything.
3264 * When replacing, we need the replaced block.
3265 */
3266 return 1;
3267
3268 if ((s->failed >= 1 && fdev[0]->toread) ||
3269 (s->failed >= 2 && fdev[1]->toread))
3270 /* If we want to read from a failed device, then
3271 * we need to actually read every other device.
3272 */
3273 return 1;
3274
a9d56950
N
3275 /* Sometimes neither read-modify-write nor reconstruct-write
3276 * cycles can work. In those cases we read every block we
3277 * can. Then the parity-update is certain to have enough to
3278 * work with.
3279 * This can only be a problem when we need to write something,
3280 * and some device has failed. If either of those tests
3281 * fail we need look no further.
3282 */
3283 if (!s->failed || !s->to_write)
3284 return 0;
3285
3286 if (test_bit(R5_Insync, &dev->flags) &&
3287 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3288 /* Pre-reads at not permitted until after short delay
3289 * to gather multiple requests. However if this
3290 * device is no Insync, the block could only be be computed
3291 * and there is no need to delay that.
3292 */
3293 return 0;
ea664c82
N
3294
3295 for (i = 0; i < s->failed; i++) {
3296 if (fdev[i]->towrite &&
3297 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3298 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3299 /* If we have a partial write to a failed
3300 * device, then we will need to reconstruct
3301 * the content of that device, so all other
3302 * devices must be read.
3303 */
3304 return 1;
3305 }
3306
3307 /* If we are forced to do a reconstruct-write, either because
3308 * the current RAID6 implementation only supports that, or
3309 * or because parity cannot be trusted and we are currently
3310 * recovering it, there is extra need to be careful.
3311 * If one of the devices that we would need to read, because
3312 * it is not being overwritten (and maybe not written at all)
3313 * is missing/faulty, then we need to read everything we can.
3314 */
3315 if (sh->raid_conf->level != 6 &&
3316 sh->sector < sh->raid_conf->mddev->recovery_cp)
3317 /* reconstruct-write isn't being forced */
3318 return 0;
3319 for (i = 0; i < s->failed; i++) {
10d82c5f
N
3320 if (s->failed_num[i] != sh->pd_idx &&
3321 s->failed_num[i] != sh->qd_idx &&
3322 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3323 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3324 return 1;
3325 }
3326
2c58f06e
N
3327 return 0;
3328}
3329
3330static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3331 int disk_idx, int disks)
3332{
3333 struct r5dev *dev = &sh->dev[disk_idx];
3334
3335 /* is the data in this block needed, and can we get it? */
3336 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3337 /* we would like to get this block, possibly by computing it,
3338 * otherwise read it if the backing disk is insync
3339 */
3340 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3341 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3342 BUG_ON(sh->batch_head);
5599becc 3343 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
3344 (s->failed && (disk_idx == s->failed_num[0] ||
3345 disk_idx == s->failed_num[1]))) {
5599becc
YT
3346 /* have disk failed, and we're requested to fetch it;
3347 * do compute it
a4456856 3348 */
5599becc
YT
3349 pr_debug("Computing stripe %llu block %d\n",
3350 (unsigned long long)sh->sector, disk_idx);
3351 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3352 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3353 set_bit(R5_Wantcompute, &dev->flags);
3354 sh->ops.target = disk_idx;
3355 sh->ops.target2 = -1; /* no 2nd target */
3356 s->req_compute = 1;
93b3dbce
N
3357 /* Careful: from this point on 'uptodate' is in the eye
3358 * of raid_run_ops which services 'compute' operations
3359 * before writes. R5_Wantcompute flags a block that will
3360 * be R5_UPTODATE by the time it is needed for a
3361 * subsequent operation.
3362 */
5599becc
YT
3363 s->uptodate++;
3364 return 1;
3365 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3366 /* Computing 2-failure is *very* expensive; only
3367 * do it if failed >= 2
3368 */
3369 int other;
3370 for (other = disks; other--; ) {
3371 if (other == disk_idx)
3372 continue;
3373 if (!test_bit(R5_UPTODATE,
3374 &sh->dev[other].flags))
3375 break;
a4456856 3376 }
5599becc
YT
3377 BUG_ON(other < 0);
3378 pr_debug("Computing stripe %llu blocks %d,%d\n",
3379 (unsigned long long)sh->sector,
3380 disk_idx, other);
3381 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3382 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3383 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3384 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3385 sh->ops.target = disk_idx;
3386 sh->ops.target2 = other;
3387 s->uptodate += 2;
3388 s->req_compute = 1;
3389 return 1;
3390 } else if (test_bit(R5_Insync, &dev->flags)) {
3391 set_bit(R5_LOCKED, &dev->flags);
3392 set_bit(R5_Wantread, &dev->flags);
3393 s->locked++;
3394 pr_debug("Reading block %d (sync=%d)\n",
3395 disk_idx, s->syncing);
a4456856
DW
3396 }
3397 }
5599becc
YT
3398
3399 return 0;
3400}
3401
3402/**
93b3dbce 3403 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3404 */
93b3dbce
N
3405static void handle_stripe_fill(struct stripe_head *sh,
3406 struct stripe_head_state *s,
3407 int disks)
5599becc
YT
3408{
3409 int i;
3410
3411 /* look for blocks to read/compute, skip this if a compute
3412 * is already in flight, or if the stripe contents are in the
3413 * midst of changing due to a write
3414 */
3415 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3416 !sh->reconstruct_state)
3417 for (i = disks; i--; )
93b3dbce 3418 if (fetch_block(sh, s, i, disks))
5599becc 3419 break;
a4456856
DW
3420 set_bit(STRIPE_HANDLE, &sh->state);
3421}
3422
1fe797e6 3423/* handle_stripe_clean_event
a4456856
DW
3424 * any written block on an uptodate or failed drive can be returned.
3425 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3426 * never LOCKED, so we don't need to test 'failed' directly.
3427 */
d1688a6d 3428static void handle_stripe_clean_event(struct r5conf *conf,
a4456856
DW
3429 struct stripe_head *sh, int disks, struct bio **return_bi)
3430{
3431 int i;
3432 struct r5dev *dev;
f8dfcffd 3433 int discard_pending = 0;
59fc630b 3434 struct stripe_head *head_sh = sh;
3435 bool do_endio = false;
3436 int wakeup_nr = 0;
a4456856
DW
3437
3438 for (i = disks; i--; )
3439 if (sh->dev[i].written) {
3440 dev = &sh->dev[i];
3441 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3442 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3443 test_bit(R5_Discard, &dev->flags) ||
3444 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3445 /* We can return any write requests */
3446 struct bio *wbi, *wbi2;
45b4233c 3447 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3448 if (test_and_clear_bit(R5_Discard, &dev->flags))
3449 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3450 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3451 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3452 }
59fc630b 3453 do_endio = true;
3454
3455returnbi:
3456 dev->page = dev->orig_page;
a4456856
DW
3457 wbi = dev->written;
3458 dev->written = NULL;
4f024f37 3459 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3460 dev->sector + STRIPE_SECTORS) {
3461 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 3462 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856
DW
3463 md_write_end(conf->mddev);
3464 wbi->bi_next = *return_bi;
3465 *return_bi = wbi;
3466 }
3467 wbi = wbi2;
3468 }
7eaf7e8e
SL
3469 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3470 STRIPE_SECTORS,
a4456856 3471 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3472 0);
59fc630b 3473 if (head_sh->batch_head) {
3474 sh = list_first_entry(&sh->batch_list,
3475 struct stripe_head,
3476 batch_list);
3477 if (sh != head_sh) {
3478 dev = &sh->dev[i];
3479 goto returnbi;
3480 }
3481 }
3482 sh = head_sh;
3483 dev = &sh->dev[i];
f8dfcffd
N
3484 } else if (test_bit(R5_Discard, &dev->flags))
3485 discard_pending = 1;
d592a996
SL
3486 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3487 WARN_ON(dev->page != dev->orig_page);
f8dfcffd
N
3488 }
3489 if (!discard_pending &&
3490 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3491 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3492 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3493 if (sh->qd_idx >= 0) {
3494 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3495 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3496 }
3497 /* now that discard is done we can proceed with any sync */
3498 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3499 /*
3500 * SCSI discard will change some bio fields and the stripe has
3501 * no updated data, so remove it from hash list and the stripe
3502 * will be reinitialized
3503 */
3504 spin_lock_irq(&conf->device_lock);
59fc630b 3505unhash:
d47648fc 3506 remove_hash(sh);
59fc630b 3507 if (head_sh->batch_head) {
3508 sh = list_first_entry(&sh->batch_list,
3509 struct stripe_head, batch_list);
3510 if (sh != head_sh)
3511 goto unhash;
3512 }
d47648fc 3513 spin_unlock_irq(&conf->device_lock);
59fc630b 3514 sh = head_sh;
3515
f8dfcffd
N
3516 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3517 set_bit(STRIPE_HANDLE, &sh->state);
3518
3519 }
8b3e6cdc
DW
3520
3521 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3522 if (atomic_dec_and_test(&conf->pending_full_writes))
3523 md_wakeup_thread(conf->mddev->thread);
59fc630b 3524
3525 if (!head_sh->batch_head || !do_endio)
3526 return;
3527 for (i = 0; i < head_sh->disks; i++) {
3528 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
3529 wakeup_nr++;
3530 }
3531 while (!list_empty(&head_sh->batch_list)) {
3532 int i;
3533 sh = list_first_entry(&head_sh->batch_list,
3534 struct stripe_head, batch_list);
3535 list_del_init(&sh->batch_list);
3536
dabc4ec6 3537 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
3538 head_sh->state & ~((1 << STRIPE_ACTIVE) |
3539 (1 << STRIPE_PREREAD_ACTIVE) |
3540 STRIPE_EXPAND_SYNC_FLAG));
59fc630b 3541 sh->check_state = head_sh->check_state;
3542 sh->reconstruct_state = head_sh->reconstruct_state;
3543 for (i = 0; i < sh->disks; i++) {
3544 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3545 wakeup_nr++;
3546 sh->dev[i].flags = head_sh->dev[i].flags;
3547 }
3548
3549 spin_lock_irq(&sh->stripe_lock);
3550 sh->batch_head = NULL;
3551 spin_unlock_irq(&sh->stripe_lock);
dabc4ec6 3552 if (sh->state & STRIPE_EXPAND_SYNC_FLAG)
3553 set_bit(STRIPE_HANDLE, &sh->state);
59fc630b 3554 release_stripe(sh);
3555 }
3556
3557 spin_lock_irq(&head_sh->stripe_lock);
3558 head_sh->batch_head = NULL;
3559 spin_unlock_irq(&head_sh->stripe_lock);
3560 wake_up_nr(&conf->wait_for_overlap, wakeup_nr);
dabc4ec6 3561 if (head_sh->state & STRIPE_EXPAND_SYNC_FLAG)
3562 set_bit(STRIPE_HANDLE, &head_sh->state);
a4456856
DW
3563}
3564
d1688a6d 3565static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
3566 struct stripe_head *sh,
3567 struct stripe_head_state *s,
3568 int disks)
a4456856
DW
3569{
3570 int rmw = 0, rcw = 0, i;
a7854487
AL
3571 sector_t recovery_cp = conf->mddev->recovery_cp;
3572
584acdd4 3573 /* Check whether resync is now happening or should start.
a7854487
AL
3574 * If yes, then the array is dirty (after unclean shutdown or
3575 * initial creation), so parity in some stripes might be inconsistent.
3576 * In this case, we need to always do reconstruct-write, to ensure
3577 * that in case of drive failure or read-error correction, we
3578 * generate correct data from the parity.
3579 */
584acdd4 3580 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3581 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3582 s->failed == 0)) {
a7854487 3583 /* Calculate the real rcw later - for now make it
c8ac1803
N
3584 * look like rcw is cheaper
3585 */
3586 rcw = 1; rmw = 2;
584acdd4
MS
3587 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3588 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3589 (unsigned long long)sh->sector);
c8ac1803 3590 } else for (i = disks; i--; ) {
a4456856
DW
3591 /* would I have to read this buffer for read_modify_write */
3592 struct r5dev *dev = &sh->dev[i];
584acdd4 3593 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3594 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3595 !(test_bit(R5_UPTODATE, &dev->flags) ||
3596 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3597 if (test_bit(R5_Insync, &dev->flags))
3598 rmw++;
3599 else
3600 rmw += 2*disks; /* cannot read it */
3601 }
3602 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3603 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3604 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3605 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3606 !(test_bit(R5_UPTODATE, &dev->flags) ||
3607 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3608 if (test_bit(R5_Insync, &dev->flags))
3609 rcw++;
a4456856
DW
3610 else
3611 rcw += 2*disks;
3612 }
3613 }
45b4233c 3614 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
3615 (unsigned long long)sh->sector, rmw, rcw);
3616 set_bit(STRIPE_HANDLE, &sh->state);
584acdd4 3617 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
a4456856 3618 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3619 if (conf->mddev->queue)
3620 blk_add_trace_msg(conf->mddev->queue,
3621 "raid5 rmw %llu %d",
3622 (unsigned long long)sh->sector, rmw);
a4456856
DW
3623 for (i = disks; i--; ) {
3624 struct r5dev *dev = &sh->dev[i];
584acdd4 3625 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3626 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3627 !(test_bit(R5_UPTODATE, &dev->flags) ||
3628 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3629 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3630 if (test_bit(STRIPE_PREREAD_ACTIVE,
3631 &sh->state)) {
3632 pr_debug("Read_old block %d for r-m-w\n",
3633 i);
a4456856
DW
3634 set_bit(R5_LOCKED, &dev->flags);
3635 set_bit(R5_Wantread, &dev->flags);
3636 s->locked++;
3637 } else {
3638 set_bit(STRIPE_DELAYED, &sh->state);
3639 set_bit(STRIPE_HANDLE, &sh->state);
3640 }
3641 }
3642 }
a9add5d9 3643 }
584acdd4 3644 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
a4456856 3645 /* want reconstruct write, but need to get some data */
a9add5d9 3646 int qread =0;
c8ac1803 3647 rcw = 0;
a4456856
DW
3648 for (i = disks; i--; ) {
3649 struct r5dev *dev = &sh->dev[i];
3650 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3651 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3652 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3653 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3654 test_bit(R5_Wantcompute, &dev->flags))) {
3655 rcw++;
67f45548
N
3656 if (test_bit(R5_Insync, &dev->flags) &&
3657 test_bit(STRIPE_PREREAD_ACTIVE,
3658 &sh->state)) {
45b4233c 3659 pr_debug("Read_old block "
a4456856
DW
3660 "%d for Reconstruct\n", i);
3661 set_bit(R5_LOCKED, &dev->flags);
3662 set_bit(R5_Wantread, &dev->flags);
3663 s->locked++;
a9add5d9 3664 qread++;
a4456856
DW
3665 } else {
3666 set_bit(STRIPE_DELAYED, &sh->state);
3667 set_bit(STRIPE_HANDLE, &sh->state);
3668 }
3669 }
3670 }
e3620a3a 3671 if (rcw && conf->mddev->queue)
a9add5d9
N
3672 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3673 (unsigned long long)sh->sector,
3674 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3675 }
b1b02fe9
N
3676
3677 if (rcw > disks && rmw > disks &&
3678 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3679 set_bit(STRIPE_DELAYED, &sh->state);
3680
a4456856
DW
3681 /* now if nothing is locked, and if we have enough data,
3682 * we can start a write request
3683 */
f38e1219
DW
3684 /* since handle_stripe can be called at any time we need to handle the
3685 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
3686 * subsequent call wants to start a write request. raid_run_ops only
3687 * handles the case where compute block and reconstruct are requested
f38e1219
DW
3688 * simultaneously. If this is not the case then new writes need to be
3689 * held off until the compute completes.
3690 */
976ea8d4
DW
3691 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3692 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3693 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 3694 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
3695}
3696
d1688a6d 3697static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3698 struct stripe_head_state *s, int disks)
3699{
ecc65c9b 3700 struct r5dev *dev = NULL;
bd2ab670 3701
59fc630b 3702 BUG_ON(sh->batch_head);
a4456856 3703 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 3704
ecc65c9b
DW
3705 switch (sh->check_state) {
3706 case check_state_idle:
3707 /* start a new check operation if there are no failures */
bd2ab670 3708 if (s->failed == 0) {
bd2ab670 3709 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
3710 sh->check_state = check_state_run;
3711 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 3712 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 3713 s->uptodate--;
ecc65c9b 3714 break;
bd2ab670 3715 }
f2b3b44d 3716 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
3717 /* fall through */
3718 case check_state_compute_result:
3719 sh->check_state = check_state_idle;
3720 if (!dev)
3721 dev = &sh->dev[sh->pd_idx];
3722
3723 /* check that a write has not made the stripe insync */
3724 if (test_bit(STRIPE_INSYNC, &sh->state))
3725 break;
c8894419 3726
a4456856 3727 /* either failed parity check, or recovery is happening */
a4456856
DW
3728 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3729 BUG_ON(s->uptodate != disks);
3730
3731 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 3732 s->locked++;
a4456856 3733 set_bit(R5_Wantwrite, &dev->flags);
830ea016 3734
a4456856 3735 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 3736 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
3737 break;
3738 case check_state_run:
3739 break; /* we will be called again upon completion */
3740 case check_state_check_result:
3741 sh->check_state = check_state_idle;
3742
3743 /* if a failure occurred during the check operation, leave
3744 * STRIPE_INSYNC not set and let the stripe be handled again
3745 */
3746 if (s->failed)
3747 break;
3748
3749 /* handle a successful check operation, if parity is correct
3750 * we are done. Otherwise update the mismatch count and repair
3751 * parity if !MD_RECOVERY_CHECK
3752 */
ad283ea4 3753 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
3754 /* parity is correct (on disc,
3755 * not in buffer any more)
3756 */
3757 set_bit(STRIPE_INSYNC, &sh->state);
3758 else {
7f7583d4 3759 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
3760 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3761 /* don't try to repair!! */
3762 set_bit(STRIPE_INSYNC, &sh->state);
3763 else {
3764 sh->check_state = check_state_compute_run;
976ea8d4 3765 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3766 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3767 set_bit(R5_Wantcompute,
3768 &sh->dev[sh->pd_idx].flags);
3769 sh->ops.target = sh->pd_idx;
ac6b53b6 3770 sh->ops.target2 = -1;
ecc65c9b
DW
3771 s->uptodate++;
3772 }
3773 }
3774 break;
3775 case check_state_compute_run:
3776 break;
3777 default:
3778 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3779 __func__, sh->check_state,
3780 (unsigned long long) sh->sector);
3781 BUG();
a4456856
DW
3782 }
3783}
3784
d1688a6d 3785static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3786 struct stripe_head_state *s,
f2b3b44d 3787 int disks)
a4456856 3788{
a4456856 3789 int pd_idx = sh->pd_idx;
34e04e87 3790 int qd_idx = sh->qd_idx;
d82dfee0 3791 struct r5dev *dev;
a4456856 3792
59fc630b 3793 BUG_ON(sh->batch_head);
a4456856
DW
3794 set_bit(STRIPE_HANDLE, &sh->state);
3795
3796 BUG_ON(s->failed > 2);
d82dfee0 3797
a4456856
DW
3798 /* Want to check and possibly repair P and Q.
3799 * However there could be one 'failed' device, in which
3800 * case we can only check one of them, possibly using the
3801 * other to generate missing data
3802 */
3803
d82dfee0
DW
3804 switch (sh->check_state) {
3805 case check_state_idle:
3806 /* start a new check operation if there are < 2 failures */
f2b3b44d 3807 if (s->failed == s->q_failed) {
d82dfee0 3808 /* The only possible failed device holds Q, so it
a4456856
DW
3809 * makes sense to check P (If anything else were failed,
3810 * we would have used P to recreate it).
3811 */
d82dfee0 3812 sh->check_state = check_state_run;
a4456856 3813 }
f2b3b44d 3814 if (!s->q_failed && s->failed < 2) {
d82dfee0 3815 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3816 * anything, so it makes sense to check it
3817 */
d82dfee0
DW
3818 if (sh->check_state == check_state_run)
3819 sh->check_state = check_state_run_pq;
3820 else
3821 sh->check_state = check_state_run_q;
a4456856 3822 }
a4456856 3823
d82dfee0
DW
3824 /* discard potentially stale zero_sum_result */
3825 sh->ops.zero_sum_result = 0;
a4456856 3826
d82dfee0
DW
3827 if (sh->check_state == check_state_run) {
3828 /* async_xor_zero_sum destroys the contents of P */
3829 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3830 s->uptodate--;
a4456856 3831 }
d82dfee0
DW
3832 if (sh->check_state >= check_state_run &&
3833 sh->check_state <= check_state_run_pq) {
3834 /* async_syndrome_zero_sum preserves P and Q, so
3835 * no need to mark them !uptodate here
3836 */
3837 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3838 break;
a4456856
DW
3839 }
3840
d82dfee0
DW
3841 /* we have 2-disk failure */
3842 BUG_ON(s->failed != 2);
3843 /* fall through */
3844 case check_state_compute_result:
3845 sh->check_state = check_state_idle;
a4456856 3846
d82dfee0
DW
3847 /* check that a write has not made the stripe insync */
3848 if (test_bit(STRIPE_INSYNC, &sh->state))
3849 break;
a4456856
DW
3850
3851 /* now write out any block on a failed drive,
d82dfee0 3852 * or P or Q if they were recomputed
a4456856 3853 */
d82dfee0 3854 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3855 if (s->failed == 2) {
f2b3b44d 3856 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3857 s->locked++;
3858 set_bit(R5_LOCKED, &dev->flags);
3859 set_bit(R5_Wantwrite, &dev->flags);
3860 }
3861 if (s->failed >= 1) {
f2b3b44d 3862 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3863 s->locked++;
3864 set_bit(R5_LOCKED, &dev->flags);
3865 set_bit(R5_Wantwrite, &dev->flags);
3866 }
d82dfee0 3867 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3868 dev = &sh->dev[pd_idx];
3869 s->locked++;
3870 set_bit(R5_LOCKED, &dev->flags);
3871 set_bit(R5_Wantwrite, &dev->flags);
3872 }
d82dfee0 3873 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3874 dev = &sh->dev[qd_idx];
3875 s->locked++;
3876 set_bit(R5_LOCKED, &dev->flags);
3877 set_bit(R5_Wantwrite, &dev->flags);
3878 }
3879 clear_bit(STRIPE_DEGRADED, &sh->state);
3880
3881 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3882 break;
3883 case check_state_run:
3884 case check_state_run_q:
3885 case check_state_run_pq:
3886 break; /* we will be called again upon completion */
3887 case check_state_check_result:
3888 sh->check_state = check_state_idle;
3889
3890 /* handle a successful check operation, if parity is correct
3891 * we are done. Otherwise update the mismatch count and repair
3892 * parity if !MD_RECOVERY_CHECK
3893 */
3894 if (sh->ops.zero_sum_result == 0) {
3895 /* both parities are correct */
3896 if (!s->failed)
3897 set_bit(STRIPE_INSYNC, &sh->state);
3898 else {
3899 /* in contrast to the raid5 case we can validate
3900 * parity, but still have a failure to write
3901 * back
3902 */
3903 sh->check_state = check_state_compute_result;
3904 /* Returning at this point means that we may go
3905 * off and bring p and/or q uptodate again so
3906 * we make sure to check zero_sum_result again
3907 * to verify if p or q need writeback
3908 */
3909 }
3910 } else {
7f7583d4 3911 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3912 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3913 /* don't try to repair!! */
3914 set_bit(STRIPE_INSYNC, &sh->state);
3915 else {
3916 int *target = &sh->ops.target;
3917
3918 sh->ops.target = -1;
3919 sh->ops.target2 = -1;
3920 sh->check_state = check_state_compute_run;
3921 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3922 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3923 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3924 set_bit(R5_Wantcompute,
3925 &sh->dev[pd_idx].flags);
3926 *target = pd_idx;
3927 target = &sh->ops.target2;
3928 s->uptodate++;
3929 }
3930 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3931 set_bit(R5_Wantcompute,
3932 &sh->dev[qd_idx].flags);
3933 *target = qd_idx;
3934 s->uptodate++;
3935 }
3936 }
3937 }
3938 break;
3939 case check_state_compute_run:
3940 break;
3941 default:
3942 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3943 __func__, sh->check_state,
3944 (unsigned long long) sh->sector);
3945 BUG();
a4456856
DW
3946 }
3947}
3948
d1688a6d 3949static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3950{
3951 int i;
3952
3953 /* We have read all the blocks in this stripe and now we need to
3954 * copy some of them into a target stripe for expand.
3955 */
f0a50d37 3956 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 3957 BUG_ON(sh->batch_head);
a4456856
DW
3958 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3959 for (i = 0; i < sh->disks; i++)
34e04e87 3960 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3961 int dd_idx, j;
a4456856 3962 struct stripe_head *sh2;
a08abd8c 3963 struct async_submit_ctl submit;
a4456856 3964
784052ec 3965 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
3966 sector_t s = raid5_compute_sector(conf, bn, 0,
3967 &dd_idx, NULL);
a8c906ca 3968 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3969 if (sh2 == NULL)
3970 /* so far only the early blocks of this stripe
3971 * have been requested. When later blocks
3972 * get requested, we will try again
3973 */
3974 continue;
3975 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3976 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3977 /* must have already done this block */
3978 release_stripe(sh2);
3979 continue;
3980 }
f0a50d37
DW
3981
3982 /* place all the copies on one channel */
a08abd8c 3983 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3984 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3985 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3986 &submit);
f0a50d37 3987
a4456856
DW
3988 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3989 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3990 for (j = 0; j < conf->raid_disks; j++)
3991 if (j != sh2->pd_idx &&
86c374ba 3992 j != sh2->qd_idx &&
a4456856
DW
3993 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3994 break;
3995 if (j == conf->raid_disks) {
3996 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3997 set_bit(STRIPE_HANDLE, &sh2->state);
3998 }
3999 release_stripe(sh2);
f0a50d37 4000
a4456856 4001 }
a2e08551 4002 /* done submitting copies, wait for them to complete */
749586b7 4003 async_tx_quiesce(&tx);
a4456856 4004}
1da177e4
LT
4005
4006/*
4007 * handle_stripe - do things to a stripe.
4008 *
9a3e1101
N
4009 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4010 * state of various bits to see what needs to be done.
1da177e4 4011 * Possible results:
9a3e1101
N
4012 * return some read requests which now have data
4013 * return some write requests which are safely on storage
1da177e4
LT
4014 * schedule a read on some buffers
4015 * schedule a write of some buffers
4016 * return confirmation of parity correctness
4017 *
1da177e4 4018 */
a4456856 4019
acfe726b 4020static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4021{
d1688a6d 4022 struct r5conf *conf = sh->raid_conf;
f416885e 4023 int disks = sh->disks;
474af965
N
4024 struct r5dev *dev;
4025 int i;
9a3e1101 4026 int do_recovery = 0;
1da177e4 4027
acfe726b
N
4028 memset(s, 0, sizeof(*s));
4029
dabc4ec6 4030 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4031 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4032 s->failed_num[0] = -1;
4033 s->failed_num[1] = -1;
1da177e4 4034
acfe726b 4035 /* Now to look around and see what can be done */
1da177e4 4036 rcu_read_lock();
16a53ecc 4037 for (i=disks; i--; ) {
3cb03002 4038 struct md_rdev *rdev;
31c176ec
N
4039 sector_t first_bad;
4040 int bad_sectors;
4041 int is_bad = 0;
acfe726b 4042
16a53ecc 4043 dev = &sh->dev[i];
1da177e4 4044
45b4233c 4045 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4046 i, dev->flags,
4047 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4048 /* maybe we can reply to a read
4049 *
4050 * new wantfill requests are only permitted while
4051 * ops_complete_biofill is guaranteed to be inactive
4052 */
4053 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4054 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4055 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4056
16a53ecc 4057 /* now count some things */
cc94015a
N
4058 if (test_bit(R5_LOCKED, &dev->flags))
4059 s->locked++;
4060 if (test_bit(R5_UPTODATE, &dev->flags))
4061 s->uptodate++;
2d6e4ecc 4062 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4063 s->compute++;
4064 BUG_ON(s->compute > 2);
2d6e4ecc 4065 }
1da177e4 4066
acfe726b 4067 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4068 s->to_fill++;
acfe726b 4069 else if (dev->toread)
cc94015a 4070 s->to_read++;
16a53ecc 4071 if (dev->towrite) {
cc94015a 4072 s->to_write++;
16a53ecc 4073 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4074 s->non_overwrite++;
16a53ecc 4075 }
a4456856 4076 if (dev->written)
cc94015a 4077 s->written++;
14a75d3e
N
4078 /* Prefer to use the replacement for reads, but only
4079 * if it is recovered enough and has no bad blocks.
4080 */
4081 rdev = rcu_dereference(conf->disks[i].replacement);
4082 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4083 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4084 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4085 &first_bad, &bad_sectors))
4086 set_bit(R5_ReadRepl, &dev->flags);
4087 else {
9a3e1101
N
4088 if (rdev)
4089 set_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4090 rdev = rcu_dereference(conf->disks[i].rdev);
4091 clear_bit(R5_ReadRepl, &dev->flags);
4092 }
9283d8c5
N
4093 if (rdev && test_bit(Faulty, &rdev->flags))
4094 rdev = NULL;
31c176ec
N
4095 if (rdev) {
4096 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4097 &first_bad, &bad_sectors);
4098 if (s->blocked_rdev == NULL
4099 && (test_bit(Blocked, &rdev->flags)
4100 || is_bad < 0)) {
4101 if (is_bad < 0)
4102 set_bit(BlockedBadBlocks,
4103 &rdev->flags);
4104 s->blocked_rdev = rdev;
4105 atomic_inc(&rdev->nr_pending);
4106 }
6bfe0b49 4107 }
415e72d0
N
4108 clear_bit(R5_Insync, &dev->flags);
4109 if (!rdev)
4110 /* Not in-sync */;
31c176ec
N
4111 else if (is_bad) {
4112 /* also not in-sync */
18b9837e
N
4113 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4114 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4115 /* treat as in-sync, but with a read error
4116 * which we can now try to correct
4117 */
4118 set_bit(R5_Insync, &dev->flags);
4119 set_bit(R5_ReadError, &dev->flags);
4120 }
4121 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4122 set_bit(R5_Insync, &dev->flags);
30d7a483 4123 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4124 /* in sync if before recovery_offset */
30d7a483
N
4125 set_bit(R5_Insync, &dev->flags);
4126 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4127 test_bit(R5_Expanded, &dev->flags))
4128 /* If we've reshaped into here, we assume it is Insync.
4129 * We will shortly update recovery_offset to make
4130 * it official.
4131 */
4132 set_bit(R5_Insync, &dev->flags);
4133
1cc03eb9 4134 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4135 /* This flag does not apply to '.replacement'
4136 * only to .rdev, so make sure to check that*/
4137 struct md_rdev *rdev2 = rcu_dereference(
4138 conf->disks[i].rdev);
4139 if (rdev2 == rdev)
4140 clear_bit(R5_Insync, &dev->flags);
4141 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4142 s->handle_bad_blocks = 1;
14a75d3e 4143 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4144 } else
4145 clear_bit(R5_WriteError, &dev->flags);
4146 }
1cc03eb9 4147 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4148 /* This flag does not apply to '.replacement'
4149 * only to .rdev, so make sure to check that*/
4150 struct md_rdev *rdev2 = rcu_dereference(
4151 conf->disks[i].rdev);
4152 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4153 s->handle_bad_blocks = 1;
14a75d3e 4154 atomic_inc(&rdev2->nr_pending);
b84db560
N
4155 } else
4156 clear_bit(R5_MadeGood, &dev->flags);
4157 }
977df362
N
4158 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4159 struct md_rdev *rdev2 = rcu_dereference(
4160 conf->disks[i].replacement);
4161 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4162 s->handle_bad_blocks = 1;
4163 atomic_inc(&rdev2->nr_pending);
4164 } else
4165 clear_bit(R5_MadeGoodRepl, &dev->flags);
4166 }
415e72d0 4167 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4168 /* The ReadError flag will just be confusing now */
4169 clear_bit(R5_ReadError, &dev->flags);
4170 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4171 }
415e72d0
N
4172 if (test_bit(R5_ReadError, &dev->flags))
4173 clear_bit(R5_Insync, &dev->flags);
4174 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4175 if (s->failed < 2)
4176 s->failed_num[s->failed] = i;
4177 s->failed++;
9a3e1101
N
4178 if (rdev && !test_bit(Faulty, &rdev->flags))
4179 do_recovery = 1;
415e72d0 4180 }
1da177e4 4181 }
9a3e1101
N
4182 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4183 /* If there is a failed device being replaced,
4184 * we must be recovering.
4185 * else if we are after recovery_cp, we must be syncing
c6d2e084 4186 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4187 * else we can only be replacing
4188 * sync and recovery both need to read all devices, and so
4189 * use the same flag.
4190 */
4191 if (do_recovery ||
c6d2e084 4192 sh->sector >= conf->mddev->recovery_cp ||
4193 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4194 s->syncing = 1;
4195 else
4196 s->replacing = 1;
4197 }
1da177e4 4198 rcu_read_unlock();
cc94015a
N
4199}
4200
59fc630b 4201static int clear_batch_ready(struct stripe_head *sh)
4202{
b15a9dbd
N
4203 /* Return '1' if this is a member of batch, or
4204 * '0' if it is a lone stripe or a head which can now be
4205 * handled.
4206 */
59fc630b 4207 struct stripe_head *tmp;
4208 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4209 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4210 spin_lock(&sh->stripe_lock);
4211 if (!sh->batch_head) {
4212 spin_unlock(&sh->stripe_lock);
4213 return 0;
4214 }
4215
4216 /*
4217 * this stripe could be added to a batch list before we check
4218 * BATCH_READY, skips it
4219 */
4220 if (sh->batch_head != sh) {
4221 spin_unlock(&sh->stripe_lock);
4222 return 1;
4223 }
4224 spin_lock(&sh->batch_lock);
4225 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4226 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4227 spin_unlock(&sh->batch_lock);
4228 spin_unlock(&sh->stripe_lock);
4229
4230 /*
4231 * BATCH_READY is cleared, no new stripes can be added.
4232 * batch_list can be accessed without lock
4233 */
4234 return 0;
4235}
4236
72ac7330 4237static void check_break_stripe_batch_list(struct stripe_head *sh)
4238{
4239 struct stripe_head *head_sh, *next;
4240 int i;
4241
4242 if (!test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4243 return;
4244
4245 head_sh = sh;
72ac7330 4246
bb27051f
N
4247 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4248
72ac7330 4249 list_del_init(&sh->batch_list);
4250
dabc4ec6 4251 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
4252 head_sh->state & ~((1 << STRIPE_ACTIVE) |
4253 (1 << STRIPE_PREREAD_ACTIVE) |
4254 (1 << STRIPE_DEGRADED) |
4255 STRIPE_EXPAND_SYNC_FLAG));
72ac7330 4256 sh->check_state = head_sh->check_state;
4257 sh->reconstruct_state = head_sh->reconstruct_state;
4258 for (i = 0; i < sh->disks; i++)
4259 sh->dev[i].flags = head_sh->dev[i].flags &
4260 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4261
4262 spin_lock_irq(&sh->stripe_lock);
4263 sh->batch_head = NULL;
4264 spin_unlock_irq(&sh->stripe_lock);
4265
4266 set_bit(STRIPE_HANDLE, &sh->state);
4267 release_stripe(sh);
72ac7330 4268 }
4269}
4270
cc94015a
N
4271static void handle_stripe(struct stripe_head *sh)
4272{
4273 struct stripe_head_state s;
d1688a6d 4274 struct r5conf *conf = sh->raid_conf;
3687c061 4275 int i;
84789554
N
4276 int prexor;
4277 int disks = sh->disks;
474af965 4278 struct r5dev *pdev, *qdev;
cc94015a
N
4279
4280 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4281 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4282 /* already being handled, ensure it gets handled
4283 * again when current action finishes */
4284 set_bit(STRIPE_HANDLE, &sh->state);
4285 return;
4286 }
4287
59fc630b 4288 if (clear_batch_ready(sh) ) {
4289 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4290 return;
4291 }
4292
72ac7330 4293 check_break_stripe_batch_list(sh);
4294
dabc4ec6 4295 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd
N
4296 spin_lock(&sh->stripe_lock);
4297 /* Cannot process 'sync' concurrently with 'discard' */
4298 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4299 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4300 set_bit(STRIPE_SYNCING, &sh->state);
4301 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4302 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4303 }
4304 spin_unlock(&sh->stripe_lock);
cc94015a
N
4305 }
4306 clear_bit(STRIPE_DELAYED, &sh->state);
4307
4308 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4309 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4310 (unsigned long long)sh->sector, sh->state,
4311 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4312 sh->check_state, sh->reconstruct_state);
3687c061 4313
acfe726b 4314 analyse_stripe(sh, &s);
c5a31000 4315
bc2607f3
N
4316 if (s.handle_bad_blocks) {
4317 set_bit(STRIPE_HANDLE, &sh->state);
4318 goto finish;
4319 }
4320
474af965
N
4321 if (unlikely(s.blocked_rdev)) {
4322 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4323 s.replacing || s.to_write || s.written) {
474af965
N
4324 set_bit(STRIPE_HANDLE, &sh->state);
4325 goto finish;
4326 }
4327 /* There is nothing for the blocked_rdev to block */
4328 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4329 s.blocked_rdev = NULL;
4330 }
4331
4332 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4333 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4334 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4335 }
4336
4337 pr_debug("locked=%d uptodate=%d to_read=%d"
4338 " to_write=%d failed=%d failed_num=%d,%d\n",
4339 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4340 s.failed_num[0], s.failed_num[1]);
4341 /* check if the array has lost more than max_degraded devices and,
4342 * if so, some requests might need to be failed.
4343 */
9a3f530f
N
4344 if (s.failed > conf->max_degraded) {
4345 sh->check_state = 0;
4346 sh->reconstruct_state = 0;
4347 if (s.to_read+s.to_write+s.written)
4348 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 4349 if (s.syncing + s.replacing)
9a3f530f
N
4350 handle_failed_sync(conf, sh, &s);
4351 }
474af965 4352
84789554
N
4353 /* Now we check to see if any write operations have recently
4354 * completed
4355 */
4356 prexor = 0;
4357 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4358 prexor = 1;
4359 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4360 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4361 sh->reconstruct_state = reconstruct_state_idle;
4362
4363 /* All the 'written' buffers and the parity block are ready to
4364 * be written back to disk
4365 */
9e444768
SL
4366 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4367 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4368 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4369 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4370 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4371 for (i = disks; i--; ) {
4372 struct r5dev *dev = &sh->dev[i];
4373 if (test_bit(R5_LOCKED, &dev->flags) &&
4374 (i == sh->pd_idx || i == sh->qd_idx ||
4375 dev->written)) {
4376 pr_debug("Writing block %d\n", i);
4377 set_bit(R5_Wantwrite, &dev->flags);
4378 if (prexor)
4379 continue;
9c4bdf69
N
4380 if (s.failed > 1)
4381 continue;
84789554
N
4382 if (!test_bit(R5_Insync, &dev->flags) ||
4383 ((i == sh->pd_idx || i == sh->qd_idx) &&
4384 s.failed == 0))
4385 set_bit(STRIPE_INSYNC, &sh->state);
4386 }
4387 }
4388 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4389 s.dec_preread_active = 1;
4390 }
4391
ef5b7c69
N
4392 /*
4393 * might be able to return some write requests if the parity blocks
4394 * are safe, or on a failed drive
4395 */
4396 pdev = &sh->dev[sh->pd_idx];
4397 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4398 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4399 qdev = &sh->dev[sh->qd_idx];
4400 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4401 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4402 || conf->level < 6;
4403
4404 if (s.written &&
4405 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4406 && !test_bit(R5_LOCKED, &pdev->flags)
4407 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4408 test_bit(R5_Discard, &pdev->flags))))) &&
4409 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4410 && !test_bit(R5_LOCKED, &qdev->flags)
4411 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4412 test_bit(R5_Discard, &qdev->flags))))))
4413 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4414
4415 /* Now we might consider reading some blocks, either to check/generate
4416 * parity, or to satisfy requests
4417 * or to load a block that is being partially written.
4418 */
4419 if (s.to_read || s.non_overwrite
4420 || (conf->level == 6 && s.to_write && s.failed)
4421 || (s.syncing && (s.uptodate + s.compute < disks))
4422 || s.replacing
4423 || s.expanding)
4424 handle_stripe_fill(sh, &s, disks);
4425
84789554
N
4426 /* Now to consider new write requests and what else, if anything
4427 * should be read. We do not handle new writes when:
4428 * 1/ A 'write' operation (copy+xor) is already in flight.
4429 * 2/ A 'check' operation is in flight, as it may clobber the parity
4430 * block.
4431 */
4432 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4433 handle_stripe_dirtying(conf, sh, &s, disks);
4434
4435 /* maybe we need to check and possibly fix the parity for this stripe
4436 * Any reads will already have been scheduled, so we just see if enough
4437 * data is available. The parity check is held off while parity
4438 * dependent operations are in flight.
4439 */
4440 if (sh->check_state ||
4441 (s.syncing && s.locked == 0 &&
4442 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4443 !test_bit(STRIPE_INSYNC, &sh->state))) {
4444 if (conf->level == 6)
4445 handle_parity_checks6(conf, sh, &s, disks);
4446 else
4447 handle_parity_checks5(conf, sh, &s, disks);
4448 }
c5a31000 4449
f94c0b66
N
4450 if ((s.replacing || s.syncing) && s.locked == 0
4451 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4452 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4453 /* Write out to replacement devices where possible */
4454 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4455 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4456 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4457 set_bit(R5_WantReplace, &sh->dev[i].flags);
4458 set_bit(R5_LOCKED, &sh->dev[i].flags);
4459 s.locked++;
4460 }
f94c0b66
N
4461 if (s.replacing)
4462 set_bit(STRIPE_INSYNC, &sh->state);
4463 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4464 }
4465 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4466 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4467 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4468 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4469 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4470 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4471 wake_up(&conf->wait_for_overlap);
c5a31000
N
4472 }
4473
4474 /* If the failed drives are just a ReadError, then we might need
4475 * to progress the repair/check process
4476 */
4477 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4478 for (i = 0; i < s.failed; i++) {
4479 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4480 if (test_bit(R5_ReadError, &dev->flags)
4481 && !test_bit(R5_LOCKED, &dev->flags)
4482 && test_bit(R5_UPTODATE, &dev->flags)
4483 ) {
4484 if (!test_bit(R5_ReWrite, &dev->flags)) {
4485 set_bit(R5_Wantwrite, &dev->flags);
4486 set_bit(R5_ReWrite, &dev->flags);
4487 set_bit(R5_LOCKED, &dev->flags);
4488 s.locked++;
4489 } else {
4490 /* let's read it back */
4491 set_bit(R5_Wantread, &dev->flags);
4492 set_bit(R5_LOCKED, &dev->flags);
4493 s.locked++;
4494 }
4495 }
4496 }
4497
3687c061
N
4498 /* Finish reconstruct operations initiated by the expansion process */
4499 if (sh->reconstruct_state == reconstruct_state_result) {
4500 struct stripe_head *sh_src
4501 = get_active_stripe(conf, sh->sector, 1, 1, 1);
4502 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4503 /* sh cannot be written until sh_src has been read.
4504 * so arrange for sh to be delayed a little
4505 */
4506 set_bit(STRIPE_DELAYED, &sh->state);
4507 set_bit(STRIPE_HANDLE, &sh->state);
4508 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4509 &sh_src->state))
4510 atomic_inc(&conf->preread_active_stripes);
4511 release_stripe(sh_src);
4512 goto finish;
4513 }
4514 if (sh_src)
4515 release_stripe(sh_src);
4516
4517 sh->reconstruct_state = reconstruct_state_idle;
4518 clear_bit(STRIPE_EXPANDING, &sh->state);
4519 for (i = conf->raid_disks; i--; ) {
4520 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4521 set_bit(R5_LOCKED, &sh->dev[i].flags);
4522 s.locked++;
4523 }
4524 }
f416885e 4525
3687c061
N
4526 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4527 !sh->reconstruct_state) {
4528 /* Need to write out all blocks after computing parity */
4529 sh->disks = conf->raid_disks;
4530 stripe_set_idx(sh->sector, conf, 0, sh);
4531 schedule_reconstruction(sh, &s, 1, 1);
4532 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4533 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4534 atomic_dec(&conf->reshape_stripes);
4535 wake_up(&conf->wait_for_overlap);
4536 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4537 }
4538
4539 if (s.expanding && s.locked == 0 &&
4540 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4541 handle_stripe_expansion(conf, sh);
16a53ecc 4542
3687c061 4543finish:
6bfe0b49 4544 /* wait for this device to become unblocked */
5f066c63
N
4545 if (unlikely(s.blocked_rdev)) {
4546 if (conf->mddev->external)
4547 md_wait_for_blocked_rdev(s.blocked_rdev,
4548 conf->mddev);
4549 else
4550 /* Internal metadata will immediately
4551 * be written by raid5d, so we don't
4552 * need to wait here.
4553 */
4554 rdev_dec_pending(s.blocked_rdev,
4555 conf->mddev);
4556 }
6bfe0b49 4557
bc2607f3
N
4558 if (s.handle_bad_blocks)
4559 for (i = disks; i--; ) {
3cb03002 4560 struct md_rdev *rdev;
bc2607f3
N
4561 struct r5dev *dev = &sh->dev[i];
4562 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4563 /* We own a safe reference to the rdev */
4564 rdev = conf->disks[i].rdev;
4565 if (!rdev_set_badblocks(rdev, sh->sector,
4566 STRIPE_SECTORS, 0))
4567 md_error(conf->mddev, rdev);
4568 rdev_dec_pending(rdev, conf->mddev);
4569 }
b84db560
N
4570 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4571 rdev = conf->disks[i].rdev;
4572 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4573 STRIPE_SECTORS, 0);
b84db560
N
4574 rdev_dec_pending(rdev, conf->mddev);
4575 }
977df362
N
4576 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4577 rdev = conf->disks[i].replacement;
dd054fce
N
4578 if (!rdev)
4579 /* rdev have been moved down */
4580 rdev = conf->disks[i].rdev;
977df362 4581 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4582 STRIPE_SECTORS, 0);
977df362
N
4583 rdev_dec_pending(rdev, conf->mddev);
4584 }
bc2607f3
N
4585 }
4586
6c0069c0
YT
4587 if (s.ops_request)
4588 raid_run_ops(sh, s.ops_request);
4589
f0e43bcd 4590 ops_run_io(sh, &s);
16a53ecc 4591
c5709ef6 4592 if (s.dec_preread_active) {
729a1866 4593 /* We delay this until after ops_run_io so that if make_request
e9c7469b 4594 * is waiting on a flush, it won't continue until the writes
729a1866
N
4595 * have actually been submitted.
4596 */
4597 atomic_dec(&conf->preread_active_stripes);
4598 if (atomic_read(&conf->preread_active_stripes) <
4599 IO_THRESHOLD)
4600 md_wakeup_thread(conf->mddev->thread);
4601 }
4602
c5709ef6 4603 return_io(s.return_bi);
16a53ecc 4604
257a4b42 4605 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
4606}
4607
d1688a6d 4608static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
4609{
4610 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4611 while (!list_empty(&conf->delayed_list)) {
4612 struct list_head *l = conf->delayed_list.next;
4613 struct stripe_head *sh;
4614 sh = list_entry(l, struct stripe_head, lru);
4615 list_del_init(l);
4616 clear_bit(STRIPE_DELAYED, &sh->state);
4617 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4618 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 4619 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 4620 raid5_wakeup_stripe_thread(sh);
16a53ecc 4621 }
482c0834 4622 }
16a53ecc
N
4623}
4624
566c09c5
SL
4625static void activate_bit_delay(struct r5conf *conf,
4626 struct list_head *temp_inactive_list)
16a53ecc
N
4627{
4628 /* device_lock is held */
4629 struct list_head head;
4630 list_add(&head, &conf->bitmap_list);
4631 list_del_init(&conf->bitmap_list);
4632 while (!list_empty(&head)) {
4633 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 4634 int hash;
16a53ecc
N
4635 list_del_init(&sh->lru);
4636 atomic_inc(&sh->count);
566c09c5
SL
4637 hash = sh->hash_lock_index;
4638 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
4639 }
4640}
4641
5c675f83 4642static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 4643{
d1688a6d 4644 struct r5conf *conf = mddev->private;
f022b2fd
N
4645
4646 /* No difference between reads and writes. Just check
4647 * how busy the stripe_cache is
4648 */
3fa841d7 4649
5423399a 4650 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd
N
4651 return 1;
4652 if (conf->quiesce)
4653 return 1;
4bda556a 4654 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
4655 return 1;
4656
4657 return 0;
4658}
4659
23032a0e
RBJ
4660/* We want read requests to align with chunks where possible,
4661 * but write requests don't need to.
4662 */
64590f45 4663static int raid5_mergeable_bvec(struct mddev *mddev,
cc371e66
AK
4664 struct bvec_merge_data *bvm,
4665 struct bio_vec *biovec)
23032a0e 4666{
cc371e66 4667 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 4668 int max;
9d8f0363 4669 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 4670 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 4671
9ffc8f7c
EM
4672 /*
4673 * always allow writes to be mergeable, read as well if array
4674 * is degraded as we'll go through stripe cache anyway.
4675 */
4676 if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4677 return biovec->bv_len;
23032a0e 4678
664e7c41
AN
4679 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4680 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
4681 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4682 if (max < 0) max = 0;
4683 if (max <= biovec->bv_len && bio_sectors == 0)
4684 return biovec->bv_len;
4685 else
4686 return max;
4687}
4688
fd01b88c 4689static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 4690{
4f024f37 4691 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 4692 unsigned int chunk_sectors = mddev->chunk_sectors;
aa8b57aa 4693 unsigned int bio_sectors = bio_sectors(bio);
f679623f 4694
664e7c41
AN
4695 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4696 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
4697 return chunk_sectors >=
4698 ((sector & (chunk_sectors - 1)) + bio_sectors);
4699}
4700
46031f9a
RBJ
4701/*
4702 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4703 * later sampled by raid5d.
4704 */
d1688a6d 4705static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
4706{
4707 unsigned long flags;
4708
4709 spin_lock_irqsave(&conf->device_lock, flags);
4710
4711 bi->bi_next = conf->retry_read_aligned_list;
4712 conf->retry_read_aligned_list = bi;
4713
4714 spin_unlock_irqrestore(&conf->device_lock, flags);
4715 md_wakeup_thread(conf->mddev->thread);
4716}
4717
d1688a6d 4718static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
4719{
4720 struct bio *bi;
4721
4722 bi = conf->retry_read_aligned;
4723 if (bi) {
4724 conf->retry_read_aligned = NULL;
4725 return bi;
4726 }
4727 bi = conf->retry_read_aligned_list;
4728 if(bi) {
387bb173 4729 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 4730 bi->bi_next = NULL;
960e739d
JA
4731 /*
4732 * this sets the active strip count to 1 and the processed
4733 * strip count to zero (upper 8 bits)
4734 */
e7836bd6 4735 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
4736 }
4737
4738 return bi;
4739}
4740
f679623f
RBJ
4741/*
4742 * The "raid5_align_endio" should check if the read succeeded and if it
4743 * did, call bio_endio on the original bio (having bio_put the new bio
4744 * first).
4745 * If the read failed..
4746 */
6712ecf8 4747static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
4748{
4749 struct bio* raid_bi = bi->bi_private;
fd01b88c 4750 struct mddev *mddev;
d1688a6d 4751 struct r5conf *conf;
46031f9a 4752 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3cb03002 4753 struct md_rdev *rdev;
46031f9a 4754
f679623f 4755 bio_put(bi);
46031f9a 4756
46031f9a
RBJ
4757 rdev = (void*)raid_bi->bi_next;
4758 raid_bi->bi_next = NULL;
2b7f2228
N
4759 mddev = rdev->mddev;
4760 conf = mddev->private;
46031f9a
RBJ
4761
4762 rdev_dec_pending(rdev, conf->mddev);
4763
4764 if (!error && uptodate) {
0a82a8d1
LT
4765 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4766 raid_bi, 0);
6712ecf8 4767 bio_endio(raid_bi, 0);
46031f9a
RBJ
4768 if (atomic_dec_and_test(&conf->active_aligned_reads))
4769 wake_up(&conf->wait_for_stripe);
6712ecf8 4770 return;
46031f9a
RBJ
4771 }
4772
45b4233c 4773 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
4774
4775 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
4776}
4777
387bb173
NB
4778static int bio_fits_rdev(struct bio *bi)
4779{
165125e1 4780 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 4781
aa8b57aa 4782 if (bio_sectors(bi) > queue_max_sectors(q))
387bb173
NB
4783 return 0;
4784 blk_recount_segments(q, bi);
8a78362c 4785 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
4786 return 0;
4787
4788 if (q->merge_bvec_fn)
4789 /* it's too hard to apply the merge_bvec_fn at this stage,
4790 * just just give up
4791 */
4792 return 0;
4793
4794 return 1;
4795}
4796
fd01b88c 4797static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
f679623f 4798{
d1688a6d 4799 struct r5conf *conf = mddev->private;
8553fe7e 4800 int dd_idx;
f679623f 4801 struct bio* align_bi;
3cb03002 4802 struct md_rdev *rdev;
671488cc 4803 sector_t end_sector;
f679623f
RBJ
4804
4805 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 4806 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
4807 return 0;
4808 }
4809 /*
a167f663 4810 * use bio_clone_mddev to make a copy of the bio
f679623f 4811 */
a167f663 4812 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
4813 if (!align_bi)
4814 return 0;
4815 /*
4816 * set bi_end_io to a new function, and set bi_private to the
4817 * original bio.
4818 */
4819 align_bi->bi_end_io = raid5_align_endio;
4820 align_bi->bi_private = raid_bio;
4821 /*
4822 * compute position
4823 */
4f024f37
KO
4824 align_bi->bi_iter.bi_sector =
4825 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4826 0, &dd_idx, NULL);
f679623f 4827
f73a1c7d 4828 end_sector = bio_end_sector(align_bi);
f679623f 4829 rcu_read_lock();
671488cc
N
4830 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4831 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4832 rdev->recovery_offset < end_sector) {
4833 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4834 if (rdev &&
4835 (test_bit(Faulty, &rdev->flags) ||
4836 !(test_bit(In_sync, &rdev->flags) ||
4837 rdev->recovery_offset >= end_sector)))
4838 rdev = NULL;
4839 }
4840 if (rdev) {
31c176ec
N
4841 sector_t first_bad;
4842 int bad_sectors;
4843
f679623f
RBJ
4844 atomic_inc(&rdev->nr_pending);
4845 rcu_read_unlock();
46031f9a
RBJ
4846 raid_bio->bi_next = (void*)rdev;
4847 align_bi->bi_bdev = rdev->bdev;
3fd83717 4848 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
46031f9a 4849
31c176ec 4850 if (!bio_fits_rdev(align_bi) ||
4f024f37
KO
4851 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4852 bio_sectors(align_bi),
31c176ec
N
4853 &first_bad, &bad_sectors)) {
4854 /* too big in some way, or has a known bad block */
387bb173
NB
4855 bio_put(align_bi);
4856 rdev_dec_pending(rdev, mddev);
4857 return 0;
4858 }
4859
6c0544e2 4860 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 4861 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 4862
46031f9a
RBJ
4863 spin_lock_irq(&conf->device_lock);
4864 wait_event_lock_irq(conf->wait_for_stripe,
4865 conf->quiesce == 0,
eed8c02e 4866 conf->device_lock);
46031f9a
RBJ
4867 atomic_inc(&conf->active_aligned_reads);
4868 spin_unlock_irq(&conf->device_lock);
4869
e3620a3a
JB
4870 if (mddev->gendisk)
4871 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4872 align_bi, disk_devt(mddev->gendisk),
4f024f37 4873 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
4874 generic_make_request(align_bi);
4875 return 1;
4876 } else {
4877 rcu_read_unlock();
46031f9a 4878 bio_put(align_bi);
f679623f
RBJ
4879 return 0;
4880 }
4881}
4882
8b3e6cdc
DW
4883/* __get_priority_stripe - get the next stripe to process
4884 *
4885 * Full stripe writes are allowed to pass preread active stripes up until
4886 * the bypass_threshold is exceeded. In general the bypass_count
4887 * increments when the handle_list is handled before the hold_list; however, it
4888 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4889 * stripe with in flight i/o. The bypass_count will be reset when the
4890 * head of the hold_list has changed, i.e. the head was promoted to the
4891 * handle_list.
4892 */
851c30c9 4893static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 4894{
851c30c9
SL
4895 struct stripe_head *sh = NULL, *tmp;
4896 struct list_head *handle_list = NULL;
bfc90cb0 4897 struct r5worker_group *wg = NULL;
851c30c9
SL
4898
4899 if (conf->worker_cnt_per_group == 0) {
4900 handle_list = &conf->handle_list;
4901 } else if (group != ANY_GROUP) {
4902 handle_list = &conf->worker_groups[group].handle_list;
bfc90cb0 4903 wg = &conf->worker_groups[group];
851c30c9
SL
4904 } else {
4905 int i;
4906 for (i = 0; i < conf->group_cnt; i++) {
4907 handle_list = &conf->worker_groups[i].handle_list;
bfc90cb0 4908 wg = &conf->worker_groups[i];
851c30c9
SL
4909 if (!list_empty(handle_list))
4910 break;
4911 }
4912 }
8b3e6cdc
DW
4913
4914 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4915 __func__,
851c30c9 4916 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
4917 list_empty(&conf->hold_list) ? "empty" : "busy",
4918 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4919
851c30c9
SL
4920 if (!list_empty(handle_list)) {
4921 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
4922
4923 if (list_empty(&conf->hold_list))
4924 conf->bypass_count = 0;
4925 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4926 if (conf->hold_list.next == conf->last_hold)
4927 conf->bypass_count++;
4928 else {
4929 conf->last_hold = conf->hold_list.next;
4930 conf->bypass_count -= conf->bypass_threshold;
4931 if (conf->bypass_count < 0)
4932 conf->bypass_count = 0;
4933 }
4934 }
4935 } else if (!list_empty(&conf->hold_list) &&
4936 ((conf->bypass_threshold &&
4937 conf->bypass_count > conf->bypass_threshold) ||
4938 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
4939
4940 list_for_each_entry(tmp, &conf->hold_list, lru) {
4941 if (conf->worker_cnt_per_group == 0 ||
4942 group == ANY_GROUP ||
4943 !cpu_online(tmp->cpu) ||
4944 cpu_to_group(tmp->cpu) == group) {
4945 sh = tmp;
4946 break;
4947 }
4948 }
4949
4950 if (sh) {
4951 conf->bypass_count -= conf->bypass_threshold;
4952 if (conf->bypass_count < 0)
4953 conf->bypass_count = 0;
4954 }
bfc90cb0 4955 wg = NULL;
851c30c9
SL
4956 }
4957
4958 if (!sh)
8b3e6cdc
DW
4959 return NULL;
4960
bfc90cb0
SL
4961 if (wg) {
4962 wg->stripes_cnt--;
4963 sh->group = NULL;
4964 }
8b3e6cdc 4965 list_del_init(&sh->lru);
c7a6d35e 4966 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
4967 return sh;
4968}
f679623f 4969
8811b596
SL
4970struct raid5_plug_cb {
4971 struct blk_plug_cb cb;
4972 struct list_head list;
566c09c5 4973 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
4974};
4975
4976static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4977{
4978 struct raid5_plug_cb *cb = container_of(
4979 blk_cb, struct raid5_plug_cb, cb);
4980 struct stripe_head *sh;
4981 struct mddev *mddev = cb->cb.data;
4982 struct r5conf *conf = mddev->private;
a9add5d9 4983 int cnt = 0;
566c09c5 4984 int hash;
8811b596
SL
4985
4986 if (cb->list.next && !list_empty(&cb->list)) {
4987 spin_lock_irq(&conf->device_lock);
4988 while (!list_empty(&cb->list)) {
4989 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4990 list_del_init(&sh->lru);
4991 /*
4992 * avoid race release_stripe_plug() sees
4993 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4994 * is still in our list
4995 */
4e857c58 4996 smp_mb__before_atomic();
8811b596 4997 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
4998 /*
4999 * STRIPE_ON_RELEASE_LIST could be set here. In that
5000 * case, the count is always > 1 here
5001 */
566c09c5
SL
5002 hash = sh->hash_lock_index;
5003 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5004 cnt++;
8811b596
SL
5005 }
5006 spin_unlock_irq(&conf->device_lock);
5007 }
566c09c5
SL
5008 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5009 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5010 if (mddev->queue)
5011 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5012 kfree(cb);
5013}
5014
5015static void release_stripe_plug(struct mddev *mddev,
5016 struct stripe_head *sh)
5017{
5018 struct blk_plug_cb *blk_cb = blk_check_plugged(
5019 raid5_unplug, mddev,
5020 sizeof(struct raid5_plug_cb));
5021 struct raid5_plug_cb *cb;
5022
5023 if (!blk_cb) {
5024 release_stripe(sh);
5025 return;
5026 }
5027
5028 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5029
566c09c5
SL
5030 if (cb->list.next == NULL) {
5031 int i;
8811b596 5032 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5033 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5034 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5035 }
8811b596
SL
5036
5037 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5038 list_add_tail(&sh->lru, &cb->list);
5039 else
5040 release_stripe(sh);
5041}
5042
620125f2
SL
5043static void make_discard_request(struct mddev *mddev, struct bio *bi)
5044{
5045 struct r5conf *conf = mddev->private;
5046 sector_t logical_sector, last_sector;
5047 struct stripe_head *sh;
5048 int remaining;
5049 int stripe_sectors;
5050
5051 if (mddev->reshape_position != MaxSector)
5052 /* Skip discard while reshape is happening */
5053 return;
5054
4f024f37
KO
5055 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5056 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5057
5058 bi->bi_next = NULL;
5059 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5060
5061 stripe_sectors = conf->chunk_sectors *
5062 (conf->raid_disks - conf->max_degraded);
5063 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5064 stripe_sectors);
5065 sector_div(last_sector, stripe_sectors);
5066
5067 logical_sector *= conf->chunk_sectors;
5068 last_sector *= conf->chunk_sectors;
5069
5070 for (; logical_sector < last_sector;
5071 logical_sector += STRIPE_SECTORS) {
5072 DEFINE_WAIT(w);
5073 int d;
5074 again:
5075 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5076 prepare_to_wait(&conf->wait_for_overlap, &w,
5077 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5078 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5079 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5080 release_stripe(sh);
5081 schedule();
5082 goto again;
5083 }
5084 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5085 spin_lock_irq(&sh->stripe_lock);
5086 for (d = 0; d < conf->raid_disks; d++) {
5087 if (d == sh->pd_idx || d == sh->qd_idx)
5088 continue;
5089 if (sh->dev[d].towrite || sh->dev[d].toread) {
5090 set_bit(R5_Overlap, &sh->dev[d].flags);
5091 spin_unlock_irq(&sh->stripe_lock);
5092 release_stripe(sh);
5093 schedule();
5094 goto again;
5095 }
5096 }
f8dfcffd 5097 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5098 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5099 sh->overwrite_disks = 0;
620125f2
SL
5100 for (d = 0; d < conf->raid_disks; d++) {
5101 if (d == sh->pd_idx || d == sh->qd_idx)
5102 continue;
5103 sh->dev[d].towrite = bi;
5104 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5105 raid5_inc_bi_active_stripes(bi);
7a87f434 5106 sh->overwrite_disks++;
620125f2
SL
5107 }
5108 spin_unlock_irq(&sh->stripe_lock);
5109 if (conf->mddev->bitmap) {
5110 for (d = 0;
5111 d < conf->raid_disks - conf->max_degraded;
5112 d++)
5113 bitmap_startwrite(mddev->bitmap,
5114 sh->sector,
5115 STRIPE_SECTORS,
5116 0);
5117 sh->bm_seq = conf->seq_flush + 1;
5118 set_bit(STRIPE_BIT_DELAY, &sh->state);
5119 }
5120
5121 set_bit(STRIPE_HANDLE, &sh->state);
5122 clear_bit(STRIPE_DELAYED, &sh->state);
5123 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5124 atomic_inc(&conf->preread_active_stripes);
5125 release_stripe_plug(mddev, sh);
5126 }
5127
5128 remaining = raid5_dec_bi_active_stripes(bi);
5129 if (remaining == 0) {
5130 md_write_end(mddev);
5131 bio_endio(bi, 0);
5132 }
5133}
5134
b4fdcb02 5135static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5136{
d1688a6d 5137 struct r5conf *conf = mddev->private;
911d4ee8 5138 int dd_idx;
1da177e4
LT
5139 sector_t new_sector;
5140 sector_t logical_sector, last_sector;
5141 struct stripe_head *sh;
a362357b 5142 const int rw = bio_data_dir(bi);
49077326 5143 int remaining;
27c0f68f
SL
5144 DEFINE_WAIT(w);
5145 bool do_prepare;
1da177e4 5146
e9c7469b
TH
5147 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5148 md_flush_request(mddev, bi);
5a7bbad2 5149 return;
e5dcdd80
N
5150 }
5151
3d310eb7 5152 md_write_start(mddev, bi);
06d91a5f 5153
9ffc8f7c
EM
5154 /*
5155 * If array is degraded, better not do chunk aligned read because
5156 * later we might have to read it again in order to reconstruct
5157 * data on failed drives.
5158 */
5159 if (rw == READ && mddev->degraded == 0 &&
52488615 5160 mddev->reshape_position == MaxSector &&
21a52c6d 5161 chunk_aligned_read(mddev,bi))
5a7bbad2 5162 return;
52488615 5163
620125f2
SL
5164 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5165 make_discard_request(mddev, bi);
5166 return;
5167 }
5168
4f024f37 5169 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5170 last_sector = bio_end_sector(bi);
1da177e4
LT
5171 bi->bi_next = NULL;
5172 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 5173
27c0f68f 5174 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5175 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5176 int previous;
c46501b2 5177 int seq;
b578d55f 5178
27c0f68f 5179 do_prepare = false;
7ecaa1e6 5180 retry:
c46501b2 5181 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5182 previous = 0;
27c0f68f
SL
5183 if (do_prepare)
5184 prepare_to_wait(&conf->wait_for_overlap, &w,
5185 TASK_UNINTERRUPTIBLE);
b0f9ec04 5186 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5187 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5188 * 64bit on a 32bit platform, and so it might be
5189 * possible to see a half-updated value
aeb878b0 5190 * Of course reshape_progress could change after
df8e7f76
N
5191 * the lock is dropped, so once we get a reference
5192 * to the stripe that we think it is, we will have
5193 * to check again.
5194 */
7ecaa1e6 5195 spin_lock_irq(&conf->device_lock);
2c810cdd 5196 if (mddev->reshape_backwards
fef9c61f
N
5197 ? logical_sector < conf->reshape_progress
5198 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5199 previous = 1;
5200 } else {
2c810cdd 5201 if (mddev->reshape_backwards
fef9c61f
N
5202 ? logical_sector < conf->reshape_safe
5203 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5204 spin_unlock_irq(&conf->device_lock);
5205 schedule();
27c0f68f 5206 do_prepare = true;
b578d55f
N
5207 goto retry;
5208 }
5209 }
7ecaa1e6
N
5210 spin_unlock_irq(&conf->device_lock);
5211 }
16a53ecc 5212
112bf897
N
5213 new_sector = raid5_compute_sector(conf, logical_sector,
5214 previous,
911d4ee8 5215 &dd_idx, NULL);
0c55e022 5216 pr_debug("raid456: make_request, sector %llu logical %llu\n",
c46501b2 5217 (unsigned long long)new_sector,
1da177e4
LT
5218 (unsigned long long)logical_sector);
5219
b5663ba4 5220 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 5221 (bi->bi_rw&RWA_MASK), 0);
1da177e4 5222 if (sh) {
b0f9ec04 5223 if (unlikely(previous)) {
7ecaa1e6 5224 /* expansion might have moved on while waiting for a
df8e7f76
N
5225 * stripe, so we must do the range check again.
5226 * Expansion could still move past after this
5227 * test, but as we are holding a reference to
5228 * 'sh', we know that if that happens,
5229 * STRIPE_EXPANDING will get set and the expansion
5230 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5231 */
5232 int must_retry = 0;
5233 spin_lock_irq(&conf->device_lock);
2c810cdd 5234 if (mddev->reshape_backwards
b0f9ec04
N
5235 ? logical_sector >= conf->reshape_progress
5236 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5237 /* mismatch, need to try again */
5238 must_retry = 1;
5239 spin_unlock_irq(&conf->device_lock);
5240 if (must_retry) {
5241 release_stripe(sh);
7a3ab908 5242 schedule();
27c0f68f 5243 do_prepare = true;
7ecaa1e6
N
5244 goto retry;
5245 }
5246 }
c46501b2
N
5247 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5248 /* Might have got the wrong stripe_head
5249 * by accident
5250 */
5251 release_stripe(sh);
5252 goto retry;
5253 }
e62e58a5 5254
ffd96e35 5255 if (rw == WRITE &&
a5c308d4 5256 logical_sector >= mddev->suspend_lo &&
e464eafd
N
5257 logical_sector < mddev->suspend_hi) {
5258 release_stripe(sh);
e62e58a5
N
5259 /* As the suspend_* range is controlled by
5260 * userspace, we want an interruptible
5261 * wait.
5262 */
5263 flush_signals(current);
5264 prepare_to_wait(&conf->wait_for_overlap,
5265 &w, TASK_INTERRUPTIBLE);
5266 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5267 logical_sector < mddev->suspend_hi) {
e62e58a5 5268 schedule();
27c0f68f
SL
5269 do_prepare = true;
5270 }
e464eafd
N
5271 goto retry;
5272 }
7ecaa1e6
N
5273
5274 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5275 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5276 /* Stripe is busy expanding or
5277 * add failed due to overlap. Flush everything
1da177e4
LT
5278 * and wait a while
5279 */
482c0834 5280 md_wakeup_thread(mddev->thread);
1da177e4
LT
5281 release_stripe(sh);
5282 schedule();
27c0f68f 5283 do_prepare = true;
1da177e4
LT
5284 goto retry;
5285 }
6ed3003c
N
5286 set_bit(STRIPE_HANDLE, &sh->state);
5287 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5288 if ((!sh->batch_head || sh == sh->batch_head) &&
5289 (bi->bi_rw & REQ_SYNC) &&
729a1866
N
5290 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5291 atomic_inc(&conf->preread_active_stripes);
8811b596 5292 release_stripe_plug(mddev, sh);
1da177e4
LT
5293 } else {
5294 /* cannot get stripe for read-ahead, just give-up */
5295 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1da177e4
LT
5296 break;
5297 }
1da177e4 5298 }
27c0f68f 5299 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5300
e7836bd6 5301 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 5302 if (remaining == 0) {
1da177e4 5303
16a53ecc 5304 if ( rw == WRITE )
1da177e4 5305 md_write_end(mddev);
6712ecf8 5306
0a82a8d1
LT
5307 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5308 bi, 0);
0e13fe23 5309 bio_endio(bi, 0);
1da177e4 5310 }
1da177e4
LT
5311}
5312
fd01b88c 5313static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5314
fd01b88c 5315static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5316{
52c03291
N
5317 /* reshaping is quite different to recovery/resync so it is
5318 * handled quite separately ... here.
5319 *
5320 * On each call to sync_request, we gather one chunk worth of
5321 * destination stripes and flag them as expanding.
5322 * Then we find all the source stripes and request reads.
5323 * As the reads complete, handle_stripe will copy the data
5324 * into the destination stripe and release that stripe.
5325 */
d1688a6d 5326 struct r5conf *conf = mddev->private;
1da177e4 5327 struct stripe_head *sh;
ccfcc3c1 5328 sector_t first_sector, last_sector;
f416885e
N
5329 int raid_disks = conf->previous_raid_disks;
5330 int data_disks = raid_disks - conf->max_degraded;
5331 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5332 int i;
5333 int dd_idx;
c8f517c4 5334 sector_t writepos, readpos, safepos;
ec32a2bd 5335 sector_t stripe_addr;
7a661381 5336 int reshape_sectors;
ab69ae12 5337 struct list_head stripes;
52c03291 5338
fef9c61f
N
5339 if (sector_nr == 0) {
5340 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5341 if (mddev->reshape_backwards &&
fef9c61f
N
5342 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5343 sector_nr = raid5_size(mddev, 0, 0)
5344 - conf->reshape_progress;
2c810cdd 5345 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5346 conf->reshape_progress > 0)
5347 sector_nr = conf->reshape_progress;
f416885e 5348 sector_div(sector_nr, new_data_disks);
fef9c61f 5349 if (sector_nr) {
8dee7211
N
5350 mddev->curr_resync_completed = sector_nr;
5351 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
5352 *skipped = 1;
5353 return sector_nr;
5354 }
52c03291
N
5355 }
5356
7a661381
N
5357 /* We need to process a full chunk at a time.
5358 * If old and new chunk sizes differ, we need to process the
5359 * largest of these
5360 */
664e7c41
AN
5361 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5362 reshape_sectors = mddev->new_chunk_sectors;
7a661381 5363 else
9d8f0363 5364 reshape_sectors = mddev->chunk_sectors;
7a661381 5365
b5254dd5
N
5366 /* We update the metadata at least every 10 seconds, or when
5367 * the data about to be copied would over-write the source of
5368 * the data at the front of the range. i.e. one new_stripe
5369 * along from reshape_progress new_maps to after where
5370 * reshape_safe old_maps to
52c03291 5371 */
fef9c61f 5372 writepos = conf->reshape_progress;
f416885e 5373 sector_div(writepos, new_data_disks);
c8f517c4
N
5374 readpos = conf->reshape_progress;
5375 sector_div(readpos, data_disks);
fef9c61f 5376 safepos = conf->reshape_safe;
f416885e 5377 sector_div(safepos, data_disks);
2c810cdd 5378 if (mddev->reshape_backwards) {
ed37d83e 5379 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 5380 readpos += reshape_sectors;
7a661381 5381 safepos += reshape_sectors;
fef9c61f 5382 } else {
7a661381 5383 writepos += reshape_sectors;
ed37d83e
N
5384 readpos -= min_t(sector_t, reshape_sectors, readpos);
5385 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5386 }
52c03291 5387
b5254dd5
N
5388 /* Having calculated the 'writepos' possibly use it
5389 * to set 'stripe_addr' which is where we will write to.
5390 */
5391 if (mddev->reshape_backwards) {
5392 BUG_ON(conf->reshape_progress == 0);
5393 stripe_addr = writepos;
5394 BUG_ON((mddev->dev_sectors &
5395 ~((sector_t)reshape_sectors - 1))
5396 - reshape_sectors - stripe_addr
5397 != sector_nr);
5398 } else {
5399 BUG_ON(writepos != sector_nr + reshape_sectors);
5400 stripe_addr = sector_nr;
5401 }
5402
c8f517c4
N
5403 /* 'writepos' is the most advanced device address we might write.
5404 * 'readpos' is the least advanced device address we might read.
5405 * 'safepos' is the least address recorded in the metadata as having
5406 * been reshaped.
b5254dd5
N
5407 * If there is a min_offset_diff, these are adjusted either by
5408 * increasing the safepos/readpos if diff is negative, or
5409 * increasing writepos if diff is positive.
5410 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5411 * ensure safety in the face of a crash - that must be done by userspace
5412 * making a backup of the data. So in that case there is no particular
5413 * rush to update metadata.
5414 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5415 * update the metadata to advance 'safepos' to match 'readpos' so that
5416 * we can be safe in the event of a crash.
5417 * So we insist on updating metadata if safepos is behind writepos and
5418 * readpos is beyond writepos.
5419 * In any case, update the metadata every 10 seconds.
5420 * Maybe that number should be configurable, but I'm not sure it is
5421 * worth it.... maybe it could be a multiple of safemode_delay???
5422 */
b5254dd5
N
5423 if (conf->min_offset_diff < 0) {
5424 safepos += -conf->min_offset_diff;
5425 readpos += -conf->min_offset_diff;
5426 } else
5427 writepos += conf->min_offset_diff;
5428
2c810cdd 5429 if ((mddev->reshape_backwards
c8f517c4
N
5430 ? (safepos > writepos && readpos < writepos)
5431 : (safepos < writepos && readpos > writepos)) ||
5432 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5433 /* Cannot proceed until we've updated the superblock... */
5434 wait_event(conf->wait_for_overlap,
c91abf5a
N
5435 atomic_read(&conf->reshape_stripes)==0
5436 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5437 if (atomic_read(&conf->reshape_stripes) != 0)
5438 return 0;
fef9c61f 5439 mddev->reshape_position = conf->reshape_progress;
75d3da43 5440 mddev->curr_resync_completed = sector_nr;
c8f517c4 5441 conf->reshape_checkpoint = jiffies;
850b2b42 5442 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 5443 md_wakeup_thread(mddev->thread);
850b2b42 5444 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
5445 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5446 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5447 return 0;
52c03291 5448 spin_lock_irq(&conf->device_lock);
fef9c61f 5449 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5450 spin_unlock_irq(&conf->device_lock);
5451 wake_up(&conf->wait_for_overlap);
acb180b0 5452 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5453 }
5454
ab69ae12 5455 INIT_LIST_HEAD(&stripes);
7a661381 5456 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5457 int j;
a9f326eb 5458 int skipped_disk = 0;
a8c906ca 5459 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5460 set_bit(STRIPE_EXPANDING, &sh->state);
5461 atomic_inc(&conf->reshape_stripes);
5462 /* If any of this stripe is beyond the end of the old
5463 * array, then we need to zero those blocks
5464 */
5465 for (j=sh->disks; j--;) {
5466 sector_t s;
5467 if (j == sh->pd_idx)
5468 continue;
f416885e 5469 if (conf->level == 6 &&
d0dabf7e 5470 j == sh->qd_idx)
f416885e 5471 continue;
784052ec 5472 s = compute_blocknr(sh, j, 0);
b522adcd 5473 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5474 skipped_disk = 1;
52c03291
N
5475 continue;
5476 }
5477 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5478 set_bit(R5_Expanded, &sh->dev[j].flags);
5479 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5480 }
a9f326eb 5481 if (!skipped_disk) {
52c03291
N
5482 set_bit(STRIPE_EXPAND_READY, &sh->state);
5483 set_bit(STRIPE_HANDLE, &sh->state);
5484 }
ab69ae12 5485 list_add(&sh->lru, &stripes);
52c03291
N
5486 }
5487 spin_lock_irq(&conf->device_lock);
2c810cdd 5488 if (mddev->reshape_backwards)
7a661381 5489 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5490 else
7a661381 5491 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5492 spin_unlock_irq(&conf->device_lock);
5493 /* Ok, those stripe are ready. We can start scheduling
5494 * reads on the source stripes.
5495 * The source stripes are determined by mapping the first and last
5496 * block on the destination stripes.
5497 */
52c03291 5498 first_sector =
ec32a2bd 5499 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5500 1, &dd_idx, NULL);
52c03291 5501 last_sector =
0e6e0271 5502 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5503 * new_data_disks - 1),
911d4ee8 5504 1, &dd_idx, NULL);
58c0fed4
AN
5505 if (last_sector >= mddev->dev_sectors)
5506 last_sector = mddev->dev_sectors - 1;
52c03291 5507 while (first_sector <= last_sector) {
a8c906ca 5508 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5509 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5510 set_bit(STRIPE_HANDLE, &sh->state);
5511 release_stripe(sh);
5512 first_sector += STRIPE_SECTORS;
5513 }
ab69ae12
N
5514 /* Now that the sources are clearly marked, we can release
5515 * the destination stripes
5516 */
5517 while (!list_empty(&stripes)) {
5518 sh = list_entry(stripes.next, struct stripe_head, lru);
5519 list_del_init(&sh->lru);
5520 release_stripe(sh);
5521 }
c6207277
N
5522 /* If this takes us to the resync_max point where we have to pause,
5523 * then we need to write out the superblock.
5524 */
7a661381 5525 sector_nr += reshape_sectors;
c03f6a19
N
5526 if ((sector_nr - mddev->curr_resync_completed) * 2
5527 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5528 /* Cannot proceed until we've updated the superblock... */
5529 wait_event(conf->wait_for_overlap,
c91abf5a
N
5530 atomic_read(&conf->reshape_stripes) == 0
5531 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5532 if (atomic_read(&conf->reshape_stripes) != 0)
5533 goto ret;
fef9c61f 5534 mddev->reshape_position = conf->reshape_progress;
75d3da43 5535 mddev->curr_resync_completed = sector_nr;
c8f517c4 5536 conf->reshape_checkpoint = jiffies;
c6207277
N
5537 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5538 md_wakeup_thread(mddev->thread);
5539 wait_event(mddev->sb_wait,
5540 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
c91abf5a
N
5541 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5542 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5543 goto ret;
c6207277 5544 spin_lock_irq(&conf->device_lock);
fef9c61f 5545 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5546 spin_unlock_irq(&conf->device_lock);
5547 wake_up(&conf->wait_for_overlap);
acb180b0 5548 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5549 }
c91abf5a 5550ret:
7a661381 5551 return reshape_sectors;
52c03291
N
5552}
5553
09314799 5554static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
52c03291 5555{
d1688a6d 5556 struct r5conf *conf = mddev->private;
52c03291 5557 struct stripe_head *sh;
58c0fed4 5558 sector_t max_sector = mddev->dev_sectors;
57dab0bd 5559 sector_t sync_blocks;
16a53ecc
N
5560 int still_degraded = 0;
5561 int i;
1da177e4 5562
72626685 5563 if (sector_nr >= max_sector) {
1da177e4 5564 /* just being told to finish up .. nothing much to do */
cea9c228 5565
29269553
N
5566 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5567 end_reshape(conf);
5568 return 0;
5569 }
72626685
N
5570
5571 if (mddev->curr_resync < max_sector) /* aborted */
5572 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5573 &sync_blocks, 1);
16a53ecc 5574 else /* completed sync */
72626685
N
5575 conf->fullsync = 0;
5576 bitmap_close_sync(mddev->bitmap);
5577
1da177e4
LT
5578 return 0;
5579 }
ccfcc3c1 5580
64bd660b
N
5581 /* Allow raid5_quiesce to complete */
5582 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5583
52c03291
N
5584 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5585 return reshape_request(mddev, sector_nr, skipped);
f6705578 5586
c6207277
N
5587 /* No need to check resync_max as we never do more than one
5588 * stripe, and as resync_max will always be on a chunk boundary,
5589 * if the check in md_do_sync didn't fire, there is no chance
5590 * of overstepping resync_max here
5591 */
5592
16a53ecc 5593 /* if there is too many failed drives and we are trying
1da177e4
LT
5594 * to resync, then assert that we are finished, because there is
5595 * nothing we can do.
5596 */
3285edf1 5597 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 5598 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 5599 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 5600 *skipped = 1;
1da177e4
LT
5601 return rv;
5602 }
6f608040 5603 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5604 !conf->fullsync &&
5605 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5606 sync_blocks >= STRIPE_SECTORS) {
72626685
N
5607 /* we can skip this block, and probably more */
5608 sync_blocks /= STRIPE_SECTORS;
5609 *skipped = 1;
5610 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5611 }
1da177e4 5612
b47490c9
N
5613 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5614
a8c906ca 5615 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 5616 if (sh == NULL) {
a8c906ca 5617 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 5618 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 5619 * is trying to get access
1da177e4 5620 */
66c006a5 5621 schedule_timeout_uninterruptible(1);
1da177e4 5622 }
16a53ecc 5623 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
5624 * Note in case of > 1 drive failures it's possible we're rebuilding
5625 * one drive while leaving another faulty drive in array.
16a53ecc 5626 */
16d9cfab
EM
5627 rcu_read_lock();
5628 for (i = 0; i < conf->raid_disks; i++) {
5629 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5630
5631 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 5632 still_degraded = 1;
16d9cfab
EM
5633 }
5634 rcu_read_unlock();
16a53ecc
N
5635
5636 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5637
83206d66 5638 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 5639 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 5640
1da177e4
LT
5641 release_stripe(sh);
5642
5643 return STRIPE_SECTORS;
5644}
5645
d1688a6d 5646static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
5647{
5648 /* We may not be able to submit a whole bio at once as there
5649 * may not be enough stripe_heads available.
5650 * We cannot pre-allocate enough stripe_heads as we may need
5651 * more than exist in the cache (if we allow ever large chunks).
5652 * So we do one stripe head at a time and record in
5653 * ->bi_hw_segments how many have been done.
5654 *
5655 * We *know* that this entire raid_bio is in one chunk, so
5656 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5657 */
5658 struct stripe_head *sh;
911d4ee8 5659 int dd_idx;
46031f9a
RBJ
5660 sector_t sector, logical_sector, last_sector;
5661 int scnt = 0;
5662 int remaining;
5663 int handled = 0;
5664
4f024f37
KO
5665 logical_sector = raid_bio->bi_iter.bi_sector &
5666 ~((sector_t)STRIPE_SECTORS-1);
112bf897 5667 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 5668 0, &dd_idx, NULL);
f73a1c7d 5669 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
5670
5671 for (; logical_sector < last_sector;
387bb173
NB
5672 logical_sector += STRIPE_SECTORS,
5673 sector += STRIPE_SECTORS,
5674 scnt++) {
46031f9a 5675
e7836bd6 5676 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
5677 /* already done this stripe */
5678 continue;
5679
2844dc32 5680 sh = get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
5681
5682 if (!sh) {
5683 /* failed to get a stripe - must wait */
e7836bd6 5684 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
5685 conf->retry_read_aligned = raid_bio;
5686 return handled;
5687 }
5688
da41ba65 5689 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
387bb173 5690 release_stripe(sh);
e7836bd6 5691 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
5692 conf->retry_read_aligned = raid_bio;
5693 return handled;
5694 }
5695
3f9e7c14 5696 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 5697 handle_stripe(sh);
46031f9a
RBJ
5698 release_stripe(sh);
5699 handled++;
5700 }
e7836bd6 5701 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
5702 if (remaining == 0) {
5703 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5704 raid_bio, 0);
0e13fe23 5705 bio_endio(raid_bio, 0);
0a82a8d1 5706 }
46031f9a
RBJ
5707 if (atomic_dec_and_test(&conf->active_aligned_reads))
5708 wake_up(&conf->wait_for_stripe);
5709 return handled;
5710}
5711
bfc90cb0 5712static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
5713 struct r5worker *worker,
5714 struct list_head *temp_inactive_list)
46a06401
SL
5715{
5716 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
5717 int i, batch_size = 0, hash;
5718 bool release_inactive = false;
46a06401
SL
5719
5720 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 5721 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
5722 batch[batch_size++] = sh;
5723
566c09c5
SL
5724 if (batch_size == 0) {
5725 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5726 if (!list_empty(temp_inactive_list + i))
5727 break;
5728 if (i == NR_STRIPE_HASH_LOCKS)
5729 return batch_size;
5730 release_inactive = true;
5731 }
46a06401
SL
5732 spin_unlock_irq(&conf->device_lock);
5733
566c09c5
SL
5734 release_inactive_stripe_list(conf, temp_inactive_list,
5735 NR_STRIPE_HASH_LOCKS);
5736
5737 if (release_inactive) {
5738 spin_lock_irq(&conf->device_lock);
5739 return 0;
5740 }
5741
46a06401
SL
5742 for (i = 0; i < batch_size; i++)
5743 handle_stripe(batch[i]);
5744
5745 cond_resched();
5746
5747 spin_lock_irq(&conf->device_lock);
566c09c5
SL
5748 for (i = 0; i < batch_size; i++) {
5749 hash = batch[i]->hash_lock_index;
5750 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5751 }
46a06401
SL
5752 return batch_size;
5753}
46031f9a 5754
851c30c9
SL
5755static void raid5_do_work(struct work_struct *work)
5756{
5757 struct r5worker *worker = container_of(work, struct r5worker, work);
5758 struct r5worker_group *group = worker->group;
5759 struct r5conf *conf = group->conf;
5760 int group_id = group - conf->worker_groups;
5761 int handled;
5762 struct blk_plug plug;
5763
5764 pr_debug("+++ raid5worker active\n");
5765
5766 blk_start_plug(&plug);
5767 handled = 0;
5768 spin_lock_irq(&conf->device_lock);
5769 while (1) {
5770 int batch_size, released;
5771
566c09c5 5772 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 5773
566c09c5
SL
5774 batch_size = handle_active_stripes(conf, group_id, worker,
5775 worker->temp_inactive_list);
bfc90cb0 5776 worker->working = false;
851c30c9
SL
5777 if (!batch_size && !released)
5778 break;
5779 handled += batch_size;
5780 }
5781 pr_debug("%d stripes handled\n", handled);
5782
5783 spin_unlock_irq(&conf->device_lock);
5784 blk_finish_plug(&plug);
5785
5786 pr_debug("--- raid5worker inactive\n");
5787}
5788
1da177e4
LT
5789/*
5790 * This is our raid5 kernel thread.
5791 *
5792 * We scan the hash table for stripes which can be handled now.
5793 * During the scan, completed stripes are saved for us by the interrupt
5794 * handler, so that they will not have to wait for our next wakeup.
5795 */
4ed8731d 5796static void raid5d(struct md_thread *thread)
1da177e4 5797{
4ed8731d 5798 struct mddev *mddev = thread->mddev;
d1688a6d 5799 struct r5conf *conf = mddev->private;
1da177e4 5800 int handled;
e1dfa0a2 5801 struct blk_plug plug;
1da177e4 5802
45b4233c 5803 pr_debug("+++ raid5d active\n");
1da177e4
LT
5804
5805 md_check_recovery(mddev);
1da177e4 5806
e1dfa0a2 5807 blk_start_plug(&plug);
1da177e4
LT
5808 handled = 0;
5809 spin_lock_irq(&conf->device_lock);
5810 while (1) {
46031f9a 5811 struct bio *bio;
773ca82f
SL
5812 int batch_size, released;
5813
566c09c5 5814 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
5815 if (released)
5816 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 5817
0021b7bc 5818 if (
7c13edc8
N
5819 !list_empty(&conf->bitmap_list)) {
5820 /* Now is a good time to flush some bitmap updates */
5821 conf->seq_flush++;
700e432d 5822 spin_unlock_irq(&conf->device_lock);
72626685 5823 bitmap_unplug(mddev->bitmap);
700e432d 5824 spin_lock_irq(&conf->device_lock);
7c13edc8 5825 conf->seq_write = conf->seq_flush;
566c09c5 5826 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 5827 }
0021b7bc 5828 raid5_activate_delayed(conf);
72626685 5829
46031f9a
RBJ
5830 while ((bio = remove_bio_from_retry(conf))) {
5831 int ok;
5832 spin_unlock_irq(&conf->device_lock);
5833 ok = retry_aligned_read(conf, bio);
5834 spin_lock_irq(&conf->device_lock);
5835 if (!ok)
5836 break;
5837 handled++;
5838 }
5839
566c09c5
SL
5840 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5841 conf->temp_inactive_list);
773ca82f 5842 if (!batch_size && !released)
1da177e4 5843 break;
46a06401 5844 handled += batch_size;
1da177e4 5845
46a06401
SL
5846 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5847 spin_unlock_irq(&conf->device_lock);
de393cde 5848 md_check_recovery(mddev);
46a06401
SL
5849 spin_lock_irq(&conf->device_lock);
5850 }
1da177e4 5851 }
45b4233c 5852 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
5853
5854 spin_unlock_irq(&conf->device_lock);
edbe83ab
N
5855 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
5856 grow_one_stripe(conf, __GFP_NOWARN);
5857 /* Set flag even if allocation failed. This helps
5858 * slow down allocation requests when mem is short
5859 */
5860 set_bit(R5_DID_ALLOC, &conf->cache_state);
5861 }
1da177e4 5862
c9f21aaf 5863 async_tx_issue_pending_all();
e1dfa0a2 5864 blk_finish_plug(&plug);
1da177e4 5865
45b4233c 5866 pr_debug("--- raid5d inactive\n");
1da177e4
LT
5867}
5868
3f294f4f 5869static ssize_t
fd01b88c 5870raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 5871{
7b1485ba
N
5872 struct r5conf *conf;
5873 int ret = 0;
5874 spin_lock(&mddev->lock);
5875 conf = mddev->private;
96de1e66 5876 if (conf)
edbe83ab 5877 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
5878 spin_unlock(&mddev->lock);
5879 return ret;
3f294f4f
N
5880}
5881
c41d4ac4 5882int
fd01b88c 5883raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 5884{
d1688a6d 5885 struct r5conf *conf = mddev->private;
b5470dc5
DW
5886 int err;
5887
c41d4ac4 5888 if (size <= 16 || size > 32768)
3f294f4f 5889 return -EINVAL;
486f0644 5890
edbe83ab 5891 conf->min_nr_stripes = size;
486f0644
N
5892 while (size < conf->max_nr_stripes &&
5893 drop_one_stripe(conf))
5894 ;
5895
edbe83ab 5896
b5470dc5
DW
5897 err = md_allow_write(mddev);
5898 if (err)
5899 return err;
486f0644
N
5900
5901 while (size > conf->max_nr_stripes)
5902 if (!grow_one_stripe(conf, GFP_KERNEL))
5903 break;
5904
c41d4ac4
N
5905 return 0;
5906}
5907EXPORT_SYMBOL(raid5_set_cache_size);
5908
5909static ssize_t
fd01b88c 5910raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 5911{
6791875e 5912 struct r5conf *conf;
c41d4ac4
N
5913 unsigned long new;
5914 int err;
5915
5916 if (len >= PAGE_SIZE)
5917 return -EINVAL;
b29bebd6 5918 if (kstrtoul(page, 10, &new))
c41d4ac4 5919 return -EINVAL;
6791875e 5920 err = mddev_lock(mddev);
c41d4ac4
N
5921 if (err)
5922 return err;
6791875e
N
5923 conf = mddev->private;
5924 if (!conf)
5925 err = -ENODEV;
5926 else
5927 err = raid5_set_cache_size(mddev, new);
5928 mddev_unlock(mddev);
5929
5930 return err ?: len;
3f294f4f 5931}
007583c9 5932
96de1e66
N
5933static struct md_sysfs_entry
5934raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5935 raid5_show_stripe_cache_size,
5936 raid5_store_stripe_cache_size);
3f294f4f 5937
d06f191f
MS
5938static ssize_t
5939raid5_show_rmw_level(struct mddev *mddev, char *page)
5940{
5941 struct r5conf *conf = mddev->private;
5942 if (conf)
5943 return sprintf(page, "%d\n", conf->rmw_level);
5944 else
5945 return 0;
5946}
5947
5948static ssize_t
5949raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
5950{
5951 struct r5conf *conf = mddev->private;
5952 unsigned long new;
5953
5954 if (!conf)
5955 return -ENODEV;
5956
5957 if (len >= PAGE_SIZE)
5958 return -EINVAL;
5959
5960 if (kstrtoul(page, 10, &new))
5961 return -EINVAL;
5962
5963 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5964 return -EINVAL;
5965
5966 if (new != PARITY_DISABLE_RMW &&
5967 new != PARITY_ENABLE_RMW &&
5968 new != PARITY_PREFER_RMW)
5969 return -EINVAL;
5970
5971 conf->rmw_level = new;
5972 return len;
5973}
5974
5975static struct md_sysfs_entry
5976raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5977 raid5_show_rmw_level,
5978 raid5_store_rmw_level);
5979
5980
8b3e6cdc 5981static ssize_t
fd01b88c 5982raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 5983{
7b1485ba
N
5984 struct r5conf *conf;
5985 int ret = 0;
5986 spin_lock(&mddev->lock);
5987 conf = mddev->private;
8b3e6cdc 5988 if (conf)
7b1485ba
N
5989 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5990 spin_unlock(&mddev->lock);
5991 return ret;
8b3e6cdc
DW
5992}
5993
5994static ssize_t
fd01b88c 5995raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 5996{
6791875e 5997 struct r5conf *conf;
4ef197d8 5998 unsigned long new;
6791875e
N
5999 int err;
6000
8b3e6cdc
DW
6001 if (len >= PAGE_SIZE)
6002 return -EINVAL;
b29bebd6 6003 if (kstrtoul(page, 10, &new))
8b3e6cdc 6004 return -EINVAL;
6791875e
N
6005
6006 err = mddev_lock(mddev);
6007 if (err)
6008 return err;
6009 conf = mddev->private;
6010 if (!conf)
6011 err = -ENODEV;
edbe83ab 6012 else if (new > conf->min_nr_stripes)
6791875e
N
6013 err = -EINVAL;
6014 else
6015 conf->bypass_threshold = new;
6016 mddev_unlock(mddev);
6017 return err ?: len;
8b3e6cdc
DW
6018}
6019
6020static struct md_sysfs_entry
6021raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6022 S_IRUGO | S_IWUSR,
6023 raid5_show_preread_threshold,
6024 raid5_store_preread_threshold);
6025
d592a996
SL
6026static ssize_t
6027raid5_show_skip_copy(struct mddev *mddev, char *page)
6028{
7b1485ba
N
6029 struct r5conf *conf;
6030 int ret = 0;
6031 spin_lock(&mddev->lock);
6032 conf = mddev->private;
d592a996 6033 if (conf)
7b1485ba
N
6034 ret = sprintf(page, "%d\n", conf->skip_copy);
6035 spin_unlock(&mddev->lock);
6036 return ret;
d592a996
SL
6037}
6038
6039static ssize_t
6040raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6041{
6791875e 6042 struct r5conf *conf;
d592a996 6043 unsigned long new;
6791875e
N
6044 int err;
6045
d592a996
SL
6046 if (len >= PAGE_SIZE)
6047 return -EINVAL;
d592a996
SL
6048 if (kstrtoul(page, 10, &new))
6049 return -EINVAL;
6050 new = !!new;
6791875e
N
6051
6052 err = mddev_lock(mddev);
6053 if (err)
6054 return err;
6055 conf = mddev->private;
6056 if (!conf)
6057 err = -ENODEV;
6058 else if (new != conf->skip_copy) {
6059 mddev_suspend(mddev);
6060 conf->skip_copy = new;
6061 if (new)
6062 mddev->queue->backing_dev_info.capabilities |=
6063 BDI_CAP_STABLE_WRITES;
6064 else
6065 mddev->queue->backing_dev_info.capabilities &=
6066 ~BDI_CAP_STABLE_WRITES;
6067 mddev_resume(mddev);
6068 }
6069 mddev_unlock(mddev);
6070 return err ?: len;
d592a996
SL
6071}
6072
6073static struct md_sysfs_entry
6074raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6075 raid5_show_skip_copy,
6076 raid5_store_skip_copy);
6077
3f294f4f 6078static ssize_t
fd01b88c 6079stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6080{
d1688a6d 6081 struct r5conf *conf = mddev->private;
96de1e66
N
6082 if (conf)
6083 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6084 else
6085 return 0;
3f294f4f
N
6086}
6087
96de1e66
N
6088static struct md_sysfs_entry
6089raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6090
b721420e
SL
6091static ssize_t
6092raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6093{
7b1485ba
N
6094 struct r5conf *conf;
6095 int ret = 0;
6096 spin_lock(&mddev->lock);
6097 conf = mddev->private;
b721420e 6098 if (conf)
7b1485ba
N
6099 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6100 spin_unlock(&mddev->lock);
6101 return ret;
b721420e
SL
6102}
6103
60aaf933 6104static int alloc_thread_groups(struct r5conf *conf, int cnt,
6105 int *group_cnt,
6106 int *worker_cnt_per_group,
6107 struct r5worker_group **worker_groups);
b721420e
SL
6108static ssize_t
6109raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6110{
6791875e 6111 struct r5conf *conf;
b721420e
SL
6112 unsigned long new;
6113 int err;
60aaf933 6114 struct r5worker_group *new_groups, *old_groups;
6115 int group_cnt, worker_cnt_per_group;
b721420e
SL
6116
6117 if (len >= PAGE_SIZE)
6118 return -EINVAL;
b721420e
SL
6119 if (kstrtoul(page, 10, &new))
6120 return -EINVAL;
6121
6791875e
N
6122 err = mddev_lock(mddev);
6123 if (err)
6124 return err;
6125 conf = mddev->private;
6126 if (!conf)
6127 err = -ENODEV;
6128 else if (new != conf->worker_cnt_per_group) {
6129 mddev_suspend(mddev);
b721420e 6130
6791875e
N
6131 old_groups = conf->worker_groups;
6132 if (old_groups)
6133 flush_workqueue(raid5_wq);
d206dcfa 6134
6791875e
N
6135 err = alloc_thread_groups(conf, new,
6136 &group_cnt, &worker_cnt_per_group,
6137 &new_groups);
6138 if (!err) {
6139 spin_lock_irq(&conf->device_lock);
6140 conf->group_cnt = group_cnt;
6141 conf->worker_cnt_per_group = worker_cnt_per_group;
6142 conf->worker_groups = new_groups;
6143 spin_unlock_irq(&conf->device_lock);
b721420e 6144
6791875e
N
6145 if (old_groups)
6146 kfree(old_groups[0].workers);
6147 kfree(old_groups);
6148 }
6149 mddev_resume(mddev);
b721420e 6150 }
6791875e 6151 mddev_unlock(mddev);
b721420e 6152
6791875e 6153 return err ?: len;
b721420e
SL
6154}
6155
6156static struct md_sysfs_entry
6157raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6158 raid5_show_group_thread_cnt,
6159 raid5_store_group_thread_cnt);
6160
007583c9 6161static struct attribute *raid5_attrs[] = {
3f294f4f
N
6162 &raid5_stripecache_size.attr,
6163 &raid5_stripecache_active.attr,
8b3e6cdc 6164 &raid5_preread_bypass_threshold.attr,
b721420e 6165 &raid5_group_thread_cnt.attr,
d592a996 6166 &raid5_skip_copy.attr,
d06f191f 6167 &raid5_rmw_level.attr,
3f294f4f
N
6168 NULL,
6169};
007583c9
N
6170static struct attribute_group raid5_attrs_group = {
6171 .name = NULL,
6172 .attrs = raid5_attrs,
3f294f4f
N
6173};
6174
60aaf933 6175static int alloc_thread_groups(struct r5conf *conf, int cnt,
6176 int *group_cnt,
6177 int *worker_cnt_per_group,
6178 struct r5worker_group **worker_groups)
851c30c9 6179{
566c09c5 6180 int i, j, k;
851c30c9
SL
6181 ssize_t size;
6182 struct r5worker *workers;
6183
60aaf933 6184 *worker_cnt_per_group = cnt;
851c30c9 6185 if (cnt == 0) {
60aaf933 6186 *group_cnt = 0;
6187 *worker_groups = NULL;
851c30c9
SL
6188 return 0;
6189 }
60aaf933 6190 *group_cnt = num_possible_nodes();
851c30c9 6191 size = sizeof(struct r5worker) * cnt;
60aaf933 6192 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6193 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6194 *group_cnt, GFP_NOIO);
6195 if (!*worker_groups || !workers) {
851c30c9 6196 kfree(workers);
60aaf933 6197 kfree(*worker_groups);
851c30c9
SL
6198 return -ENOMEM;
6199 }
6200
60aaf933 6201 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6202 struct r5worker_group *group;
6203
0c775d52 6204 group = &(*worker_groups)[i];
851c30c9
SL
6205 INIT_LIST_HEAD(&group->handle_list);
6206 group->conf = conf;
6207 group->workers = workers + i * cnt;
6208
6209 for (j = 0; j < cnt; j++) {
566c09c5
SL
6210 struct r5worker *worker = group->workers + j;
6211 worker->group = group;
6212 INIT_WORK(&worker->work, raid5_do_work);
6213
6214 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6215 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6216 }
6217 }
6218
6219 return 0;
6220}
6221
6222static void free_thread_groups(struct r5conf *conf)
6223{
6224 if (conf->worker_groups)
6225 kfree(conf->worker_groups[0].workers);
6226 kfree(conf->worker_groups);
6227 conf->worker_groups = NULL;
6228}
6229
80c3a6ce 6230static sector_t
fd01b88c 6231raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6232{
d1688a6d 6233 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6234
6235 if (!sectors)
6236 sectors = mddev->dev_sectors;
5e5e3e78 6237 if (!raid_disks)
7ec05478 6238 /* size is defined by the smallest of previous and new size */
5e5e3e78 6239 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6240
9d8f0363 6241 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 6242 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
6243 return sectors * (raid_disks - conf->max_degraded);
6244}
6245
789b5e03
ON
6246static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6247{
6248 safe_put_page(percpu->spare_page);
46d5b785 6249 if (percpu->scribble)
6250 flex_array_free(percpu->scribble);
789b5e03
ON
6251 percpu->spare_page = NULL;
6252 percpu->scribble = NULL;
6253}
6254
6255static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6256{
6257 if (conf->level == 6 && !percpu->spare_page)
6258 percpu->spare_page = alloc_page(GFP_KERNEL);
6259 if (!percpu->scribble)
46d5b785 6260 percpu->scribble = scribble_alloc(max(conf->raid_disks,
738a2738
N
6261 conf->previous_raid_disks),
6262 max(conf->chunk_sectors,
6263 conf->prev_chunk_sectors)
6264 / STRIPE_SECTORS,
6265 GFP_KERNEL);
789b5e03
ON
6266
6267 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6268 free_scratch_buffer(conf, percpu);
6269 return -ENOMEM;
6270 }
6271
6272 return 0;
6273}
6274
d1688a6d 6275static void raid5_free_percpu(struct r5conf *conf)
36d1c647 6276{
36d1c647
DW
6277 unsigned long cpu;
6278
6279 if (!conf->percpu)
6280 return;
6281
36d1c647
DW
6282#ifdef CONFIG_HOTPLUG_CPU
6283 unregister_cpu_notifier(&conf->cpu_notify);
6284#endif
789b5e03
ON
6285
6286 get_online_cpus();
6287 for_each_possible_cpu(cpu)
6288 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6289 put_online_cpus();
6290
6291 free_percpu(conf->percpu);
6292}
6293
d1688a6d 6294static void free_conf(struct r5conf *conf)
95fc17aa 6295{
edbe83ab
N
6296 if (conf->shrinker.seeks)
6297 unregister_shrinker(&conf->shrinker);
851c30c9 6298 free_thread_groups(conf);
95fc17aa 6299 shrink_stripes(conf);
36d1c647 6300 raid5_free_percpu(conf);
95fc17aa
DW
6301 kfree(conf->disks);
6302 kfree(conf->stripe_hashtbl);
6303 kfree(conf);
6304}
6305
36d1c647
DW
6306#ifdef CONFIG_HOTPLUG_CPU
6307static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6308 void *hcpu)
6309{
d1688a6d 6310 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
6311 long cpu = (long)hcpu;
6312 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6313
6314 switch (action) {
6315 case CPU_UP_PREPARE:
6316 case CPU_UP_PREPARE_FROZEN:
789b5e03 6317 if (alloc_scratch_buffer(conf, percpu)) {
36d1c647
DW
6318 pr_err("%s: failed memory allocation for cpu%ld\n",
6319 __func__, cpu);
55af6bb5 6320 return notifier_from_errno(-ENOMEM);
36d1c647
DW
6321 }
6322 break;
6323 case CPU_DEAD:
6324 case CPU_DEAD_FROZEN:
789b5e03 6325 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6326 break;
6327 default:
6328 break;
6329 }
6330 return NOTIFY_OK;
6331}
6332#endif
6333
d1688a6d 6334static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
6335{
6336 unsigned long cpu;
789b5e03 6337 int err = 0;
36d1c647 6338
789b5e03
ON
6339 conf->percpu = alloc_percpu(struct raid5_percpu);
6340 if (!conf->percpu)
36d1c647 6341 return -ENOMEM;
789b5e03
ON
6342
6343#ifdef CONFIG_HOTPLUG_CPU
6344 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6345 conf->cpu_notify.priority = 0;
6346 err = register_cpu_notifier(&conf->cpu_notify);
6347 if (err)
6348 return err;
6349#endif
36d1c647
DW
6350
6351 get_online_cpus();
36d1c647 6352 for_each_present_cpu(cpu) {
789b5e03
ON
6353 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6354 if (err) {
6355 pr_err("%s: failed memory allocation for cpu%ld\n",
6356 __func__, cpu);
36d1c647
DW
6357 break;
6358 }
36d1c647 6359 }
36d1c647
DW
6360 put_online_cpus();
6361
6362 return err;
6363}
6364
edbe83ab
N
6365static unsigned long raid5_cache_scan(struct shrinker *shrink,
6366 struct shrink_control *sc)
6367{
6368 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6369 int ret = 0;
6370 while (ret < sc->nr_to_scan) {
6371 if (drop_one_stripe(conf) == 0)
6372 return SHRINK_STOP;
6373 ret++;
6374 }
6375 return ret;
6376}
6377
6378static unsigned long raid5_cache_count(struct shrinker *shrink,
6379 struct shrink_control *sc)
6380{
6381 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6382
6383 if (conf->max_nr_stripes < conf->min_nr_stripes)
6384 /* unlikely, but not impossible */
6385 return 0;
6386 return conf->max_nr_stripes - conf->min_nr_stripes;
6387}
6388
d1688a6d 6389static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6390{
d1688a6d 6391 struct r5conf *conf;
5e5e3e78 6392 int raid_disk, memory, max_disks;
3cb03002 6393 struct md_rdev *rdev;
1da177e4 6394 struct disk_info *disk;
0232605d 6395 char pers_name[6];
566c09c5 6396 int i;
60aaf933 6397 int group_cnt, worker_cnt_per_group;
6398 struct r5worker_group *new_group;
1da177e4 6399
91adb564
N
6400 if (mddev->new_level != 5
6401 && mddev->new_level != 4
6402 && mddev->new_level != 6) {
0c55e022 6403 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
6404 mdname(mddev), mddev->new_level);
6405 return ERR_PTR(-EIO);
1da177e4 6406 }
91adb564
N
6407 if ((mddev->new_level == 5
6408 && !algorithm_valid_raid5(mddev->new_layout)) ||
6409 (mddev->new_level == 6
6410 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 6411 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
6412 mdname(mddev), mddev->new_layout);
6413 return ERR_PTR(-EIO);
99c0fb5f 6414 }
91adb564 6415 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 6416 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
6417 mdname(mddev), mddev->raid_disks);
6418 return ERR_PTR(-EINVAL);
4bbf3771
N
6419 }
6420
664e7c41
AN
6421 if (!mddev->new_chunk_sectors ||
6422 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6423 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
6424 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6425 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6426 return ERR_PTR(-EINVAL);
f6705578
N
6427 }
6428
d1688a6d 6429 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6430 if (conf == NULL)
1da177e4 6431 goto abort;
851c30c9 6432 /* Don't enable multi-threading by default*/
60aaf933 6433 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6434 &new_group)) {
6435 conf->group_cnt = group_cnt;
6436 conf->worker_cnt_per_group = worker_cnt_per_group;
6437 conf->worker_groups = new_group;
6438 } else
851c30c9 6439 goto abort;
f5efd45a 6440 spin_lock_init(&conf->device_lock);
c46501b2 6441 seqcount_init(&conf->gen_lock);
f5efd45a
DW
6442 init_waitqueue_head(&conf->wait_for_stripe);
6443 init_waitqueue_head(&conf->wait_for_overlap);
6444 INIT_LIST_HEAD(&conf->handle_list);
6445 INIT_LIST_HEAD(&conf->hold_list);
6446 INIT_LIST_HEAD(&conf->delayed_list);
6447 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 6448 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6449 atomic_set(&conf->active_stripes, 0);
6450 atomic_set(&conf->preread_active_stripes, 0);
6451 atomic_set(&conf->active_aligned_reads, 0);
6452 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6453 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6454
6455 conf->raid_disks = mddev->raid_disks;
6456 if (mddev->reshape_position == MaxSector)
6457 conf->previous_raid_disks = mddev->raid_disks;
6458 else
f6705578 6459 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6460 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6461
5e5e3e78 6462 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
6463 GFP_KERNEL);
6464 if (!conf->disks)
6465 goto abort;
9ffae0cf 6466
1da177e4
LT
6467 conf->mddev = mddev;
6468
fccddba0 6469 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6470 goto abort;
1da177e4 6471
566c09c5
SL
6472 /* We init hash_locks[0] separately to that it can be used
6473 * as the reference lock in the spin_lock_nest_lock() call
6474 * in lock_all_device_hash_locks_irq in order to convince
6475 * lockdep that we know what we are doing.
6476 */
6477 spin_lock_init(conf->hash_locks);
6478 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6479 spin_lock_init(conf->hash_locks + i);
6480
6481 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6482 INIT_LIST_HEAD(conf->inactive_list + i);
6483
6484 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6485 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6486
36d1c647 6487 conf->level = mddev->new_level;
46d5b785 6488 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6489 if (raid5_alloc_percpu(conf) != 0)
6490 goto abort;
6491
0c55e022 6492 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6493
dafb20fa 6494 rdev_for_each(rdev, mddev) {
1da177e4 6495 raid_disk = rdev->raid_disk;
5e5e3e78 6496 if (raid_disk >= max_disks
1da177e4
LT
6497 || raid_disk < 0)
6498 continue;
6499 disk = conf->disks + raid_disk;
6500
17045f52
N
6501 if (test_bit(Replacement, &rdev->flags)) {
6502 if (disk->replacement)
6503 goto abort;
6504 disk->replacement = rdev;
6505 } else {
6506 if (disk->rdev)
6507 goto abort;
6508 disk->rdev = rdev;
6509 }
1da177e4 6510
b2d444d7 6511 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 6512 char b[BDEVNAME_SIZE];
0c55e022
N
6513 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6514 " disk %d\n",
6515 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 6516 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
6517 /* Cannot rely on bitmap to complete recovery */
6518 conf->fullsync = 1;
1da177e4
LT
6519 }
6520
91adb564 6521 conf->level = mddev->new_level;
584acdd4 6522 if (conf->level == 6) {
16a53ecc 6523 conf->max_degraded = 2;
584acdd4
MS
6524 if (raid6_call.xor_syndrome)
6525 conf->rmw_level = PARITY_ENABLE_RMW;
6526 else
6527 conf->rmw_level = PARITY_DISABLE_RMW;
6528 } else {
16a53ecc 6529 conf->max_degraded = 1;
584acdd4
MS
6530 conf->rmw_level = PARITY_ENABLE_RMW;
6531 }
91adb564 6532 conf->algorithm = mddev->new_layout;
fef9c61f 6533 conf->reshape_progress = mddev->reshape_position;
e183eaed 6534 if (conf->reshape_progress != MaxSector) {
09c9e5fa 6535 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
6536 conf->prev_algo = mddev->layout;
6537 }
1da177e4 6538
edbe83ab
N
6539 conf->min_nr_stripes = NR_STRIPES;
6540 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 6541 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 6542 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 6543 if (grow_stripes(conf, conf->min_nr_stripes)) {
91adb564 6544 printk(KERN_ERR
0c55e022
N
6545 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6546 mdname(mddev), memory);
91adb564
N
6547 goto abort;
6548 } else
0c55e022
N
6549 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6550 mdname(mddev), memory);
edbe83ab
N
6551 /*
6552 * Losing a stripe head costs more than the time to refill it,
6553 * it reduces the queue depth and so can hurt throughput.
6554 * So set it rather large, scaled by number of devices.
6555 */
6556 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6557 conf->shrinker.scan_objects = raid5_cache_scan;
6558 conf->shrinker.count_objects = raid5_cache_count;
6559 conf->shrinker.batch = 128;
6560 conf->shrinker.flags = 0;
6561 register_shrinker(&conf->shrinker);
1da177e4 6562
0232605d
N
6563 sprintf(pers_name, "raid%d", mddev->new_level);
6564 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
6565 if (!conf->thread) {
6566 printk(KERN_ERR
0c55e022 6567 "md/raid:%s: couldn't allocate thread.\n",
91adb564 6568 mdname(mddev));
16a53ecc
N
6569 goto abort;
6570 }
91adb564
N
6571
6572 return conf;
6573
6574 abort:
6575 if (conf) {
95fc17aa 6576 free_conf(conf);
91adb564
N
6577 return ERR_PTR(-EIO);
6578 } else
6579 return ERR_PTR(-ENOMEM);
6580}
6581
c148ffdc
N
6582static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6583{
6584 switch (algo) {
6585 case ALGORITHM_PARITY_0:
6586 if (raid_disk < max_degraded)
6587 return 1;
6588 break;
6589 case ALGORITHM_PARITY_N:
6590 if (raid_disk >= raid_disks - max_degraded)
6591 return 1;
6592 break;
6593 case ALGORITHM_PARITY_0_6:
f72ffdd6 6594 if (raid_disk == 0 ||
c148ffdc
N
6595 raid_disk == raid_disks - 1)
6596 return 1;
6597 break;
6598 case ALGORITHM_LEFT_ASYMMETRIC_6:
6599 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6600 case ALGORITHM_LEFT_SYMMETRIC_6:
6601 case ALGORITHM_RIGHT_SYMMETRIC_6:
6602 if (raid_disk == raid_disks - 1)
6603 return 1;
6604 }
6605 return 0;
6606}
6607
fd01b88c 6608static int run(struct mddev *mddev)
91adb564 6609{
d1688a6d 6610 struct r5conf *conf;
9f7c2220 6611 int working_disks = 0;
c148ffdc 6612 int dirty_parity_disks = 0;
3cb03002 6613 struct md_rdev *rdev;
c148ffdc 6614 sector_t reshape_offset = 0;
17045f52 6615 int i;
b5254dd5
N
6616 long long min_offset_diff = 0;
6617 int first = 1;
91adb564 6618
8c6ac868 6619 if (mddev->recovery_cp != MaxSector)
0c55e022 6620 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
6621 " -- starting background reconstruction\n",
6622 mdname(mddev));
b5254dd5
N
6623
6624 rdev_for_each(rdev, mddev) {
6625 long long diff;
6626 if (rdev->raid_disk < 0)
6627 continue;
6628 diff = (rdev->new_data_offset - rdev->data_offset);
6629 if (first) {
6630 min_offset_diff = diff;
6631 first = 0;
6632 } else if (mddev->reshape_backwards &&
6633 diff < min_offset_diff)
6634 min_offset_diff = diff;
6635 else if (!mddev->reshape_backwards &&
6636 diff > min_offset_diff)
6637 min_offset_diff = diff;
6638 }
6639
91adb564
N
6640 if (mddev->reshape_position != MaxSector) {
6641 /* Check that we can continue the reshape.
b5254dd5
N
6642 * Difficulties arise if the stripe we would write to
6643 * next is at or after the stripe we would read from next.
6644 * For a reshape that changes the number of devices, this
6645 * is only possible for a very short time, and mdadm makes
6646 * sure that time appears to have past before assembling
6647 * the array. So we fail if that time hasn't passed.
6648 * For a reshape that keeps the number of devices the same
6649 * mdadm must be monitoring the reshape can keeping the
6650 * critical areas read-only and backed up. It will start
6651 * the array in read-only mode, so we check for that.
91adb564
N
6652 */
6653 sector_t here_new, here_old;
6654 int old_disks;
18b00334 6655 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 6656
88ce4930 6657 if (mddev->new_level != mddev->level) {
0c55e022 6658 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
6659 "required - aborting.\n",
6660 mdname(mddev));
6661 return -EINVAL;
6662 }
91adb564
N
6663 old_disks = mddev->raid_disks - mddev->delta_disks;
6664 /* reshape_position must be on a new-stripe boundary, and one
6665 * further up in new geometry must map after here in old
6666 * geometry.
6667 */
6668 here_new = mddev->reshape_position;
664e7c41 6669 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 6670 (mddev->raid_disks - max_degraded))) {
0c55e022
N
6671 printk(KERN_ERR "md/raid:%s: reshape_position not "
6672 "on a stripe boundary\n", mdname(mddev));
91adb564
N
6673 return -EINVAL;
6674 }
c148ffdc 6675 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
6676 /* here_new is the stripe we will write to */
6677 here_old = mddev->reshape_position;
9d8f0363 6678 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
6679 (old_disks-max_degraded));
6680 /* here_old is the first stripe that we might need to read
6681 * from */
67ac6011 6682 if (mddev->delta_disks == 0) {
b5254dd5
N
6683 if ((here_new * mddev->new_chunk_sectors !=
6684 here_old * mddev->chunk_sectors)) {
6685 printk(KERN_ERR "md/raid:%s: reshape position is"
6686 " confused - aborting\n", mdname(mddev));
6687 return -EINVAL;
6688 }
67ac6011 6689 /* We cannot be sure it is safe to start an in-place
b5254dd5 6690 * reshape. It is only safe if user-space is monitoring
67ac6011
N
6691 * and taking constant backups.
6692 * mdadm always starts a situation like this in
6693 * readonly mode so it can take control before
6694 * allowing any writes. So just check for that.
6695 */
b5254dd5
N
6696 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6697 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6698 /* not really in-place - so OK */;
6699 else if (mddev->ro == 0) {
6700 printk(KERN_ERR "md/raid:%s: in-place reshape "
6701 "must be started in read-only mode "
6702 "- aborting\n",
0c55e022 6703 mdname(mddev));
67ac6011
N
6704 return -EINVAL;
6705 }
2c810cdd 6706 } else if (mddev->reshape_backwards
b5254dd5 6707 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
67ac6011
N
6708 here_old * mddev->chunk_sectors)
6709 : (here_new * mddev->new_chunk_sectors >=
b5254dd5 6710 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
91adb564 6711 /* Reading from the same stripe as writing to - bad */
0c55e022
N
6712 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6713 "auto-recovery - aborting.\n",
6714 mdname(mddev));
91adb564
N
6715 return -EINVAL;
6716 }
0c55e022
N
6717 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6718 mdname(mddev));
91adb564
N
6719 /* OK, we should be able to continue; */
6720 } else {
6721 BUG_ON(mddev->level != mddev->new_level);
6722 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 6723 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 6724 BUG_ON(mddev->delta_disks != 0);
1da177e4 6725 }
91adb564 6726
245f46c2
N
6727 if (mddev->private == NULL)
6728 conf = setup_conf(mddev);
6729 else
6730 conf = mddev->private;
6731
91adb564
N
6732 if (IS_ERR(conf))
6733 return PTR_ERR(conf);
6734
b5254dd5 6735 conf->min_offset_diff = min_offset_diff;
91adb564
N
6736 mddev->thread = conf->thread;
6737 conf->thread = NULL;
6738 mddev->private = conf;
6739
17045f52
N
6740 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6741 i++) {
6742 rdev = conf->disks[i].rdev;
6743 if (!rdev && conf->disks[i].replacement) {
6744 /* The replacement is all we have yet */
6745 rdev = conf->disks[i].replacement;
6746 conf->disks[i].replacement = NULL;
6747 clear_bit(Replacement, &rdev->flags);
6748 conf->disks[i].rdev = rdev;
6749 }
6750 if (!rdev)
c148ffdc 6751 continue;
17045f52
N
6752 if (conf->disks[i].replacement &&
6753 conf->reshape_progress != MaxSector) {
6754 /* replacements and reshape simply do not mix. */
6755 printk(KERN_ERR "md: cannot handle concurrent "
6756 "replacement and reshape.\n");
6757 goto abort;
6758 }
2f115882 6759 if (test_bit(In_sync, &rdev->flags)) {
91adb564 6760 working_disks++;
2f115882
N
6761 continue;
6762 }
c148ffdc
N
6763 /* This disc is not fully in-sync. However if it
6764 * just stored parity (beyond the recovery_offset),
6765 * when we don't need to be concerned about the
6766 * array being dirty.
6767 * When reshape goes 'backwards', we never have
6768 * partially completed devices, so we only need
6769 * to worry about reshape going forwards.
6770 */
6771 /* Hack because v0.91 doesn't store recovery_offset properly. */
6772 if (mddev->major_version == 0 &&
6773 mddev->minor_version > 90)
6774 rdev->recovery_offset = reshape_offset;
5026d7a9 6775
c148ffdc
N
6776 if (rdev->recovery_offset < reshape_offset) {
6777 /* We need to check old and new layout */
6778 if (!only_parity(rdev->raid_disk,
6779 conf->algorithm,
6780 conf->raid_disks,
6781 conf->max_degraded))
6782 continue;
6783 }
6784 if (!only_parity(rdev->raid_disk,
6785 conf->prev_algo,
6786 conf->previous_raid_disks,
6787 conf->max_degraded))
6788 continue;
6789 dirty_parity_disks++;
6790 }
91adb564 6791
17045f52
N
6792 /*
6793 * 0 for a fully functional array, 1 or 2 for a degraded array.
6794 */
908f4fbd 6795 mddev->degraded = calc_degraded(conf);
91adb564 6796
674806d6 6797 if (has_failed(conf)) {
0c55e022 6798 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 6799 " (%d/%d failed)\n",
02c2de8c 6800 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
6801 goto abort;
6802 }
6803
91adb564 6804 /* device size must be a multiple of chunk size */
9d8f0363 6805 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
6806 mddev->resync_max_sectors = mddev->dev_sectors;
6807
c148ffdc 6808 if (mddev->degraded > dirty_parity_disks &&
1da177e4 6809 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
6810 if (mddev->ok_start_degraded)
6811 printk(KERN_WARNING
0c55e022
N
6812 "md/raid:%s: starting dirty degraded array"
6813 " - data corruption possible.\n",
6ff8d8ec
N
6814 mdname(mddev));
6815 else {
6816 printk(KERN_ERR
0c55e022 6817 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
6818 mdname(mddev));
6819 goto abort;
6820 }
1da177e4
LT
6821 }
6822
1da177e4 6823 if (mddev->degraded == 0)
0c55e022
N
6824 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6825 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
6826 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6827 mddev->new_layout);
1da177e4 6828 else
0c55e022
N
6829 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6830 " out of %d devices, algorithm %d\n",
6831 mdname(mddev), conf->level,
6832 mddev->raid_disks - mddev->degraded,
6833 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
6834
6835 print_raid5_conf(conf);
6836
fef9c61f 6837 if (conf->reshape_progress != MaxSector) {
fef9c61f 6838 conf->reshape_safe = conf->reshape_progress;
f6705578
N
6839 atomic_set(&conf->reshape_stripes, 0);
6840 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6841 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6842 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6843 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6844 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6845 "reshape");
f6705578
N
6846 }
6847
1da177e4 6848 /* Ok, everything is just fine now */
a64c876f
N
6849 if (mddev->to_remove == &raid5_attrs_group)
6850 mddev->to_remove = NULL;
00bcb4ac
N
6851 else if (mddev->kobj.sd &&
6852 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 6853 printk(KERN_WARNING
4a5add49 6854 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 6855 mdname(mddev));
4a5add49 6856 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 6857
4a5add49 6858 if (mddev->queue) {
9f7c2220 6859 int chunk_size;
620125f2 6860 bool discard_supported = true;
4a5add49
N
6861 /* read-ahead size must cover two whole stripes, which
6862 * is 2 * (datadisks) * chunksize where 'n' is the
6863 * number of raid devices
6864 */
6865 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6866 int stripe = data_disks *
6867 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6868 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6869 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 6870
9f7c2220
N
6871 chunk_size = mddev->chunk_sectors << 9;
6872 blk_queue_io_min(mddev->queue, chunk_size);
6873 blk_queue_io_opt(mddev->queue, chunk_size *
6874 (conf->raid_disks - conf->max_degraded));
c78afc62 6875 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
6876 /*
6877 * We can only discard a whole stripe. It doesn't make sense to
6878 * discard data disk but write parity disk
6879 */
6880 stripe = stripe * PAGE_SIZE;
4ac6875e
N
6881 /* Round up to power of 2, as discard handling
6882 * currently assumes that */
6883 while ((stripe-1) & stripe)
6884 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
6885 mddev->queue->limits.discard_alignment = stripe;
6886 mddev->queue->limits.discard_granularity = stripe;
6887 /*
6888 * unaligned part of discard request will be ignored, so can't
8e0e99ba 6889 * guarantee discard_zeroes_data
620125f2
SL
6890 */
6891 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 6892
5026d7a9
PA
6893 blk_queue_max_write_same_sectors(mddev->queue, 0);
6894
05616be5 6895 rdev_for_each(rdev, mddev) {
9f7c2220
N
6896 disk_stack_limits(mddev->gendisk, rdev->bdev,
6897 rdev->data_offset << 9);
05616be5
N
6898 disk_stack_limits(mddev->gendisk, rdev->bdev,
6899 rdev->new_data_offset << 9);
620125f2
SL
6900 /*
6901 * discard_zeroes_data is required, otherwise data
6902 * could be lost. Consider a scenario: discard a stripe
6903 * (the stripe could be inconsistent if
6904 * discard_zeroes_data is 0); write one disk of the
6905 * stripe (the stripe could be inconsistent again
6906 * depending on which disks are used to calculate
6907 * parity); the disk is broken; The stripe data of this
6908 * disk is lost.
6909 */
6910 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6911 !bdev_get_queue(rdev->bdev)->
6912 limits.discard_zeroes_data)
6913 discard_supported = false;
8e0e99ba
N
6914 /* Unfortunately, discard_zeroes_data is not currently
6915 * a guarantee - just a hint. So we only allow DISCARD
6916 * if the sysadmin has confirmed that only safe devices
6917 * are in use by setting a module parameter.
6918 */
6919 if (!devices_handle_discard_safely) {
6920 if (discard_supported) {
6921 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6922 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6923 }
6924 discard_supported = false;
6925 }
05616be5 6926 }
620125f2
SL
6927
6928 if (discard_supported &&
6929 mddev->queue->limits.max_discard_sectors >= stripe &&
6930 mddev->queue->limits.discard_granularity >= stripe)
6931 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6932 mddev->queue);
6933 else
6934 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6935 mddev->queue);
9f7c2220 6936 }
23032a0e 6937
1da177e4
LT
6938 return 0;
6939abort:
01f96c0a 6940 md_unregister_thread(&mddev->thread);
e4f869d9
N
6941 print_raid5_conf(conf);
6942 free_conf(conf);
1da177e4 6943 mddev->private = NULL;
0c55e022 6944 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
6945 return -EIO;
6946}
6947
afa0f557 6948static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 6949{
afa0f557 6950 struct r5conf *conf = priv;
1da177e4 6951
95fc17aa 6952 free_conf(conf);
a64c876f 6953 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
6954}
6955
fd01b88c 6956static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 6957{
d1688a6d 6958 struct r5conf *conf = mddev->private;
1da177e4
LT
6959 int i;
6960
9d8f0363
AN
6961 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6962 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 6963 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
6964 for (i = 0; i < conf->raid_disks; i++)
6965 seq_printf (seq, "%s",
6966 conf->disks[i].rdev &&
b2d444d7 6967 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 6968 seq_printf (seq, "]");
1da177e4
LT
6969}
6970
d1688a6d 6971static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
6972{
6973 int i;
6974 struct disk_info *tmp;
6975
0c55e022 6976 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
6977 if (!conf) {
6978 printk("(conf==NULL)\n");
6979 return;
6980 }
0c55e022
N
6981 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6982 conf->raid_disks,
6983 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
6984
6985 for (i = 0; i < conf->raid_disks; i++) {
6986 char b[BDEVNAME_SIZE];
6987 tmp = conf->disks + i;
6988 if (tmp->rdev)
0c55e022
N
6989 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6990 i, !test_bit(Faulty, &tmp->rdev->flags),
6991 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
6992 }
6993}
6994
fd01b88c 6995static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
6996{
6997 int i;
d1688a6d 6998 struct r5conf *conf = mddev->private;
1da177e4 6999 struct disk_info *tmp;
6b965620
N
7000 int count = 0;
7001 unsigned long flags;
1da177e4
LT
7002
7003 for (i = 0; i < conf->raid_disks; i++) {
7004 tmp = conf->disks + i;
dd054fce
N
7005 if (tmp->replacement
7006 && tmp->replacement->recovery_offset == MaxSector
7007 && !test_bit(Faulty, &tmp->replacement->flags)
7008 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7009 /* Replacement has just become active. */
7010 if (!tmp->rdev
7011 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7012 count++;
7013 if (tmp->rdev) {
7014 /* Replaced device not technically faulty,
7015 * but we need to be sure it gets removed
7016 * and never re-added.
7017 */
7018 set_bit(Faulty, &tmp->rdev->flags);
7019 sysfs_notify_dirent_safe(
7020 tmp->rdev->sysfs_state);
7021 }
7022 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7023 } else if (tmp->rdev
70fffd0b 7024 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7025 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7026 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7027 count++;
43c73ca4 7028 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7029 }
7030 }
6b965620 7031 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7032 mddev->degraded = calc_degraded(conf);
6b965620 7033 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7034 print_raid5_conf(conf);
6b965620 7035 return count;
1da177e4
LT
7036}
7037
b8321b68 7038static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7039{
d1688a6d 7040 struct r5conf *conf = mddev->private;
1da177e4 7041 int err = 0;
b8321b68 7042 int number = rdev->raid_disk;
657e3e4d 7043 struct md_rdev **rdevp;
1da177e4
LT
7044 struct disk_info *p = conf->disks + number;
7045
7046 print_raid5_conf(conf);
657e3e4d
N
7047 if (rdev == p->rdev)
7048 rdevp = &p->rdev;
7049 else if (rdev == p->replacement)
7050 rdevp = &p->replacement;
7051 else
7052 return 0;
7053
7054 if (number >= conf->raid_disks &&
7055 conf->reshape_progress == MaxSector)
7056 clear_bit(In_sync, &rdev->flags);
7057
7058 if (test_bit(In_sync, &rdev->flags) ||
7059 atomic_read(&rdev->nr_pending)) {
7060 err = -EBUSY;
7061 goto abort;
7062 }
7063 /* Only remove non-faulty devices if recovery
7064 * isn't possible.
7065 */
7066 if (!test_bit(Faulty, &rdev->flags) &&
7067 mddev->recovery_disabled != conf->recovery_disabled &&
7068 !has_failed(conf) &&
dd054fce 7069 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7070 number < conf->raid_disks) {
7071 err = -EBUSY;
7072 goto abort;
7073 }
7074 *rdevp = NULL;
7075 synchronize_rcu();
7076 if (atomic_read(&rdev->nr_pending)) {
7077 /* lost the race, try later */
7078 err = -EBUSY;
7079 *rdevp = rdev;
dd054fce
N
7080 } else if (p->replacement) {
7081 /* We must have just cleared 'rdev' */
7082 p->rdev = p->replacement;
7083 clear_bit(Replacement, &p->replacement->flags);
7084 smp_mb(); /* Make sure other CPUs may see both as identical
7085 * but will never see neither - if they are careful
7086 */
7087 p->replacement = NULL;
7088 clear_bit(WantReplacement, &rdev->flags);
7089 } else
7090 /* We might have just removed the Replacement as faulty-
7091 * clear the bit just in case
7092 */
7093 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7094abort:
7095
7096 print_raid5_conf(conf);
7097 return err;
7098}
7099
fd01b88c 7100static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7101{
d1688a6d 7102 struct r5conf *conf = mddev->private;
199050ea 7103 int err = -EEXIST;
1da177e4
LT
7104 int disk;
7105 struct disk_info *p;
6c2fce2e
NB
7106 int first = 0;
7107 int last = conf->raid_disks - 1;
1da177e4 7108
7f0da59b
N
7109 if (mddev->recovery_disabled == conf->recovery_disabled)
7110 return -EBUSY;
7111
dc10c643 7112 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7113 /* no point adding a device */
199050ea 7114 return -EINVAL;
1da177e4 7115
6c2fce2e
NB
7116 if (rdev->raid_disk >= 0)
7117 first = last = rdev->raid_disk;
1da177e4
LT
7118
7119 /*
16a53ecc
N
7120 * find the disk ... but prefer rdev->saved_raid_disk
7121 * if possible.
1da177e4 7122 */
16a53ecc 7123 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7124 rdev->saved_raid_disk >= first &&
16a53ecc 7125 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7126 first = rdev->saved_raid_disk;
7127
7128 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7129 p = conf->disks + disk;
7130 if (p->rdev == NULL) {
b2d444d7 7131 clear_bit(In_sync, &rdev->flags);
1da177e4 7132 rdev->raid_disk = disk;
199050ea 7133 err = 0;
72626685
N
7134 if (rdev->saved_raid_disk != disk)
7135 conf->fullsync = 1;
d6065f7b 7136 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 7137 goto out;
1da177e4 7138 }
5cfb22a1
N
7139 }
7140 for (disk = first; disk <= last; disk++) {
7141 p = conf->disks + disk;
7bfec5f3
N
7142 if (test_bit(WantReplacement, &p->rdev->flags) &&
7143 p->replacement == NULL) {
7144 clear_bit(In_sync, &rdev->flags);
7145 set_bit(Replacement, &rdev->flags);
7146 rdev->raid_disk = disk;
7147 err = 0;
7148 conf->fullsync = 1;
7149 rcu_assign_pointer(p->replacement, rdev);
7150 break;
7151 }
7152 }
5cfb22a1 7153out:
1da177e4 7154 print_raid5_conf(conf);
199050ea 7155 return err;
1da177e4
LT
7156}
7157
fd01b88c 7158static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7159{
7160 /* no resync is happening, and there is enough space
7161 * on all devices, so we can resize.
7162 * We need to make sure resync covers any new space.
7163 * If the array is shrinking we should possibly wait until
7164 * any io in the removed space completes, but it hardly seems
7165 * worth it.
7166 */
a4a6125a 7167 sector_t newsize;
9d8f0363 7168 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
a4a6125a
N
7169 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7170 if (mddev->external_size &&
7171 mddev->array_sectors > newsize)
b522adcd 7172 return -EINVAL;
a4a6125a
N
7173 if (mddev->bitmap) {
7174 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7175 if (ret)
7176 return ret;
7177 }
7178 md_set_array_sectors(mddev, newsize);
f233ea5c 7179 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7180 revalidate_disk(mddev->gendisk);
b098636c
N
7181 if (sectors > mddev->dev_sectors &&
7182 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7183 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7184 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7185 }
58c0fed4 7186 mddev->dev_sectors = sectors;
4b5c7ae8 7187 mddev->resync_max_sectors = sectors;
1da177e4
LT
7188 return 0;
7189}
7190
fd01b88c 7191static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7192{
7193 /* Can only proceed if there are plenty of stripe_heads.
7194 * We need a minimum of one full stripe,, and for sensible progress
7195 * it is best to have about 4 times that.
7196 * If we require 4 times, then the default 256 4K stripe_heads will
7197 * allow for chunk sizes up to 256K, which is probably OK.
7198 * If the chunk size is greater, user-space should request more
7199 * stripe_heads first.
7200 */
d1688a6d 7201 struct r5conf *conf = mddev->private;
01ee22b4 7202 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7203 > conf->min_nr_stripes ||
01ee22b4 7204 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7205 > conf->min_nr_stripes) {
0c55e022
N
7206 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7207 mdname(mddev),
01ee22b4
N
7208 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7209 / STRIPE_SIZE)*4);
7210 return 0;
7211 }
7212 return 1;
7213}
7214
fd01b88c 7215static int check_reshape(struct mddev *mddev)
29269553 7216{
d1688a6d 7217 struct r5conf *conf = mddev->private;
29269553 7218
88ce4930
N
7219 if (mddev->delta_disks == 0 &&
7220 mddev->new_layout == mddev->layout &&
664e7c41 7221 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7222 return 0; /* nothing to do */
674806d6 7223 if (has_failed(conf))
ec32a2bd 7224 return -EINVAL;
fdcfbbb6 7225 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7226 /* We might be able to shrink, but the devices must
7227 * be made bigger first.
7228 * For raid6, 4 is the minimum size.
7229 * Otherwise 2 is the minimum
7230 */
7231 int min = 2;
7232 if (mddev->level == 6)
7233 min = 4;
7234 if (mddev->raid_disks + mddev->delta_disks < min)
7235 return -EINVAL;
7236 }
29269553 7237
01ee22b4 7238 if (!check_stripe_cache(mddev))
29269553 7239 return -ENOSPC;
29269553 7240
738a2738
N
7241 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7242 mddev->delta_disks > 0)
7243 if (resize_chunks(conf,
7244 conf->previous_raid_disks
7245 + max(0, mddev->delta_disks),
7246 max(mddev->new_chunk_sectors,
7247 mddev->chunk_sectors)
7248 ) < 0)
7249 return -ENOMEM;
e56108d6
N
7250 return resize_stripes(conf, (conf->previous_raid_disks
7251 + mddev->delta_disks));
63c70c4f
N
7252}
7253
fd01b88c 7254static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7255{
d1688a6d 7256 struct r5conf *conf = mddev->private;
3cb03002 7257 struct md_rdev *rdev;
63c70c4f 7258 int spares = 0;
c04be0aa 7259 unsigned long flags;
63c70c4f 7260
f416885e 7261 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7262 return -EBUSY;
7263
01ee22b4
N
7264 if (!check_stripe_cache(mddev))
7265 return -ENOSPC;
7266
30b67645
N
7267 if (has_failed(conf))
7268 return -EINVAL;
7269
c6563a8c 7270 rdev_for_each(rdev, mddev) {
469518a3
N
7271 if (!test_bit(In_sync, &rdev->flags)
7272 && !test_bit(Faulty, &rdev->flags))
29269553 7273 spares++;
c6563a8c 7274 }
63c70c4f 7275
f416885e 7276 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7277 /* Not enough devices even to make a degraded array
7278 * of that size
7279 */
7280 return -EINVAL;
7281
ec32a2bd
N
7282 /* Refuse to reduce size of the array. Any reductions in
7283 * array size must be through explicit setting of array_size
7284 * attribute.
7285 */
7286 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7287 < mddev->array_sectors) {
0c55e022 7288 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
7289 "before number of disks\n", mdname(mddev));
7290 return -EINVAL;
7291 }
7292
f6705578 7293 atomic_set(&conf->reshape_stripes, 0);
29269553 7294 spin_lock_irq(&conf->device_lock);
c46501b2 7295 write_seqcount_begin(&conf->gen_lock);
29269553 7296 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7297 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7298 conf->prev_chunk_sectors = conf->chunk_sectors;
7299 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7300 conf->prev_algo = conf->algorithm;
7301 conf->algorithm = mddev->new_layout;
05616be5
N
7302 conf->generation++;
7303 /* Code that selects data_offset needs to see the generation update
7304 * if reshape_progress has been set - so a memory barrier needed.
7305 */
7306 smp_mb();
2c810cdd 7307 if (mddev->reshape_backwards)
fef9c61f
N
7308 conf->reshape_progress = raid5_size(mddev, 0, 0);
7309 else
7310 conf->reshape_progress = 0;
7311 conf->reshape_safe = conf->reshape_progress;
c46501b2 7312 write_seqcount_end(&conf->gen_lock);
29269553
N
7313 spin_unlock_irq(&conf->device_lock);
7314
4d77e3ba
N
7315 /* Now make sure any requests that proceeded on the assumption
7316 * the reshape wasn't running - like Discard or Read - have
7317 * completed.
7318 */
7319 mddev_suspend(mddev);
7320 mddev_resume(mddev);
7321
29269553
N
7322 /* Add some new drives, as many as will fit.
7323 * We know there are enough to make the newly sized array work.
3424bf6a
N
7324 * Don't add devices if we are reducing the number of
7325 * devices in the array. This is because it is not possible
7326 * to correctly record the "partially reconstructed" state of
7327 * such devices during the reshape and confusion could result.
29269553 7328 */
87a8dec9 7329 if (mddev->delta_disks >= 0) {
dafb20fa 7330 rdev_for_each(rdev, mddev)
87a8dec9
N
7331 if (rdev->raid_disk < 0 &&
7332 !test_bit(Faulty, &rdev->flags)) {
7333 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7334 if (rdev->raid_disk
9d4c7d87 7335 >= conf->previous_raid_disks)
87a8dec9 7336 set_bit(In_sync, &rdev->flags);
9d4c7d87 7337 else
87a8dec9 7338 rdev->recovery_offset = 0;
36fad858
NK
7339
7340 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7341 /* Failure here is OK */;
50da0840 7342 }
87a8dec9
N
7343 } else if (rdev->raid_disk >= conf->previous_raid_disks
7344 && !test_bit(Faulty, &rdev->flags)) {
7345 /* This is a spare that was manually added */
7346 set_bit(In_sync, &rdev->flags);
87a8dec9 7347 }
29269553 7348
87a8dec9
N
7349 /* When a reshape changes the number of devices,
7350 * ->degraded is measured against the larger of the
7351 * pre and post number of devices.
7352 */
ec32a2bd 7353 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7354 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
7355 spin_unlock_irqrestore(&conf->device_lock, flags);
7356 }
63c70c4f 7357 mddev->raid_disks = conf->raid_disks;
e516402c 7358 mddev->reshape_position = conf->reshape_progress;
850b2b42 7359 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 7360
29269553
N
7361 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7362 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7363 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7364 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7365 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7366 "reshape");
29269553
N
7367 if (!mddev->sync_thread) {
7368 mddev->recovery = 0;
7369 spin_lock_irq(&conf->device_lock);
ba8805b9 7370 write_seqcount_begin(&conf->gen_lock);
29269553 7371 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7372 mddev->new_chunk_sectors =
7373 conf->chunk_sectors = conf->prev_chunk_sectors;
7374 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7375 rdev_for_each(rdev, mddev)
7376 rdev->new_data_offset = rdev->data_offset;
7377 smp_wmb();
ba8805b9 7378 conf->generation --;
fef9c61f 7379 conf->reshape_progress = MaxSector;
1e3fa9bd 7380 mddev->reshape_position = MaxSector;
ba8805b9 7381 write_seqcount_end(&conf->gen_lock);
29269553
N
7382 spin_unlock_irq(&conf->device_lock);
7383 return -EAGAIN;
7384 }
c8f517c4 7385 conf->reshape_checkpoint = jiffies;
29269553
N
7386 md_wakeup_thread(mddev->sync_thread);
7387 md_new_event(mddev);
7388 return 0;
7389}
29269553 7390
ec32a2bd
N
7391/* This is called from the reshape thread and should make any
7392 * changes needed in 'conf'
7393 */
d1688a6d 7394static void end_reshape(struct r5conf *conf)
29269553 7395{
29269553 7396
f6705578 7397 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 7398 struct md_rdev *rdev;
f6705578 7399
f6705578 7400 spin_lock_irq(&conf->device_lock);
cea9c228 7401 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
7402 rdev_for_each(rdev, conf->mddev)
7403 rdev->data_offset = rdev->new_data_offset;
7404 smp_wmb();
fef9c61f 7405 conf->reshape_progress = MaxSector;
f6705578 7406 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7407 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7408
7409 /* read-ahead size must cover two whole stripes, which is
7410 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7411 */
4a5add49 7412 if (conf->mddev->queue) {
cea9c228 7413 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7414 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7415 / PAGE_SIZE);
16a53ecc
N
7416 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7417 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7418 }
29269553 7419 }
29269553
N
7420}
7421
ec32a2bd
N
7422/* This is called from the raid5d thread with mddev_lock held.
7423 * It makes config changes to the device.
7424 */
fd01b88c 7425static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7426{
d1688a6d 7427 struct r5conf *conf = mddev->private;
cea9c228
N
7428
7429 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7430
ec32a2bd
N
7431 if (mddev->delta_disks > 0) {
7432 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7433 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7434 revalidate_disk(mddev->gendisk);
ec32a2bd
N
7435 } else {
7436 int d;
908f4fbd
N
7437 spin_lock_irq(&conf->device_lock);
7438 mddev->degraded = calc_degraded(conf);
7439 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
7440 for (d = conf->raid_disks ;
7441 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 7442 d++) {
3cb03002 7443 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
7444 if (rdev)
7445 clear_bit(In_sync, &rdev->flags);
7446 rdev = conf->disks[d].replacement;
7447 if (rdev)
7448 clear_bit(In_sync, &rdev->flags);
1a67dde0 7449 }
cea9c228 7450 }
88ce4930 7451 mddev->layout = conf->algorithm;
09c9e5fa 7452 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
7453 mddev->reshape_position = MaxSector;
7454 mddev->delta_disks = 0;
2c810cdd 7455 mddev->reshape_backwards = 0;
cea9c228
N
7456 }
7457}
7458
fd01b88c 7459static void raid5_quiesce(struct mddev *mddev, int state)
72626685 7460{
d1688a6d 7461 struct r5conf *conf = mddev->private;
72626685
N
7462
7463 switch(state) {
e464eafd
N
7464 case 2: /* resume for a suspend */
7465 wake_up(&conf->wait_for_overlap);
7466 break;
7467
72626685 7468 case 1: /* stop all writes */
566c09c5 7469 lock_all_device_hash_locks_irq(conf);
64bd660b
N
7470 /* '2' tells resync/reshape to pause so that all
7471 * active stripes can drain
7472 */
7473 conf->quiesce = 2;
566c09c5 7474 wait_event_cmd(conf->wait_for_stripe,
46031f9a
RBJ
7475 atomic_read(&conf->active_stripes) == 0 &&
7476 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
7477 unlock_all_device_hash_locks_irq(conf),
7478 lock_all_device_hash_locks_irq(conf));
64bd660b 7479 conf->quiesce = 1;
566c09c5 7480 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
7481 /* allow reshape to continue */
7482 wake_up(&conf->wait_for_overlap);
72626685
N
7483 break;
7484
7485 case 0: /* re-enable writes */
566c09c5 7486 lock_all_device_hash_locks_irq(conf);
72626685
N
7487 conf->quiesce = 0;
7488 wake_up(&conf->wait_for_stripe);
e464eafd 7489 wake_up(&conf->wait_for_overlap);
566c09c5 7490 unlock_all_device_hash_locks_irq(conf);
72626685
N
7491 break;
7492 }
72626685 7493}
b15c2e57 7494
fd01b88c 7495static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 7496{
e373ab10 7497 struct r0conf *raid0_conf = mddev->private;
d76c8420 7498 sector_t sectors;
54071b38 7499
f1b29bca 7500 /* for raid0 takeover only one zone is supported */
e373ab10 7501 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
7502 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7503 mdname(mddev));
f1b29bca
DW
7504 return ERR_PTR(-EINVAL);
7505 }
7506
e373ab10
N
7507 sectors = raid0_conf->strip_zone[0].zone_end;
7508 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 7509 mddev->dev_sectors = sectors;
f1b29bca 7510 mddev->new_level = level;
54071b38
TM
7511 mddev->new_layout = ALGORITHM_PARITY_N;
7512 mddev->new_chunk_sectors = mddev->chunk_sectors;
7513 mddev->raid_disks += 1;
7514 mddev->delta_disks = 1;
7515 /* make sure it will be not marked as dirty */
7516 mddev->recovery_cp = MaxSector;
7517
7518 return setup_conf(mddev);
7519}
7520
fd01b88c 7521static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
7522{
7523 int chunksect;
7524
7525 if (mddev->raid_disks != 2 ||
7526 mddev->degraded > 1)
7527 return ERR_PTR(-EINVAL);
7528
7529 /* Should check if there are write-behind devices? */
7530
7531 chunksect = 64*2; /* 64K by default */
7532
7533 /* The array must be an exact multiple of chunksize */
7534 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7535 chunksect >>= 1;
7536
7537 if ((chunksect<<9) < STRIPE_SIZE)
7538 /* array size does not allow a suitable chunk size */
7539 return ERR_PTR(-EINVAL);
7540
7541 mddev->new_level = 5;
7542 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 7543 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
7544
7545 return setup_conf(mddev);
7546}
7547
fd01b88c 7548static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
7549{
7550 int new_layout;
7551
7552 switch (mddev->layout) {
7553 case ALGORITHM_LEFT_ASYMMETRIC_6:
7554 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7555 break;
7556 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7557 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7558 break;
7559 case ALGORITHM_LEFT_SYMMETRIC_6:
7560 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7561 break;
7562 case ALGORITHM_RIGHT_SYMMETRIC_6:
7563 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7564 break;
7565 case ALGORITHM_PARITY_0_6:
7566 new_layout = ALGORITHM_PARITY_0;
7567 break;
7568 case ALGORITHM_PARITY_N:
7569 new_layout = ALGORITHM_PARITY_N;
7570 break;
7571 default:
7572 return ERR_PTR(-EINVAL);
7573 }
7574 mddev->new_level = 5;
7575 mddev->new_layout = new_layout;
7576 mddev->delta_disks = -1;
7577 mddev->raid_disks -= 1;
7578 return setup_conf(mddev);
7579}
7580
fd01b88c 7581static int raid5_check_reshape(struct mddev *mddev)
b3546035 7582{
88ce4930
N
7583 /* For a 2-drive array, the layout and chunk size can be changed
7584 * immediately as not restriping is needed.
7585 * For larger arrays we record the new value - after validation
7586 * to be used by a reshape pass.
b3546035 7587 */
d1688a6d 7588 struct r5conf *conf = mddev->private;
597a711b 7589 int new_chunk = mddev->new_chunk_sectors;
b3546035 7590
597a711b 7591 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
7592 return -EINVAL;
7593 if (new_chunk > 0) {
0ba459d2 7594 if (!is_power_of_2(new_chunk))
b3546035 7595 return -EINVAL;
597a711b 7596 if (new_chunk < (PAGE_SIZE>>9))
b3546035 7597 return -EINVAL;
597a711b 7598 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
7599 /* not factor of array size */
7600 return -EINVAL;
7601 }
7602
7603 /* They look valid */
7604
88ce4930 7605 if (mddev->raid_disks == 2) {
597a711b
N
7606 /* can make the change immediately */
7607 if (mddev->new_layout >= 0) {
7608 conf->algorithm = mddev->new_layout;
7609 mddev->layout = mddev->new_layout;
88ce4930
N
7610 }
7611 if (new_chunk > 0) {
597a711b
N
7612 conf->chunk_sectors = new_chunk ;
7613 mddev->chunk_sectors = new_chunk;
88ce4930
N
7614 }
7615 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7616 md_wakeup_thread(mddev->thread);
b3546035 7617 }
50ac168a 7618 return check_reshape(mddev);
88ce4930
N
7619}
7620
fd01b88c 7621static int raid6_check_reshape(struct mddev *mddev)
88ce4930 7622{
597a711b 7623 int new_chunk = mddev->new_chunk_sectors;
50ac168a 7624
597a711b 7625 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 7626 return -EINVAL;
b3546035 7627 if (new_chunk > 0) {
0ba459d2 7628 if (!is_power_of_2(new_chunk))
88ce4930 7629 return -EINVAL;
597a711b 7630 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 7631 return -EINVAL;
597a711b 7632 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
7633 /* not factor of array size */
7634 return -EINVAL;
b3546035 7635 }
88ce4930
N
7636
7637 /* They look valid */
50ac168a 7638 return check_reshape(mddev);
b3546035
N
7639}
7640
fd01b88c 7641static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
7642{
7643 /* raid5 can take over:
f1b29bca 7644 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
7645 * raid1 - if there are two drives. We need to know the chunk size
7646 * raid4 - trivial - just use a raid4 layout.
7647 * raid6 - Providing it is a *_6 layout
d562b0c4 7648 */
f1b29bca
DW
7649 if (mddev->level == 0)
7650 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
7651 if (mddev->level == 1)
7652 return raid5_takeover_raid1(mddev);
e9d4758f
N
7653 if (mddev->level == 4) {
7654 mddev->new_layout = ALGORITHM_PARITY_N;
7655 mddev->new_level = 5;
7656 return setup_conf(mddev);
7657 }
fc9739c6
N
7658 if (mddev->level == 6)
7659 return raid5_takeover_raid6(mddev);
d562b0c4
N
7660
7661 return ERR_PTR(-EINVAL);
7662}
7663
fd01b88c 7664static void *raid4_takeover(struct mddev *mddev)
a78d38a1 7665{
f1b29bca
DW
7666 /* raid4 can take over:
7667 * raid0 - if there is only one strip zone
7668 * raid5 - if layout is right
a78d38a1 7669 */
f1b29bca
DW
7670 if (mddev->level == 0)
7671 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
7672 if (mddev->level == 5 &&
7673 mddev->layout == ALGORITHM_PARITY_N) {
7674 mddev->new_layout = 0;
7675 mddev->new_level = 4;
7676 return setup_conf(mddev);
7677 }
7678 return ERR_PTR(-EINVAL);
7679}
d562b0c4 7680
84fc4b56 7681static struct md_personality raid5_personality;
245f46c2 7682
fd01b88c 7683static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
7684{
7685 /* Currently can only take over a raid5. We map the
7686 * personality to an equivalent raid6 personality
7687 * with the Q block at the end.
7688 */
7689 int new_layout;
7690
7691 if (mddev->pers != &raid5_personality)
7692 return ERR_PTR(-EINVAL);
7693 if (mddev->degraded > 1)
7694 return ERR_PTR(-EINVAL);
7695 if (mddev->raid_disks > 253)
7696 return ERR_PTR(-EINVAL);
7697 if (mddev->raid_disks < 3)
7698 return ERR_PTR(-EINVAL);
7699
7700 switch (mddev->layout) {
7701 case ALGORITHM_LEFT_ASYMMETRIC:
7702 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7703 break;
7704 case ALGORITHM_RIGHT_ASYMMETRIC:
7705 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7706 break;
7707 case ALGORITHM_LEFT_SYMMETRIC:
7708 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7709 break;
7710 case ALGORITHM_RIGHT_SYMMETRIC:
7711 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7712 break;
7713 case ALGORITHM_PARITY_0:
7714 new_layout = ALGORITHM_PARITY_0_6;
7715 break;
7716 case ALGORITHM_PARITY_N:
7717 new_layout = ALGORITHM_PARITY_N;
7718 break;
7719 default:
7720 return ERR_PTR(-EINVAL);
7721 }
7722 mddev->new_level = 6;
7723 mddev->new_layout = new_layout;
7724 mddev->delta_disks = 1;
7725 mddev->raid_disks += 1;
7726 return setup_conf(mddev);
7727}
7728
84fc4b56 7729static struct md_personality raid6_personality =
16a53ecc
N
7730{
7731 .name = "raid6",
7732 .level = 6,
7733 .owner = THIS_MODULE,
7734 .make_request = make_request,
7735 .run = run,
afa0f557 7736 .free = raid5_free,
16a53ecc
N
7737 .status = status,
7738 .error_handler = error,
7739 .hot_add_disk = raid5_add_disk,
7740 .hot_remove_disk= raid5_remove_disk,
7741 .spare_active = raid5_spare_active,
7742 .sync_request = sync_request,
7743 .resize = raid5_resize,
80c3a6ce 7744 .size = raid5_size,
50ac168a 7745 .check_reshape = raid6_check_reshape,
f416885e 7746 .start_reshape = raid5_start_reshape,
cea9c228 7747 .finish_reshape = raid5_finish_reshape,
16a53ecc 7748 .quiesce = raid5_quiesce,
245f46c2 7749 .takeover = raid6_takeover,
5c675f83 7750 .congested = raid5_congested,
64590f45 7751 .mergeable_bvec = raid5_mergeable_bvec,
16a53ecc 7752};
84fc4b56 7753static struct md_personality raid5_personality =
1da177e4
LT
7754{
7755 .name = "raid5",
2604b703 7756 .level = 5,
1da177e4
LT
7757 .owner = THIS_MODULE,
7758 .make_request = make_request,
7759 .run = run,
afa0f557 7760 .free = raid5_free,
1da177e4
LT
7761 .status = status,
7762 .error_handler = error,
7763 .hot_add_disk = raid5_add_disk,
7764 .hot_remove_disk= raid5_remove_disk,
7765 .spare_active = raid5_spare_active,
7766 .sync_request = sync_request,
7767 .resize = raid5_resize,
80c3a6ce 7768 .size = raid5_size,
63c70c4f
N
7769 .check_reshape = raid5_check_reshape,
7770 .start_reshape = raid5_start_reshape,
cea9c228 7771 .finish_reshape = raid5_finish_reshape,
72626685 7772 .quiesce = raid5_quiesce,
d562b0c4 7773 .takeover = raid5_takeover,
5c675f83 7774 .congested = raid5_congested,
64590f45 7775 .mergeable_bvec = raid5_mergeable_bvec,
1da177e4
LT
7776};
7777
84fc4b56 7778static struct md_personality raid4_personality =
1da177e4 7779{
2604b703
N
7780 .name = "raid4",
7781 .level = 4,
7782 .owner = THIS_MODULE,
7783 .make_request = make_request,
7784 .run = run,
afa0f557 7785 .free = raid5_free,
2604b703
N
7786 .status = status,
7787 .error_handler = error,
7788 .hot_add_disk = raid5_add_disk,
7789 .hot_remove_disk= raid5_remove_disk,
7790 .spare_active = raid5_spare_active,
7791 .sync_request = sync_request,
7792 .resize = raid5_resize,
80c3a6ce 7793 .size = raid5_size,
3d37890b
N
7794 .check_reshape = raid5_check_reshape,
7795 .start_reshape = raid5_start_reshape,
cea9c228 7796 .finish_reshape = raid5_finish_reshape,
2604b703 7797 .quiesce = raid5_quiesce,
a78d38a1 7798 .takeover = raid4_takeover,
5c675f83 7799 .congested = raid5_congested,
64590f45 7800 .mergeable_bvec = raid5_mergeable_bvec,
2604b703
N
7801};
7802
7803static int __init raid5_init(void)
7804{
851c30c9
SL
7805 raid5_wq = alloc_workqueue("raid5wq",
7806 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7807 if (!raid5_wq)
7808 return -ENOMEM;
16a53ecc 7809 register_md_personality(&raid6_personality);
2604b703
N
7810 register_md_personality(&raid5_personality);
7811 register_md_personality(&raid4_personality);
7812 return 0;
1da177e4
LT
7813}
7814
2604b703 7815static void raid5_exit(void)
1da177e4 7816{
16a53ecc 7817 unregister_md_personality(&raid6_personality);
2604b703
N
7818 unregister_md_personality(&raid5_personality);
7819 unregister_md_personality(&raid4_personality);
851c30c9 7820 destroy_workqueue(raid5_wq);
1da177e4
LT
7821}
7822
7823module_init(raid5_init);
7824module_exit(raid5_exit);
7825MODULE_LICENSE("GPL");
0efb9e61 7826MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 7827MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
7828MODULE_ALIAS("md-raid5");
7829MODULE_ALIAS("md-raid4");
2604b703
N
7830MODULE_ALIAS("md-level-5");
7831MODULE_ALIAS("md-level-4");
16a53ecc
N
7832MODULE_ALIAS("md-personality-8"); /* RAID6 */
7833MODULE_ALIAS("md-raid6");
7834MODULE_ALIAS("md-level-6");
7835
7836/* This used to be two separate modules, they were: */
7837MODULE_ALIAS("raid5");
7838MODULE_ALIAS("raid6");