]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid5.c
md/raid5: Protect some more code with ->device_lock.
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
07a3b417 50#include <linux/async.h>
bff61975 51#include <linux/seq_file.h>
36d1c647 52#include <linux/cpu.h>
5a0e3ad6 53#include <linux/slab.h>
43b2e5d8 54#include "md.h"
bff61975 55#include "raid5.h"
54071b38 56#include "raid0.h"
ef740c37 57#include "bitmap.h"
72626685 58
1da177e4
LT
59/*
60 * Stripe cache
61 */
62
63#define NR_STRIPES 256
64#define STRIPE_SIZE PAGE_SIZE
65#define STRIPE_SHIFT (PAGE_SHIFT - 9)
66#define STRIPE_SECTORS (STRIPE_SIZE>>9)
67#define IO_THRESHOLD 1
8b3e6cdc 68#define BYPASS_THRESHOLD 1
fccddba0 69#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
70#define HASH_MASK (NR_HASH - 1)
71
fccddba0 72#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
73
74/* bio's attached to a stripe+device for I/O are linked together in bi_sector
75 * order without overlap. There may be several bio's per stripe+device, and
76 * a bio could span several devices.
77 * When walking this list for a particular stripe+device, we must never proceed
78 * beyond a bio that extends past this device, as the next bio might no longer
79 * be valid.
80 * This macro is used to determine the 'next' bio in the list, given the sector
81 * of the current stripe+device
82 */
83#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84/*
85 * The following can be used to debug the driver
86 */
1da177e4
LT
87#define RAID5_PARANOIA 1
88#if RAID5_PARANOIA && defined(CONFIG_SMP)
89# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90#else
91# define CHECK_DEVLOCK()
92#endif
93
45b4233c 94#ifdef DEBUG
1da177e4
LT
95#define inline
96#define __inline__
97#endif
98
6be9d494
BS
99#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
960e739d 101/*
5b99c2ff
JA
102 * We maintain a biased count of active stripes in the bottom 16 bits of
103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
104 */
105static inline int raid5_bi_phys_segments(struct bio *bio)
106{
5b99c2ff 107 return bio->bi_phys_segments & 0xffff;
960e739d
JA
108}
109
110static inline int raid5_bi_hw_segments(struct bio *bio)
111{
5b99c2ff 112 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
113}
114
115static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116{
117 --bio->bi_phys_segments;
118 return raid5_bi_phys_segments(bio);
119}
120
121static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122{
123 unsigned short val = raid5_bi_hw_segments(bio);
124
125 --val;
5b99c2ff 126 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
127 return val;
128}
129
130static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131{
9b2dc8b6 132 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
960e739d
JA
133}
134
d0dabf7e
N
135/* Find first data disk in a raid6 stripe */
136static inline int raid6_d0(struct stripe_head *sh)
137{
67cc2b81
N
138 if (sh->ddf_layout)
139 /* ddf always start from first device */
140 return 0;
141 /* md starts just after Q block */
d0dabf7e
N
142 if (sh->qd_idx == sh->disks - 1)
143 return 0;
144 else
145 return sh->qd_idx + 1;
146}
16a53ecc
N
147static inline int raid6_next_disk(int disk, int raid_disks)
148{
149 disk++;
150 return (disk < raid_disks) ? disk : 0;
151}
a4456856 152
d0dabf7e
N
153/* When walking through the disks in a raid5, starting at raid6_d0,
154 * We need to map each disk to a 'slot', where the data disks are slot
155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156 * is raid_disks-1. This help does that mapping.
157 */
67cc2b81
N
158static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 int *count, int syndrome_disks)
d0dabf7e 160{
6629542e 161 int slot = *count;
67cc2b81 162
e4424fee 163 if (sh->ddf_layout)
6629542e 164 (*count)++;
d0dabf7e 165 if (idx == sh->pd_idx)
67cc2b81 166 return syndrome_disks;
d0dabf7e 167 if (idx == sh->qd_idx)
67cc2b81 168 return syndrome_disks + 1;
e4424fee 169 if (!sh->ddf_layout)
6629542e 170 (*count)++;
d0dabf7e
N
171 return slot;
172}
173
a4456856
DW
174static void return_io(struct bio *return_bi)
175{
176 struct bio *bi = return_bi;
177 while (bi) {
a4456856
DW
178
179 return_bi = bi->bi_next;
180 bi->bi_next = NULL;
181 bi->bi_size = 0;
0e13fe23 182 bio_endio(bi, 0);
a4456856
DW
183 bi = return_bi;
184 }
185}
186
1da177e4
LT
187static void print_raid5_conf (raid5_conf_t *conf);
188
600aa109
DW
189static int stripe_operations_active(struct stripe_head *sh)
190{
191 return sh->check_state || sh->reconstruct_state ||
192 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194}
195
858119e1 196static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
197{
198 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
199 BUG_ON(!list_empty(&sh->lru));
200 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 201 if (test_bit(STRIPE_HANDLE, &sh->state)) {
482c0834 202 if (test_bit(STRIPE_DELAYED, &sh->state))
1da177e4 203 list_add_tail(&sh->lru, &conf->delayed_list);
482c0834
N
204 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205 sh->bm_seq - conf->seq_write > 0)
72626685 206 list_add_tail(&sh->lru, &conf->bitmap_list);
482c0834 207 else {
72626685 208 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 209 list_add_tail(&sh->lru, &conf->handle_list);
72626685 210 }
1da177e4
LT
211 md_wakeup_thread(conf->mddev->thread);
212 } else {
600aa109 213 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
214 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215 atomic_dec(&conf->preread_active_stripes);
216 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217 md_wakeup_thread(conf->mddev->thread);
218 }
1da177e4 219 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
220 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 222 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
223 if (conf->retry_read_aligned)
224 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 225 }
1da177e4
LT
226 }
227 }
228}
d0dabf7e 229
1da177e4
LT
230static void release_stripe(struct stripe_head *sh)
231{
232 raid5_conf_t *conf = sh->raid_conf;
233 unsigned long flags;
16a53ecc 234
1da177e4
LT
235 spin_lock_irqsave(&conf->device_lock, flags);
236 __release_stripe(conf, sh);
237 spin_unlock_irqrestore(&conf->device_lock, flags);
238}
239
fccddba0 240static inline void remove_hash(struct stripe_head *sh)
1da177e4 241{
45b4233c
DW
242 pr_debug("remove_hash(), stripe %llu\n",
243 (unsigned long long)sh->sector);
1da177e4 244
fccddba0 245 hlist_del_init(&sh->hash);
1da177e4
LT
246}
247
16a53ecc 248static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 249{
fccddba0 250 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 251
45b4233c
DW
252 pr_debug("insert_hash(), stripe %llu\n",
253 (unsigned long long)sh->sector);
1da177e4
LT
254
255 CHECK_DEVLOCK();
fccddba0 256 hlist_add_head(&sh->hash, hp);
1da177e4
LT
257}
258
259
260/* find an idle stripe, make sure it is unhashed, and return it. */
261static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
262{
263 struct stripe_head *sh = NULL;
264 struct list_head *first;
265
266 CHECK_DEVLOCK();
267 if (list_empty(&conf->inactive_list))
268 goto out;
269 first = conf->inactive_list.next;
270 sh = list_entry(first, struct stripe_head, lru);
271 list_del_init(first);
272 remove_hash(sh);
273 atomic_inc(&conf->active_stripes);
274out:
275 return sh;
276}
277
e4e11e38 278static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
279{
280 struct page *p;
281 int i;
e4e11e38 282 int num = sh->raid_conf->pool_size;
1da177e4 283
e4e11e38 284 for (i = 0; i < num ; i++) {
1da177e4
LT
285 p = sh->dev[i].page;
286 if (!p)
287 continue;
288 sh->dev[i].page = NULL;
2d1f3b5d 289 put_page(p);
1da177e4
LT
290 }
291}
292
e4e11e38 293static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
294{
295 int i;
e4e11e38 296 int num = sh->raid_conf->pool_size;
1da177e4 297
e4e11e38 298 for (i = 0; i < num; i++) {
1da177e4
LT
299 struct page *page;
300
301 if (!(page = alloc_page(GFP_KERNEL))) {
302 return 1;
303 }
304 sh->dev[i].page = page;
305 }
306 return 0;
307}
308
784052ec 309static void raid5_build_block(struct stripe_head *sh, int i, int previous);
911d4ee8
N
310static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
311 struct stripe_head *sh);
1da177e4 312
b5663ba4 313static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4
LT
314{
315 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 316 int i;
1da177e4 317
78bafebd
ES
318 BUG_ON(atomic_read(&sh->count) != 0);
319 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 320 BUG_ON(stripe_operations_active(sh));
d84e0f10 321
1da177e4 322 CHECK_DEVLOCK();
45b4233c 323 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
324 (unsigned long long)sh->sector);
325
326 remove_hash(sh);
16a53ecc 327
86b42c71 328 sh->generation = conf->generation - previous;
b5663ba4 329 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 330 sh->sector = sector;
911d4ee8 331 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
332 sh->state = 0;
333
7ecaa1e6
N
334
335 for (i = sh->disks; i--; ) {
1da177e4
LT
336 struct r5dev *dev = &sh->dev[i];
337
d84e0f10 338 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 339 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 340 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 341 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 342 dev->read, dev->towrite, dev->written,
1da177e4
LT
343 test_bit(R5_LOCKED, &dev->flags));
344 BUG();
345 }
346 dev->flags = 0;
784052ec 347 raid5_build_block(sh, i, previous);
1da177e4
LT
348 }
349 insert_hash(conf, sh);
350}
351
86b42c71
N
352static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
353 short generation)
1da177e4
LT
354{
355 struct stripe_head *sh;
fccddba0 356 struct hlist_node *hn;
1da177e4
LT
357
358 CHECK_DEVLOCK();
45b4233c 359 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 360 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 361 if (sh->sector == sector && sh->generation == generation)
1da177e4 362 return sh;
45b4233c 363 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
364 return NULL;
365}
366
674806d6
N
367/*
368 * Need to check if array has failed when deciding whether to:
369 * - start an array
370 * - remove non-faulty devices
371 * - add a spare
372 * - allow a reshape
373 * This determination is simple when no reshape is happening.
374 * However if there is a reshape, we need to carefully check
375 * both the before and after sections.
376 * This is because some failed devices may only affect one
377 * of the two sections, and some non-in_sync devices may
378 * be insync in the section most affected by failed devices.
379 */
380static int has_failed(raid5_conf_t *conf)
381{
382 int degraded;
383 int i;
384 if (conf->mddev->reshape_position == MaxSector)
385 return conf->mddev->degraded > conf->max_degraded;
386
387 rcu_read_lock();
388 degraded = 0;
389 for (i = 0; i < conf->previous_raid_disks; i++) {
390 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
391 if (!rdev || test_bit(Faulty, &rdev->flags))
392 degraded++;
393 else if (test_bit(In_sync, &rdev->flags))
394 ;
395 else
396 /* not in-sync or faulty.
397 * If the reshape increases the number of devices,
398 * this is being recovered by the reshape, so
399 * this 'previous' section is not in_sync.
400 * If the number of devices is being reduced however,
401 * the device can only be part of the array if
402 * we are reverting a reshape, so this section will
403 * be in-sync.
404 */
405 if (conf->raid_disks >= conf->previous_raid_disks)
406 degraded++;
407 }
408 rcu_read_unlock();
409 if (degraded > conf->max_degraded)
410 return 1;
411 rcu_read_lock();
412 degraded = 0;
413 for (i = 0; i < conf->raid_disks; i++) {
414 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
415 if (!rdev || test_bit(Faulty, &rdev->flags))
416 degraded++;
417 else if (test_bit(In_sync, &rdev->flags))
418 ;
419 else
420 /* not in-sync or faulty.
421 * If reshape increases the number of devices, this
422 * section has already been recovered, else it
423 * almost certainly hasn't.
424 */
425 if (conf->raid_disks <= conf->previous_raid_disks)
426 degraded++;
427 }
428 rcu_read_unlock();
429 if (degraded > conf->max_degraded)
430 return 1;
431 return 0;
432}
433
b5663ba4
N
434static struct stripe_head *
435get_active_stripe(raid5_conf_t *conf, sector_t sector,
a8c906ca 436 int previous, int noblock, int noquiesce)
1da177e4
LT
437{
438 struct stripe_head *sh;
439
45b4233c 440 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
441
442 spin_lock_irq(&conf->device_lock);
443
444 do {
72626685 445 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 446 conf->quiesce == 0 || noquiesce,
72626685 447 conf->device_lock, /* nothing */);
86b42c71 448 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
449 if (!sh) {
450 if (!conf->inactive_blocked)
451 sh = get_free_stripe(conf);
452 if (noblock && sh == NULL)
453 break;
454 if (!sh) {
455 conf->inactive_blocked = 1;
456 wait_event_lock_irq(conf->wait_for_stripe,
457 !list_empty(&conf->inactive_list) &&
5036805b
N
458 (atomic_read(&conf->active_stripes)
459 < (conf->max_nr_stripes *3/4)
1da177e4
LT
460 || !conf->inactive_blocked),
461 conf->device_lock,
7c13edc8 462 );
1da177e4
LT
463 conf->inactive_blocked = 0;
464 } else
b5663ba4 465 init_stripe(sh, sector, previous);
1da177e4
LT
466 } else {
467 if (atomic_read(&sh->count)) {
ab69ae12
N
468 BUG_ON(!list_empty(&sh->lru)
469 && !test_bit(STRIPE_EXPANDING, &sh->state));
1da177e4
LT
470 } else {
471 if (!test_bit(STRIPE_HANDLE, &sh->state))
472 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
473 if (list_empty(&sh->lru) &&
474 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
475 BUG();
476 list_del_init(&sh->lru);
1da177e4
LT
477 }
478 }
479 } while (sh == NULL);
480
481 if (sh)
482 atomic_inc(&sh->count);
483
484 spin_unlock_irq(&conf->device_lock);
485 return sh;
486}
487
6712ecf8
N
488static void
489raid5_end_read_request(struct bio *bi, int error);
490static void
491raid5_end_write_request(struct bio *bi, int error);
91c00924 492
c4e5ac0a 493static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924
DW
494{
495 raid5_conf_t *conf = sh->raid_conf;
496 int i, disks = sh->disks;
497
498 might_sleep();
499
500 for (i = disks; i--; ) {
501 int rw;
502 struct bio *bi;
503 mdk_rdev_t *rdev;
e9c7469b
TH
504 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
505 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
506 rw = WRITE_FUA;
507 else
508 rw = WRITE;
509 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924
DW
510 rw = READ;
511 else
512 continue;
513
514 bi = &sh->dev[i].req;
515
516 bi->bi_rw = rw;
b062962e 517 if (rw & WRITE)
91c00924
DW
518 bi->bi_end_io = raid5_end_write_request;
519 else
520 bi->bi_end_io = raid5_end_read_request;
521
522 rcu_read_lock();
523 rdev = rcu_dereference(conf->disks[i].rdev);
524 if (rdev && test_bit(Faulty, &rdev->flags))
525 rdev = NULL;
526 if (rdev)
527 atomic_inc(&rdev->nr_pending);
528 rcu_read_unlock();
529
530 if (rdev) {
c4e5ac0a 531 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
532 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
533
2b7497f0
DW
534 set_bit(STRIPE_IO_STARTED, &sh->state);
535
91c00924
DW
536 bi->bi_bdev = rdev->bdev;
537 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 538 __func__, (unsigned long long)sh->sector,
91c00924
DW
539 bi->bi_rw, i);
540 atomic_inc(&sh->count);
541 bi->bi_sector = sh->sector + rdev->data_offset;
542 bi->bi_flags = 1 << BIO_UPTODATE;
543 bi->bi_vcnt = 1;
544 bi->bi_max_vecs = 1;
545 bi->bi_idx = 0;
546 bi->bi_io_vec = &sh->dev[i].vec;
547 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
548 bi->bi_io_vec[0].bv_offset = 0;
549 bi->bi_size = STRIPE_SIZE;
550 bi->bi_next = NULL;
b062962e 551 if ((rw & WRITE) &&
91c00924
DW
552 test_bit(R5_ReWrite, &sh->dev[i].flags))
553 atomic_add(STRIPE_SECTORS,
554 &rdev->corrected_errors);
555 generic_make_request(bi);
556 } else {
b062962e 557 if (rw & WRITE)
91c00924
DW
558 set_bit(STRIPE_DEGRADED, &sh->state);
559 pr_debug("skip op %ld on disc %d for sector %llu\n",
560 bi->bi_rw, i, (unsigned long long)sh->sector);
561 clear_bit(R5_LOCKED, &sh->dev[i].flags);
562 set_bit(STRIPE_HANDLE, &sh->state);
563 }
564 }
565}
566
567static struct dma_async_tx_descriptor *
568async_copy_data(int frombio, struct bio *bio, struct page *page,
569 sector_t sector, struct dma_async_tx_descriptor *tx)
570{
571 struct bio_vec *bvl;
572 struct page *bio_page;
573 int i;
574 int page_offset;
a08abd8c 575 struct async_submit_ctl submit;
0403e382 576 enum async_tx_flags flags = 0;
91c00924
DW
577
578 if (bio->bi_sector >= sector)
579 page_offset = (signed)(bio->bi_sector - sector) * 512;
580 else
581 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c 582
0403e382
DW
583 if (frombio)
584 flags |= ASYNC_TX_FENCE;
585 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
586
91c00924 587 bio_for_each_segment(bvl, bio, i) {
fcde9075 588 int len = bvl->bv_len;
91c00924
DW
589 int clen;
590 int b_offset = 0;
591
592 if (page_offset < 0) {
593 b_offset = -page_offset;
594 page_offset += b_offset;
595 len -= b_offset;
596 }
597
598 if (len > 0 && page_offset + len > STRIPE_SIZE)
599 clen = STRIPE_SIZE - page_offset;
600 else
601 clen = len;
602
603 if (clen > 0) {
fcde9075
NK
604 b_offset += bvl->bv_offset;
605 bio_page = bvl->bv_page;
91c00924
DW
606 if (frombio)
607 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 608 b_offset, clen, &submit);
91c00924
DW
609 else
610 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 611 page_offset, clen, &submit);
91c00924 612 }
a08abd8c
DW
613 /* chain the operations */
614 submit.depend_tx = tx;
615
91c00924
DW
616 if (clen < len) /* hit end of page */
617 break;
618 page_offset += len;
619 }
620
621 return tx;
622}
623
624static void ops_complete_biofill(void *stripe_head_ref)
625{
626 struct stripe_head *sh = stripe_head_ref;
627 struct bio *return_bi = NULL;
628 raid5_conf_t *conf = sh->raid_conf;
e4d84909 629 int i;
91c00924 630
e46b272b 631 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
632 (unsigned long long)sh->sector);
633
634 /* clear completed biofills */
83de75cc 635 spin_lock_irq(&conf->device_lock);
91c00924
DW
636 for (i = sh->disks; i--; ) {
637 struct r5dev *dev = &sh->dev[i];
91c00924
DW
638
639 /* acknowledge completion of a biofill operation */
e4d84909
DW
640 /* and check if we need to reply to a read request,
641 * new R5_Wantfill requests are held off until
83de75cc 642 * !STRIPE_BIOFILL_RUN
e4d84909
DW
643 */
644 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 645 struct bio *rbi, *rbi2;
91c00924 646
91c00924
DW
647 BUG_ON(!dev->read);
648 rbi = dev->read;
649 dev->read = NULL;
650 while (rbi && rbi->bi_sector <
651 dev->sector + STRIPE_SECTORS) {
652 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 653 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
654 rbi->bi_next = return_bi;
655 return_bi = rbi;
656 }
91c00924
DW
657 rbi = rbi2;
658 }
659 }
660 }
83de75cc
DW
661 spin_unlock_irq(&conf->device_lock);
662 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
663
664 return_io(return_bi);
665
e4d84909 666 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
667 release_stripe(sh);
668}
669
670static void ops_run_biofill(struct stripe_head *sh)
671{
672 struct dma_async_tx_descriptor *tx = NULL;
673 raid5_conf_t *conf = sh->raid_conf;
a08abd8c 674 struct async_submit_ctl submit;
91c00924
DW
675 int i;
676
e46b272b 677 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
678 (unsigned long long)sh->sector);
679
680 for (i = sh->disks; i--; ) {
681 struct r5dev *dev = &sh->dev[i];
682 if (test_bit(R5_Wantfill, &dev->flags)) {
683 struct bio *rbi;
684 spin_lock_irq(&conf->device_lock);
685 dev->read = rbi = dev->toread;
686 dev->toread = NULL;
687 spin_unlock_irq(&conf->device_lock);
688 while (rbi && rbi->bi_sector <
689 dev->sector + STRIPE_SECTORS) {
690 tx = async_copy_data(0, rbi, dev->page,
691 dev->sector, tx);
692 rbi = r5_next_bio(rbi, dev->sector);
693 }
694 }
695 }
696
697 atomic_inc(&sh->count);
a08abd8c
DW
698 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
699 async_trigger_callback(&submit);
91c00924
DW
700}
701
4e7d2c0a 702static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 703{
4e7d2c0a 704 struct r5dev *tgt;
91c00924 705
4e7d2c0a
DW
706 if (target < 0)
707 return;
91c00924 708
4e7d2c0a 709 tgt = &sh->dev[target];
91c00924
DW
710 set_bit(R5_UPTODATE, &tgt->flags);
711 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
712 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
713}
714
ac6b53b6 715static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
716{
717 struct stripe_head *sh = stripe_head_ref;
91c00924 718
e46b272b 719 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
720 (unsigned long long)sh->sector);
721
ac6b53b6 722 /* mark the computed target(s) as uptodate */
4e7d2c0a 723 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 724 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 725
ecc65c9b
DW
726 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
727 if (sh->check_state == check_state_compute_run)
728 sh->check_state = check_state_compute_result;
91c00924
DW
729 set_bit(STRIPE_HANDLE, &sh->state);
730 release_stripe(sh);
731}
732
d6f38f31
DW
733/* return a pointer to the address conversion region of the scribble buffer */
734static addr_conv_t *to_addr_conv(struct stripe_head *sh,
735 struct raid5_percpu *percpu)
736{
737 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
738}
739
740static struct dma_async_tx_descriptor *
741ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 742{
91c00924 743 int disks = sh->disks;
d6f38f31 744 struct page **xor_srcs = percpu->scribble;
91c00924
DW
745 int target = sh->ops.target;
746 struct r5dev *tgt = &sh->dev[target];
747 struct page *xor_dest = tgt->page;
748 int count = 0;
749 struct dma_async_tx_descriptor *tx;
a08abd8c 750 struct async_submit_ctl submit;
91c00924
DW
751 int i;
752
753 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 754 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
755 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
756
757 for (i = disks; i--; )
758 if (i != target)
759 xor_srcs[count++] = sh->dev[i].page;
760
761 atomic_inc(&sh->count);
762
0403e382 763 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 764 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 765 if (unlikely(count == 1))
a08abd8c 766 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 767 else
a08abd8c 768 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 769
91c00924
DW
770 return tx;
771}
772
ac6b53b6
DW
773/* set_syndrome_sources - populate source buffers for gen_syndrome
774 * @srcs - (struct page *) array of size sh->disks
775 * @sh - stripe_head to parse
776 *
777 * Populates srcs in proper layout order for the stripe and returns the
778 * 'count' of sources to be used in a call to async_gen_syndrome. The P
779 * destination buffer is recorded in srcs[count] and the Q destination
780 * is recorded in srcs[count+1]].
781 */
782static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
783{
784 int disks = sh->disks;
785 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
786 int d0_idx = raid6_d0(sh);
787 int count;
788 int i;
789
790 for (i = 0; i < disks; i++)
5dd33c9a 791 srcs[i] = NULL;
ac6b53b6
DW
792
793 count = 0;
794 i = d0_idx;
795 do {
796 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
797
798 srcs[slot] = sh->dev[i].page;
799 i = raid6_next_disk(i, disks);
800 } while (i != d0_idx);
ac6b53b6 801
e4424fee 802 return syndrome_disks;
ac6b53b6
DW
803}
804
805static struct dma_async_tx_descriptor *
806ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
807{
808 int disks = sh->disks;
809 struct page **blocks = percpu->scribble;
810 int target;
811 int qd_idx = sh->qd_idx;
812 struct dma_async_tx_descriptor *tx;
813 struct async_submit_ctl submit;
814 struct r5dev *tgt;
815 struct page *dest;
816 int i;
817 int count;
818
819 if (sh->ops.target < 0)
820 target = sh->ops.target2;
821 else if (sh->ops.target2 < 0)
822 target = sh->ops.target;
91c00924 823 else
ac6b53b6
DW
824 /* we should only have one valid target */
825 BUG();
826 BUG_ON(target < 0);
827 pr_debug("%s: stripe %llu block: %d\n",
828 __func__, (unsigned long long)sh->sector, target);
829
830 tgt = &sh->dev[target];
831 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
832 dest = tgt->page;
833
834 atomic_inc(&sh->count);
835
836 if (target == qd_idx) {
837 count = set_syndrome_sources(blocks, sh);
838 blocks[count] = NULL; /* regenerating p is not necessary */
839 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
840 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
841 ops_complete_compute, sh,
ac6b53b6
DW
842 to_addr_conv(sh, percpu));
843 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
844 } else {
845 /* Compute any data- or p-drive using XOR */
846 count = 0;
847 for (i = disks; i-- ; ) {
848 if (i == target || i == qd_idx)
849 continue;
850 blocks[count++] = sh->dev[i].page;
851 }
852
0403e382
DW
853 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
854 NULL, ops_complete_compute, sh,
ac6b53b6
DW
855 to_addr_conv(sh, percpu));
856 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
857 }
91c00924 858
91c00924
DW
859 return tx;
860}
861
ac6b53b6
DW
862static struct dma_async_tx_descriptor *
863ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
864{
865 int i, count, disks = sh->disks;
866 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
867 int d0_idx = raid6_d0(sh);
868 int faila = -1, failb = -1;
869 int target = sh->ops.target;
870 int target2 = sh->ops.target2;
871 struct r5dev *tgt = &sh->dev[target];
872 struct r5dev *tgt2 = &sh->dev[target2];
873 struct dma_async_tx_descriptor *tx;
874 struct page **blocks = percpu->scribble;
875 struct async_submit_ctl submit;
876
877 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
878 __func__, (unsigned long long)sh->sector, target, target2);
879 BUG_ON(target < 0 || target2 < 0);
880 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
881 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
882
6c910a78 883 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
884 * slot number conversion for 'faila' and 'failb'
885 */
886 for (i = 0; i < disks ; i++)
5dd33c9a 887 blocks[i] = NULL;
ac6b53b6
DW
888 count = 0;
889 i = d0_idx;
890 do {
891 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
892
893 blocks[slot] = sh->dev[i].page;
894
895 if (i == target)
896 faila = slot;
897 if (i == target2)
898 failb = slot;
899 i = raid6_next_disk(i, disks);
900 } while (i != d0_idx);
ac6b53b6
DW
901
902 BUG_ON(faila == failb);
903 if (failb < faila)
904 swap(faila, failb);
905 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
906 __func__, (unsigned long long)sh->sector, faila, failb);
907
908 atomic_inc(&sh->count);
909
910 if (failb == syndrome_disks+1) {
911 /* Q disk is one of the missing disks */
912 if (faila == syndrome_disks) {
913 /* Missing P+Q, just recompute */
0403e382
DW
914 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
915 ops_complete_compute, sh,
916 to_addr_conv(sh, percpu));
e4424fee 917 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
918 STRIPE_SIZE, &submit);
919 } else {
920 struct page *dest;
921 int data_target;
922 int qd_idx = sh->qd_idx;
923
924 /* Missing D+Q: recompute D from P, then recompute Q */
925 if (target == qd_idx)
926 data_target = target2;
927 else
928 data_target = target;
929
930 count = 0;
931 for (i = disks; i-- ; ) {
932 if (i == data_target || i == qd_idx)
933 continue;
934 blocks[count++] = sh->dev[i].page;
935 }
936 dest = sh->dev[data_target].page;
0403e382
DW
937 init_async_submit(&submit,
938 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
939 NULL, NULL, NULL,
940 to_addr_conv(sh, percpu));
ac6b53b6
DW
941 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
942 &submit);
943
944 count = set_syndrome_sources(blocks, sh);
0403e382
DW
945 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
946 ops_complete_compute, sh,
947 to_addr_conv(sh, percpu));
ac6b53b6
DW
948 return async_gen_syndrome(blocks, 0, count+2,
949 STRIPE_SIZE, &submit);
950 }
ac6b53b6 951 } else {
6c910a78
DW
952 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
953 ops_complete_compute, sh,
954 to_addr_conv(sh, percpu));
955 if (failb == syndrome_disks) {
956 /* We're missing D+P. */
957 return async_raid6_datap_recov(syndrome_disks+2,
958 STRIPE_SIZE, faila,
959 blocks, &submit);
960 } else {
961 /* We're missing D+D. */
962 return async_raid6_2data_recov(syndrome_disks+2,
963 STRIPE_SIZE, faila, failb,
964 blocks, &submit);
965 }
ac6b53b6
DW
966 }
967}
968
969
91c00924
DW
970static void ops_complete_prexor(void *stripe_head_ref)
971{
972 struct stripe_head *sh = stripe_head_ref;
973
e46b272b 974 pr_debug("%s: stripe %llu\n", __func__,
91c00924 975 (unsigned long long)sh->sector);
91c00924
DW
976}
977
978static struct dma_async_tx_descriptor *
d6f38f31
DW
979ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
980 struct dma_async_tx_descriptor *tx)
91c00924 981{
91c00924 982 int disks = sh->disks;
d6f38f31 983 struct page **xor_srcs = percpu->scribble;
91c00924 984 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 985 struct async_submit_ctl submit;
91c00924
DW
986
987 /* existing parity data subtracted */
988 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
989
e46b272b 990 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
991 (unsigned long long)sh->sector);
992
993 for (i = disks; i--; ) {
994 struct r5dev *dev = &sh->dev[i];
995 /* Only process blocks that are known to be uptodate */
d8ee0728 996 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
997 xor_srcs[count++] = dev->page;
998 }
999
0403e382 1000 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 1001 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 1002 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1003
1004 return tx;
1005}
1006
1007static struct dma_async_tx_descriptor *
d8ee0728 1008ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1009{
1010 int disks = sh->disks;
d8ee0728 1011 int i;
91c00924 1012
e46b272b 1013 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1014 (unsigned long long)sh->sector);
1015
1016 for (i = disks; i--; ) {
1017 struct r5dev *dev = &sh->dev[i];
1018 struct bio *chosen;
91c00924 1019
d8ee0728 1020 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
1021 struct bio *wbi;
1022
1023 spin_lock(&sh->lock);
cbe47ec5 1024 spin_lock_irq(&sh->raid_conf->device_lock);
91c00924
DW
1025 chosen = dev->towrite;
1026 dev->towrite = NULL;
1027 BUG_ON(dev->written);
1028 wbi = dev->written = chosen;
cbe47ec5 1029 spin_unlock_irq(&sh->raid_conf->device_lock);
91c00924
DW
1030 spin_unlock(&sh->lock);
1031
1032 while (wbi && wbi->bi_sector <
1033 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1034 if (wbi->bi_rw & REQ_FUA)
1035 set_bit(R5_WantFUA, &dev->flags);
91c00924
DW
1036 tx = async_copy_data(1, wbi, dev->page,
1037 dev->sector, tx);
1038 wbi = r5_next_bio(wbi, dev->sector);
1039 }
1040 }
1041 }
1042
1043 return tx;
1044}
1045
ac6b53b6 1046static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1047{
1048 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1049 int disks = sh->disks;
1050 int pd_idx = sh->pd_idx;
1051 int qd_idx = sh->qd_idx;
1052 int i;
e9c7469b 1053 bool fua = false;
91c00924 1054
e46b272b 1055 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1056 (unsigned long long)sh->sector);
1057
e9c7469b
TH
1058 for (i = disks; i--; )
1059 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1060
91c00924
DW
1061 for (i = disks; i--; ) {
1062 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1063
e9c7469b 1064 if (dev->written || i == pd_idx || i == qd_idx) {
91c00924 1065 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1066 if (fua)
1067 set_bit(R5_WantFUA, &dev->flags);
1068 }
91c00924
DW
1069 }
1070
d8ee0728
DW
1071 if (sh->reconstruct_state == reconstruct_state_drain_run)
1072 sh->reconstruct_state = reconstruct_state_drain_result;
1073 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1074 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1075 else {
1076 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1077 sh->reconstruct_state = reconstruct_state_result;
1078 }
91c00924
DW
1079
1080 set_bit(STRIPE_HANDLE, &sh->state);
1081 release_stripe(sh);
1082}
1083
1084static void
ac6b53b6
DW
1085ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1086 struct dma_async_tx_descriptor *tx)
91c00924 1087{
91c00924 1088 int disks = sh->disks;
d6f38f31 1089 struct page **xor_srcs = percpu->scribble;
a08abd8c 1090 struct async_submit_ctl submit;
91c00924
DW
1091 int count = 0, pd_idx = sh->pd_idx, i;
1092 struct page *xor_dest;
d8ee0728 1093 int prexor = 0;
91c00924 1094 unsigned long flags;
91c00924 1095
e46b272b 1096 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1097 (unsigned long long)sh->sector);
1098
1099 /* check if prexor is active which means only process blocks
1100 * that are part of a read-modify-write (written)
1101 */
d8ee0728
DW
1102 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1103 prexor = 1;
91c00924
DW
1104 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1105 for (i = disks; i--; ) {
1106 struct r5dev *dev = &sh->dev[i];
1107 if (dev->written)
1108 xor_srcs[count++] = dev->page;
1109 }
1110 } else {
1111 xor_dest = sh->dev[pd_idx].page;
1112 for (i = disks; i--; ) {
1113 struct r5dev *dev = &sh->dev[i];
1114 if (i != pd_idx)
1115 xor_srcs[count++] = dev->page;
1116 }
1117 }
1118
91c00924
DW
1119 /* 1/ if we prexor'd then the dest is reused as a source
1120 * 2/ if we did not prexor then we are redoing the parity
1121 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1122 * for the synchronous xor case
1123 */
88ba2aa5 1124 flags = ASYNC_TX_ACK |
91c00924
DW
1125 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1126
1127 atomic_inc(&sh->count);
1128
ac6b53b6 1129 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1130 to_addr_conv(sh, percpu));
a08abd8c
DW
1131 if (unlikely(count == 1))
1132 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1133 else
1134 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1135}
1136
ac6b53b6
DW
1137static void
1138ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1139 struct dma_async_tx_descriptor *tx)
1140{
1141 struct async_submit_ctl submit;
1142 struct page **blocks = percpu->scribble;
1143 int count;
1144
1145 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1146
1147 count = set_syndrome_sources(blocks, sh);
1148
1149 atomic_inc(&sh->count);
1150
1151 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1152 sh, to_addr_conv(sh, percpu));
1153 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1154}
1155
1156static void ops_complete_check(void *stripe_head_ref)
1157{
1158 struct stripe_head *sh = stripe_head_ref;
91c00924 1159
e46b272b 1160 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1161 (unsigned long long)sh->sector);
1162
ecc65c9b 1163 sh->check_state = check_state_check_result;
91c00924
DW
1164 set_bit(STRIPE_HANDLE, &sh->state);
1165 release_stripe(sh);
1166}
1167
ac6b53b6 1168static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1169{
91c00924 1170 int disks = sh->disks;
ac6b53b6
DW
1171 int pd_idx = sh->pd_idx;
1172 int qd_idx = sh->qd_idx;
1173 struct page *xor_dest;
d6f38f31 1174 struct page **xor_srcs = percpu->scribble;
91c00924 1175 struct dma_async_tx_descriptor *tx;
a08abd8c 1176 struct async_submit_ctl submit;
ac6b53b6
DW
1177 int count;
1178 int i;
91c00924 1179
e46b272b 1180 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1181 (unsigned long long)sh->sector);
1182
ac6b53b6
DW
1183 count = 0;
1184 xor_dest = sh->dev[pd_idx].page;
1185 xor_srcs[count++] = xor_dest;
91c00924 1186 for (i = disks; i--; ) {
ac6b53b6
DW
1187 if (i == pd_idx || i == qd_idx)
1188 continue;
1189 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1190 }
1191
d6f38f31
DW
1192 init_async_submit(&submit, 0, NULL, NULL, NULL,
1193 to_addr_conv(sh, percpu));
099f53cb 1194 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1195 &sh->ops.zero_sum_result, &submit);
91c00924 1196
91c00924 1197 atomic_inc(&sh->count);
a08abd8c
DW
1198 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1199 tx = async_trigger_callback(&submit);
91c00924
DW
1200}
1201
ac6b53b6
DW
1202static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1203{
1204 struct page **srcs = percpu->scribble;
1205 struct async_submit_ctl submit;
1206 int count;
1207
1208 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1209 (unsigned long long)sh->sector, checkp);
1210
1211 count = set_syndrome_sources(srcs, sh);
1212 if (!checkp)
1213 srcs[count] = NULL;
91c00924 1214
91c00924 1215 atomic_inc(&sh->count);
ac6b53b6
DW
1216 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1217 sh, to_addr_conv(sh, percpu));
1218 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1219 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1220}
1221
417b8d4a 1222static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1223{
1224 int overlap_clear = 0, i, disks = sh->disks;
1225 struct dma_async_tx_descriptor *tx = NULL;
d6f38f31 1226 raid5_conf_t *conf = sh->raid_conf;
ac6b53b6 1227 int level = conf->level;
d6f38f31
DW
1228 struct raid5_percpu *percpu;
1229 unsigned long cpu;
91c00924 1230
d6f38f31
DW
1231 cpu = get_cpu();
1232 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1233 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1234 ops_run_biofill(sh);
1235 overlap_clear++;
1236 }
1237
7b3a871e 1238 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1239 if (level < 6)
1240 tx = ops_run_compute5(sh, percpu);
1241 else {
1242 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1243 tx = ops_run_compute6_1(sh, percpu);
1244 else
1245 tx = ops_run_compute6_2(sh, percpu);
1246 }
1247 /* terminate the chain if reconstruct is not set to be run */
1248 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1249 async_tx_ack(tx);
1250 }
91c00924 1251
600aa109 1252 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1253 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1254
600aa109 1255 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1256 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1257 overlap_clear++;
1258 }
1259
ac6b53b6
DW
1260 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1261 if (level < 6)
1262 ops_run_reconstruct5(sh, percpu, tx);
1263 else
1264 ops_run_reconstruct6(sh, percpu, tx);
1265 }
91c00924 1266
ac6b53b6
DW
1267 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1268 if (sh->check_state == check_state_run)
1269 ops_run_check_p(sh, percpu);
1270 else if (sh->check_state == check_state_run_q)
1271 ops_run_check_pq(sh, percpu, 0);
1272 else if (sh->check_state == check_state_run_pq)
1273 ops_run_check_pq(sh, percpu, 1);
1274 else
1275 BUG();
1276 }
91c00924 1277
91c00924
DW
1278 if (overlap_clear)
1279 for (i = disks; i--; ) {
1280 struct r5dev *dev = &sh->dev[i];
1281 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1282 wake_up(&sh->raid_conf->wait_for_overlap);
1283 }
d6f38f31 1284 put_cpu();
91c00924
DW
1285}
1286
417b8d4a
DW
1287#ifdef CONFIG_MULTICORE_RAID456
1288static void async_run_ops(void *param, async_cookie_t cookie)
1289{
1290 struct stripe_head *sh = param;
1291 unsigned long ops_request = sh->ops.request;
1292
1293 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1294 wake_up(&sh->ops.wait_for_ops);
1295
1296 __raid_run_ops(sh, ops_request);
1297 release_stripe(sh);
1298}
1299
1300static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1301{
1302 /* since handle_stripe can be called outside of raid5d context
1303 * we need to ensure sh->ops.request is de-staged before another
1304 * request arrives
1305 */
1306 wait_event(sh->ops.wait_for_ops,
1307 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1308 sh->ops.request = ops_request;
1309
1310 atomic_inc(&sh->count);
1311 async_schedule(async_run_ops, sh);
1312}
1313#else
1314#define raid_run_ops __raid_run_ops
1315#endif
1316
3f294f4f 1317static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1318{
1319 struct stripe_head *sh;
6ce32846 1320 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
3f294f4f
N
1321 if (!sh)
1322 return 0;
6ce32846 1323
3f294f4f
N
1324 sh->raid_conf = conf;
1325 spin_lock_init(&sh->lock);
417b8d4a
DW
1326 #ifdef CONFIG_MULTICORE_RAID456
1327 init_waitqueue_head(&sh->ops.wait_for_ops);
1328 #endif
3f294f4f 1329
e4e11e38
N
1330 if (grow_buffers(sh)) {
1331 shrink_buffers(sh);
3f294f4f
N
1332 kmem_cache_free(conf->slab_cache, sh);
1333 return 0;
1334 }
1335 /* we just created an active stripe so... */
1336 atomic_set(&sh->count, 1);
1337 atomic_inc(&conf->active_stripes);
1338 INIT_LIST_HEAD(&sh->lru);
1339 release_stripe(sh);
1340 return 1;
1341}
1342
1343static int grow_stripes(raid5_conf_t *conf, int num)
1344{
e18b890b 1345 struct kmem_cache *sc;
5e5e3e78 1346 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 1347
f4be6b43
N
1348 if (conf->mddev->gendisk)
1349 sprintf(conf->cache_name[0],
1350 "raid%d-%s", conf->level, mdname(conf->mddev));
1351 else
1352 sprintf(conf->cache_name[0],
1353 "raid%d-%p", conf->level, conf->mddev);
1354 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1355
ad01c9e3
N
1356 conf->active_name = 0;
1357 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1358 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1359 0, 0, NULL);
1da177e4
LT
1360 if (!sc)
1361 return 1;
1362 conf->slab_cache = sc;
ad01c9e3 1363 conf->pool_size = devs;
16a53ecc 1364 while (num--)
3f294f4f 1365 if (!grow_one_stripe(conf))
1da177e4 1366 return 1;
1da177e4
LT
1367 return 0;
1368}
29269553 1369
d6f38f31
DW
1370/**
1371 * scribble_len - return the required size of the scribble region
1372 * @num - total number of disks in the array
1373 *
1374 * The size must be enough to contain:
1375 * 1/ a struct page pointer for each device in the array +2
1376 * 2/ room to convert each entry in (1) to its corresponding dma
1377 * (dma_map_page()) or page (page_address()) address.
1378 *
1379 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1380 * calculate over all devices (not just the data blocks), using zeros in place
1381 * of the P and Q blocks.
1382 */
1383static size_t scribble_len(int num)
1384{
1385 size_t len;
1386
1387 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1388
1389 return len;
1390}
1391
ad01c9e3
N
1392static int resize_stripes(raid5_conf_t *conf, int newsize)
1393{
1394 /* Make all the stripes able to hold 'newsize' devices.
1395 * New slots in each stripe get 'page' set to a new page.
1396 *
1397 * This happens in stages:
1398 * 1/ create a new kmem_cache and allocate the required number of
1399 * stripe_heads.
1400 * 2/ gather all the old stripe_heads and tranfer the pages across
1401 * to the new stripe_heads. This will have the side effect of
1402 * freezing the array as once all stripe_heads have been collected,
1403 * no IO will be possible. Old stripe heads are freed once their
1404 * pages have been transferred over, and the old kmem_cache is
1405 * freed when all stripes are done.
1406 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1407 * we simple return a failre status - no need to clean anything up.
1408 * 4/ allocate new pages for the new slots in the new stripe_heads.
1409 * If this fails, we don't bother trying the shrink the
1410 * stripe_heads down again, we just leave them as they are.
1411 * As each stripe_head is processed the new one is released into
1412 * active service.
1413 *
1414 * Once step2 is started, we cannot afford to wait for a write,
1415 * so we use GFP_NOIO allocations.
1416 */
1417 struct stripe_head *osh, *nsh;
1418 LIST_HEAD(newstripes);
1419 struct disk_info *ndisks;
d6f38f31 1420 unsigned long cpu;
b5470dc5 1421 int err;
e18b890b 1422 struct kmem_cache *sc;
ad01c9e3
N
1423 int i;
1424
1425 if (newsize <= conf->pool_size)
1426 return 0; /* never bother to shrink */
1427
b5470dc5
DW
1428 err = md_allow_write(conf->mddev);
1429 if (err)
1430 return err;
2a2275d6 1431
ad01c9e3
N
1432 /* Step 1 */
1433 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1434 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1435 0, 0, NULL);
ad01c9e3
N
1436 if (!sc)
1437 return -ENOMEM;
1438
1439 for (i = conf->max_nr_stripes; i; i--) {
6ce32846 1440 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
ad01c9e3
N
1441 if (!nsh)
1442 break;
1443
ad01c9e3
N
1444 nsh->raid_conf = conf;
1445 spin_lock_init(&nsh->lock);
417b8d4a
DW
1446 #ifdef CONFIG_MULTICORE_RAID456
1447 init_waitqueue_head(&nsh->ops.wait_for_ops);
1448 #endif
ad01c9e3
N
1449
1450 list_add(&nsh->lru, &newstripes);
1451 }
1452 if (i) {
1453 /* didn't get enough, give up */
1454 while (!list_empty(&newstripes)) {
1455 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1456 list_del(&nsh->lru);
1457 kmem_cache_free(sc, nsh);
1458 }
1459 kmem_cache_destroy(sc);
1460 return -ENOMEM;
1461 }
1462 /* Step 2 - Must use GFP_NOIO now.
1463 * OK, we have enough stripes, start collecting inactive
1464 * stripes and copying them over
1465 */
1466 list_for_each_entry(nsh, &newstripes, lru) {
1467 spin_lock_irq(&conf->device_lock);
1468 wait_event_lock_irq(conf->wait_for_stripe,
1469 !list_empty(&conf->inactive_list),
1470 conf->device_lock,
482c0834 1471 );
ad01c9e3
N
1472 osh = get_free_stripe(conf);
1473 spin_unlock_irq(&conf->device_lock);
1474 atomic_set(&nsh->count, 1);
1475 for(i=0; i<conf->pool_size; i++)
1476 nsh->dev[i].page = osh->dev[i].page;
1477 for( ; i<newsize; i++)
1478 nsh->dev[i].page = NULL;
1479 kmem_cache_free(conf->slab_cache, osh);
1480 }
1481 kmem_cache_destroy(conf->slab_cache);
1482
1483 /* Step 3.
1484 * At this point, we are holding all the stripes so the array
1485 * is completely stalled, so now is a good time to resize
d6f38f31 1486 * conf->disks and the scribble region
ad01c9e3
N
1487 */
1488 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1489 if (ndisks) {
1490 for (i=0; i<conf->raid_disks; i++)
1491 ndisks[i] = conf->disks[i];
1492 kfree(conf->disks);
1493 conf->disks = ndisks;
1494 } else
1495 err = -ENOMEM;
1496
d6f38f31
DW
1497 get_online_cpus();
1498 conf->scribble_len = scribble_len(newsize);
1499 for_each_present_cpu(cpu) {
1500 struct raid5_percpu *percpu;
1501 void *scribble;
1502
1503 percpu = per_cpu_ptr(conf->percpu, cpu);
1504 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1505
1506 if (scribble) {
1507 kfree(percpu->scribble);
1508 percpu->scribble = scribble;
1509 } else {
1510 err = -ENOMEM;
1511 break;
1512 }
1513 }
1514 put_online_cpus();
1515
ad01c9e3
N
1516 /* Step 4, return new stripes to service */
1517 while(!list_empty(&newstripes)) {
1518 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1519 list_del_init(&nsh->lru);
d6f38f31 1520
ad01c9e3
N
1521 for (i=conf->raid_disks; i < newsize; i++)
1522 if (nsh->dev[i].page == NULL) {
1523 struct page *p = alloc_page(GFP_NOIO);
1524 nsh->dev[i].page = p;
1525 if (!p)
1526 err = -ENOMEM;
1527 }
1528 release_stripe(nsh);
1529 }
1530 /* critical section pass, GFP_NOIO no longer needed */
1531
1532 conf->slab_cache = sc;
1533 conf->active_name = 1-conf->active_name;
1534 conf->pool_size = newsize;
1535 return err;
1536}
1da177e4 1537
3f294f4f 1538static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1539{
1540 struct stripe_head *sh;
1541
3f294f4f
N
1542 spin_lock_irq(&conf->device_lock);
1543 sh = get_free_stripe(conf);
1544 spin_unlock_irq(&conf->device_lock);
1545 if (!sh)
1546 return 0;
78bafebd 1547 BUG_ON(atomic_read(&sh->count));
e4e11e38 1548 shrink_buffers(sh);
3f294f4f
N
1549 kmem_cache_free(conf->slab_cache, sh);
1550 atomic_dec(&conf->active_stripes);
1551 return 1;
1552}
1553
1554static void shrink_stripes(raid5_conf_t *conf)
1555{
1556 while (drop_one_stripe(conf))
1557 ;
1558
29fc7e3e
N
1559 if (conf->slab_cache)
1560 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1561 conf->slab_cache = NULL;
1562}
1563
6712ecf8 1564static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1565{
99c0fb5f 1566 struct stripe_head *sh = bi->bi_private;
1da177e4 1567 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1568 int disks = sh->disks, i;
1da177e4 1569 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1570 char b[BDEVNAME_SIZE];
1571 mdk_rdev_t *rdev;
1da177e4 1572
1da177e4
LT
1573
1574 for (i=0 ; i<disks; i++)
1575 if (bi == &sh->dev[i].req)
1576 break;
1577
45b4233c
DW
1578 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1579 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1580 uptodate);
1581 if (i == disks) {
1582 BUG();
6712ecf8 1583 return;
1da177e4
LT
1584 }
1585
1586 if (uptodate) {
1da177e4 1587 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1588 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1589 rdev = conf->disks[i].rdev;
0c55e022 1590 printk_rl(KERN_INFO "md/raid:%s: read error corrected"
6be9d494
BS
1591 " (%lu sectors at %llu on %s)\n",
1592 mdname(conf->mddev), STRIPE_SECTORS,
1593 (unsigned long long)(sh->sector
1594 + rdev->data_offset),
1595 bdevname(rdev->bdev, b));
4e5314b5
N
1596 clear_bit(R5_ReadError, &sh->dev[i].flags);
1597 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1598 }
ba22dcbf
N
1599 if (atomic_read(&conf->disks[i].rdev->read_errors))
1600 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1601 } else {
d6950432 1602 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1603 int retry = 0;
d6950432
N
1604 rdev = conf->disks[i].rdev;
1605
1da177e4 1606 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1607 atomic_inc(&rdev->read_errors);
7b0bb536 1608 if (conf->mddev->degraded >= conf->max_degraded)
6be9d494 1609 printk_rl(KERN_WARNING
0c55e022 1610 "md/raid:%s: read error not correctable "
6be9d494
BS
1611 "(sector %llu on %s).\n",
1612 mdname(conf->mddev),
1613 (unsigned long long)(sh->sector
1614 + rdev->data_offset),
1615 bdn);
ba22dcbf 1616 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1617 /* Oh, no!!! */
6be9d494 1618 printk_rl(KERN_WARNING
0c55e022 1619 "md/raid:%s: read error NOT corrected!! "
6be9d494
BS
1620 "(sector %llu on %s).\n",
1621 mdname(conf->mddev),
1622 (unsigned long long)(sh->sector
1623 + rdev->data_offset),
1624 bdn);
d6950432 1625 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1626 > conf->max_nr_stripes)
14f8d26b 1627 printk(KERN_WARNING
0c55e022 1628 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 1629 mdname(conf->mddev), bdn);
ba22dcbf
N
1630 else
1631 retry = 1;
1632 if (retry)
1633 set_bit(R5_ReadError, &sh->dev[i].flags);
1634 else {
4e5314b5
N
1635 clear_bit(R5_ReadError, &sh->dev[i].flags);
1636 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1637 md_error(conf->mddev, rdev);
ba22dcbf 1638 }
1da177e4
LT
1639 }
1640 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1641 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1642 set_bit(STRIPE_HANDLE, &sh->state);
1643 release_stripe(sh);
1da177e4
LT
1644}
1645
d710e138 1646static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1647{
99c0fb5f 1648 struct stripe_head *sh = bi->bi_private;
1da177e4 1649 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1650 int disks = sh->disks, i;
1da177e4
LT
1651 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1652
1da177e4
LT
1653 for (i=0 ; i<disks; i++)
1654 if (bi == &sh->dev[i].req)
1655 break;
1656
45b4233c 1657 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1658 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1659 uptodate);
1660 if (i == disks) {
1661 BUG();
6712ecf8 1662 return;
1da177e4
LT
1663 }
1664
1da177e4
LT
1665 if (!uptodate)
1666 md_error(conf->mddev, conf->disks[i].rdev);
1667
1668 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1669
1670 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1671 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1672 release_stripe(sh);
1da177e4
LT
1673}
1674
1675
784052ec 1676static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1677
784052ec 1678static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1679{
1680 struct r5dev *dev = &sh->dev[i];
1681
1682 bio_init(&dev->req);
1683 dev->req.bi_io_vec = &dev->vec;
1684 dev->req.bi_vcnt++;
1685 dev->req.bi_max_vecs++;
1686 dev->vec.bv_page = dev->page;
1687 dev->vec.bv_len = STRIPE_SIZE;
1688 dev->vec.bv_offset = 0;
1689
1690 dev->req.bi_sector = sh->sector;
1691 dev->req.bi_private = sh;
1692
1693 dev->flags = 0;
784052ec 1694 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1695}
1696
1697static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1698{
1699 char b[BDEVNAME_SIZE];
7b92813c 1700 raid5_conf_t *conf = mddev->private;
0c55e022 1701 pr_debug("raid456: error called\n");
1da177e4 1702
6f8d0c77
N
1703 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1704 unsigned long flags;
1705 spin_lock_irqsave(&conf->device_lock, flags);
1706 mddev->degraded++;
1707 spin_unlock_irqrestore(&conf->device_lock, flags);
1708 /*
1709 * if recovery was running, make sure it aborts.
1710 */
1711 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1712 }
6f8d0c77
N
1713 set_bit(Faulty, &rdev->flags);
1714 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1715 printk(KERN_ALERT
1716 "md/raid:%s: Disk failure on %s, disabling device.\n"
1717 "md/raid:%s: Operation continuing on %d devices.\n",
1718 mdname(mddev),
1719 bdevname(rdev->bdev, b),
1720 mdname(mddev),
1721 conf->raid_disks - mddev->degraded);
16a53ecc 1722}
1da177e4
LT
1723
1724/*
1725 * Input: a 'big' sector number,
1726 * Output: index of the data and parity disk, and the sector # in them.
1727 */
112bf897 1728static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
911d4ee8
N
1729 int previous, int *dd_idx,
1730 struct stripe_head *sh)
1da177e4 1731{
6e3b96ed 1732 sector_t stripe, stripe2;
35f2a591 1733 sector_t chunk_number;
1da177e4 1734 unsigned int chunk_offset;
911d4ee8 1735 int pd_idx, qd_idx;
67cc2b81 1736 int ddf_layout = 0;
1da177e4 1737 sector_t new_sector;
e183eaed
N
1738 int algorithm = previous ? conf->prev_algo
1739 : conf->algorithm;
09c9e5fa
AN
1740 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1741 : conf->chunk_sectors;
112bf897
N
1742 int raid_disks = previous ? conf->previous_raid_disks
1743 : conf->raid_disks;
1744 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1745
1746 /* First compute the information on this sector */
1747
1748 /*
1749 * Compute the chunk number and the sector offset inside the chunk
1750 */
1751 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1752 chunk_number = r_sector;
1da177e4
LT
1753
1754 /*
1755 * Compute the stripe number
1756 */
35f2a591
N
1757 stripe = chunk_number;
1758 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 1759 stripe2 = stripe;
1da177e4
LT
1760 /*
1761 * Select the parity disk based on the user selected algorithm.
1762 */
911d4ee8 1763 pd_idx = qd_idx = ~0;
16a53ecc
N
1764 switch(conf->level) {
1765 case 4:
911d4ee8 1766 pd_idx = data_disks;
16a53ecc
N
1767 break;
1768 case 5:
e183eaed 1769 switch (algorithm) {
1da177e4 1770 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1771 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1772 if (*dd_idx >= pd_idx)
1da177e4
LT
1773 (*dd_idx)++;
1774 break;
1775 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1776 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1777 if (*dd_idx >= pd_idx)
1da177e4
LT
1778 (*dd_idx)++;
1779 break;
1780 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1781 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1782 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1783 break;
1784 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1785 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1786 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1787 break;
99c0fb5f
N
1788 case ALGORITHM_PARITY_0:
1789 pd_idx = 0;
1790 (*dd_idx)++;
1791 break;
1792 case ALGORITHM_PARITY_N:
1793 pd_idx = data_disks;
1794 break;
1da177e4 1795 default:
99c0fb5f 1796 BUG();
16a53ecc
N
1797 }
1798 break;
1799 case 6:
1800
e183eaed 1801 switch (algorithm) {
16a53ecc 1802 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1803 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1804 qd_idx = pd_idx + 1;
1805 if (pd_idx == raid_disks-1) {
99c0fb5f 1806 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1807 qd_idx = 0;
1808 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1809 (*dd_idx) += 2; /* D D P Q D */
1810 break;
1811 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1812 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1813 qd_idx = pd_idx + 1;
1814 if (pd_idx == raid_disks-1) {
99c0fb5f 1815 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1816 qd_idx = 0;
1817 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1818 (*dd_idx) += 2; /* D D P Q D */
1819 break;
1820 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1821 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1822 qd_idx = (pd_idx + 1) % raid_disks;
1823 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1824 break;
1825 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1826 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1827 qd_idx = (pd_idx + 1) % raid_disks;
1828 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 1829 break;
99c0fb5f
N
1830
1831 case ALGORITHM_PARITY_0:
1832 pd_idx = 0;
1833 qd_idx = 1;
1834 (*dd_idx) += 2;
1835 break;
1836 case ALGORITHM_PARITY_N:
1837 pd_idx = data_disks;
1838 qd_idx = data_disks + 1;
1839 break;
1840
1841 case ALGORITHM_ROTATING_ZERO_RESTART:
1842 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1843 * of blocks for computing Q is different.
1844 */
6e3b96ed 1845 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
1846 qd_idx = pd_idx + 1;
1847 if (pd_idx == raid_disks-1) {
1848 (*dd_idx)++; /* Q D D D P */
1849 qd_idx = 0;
1850 } else if (*dd_idx >= pd_idx)
1851 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1852 ddf_layout = 1;
99c0fb5f
N
1853 break;
1854
1855 case ALGORITHM_ROTATING_N_RESTART:
1856 /* Same a left_asymmetric, by first stripe is
1857 * D D D P Q rather than
1858 * Q D D D P
1859 */
6e3b96ed
N
1860 stripe2 += 1;
1861 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1862 qd_idx = pd_idx + 1;
1863 if (pd_idx == raid_disks-1) {
1864 (*dd_idx)++; /* Q D D D P */
1865 qd_idx = 0;
1866 } else if (*dd_idx >= pd_idx)
1867 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1868 ddf_layout = 1;
99c0fb5f
N
1869 break;
1870
1871 case ALGORITHM_ROTATING_N_CONTINUE:
1872 /* Same as left_symmetric but Q is before P */
6e3b96ed 1873 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1874 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1875 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 1876 ddf_layout = 1;
99c0fb5f
N
1877 break;
1878
1879 case ALGORITHM_LEFT_ASYMMETRIC_6:
1880 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 1881 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1882 if (*dd_idx >= pd_idx)
1883 (*dd_idx)++;
1884 qd_idx = raid_disks - 1;
1885 break;
1886
1887 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 1888 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1889 if (*dd_idx >= pd_idx)
1890 (*dd_idx)++;
1891 qd_idx = raid_disks - 1;
1892 break;
1893
1894 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 1895 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1896 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1897 qd_idx = raid_disks - 1;
1898 break;
1899
1900 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 1901 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1902 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1903 qd_idx = raid_disks - 1;
1904 break;
1905
1906 case ALGORITHM_PARITY_0_6:
1907 pd_idx = 0;
1908 (*dd_idx)++;
1909 qd_idx = raid_disks - 1;
1910 break;
1911
16a53ecc 1912 default:
99c0fb5f 1913 BUG();
16a53ecc
N
1914 }
1915 break;
1da177e4
LT
1916 }
1917
911d4ee8
N
1918 if (sh) {
1919 sh->pd_idx = pd_idx;
1920 sh->qd_idx = qd_idx;
67cc2b81 1921 sh->ddf_layout = ddf_layout;
911d4ee8 1922 }
1da177e4
LT
1923 /*
1924 * Finally, compute the new sector number
1925 */
1926 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1927 return new_sector;
1928}
1929
1930
784052ec 1931static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1932{
1933 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1934 int raid_disks = sh->disks;
1935 int data_disks = raid_disks - conf->max_degraded;
1da177e4 1936 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
1937 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1938 : conf->chunk_sectors;
e183eaed
N
1939 int algorithm = previous ? conf->prev_algo
1940 : conf->algorithm;
1da177e4
LT
1941 sector_t stripe;
1942 int chunk_offset;
35f2a591
N
1943 sector_t chunk_number;
1944 int dummy1, dd_idx = i;
1da177e4 1945 sector_t r_sector;
911d4ee8 1946 struct stripe_head sh2;
1da177e4 1947
16a53ecc 1948
1da177e4
LT
1949 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1950 stripe = new_sector;
1da177e4 1951
16a53ecc
N
1952 if (i == sh->pd_idx)
1953 return 0;
1954 switch(conf->level) {
1955 case 4: break;
1956 case 5:
e183eaed 1957 switch (algorithm) {
1da177e4
LT
1958 case ALGORITHM_LEFT_ASYMMETRIC:
1959 case ALGORITHM_RIGHT_ASYMMETRIC:
1960 if (i > sh->pd_idx)
1961 i--;
1962 break;
1963 case ALGORITHM_LEFT_SYMMETRIC:
1964 case ALGORITHM_RIGHT_SYMMETRIC:
1965 if (i < sh->pd_idx)
1966 i += raid_disks;
1967 i -= (sh->pd_idx + 1);
1968 break;
99c0fb5f
N
1969 case ALGORITHM_PARITY_0:
1970 i -= 1;
1971 break;
1972 case ALGORITHM_PARITY_N:
1973 break;
1da177e4 1974 default:
99c0fb5f 1975 BUG();
16a53ecc
N
1976 }
1977 break;
1978 case 6:
d0dabf7e 1979 if (i == sh->qd_idx)
16a53ecc 1980 return 0; /* It is the Q disk */
e183eaed 1981 switch (algorithm) {
16a53ecc
N
1982 case ALGORITHM_LEFT_ASYMMETRIC:
1983 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
1984 case ALGORITHM_ROTATING_ZERO_RESTART:
1985 case ALGORITHM_ROTATING_N_RESTART:
1986 if (sh->pd_idx == raid_disks-1)
1987 i--; /* Q D D D P */
16a53ecc
N
1988 else if (i > sh->pd_idx)
1989 i -= 2; /* D D P Q D */
1990 break;
1991 case ALGORITHM_LEFT_SYMMETRIC:
1992 case ALGORITHM_RIGHT_SYMMETRIC:
1993 if (sh->pd_idx == raid_disks-1)
1994 i--; /* Q D D D P */
1995 else {
1996 /* D D P Q D */
1997 if (i < sh->pd_idx)
1998 i += raid_disks;
1999 i -= (sh->pd_idx + 2);
2000 }
2001 break;
99c0fb5f
N
2002 case ALGORITHM_PARITY_0:
2003 i -= 2;
2004 break;
2005 case ALGORITHM_PARITY_N:
2006 break;
2007 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2008 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2009 if (sh->pd_idx == 0)
2010 i--; /* P D D D Q */
e4424fee
N
2011 else {
2012 /* D D Q P D */
2013 if (i < sh->pd_idx)
2014 i += raid_disks;
2015 i -= (sh->pd_idx + 1);
2016 }
99c0fb5f
N
2017 break;
2018 case ALGORITHM_LEFT_ASYMMETRIC_6:
2019 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2020 if (i > sh->pd_idx)
2021 i--;
2022 break;
2023 case ALGORITHM_LEFT_SYMMETRIC_6:
2024 case ALGORITHM_RIGHT_SYMMETRIC_6:
2025 if (i < sh->pd_idx)
2026 i += data_disks + 1;
2027 i -= (sh->pd_idx + 1);
2028 break;
2029 case ALGORITHM_PARITY_0_6:
2030 i -= 1;
2031 break;
16a53ecc 2032 default:
99c0fb5f 2033 BUG();
16a53ecc
N
2034 }
2035 break;
1da177e4
LT
2036 }
2037
2038 chunk_number = stripe * data_disks + i;
35f2a591 2039 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2040
112bf897 2041 check = raid5_compute_sector(conf, r_sector,
784052ec 2042 previous, &dummy1, &sh2);
911d4ee8
N
2043 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2044 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2045 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2046 mdname(conf->mddev));
1da177e4
LT
2047 return 0;
2048 }
2049 return r_sector;
2050}
2051
2052
600aa109 2053static void
c0f7bddb 2054schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2055 int rcw, int expand)
e33129d8
DW
2056{
2057 int i, pd_idx = sh->pd_idx, disks = sh->disks;
c0f7bddb
YT
2058 raid5_conf_t *conf = sh->raid_conf;
2059 int level = conf->level;
e33129d8
DW
2060
2061 if (rcw) {
2062 /* if we are not expanding this is a proper write request, and
2063 * there will be bios with new data to be drained into the
2064 * stripe cache
2065 */
2066 if (!expand) {
600aa109
DW
2067 sh->reconstruct_state = reconstruct_state_drain_run;
2068 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2069 } else
2070 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 2071
ac6b53b6 2072 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2073
2074 for (i = disks; i--; ) {
2075 struct r5dev *dev = &sh->dev[i];
2076
2077 if (dev->towrite) {
2078 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2079 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2080 if (!expand)
2081 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2082 s->locked++;
e33129d8
DW
2083 }
2084 }
c0f7bddb 2085 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2086 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2087 atomic_inc(&conf->pending_full_writes);
e33129d8 2088 } else {
c0f7bddb 2089 BUG_ON(level == 6);
e33129d8
DW
2090 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2091 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2092
d8ee0728 2093 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
2094 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2095 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
ac6b53b6 2096 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2097
2098 for (i = disks; i--; ) {
2099 struct r5dev *dev = &sh->dev[i];
2100 if (i == pd_idx)
2101 continue;
2102
e33129d8
DW
2103 if (dev->towrite &&
2104 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2105 test_bit(R5_Wantcompute, &dev->flags))) {
2106 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2107 set_bit(R5_LOCKED, &dev->flags);
2108 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2109 s->locked++;
e33129d8
DW
2110 }
2111 }
2112 }
2113
c0f7bddb 2114 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2115 * are in flight
2116 */
2117 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2118 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2119 s->locked++;
e33129d8 2120
c0f7bddb
YT
2121 if (level == 6) {
2122 int qd_idx = sh->qd_idx;
2123 struct r5dev *dev = &sh->dev[qd_idx];
2124
2125 set_bit(R5_LOCKED, &dev->flags);
2126 clear_bit(R5_UPTODATE, &dev->flags);
2127 s->locked++;
2128 }
2129
600aa109 2130 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2131 __func__, (unsigned long long)sh->sector,
600aa109 2132 s->locked, s->ops_request);
e33129d8 2133}
16a53ecc 2134
1da177e4
LT
2135/*
2136 * Each stripe/dev can have one or more bion attached.
16a53ecc 2137 * toread/towrite point to the first in a chain.
1da177e4
LT
2138 * The bi_next chain must be in order.
2139 */
2140static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2141{
2142 struct bio **bip;
2143 raid5_conf_t *conf = sh->raid_conf;
72626685 2144 int firstwrite=0;
1da177e4 2145
cbe47ec5 2146 pr_debug("adding bi b#%llu to stripe s#%llu\n",
1da177e4
LT
2147 (unsigned long long)bi->bi_sector,
2148 (unsigned long long)sh->sector);
2149
2150
2151 spin_lock(&sh->lock);
2152 spin_lock_irq(&conf->device_lock);
72626685 2153 if (forwrite) {
1da177e4 2154 bip = &sh->dev[dd_idx].towrite;
72626685
N
2155 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2156 firstwrite = 1;
2157 } else
1da177e4
LT
2158 bip = &sh->dev[dd_idx].toread;
2159 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2160 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2161 goto overlap;
2162 bip = & (*bip)->bi_next;
2163 }
2164 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2165 goto overlap;
2166
78bafebd 2167 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2168 if (*bip)
2169 bi->bi_next = *bip;
2170 *bip = bi;
960e739d 2171 bi->bi_phys_segments++;
72626685 2172
1da177e4
LT
2173 if (forwrite) {
2174 /* check if page is covered */
2175 sector_t sector = sh->dev[dd_idx].sector;
2176 for (bi=sh->dev[dd_idx].towrite;
2177 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2178 bi && bi->bi_sector <= sector;
2179 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2180 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2181 sector = bi->bi_sector + (bi->bi_size>>9);
2182 }
2183 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2184 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2185 }
cbe47ec5
N
2186 spin_unlock_irq(&conf->device_lock);
2187 spin_unlock(&sh->lock);
2188
2189 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2190 (unsigned long long)(*bip)->bi_sector,
2191 (unsigned long long)sh->sector, dd_idx);
2192
2193 if (conf->mddev->bitmap && firstwrite) {
2194 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2195 STRIPE_SECTORS, 0);
2196 sh->bm_seq = conf->seq_flush+1;
2197 set_bit(STRIPE_BIT_DELAY, &sh->state);
2198 }
1da177e4
LT
2199 return 1;
2200
2201 overlap:
2202 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2203 spin_unlock_irq(&conf->device_lock);
2204 spin_unlock(&sh->lock);
2205 return 0;
2206}
2207
29269553
N
2208static void end_reshape(raid5_conf_t *conf);
2209
911d4ee8
N
2210static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2211 struct stripe_head *sh)
ccfcc3c1 2212{
784052ec 2213 int sectors_per_chunk =
09c9e5fa 2214 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2215 int dd_idx;
2d2063ce 2216 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2217 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2218
112bf897
N
2219 raid5_compute_sector(conf,
2220 stripe * (disks - conf->max_degraded)
b875e531 2221 *sectors_per_chunk + chunk_offset,
112bf897 2222 previous,
911d4ee8 2223 &dd_idx, sh);
ccfcc3c1
N
2224}
2225
a4456856 2226static void
1fe797e6 2227handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
a4456856
DW
2228 struct stripe_head_state *s, int disks,
2229 struct bio **return_bi)
2230{
2231 int i;
2232 for (i = disks; i--; ) {
2233 struct bio *bi;
2234 int bitmap_end = 0;
2235
2236 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2237 mdk_rdev_t *rdev;
2238 rcu_read_lock();
2239 rdev = rcu_dereference(conf->disks[i].rdev);
2240 if (rdev && test_bit(In_sync, &rdev->flags))
2241 /* multiple read failures in one stripe */
2242 md_error(conf->mddev, rdev);
2243 rcu_read_unlock();
2244 }
2245 spin_lock_irq(&conf->device_lock);
2246 /* fail all writes first */
2247 bi = sh->dev[i].towrite;
2248 sh->dev[i].towrite = NULL;
2249 if (bi) {
2250 s->to_write--;
2251 bitmap_end = 1;
2252 }
2253
2254 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2255 wake_up(&conf->wait_for_overlap);
2256
2257 while (bi && bi->bi_sector <
2258 sh->dev[i].sector + STRIPE_SECTORS) {
2259 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2260 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2261 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2262 md_write_end(conf->mddev);
2263 bi->bi_next = *return_bi;
2264 *return_bi = bi;
2265 }
2266 bi = nextbi;
2267 }
2268 /* and fail all 'written' */
2269 bi = sh->dev[i].written;
2270 sh->dev[i].written = NULL;
2271 if (bi) bitmap_end = 1;
2272 while (bi && bi->bi_sector <
2273 sh->dev[i].sector + STRIPE_SECTORS) {
2274 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2275 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2276 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2277 md_write_end(conf->mddev);
2278 bi->bi_next = *return_bi;
2279 *return_bi = bi;
2280 }
2281 bi = bi2;
2282 }
2283
b5e98d65
DW
2284 /* fail any reads if this device is non-operational and
2285 * the data has not reached the cache yet.
2286 */
2287 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2288 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2289 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2290 bi = sh->dev[i].toread;
2291 sh->dev[i].toread = NULL;
2292 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2293 wake_up(&conf->wait_for_overlap);
2294 if (bi) s->to_read--;
2295 while (bi && bi->bi_sector <
2296 sh->dev[i].sector + STRIPE_SECTORS) {
2297 struct bio *nextbi =
2298 r5_next_bio(bi, sh->dev[i].sector);
2299 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2300 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2301 bi->bi_next = *return_bi;
2302 *return_bi = bi;
2303 }
2304 bi = nextbi;
2305 }
2306 }
2307 spin_unlock_irq(&conf->device_lock);
2308 if (bitmap_end)
2309 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2310 STRIPE_SECTORS, 0, 0);
2311 }
2312
8b3e6cdc
DW
2313 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2314 if (atomic_dec_and_test(&conf->pending_full_writes))
2315 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2316}
2317
1fe797e6
DW
2318/* fetch_block5 - checks the given member device to see if its data needs
2319 * to be read or computed to satisfy a request.
2320 *
2321 * Returns 1 when no more member devices need to be checked, otherwise returns
2322 * 0 to tell the loop in handle_stripe_fill5 to continue
f38e1219 2323 */
1fe797e6
DW
2324static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2325 int disk_idx, int disks)
f38e1219
DW
2326{
2327 struct r5dev *dev = &sh->dev[disk_idx];
2328 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2329
f38e1219
DW
2330 /* is the data in this block needed, and can we get it? */
2331 if (!test_bit(R5_LOCKED, &dev->flags) &&
1fe797e6
DW
2332 !test_bit(R5_UPTODATE, &dev->flags) &&
2333 (dev->toread ||
2334 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2335 s->syncing || s->expanding ||
2336 (s->failed &&
2337 (failed_dev->toread ||
2338 (failed_dev->towrite &&
2339 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
976ea8d4
DW
2340 /* We would like to get this block, possibly by computing it,
2341 * otherwise read it if the backing disk is insync
f38e1219
DW
2342 */
2343 if ((s->uptodate == disks - 1) &&
ecc65c9b 2344 (s->failed && disk_idx == s->failed_num)) {
976ea8d4
DW
2345 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2346 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
f38e1219
DW
2347 set_bit(R5_Wantcompute, &dev->flags);
2348 sh->ops.target = disk_idx;
ac6b53b6 2349 sh->ops.target2 = -1;
f38e1219 2350 s->req_compute = 1;
f38e1219 2351 /* Careful: from this point on 'uptodate' is in the eye
ac6b53b6 2352 * of raid_run_ops which services 'compute' operations
f38e1219
DW
2353 * before writes. R5_Wantcompute flags a block that will
2354 * be R5_UPTODATE by the time it is needed for a
2355 * subsequent operation.
2356 */
2357 s->uptodate++;
1fe797e6 2358 return 1; /* uptodate + compute == disks */
7a1fc53c 2359 } else if (test_bit(R5_Insync, &dev->flags)) {
f38e1219
DW
2360 set_bit(R5_LOCKED, &dev->flags);
2361 set_bit(R5_Wantread, &dev->flags);
f38e1219
DW
2362 s->locked++;
2363 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2364 s->syncing);
2365 }
2366 }
2367
1fe797e6 2368 return 0;
f38e1219
DW
2369}
2370
1fe797e6
DW
2371/**
2372 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2373 */
2374static void handle_stripe_fill5(struct stripe_head *sh,
a4456856
DW
2375 struct stripe_head_state *s, int disks)
2376{
2377 int i;
f38e1219 2378
f38e1219
DW
2379 /* look for blocks to read/compute, skip this if a compute
2380 * is already in flight, or if the stripe contents are in the
2381 * midst of changing due to a write
2382 */
976ea8d4 2383 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1fe797e6 2384 !sh->reconstruct_state)
f38e1219 2385 for (i = disks; i--; )
1fe797e6 2386 if (fetch_block5(sh, s, i, disks))
f38e1219 2387 break;
a4456856
DW
2388 set_bit(STRIPE_HANDLE, &sh->state);
2389}
2390
5599becc
YT
2391/* fetch_block6 - checks the given member device to see if its data needs
2392 * to be read or computed to satisfy a request.
2393 *
2394 * Returns 1 when no more member devices need to be checked, otherwise returns
2395 * 0 to tell the loop in handle_stripe_fill6 to continue
2396 */
2397static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2398 struct r6_state *r6s, int disk_idx, int disks)
a4456856 2399{
5599becc
YT
2400 struct r5dev *dev = &sh->dev[disk_idx];
2401 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2402 &sh->dev[r6s->failed_num[1]] };
2403
2404 if (!test_bit(R5_LOCKED, &dev->flags) &&
2405 !test_bit(R5_UPTODATE, &dev->flags) &&
2406 (dev->toread ||
2407 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2408 s->syncing || s->expanding ||
2409 (s->failed >= 1 &&
2410 (fdev[0]->toread || s->to_write)) ||
2411 (s->failed >= 2 &&
2412 (fdev[1]->toread || s->to_write)))) {
2413 /* we would like to get this block, possibly by computing it,
2414 * otherwise read it if the backing disk is insync
2415 */
2416 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2417 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2418 if ((s->uptodate == disks - 1) &&
2419 (s->failed && (disk_idx == r6s->failed_num[0] ||
2420 disk_idx == r6s->failed_num[1]))) {
2421 /* have disk failed, and we're requested to fetch it;
2422 * do compute it
a4456856 2423 */
5599becc
YT
2424 pr_debug("Computing stripe %llu block %d\n",
2425 (unsigned long long)sh->sector, disk_idx);
2426 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2427 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2428 set_bit(R5_Wantcompute, &dev->flags);
2429 sh->ops.target = disk_idx;
2430 sh->ops.target2 = -1; /* no 2nd target */
2431 s->req_compute = 1;
2432 s->uptodate++;
2433 return 1;
2434 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2435 /* Computing 2-failure is *very* expensive; only
2436 * do it if failed >= 2
2437 */
2438 int other;
2439 for (other = disks; other--; ) {
2440 if (other == disk_idx)
2441 continue;
2442 if (!test_bit(R5_UPTODATE,
2443 &sh->dev[other].flags))
2444 break;
a4456856 2445 }
5599becc
YT
2446 BUG_ON(other < 0);
2447 pr_debug("Computing stripe %llu blocks %d,%d\n",
2448 (unsigned long long)sh->sector,
2449 disk_idx, other);
2450 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2451 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2452 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2453 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2454 sh->ops.target = disk_idx;
2455 sh->ops.target2 = other;
2456 s->uptodate += 2;
2457 s->req_compute = 1;
2458 return 1;
2459 } else if (test_bit(R5_Insync, &dev->flags)) {
2460 set_bit(R5_LOCKED, &dev->flags);
2461 set_bit(R5_Wantread, &dev->flags);
2462 s->locked++;
2463 pr_debug("Reading block %d (sync=%d)\n",
2464 disk_idx, s->syncing);
a4456856
DW
2465 }
2466 }
5599becc
YT
2467
2468 return 0;
2469}
2470
2471/**
2472 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2473 */
2474static void handle_stripe_fill6(struct stripe_head *sh,
2475 struct stripe_head_state *s, struct r6_state *r6s,
2476 int disks)
2477{
2478 int i;
2479
2480 /* look for blocks to read/compute, skip this if a compute
2481 * is already in flight, or if the stripe contents are in the
2482 * midst of changing due to a write
2483 */
2484 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2485 !sh->reconstruct_state)
2486 for (i = disks; i--; )
2487 if (fetch_block6(sh, s, r6s, i, disks))
2488 break;
a4456856
DW
2489 set_bit(STRIPE_HANDLE, &sh->state);
2490}
2491
2492
1fe797e6 2493/* handle_stripe_clean_event
a4456856
DW
2494 * any written block on an uptodate or failed drive can be returned.
2495 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2496 * never LOCKED, so we don't need to test 'failed' directly.
2497 */
1fe797e6 2498static void handle_stripe_clean_event(raid5_conf_t *conf,
a4456856
DW
2499 struct stripe_head *sh, int disks, struct bio **return_bi)
2500{
2501 int i;
2502 struct r5dev *dev;
2503
2504 for (i = disks; i--; )
2505 if (sh->dev[i].written) {
2506 dev = &sh->dev[i];
2507 if (!test_bit(R5_LOCKED, &dev->flags) &&
2508 test_bit(R5_UPTODATE, &dev->flags)) {
2509 /* We can return any write requests */
2510 struct bio *wbi, *wbi2;
2511 int bitmap_end = 0;
45b4233c 2512 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2513 spin_lock_irq(&conf->device_lock);
2514 wbi = dev->written;
2515 dev->written = NULL;
2516 while (wbi && wbi->bi_sector <
2517 dev->sector + STRIPE_SECTORS) {
2518 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2519 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2520 md_write_end(conf->mddev);
2521 wbi->bi_next = *return_bi;
2522 *return_bi = wbi;
2523 }
2524 wbi = wbi2;
2525 }
2526 if (dev->towrite == NULL)
2527 bitmap_end = 1;
2528 spin_unlock_irq(&conf->device_lock);
2529 if (bitmap_end)
2530 bitmap_endwrite(conf->mddev->bitmap,
2531 sh->sector,
2532 STRIPE_SECTORS,
2533 !test_bit(STRIPE_DEGRADED, &sh->state),
2534 0);
2535 }
2536 }
8b3e6cdc
DW
2537
2538 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2539 if (atomic_dec_and_test(&conf->pending_full_writes))
2540 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2541}
2542
1fe797e6 2543static void handle_stripe_dirtying5(raid5_conf_t *conf,
a4456856
DW
2544 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2545{
2546 int rmw = 0, rcw = 0, i;
2547 for (i = disks; i--; ) {
2548 /* would I have to read this buffer for read_modify_write */
2549 struct r5dev *dev = &sh->dev[i];
2550 if ((dev->towrite || i == sh->pd_idx) &&
2551 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2552 !(test_bit(R5_UPTODATE, &dev->flags) ||
2553 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2554 if (test_bit(R5_Insync, &dev->flags))
2555 rmw++;
2556 else
2557 rmw += 2*disks; /* cannot read it */
2558 }
2559 /* Would I have to read this buffer for reconstruct_write */
2560 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2561 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2562 !(test_bit(R5_UPTODATE, &dev->flags) ||
2563 test_bit(R5_Wantcompute, &dev->flags))) {
2564 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2565 else
2566 rcw += 2*disks;
2567 }
2568 }
45b4233c 2569 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2570 (unsigned long long)sh->sector, rmw, rcw);
2571 set_bit(STRIPE_HANDLE, &sh->state);
2572 if (rmw < rcw && rmw > 0)
2573 /* prefer read-modify-write, but need to get some data */
2574 for (i = disks; i--; ) {
2575 struct r5dev *dev = &sh->dev[i];
2576 if ((dev->towrite || i == sh->pd_idx) &&
2577 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2578 !(test_bit(R5_UPTODATE, &dev->flags) ||
2579 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2580 test_bit(R5_Insync, &dev->flags)) {
2581 if (
2582 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2583 pr_debug("Read_old block "
a4456856
DW
2584 "%d for r-m-w\n", i);
2585 set_bit(R5_LOCKED, &dev->flags);
2586 set_bit(R5_Wantread, &dev->flags);
2587 s->locked++;
2588 } else {
2589 set_bit(STRIPE_DELAYED, &sh->state);
2590 set_bit(STRIPE_HANDLE, &sh->state);
2591 }
2592 }
2593 }
2594 if (rcw <= rmw && rcw > 0)
2595 /* want reconstruct write, but need to get some data */
2596 for (i = disks; i--; ) {
2597 struct r5dev *dev = &sh->dev[i];
2598 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2599 i != sh->pd_idx &&
2600 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2601 !(test_bit(R5_UPTODATE, &dev->flags) ||
2602 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2603 test_bit(R5_Insync, &dev->flags)) {
2604 if (
2605 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2606 pr_debug("Read_old block "
a4456856
DW
2607 "%d for Reconstruct\n", i);
2608 set_bit(R5_LOCKED, &dev->flags);
2609 set_bit(R5_Wantread, &dev->flags);
2610 s->locked++;
2611 } else {
2612 set_bit(STRIPE_DELAYED, &sh->state);
2613 set_bit(STRIPE_HANDLE, &sh->state);
2614 }
2615 }
2616 }
2617 /* now if nothing is locked, and if we have enough data,
2618 * we can start a write request
2619 */
f38e1219
DW
2620 /* since handle_stripe can be called at any time we need to handle the
2621 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
2622 * subsequent call wants to start a write request. raid_run_ops only
2623 * handles the case where compute block and reconstruct are requested
f38e1219
DW
2624 * simultaneously. If this is not the case then new writes need to be
2625 * held off until the compute completes.
2626 */
976ea8d4
DW
2627 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2628 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2629 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 2630 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
2631}
2632
1fe797e6 2633static void handle_stripe_dirtying6(raid5_conf_t *conf,
a4456856
DW
2634 struct stripe_head *sh, struct stripe_head_state *s,
2635 struct r6_state *r6s, int disks)
2636{
a9b39a74 2637 int rcw = 0, pd_idx = sh->pd_idx, i;
34e04e87 2638 int qd_idx = sh->qd_idx;
a9b39a74
YT
2639
2640 set_bit(STRIPE_HANDLE, &sh->state);
a4456856
DW
2641 for (i = disks; i--; ) {
2642 struct r5dev *dev = &sh->dev[i];
a9b39a74
YT
2643 /* check if we haven't enough data */
2644 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2645 i != pd_idx && i != qd_idx &&
2646 !test_bit(R5_LOCKED, &dev->flags) &&
2647 !(test_bit(R5_UPTODATE, &dev->flags) ||
2648 test_bit(R5_Wantcompute, &dev->flags))) {
2649 rcw++;
2650 if (!test_bit(R5_Insync, &dev->flags))
2651 continue; /* it's a failed drive */
2652
2653 if (
2654 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2655 pr_debug("Read_old stripe %llu "
2656 "block %d for Reconstruct\n",
2657 (unsigned long long)sh->sector, i);
2658 set_bit(R5_LOCKED, &dev->flags);
2659 set_bit(R5_Wantread, &dev->flags);
2660 s->locked++;
2661 } else {
2662 pr_debug("Request delayed stripe %llu "
2663 "block %d for Reconstruct\n",
2664 (unsigned long long)sh->sector, i);
2665 set_bit(STRIPE_DELAYED, &sh->state);
2666 set_bit(STRIPE_HANDLE, &sh->state);
a4456856
DW
2667 }
2668 }
2669 }
a4456856
DW
2670 /* now if nothing is locked, and if we have enough data, we can start a
2671 * write request
2672 */
a9b39a74
YT
2673 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2674 s->locked == 0 && rcw == 0 &&
a4456856 2675 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
a9b39a74 2676 schedule_reconstruction(sh, s, 1, 0);
a4456856
DW
2677 }
2678}
2679
2680static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2681 struct stripe_head_state *s, int disks)
2682{
ecc65c9b 2683 struct r5dev *dev = NULL;
bd2ab670 2684
a4456856 2685 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2686
ecc65c9b
DW
2687 switch (sh->check_state) {
2688 case check_state_idle:
2689 /* start a new check operation if there are no failures */
bd2ab670 2690 if (s->failed == 0) {
bd2ab670 2691 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2692 sh->check_state = check_state_run;
2693 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2694 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2695 s->uptodate--;
ecc65c9b 2696 break;
bd2ab670 2697 }
ecc65c9b
DW
2698 dev = &sh->dev[s->failed_num];
2699 /* fall through */
2700 case check_state_compute_result:
2701 sh->check_state = check_state_idle;
2702 if (!dev)
2703 dev = &sh->dev[sh->pd_idx];
2704
2705 /* check that a write has not made the stripe insync */
2706 if (test_bit(STRIPE_INSYNC, &sh->state))
2707 break;
c8894419 2708
a4456856 2709 /* either failed parity check, or recovery is happening */
a4456856
DW
2710 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2711 BUG_ON(s->uptodate != disks);
2712
2713 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2714 s->locked++;
a4456856 2715 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2716
a4456856 2717 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2718 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2719 break;
2720 case check_state_run:
2721 break; /* we will be called again upon completion */
2722 case check_state_check_result:
2723 sh->check_state = check_state_idle;
2724
2725 /* if a failure occurred during the check operation, leave
2726 * STRIPE_INSYNC not set and let the stripe be handled again
2727 */
2728 if (s->failed)
2729 break;
2730
2731 /* handle a successful check operation, if parity is correct
2732 * we are done. Otherwise update the mismatch count and repair
2733 * parity if !MD_RECOVERY_CHECK
2734 */
ad283ea4 2735 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
2736 /* parity is correct (on disc,
2737 * not in buffer any more)
2738 */
2739 set_bit(STRIPE_INSYNC, &sh->state);
2740 else {
2741 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2742 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2743 /* don't try to repair!! */
2744 set_bit(STRIPE_INSYNC, &sh->state);
2745 else {
2746 sh->check_state = check_state_compute_run;
976ea8d4 2747 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2748 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2749 set_bit(R5_Wantcompute,
2750 &sh->dev[sh->pd_idx].flags);
2751 sh->ops.target = sh->pd_idx;
ac6b53b6 2752 sh->ops.target2 = -1;
ecc65c9b
DW
2753 s->uptodate++;
2754 }
2755 }
2756 break;
2757 case check_state_compute_run:
2758 break;
2759 default:
2760 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2761 __func__, sh->check_state,
2762 (unsigned long long) sh->sector);
2763 BUG();
a4456856
DW
2764 }
2765}
2766
2767
2768static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
36d1c647
DW
2769 struct stripe_head_state *s,
2770 struct r6_state *r6s, int disks)
a4456856 2771{
a4456856 2772 int pd_idx = sh->pd_idx;
34e04e87 2773 int qd_idx = sh->qd_idx;
d82dfee0 2774 struct r5dev *dev;
a4456856
DW
2775
2776 set_bit(STRIPE_HANDLE, &sh->state);
2777
2778 BUG_ON(s->failed > 2);
d82dfee0 2779
a4456856
DW
2780 /* Want to check and possibly repair P and Q.
2781 * However there could be one 'failed' device, in which
2782 * case we can only check one of them, possibly using the
2783 * other to generate missing data
2784 */
2785
d82dfee0
DW
2786 switch (sh->check_state) {
2787 case check_state_idle:
2788 /* start a new check operation if there are < 2 failures */
a4456856 2789 if (s->failed == r6s->q_failed) {
d82dfee0 2790 /* The only possible failed device holds Q, so it
a4456856
DW
2791 * makes sense to check P (If anything else were failed,
2792 * we would have used P to recreate it).
2793 */
d82dfee0 2794 sh->check_state = check_state_run;
a4456856
DW
2795 }
2796 if (!r6s->q_failed && s->failed < 2) {
d82dfee0 2797 /* Q is not failed, and we didn't use it to generate
a4456856
DW
2798 * anything, so it makes sense to check it
2799 */
d82dfee0
DW
2800 if (sh->check_state == check_state_run)
2801 sh->check_state = check_state_run_pq;
2802 else
2803 sh->check_state = check_state_run_q;
a4456856 2804 }
a4456856 2805
d82dfee0
DW
2806 /* discard potentially stale zero_sum_result */
2807 sh->ops.zero_sum_result = 0;
a4456856 2808
d82dfee0
DW
2809 if (sh->check_state == check_state_run) {
2810 /* async_xor_zero_sum destroys the contents of P */
2811 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2812 s->uptodate--;
a4456856 2813 }
d82dfee0
DW
2814 if (sh->check_state >= check_state_run &&
2815 sh->check_state <= check_state_run_pq) {
2816 /* async_syndrome_zero_sum preserves P and Q, so
2817 * no need to mark them !uptodate here
2818 */
2819 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2820 break;
a4456856
DW
2821 }
2822
d82dfee0
DW
2823 /* we have 2-disk failure */
2824 BUG_ON(s->failed != 2);
2825 /* fall through */
2826 case check_state_compute_result:
2827 sh->check_state = check_state_idle;
a4456856 2828
d82dfee0
DW
2829 /* check that a write has not made the stripe insync */
2830 if (test_bit(STRIPE_INSYNC, &sh->state))
2831 break;
a4456856
DW
2832
2833 /* now write out any block on a failed drive,
d82dfee0 2834 * or P or Q if they were recomputed
a4456856 2835 */
d82dfee0 2836 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856
DW
2837 if (s->failed == 2) {
2838 dev = &sh->dev[r6s->failed_num[1]];
2839 s->locked++;
2840 set_bit(R5_LOCKED, &dev->flags);
2841 set_bit(R5_Wantwrite, &dev->flags);
2842 }
2843 if (s->failed >= 1) {
2844 dev = &sh->dev[r6s->failed_num[0]];
2845 s->locked++;
2846 set_bit(R5_LOCKED, &dev->flags);
2847 set_bit(R5_Wantwrite, &dev->flags);
2848 }
d82dfee0 2849 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
2850 dev = &sh->dev[pd_idx];
2851 s->locked++;
2852 set_bit(R5_LOCKED, &dev->flags);
2853 set_bit(R5_Wantwrite, &dev->flags);
2854 }
d82dfee0 2855 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
2856 dev = &sh->dev[qd_idx];
2857 s->locked++;
2858 set_bit(R5_LOCKED, &dev->flags);
2859 set_bit(R5_Wantwrite, &dev->flags);
2860 }
2861 clear_bit(STRIPE_DEGRADED, &sh->state);
2862
2863 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
2864 break;
2865 case check_state_run:
2866 case check_state_run_q:
2867 case check_state_run_pq:
2868 break; /* we will be called again upon completion */
2869 case check_state_check_result:
2870 sh->check_state = check_state_idle;
2871
2872 /* handle a successful check operation, if parity is correct
2873 * we are done. Otherwise update the mismatch count and repair
2874 * parity if !MD_RECOVERY_CHECK
2875 */
2876 if (sh->ops.zero_sum_result == 0) {
2877 /* both parities are correct */
2878 if (!s->failed)
2879 set_bit(STRIPE_INSYNC, &sh->state);
2880 else {
2881 /* in contrast to the raid5 case we can validate
2882 * parity, but still have a failure to write
2883 * back
2884 */
2885 sh->check_state = check_state_compute_result;
2886 /* Returning at this point means that we may go
2887 * off and bring p and/or q uptodate again so
2888 * we make sure to check zero_sum_result again
2889 * to verify if p or q need writeback
2890 */
2891 }
2892 } else {
2893 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2894 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2895 /* don't try to repair!! */
2896 set_bit(STRIPE_INSYNC, &sh->state);
2897 else {
2898 int *target = &sh->ops.target;
2899
2900 sh->ops.target = -1;
2901 sh->ops.target2 = -1;
2902 sh->check_state = check_state_compute_run;
2903 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2904 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2905 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2906 set_bit(R5_Wantcompute,
2907 &sh->dev[pd_idx].flags);
2908 *target = pd_idx;
2909 target = &sh->ops.target2;
2910 s->uptodate++;
2911 }
2912 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2913 set_bit(R5_Wantcompute,
2914 &sh->dev[qd_idx].flags);
2915 *target = qd_idx;
2916 s->uptodate++;
2917 }
2918 }
2919 }
2920 break;
2921 case check_state_compute_run:
2922 break;
2923 default:
2924 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2925 __func__, sh->check_state,
2926 (unsigned long long) sh->sector);
2927 BUG();
a4456856
DW
2928 }
2929}
2930
2931static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2932 struct r6_state *r6s)
2933{
2934 int i;
2935
2936 /* We have read all the blocks in this stripe and now we need to
2937 * copy some of them into a target stripe for expand.
2938 */
f0a50d37 2939 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2940 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2941 for (i = 0; i < sh->disks; i++)
34e04e87 2942 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 2943 int dd_idx, j;
a4456856 2944 struct stripe_head *sh2;
a08abd8c 2945 struct async_submit_ctl submit;
a4456856 2946
784052ec 2947 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
2948 sector_t s = raid5_compute_sector(conf, bn, 0,
2949 &dd_idx, NULL);
a8c906ca 2950 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
2951 if (sh2 == NULL)
2952 /* so far only the early blocks of this stripe
2953 * have been requested. When later blocks
2954 * get requested, we will try again
2955 */
2956 continue;
2957 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2958 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2959 /* must have already done this block */
2960 release_stripe(sh2);
2961 continue;
2962 }
f0a50d37
DW
2963
2964 /* place all the copies on one channel */
a08abd8c 2965 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 2966 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 2967 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 2968 &submit);
f0a50d37 2969
a4456856
DW
2970 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2971 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2972 for (j = 0; j < conf->raid_disks; j++)
2973 if (j != sh2->pd_idx &&
d0dabf7e 2974 (!r6s || j != sh2->qd_idx) &&
a4456856
DW
2975 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2976 break;
2977 if (j == conf->raid_disks) {
2978 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2979 set_bit(STRIPE_HANDLE, &sh2->state);
2980 }
2981 release_stripe(sh2);
f0a50d37 2982
a4456856 2983 }
a2e08551
N
2984 /* done submitting copies, wait for them to complete */
2985 if (tx) {
2986 async_tx_ack(tx);
2987 dma_wait_for_async_tx(tx);
2988 }
a4456856 2989}
1da177e4 2990
6bfe0b49 2991
1da177e4
LT
2992/*
2993 * handle_stripe - do things to a stripe.
2994 *
2995 * We lock the stripe and then examine the state of various bits
2996 * to see what needs to be done.
2997 * Possible results:
2998 * return some read request which now have data
2999 * return some write requests which are safely on disc
3000 * schedule a read on some buffers
3001 * schedule a write of some buffers
3002 * return confirmation of parity correctness
3003 *
1da177e4
LT
3004 * buffers are taken off read_list or write_list, and bh_cache buffers
3005 * get BH_Lock set before the stripe lock is released.
3006 *
3007 */
a4456856 3008
1442577b 3009static void handle_stripe5(struct stripe_head *sh)
1da177e4
LT
3010{
3011 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
3012 int disks = sh->disks, i;
3013 struct bio *return_bi = NULL;
3014 struct stripe_head_state s;
1da177e4 3015 struct r5dev *dev;
6bfe0b49 3016 mdk_rdev_t *blocked_rdev = NULL;
e0a115e5 3017 int prexor;
729a1866 3018 int dec_preread_active = 0;
1da177e4 3019
a4456856 3020 memset(&s, 0, sizeof(s));
600aa109
DW
3021 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3022 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3023 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3024 sh->reconstruct_state);
1da177e4
LT
3025
3026 spin_lock(&sh->lock);
83206d66
N
3027 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3028 set_bit(STRIPE_SYNCING, &sh->state);
3029 clear_bit(STRIPE_INSYNC, &sh->state);
3030 }
1da177e4
LT
3031 clear_bit(STRIPE_HANDLE, &sh->state);
3032 clear_bit(STRIPE_DELAYED, &sh->state);
3033
a4456856
DW
3034 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3035 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3036 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
def6ae26 3037
83de75cc 3038 /* Now to look around and see what can be done */
9910f16a 3039 rcu_read_lock();
1da177e4
LT
3040 for (i=disks; i--; ) {
3041 mdk_rdev_t *rdev;
a9f326eb
N
3042
3043 dev = &sh->dev[i];
1da177e4 3044
b5e98d65
DW
3045 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3046 "written %p\n", i, dev->flags, dev->toread, dev->read,
3047 dev->towrite, dev->written);
3048
3049 /* maybe we can request a biofill operation
3050 *
3051 * new wantfill requests are only permitted while
83de75cc 3052 * ops_complete_biofill is guaranteed to be inactive
b5e98d65
DW
3053 */
3054 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
83de75cc 3055 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
b5e98d65 3056 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
3057
3058 /* now count some things */
a4456856
DW
3059 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3060 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 3061 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 3062
b5e98d65
DW
3063 if (test_bit(R5_Wantfill, &dev->flags))
3064 s.to_fill++;
3065 else if (dev->toread)
a4456856 3066 s.to_read++;
1da177e4 3067 if (dev->towrite) {
a4456856 3068 s.to_write++;
1da177e4 3069 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 3070 s.non_overwrite++;
1da177e4 3071 }
a4456856
DW
3072 if (dev->written)
3073 s.written++;
9910f16a 3074 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
3075 if (blocked_rdev == NULL &&
3076 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
3077 blocked_rdev = rdev;
3078 atomic_inc(&rdev->nr_pending);
6bfe0b49 3079 }
415e72d0
N
3080 clear_bit(R5_Insync, &dev->flags);
3081 if (!rdev)
3082 /* Not in-sync */;
3083 else if (test_bit(In_sync, &rdev->flags))
3084 set_bit(R5_Insync, &dev->flags);
3085 else {
3086 /* could be in-sync depending on recovery/reshape status */
3087 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3088 set_bit(R5_Insync, &dev->flags);
3089 }
3090 if (!test_bit(R5_Insync, &dev->flags)) {
14f8d26b 3091 /* The ReadError flag will just be confusing now */
4e5314b5
N
3092 clear_bit(R5_ReadError, &dev->flags);
3093 clear_bit(R5_ReWrite, &dev->flags);
3094 }
415e72d0
N
3095 if (test_bit(R5_ReadError, &dev->flags))
3096 clear_bit(R5_Insync, &dev->flags);
3097 if (!test_bit(R5_Insync, &dev->flags)) {
a4456856
DW
3098 s.failed++;
3099 s.failed_num = i;
415e72d0 3100 }
1da177e4 3101 }
9910f16a 3102 rcu_read_unlock();
b5e98d65 3103
6bfe0b49 3104 if (unlikely(blocked_rdev)) {
ac4090d2
N
3105 if (s.syncing || s.expanding || s.expanded ||
3106 s.to_write || s.written) {
3107 set_bit(STRIPE_HANDLE, &sh->state);
3108 goto unlock;
3109 }
3110 /* There is nothing for the blocked_rdev to block */
3111 rdev_dec_pending(blocked_rdev, conf->mddev);
3112 blocked_rdev = NULL;
6bfe0b49
DW
3113 }
3114
83de75cc
DW
3115 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3116 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3117 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3118 }
b5e98d65 3119
45b4233c 3120 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 3121 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
3122 s.locked, s.uptodate, s.to_read, s.to_write,
3123 s.failed, s.failed_num);
1da177e4
LT
3124 /* check if the array has lost two devices and, if so, some requests might
3125 * need to be failed
3126 */
a4456856 3127 if (s.failed > 1 && s.to_read+s.to_write+s.written)
1fe797e6 3128 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 3129 if (s.failed > 1 && s.syncing) {
1da177e4
LT
3130 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3131 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3132 s.syncing = 0;
1da177e4
LT
3133 }
3134
3135 /* might be able to return some write requests if the parity block
3136 * is safe, or on a failed drive
3137 */
3138 dev = &sh->dev[sh->pd_idx];
a4456856
DW
3139 if ( s.written &&
3140 ((test_bit(R5_Insync, &dev->flags) &&
3141 !test_bit(R5_LOCKED, &dev->flags) &&
3142 test_bit(R5_UPTODATE, &dev->flags)) ||
3143 (s.failed == 1 && s.failed_num == sh->pd_idx)))
1fe797e6 3144 handle_stripe_clean_event(conf, sh, disks, &return_bi);
1da177e4
LT
3145
3146 /* Now we might consider reading some blocks, either to check/generate
3147 * parity, or to satisfy requests
3148 * or to load a block that is being partially written.
3149 */
a4456856 3150 if (s.to_read || s.non_overwrite ||
976ea8d4 3151 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
1fe797e6 3152 handle_stripe_fill5(sh, &s, disks);
1da177e4 3153
e33129d8
DW
3154 /* Now we check to see if any write operations have recently
3155 * completed
3156 */
e0a115e5 3157 prexor = 0;
d8ee0728 3158 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
e0a115e5 3159 prexor = 1;
d8ee0728
DW
3160 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3161 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
600aa109 3162 sh->reconstruct_state = reconstruct_state_idle;
e33129d8
DW
3163
3164 /* All the 'written' buffers and the parity block are ready to
3165 * be written back to disk
3166 */
3167 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3168 for (i = disks; i--; ) {
3169 dev = &sh->dev[i];
3170 if (test_bit(R5_LOCKED, &dev->flags) &&
3171 (i == sh->pd_idx || dev->written)) {
3172 pr_debug("Writing block %d\n", i);
3173 set_bit(R5_Wantwrite, &dev->flags);
e0a115e5
DW
3174 if (prexor)
3175 continue;
e33129d8
DW
3176 if (!test_bit(R5_Insync, &dev->flags) ||
3177 (i == sh->pd_idx && s.failed == 0))
3178 set_bit(STRIPE_INSYNC, &sh->state);
3179 }
3180 }
729a1866
N
3181 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3182 dec_preread_active = 1;
e33129d8
DW
3183 }
3184
3185 /* Now to consider new write requests and what else, if anything
3186 * should be read. We do not handle new writes when:
3187 * 1/ A 'write' operation (copy+xor) is already in flight.
3188 * 2/ A 'check' operation is in flight, as it may clobber the parity
3189 * block.
3190 */
600aa109 3191 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
1fe797e6 3192 handle_stripe_dirtying5(conf, sh, &s, disks);
1da177e4
LT
3193
3194 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
3195 * Any reads will already have been scheduled, so we just see if enough
3196 * data is available. The parity check is held off while parity
3197 * dependent operations are in flight.
1da177e4 3198 */
ecc65c9b
DW
3199 if (sh->check_state ||
3200 (s.syncing && s.locked == 0 &&
976ea8d4 3201 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
ecc65c9b 3202 !test_bit(STRIPE_INSYNC, &sh->state)))
a4456856 3203 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 3204
a4456856 3205 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
3206 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3207 clear_bit(STRIPE_SYNCING, &sh->state);
3208 }
4e5314b5
N
3209
3210 /* If the failed drive is just a ReadError, then we might need to progress
3211 * the repair/check process
3212 */
a4456856
DW
3213 if (s.failed == 1 && !conf->mddev->ro &&
3214 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3215 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3216 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 3217 ) {
a4456856 3218 dev = &sh->dev[s.failed_num];
4e5314b5
N
3219 if (!test_bit(R5_ReWrite, &dev->flags)) {
3220 set_bit(R5_Wantwrite, &dev->flags);
3221 set_bit(R5_ReWrite, &dev->flags);
3222 set_bit(R5_LOCKED, &dev->flags);
a4456856 3223 s.locked++;
4e5314b5
N
3224 } else {
3225 /* let's read it back */
3226 set_bit(R5_Wantread, &dev->flags);
3227 set_bit(R5_LOCKED, &dev->flags);
a4456856 3228 s.locked++;
4e5314b5
N
3229 }
3230 }
3231
600aa109
DW
3232 /* Finish reconstruct operations initiated by the expansion process */
3233 if (sh->reconstruct_state == reconstruct_state_result) {
ab69ae12 3234 struct stripe_head *sh2
a8c906ca 3235 = get_active_stripe(conf, sh->sector, 1, 1, 1);
ab69ae12
N
3236 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3237 /* sh cannot be written until sh2 has been read.
3238 * so arrange for sh to be delayed a little
3239 */
3240 set_bit(STRIPE_DELAYED, &sh->state);
3241 set_bit(STRIPE_HANDLE, &sh->state);
3242 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3243 &sh2->state))
3244 atomic_inc(&conf->preread_active_stripes);
3245 release_stripe(sh2);
3246 goto unlock;
3247 }
3248 if (sh2)
3249 release_stripe(sh2);
3250
600aa109 3251 sh->reconstruct_state = reconstruct_state_idle;
f0a50d37 3252 clear_bit(STRIPE_EXPANDING, &sh->state);
23397883 3253 for (i = conf->raid_disks; i--; ) {
ccfcc3c1 3254 set_bit(R5_Wantwrite, &sh->dev[i].flags);
23397883 3255 set_bit(R5_LOCKED, &sh->dev[i].flags);
efe31143 3256 s.locked++;
23397883 3257 }
f0a50d37
DW
3258 }
3259
3260 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
600aa109 3261 !sh->reconstruct_state) {
f0a50d37
DW
3262 /* Need to write out all blocks after computing parity */
3263 sh->disks = conf->raid_disks;
911d4ee8 3264 stripe_set_idx(sh->sector, conf, 0, sh);
c0f7bddb 3265 schedule_reconstruction(sh, &s, 1, 1);
600aa109 3266 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
ccfcc3c1 3267 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 3268 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
3269 wake_up(&conf->wait_for_overlap);
3270 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3271 }
3272
0f94e87c 3273 if (s.expanding && s.locked == 0 &&
976ea8d4 3274 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3275 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 3276
6bfe0b49 3277 unlock:
1da177e4
LT
3278 spin_unlock(&sh->lock);
3279
6bfe0b49
DW
3280 /* wait for this device to become unblocked */
3281 if (unlikely(blocked_rdev))
3282 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3283
600aa109 3284 if (s.ops_request)
ac6b53b6 3285 raid_run_ops(sh, s.ops_request);
d84e0f10 3286
c4e5ac0a 3287 ops_run_io(sh, &s);
1da177e4 3288
729a1866
N
3289 if (dec_preread_active) {
3290 /* We delay this until after ops_run_io so that if make_request
e9c7469b 3291 * is waiting on a flush, it won't continue until the writes
729a1866
N
3292 * have actually been submitted.
3293 */
3294 atomic_dec(&conf->preread_active_stripes);
3295 if (atomic_read(&conf->preread_active_stripes) <
3296 IO_THRESHOLD)
3297 md_wakeup_thread(conf->mddev->thread);
3298 }
a4456856 3299 return_io(return_bi);
1da177e4
LT
3300}
3301
1442577b 3302static void handle_stripe6(struct stripe_head *sh)
1da177e4 3303{
bff61975 3304 raid5_conf_t *conf = sh->raid_conf;
f416885e 3305 int disks = sh->disks;
a4456856 3306 struct bio *return_bi = NULL;
34e04e87 3307 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
a4456856
DW
3308 struct stripe_head_state s;
3309 struct r6_state r6s;
16a53ecc 3310 struct r5dev *dev, *pdev, *qdev;
6bfe0b49 3311 mdk_rdev_t *blocked_rdev = NULL;
729a1866 3312 int dec_preread_active = 0;
1da177e4 3313
45b4233c 3314 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
6c0069c0 3315 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
a4456856 3316 (unsigned long long)sh->sector, sh->state,
6c0069c0
YT
3317 atomic_read(&sh->count), pd_idx, qd_idx,
3318 sh->check_state, sh->reconstruct_state);
a4456856 3319 memset(&s, 0, sizeof(s));
72626685 3320
16a53ecc 3321 spin_lock(&sh->lock);
83206d66
N
3322 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3323 set_bit(STRIPE_SYNCING, &sh->state);
3324 clear_bit(STRIPE_INSYNC, &sh->state);
3325 }
16a53ecc
N
3326 clear_bit(STRIPE_HANDLE, &sh->state);
3327 clear_bit(STRIPE_DELAYED, &sh->state);
3328
a4456856
DW
3329 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3330 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3331 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 3332 /* Now to look around and see what can be done */
1da177e4
LT
3333
3334 rcu_read_lock();
16a53ecc
N
3335 for (i=disks; i--; ) {
3336 mdk_rdev_t *rdev;
3337 dev = &sh->dev[i];
1da177e4 3338
45b4233c 3339 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc 3340 i, dev->flags, dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3341 /* maybe we can reply to a read
3342 *
3343 * new wantfill requests are only permitted while
3344 * ops_complete_biofill is guaranteed to be inactive
3345 */
3346 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3347 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3348 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3349
16a53ecc 3350 /* now count some things */
a4456856
DW
3351 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3352 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2d6e4ecc
DW
3353 if (test_bit(R5_Wantcompute, &dev->flags)) {
3354 s.compute++;
3355 BUG_ON(s.compute > 2);
3356 }
1da177e4 3357
6c0069c0
YT
3358 if (test_bit(R5_Wantfill, &dev->flags)) {
3359 s.to_fill++;
3360 } else if (dev->toread)
a4456856 3361 s.to_read++;
16a53ecc 3362 if (dev->towrite) {
a4456856 3363 s.to_write++;
16a53ecc 3364 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 3365 s.non_overwrite++;
16a53ecc 3366 }
a4456856
DW
3367 if (dev->written)
3368 s.written++;
16a53ecc 3369 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
3370 if (blocked_rdev == NULL &&
3371 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
3372 blocked_rdev = rdev;
3373 atomic_inc(&rdev->nr_pending);
6bfe0b49 3374 }
415e72d0
N
3375 clear_bit(R5_Insync, &dev->flags);
3376 if (!rdev)
3377 /* Not in-sync */;
3378 else if (test_bit(In_sync, &rdev->flags))
3379 set_bit(R5_Insync, &dev->flags);
3380 else {
3381 /* in sync if before recovery_offset */
3382 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3383 set_bit(R5_Insync, &dev->flags);
3384 }
3385 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
3386 /* The ReadError flag will just be confusing now */
3387 clear_bit(R5_ReadError, &dev->flags);
3388 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3389 }
415e72d0
N
3390 if (test_bit(R5_ReadError, &dev->flags))
3391 clear_bit(R5_Insync, &dev->flags);
3392 if (!test_bit(R5_Insync, &dev->flags)) {
a4456856
DW
3393 if (s.failed < 2)
3394 r6s.failed_num[s.failed] = i;
3395 s.failed++;
415e72d0 3396 }
1da177e4
LT
3397 }
3398 rcu_read_unlock();
6bfe0b49
DW
3399
3400 if (unlikely(blocked_rdev)) {
ac4090d2
N
3401 if (s.syncing || s.expanding || s.expanded ||
3402 s.to_write || s.written) {
3403 set_bit(STRIPE_HANDLE, &sh->state);
3404 goto unlock;
3405 }
3406 /* There is nothing for the blocked_rdev to block */
3407 rdev_dec_pending(blocked_rdev, conf->mddev);
3408 blocked_rdev = NULL;
6bfe0b49 3409 }
ac4090d2 3410
6c0069c0
YT
3411 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3412 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3413 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3414 }
3415
45b4233c 3416 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 3417 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
3418 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3419 r6s.failed_num[0], r6s.failed_num[1]);
3420 /* check if the array has lost >2 devices and, if so, some requests
3421 * might need to be failed
16a53ecc 3422 */
a4456856 3423 if (s.failed > 2 && s.to_read+s.to_write+s.written)
1fe797e6 3424 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 3425 if (s.failed > 2 && s.syncing) {
16a53ecc
N
3426 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3427 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3428 s.syncing = 0;
16a53ecc
N
3429 }
3430
3431 /*
3432 * might be able to return some write requests if the parity blocks
3433 * are safe, or on a failed drive
3434 */
3435 pdev = &sh->dev[pd_idx];
a4456856
DW
3436 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3437 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
34e04e87
N
3438 qdev = &sh->dev[qd_idx];
3439 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3440 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
a4456856
DW
3441
3442 if ( s.written &&
3443 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 3444 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
3445 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3446 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 3447 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856 3448 && test_bit(R5_UPTODATE, &qdev->flags)))))
1fe797e6 3449 handle_stripe_clean_event(conf, sh, disks, &return_bi);
16a53ecc
N
3450
3451 /* Now we might consider reading some blocks, either to check/generate
3452 * parity, or to satisfy requests
3453 * or to load a block that is being partially written.
3454 */
a4456856 3455 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
6c0069c0 3456 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
1fe797e6 3457 handle_stripe_fill6(sh, &s, &r6s, disks);
16a53ecc 3458
6c0069c0
YT
3459 /* Now we check to see if any write operations have recently
3460 * completed
3461 */
3462 if (sh->reconstruct_state == reconstruct_state_drain_result) {
6c0069c0
YT
3463
3464 sh->reconstruct_state = reconstruct_state_idle;
3465 /* All the 'written' buffers and the parity blocks are ready to
3466 * be written back to disk
3467 */
3468 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3469 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3470 for (i = disks; i--; ) {
3471 dev = &sh->dev[i];
3472 if (test_bit(R5_LOCKED, &dev->flags) &&
3473 (i == sh->pd_idx || i == qd_idx ||
3474 dev->written)) {
3475 pr_debug("Writing block %d\n", i);
3476 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3477 set_bit(R5_Wantwrite, &dev->flags);
3478 if (!test_bit(R5_Insync, &dev->flags) ||
3479 ((i == sh->pd_idx || i == qd_idx) &&
3480 s.failed == 0))
3481 set_bit(STRIPE_INSYNC, &sh->state);
3482 }
3483 }
729a1866
N
3484 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3485 dec_preread_active = 1;
6c0069c0
YT
3486 }
3487
a9b39a74
YT
3488 /* Now to consider new write requests and what else, if anything
3489 * should be read. We do not handle new writes when:
3490 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3491 * 2/ A 'check' operation is in flight, as it may clobber the parity
3492 * block.
3493 */
3494 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
1fe797e6 3495 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
16a53ecc
N
3496
3497 /* maybe we need to check and possibly fix the parity for this stripe
a4456856 3498 * Any reads will already have been scheduled, so we just see if enough
6c0069c0
YT
3499 * data is available. The parity check is held off while parity
3500 * dependent operations are in flight.
16a53ecc 3501 */
6c0069c0
YT
3502 if (sh->check_state ||
3503 (s.syncing && s.locked == 0 &&
3504 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3505 !test_bit(STRIPE_INSYNC, &sh->state)))
36d1c647 3506 handle_parity_checks6(conf, sh, &s, &r6s, disks);
16a53ecc 3507
a4456856 3508 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
3509 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3510 clear_bit(STRIPE_SYNCING, &sh->state);
3511 }
3512
3513 /* If the failed drives are just a ReadError, then we might need
3514 * to progress the repair/check process
3515 */
a4456856
DW
3516 if (s.failed <= 2 && !conf->mddev->ro)
3517 for (i = 0; i < s.failed; i++) {
3518 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
3519 if (test_bit(R5_ReadError, &dev->flags)
3520 && !test_bit(R5_LOCKED, &dev->flags)
3521 && test_bit(R5_UPTODATE, &dev->flags)
3522 ) {
3523 if (!test_bit(R5_ReWrite, &dev->flags)) {
3524 set_bit(R5_Wantwrite, &dev->flags);
3525 set_bit(R5_ReWrite, &dev->flags);
3526 set_bit(R5_LOCKED, &dev->flags);
6c0069c0 3527 s.locked++;
16a53ecc
N
3528 } else {
3529 /* let's read it back */
3530 set_bit(R5_Wantread, &dev->flags);
3531 set_bit(R5_LOCKED, &dev->flags);
6c0069c0 3532 s.locked++;
16a53ecc
N
3533 }
3534 }
3535 }
f416885e 3536
6c0069c0
YT
3537 /* Finish reconstruct operations initiated by the expansion process */
3538 if (sh->reconstruct_state == reconstruct_state_result) {
3539 sh->reconstruct_state = reconstruct_state_idle;
3540 clear_bit(STRIPE_EXPANDING, &sh->state);
3541 for (i = conf->raid_disks; i--; ) {
3542 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3543 set_bit(R5_LOCKED, &sh->dev[i].flags);
3544 s.locked++;
3545 }
3546 }
3547
3548 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3549 !sh->reconstruct_state) {
ab69ae12 3550 struct stripe_head *sh2
a8c906ca 3551 = get_active_stripe(conf, sh->sector, 1, 1, 1);
ab69ae12
N
3552 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3553 /* sh cannot be written until sh2 has been read.
3554 * so arrange for sh to be delayed a little
3555 */
3556 set_bit(STRIPE_DELAYED, &sh->state);
3557 set_bit(STRIPE_HANDLE, &sh->state);
3558 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3559 &sh2->state))
3560 atomic_inc(&conf->preread_active_stripes);
3561 release_stripe(sh2);
3562 goto unlock;
3563 }
3564 if (sh2)
3565 release_stripe(sh2);
3566
f416885e
N
3567 /* Need to write out all blocks after computing P&Q */
3568 sh->disks = conf->raid_disks;
911d4ee8 3569 stripe_set_idx(sh->sector, conf, 0, sh);
6c0069c0
YT
3570 schedule_reconstruction(sh, &s, 1, 1);
3571 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
f416885e
N
3572 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3573 atomic_dec(&conf->reshape_stripes);
3574 wake_up(&conf->wait_for_overlap);
3575 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3576 }
3577
0f94e87c 3578 if (s.expanding && s.locked == 0 &&
976ea8d4 3579 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3580 handle_stripe_expansion(conf, sh, &r6s);
f416885e 3581
6bfe0b49 3582 unlock:
16a53ecc
N
3583 spin_unlock(&sh->lock);
3584
6bfe0b49
DW
3585 /* wait for this device to become unblocked */
3586 if (unlikely(blocked_rdev))
3587 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3588
6c0069c0
YT
3589 if (s.ops_request)
3590 raid_run_ops(sh, s.ops_request);
3591
f0e43bcd 3592 ops_run_io(sh, &s);
16a53ecc 3593
729a1866
N
3594
3595 if (dec_preread_active) {
3596 /* We delay this until after ops_run_io so that if make_request
e9c7469b 3597 * is waiting on a flush, it won't continue until the writes
729a1866
N
3598 * have actually been submitted.
3599 */
3600 atomic_dec(&conf->preread_active_stripes);
3601 if (atomic_read(&conf->preread_active_stripes) <
3602 IO_THRESHOLD)
3603 md_wakeup_thread(conf->mddev->thread);
3604 }
3605
f0e43bcd 3606 return_io(return_bi);
16a53ecc
N
3607}
3608
1442577b 3609static void handle_stripe(struct stripe_head *sh)
16a53ecc
N
3610{
3611 if (sh->raid_conf->level == 6)
1442577b 3612 handle_stripe6(sh);
16a53ecc 3613 else
1442577b 3614 handle_stripe5(sh);
16a53ecc
N
3615}
3616
16a53ecc
N
3617static void raid5_activate_delayed(raid5_conf_t *conf)
3618{
3619 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3620 while (!list_empty(&conf->delayed_list)) {
3621 struct list_head *l = conf->delayed_list.next;
3622 struct stripe_head *sh;
3623 sh = list_entry(l, struct stripe_head, lru);
3624 list_del_init(l);
3625 clear_bit(STRIPE_DELAYED, &sh->state);
3626 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3627 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3628 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3629 }
482c0834 3630 }
16a53ecc
N
3631}
3632
3633static void activate_bit_delay(raid5_conf_t *conf)
3634{
3635 /* device_lock is held */
3636 struct list_head head;
3637 list_add(&head, &conf->bitmap_list);
3638 list_del_init(&conf->bitmap_list);
3639 while (!list_empty(&head)) {
3640 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3641 list_del_init(&sh->lru);
3642 atomic_inc(&sh->count);
3643 __release_stripe(conf, sh);
3644 }
3645}
3646
11d8a6e3 3647int md_raid5_congested(mddev_t *mddev, int bits)
f022b2fd 3648{
070ec55d 3649 raid5_conf_t *conf = mddev->private;
f022b2fd
N
3650
3651 /* No difference between reads and writes. Just check
3652 * how busy the stripe_cache is
3653 */
3fa841d7 3654
f022b2fd
N
3655 if (conf->inactive_blocked)
3656 return 1;
3657 if (conf->quiesce)
3658 return 1;
3659 if (list_empty_careful(&conf->inactive_list))
3660 return 1;
3661
3662 return 0;
3663}
11d8a6e3
N
3664EXPORT_SYMBOL_GPL(md_raid5_congested);
3665
3666static int raid5_congested(void *data, int bits)
3667{
3668 mddev_t *mddev = data;
3669
3670 return mddev_congested(mddev, bits) ||
3671 md_raid5_congested(mddev, bits);
3672}
f022b2fd 3673
23032a0e
RBJ
3674/* We want read requests to align with chunks where possible,
3675 * but write requests don't need to.
3676 */
cc371e66
AK
3677static int raid5_mergeable_bvec(struct request_queue *q,
3678 struct bvec_merge_data *bvm,
3679 struct bio_vec *biovec)
23032a0e
RBJ
3680{
3681 mddev_t *mddev = q->queuedata;
cc371e66 3682 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 3683 int max;
9d8f0363 3684 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 3685 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3686
cc371e66 3687 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3688 return biovec->bv_len; /* always allow writes to be mergeable */
3689
664e7c41
AN
3690 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3691 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
3692 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3693 if (max < 0) max = 0;
3694 if (max <= biovec->bv_len && bio_sectors == 0)
3695 return biovec->bv_len;
3696 else
3697 return max;
3698}
3699
f679623f
RBJ
3700
3701static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3702{
3703 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 3704 unsigned int chunk_sectors = mddev->chunk_sectors;
f679623f
RBJ
3705 unsigned int bio_sectors = bio->bi_size >> 9;
3706
664e7c41
AN
3707 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3708 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
3709 return chunk_sectors >=
3710 ((sector & (chunk_sectors - 1)) + bio_sectors);
3711}
3712
46031f9a
RBJ
3713/*
3714 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3715 * later sampled by raid5d.
3716 */
3717static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3718{
3719 unsigned long flags;
3720
3721 spin_lock_irqsave(&conf->device_lock, flags);
3722
3723 bi->bi_next = conf->retry_read_aligned_list;
3724 conf->retry_read_aligned_list = bi;
3725
3726 spin_unlock_irqrestore(&conf->device_lock, flags);
3727 md_wakeup_thread(conf->mddev->thread);
3728}
3729
3730
3731static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3732{
3733 struct bio *bi;
3734
3735 bi = conf->retry_read_aligned;
3736 if (bi) {
3737 conf->retry_read_aligned = NULL;
3738 return bi;
3739 }
3740 bi = conf->retry_read_aligned_list;
3741 if(bi) {
387bb173 3742 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3743 bi->bi_next = NULL;
960e739d
JA
3744 /*
3745 * this sets the active strip count to 1 and the processed
3746 * strip count to zero (upper 8 bits)
3747 */
46031f9a 3748 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3749 }
3750
3751 return bi;
3752}
3753
3754
f679623f
RBJ
3755/*
3756 * The "raid5_align_endio" should check if the read succeeded and if it
3757 * did, call bio_endio on the original bio (having bio_put the new bio
3758 * first).
3759 * If the read failed..
3760 */
6712ecf8 3761static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3762{
3763 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3764 mddev_t *mddev;
3765 raid5_conf_t *conf;
3766 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3767 mdk_rdev_t *rdev;
3768
f679623f 3769 bio_put(bi);
46031f9a 3770
46031f9a
RBJ
3771 rdev = (void*)raid_bi->bi_next;
3772 raid_bi->bi_next = NULL;
2b7f2228
N
3773 mddev = rdev->mddev;
3774 conf = mddev->private;
46031f9a
RBJ
3775
3776 rdev_dec_pending(rdev, conf->mddev);
3777
3778 if (!error && uptodate) {
6712ecf8 3779 bio_endio(raid_bi, 0);
46031f9a
RBJ
3780 if (atomic_dec_and_test(&conf->active_aligned_reads))
3781 wake_up(&conf->wait_for_stripe);
6712ecf8 3782 return;
46031f9a
RBJ
3783 }
3784
3785
45b4233c 3786 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3787
3788 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3789}
3790
387bb173
NB
3791static int bio_fits_rdev(struct bio *bi)
3792{
165125e1 3793 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 3794
ae03bf63 3795 if ((bi->bi_size>>9) > queue_max_sectors(q))
387bb173
NB
3796 return 0;
3797 blk_recount_segments(q, bi);
8a78362c 3798 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
3799 return 0;
3800
3801 if (q->merge_bvec_fn)
3802 /* it's too hard to apply the merge_bvec_fn at this stage,
3803 * just just give up
3804 */
3805 return 0;
3806
3807 return 1;
3808}
3809
3810
21a52c6d 3811static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
f679623f 3812{
070ec55d 3813 raid5_conf_t *conf = mddev->private;
8553fe7e 3814 int dd_idx;
f679623f
RBJ
3815 struct bio* align_bi;
3816 mdk_rdev_t *rdev;
3817
3818 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3819 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3820 return 0;
3821 }
3822 /*
a167f663 3823 * use bio_clone_mddev to make a copy of the bio
f679623f 3824 */
a167f663 3825 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
3826 if (!align_bi)
3827 return 0;
3828 /*
3829 * set bi_end_io to a new function, and set bi_private to the
3830 * original bio.
3831 */
3832 align_bi->bi_end_io = raid5_align_endio;
3833 align_bi->bi_private = raid_bio;
3834 /*
3835 * compute position
3836 */
112bf897
N
3837 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3838 0,
911d4ee8 3839 &dd_idx, NULL);
f679623f
RBJ
3840
3841 rcu_read_lock();
3842 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3843 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3844 atomic_inc(&rdev->nr_pending);
3845 rcu_read_unlock();
46031f9a
RBJ
3846 raid_bio->bi_next = (void*)rdev;
3847 align_bi->bi_bdev = rdev->bdev;
3848 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3849 align_bi->bi_sector += rdev->data_offset;
3850
387bb173
NB
3851 if (!bio_fits_rdev(align_bi)) {
3852 /* too big in some way */
3853 bio_put(align_bi);
3854 rdev_dec_pending(rdev, mddev);
3855 return 0;
3856 }
3857
46031f9a
RBJ
3858 spin_lock_irq(&conf->device_lock);
3859 wait_event_lock_irq(conf->wait_for_stripe,
3860 conf->quiesce == 0,
3861 conf->device_lock, /* nothing */);
3862 atomic_inc(&conf->active_aligned_reads);
3863 spin_unlock_irq(&conf->device_lock);
3864
f679623f
RBJ
3865 generic_make_request(align_bi);
3866 return 1;
3867 } else {
3868 rcu_read_unlock();
46031f9a 3869 bio_put(align_bi);
f679623f
RBJ
3870 return 0;
3871 }
3872}
3873
8b3e6cdc
DW
3874/* __get_priority_stripe - get the next stripe to process
3875 *
3876 * Full stripe writes are allowed to pass preread active stripes up until
3877 * the bypass_threshold is exceeded. In general the bypass_count
3878 * increments when the handle_list is handled before the hold_list; however, it
3879 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3880 * stripe with in flight i/o. The bypass_count will be reset when the
3881 * head of the hold_list has changed, i.e. the head was promoted to the
3882 * handle_list.
3883 */
3884static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3885{
3886 struct stripe_head *sh;
3887
3888 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3889 __func__,
3890 list_empty(&conf->handle_list) ? "empty" : "busy",
3891 list_empty(&conf->hold_list) ? "empty" : "busy",
3892 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3893
3894 if (!list_empty(&conf->handle_list)) {
3895 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3896
3897 if (list_empty(&conf->hold_list))
3898 conf->bypass_count = 0;
3899 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3900 if (conf->hold_list.next == conf->last_hold)
3901 conf->bypass_count++;
3902 else {
3903 conf->last_hold = conf->hold_list.next;
3904 conf->bypass_count -= conf->bypass_threshold;
3905 if (conf->bypass_count < 0)
3906 conf->bypass_count = 0;
3907 }
3908 }
3909 } else if (!list_empty(&conf->hold_list) &&
3910 ((conf->bypass_threshold &&
3911 conf->bypass_count > conf->bypass_threshold) ||
3912 atomic_read(&conf->pending_full_writes) == 0)) {
3913 sh = list_entry(conf->hold_list.next,
3914 typeof(*sh), lru);
3915 conf->bypass_count -= conf->bypass_threshold;
3916 if (conf->bypass_count < 0)
3917 conf->bypass_count = 0;
3918 } else
3919 return NULL;
3920
3921 list_del_init(&sh->lru);
3922 atomic_inc(&sh->count);
3923 BUG_ON(atomic_read(&sh->count) != 1);
3924 return sh;
3925}
f679623f 3926
21a52c6d 3927static int make_request(mddev_t *mddev, struct bio * bi)
1da177e4 3928{
070ec55d 3929 raid5_conf_t *conf = mddev->private;
911d4ee8 3930 int dd_idx;
1da177e4
LT
3931 sector_t new_sector;
3932 sector_t logical_sector, last_sector;
3933 struct stripe_head *sh;
a362357b 3934 const int rw = bio_data_dir(bi);
49077326 3935 int remaining;
7c13edc8 3936 int plugged;
1da177e4 3937
e9c7469b
TH
3938 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3939 md_flush_request(mddev, bi);
e5dcdd80
N
3940 return 0;
3941 }
3942
3d310eb7 3943 md_write_start(mddev, bi);
06d91a5f 3944
802ba064 3945 if (rw == READ &&
52488615 3946 mddev->reshape_position == MaxSector &&
21a52c6d 3947 chunk_aligned_read(mddev,bi))
99c0fb5f 3948 return 0;
52488615 3949
1da177e4
LT
3950 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3951 last_sector = bi->bi_sector + (bi->bi_size>>9);
3952 bi->bi_next = NULL;
3953 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3954
7c13edc8 3955 plugged = mddev_check_plugged(mddev);
1da177e4
LT
3956 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3957 DEFINE_WAIT(w);
16a53ecc 3958 int disks, data_disks;
b5663ba4 3959 int previous;
b578d55f 3960
7ecaa1e6 3961 retry:
b5663ba4 3962 previous = 0;
b0f9ec04 3963 disks = conf->raid_disks;
b578d55f 3964 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 3965 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 3966 /* spinlock is needed as reshape_progress may be
df8e7f76
N
3967 * 64bit on a 32bit platform, and so it might be
3968 * possible to see a half-updated value
aeb878b0 3969 * Of course reshape_progress could change after
df8e7f76
N
3970 * the lock is dropped, so once we get a reference
3971 * to the stripe that we think it is, we will have
3972 * to check again.
3973 */
7ecaa1e6 3974 spin_lock_irq(&conf->device_lock);
fef9c61f
N
3975 if (mddev->delta_disks < 0
3976 ? logical_sector < conf->reshape_progress
3977 : logical_sector >= conf->reshape_progress) {
7ecaa1e6 3978 disks = conf->previous_raid_disks;
b5663ba4
N
3979 previous = 1;
3980 } else {
fef9c61f
N
3981 if (mddev->delta_disks < 0
3982 ? logical_sector < conf->reshape_safe
3983 : logical_sector >= conf->reshape_safe) {
b578d55f
N
3984 spin_unlock_irq(&conf->device_lock);
3985 schedule();
3986 goto retry;
3987 }
3988 }
7ecaa1e6
N
3989 spin_unlock_irq(&conf->device_lock);
3990 }
16a53ecc
N
3991 data_disks = disks - conf->max_degraded;
3992
112bf897
N
3993 new_sector = raid5_compute_sector(conf, logical_sector,
3994 previous,
911d4ee8 3995 &dd_idx, NULL);
0c55e022 3996 pr_debug("raid456: make_request, sector %llu logical %llu\n",
1da177e4
LT
3997 (unsigned long long)new_sector,
3998 (unsigned long long)logical_sector);
3999
b5663ba4 4000 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 4001 (bi->bi_rw&RWA_MASK), 0);
1da177e4 4002 if (sh) {
b0f9ec04 4003 if (unlikely(previous)) {
7ecaa1e6 4004 /* expansion might have moved on while waiting for a
df8e7f76
N
4005 * stripe, so we must do the range check again.
4006 * Expansion could still move past after this
4007 * test, but as we are holding a reference to
4008 * 'sh', we know that if that happens,
4009 * STRIPE_EXPANDING will get set and the expansion
4010 * won't proceed until we finish with the stripe.
7ecaa1e6
N
4011 */
4012 int must_retry = 0;
4013 spin_lock_irq(&conf->device_lock);
b0f9ec04
N
4014 if (mddev->delta_disks < 0
4015 ? logical_sector >= conf->reshape_progress
4016 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
4017 /* mismatch, need to try again */
4018 must_retry = 1;
4019 spin_unlock_irq(&conf->device_lock);
4020 if (must_retry) {
4021 release_stripe(sh);
7a3ab908 4022 schedule();
7ecaa1e6
N
4023 goto retry;
4024 }
4025 }
e62e58a5 4026
ffd96e35 4027 if (rw == WRITE &&
a5c308d4 4028 logical_sector >= mddev->suspend_lo &&
e464eafd
N
4029 logical_sector < mddev->suspend_hi) {
4030 release_stripe(sh);
e62e58a5
N
4031 /* As the suspend_* range is controlled by
4032 * userspace, we want an interruptible
4033 * wait.
4034 */
4035 flush_signals(current);
4036 prepare_to_wait(&conf->wait_for_overlap,
4037 &w, TASK_INTERRUPTIBLE);
4038 if (logical_sector >= mddev->suspend_lo &&
4039 logical_sector < mddev->suspend_hi)
4040 schedule();
e464eafd
N
4041 goto retry;
4042 }
7ecaa1e6
N
4043
4044 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
ffd96e35 4045 !add_stripe_bio(sh, bi, dd_idx, rw)) {
7ecaa1e6
N
4046 /* Stripe is busy expanding or
4047 * add failed due to overlap. Flush everything
1da177e4
LT
4048 * and wait a while
4049 */
482c0834 4050 md_wakeup_thread(mddev->thread);
1da177e4
LT
4051 release_stripe(sh);
4052 schedule();
4053 goto retry;
4054 }
4055 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
4056 set_bit(STRIPE_HANDLE, &sh->state);
4057 clear_bit(STRIPE_DELAYED, &sh->state);
e9c7469b 4058 if ((bi->bi_rw & REQ_SYNC) &&
729a1866
N
4059 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4060 atomic_inc(&conf->preread_active_stripes);
1da177e4 4061 release_stripe(sh);
1da177e4
LT
4062 } else {
4063 /* cannot get stripe for read-ahead, just give-up */
4064 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4065 finish_wait(&conf->wait_for_overlap, &w);
4066 break;
4067 }
4068
4069 }
7c13edc8
N
4070 if (!plugged)
4071 md_wakeup_thread(mddev->thread);
4072
1da177e4 4073 spin_lock_irq(&conf->device_lock);
960e739d 4074 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
4075 spin_unlock_irq(&conf->device_lock);
4076 if (remaining == 0) {
1da177e4 4077
16a53ecc 4078 if ( rw == WRITE )
1da177e4 4079 md_write_end(mddev);
6712ecf8 4080
0e13fe23 4081 bio_endio(bi, 0);
1da177e4 4082 }
729a1866 4083
1da177e4
LT
4084 return 0;
4085}
4086
b522adcd
DW
4087static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4088
52c03291 4089static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 4090{
52c03291
N
4091 /* reshaping is quite different to recovery/resync so it is
4092 * handled quite separately ... here.
4093 *
4094 * On each call to sync_request, we gather one chunk worth of
4095 * destination stripes and flag them as expanding.
4096 * Then we find all the source stripes and request reads.
4097 * As the reads complete, handle_stripe will copy the data
4098 * into the destination stripe and release that stripe.
4099 */
7b92813c 4100 raid5_conf_t *conf = mddev->private;
1da177e4 4101 struct stripe_head *sh;
ccfcc3c1 4102 sector_t first_sector, last_sector;
f416885e
N
4103 int raid_disks = conf->previous_raid_disks;
4104 int data_disks = raid_disks - conf->max_degraded;
4105 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
4106 int i;
4107 int dd_idx;
c8f517c4 4108 sector_t writepos, readpos, safepos;
ec32a2bd 4109 sector_t stripe_addr;
7a661381 4110 int reshape_sectors;
ab69ae12 4111 struct list_head stripes;
52c03291 4112
fef9c61f
N
4113 if (sector_nr == 0) {
4114 /* If restarting in the middle, skip the initial sectors */
4115 if (mddev->delta_disks < 0 &&
4116 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4117 sector_nr = raid5_size(mddev, 0, 0)
4118 - conf->reshape_progress;
a639755c 4119 } else if (mddev->delta_disks >= 0 &&
fef9c61f
N
4120 conf->reshape_progress > 0)
4121 sector_nr = conf->reshape_progress;
f416885e 4122 sector_div(sector_nr, new_data_disks);
fef9c61f 4123 if (sector_nr) {
8dee7211
N
4124 mddev->curr_resync_completed = sector_nr;
4125 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
4126 *skipped = 1;
4127 return sector_nr;
4128 }
52c03291
N
4129 }
4130
7a661381
N
4131 /* We need to process a full chunk at a time.
4132 * If old and new chunk sizes differ, we need to process the
4133 * largest of these
4134 */
664e7c41
AN
4135 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4136 reshape_sectors = mddev->new_chunk_sectors;
7a661381 4137 else
9d8f0363 4138 reshape_sectors = mddev->chunk_sectors;
7a661381 4139
52c03291
N
4140 /* we update the metadata when there is more than 3Meg
4141 * in the block range (that is rather arbitrary, should
4142 * probably be time based) or when the data about to be
4143 * copied would over-write the source of the data at
4144 * the front of the range.
fef9c61f
N
4145 * i.e. one new_stripe along from reshape_progress new_maps
4146 * to after where reshape_safe old_maps to
52c03291 4147 */
fef9c61f 4148 writepos = conf->reshape_progress;
f416885e 4149 sector_div(writepos, new_data_disks);
c8f517c4
N
4150 readpos = conf->reshape_progress;
4151 sector_div(readpos, data_disks);
fef9c61f 4152 safepos = conf->reshape_safe;
f416885e 4153 sector_div(safepos, data_disks);
fef9c61f 4154 if (mddev->delta_disks < 0) {
ed37d83e 4155 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 4156 readpos += reshape_sectors;
7a661381 4157 safepos += reshape_sectors;
fef9c61f 4158 } else {
7a661381 4159 writepos += reshape_sectors;
ed37d83e
N
4160 readpos -= min_t(sector_t, reshape_sectors, readpos);
4161 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 4162 }
52c03291 4163
c8f517c4
N
4164 /* 'writepos' is the most advanced device address we might write.
4165 * 'readpos' is the least advanced device address we might read.
4166 * 'safepos' is the least address recorded in the metadata as having
4167 * been reshaped.
4168 * If 'readpos' is behind 'writepos', then there is no way that we can
4169 * ensure safety in the face of a crash - that must be done by userspace
4170 * making a backup of the data. So in that case there is no particular
4171 * rush to update metadata.
4172 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4173 * update the metadata to advance 'safepos' to match 'readpos' so that
4174 * we can be safe in the event of a crash.
4175 * So we insist on updating metadata if safepos is behind writepos and
4176 * readpos is beyond writepos.
4177 * In any case, update the metadata every 10 seconds.
4178 * Maybe that number should be configurable, but I'm not sure it is
4179 * worth it.... maybe it could be a multiple of safemode_delay???
4180 */
fef9c61f 4181 if ((mddev->delta_disks < 0
c8f517c4
N
4182 ? (safepos > writepos && readpos < writepos)
4183 : (safepos < writepos && readpos > writepos)) ||
4184 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
4185 /* Cannot proceed until we've updated the superblock... */
4186 wait_event(conf->wait_for_overlap,
4187 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 4188 mddev->reshape_position = conf->reshape_progress;
75d3da43 4189 mddev->curr_resync_completed = sector_nr;
c8f517c4 4190 conf->reshape_checkpoint = jiffies;
850b2b42 4191 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 4192 md_wakeup_thread(mddev->thread);
850b2b42 4193 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
4194 kthread_should_stop());
4195 spin_lock_irq(&conf->device_lock);
fef9c61f 4196 conf->reshape_safe = mddev->reshape_position;
52c03291
N
4197 spin_unlock_irq(&conf->device_lock);
4198 wake_up(&conf->wait_for_overlap);
acb180b0 4199 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
4200 }
4201
ec32a2bd
N
4202 if (mddev->delta_disks < 0) {
4203 BUG_ON(conf->reshape_progress == 0);
4204 stripe_addr = writepos;
4205 BUG_ON((mddev->dev_sectors &
7a661381
N
4206 ~((sector_t)reshape_sectors - 1))
4207 - reshape_sectors - stripe_addr
ec32a2bd
N
4208 != sector_nr);
4209 } else {
7a661381 4210 BUG_ON(writepos != sector_nr + reshape_sectors);
ec32a2bd
N
4211 stripe_addr = sector_nr;
4212 }
ab69ae12 4213 INIT_LIST_HEAD(&stripes);
7a661381 4214 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 4215 int j;
a9f326eb 4216 int skipped_disk = 0;
a8c906ca 4217 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
4218 set_bit(STRIPE_EXPANDING, &sh->state);
4219 atomic_inc(&conf->reshape_stripes);
4220 /* If any of this stripe is beyond the end of the old
4221 * array, then we need to zero those blocks
4222 */
4223 for (j=sh->disks; j--;) {
4224 sector_t s;
4225 if (j == sh->pd_idx)
4226 continue;
f416885e 4227 if (conf->level == 6 &&
d0dabf7e 4228 j == sh->qd_idx)
f416885e 4229 continue;
784052ec 4230 s = compute_blocknr(sh, j, 0);
b522adcd 4231 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 4232 skipped_disk = 1;
52c03291
N
4233 continue;
4234 }
4235 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4236 set_bit(R5_Expanded, &sh->dev[j].flags);
4237 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4238 }
a9f326eb 4239 if (!skipped_disk) {
52c03291
N
4240 set_bit(STRIPE_EXPAND_READY, &sh->state);
4241 set_bit(STRIPE_HANDLE, &sh->state);
4242 }
ab69ae12 4243 list_add(&sh->lru, &stripes);
52c03291
N
4244 }
4245 spin_lock_irq(&conf->device_lock);
fef9c61f 4246 if (mddev->delta_disks < 0)
7a661381 4247 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4248 else
7a661381 4249 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4250 spin_unlock_irq(&conf->device_lock);
4251 /* Ok, those stripe are ready. We can start scheduling
4252 * reads on the source stripes.
4253 * The source stripes are determined by mapping the first and last
4254 * block on the destination stripes.
4255 */
52c03291 4256 first_sector =
ec32a2bd 4257 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4258 1, &dd_idx, NULL);
52c03291 4259 last_sector =
0e6e0271 4260 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 4261 * new_data_disks - 1),
911d4ee8 4262 1, &dd_idx, NULL);
58c0fed4
AN
4263 if (last_sector >= mddev->dev_sectors)
4264 last_sector = mddev->dev_sectors - 1;
52c03291 4265 while (first_sector <= last_sector) {
a8c906ca 4266 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
4267 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4268 set_bit(STRIPE_HANDLE, &sh->state);
4269 release_stripe(sh);
4270 first_sector += STRIPE_SECTORS;
4271 }
ab69ae12
N
4272 /* Now that the sources are clearly marked, we can release
4273 * the destination stripes
4274 */
4275 while (!list_empty(&stripes)) {
4276 sh = list_entry(stripes.next, struct stripe_head, lru);
4277 list_del_init(&sh->lru);
4278 release_stripe(sh);
4279 }
c6207277
N
4280 /* If this takes us to the resync_max point where we have to pause,
4281 * then we need to write out the superblock.
4282 */
7a661381 4283 sector_nr += reshape_sectors;
c03f6a19
N
4284 if ((sector_nr - mddev->curr_resync_completed) * 2
4285 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
4286 /* Cannot proceed until we've updated the superblock... */
4287 wait_event(conf->wait_for_overlap,
4288 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 4289 mddev->reshape_position = conf->reshape_progress;
75d3da43 4290 mddev->curr_resync_completed = sector_nr;
c8f517c4 4291 conf->reshape_checkpoint = jiffies;
c6207277
N
4292 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4293 md_wakeup_thread(mddev->thread);
4294 wait_event(mddev->sb_wait,
4295 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4296 || kthread_should_stop());
4297 spin_lock_irq(&conf->device_lock);
fef9c61f 4298 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4299 spin_unlock_irq(&conf->device_lock);
4300 wake_up(&conf->wait_for_overlap);
acb180b0 4301 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 4302 }
7a661381 4303 return reshape_sectors;
52c03291
N
4304}
4305
4306/* FIXME go_faster isn't used */
4307static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4308{
7b92813c 4309 raid5_conf_t *conf = mddev->private;
52c03291 4310 struct stripe_head *sh;
58c0fed4 4311 sector_t max_sector = mddev->dev_sectors;
57dab0bd 4312 sector_t sync_blocks;
16a53ecc
N
4313 int still_degraded = 0;
4314 int i;
1da177e4 4315
72626685 4316 if (sector_nr >= max_sector) {
1da177e4 4317 /* just being told to finish up .. nothing much to do */
cea9c228 4318
29269553
N
4319 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4320 end_reshape(conf);
4321 return 0;
4322 }
72626685
N
4323
4324 if (mddev->curr_resync < max_sector) /* aborted */
4325 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4326 &sync_blocks, 1);
16a53ecc 4327 else /* completed sync */
72626685
N
4328 conf->fullsync = 0;
4329 bitmap_close_sync(mddev->bitmap);
4330
1da177e4
LT
4331 return 0;
4332 }
ccfcc3c1 4333
64bd660b
N
4334 /* Allow raid5_quiesce to complete */
4335 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4336
52c03291
N
4337 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4338 return reshape_request(mddev, sector_nr, skipped);
f6705578 4339
c6207277
N
4340 /* No need to check resync_max as we never do more than one
4341 * stripe, and as resync_max will always be on a chunk boundary,
4342 * if the check in md_do_sync didn't fire, there is no chance
4343 * of overstepping resync_max here
4344 */
4345
16a53ecc 4346 /* if there is too many failed drives and we are trying
1da177e4
LT
4347 * to resync, then assert that we are finished, because there is
4348 * nothing we can do.
4349 */
3285edf1 4350 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4351 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4352 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4353 *skipped = 1;
1da177e4
LT
4354 return rv;
4355 }
72626685 4356 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4357 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4358 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4359 /* we can skip this block, and probably more */
4360 sync_blocks /= STRIPE_SECTORS;
4361 *skipped = 1;
4362 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4363 }
1da177e4 4364
b47490c9
N
4365
4366 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4367
a8c906ca 4368 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 4369 if (sh == NULL) {
a8c906ca 4370 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 4371 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4372 * is trying to get access
1da177e4 4373 */
66c006a5 4374 schedule_timeout_uninterruptible(1);
1da177e4 4375 }
16a53ecc
N
4376 /* Need to check if array will still be degraded after recovery/resync
4377 * We don't need to check the 'failed' flag as when that gets set,
4378 * recovery aborts.
4379 */
f001a70c 4380 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
4381 if (conf->disks[i].rdev == NULL)
4382 still_degraded = 1;
4383
4384 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4385
83206d66 4386 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
1da177e4 4387
1442577b 4388 handle_stripe(sh);
1da177e4
LT
4389 release_stripe(sh);
4390
4391 return STRIPE_SECTORS;
4392}
4393
46031f9a
RBJ
4394static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4395{
4396 /* We may not be able to submit a whole bio at once as there
4397 * may not be enough stripe_heads available.
4398 * We cannot pre-allocate enough stripe_heads as we may need
4399 * more than exist in the cache (if we allow ever large chunks).
4400 * So we do one stripe head at a time and record in
4401 * ->bi_hw_segments how many have been done.
4402 *
4403 * We *know* that this entire raid_bio is in one chunk, so
4404 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4405 */
4406 struct stripe_head *sh;
911d4ee8 4407 int dd_idx;
46031f9a
RBJ
4408 sector_t sector, logical_sector, last_sector;
4409 int scnt = 0;
4410 int remaining;
4411 int handled = 0;
4412
4413 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4414 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4415 0, &dd_idx, NULL);
46031f9a
RBJ
4416 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4417
4418 for (; logical_sector < last_sector;
387bb173
NB
4419 logical_sector += STRIPE_SECTORS,
4420 sector += STRIPE_SECTORS,
4421 scnt++) {
46031f9a 4422
960e739d 4423 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4424 /* already done this stripe */
4425 continue;
4426
a8c906ca 4427 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
4428
4429 if (!sh) {
4430 /* failed to get a stripe - must wait */
960e739d 4431 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4432 conf->retry_read_aligned = raid_bio;
4433 return handled;
4434 }
4435
4436 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
4437 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4438 release_stripe(sh);
960e739d 4439 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4440 conf->retry_read_aligned = raid_bio;
4441 return handled;
4442 }
4443
36d1c647 4444 handle_stripe(sh);
46031f9a
RBJ
4445 release_stripe(sh);
4446 handled++;
4447 }
4448 spin_lock_irq(&conf->device_lock);
960e739d 4449 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4450 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4451 if (remaining == 0)
4452 bio_endio(raid_bio, 0);
46031f9a
RBJ
4453 if (atomic_dec_and_test(&conf->active_aligned_reads))
4454 wake_up(&conf->wait_for_stripe);
4455 return handled;
4456}
4457
46031f9a 4458
1da177e4
LT
4459/*
4460 * This is our raid5 kernel thread.
4461 *
4462 * We scan the hash table for stripes which can be handled now.
4463 * During the scan, completed stripes are saved for us by the interrupt
4464 * handler, so that they will not have to wait for our next wakeup.
4465 */
6ed3003c 4466static void raid5d(mddev_t *mddev)
1da177e4
LT
4467{
4468 struct stripe_head *sh;
070ec55d 4469 raid5_conf_t *conf = mddev->private;
1da177e4 4470 int handled;
e1dfa0a2 4471 struct blk_plug plug;
1da177e4 4472
45b4233c 4473 pr_debug("+++ raid5d active\n");
1da177e4
LT
4474
4475 md_check_recovery(mddev);
1da177e4 4476
e1dfa0a2 4477 blk_start_plug(&plug);
1da177e4
LT
4478 handled = 0;
4479 spin_lock_irq(&conf->device_lock);
4480 while (1) {
46031f9a 4481 struct bio *bio;
1da177e4 4482
7c13edc8
N
4483 if (atomic_read(&mddev->plug_cnt) == 0 &&
4484 !list_empty(&conf->bitmap_list)) {
4485 /* Now is a good time to flush some bitmap updates */
4486 conf->seq_flush++;
700e432d 4487 spin_unlock_irq(&conf->device_lock);
72626685 4488 bitmap_unplug(mddev->bitmap);
700e432d 4489 spin_lock_irq(&conf->device_lock);
7c13edc8 4490 conf->seq_write = conf->seq_flush;
72626685
N
4491 activate_bit_delay(conf);
4492 }
7c13edc8
N
4493 if (atomic_read(&mddev->plug_cnt) == 0)
4494 raid5_activate_delayed(conf);
72626685 4495
46031f9a
RBJ
4496 while ((bio = remove_bio_from_retry(conf))) {
4497 int ok;
4498 spin_unlock_irq(&conf->device_lock);
4499 ok = retry_aligned_read(conf, bio);
4500 spin_lock_irq(&conf->device_lock);
4501 if (!ok)
4502 break;
4503 handled++;
4504 }
4505
8b3e6cdc
DW
4506 sh = __get_priority_stripe(conf);
4507
c9f21aaf 4508 if (!sh)
1da177e4 4509 break;
1da177e4
LT
4510 spin_unlock_irq(&conf->device_lock);
4511
4512 handled++;
417b8d4a
DW
4513 handle_stripe(sh);
4514 release_stripe(sh);
4515 cond_resched();
1da177e4
LT
4516
4517 spin_lock_irq(&conf->device_lock);
4518 }
45b4233c 4519 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4520
4521 spin_unlock_irq(&conf->device_lock);
4522
c9f21aaf 4523 async_tx_issue_pending_all();
e1dfa0a2 4524 blk_finish_plug(&plug);
1da177e4 4525
45b4233c 4526 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4527}
4528
3f294f4f 4529static ssize_t
007583c9 4530raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 4531{
070ec55d 4532 raid5_conf_t *conf = mddev->private;
96de1e66
N
4533 if (conf)
4534 return sprintf(page, "%d\n", conf->max_nr_stripes);
4535 else
4536 return 0;
3f294f4f
N
4537}
4538
c41d4ac4
N
4539int
4540raid5_set_cache_size(mddev_t *mddev, int size)
3f294f4f 4541{
070ec55d 4542 raid5_conf_t *conf = mddev->private;
b5470dc5
DW
4543 int err;
4544
c41d4ac4 4545 if (size <= 16 || size > 32768)
3f294f4f 4546 return -EINVAL;
c41d4ac4 4547 while (size < conf->max_nr_stripes) {
3f294f4f
N
4548 if (drop_one_stripe(conf))
4549 conf->max_nr_stripes--;
4550 else
4551 break;
4552 }
b5470dc5
DW
4553 err = md_allow_write(mddev);
4554 if (err)
4555 return err;
c41d4ac4 4556 while (size > conf->max_nr_stripes) {
3f294f4f
N
4557 if (grow_one_stripe(conf))
4558 conf->max_nr_stripes++;
4559 else break;
4560 }
c41d4ac4
N
4561 return 0;
4562}
4563EXPORT_SYMBOL(raid5_set_cache_size);
4564
4565static ssize_t
4566raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4567{
4568 raid5_conf_t *conf = mddev->private;
4569 unsigned long new;
4570 int err;
4571
4572 if (len >= PAGE_SIZE)
4573 return -EINVAL;
4574 if (!conf)
4575 return -ENODEV;
4576
4577 if (strict_strtoul(page, 10, &new))
4578 return -EINVAL;
4579 err = raid5_set_cache_size(mddev, new);
4580 if (err)
4581 return err;
3f294f4f
N
4582 return len;
4583}
007583c9 4584
96de1e66
N
4585static struct md_sysfs_entry
4586raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4587 raid5_show_stripe_cache_size,
4588 raid5_store_stripe_cache_size);
3f294f4f 4589
8b3e6cdc
DW
4590static ssize_t
4591raid5_show_preread_threshold(mddev_t *mddev, char *page)
4592{
070ec55d 4593 raid5_conf_t *conf = mddev->private;
8b3e6cdc
DW
4594 if (conf)
4595 return sprintf(page, "%d\n", conf->bypass_threshold);
4596 else
4597 return 0;
4598}
4599
4600static ssize_t
4601raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4602{
070ec55d 4603 raid5_conf_t *conf = mddev->private;
4ef197d8 4604 unsigned long new;
8b3e6cdc
DW
4605 if (len >= PAGE_SIZE)
4606 return -EINVAL;
4607 if (!conf)
4608 return -ENODEV;
4609
4ef197d8 4610 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4611 return -EINVAL;
4ef197d8 4612 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4613 return -EINVAL;
4614 conf->bypass_threshold = new;
4615 return len;
4616}
4617
4618static struct md_sysfs_entry
4619raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4620 S_IRUGO | S_IWUSR,
4621 raid5_show_preread_threshold,
4622 raid5_store_preread_threshold);
4623
3f294f4f 4624static ssize_t
96de1e66 4625stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4626{
070ec55d 4627 raid5_conf_t *conf = mddev->private;
96de1e66
N
4628 if (conf)
4629 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4630 else
4631 return 0;
3f294f4f
N
4632}
4633
96de1e66
N
4634static struct md_sysfs_entry
4635raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4636
007583c9 4637static struct attribute *raid5_attrs[] = {
3f294f4f
N
4638 &raid5_stripecache_size.attr,
4639 &raid5_stripecache_active.attr,
8b3e6cdc 4640 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4641 NULL,
4642};
007583c9
N
4643static struct attribute_group raid5_attrs_group = {
4644 .name = NULL,
4645 .attrs = raid5_attrs,
3f294f4f
N
4646};
4647
80c3a6ce
DW
4648static sector_t
4649raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4650{
070ec55d 4651 raid5_conf_t *conf = mddev->private;
80c3a6ce
DW
4652
4653 if (!sectors)
4654 sectors = mddev->dev_sectors;
5e5e3e78 4655 if (!raid_disks)
7ec05478 4656 /* size is defined by the smallest of previous and new size */
5e5e3e78 4657 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 4658
9d8f0363 4659 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 4660 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
4661 return sectors * (raid_disks - conf->max_degraded);
4662}
4663
36d1c647
DW
4664static void raid5_free_percpu(raid5_conf_t *conf)
4665{
4666 struct raid5_percpu *percpu;
4667 unsigned long cpu;
4668
4669 if (!conf->percpu)
4670 return;
4671
4672 get_online_cpus();
4673 for_each_possible_cpu(cpu) {
4674 percpu = per_cpu_ptr(conf->percpu, cpu);
4675 safe_put_page(percpu->spare_page);
d6f38f31 4676 kfree(percpu->scribble);
36d1c647
DW
4677 }
4678#ifdef CONFIG_HOTPLUG_CPU
4679 unregister_cpu_notifier(&conf->cpu_notify);
4680#endif
4681 put_online_cpus();
4682
4683 free_percpu(conf->percpu);
4684}
4685
95fc17aa
DW
4686static void free_conf(raid5_conf_t *conf)
4687{
4688 shrink_stripes(conf);
36d1c647 4689 raid5_free_percpu(conf);
95fc17aa
DW
4690 kfree(conf->disks);
4691 kfree(conf->stripe_hashtbl);
4692 kfree(conf);
4693}
4694
36d1c647
DW
4695#ifdef CONFIG_HOTPLUG_CPU
4696static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4697 void *hcpu)
4698{
4699 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4700 long cpu = (long)hcpu;
4701 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4702
4703 switch (action) {
4704 case CPU_UP_PREPARE:
4705 case CPU_UP_PREPARE_FROZEN:
d6f38f31 4706 if (conf->level == 6 && !percpu->spare_page)
36d1c647 4707 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
4708 if (!percpu->scribble)
4709 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4710
4711 if (!percpu->scribble ||
4712 (conf->level == 6 && !percpu->spare_page)) {
4713 safe_put_page(percpu->spare_page);
4714 kfree(percpu->scribble);
36d1c647
DW
4715 pr_err("%s: failed memory allocation for cpu%ld\n",
4716 __func__, cpu);
55af6bb5 4717 return notifier_from_errno(-ENOMEM);
36d1c647
DW
4718 }
4719 break;
4720 case CPU_DEAD:
4721 case CPU_DEAD_FROZEN:
4722 safe_put_page(percpu->spare_page);
d6f38f31 4723 kfree(percpu->scribble);
36d1c647 4724 percpu->spare_page = NULL;
d6f38f31 4725 percpu->scribble = NULL;
36d1c647
DW
4726 break;
4727 default:
4728 break;
4729 }
4730 return NOTIFY_OK;
4731}
4732#endif
4733
4734static int raid5_alloc_percpu(raid5_conf_t *conf)
4735{
4736 unsigned long cpu;
4737 struct page *spare_page;
a29d8b8e 4738 struct raid5_percpu __percpu *allcpus;
d6f38f31 4739 void *scribble;
36d1c647
DW
4740 int err;
4741
36d1c647
DW
4742 allcpus = alloc_percpu(struct raid5_percpu);
4743 if (!allcpus)
4744 return -ENOMEM;
4745 conf->percpu = allcpus;
4746
4747 get_online_cpus();
4748 err = 0;
4749 for_each_present_cpu(cpu) {
d6f38f31
DW
4750 if (conf->level == 6) {
4751 spare_page = alloc_page(GFP_KERNEL);
4752 if (!spare_page) {
4753 err = -ENOMEM;
4754 break;
4755 }
4756 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4757 }
5e5e3e78 4758 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
d6f38f31 4759 if (!scribble) {
36d1c647
DW
4760 err = -ENOMEM;
4761 break;
4762 }
d6f38f31 4763 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
4764 }
4765#ifdef CONFIG_HOTPLUG_CPU
4766 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4767 conf->cpu_notify.priority = 0;
4768 if (err == 0)
4769 err = register_cpu_notifier(&conf->cpu_notify);
4770#endif
4771 put_online_cpus();
4772
4773 return err;
4774}
4775
91adb564 4776static raid5_conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
4777{
4778 raid5_conf_t *conf;
5e5e3e78 4779 int raid_disk, memory, max_disks;
1da177e4
LT
4780 mdk_rdev_t *rdev;
4781 struct disk_info *disk;
1da177e4 4782
91adb564
N
4783 if (mddev->new_level != 5
4784 && mddev->new_level != 4
4785 && mddev->new_level != 6) {
0c55e022 4786 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4787 mdname(mddev), mddev->new_level);
4788 return ERR_PTR(-EIO);
1da177e4 4789 }
91adb564
N
4790 if ((mddev->new_level == 5
4791 && !algorithm_valid_raid5(mddev->new_layout)) ||
4792 (mddev->new_level == 6
4793 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 4794 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
4795 mdname(mddev), mddev->new_layout);
4796 return ERR_PTR(-EIO);
99c0fb5f 4797 }
91adb564 4798 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 4799 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
4800 mdname(mddev), mddev->raid_disks);
4801 return ERR_PTR(-EINVAL);
4bbf3771
N
4802 }
4803
664e7c41
AN
4804 if (!mddev->new_chunk_sectors ||
4805 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4806 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
4807 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4808 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 4809 return ERR_PTR(-EINVAL);
f6705578
N
4810 }
4811
91adb564
N
4812 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4813 if (conf == NULL)
1da177e4 4814 goto abort;
f5efd45a
DW
4815 spin_lock_init(&conf->device_lock);
4816 init_waitqueue_head(&conf->wait_for_stripe);
4817 init_waitqueue_head(&conf->wait_for_overlap);
4818 INIT_LIST_HEAD(&conf->handle_list);
4819 INIT_LIST_HEAD(&conf->hold_list);
4820 INIT_LIST_HEAD(&conf->delayed_list);
4821 INIT_LIST_HEAD(&conf->bitmap_list);
4822 INIT_LIST_HEAD(&conf->inactive_list);
4823 atomic_set(&conf->active_stripes, 0);
4824 atomic_set(&conf->preread_active_stripes, 0);
4825 atomic_set(&conf->active_aligned_reads, 0);
4826 conf->bypass_threshold = BYPASS_THRESHOLD;
91adb564
N
4827
4828 conf->raid_disks = mddev->raid_disks;
4829 if (mddev->reshape_position == MaxSector)
4830 conf->previous_raid_disks = mddev->raid_disks;
4831 else
f6705578 4832 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
4833 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4834 conf->scribble_len = scribble_len(max_disks);
f6705578 4835
5e5e3e78 4836 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
4837 GFP_KERNEL);
4838 if (!conf->disks)
4839 goto abort;
9ffae0cf 4840
1da177e4
LT
4841 conf->mddev = mddev;
4842
fccddba0 4843 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4844 goto abort;
1da177e4 4845
36d1c647
DW
4846 conf->level = mddev->new_level;
4847 if (raid5_alloc_percpu(conf) != 0)
4848 goto abort;
4849
0c55e022 4850 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 4851
159ec1fc 4852 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 4853 raid_disk = rdev->raid_disk;
5e5e3e78 4854 if (raid_disk >= max_disks
1da177e4
LT
4855 || raid_disk < 0)
4856 continue;
4857 disk = conf->disks + raid_disk;
4858
4859 disk->rdev = rdev;
4860
b2d444d7 4861 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 4862 char b[BDEVNAME_SIZE];
0c55e022
N
4863 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4864 " disk %d\n",
4865 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 4866 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
4867 /* Cannot rely on bitmap to complete recovery */
4868 conf->fullsync = 1;
1da177e4
LT
4869 }
4870
09c9e5fa 4871 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 4872 conf->level = mddev->new_level;
16a53ecc
N
4873 if (conf->level == 6)
4874 conf->max_degraded = 2;
4875 else
4876 conf->max_degraded = 1;
91adb564 4877 conf->algorithm = mddev->new_layout;
1da177e4 4878 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4879 conf->reshape_progress = mddev->reshape_position;
e183eaed 4880 if (conf->reshape_progress != MaxSector) {
09c9e5fa 4881 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
4882 conf->prev_algo = mddev->layout;
4883 }
1da177e4 4884
91adb564 4885 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 4886 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
91adb564
N
4887 if (grow_stripes(conf, conf->max_nr_stripes)) {
4888 printk(KERN_ERR
0c55e022
N
4889 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4890 mdname(mddev), memory);
91adb564
N
4891 goto abort;
4892 } else
0c55e022
N
4893 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4894 mdname(mddev), memory);
1da177e4 4895
0da3c619 4896 conf->thread = md_register_thread(raid5d, mddev, NULL);
91adb564
N
4897 if (!conf->thread) {
4898 printk(KERN_ERR
0c55e022 4899 "md/raid:%s: couldn't allocate thread.\n",
91adb564 4900 mdname(mddev));
16a53ecc
N
4901 goto abort;
4902 }
91adb564
N
4903
4904 return conf;
4905
4906 abort:
4907 if (conf) {
95fc17aa 4908 free_conf(conf);
91adb564
N
4909 return ERR_PTR(-EIO);
4910 } else
4911 return ERR_PTR(-ENOMEM);
4912}
4913
c148ffdc
N
4914
4915static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4916{
4917 switch (algo) {
4918 case ALGORITHM_PARITY_0:
4919 if (raid_disk < max_degraded)
4920 return 1;
4921 break;
4922 case ALGORITHM_PARITY_N:
4923 if (raid_disk >= raid_disks - max_degraded)
4924 return 1;
4925 break;
4926 case ALGORITHM_PARITY_0_6:
4927 if (raid_disk == 0 ||
4928 raid_disk == raid_disks - 1)
4929 return 1;
4930 break;
4931 case ALGORITHM_LEFT_ASYMMETRIC_6:
4932 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4933 case ALGORITHM_LEFT_SYMMETRIC_6:
4934 case ALGORITHM_RIGHT_SYMMETRIC_6:
4935 if (raid_disk == raid_disks - 1)
4936 return 1;
4937 }
4938 return 0;
4939}
4940
91adb564
N
4941static int run(mddev_t *mddev)
4942{
4943 raid5_conf_t *conf;
9f7c2220 4944 int working_disks = 0;
c148ffdc 4945 int dirty_parity_disks = 0;
91adb564 4946 mdk_rdev_t *rdev;
c148ffdc 4947 sector_t reshape_offset = 0;
91adb564 4948
8c6ac868 4949 if (mddev->recovery_cp != MaxSector)
0c55e022 4950 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
4951 " -- starting background reconstruction\n",
4952 mdname(mddev));
91adb564
N
4953 if (mddev->reshape_position != MaxSector) {
4954 /* Check that we can continue the reshape.
4955 * Currently only disks can change, it must
4956 * increase, and we must be past the point where
4957 * a stripe over-writes itself
4958 */
4959 sector_t here_new, here_old;
4960 int old_disks;
18b00334 4961 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 4962
88ce4930 4963 if (mddev->new_level != mddev->level) {
0c55e022 4964 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
4965 "required - aborting.\n",
4966 mdname(mddev));
4967 return -EINVAL;
4968 }
91adb564
N
4969 old_disks = mddev->raid_disks - mddev->delta_disks;
4970 /* reshape_position must be on a new-stripe boundary, and one
4971 * further up in new geometry must map after here in old
4972 * geometry.
4973 */
4974 here_new = mddev->reshape_position;
664e7c41 4975 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 4976 (mddev->raid_disks - max_degraded))) {
0c55e022
N
4977 printk(KERN_ERR "md/raid:%s: reshape_position not "
4978 "on a stripe boundary\n", mdname(mddev));
91adb564
N
4979 return -EINVAL;
4980 }
c148ffdc 4981 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
4982 /* here_new is the stripe we will write to */
4983 here_old = mddev->reshape_position;
9d8f0363 4984 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
4985 (old_disks-max_degraded));
4986 /* here_old is the first stripe that we might need to read
4987 * from */
67ac6011
N
4988 if (mddev->delta_disks == 0) {
4989 /* We cannot be sure it is safe to start an in-place
4990 * reshape. It is only safe if user-space if monitoring
4991 * and taking constant backups.
4992 * mdadm always starts a situation like this in
4993 * readonly mode so it can take control before
4994 * allowing any writes. So just check for that.
4995 */
4996 if ((here_new * mddev->new_chunk_sectors !=
4997 here_old * mddev->chunk_sectors) ||
4998 mddev->ro == 0) {
0c55e022
N
4999 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5000 " in read-only mode - aborting\n",
5001 mdname(mddev));
67ac6011
N
5002 return -EINVAL;
5003 }
5004 } else if (mddev->delta_disks < 0
5005 ? (here_new * mddev->new_chunk_sectors <=
5006 here_old * mddev->chunk_sectors)
5007 : (here_new * mddev->new_chunk_sectors >=
5008 here_old * mddev->chunk_sectors)) {
91adb564 5009 /* Reading from the same stripe as writing to - bad */
0c55e022
N
5010 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5011 "auto-recovery - aborting.\n",
5012 mdname(mddev));
91adb564
N
5013 return -EINVAL;
5014 }
0c55e022
N
5015 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5016 mdname(mddev));
91adb564
N
5017 /* OK, we should be able to continue; */
5018 } else {
5019 BUG_ON(mddev->level != mddev->new_level);
5020 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 5021 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 5022 BUG_ON(mddev->delta_disks != 0);
1da177e4 5023 }
91adb564 5024
245f46c2
N
5025 if (mddev->private == NULL)
5026 conf = setup_conf(mddev);
5027 else
5028 conf = mddev->private;
5029
91adb564
N
5030 if (IS_ERR(conf))
5031 return PTR_ERR(conf);
5032
5033 mddev->thread = conf->thread;
5034 conf->thread = NULL;
5035 mddev->private = conf;
5036
5037 /*
5038 * 0 for a fully functional array, 1 or 2 for a degraded array.
5039 */
c148ffdc
N
5040 list_for_each_entry(rdev, &mddev->disks, same_set) {
5041 if (rdev->raid_disk < 0)
5042 continue;
2f115882 5043 if (test_bit(In_sync, &rdev->flags)) {
91adb564 5044 working_disks++;
2f115882
N
5045 continue;
5046 }
c148ffdc
N
5047 /* This disc is not fully in-sync. However if it
5048 * just stored parity (beyond the recovery_offset),
5049 * when we don't need to be concerned about the
5050 * array being dirty.
5051 * When reshape goes 'backwards', we never have
5052 * partially completed devices, so we only need
5053 * to worry about reshape going forwards.
5054 */
5055 /* Hack because v0.91 doesn't store recovery_offset properly. */
5056 if (mddev->major_version == 0 &&
5057 mddev->minor_version > 90)
5058 rdev->recovery_offset = reshape_offset;
5059
c148ffdc
N
5060 if (rdev->recovery_offset < reshape_offset) {
5061 /* We need to check old and new layout */
5062 if (!only_parity(rdev->raid_disk,
5063 conf->algorithm,
5064 conf->raid_disks,
5065 conf->max_degraded))
5066 continue;
5067 }
5068 if (!only_parity(rdev->raid_disk,
5069 conf->prev_algo,
5070 conf->previous_raid_disks,
5071 conf->max_degraded))
5072 continue;
5073 dirty_parity_disks++;
5074 }
91adb564 5075
5e5e3e78
N
5076 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5077 - working_disks);
91adb564 5078
674806d6 5079 if (has_failed(conf)) {
0c55e022 5080 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 5081 " (%d/%d failed)\n",
02c2de8c 5082 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
5083 goto abort;
5084 }
5085
91adb564 5086 /* device size must be a multiple of chunk size */
9d8f0363 5087 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
5088 mddev->resync_max_sectors = mddev->dev_sectors;
5089
c148ffdc 5090 if (mddev->degraded > dirty_parity_disks &&
1da177e4 5091 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
5092 if (mddev->ok_start_degraded)
5093 printk(KERN_WARNING
0c55e022
N
5094 "md/raid:%s: starting dirty degraded array"
5095 " - data corruption possible.\n",
6ff8d8ec
N
5096 mdname(mddev));
5097 else {
5098 printk(KERN_ERR
0c55e022 5099 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
5100 mdname(mddev));
5101 goto abort;
5102 }
1da177e4
LT
5103 }
5104
1da177e4 5105 if (mddev->degraded == 0)
0c55e022
N
5106 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5107 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
5108 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5109 mddev->new_layout);
1da177e4 5110 else
0c55e022
N
5111 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5112 " out of %d devices, algorithm %d\n",
5113 mdname(mddev), conf->level,
5114 mddev->raid_disks - mddev->degraded,
5115 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
5116
5117 print_raid5_conf(conf);
5118
fef9c61f 5119 if (conf->reshape_progress != MaxSector) {
fef9c61f 5120 conf->reshape_safe = conf->reshape_progress;
f6705578
N
5121 atomic_set(&conf->reshape_stripes, 0);
5122 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5123 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5124 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5125 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5126 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5127 "reshape");
f6705578
N
5128 }
5129
1da177e4
LT
5130
5131 /* Ok, everything is just fine now */
a64c876f
N
5132 if (mddev->to_remove == &raid5_attrs_group)
5133 mddev->to_remove = NULL;
00bcb4ac
N
5134 else if (mddev->kobj.sd &&
5135 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 5136 printk(KERN_WARNING
4a5add49 5137 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 5138 mdname(mddev));
4a5add49 5139 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 5140
4a5add49 5141 if (mddev->queue) {
9f7c2220 5142 int chunk_size;
4a5add49
N
5143 /* read-ahead size must cover two whole stripes, which
5144 * is 2 * (datadisks) * chunksize where 'n' is the
5145 * number of raid devices
5146 */
5147 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5148 int stripe = data_disks *
5149 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5150 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5151 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 5152
4a5add49 5153 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
f022b2fd 5154
11d8a6e3
N
5155 mddev->queue->backing_dev_info.congested_data = mddev;
5156 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
7a5febe9 5157
9f7c2220
N
5158 chunk_size = mddev->chunk_sectors << 9;
5159 blk_queue_io_min(mddev->queue, chunk_size);
5160 blk_queue_io_opt(mddev->queue, chunk_size *
5161 (conf->raid_disks - conf->max_degraded));
8f6c2e4b 5162
9f7c2220
N
5163 list_for_each_entry(rdev, &mddev->disks, same_set)
5164 disk_stack_limits(mddev->gendisk, rdev->bdev,
5165 rdev->data_offset << 9);
5166 }
23032a0e 5167
1da177e4
LT
5168 return 0;
5169abort:
e0cf8f04 5170 md_unregister_thread(mddev->thread);
91adb564 5171 mddev->thread = NULL;
1da177e4
LT
5172 if (conf) {
5173 print_raid5_conf(conf);
95fc17aa 5174 free_conf(conf);
1da177e4
LT
5175 }
5176 mddev->private = NULL;
0c55e022 5177 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
5178 return -EIO;
5179}
5180
3f294f4f 5181static int stop(mddev_t *mddev)
1da177e4 5182{
7b92813c 5183 raid5_conf_t *conf = mddev->private;
1da177e4
LT
5184
5185 md_unregister_thread(mddev->thread);
5186 mddev->thread = NULL;
11d8a6e3
N
5187 if (mddev->queue)
5188 mddev->queue->backing_dev_info.congested_fn = NULL;
95fc17aa 5189 free_conf(conf);
a64c876f
N
5190 mddev->private = NULL;
5191 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
5192 return 0;
5193}
5194
45b4233c 5195#ifdef DEBUG
d710e138 5196static void print_sh(struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
5197{
5198 int i;
5199
16a53ecc
N
5200 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5201 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5202 seq_printf(seq, "sh %llu, count %d.\n",
5203 (unsigned long long)sh->sector, atomic_read(&sh->count));
5204 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 5205 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
5206 seq_printf(seq, "(cache%d: %p %ld) ",
5207 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 5208 }
16a53ecc 5209 seq_printf(seq, "\n");
1da177e4
LT
5210}
5211
d710e138 5212static void printall(struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
5213{
5214 struct stripe_head *sh;
fccddba0 5215 struct hlist_node *hn;
1da177e4
LT
5216 int i;
5217
5218 spin_lock_irq(&conf->device_lock);
5219 for (i = 0; i < NR_HASH; i++) {
fccddba0 5220 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
5221 if (sh->raid_conf != conf)
5222 continue;
16a53ecc 5223 print_sh(seq, sh);
1da177e4
LT
5224 }
5225 }
5226 spin_unlock_irq(&conf->device_lock);
5227}
5228#endif
5229
d710e138 5230static void status(struct seq_file *seq, mddev_t *mddev)
1da177e4 5231{
7b92813c 5232 raid5_conf_t *conf = mddev->private;
1da177e4
LT
5233 int i;
5234
9d8f0363
AN
5235 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5236 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 5237 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
5238 for (i = 0; i < conf->raid_disks; i++)
5239 seq_printf (seq, "%s",
5240 conf->disks[i].rdev &&
b2d444d7 5241 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 5242 seq_printf (seq, "]");
45b4233c 5243#ifdef DEBUG
16a53ecc
N
5244 seq_printf (seq, "\n");
5245 printall(seq, conf);
1da177e4
LT
5246#endif
5247}
5248
5249static void print_raid5_conf (raid5_conf_t *conf)
5250{
5251 int i;
5252 struct disk_info *tmp;
5253
0c55e022 5254 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
5255 if (!conf) {
5256 printk("(conf==NULL)\n");
5257 return;
5258 }
0c55e022
N
5259 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5260 conf->raid_disks,
5261 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
5262
5263 for (i = 0; i < conf->raid_disks; i++) {
5264 char b[BDEVNAME_SIZE];
5265 tmp = conf->disks + i;
5266 if (tmp->rdev)
0c55e022
N
5267 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5268 i, !test_bit(Faulty, &tmp->rdev->flags),
5269 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
5270 }
5271}
5272
5273static int raid5_spare_active(mddev_t *mddev)
5274{
5275 int i;
5276 raid5_conf_t *conf = mddev->private;
5277 struct disk_info *tmp;
6b965620
N
5278 int count = 0;
5279 unsigned long flags;
1da177e4
LT
5280
5281 for (i = 0; i < conf->raid_disks; i++) {
5282 tmp = conf->disks + i;
5283 if (tmp->rdev
70fffd0b 5284 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 5285 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 5286 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 5287 count++;
43c73ca4 5288 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
5289 }
5290 }
6b965620
N
5291 spin_lock_irqsave(&conf->device_lock, flags);
5292 mddev->degraded -= count;
5293 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 5294 print_raid5_conf(conf);
6b965620 5295 return count;
1da177e4
LT
5296}
5297
5298static int raid5_remove_disk(mddev_t *mddev, int number)
5299{
5300 raid5_conf_t *conf = mddev->private;
5301 int err = 0;
5302 mdk_rdev_t *rdev;
5303 struct disk_info *p = conf->disks + number;
5304
5305 print_raid5_conf(conf);
5306 rdev = p->rdev;
5307 if (rdev) {
ec32a2bd
N
5308 if (number >= conf->raid_disks &&
5309 conf->reshape_progress == MaxSector)
5310 clear_bit(In_sync, &rdev->flags);
5311
b2d444d7 5312 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
5313 atomic_read(&rdev->nr_pending)) {
5314 err = -EBUSY;
5315 goto abort;
5316 }
dfc70645
N
5317 /* Only remove non-faulty devices if recovery
5318 * isn't possible.
5319 */
5320 if (!test_bit(Faulty, &rdev->flags) &&
674806d6 5321 !has_failed(conf) &&
ec32a2bd 5322 number < conf->raid_disks) {
dfc70645
N
5323 err = -EBUSY;
5324 goto abort;
5325 }
1da177e4 5326 p->rdev = NULL;
fbd568a3 5327 synchronize_rcu();
1da177e4
LT
5328 if (atomic_read(&rdev->nr_pending)) {
5329 /* lost the race, try later */
5330 err = -EBUSY;
5331 p->rdev = rdev;
5332 }
5333 }
5334abort:
5335
5336 print_raid5_conf(conf);
5337 return err;
5338}
5339
5340static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5341{
5342 raid5_conf_t *conf = mddev->private;
199050ea 5343 int err = -EEXIST;
1da177e4
LT
5344 int disk;
5345 struct disk_info *p;
6c2fce2e
NB
5346 int first = 0;
5347 int last = conf->raid_disks - 1;
1da177e4 5348
674806d6 5349 if (has_failed(conf))
1da177e4 5350 /* no point adding a device */
199050ea 5351 return -EINVAL;
1da177e4 5352
6c2fce2e
NB
5353 if (rdev->raid_disk >= 0)
5354 first = last = rdev->raid_disk;
1da177e4
LT
5355
5356 /*
16a53ecc
N
5357 * find the disk ... but prefer rdev->saved_raid_disk
5358 * if possible.
1da177e4 5359 */
16a53ecc 5360 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 5361 rdev->saved_raid_disk >= first &&
16a53ecc
N
5362 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5363 disk = rdev->saved_raid_disk;
5364 else
6c2fce2e
NB
5365 disk = first;
5366 for ( ; disk <= last ; disk++)
1da177e4 5367 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 5368 clear_bit(In_sync, &rdev->flags);
1da177e4 5369 rdev->raid_disk = disk;
199050ea 5370 err = 0;
72626685
N
5371 if (rdev->saved_raid_disk != disk)
5372 conf->fullsync = 1;
d6065f7b 5373 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
5374 break;
5375 }
5376 print_raid5_conf(conf);
199050ea 5377 return err;
1da177e4
LT
5378}
5379
5380static int raid5_resize(mddev_t *mddev, sector_t sectors)
5381{
5382 /* no resync is happening, and there is enough space
5383 * on all devices, so we can resize.
5384 * We need to make sure resync covers any new space.
5385 * If the array is shrinking we should possibly wait until
5386 * any io in the removed space completes, but it hardly seems
5387 * worth it.
5388 */
9d8f0363 5389 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
1f403624
DW
5390 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5391 mddev->raid_disks));
b522adcd
DW
5392 if (mddev->array_sectors >
5393 raid5_size(mddev, sectors, mddev->raid_disks))
5394 return -EINVAL;
f233ea5c 5395 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5396 revalidate_disk(mddev->gendisk);
b098636c
N
5397 if (sectors > mddev->dev_sectors &&
5398 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 5399 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
5400 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5401 }
58c0fed4 5402 mddev->dev_sectors = sectors;
4b5c7ae8 5403 mddev->resync_max_sectors = sectors;
1da177e4
LT
5404 return 0;
5405}
5406
01ee22b4
N
5407static int check_stripe_cache(mddev_t *mddev)
5408{
5409 /* Can only proceed if there are plenty of stripe_heads.
5410 * We need a minimum of one full stripe,, and for sensible progress
5411 * it is best to have about 4 times that.
5412 * If we require 4 times, then the default 256 4K stripe_heads will
5413 * allow for chunk sizes up to 256K, which is probably OK.
5414 * If the chunk size is greater, user-space should request more
5415 * stripe_heads first.
5416 */
5417 raid5_conf_t *conf = mddev->private;
5418 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5419 > conf->max_nr_stripes ||
5420 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5421 > conf->max_nr_stripes) {
0c55e022
N
5422 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5423 mdname(mddev),
01ee22b4
N
5424 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5425 / STRIPE_SIZE)*4);
5426 return 0;
5427 }
5428 return 1;
5429}
5430
50ac168a 5431static int check_reshape(mddev_t *mddev)
29269553 5432{
070ec55d 5433 raid5_conf_t *conf = mddev->private;
29269553 5434
88ce4930
N
5435 if (mddev->delta_disks == 0 &&
5436 mddev->new_layout == mddev->layout &&
664e7c41 5437 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 5438 return 0; /* nothing to do */
dba034ee
N
5439 if (mddev->bitmap)
5440 /* Cannot grow a bitmap yet */
5441 return -EBUSY;
674806d6 5442 if (has_failed(conf))
ec32a2bd
N
5443 return -EINVAL;
5444 if (mddev->delta_disks < 0) {
5445 /* We might be able to shrink, but the devices must
5446 * be made bigger first.
5447 * For raid6, 4 is the minimum size.
5448 * Otherwise 2 is the minimum
5449 */
5450 int min = 2;
5451 if (mddev->level == 6)
5452 min = 4;
5453 if (mddev->raid_disks + mddev->delta_disks < min)
5454 return -EINVAL;
5455 }
29269553 5456
01ee22b4 5457 if (!check_stripe_cache(mddev))
29269553 5458 return -ENOSPC;
29269553 5459
ec32a2bd 5460 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
5461}
5462
5463static int raid5_start_reshape(mddev_t *mddev)
5464{
070ec55d 5465 raid5_conf_t *conf = mddev->private;
63c70c4f 5466 mdk_rdev_t *rdev;
63c70c4f 5467 int spares = 0;
c04be0aa 5468 unsigned long flags;
63c70c4f 5469
f416885e 5470 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
5471 return -EBUSY;
5472
01ee22b4
N
5473 if (!check_stripe_cache(mddev))
5474 return -ENOSPC;
5475
159ec1fc 5476 list_for_each_entry(rdev, &mddev->disks, same_set)
469518a3
N
5477 if (!test_bit(In_sync, &rdev->flags)
5478 && !test_bit(Faulty, &rdev->flags))
29269553 5479 spares++;
63c70c4f 5480
f416885e 5481 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
5482 /* Not enough devices even to make a degraded array
5483 * of that size
5484 */
5485 return -EINVAL;
5486
ec32a2bd
N
5487 /* Refuse to reduce size of the array. Any reductions in
5488 * array size must be through explicit setting of array_size
5489 * attribute.
5490 */
5491 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5492 < mddev->array_sectors) {
0c55e022 5493 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
5494 "before number of disks\n", mdname(mddev));
5495 return -EINVAL;
5496 }
5497
f6705578 5498 atomic_set(&conf->reshape_stripes, 0);
29269553
N
5499 spin_lock_irq(&conf->device_lock);
5500 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 5501 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
5502 conf->prev_chunk_sectors = conf->chunk_sectors;
5503 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
5504 conf->prev_algo = conf->algorithm;
5505 conf->algorithm = mddev->new_layout;
fef9c61f
N
5506 if (mddev->delta_disks < 0)
5507 conf->reshape_progress = raid5_size(mddev, 0, 0);
5508 else
5509 conf->reshape_progress = 0;
5510 conf->reshape_safe = conf->reshape_progress;
86b42c71 5511 conf->generation++;
29269553
N
5512 spin_unlock_irq(&conf->device_lock);
5513
5514 /* Add some new drives, as many as will fit.
5515 * We know there are enough to make the newly sized array work.
3424bf6a
N
5516 * Don't add devices if we are reducing the number of
5517 * devices in the array. This is because it is not possible
5518 * to correctly record the "partially reconstructed" state of
5519 * such devices during the reshape and confusion could result.
29269553 5520 */
87a8dec9
N
5521 if (mddev->delta_disks >= 0) {
5522 int added_devices = 0;
5523 list_for_each_entry(rdev, &mddev->disks, same_set)
5524 if (rdev->raid_disk < 0 &&
5525 !test_bit(Faulty, &rdev->flags)) {
5526 if (raid5_add_disk(mddev, rdev) == 0) {
5527 char nm[20];
5528 if (rdev->raid_disk
5529 >= conf->previous_raid_disks) {
5530 set_bit(In_sync, &rdev->flags);
5531 added_devices++;
5532 } else
5533 rdev->recovery_offset = 0;
5534 sprintf(nm, "rd%d", rdev->raid_disk);
5535 if (sysfs_create_link(&mddev->kobj,
5536 &rdev->kobj, nm))
5537 /* Failure here is OK */;
50da0840 5538 }
87a8dec9
N
5539 } else if (rdev->raid_disk >= conf->previous_raid_disks
5540 && !test_bit(Faulty, &rdev->flags)) {
5541 /* This is a spare that was manually added */
5542 set_bit(In_sync, &rdev->flags);
5543 added_devices++;
5544 }
29269553 5545
87a8dec9
N
5546 /* When a reshape changes the number of devices,
5547 * ->degraded is measured against the larger of the
5548 * pre and post number of devices.
5549 */
ec32a2bd 5550 spin_lock_irqsave(&conf->device_lock, flags);
9eb07c25 5551 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
ec32a2bd
N
5552 - added_devices;
5553 spin_unlock_irqrestore(&conf->device_lock, flags);
5554 }
63c70c4f 5555 mddev->raid_disks = conf->raid_disks;
e516402c 5556 mddev->reshape_position = conf->reshape_progress;
850b2b42 5557 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 5558
29269553
N
5559 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5560 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5561 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5562 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5563 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5564 "reshape");
29269553
N
5565 if (!mddev->sync_thread) {
5566 mddev->recovery = 0;
5567 spin_lock_irq(&conf->device_lock);
5568 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
fef9c61f 5569 conf->reshape_progress = MaxSector;
29269553
N
5570 spin_unlock_irq(&conf->device_lock);
5571 return -EAGAIN;
5572 }
c8f517c4 5573 conf->reshape_checkpoint = jiffies;
29269553
N
5574 md_wakeup_thread(mddev->sync_thread);
5575 md_new_event(mddev);
5576 return 0;
5577}
29269553 5578
ec32a2bd
N
5579/* This is called from the reshape thread and should make any
5580 * changes needed in 'conf'
5581 */
29269553
N
5582static void end_reshape(raid5_conf_t *conf)
5583{
29269553 5584
f6705578 5585 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f6705578 5586
f6705578 5587 spin_lock_irq(&conf->device_lock);
cea9c228 5588 conf->previous_raid_disks = conf->raid_disks;
fef9c61f 5589 conf->reshape_progress = MaxSector;
f6705578 5590 spin_unlock_irq(&conf->device_lock);
b0f9ec04 5591 wake_up(&conf->wait_for_overlap);
16a53ecc
N
5592
5593 /* read-ahead size must cover two whole stripes, which is
5594 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5595 */
4a5add49 5596 if (conf->mddev->queue) {
cea9c228 5597 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 5598 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 5599 / PAGE_SIZE);
16a53ecc
N
5600 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5601 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5602 }
29269553 5603 }
29269553
N
5604}
5605
ec32a2bd
N
5606/* This is called from the raid5d thread with mddev_lock held.
5607 * It makes config changes to the device.
5608 */
cea9c228
N
5609static void raid5_finish_reshape(mddev_t *mddev)
5610{
070ec55d 5611 raid5_conf_t *conf = mddev->private;
cea9c228
N
5612
5613 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5614
ec32a2bd
N
5615 if (mddev->delta_disks > 0) {
5616 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5617 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5618 revalidate_disk(mddev->gendisk);
ec32a2bd
N
5619 } else {
5620 int d;
ec32a2bd
N
5621 mddev->degraded = conf->raid_disks;
5622 for (d = 0; d < conf->raid_disks ; d++)
5623 if (conf->disks[d].rdev &&
5624 test_bit(In_sync,
5625 &conf->disks[d].rdev->flags))
5626 mddev->degraded--;
5627 for (d = conf->raid_disks ;
5628 d < conf->raid_disks - mddev->delta_disks;
1a67dde0
N
5629 d++) {
5630 mdk_rdev_t *rdev = conf->disks[d].rdev;
5631 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5632 char nm[20];
5633 sprintf(nm, "rd%d", rdev->raid_disk);
5634 sysfs_remove_link(&mddev->kobj, nm);
5635 rdev->raid_disk = -1;
5636 }
5637 }
cea9c228 5638 }
88ce4930 5639 mddev->layout = conf->algorithm;
09c9e5fa 5640 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
5641 mddev->reshape_position = MaxSector;
5642 mddev->delta_disks = 0;
cea9c228
N
5643 }
5644}
5645
72626685
N
5646static void raid5_quiesce(mddev_t *mddev, int state)
5647{
070ec55d 5648 raid5_conf_t *conf = mddev->private;
72626685
N
5649
5650 switch(state) {
e464eafd
N
5651 case 2: /* resume for a suspend */
5652 wake_up(&conf->wait_for_overlap);
5653 break;
5654
72626685
N
5655 case 1: /* stop all writes */
5656 spin_lock_irq(&conf->device_lock);
64bd660b
N
5657 /* '2' tells resync/reshape to pause so that all
5658 * active stripes can drain
5659 */
5660 conf->quiesce = 2;
72626685 5661 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
5662 atomic_read(&conf->active_stripes) == 0 &&
5663 atomic_read(&conf->active_aligned_reads) == 0,
72626685 5664 conf->device_lock, /* nothing */);
64bd660b 5665 conf->quiesce = 1;
72626685 5666 spin_unlock_irq(&conf->device_lock);
64bd660b
N
5667 /* allow reshape to continue */
5668 wake_up(&conf->wait_for_overlap);
72626685
N
5669 break;
5670
5671 case 0: /* re-enable writes */
5672 spin_lock_irq(&conf->device_lock);
5673 conf->quiesce = 0;
5674 wake_up(&conf->wait_for_stripe);
e464eafd 5675 wake_up(&conf->wait_for_overlap);
72626685
N
5676 spin_unlock_irq(&conf->device_lock);
5677 break;
5678 }
72626685 5679}
b15c2e57 5680
d562b0c4 5681
f1b29bca 5682static void *raid45_takeover_raid0(mddev_t *mddev, int level)
54071b38 5683{
f1b29bca 5684 struct raid0_private_data *raid0_priv = mddev->private;
d76c8420 5685 sector_t sectors;
54071b38 5686
f1b29bca
DW
5687 /* for raid0 takeover only one zone is supported */
5688 if (raid0_priv->nr_strip_zones > 1) {
0c55e022
N
5689 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5690 mdname(mddev));
f1b29bca
DW
5691 return ERR_PTR(-EINVAL);
5692 }
5693
3b71bd93
N
5694 sectors = raid0_priv->strip_zone[0].zone_end;
5695 sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5696 mddev->dev_sectors = sectors;
f1b29bca 5697 mddev->new_level = level;
54071b38
TM
5698 mddev->new_layout = ALGORITHM_PARITY_N;
5699 mddev->new_chunk_sectors = mddev->chunk_sectors;
5700 mddev->raid_disks += 1;
5701 mddev->delta_disks = 1;
5702 /* make sure it will be not marked as dirty */
5703 mddev->recovery_cp = MaxSector;
5704
5705 return setup_conf(mddev);
5706}
5707
5708
d562b0c4
N
5709static void *raid5_takeover_raid1(mddev_t *mddev)
5710{
5711 int chunksect;
5712
5713 if (mddev->raid_disks != 2 ||
5714 mddev->degraded > 1)
5715 return ERR_PTR(-EINVAL);
5716
5717 /* Should check if there are write-behind devices? */
5718
5719 chunksect = 64*2; /* 64K by default */
5720
5721 /* The array must be an exact multiple of chunksize */
5722 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5723 chunksect >>= 1;
5724
5725 if ((chunksect<<9) < STRIPE_SIZE)
5726 /* array size does not allow a suitable chunk size */
5727 return ERR_PTR(-EINVAL);
5728
5729 mddev->new_level = 5;
5730 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 5731 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
5732
5733 return setup_conf(mddev);
5734}
5735
fc9739c6
N
5736static void *raid5_takeover_raid6(mddev_t *mddev)
5737{
5738 int new_layout;
5739
5740 switch (mddev->layout) {
5741 case ALGORITHM_LEFT_ASYMMETRIC_6:
5742 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5743 break;
5744 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5745 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5746 break;
5747 case ALGORITHM_LEFT_SYMMETRIC_6:
5748 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5749 break;
5750 case ALGORITHM_RIGHT_SYMMETRIC_6:
5751 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5752 break;
5753 case ALGORITHM_PARITY_0_6:
5754 new_layout = ALGORITHM_PARITY_0;
5755 break;
5756 case ALGORITHM_PARITY_N:
5757 new_layout = ALGORITHM_PARITY_N;
5758 break;
5759 default:
5760 return ERR_PTR(-EINVAL);
5761 }
5762 mddev->new_level = 5;
5763 mddev->new_layout = new_layout;
5764 mddev->delta_disks = -1;
5765 mddev->raid_disks -= 1;
5766 return setup_conf(mddev);
5767}
5768
d562b0c4 5769
50ac168a 5770static int raid5_check_reshape(mddev_t *mddev)
b3546035 5771{
88ce4930
N
5772 /* For a 2-drive array, the layout and chunk size can be changed
5773 * immediately as not restriping is needed.
5774 * For larger arrays we record the new value - after validation
5775 * to be used by a reshape pass.
b3546035 5776 */
070ec55d 5777 raid5_conf_t *conf = mddev->private;
597a711b 5778 int new_chunk = mddev->new_chunk_sectors;
b3546035 5779
597a711b 5780 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
5781 return -EINVAL;
5782 if (new_chunk > 0) {
0ba459d2 5783 if (!is_power_of_2(new_chunk))
b3546035 5784 return -EINVAL;
597a711b 5785 if (new_chunk < (PAGE_SIZE>>9))
b3546035 5786 return -EINVAL;
597a711b 5787 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
5788 /* not factor of array size */
5789 return -EINVAL;
5790 }
5791
5792 /* They look valid */
5793
88ce4930 5794 if (mddev->raid_disks == 2) {
597a711b
N
5795 /* can make the change immediately */
5796 if (mddev->new_layout >= 0) {
5797 conf->algorithm = mddev->new_layout;
5798 mddev->layout = mddev->new_layout;
88ce4930
N
5799 }
5800 if (new_chunk > 0) {
597a711b
N
5801 conf->chunk_sectors = new_chunk ;
5802 mddev->chunk_sectors = new_chunk;
88ce4930
N
5803 }
5804 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5805 md_wakeup_thread(mddev->thread);
b3546035 5806 }
50ac168a 5807 return check_reshape(mddev);
88ce4930
N
5808}
5809
50ac168a 5810static int raid6_check_reshape(mddev_t *mddev)
88ce4930 5811{
597a711b 5812 int new_chunk = mddev->new_chunk_sectors;
50ac168a 5813
597a711b 5814 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 5815 return -EINVAL;
b3546035 5816 if (new_chunk > 0) {
0ba459d2 5817 if (!is_power_of_2(new_chunk))
88ce4930 5818 return -EINVAL;
597a711b 5819 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 5820 return -EINVAL;
597a711b 5821 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
5822 /* not factor of array size */
5823 return -EINVAL;
b3546035 5824 }
88ce4930
N
5825
5826 /* They look valid */
50ac168a 5827 return check_reshape(mddev);
b3546035
N
5828}
5829
d562b0c4
N
5830static void *raid5_takeover(mddev_t *mddev)
5831{
5832 /* raid5 can take over:
f1b29bca 5833 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
5834 * raid1 - if there are two drives. We need to know the chunk size
5835 * raid4 - trivial - just use a raid4 layout.
5836 * raid6 - Providing it is a *_6 layout
d562b0c4 5837 */
f1b29bca
DW
5838 if (mddev->level == 0)
5839 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
5840 if (mddev->level == 1)
5841 return raid5_takeover_raid1(mddev);
e9d4758f
N
5842 if (mddev->level == 4) {
5843 mddev->new_layout = ALGORITHM_PARITY_N;
5844 mddev->new_level = 5;
5845 return setup_conf(mddev);
5846 }
fc9739c6
N
5847 if (mddev->level == 6)
5848 return raid5_takeover_raid6(mddev);
d562b0c4
N
5849
5850 return ERR_PTR(-EINVAL);
5851}
5852
a78d38a1
N
5853static void *raid4_takeover(mddev_t *mddev)
5854{
f1b29bca
DW
5855 /* raid4 can take over:
5856 * raid0 - if there is only one strip zone
5857 * raid5 - if layout is right
a78d38a1 5858 */
f1b29bca
DW
5859 if (mddev->level == 0)
5860 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
5861 if (mddev->level == 5 &&
5862 mddev->layout == ALGORITHM_PARITY_N) {
5863 mddev->new_layout = 0;
5864 mddev->new_level = 4;
5865 return setup_conf(mddev);
5866 }
5867 return ERR_PTR(-EINVAL);
5868}
d562b0c4 5869
245f46c2
N
5870static struct mdk_personality raid5_personality;
5871
5872static void *raid6_takeover(mddev_t *mddev)
5873{
5874 /* Currently can only take over a raid5. We map the
5875 * personality to an equivalent raid6 personality
5876 * with the Q block at the end.
5877 */
5878 int new_layout;
5879
5880 if (mddev->pers != &raid5_personality)
5881 return ERR_PTR(-EINVAL);
5882 if (mddev->degraded > 1)
5883 return ERR_PTR(-EINVAL);
5884 if (mddev->raid_disks > 253)
5885 return ERR_PTR(-EINVAL);
5886 if (mddev->raid_disks < 3)
5887 return ERR_PTR(-EINVAL);
5888
5889 switch (mddev->layout) {
5890 case ALGORITHM_LEFT_ASYMMETRIC:
5891 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5892 break;
5893 case ALGORITHM_RIGHT_ASYMMETRIC:
5894 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5895 break;
5896 case ALGORITHM_LEFT_SYMMETRIC:
5897 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5898 break;
5899 case ALGORITHM_RIGHT_SYMMETRIC:
5900 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5901 break;
5902 case ALGORITHM_PARITY_0:
5903 new_layout = ALGORITHM_PARITY_0_6;
5904 break;
5905 case ALGORITHM_PARITY_N:
5906 new_layout = ALGORITHM_PARITY_N;
5907 break;
5908 default:
5909 return ERR_PTR(-EINVAL);
5910 }
5911 mddev->new_level = 6;
5912 mddev->new_layout = new_layout;
5913 mddev->delta_disks = 1;
5914 mddev->raid_disks += 1;
5915 return setup_conf(mddev);
5916}
5917
5918
16a53ecc
N
5919static struct mdk_personality raid6_personality =
5920{
5921 .name = "raid6",
5922 .level = 6,
5923 .owner = THIS_MODULE,
5924 .make_request = make_request,
5925 .run = run,
5926 .stop = stop,
5927 .status = status,
5928 .error_handler = error,
5929 .hot_add_disk = raid5_add_disk,
5930 .hot_remove_disk= raid5_remove_disk,
5931 .spare_active = raid5_spare_active,
5932 .sync_request = sync_request,
5933 .resize = raid5_resize,
80c3a6ce 5934 .size = raid5_size,
50ac168a 5935 .check_reshape = raid6_check_reshape,
f416885e 5936 .start_reshape = raid5_start_reshape,
cea9c228 5937 .finish_reshape = raid5_finish_reshape,
16a53ecc 5938 .quiesce = raid5_quiesce,
245f46c2 5939 .takeover = raid6_takeover,
16a53ecc 5940};
2604b703 5941static struct mdk_personality raid5_personality =
1da177e4
LT
5942{
5943 .name = "raid5",
2604b703 5944 .level = 5,
1da177e4
LT
5945 .owner = THIS_MODULE,
5946 .make_request = make_request,
5947 .run = run,
5948 .stop = stop,
5949 .status = status,
5950 .error_handler = error,
5951 .hot_add_disk = raid5_add_disk,
5952 .hot_remove_disk= raid5_remove_disk,
5953 .spare_active = raid5_spare_active,
5954 .sync_request = sync_request,
5955 .resize = raid5_resize,
80c3a6ce 5956 .size = raid5_size,
63c70c4f
N
5957 .check_reshape = raid5_check_reshape,
5958 .start_reshape = raid5_start_reshape,
cea9c228 5959 .finish_reshape = raid5_finish_reshape,
72626685 5960 .quiesce = raid5_quiesce,
d562b0c4 5961 .takeover = raid5_takeover,
1da177e4
LT
5962};
5963
2604b703 5964static struct mdk_personality raid4_personality =
1da177e4 5965{
2604b703
N
5966 .name = "raid4",
5967 .level = 4,
5968 .owner = THIS_MODULE,
5969 .make_request = make_request,
5970 .run = run,
5971 .stop = stop,
5972 .status = status,
5973 .error_handler = error,
5974 .hot_add_disk = raid5_add_disk,
5975 .hot_remove_disk= raid5_remove_disk,
5976 .spare_active = raid5_spare_active,
5977 .sync_request = sync_request,
5978 .resize = raid5_resize,
80c3a6ce 5979 .size = raid5_size,
3d37890b
N
5980 .check_reshape = raid5_check_reshape,
5981 .start_reshape = raid5_start_reshape,
cea9c228 5982 .finish_reshape = raid5_finish_reshape,
2604b703 5983 .quiesce = raid5_quiesce,
a78d38a1 5984 .takeover = raid4_takeover,
2604b703
N
5985};
5986
5987static int __init raid5_init(void)
5988{
16a53ecc 5989 register_md_personality(&raid6_personality);
2604b703
N
5990 register_md_personality(&raid5_personality);
5991 register_md_personality(&raid4_personality);
5992 return 0;
1da177e4
LT
5993}
5994
2604b703 5995static void raid5_exit(void)
1da177e4 5996{
16a53ecc 5997 unregister_md_personality(&raid6_personality);
2604b703
N
5998 unregister_md_personality(&raid5_personality);
5999 unregister_md_personality(&raid4_personality);
1da177e4
LT
6000}
6001
6002module_init(raid5_init);
6003module_exit(raid5_exit);
6004MODULE_LICENSE("GPL");
0efb9e61 6005MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 6006MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
6007MODULE_ALIAS("md-raid5");
6008MODULE_ALIAS("md-raid4");
2604b703
N
6009MODULE_ALIAS("md-level-5");
6010MODULE_ALIAS("md-level-4");
16a53ecc
N
6011MODULE_ALIAS("md-personality-8"); /* RAID6 */
6012MODULE_ALIAS("md-raid6");
6013MODULE_ALIAS("md-level-6");
6014
6015/* This used to be two separate modules, they were: */
6016MODULE_ALIAS("raid5");
6017MODULE_ALIAS("raid6");