]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid5.c
md/bitmap: remove confusing code from filemap_get_page.
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
a9add5d9
N
57#include <trace/events/block.h>
58
43b2e5d8 59#include "md.h"
bff61975 60#include "raid5.h"
54071b38 61#include "raid0.h"
ef740c37 62#include "bitmap.h"
72626685 63
851c30c9
SL
64#define cpu_to_group(cpu) cpu_to_node(cpu)
65#define ANY_GROUP NUMA_NO_NODE
66
67static struct workqueue_struct *raid5_wq;
1da177e4
LT
68/*
69 * Stripe cache
70 */
71
72#define NR_STRIPES 256
73#define STRIPE_SIZE PAGE_SIZE
74#define STRIPE_SHIFT (PAGE_SHIFT - 9)
75#define STRIPE_SECTORS (STRIPE_SIZE>>9)
76#define IO_THRESHOLD 1
8b3e6cdc 77#define BYPASS_THRESHOLD 1
fccddba0 78#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4 79#define HASH_MASK (NR_HASH - 1)
bfc90cb0 80#define MAX_STRIPE_BATCH 8
1da177e4 81
d1688a6d 82static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
83{
84 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85 return &conf->stripe_hashtbl[hash];
86}
1da177e4 87
566c09c5
SL
88static inline int stripe_hash_locks_hash(sector_t sect)
89{
90 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91}
92
93static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
94{
95 spin_lock_irq(conf->hash_locks + hash);
96 spin_lock(&conf->device_lock);
97}
98
99static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
100{
101 spin_unlock(&conf->device_lock);
102 spin_unlock_irq(conf->hash_locks + hash);
103}
104
105static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106{
107 int i;
108 local_irq_disable();
109 spin_lock(conf->hash_locks);
110 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112 spin_lock(&conf->device_lock);
113}
114
115static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
116{
117 int i;
118 spin_unlock(&conf->device_lock);
119 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120 spin_unlock(conf->hash_locks + i - 1);
121 local_irq_enable();
122}
123
1da177e4
LT
124/* bio's attached to a stripe+device for I/O are linked together in bi_sector
125 * order without overlap. There may be several bio's per stripe+device, and
126 * a bio could span several devices.
127 * When walking this list for a particular stripe+device, we must never proceed
128 * beyond a bio that extends past this device, as the next bio might no longer
129 * be valid.
db298e19 130 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
131 * of the current stripe+device
132 */
db298e19
N
133static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
134{
aa8b57aa 135 int sectors = bio_sectors(bio);
4f024f37 136 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
db298e19
N
137 return bio->bi_next;
138 else
139 return NULL;
140}
1da177e4 141
960e739d 142/*
5b99c2ff
JA
143 * We maintain a biased count of active stripes in the bottom 16 bits of
144 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 145 */
e7836bd6 146static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 147{
e7836bd6
SL
148 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
150}
151
e7836bd6 152static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 153{
e7836bd6
SL
154 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
156}
157
e7836bd6 158static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 159{
e7836bd6
SL
160 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161 atomic_inc(segments);
960e739d
JA
162}
163
e7836bd6
SL
164static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165 unsigned int cnt)
960e739d 166{
e7836bd6
SL
167 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168 int old, new;
960e739d 169
e7836bd6
SL
170 do {
171 old = atomic_read(segments);
172 new = (old & 0xffff) | (cnt << 16);
173 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
174}
175
e7836bd6 176static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 177{
e7836bd6
SL
178 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179 atomic_set(segments, cnt);
960e739d
JA
180}
181
d0dabf7e
N
182/* Find first data disk in a raid6 stripe */
183static inline int raid6_d0(struct stripe_head *sh)
184{
67cc2b81
N
185 if (sh->ddf_layout)
186 /* ddf always start from first device */
187 return 0;
188 /* md starts just after Q block */
d0dabf7e
N
189 if (sh->qd_idx == sh->disks - 1)
190 return 0;
191 else
192 return sh->qd_idx + 1;
193}
16a53ecc
N
194static inline int raid6_next_disk(int disk, int raid_disks)
195{
196 disk++;
197 return (disk < raid_disks) ? disk : 0;
198}
a4456856 199
d0dabf7e
N
200/* When walking through the disks in a raid5, starting at raid6_d0,
201 * We need to map each disk to a 'slot', where the data disks are slot
202 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203 * is raid_disks-1. This help does that mapping.
204 */
67cc2b81
N
205static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206 int *count, int syndrome_disks)
d0dabf7e 207{
6629542e 208 int slot = *count;
67cc2b81 209
e4424fee 210 if (sh->ddf_layout)
6629542e 211 (*count)++;
d0dabf7e 212 if (idx == sh->pd_idx)
67cc2b81 213 return syndrome_disks;
d0dabf7e 214 if (idx == sh->qd_idx)
67cc2b81 215 return syndrome_disks + 1;
e4424fee 216 if (!sh->ddf_layout)
6629542e 217 (*count)++;
d0dabf7e
N
218 return slot;
219}
220
a4456856
DW
221static void return_io(struct bio *return_bi)
222{
223 struct bio *bi = return_bi;
224 while (bi) {
a4456856
DW
225
226 return_bi = bi->bi_next;
227 bi->bi_next = NULL;
4f024f37 228 bi->bi_iter.bi_size = 0;
0a82a8d1
LT
229 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230 bi, 0);
0e13fe23 231 bio_endio(bi, 0);
a4456856
DW
232 bi = return_bi;
233 }
234}
235
d1688a6d 236static void print_raid5_conf (struct r5conf *conf);
1da177e4 237
600aa109
DW
238static int stripe_operations_active(struct stripe_head *sh)
239{
240 return sh->check_state || sh->reconstruct_state ||
241 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243}
244
851c30c9
SL
245static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246{
247 struct r5conf *conf = sh->raid_conf;
248 struct r5worker_group *group;
bfc90cb0 249 int thread_cnt;
851c30c9
SL
250 int i, cpu = sh->cpu;
251
252 if (!cpu_online(cpu)) {
253 cpu = cpumask_any(cpu_online_mask);
254 sh->cpu = cpu;
255 }
256
257 if (list_empty(&sh->lru)) {
258 struct r5worker_group *group;
259 group = conf->worker_groups + cpu_to_group(cpu);
260 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
261 group->stripes_cnt++;
262 sh->group = group;
851c30c9
SL
263 }
264
265 if (conf->worker_cnt_per_group == 0) {
266 md_wakeup_thread(conf->mddev->thread);
267 return;
268 }
269
270 group = conf->worker_groups + cpu_to_group(sh->cpu);
271
bfc90cb0
SL
272 group->workers[0].working = true;
273 /* at least one worker should run to avoid race */
274 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275
276 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277 /* wakeup more workers */
278 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279 if (group->workers[i].working == false) {
280 group->workers[i].working = true;
281 queue_work_on(sh->cpu, raid5_wq,
282 &group->workers[i].work);
283 thread_cnt--;
284 }
285 }
851c30c9
SL
286}
287
566c09c5
SL
288static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289 struct list_head *temp_inactive_list)
1da177e4 290{
4eb788df
SL
291 BUG_ON(!list_empty(&sh->lru));
292 BUG_ON(atomic_read(&conf->active_stripes)==0);
293 if (test_bit(STRIPE_HANDLE, &sh->state)) {
294 if (test_bit(STRIPE_DELAYED, &sh->state) &&
67f45548 295 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
4eb788df 296 list_add_tail(&sh->lru, &conf->delayed_list);
67f45548
N
297 if (atomic_read(&conf->preread_active_stripes)
298 < IO_THRESHOLD)
299 md_wakeup_thread(conf->mddev->thread);
300 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
301 sh->bm_seq - conf->seq_write > 0)
302 list_add_tail(&sh->lru, &conf->bitmap_list);
303 else {
304 clear_bit(STRIPE_DELAYED, &sh->state);
305 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9
SL
306 if (conf->worker_cnt_per_group == 0) {
307 list_add_tail(&sh->lru, &conf->handle_list);
308 } else {
309 raid5_wakeup_stripe_thread(sh);
310 return;
311 }
4eb788df
SL
312 }
313 md_wakeup_thread(conf->mddev->thread);
314 } else {
315 BUG_ON(stripe_operations_active(sh));
316 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
317 if (atomic_dec_return(&conf->preread_active_stripes)
318 < IO_THRESHOLD)
319 md_wakeup_thread(conf->mddev->thread);
320 atomic_dec(&conf->active_stripes);
566c09c5
SL
321 if (!test_bit(STRIPE_EXPANDING, &sh->state))
322 list_add_tail(&sh->lru, temp_inactive_list);
1da177e4
LT
323 }
324}
d0dabf7e 325
566c09c5
SL
326static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
327 struct list_head *temp_inactive_list)
4eb788df
SL
328{
329 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
330 do_release_stripe(conf, sh, temp_inactive_list);
331}
332
333/*
334 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
335 *
336 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
337 * given time. Adding stripes only takes device lock, while deleting stripes
338 * only takes hash lock.
339 */
340static void release_inactive_stripe_list(struct r5conf *conf,
341 struct list_head *temp_inactive_list,
342 int hash)
343{
344 int size;
345 bool do_wakeup = false;
346 unsigned long flags;
347
348 if (hash == NR_STRIPE_HASH_LOCKS) {
349 size = NR_STRIPE_HASH_LOCKS;
350 hash = NR_STRIPE_HASH_LOCKS - 1;
351 } else
352 size = 1;
353 while (size) {
354 struct list_head *list = &temp_inactive_list[size - 1];
355
356 /*
357 * We don't hold any lock here yet, get_active_stripe() might
358 * remove stripes from the list
359 */
360 if (!list_empty_careful(list)) {
361 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
362 if (list_empty(conf->inactive_list + hash) &&
363 !list_empty(list))
364 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5
SL
365 list_splice_tail_init(list, conf->inactive_list + hash);
366 do_wakeup = true;
367 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
368 }
369 size--;
370 hash--;
371 }
372
373 if (do_wakeup) {
374 wake_up(&conf->wait_for_stripe);
375 if (conf->retry_read_aligned)
376 md_wakeup_thread(conf->mddev->thread);
377 }
4eb788df
SL
378}
379
773ca82f 380/* should hold conf->device_lock already */
566c09c5
SL
381static int release_stripe_list(struct r5conf *conf,
382 struct list_head *temp_inactive_list)
773ca82f
SL
383{
384 struct stripe_head *sh;
385 int count = 0;
386 struct llist_node *head;
387
388 head = llist_del_all(&conf->released_stripes);
d265d9dc 389 head = llist_reverse_order(head);
773ca82f 390 while (head) {
566c09c5
SL
391 int hash;
392
773ca82f
SL
393 sh = llist_entry(head, struct stripe_head, release_list);
394 head = llist_next(head);
395 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396 smp_mb();
397 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398 /*
399 * Don't worry the bit is set here, because if the bit is set
400 * again, the count is always > 1. This is true for
401 * STRIPE_ON_UNPLUG_LIST bit too.
402 */
566c09c5
SL
403 hash = sh->hash_lock_index;
404 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
405 count++;
406 }
407
408 return count;
409}
410
1da177e4
LT
411static void release_stripe(struct stripe_head *sh)
412{
d1688a6d 413 struct r5conf *conf = sh->raid_conf;
1da177e4 414 unsigned long flags;
566c09c5
SL
415 struct list_head list;
416 int hash;
773ca82f 417 bool wakeup;
16a53ecc 418
cf170f3f
ES
419 /* Avoid release_list until the last reference.
420 */
421 if (atomic_add_unless(&sh->count, -1, 1))
422 return;
423
ad4068de 424 if (unlikely(!conf->mddev->thread) ||
425 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
426 goto slow_path;
427 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428 if (wakeup)
429 md_wakeup_thread(conf->mddev->thread);
430 return;
431slow_path:
4eb788df 432 local_irq_save(flags);
773ca82f 433 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 434 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
435 INIT_LIST_HEAD(&list);
436 hash = sh->hash_lock_index;
437 do_release_stripe(conf, sh, &list);
4eb788df 438 spin_unlock(&conf->device_lock);
566c09c5 439 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
440 }
441 local_irq_restore(flags);
1da177e4
LT
442}
443
fccddba0 444static inline void remove_hash(struct stripe_head *sh)
1da177e4 445{
45b4233c
DW
446 pr_debug("remove_hash(), stripe %llu\n",
447 (unsigned long long)sh->sector);
1da177e4 448
fccddba0 449 hlist_del_init(&sh->hash);
1da177e4
LT
450}
451
d1688a6d 452static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 453{
fccddba0 454 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 455
45b4233c
DW
456 pr_debug("insert_hash(), stripe %llu\n",
457 (unsigned long long)sh->sector);
1da177e4 458
fccddba0 459 hlist_add_head(&sh->hash, hp);
1da177e4
LT
460}
461
462
463/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 464static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
465{
466 struct stripe_head *sh = NULL;
467 struct list_head *first;
468
566c09c5 469 if (list_empty(conf->inactive_list + hash))
1da177e4 470 goto out;
566c09c5 471 first = (conf->inactive_list + hash)->next;
1da177e4
LT
472 sh = list_entry(first, struct stripe_head, lru);
473 list_del_init(first);
474 remove_hash(sh);
475 atomic_inc(&conf->active_stripes);
566c09c5 476 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
477 if (list_empty(conf->inactive_list + hash))
478 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
479out:
480 return sh;
481}
482
e4e11e38 483static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
484{
485 struct page *p;
486 int i;
e4e11e38 487 int num = sh->raid_conf->pool_size;
1da177e4 488
e4e11e38 489 for (i = 0; i < num ; i++) {
1da177e4
LT
490 p = sh->dev[i].page;
491 if (!p)
492 continue;
493 sh->dev[i].page = NULL;
2d1f3b5d 494 put_page(p);
1da177e4
LT
495 }
496}
497
e4e11e38 498static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
499{
500 int i;
e4e11e38 501 int num = sh->raid_conf->pool_size;
1da177e4 502
e4e11e38 503 for (i = 0; i < num; i++) {
1da177e4
LT
504 struct page *page;
505
506 if (!(page = alloc_page(GFP_KERNEL))) {
507 return 1;
508 }
509 sh->dev[i].page = page;
510 }
511 return 0;
512}
513
784052ec 514static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 515static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 516 struct stripe_head *sh);
1da177e4 517
b5663ba4 518static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 519{
d1688a6d 520 struct r5conf *conf = sh->raid_conf;
566c09c5 521 int i, seq;
1da177e4 522
78bafebd
ES
523 BUG_ON(atomic_read(&sh->count) != 0);
524 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 525 BUG_ON(stripe_operations_active(sh));
d84e0f10 526
45b4233c 527 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
528 (unsigned long long)sh->sector);
529
530 remove_hash(sh);
566c09c5
SL
531retry:
532 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 533 sh->generation = conf->generation - previous;
b5663ba4 534 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 535 sh->sector = sector;
911d4ee8 536 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
537 sh->state = 0;
538
7ecaa1e6
N
539
540 for (i = sh->disks; i--; ) {
1da177e4
LT
541 struct r5dev *dev = &sh->dev[i];
542
d84e0f10 543 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 544 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 545 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 546 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 547 dev->read, dev->towrite, dev->written,
1da177e4 548 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 549 WARN_ON(1);
1da177e4
LT
550 }
551 dev->flags = 0;
784052ec 552 raid5_build_block(sh, i, previous);
1da177e4 553 }
566c09c5
SL
554 if (read_seqcount_retry(&conf->gen_lock, seq))
555 goto retry;
1da177e4 556 insert_hash(conf, sh);
851c30c9 557 sh->cpu = smp_processor_id();
1da177e4
LT
558}
559
d1688a6d 560static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 561 short generation)
1da177e4
LT
562{
563 struct stripe_head *sh;
564
45b4233c 565 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 566 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 567 if (sh->sector == sector && sh->generation == generation)
1da177e4 568 return sh;
45b4233c 569 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
570 return NULL;
571}
572
674806d6
N
573/*
574 * Need to check if array has failed when deciding whether to:
575 * - start an array
576 * - remove non-faulty devices
577 * - add a spare
578 * - allow a reshape
579 * This determination is simple when no reshape is happening.
580 * However if there is a reshape, we need to carefully check
581 * both the before and after sections.
582 * This is because some failed devices may only affect one
583 * of the two sections, and some non-in_sync devices may
584 * be insync in the section most affected by failed devices.
585 */
908f4fbd 586static int calc_degraded(struct r5conf *conf)
674806d6 587{
908f4fbd 588 int degraded, degraded2;
674806d6 589 int i;
674806d6
N
590
591 rcu_read_lock();
592 degraded = 0;
593 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 594 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
595 if (rdev && test_bit(Faulty, &rdev->flags))
596 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
597 if (!rdev || test_bit(Faulty, &rdev->flags))
598 degraded++;
599 else if (test_bit(In_sync, &rdev->flags))
600 ;
601 else
602 /* not in-sync or faulty.
603 * If the reshape increases the number of devices,
604 * this is being recovered by the reshape, so
605 * this 'previous' section is not in_sync.
606 * If the number of devices is being reduced however,
607 * the device can only be part of the array if
608 * we are reverting a reshape, so this section will
609 * be in-sync.
610 */
611 if (conf->raid_disks >= conf->previous_raid_disks)
612 degraded++;
613 }
614 rcu_read_unlock();
908f4fbd
N
615 if (conf->raid_disks == conf->previous_raid_disks)
616 return degraded;
674806d6 617 rcu_read_lock();
908f4fbd 618 degraded2 = 0;
674806d6 619 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 620 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
621 if (rdev && test_bit(Faulty, &rdev->flags))
622 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 623 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 624 degraded2++;
674806d6
N
625 else if (test_bit(In_sync, &rdev->flags))
626 ;
627 else
628 /* not in-sync or faulty.
629 * If reshape increases the number of devices, this
630 * section has already been recovered, else it
631 * almost certainly hasn't.
632 */
633 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 634 degraded2++;
674806d6
N
635 }
636 rcu_read_unlock();
908f4fbd
N
637 if (degraded2 > degraded)
638 return degraded2;
639 return degraded;
640}
641
642static int has_failed(struct r5conf *conf)
643{
644 int degraded;
645
646 if (conf->mddev->reshape_position == MaxSector)
647 return conf->mddev->degraded > conf->max_degraded;
648
649 degraded = calc_degraded(conf);
674806d6
N
650 if (degraded > conf->max_degraded)
651 return 1;
652 return 0;
653}
654
b5663ba4 655static struct stripe_head *
d1688a6d 656get_active_stripe(struct r5conf *conf, sector_t sector,
a8c906ca 657 int previous, int noblock, int noquiesce)
1da177e4
LT
658{
659 struct stripe_head *sh;
566c09c5 660 int hash = stripe_hash_locks_hash(sector);
1da177e4 661
45b4233c 662 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 663
566c09c5 664 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
665
666 do {
72626685 667 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 668 conf->quiesce == 0 || noquiesce,
566c09c5 669 *(conf->hash_locks + hash));
86b42c71 670 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
671 if (!sh) {
672 if (!conf->inactive_blocked)
566c09c5 673 sh = get_free_stripe(conf, hash);
1da177e4
LT
674 if (noblock && sh == NULL)
675 break;
676 if (!sh) {
677 conf->inactive_blocked = 1;
566c09c5
SL
678 wait_event_lock_irq(
679 conf->wait_for_stripe,
680 !list_empty(conf->inactive_list + hash) &&
681 (atomic_read(&conf->active_stripes)
682 < (conf->max_nr_stripes * 3 / 4)
683 || !conf->inactive_blocked),
684 *(conf->hash_locks + hash));
1da177e4 685 conf->inactive_blocked = 0;
7da9d450 686 } else {
b5663ba4 687 init_stripe(sh, sector, previous);
7da9d450
N
688 atomic_inc(&sh->count);
689 }
e240c183 690 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 691 spin_lock(&conf->device_lock);
e240c183 692 if (!atomic_read(&sh->count)) {
1da177e4
LT
693 if (!test_bit(STRIPE_HANDLE, &sh->state))
694 atomic_inc(&conf->active_stripes);
5af9bef7
N
695 BUG_ON(list_empty(&sh->lru) &&
696 !test_bit(STRIPE_EXPANDING, &sh->state));
16a53ecc 697 list_del_init(&sh->lru);
bfc90cb0
SL
698 if (sh->group) {
699 sh->group->stripes_cnt--;
700 sh->group = NULL;
701 }
1da177e4 702 }
7da9d450 703 atomic_inc(&sh->count);
6d183de4 704 spin_unlock(&conf->device_lock);
1da177e4
LT
705 }
706 } while (sh == NULL);
707
566c09c5 708 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
709 return sh;
710}
711
05616be5
N
712/* Determine if 'data_offset' or 'new_data_offset' should be used
713 * in this stripe_head.
714 */
715static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
716{
717 sector_t progress = conf->reshape_progress;
718 /* Need a memory barrier to make sure we see the value
719 * of conf->generation, or ->data_offset that was set before
720 * reshape_progress was updated.
721 */
722 smp_rmb();
723 if (progress == MaxSector)
724 return 0;
725 if (sh->generation == conf->generation - 1)
726 return 0;
727 /* We are in a reshape, and this is a new-generation stripe,
728 * so use new_data_offset.
729 */
730 return 1;
731}
732
6712ecf8
N
733static void
734raid5_end_read_request(struct bio *bi, int error);
735static void
736raid5_end_write_request(struct bio *bi, int error);
91c00924 737
c4e5ac0a 738static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 739{
d1688a6d 740 struct r5conf *conf = sh->raid_conf;
91c00924
DW
741 int i, disks = sh->disks;
742
743 might_sleep();
744
745 for (i = disks; i--; ) {
746 int rw;
9a3e1101 747 int replace_only = 0;
977df362
N
748 struct bio *bi, *rbi;
749 struct md_rdev *rdev, *rrdev = NULL;
e9c7469b
TH
750 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
751 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
752 rw = WRITE_FUA;
753 else
754 rw = WRITE;
9e444768 755 if (test_bit(R5_Discard, &sh->dev[i].flags))
620125f2 756 rw |= REQ_DISCARD;
e9c7469b 757 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 758 rw = READ;
9a3e1101
N
759 else if (test_and_clear_bit(R5_WantReplace,
760 &sh->dev[i].flags)) {
761 rw = WRITE;
762 replace_only = 1;
763 } else
91c00924 764 continue;
bc0934f0
SL
765 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
766 rw |= REQ_SYNC;
91c00924
DW
767
768 bi = &sh->dev[i].req;
977df362 769 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 770
91c00924 771 rcu_read_lock();
9a3e1101 772 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
773 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
774 rdev = rcu_dereference(conf->disks[i].rdev);
775 if (!rdev) {
776 rdev = rrdev;
777 rrdev = NULL;
778 }
9a3e1101
N
779 if (rw & WRITE) {
780 if (replace_only)
781 rdev = NULL;
dd054fce
N
782 if (rdev == rrdev)
783 /* We raced and saw duplicates */
784 rrdev = NULL;
9a3e1101 785 } else {
dd054fce 786 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
9a3e1101
N
787 rdev = rrdev;
788 rrdev = NULL;
789 }
977df362 790
91c00924
DW
791 if (rdev && test_bit(Faulty, &rdev->flags))
792 rdev = NULL;
793 if (rdev)
794 atomic_inc(&rdev->nr_pending);
977df362
N
795 if (rrdev && test_bit(Faulty, &rrdev->flags))
796 rrdev = NULL;
797 if (rrdev)
798 atomic_inc(&rrdev->nr_pending);
91c00924
DW
799 rcu_read_unlock();
800
73e92e51 801 /* We have already checked bad blocks for reads. Now
977df362
N
802 * need to check for writes. We never accept write errors
803 * on the replacement, so we don't to check rrdev.
73e92e51
N
804 */
805 while ((rw & WRITE) && rdev &&
806 test_bit(WriteErrorSeen, &rdev->flags)) {
807 sector_t first_bad;
808 int bad_sectors;
809 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
810 &first_bad, &bad_sectors);
811 if (!bad)
812 break;
813
814 if (bad < 0) {
815 set_bit(BlockedBadBlocks, &rdev->flags);
816 if (!conf->mddev->external &&
817 conf->mddev->flags) {
818 /* It is very unlikely, but we might
819 * still need to write out the
820 * bad block log - better give it
821 * a chance*/
822 md_check_recovery(conf->mddev);
823 }
1850753d 824 /*
825 * Because md_wait_for_blocked_rdev
826 * will dec nr_pending, we must
827 * increment it first.
828 */
829 atomic_inc(&rdev->nr_pending);
73e92e51
N
830 md_wait_for_blocked_rdev(rdev, conf->mddev);
831 } else {
832 /* Acknowledged bad block - skip the write */
833 rdev_dec_pending(rdev, conf->mddev);
834 rdev = NULL;
835 }
836 }
837
91c00924 838 if (rdev) {
9a3e1101
N
839 if (s->syncing || s->expanding || s->expanded
840 || s->replacing)
91c00924
DW
841 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
842
2b7497f0
DW
843 set_bit(STRIPE_IO_STARTED, &sh->state);
844
2f6db2a7 845 bio_reset(bi);
91c00924 846 bi->bi_bdev = rdev->bdev;
2f6db2a7
KO
847 bi->bi_rw = rw;
848 bi->bi_end_io = (rw & WRITE)
849 ? raid5_end_write_request
850 : raid5_end_read_request;
851 bi->bi_private = sh;
852
91c00924 853 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 854 __func__, (unsigned long long)sh->sector,
91c00924
DW
855 bi->bi_rw, i);
856 atomic_inc(&sh->count);
05616be5 857 if (use_new_offset(conf, sh))
4f024f37 858 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
859 + rdev->new_data_offset);
860 else
4f024f37 861 bi->bi_iter.bi_sector = (sh->sector
05616be5 862 + rdev->data_offset);
3f9e7c14 863 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
e59aa23f 864 bi->bi_rw |= REQ_NOMERGE;
3f9e7c14 865
4997b72e 866 bi->bi_vcnt = 1;
91c00924
DW
867 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
868 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 869 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
870 /*
871 * If this is discard request, set bi_vcnt 0. We don't
872 * want to confuse SCSI because SCSI will replace payload
873 */
874 if (rw & REQ_DISCARD)
875 bi->bi_vcnt = 0;
977df362
N
876 if (rrdev)
877 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
878
879 if (conf->mddev->gendisk)
880 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
881 bi, disk_devt(conf->mddev->gendisk),
882 sh->dev[i].sector);
91c00924 883 generic_make_request(bi);
977df362
N
884 }
885 if (rrdev) {
9a3e1101
N
886 if (s->syncing || s->expanding || s->expanded
887 || s->replacing)
977df362
N
888 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
889
890 set_bit(STRIPE_IO_STARTED, &sh->state);
891
2f6db2a7 892 bio_reset(rbi);
977df362 893 rbi->bi_bdev = rrdev->bdev;
2f6db2a7
KO
894 rbi->bi_rw = rw;
895 BUG_ON(!(rw & WRITE));
896 rbi->bi_end_io = raid5_end_write_request;
897 rbi->bi_private = sh;
898
977df362
N
899 pr_debug("%s: for %llu schedule op %ld on "
900 "replacement disc %d\n",
901 __func__, (unsigned long long)sh->sector,
902 rbi->bi_rw, i);
903 atomic_inc(&sh->count);
05616be5 904 if (use_new_offset(conf, sh))
4f024f37 905 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
906 + rrdev->new_data_offset);
907 else
4f024f37 908 rbi->bi_iter.bi_sector = (sh->sector
05616be5 909 + rrdev->data_offset);
4997b72e 910 rbi->bi_vcnt = 1;
977df362
N
911 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
912 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 913 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
914 /*
915 * If this is discard request, set bi_vcnt 0. We don't
916 * want to confuse SCSI because SCSI will replace payload
917 */
918 if (rw & REQ_DISCARD)
919 rbi->bi_vcnt = 0;
e3620a3a
JB
920 if (conf->mddev->gendisk)
921 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
922 rbi, disk_devt(conf->mddev->gendisk),
923 sh->dev[i].sector);
977df362
N
924 generic_make_request(rbi);
925 }
926 if (!rdev && !rrdev) {
b062962e 927 if (rw & WRITE)
91c00924
DW
928 set_bit(STRIPE_DEGRADED, &sh->state);
929 pr_debug("skip op %ld on disc %d for sector %llu\n",
930 bi->bi_rw, i, (unsigned long long)sh->sector);
931 clear_bit(R5_LOCKED, &sh->dev[i].flags);
932 set_bit(STRIPE_HANDLE, &sh->state);
933 }
934 }
935}
936
937static struct dma_async_tx_descriptor *
938async_copy_data(int frombio, struct bio *bio, struct page *page,
939 sector_t sector, struct dma_async_tx_descriptor *tx)
940{
7988613b
KO
941 struct bio_vec bvl;
942 struct bvec_iter iter;
91c00924 943 struct page *bio_page;
91c00924 944 int page_offset;
a08abd8c 945 struct async_submit_ctl submit;
0403e382 946 enum async_tx_flags flags = 0;
91c00924 947
4f024f37
KO
948 if (bio->bi_iter.bi_sector >= sector)
949 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 950 else
4f024f37 951 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 952
0403e382
DW
953 if (frombio)
954 flags |= ASYNC_TX_FENCE;
955 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
956
7988613b
KO
957 bio_for_each_segment(bvl, bio, iter) {
958 int len = bvl.bv_len;
91c00924
DW
959 int clen;
960 int b_offset = 0;
961
962 if (page_offset < 0) {
963 b_offset = -page_offset;
964 page_offset += b_offset;
965 len -= b_offset;
966 }
967
968 if (len > 0 && page_offset + len > STRIPE_SIZE)
969 clen = STRIPE_SIZE - page_offset;
970 else
971 clen = len;
972
973 if (clen > 0) {
7988613b
KO
974 b_offset += bvl.bv_offset;
975 bio_page = bvl.bv_page;
91c00924
DW
976 if (frombio)
977 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 978 b_offset, clen, &submit);
91c00924
DW
979 else
980 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 981 page_offset, clen, &submit);
91c00924 982 }
a08abd8c
DW
983 /* chain the operations */
984 submit.depend_tx = tx;
985
91c00924
DW
986 if (clen < len) /* hit end of page */
987 break;
988 page_offset += len;
989 }
990
991 return tx;
992}
993
994static void ops_complete_biofill(void *stripe_head_ref)
995{
996 struct stripe_head *sh = stripe_head_ref;
997 struct bio *return_bi = NULL;
e4d84909 998 int i;
91c00924 999
e46b272b 1000 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1001 (unsigned long long)sh->sector);
1002
1003 /* clear completed biofills */
1004 for (i = sh->disks; i--; ) {
1005 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1006
1007 /* acknowledge completion of a biofill operation */
e4d84909
DW
1008 /* and check if we need to reply to a read request,
1009 * new R5_Wantfill requests are held off until
83de75cc 1010 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1011 */
1012 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1013 struct bio *rbi, *rbi2;
91c00924 1014
91c00924
DW
1015 BUG_ON(!dev->read);
1016 rbi = dev->read;
1017 dev->read = NULL;
4f024f37 1018 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1019 dev->sector + STRIPE_SECTORS) {
1020 rbi2 = r5_next_bio(rbi, dev->sector);
e7836bd6 1021 if (!raid5_dec_bi_active_stripes(rbi)) {
91c00924
DW
1022 rbi->bi_next = return_bi;
1023 return_bi = rbi;
1024 }
91c00924
DW
1025 rbi = rbi2;
1026 }
1027 }
1028 }
83de75cc 1029 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
1030
1031 return_io(return_bi);
1032
e4d84909 1033 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
1034 release_stripe(sh);
1035}
1036
1037static void ops_run_biofill(struct stripe_head *sh)
1038{
1039 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1040 struct async_submit_ctl submit;
91c00924
DW
1041 int i;
1042
e46b272b 1043 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1044 (unsigned long long)sh->sector);
1045
1046 for (i = sh->disks; i--; ) {
1047 struct r5dev *dev = &sh->dev[i];
1048 if (test_bit(R5_Wantfill, &dev->flags)) {
1049 struct bio *rbi;
b17459c0 1050 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1051 dev->read = rbi = dev->toread;
1052 dev->toread = NULL;
b17459c0 1053 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1054 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1055 dev->sector + STRIPE_SECTORS) {
1056 tx = async_copy_data(0, rbi, dev->page,
1057 dev->sector, tx);
1058 rbi = r5_next_bio(rbi, dev->sector);
1059 }
1060 }
1061 }
1062
1063 atomic_inc(&sh->count);
a08abd8c
DW
1064 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1065 async_trigger_callback(&submit);
91c00924
DW
1066}
1067
4e7d2c0a 1068static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1069{
4e7d2c0a 1070 struct r5dev *tgt;
91c00924 1071
4e7d2c0a
DW
1072 if (target < 0)
1073 return;
91c00924 1074
4e7d2c0a 1075 tgt = &sh->dev[target];
91c00924
DW
1076 set_bit(R5_UPTODATE, &tgt->flags);
1077 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1078 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1079}
1080
ac6b53b6 1081static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1082{
1083 struct stripe_head *sh = stripe_head_ref;
91c00924 1084
e46b272b 1085 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1086 (unsigned long long)sh->sector);
1087
ac6b53b6 1088 /* mark the computed target(s) as uptodate */
4e7d2c0a 1089 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1090 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1091
ecc65c9b
DW
1092 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1093 if (sh->check_state == check_state_compute_run)
1094 sh->check_state = check_state_compute_result;
91c00924
DW
1095 set_bit(STRIPE_HANDLE, &sh->state);
1096 release_stripe(sh);
1097}
1098
d6f38f31
DW
1099/* return a pointer to the address conversion region of the scribble buffer */
1100static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1101 struct raid5_percpu *percpu)
1102{
1103 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1104}
1105
1106static struct dma_async_tx_descriptor *
1107ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1108{
91c00924 1109 int disks = sh->disks;
d6f38f31 1110 struct page **xor_srcs = percpu->scribble;
91c00924
DW
1111 int target = sh->ops.target;
1112 struct r5dev *tgt = &sh->dev[target];
1113 struct page *xor_dest = tgt->page;
1114 int count = 0;
1115 struct dma_async_tx_descriptor *tx;
a08abd8c 1116 struct async_submit_ctl submit;
91c00924
DW
1117 int i;
1118
1119 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1120 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1121 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1122
1123 for (i = disks; i--; )
1124 if (i != target)
1125 xor_srcs[count++] = sh->dev[i].page;
1126
1127 atomic_inc(&sh->count);
1128
0403e382 1129 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 1130 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 1131 if (unlikely(count == 1))
a08abd8c 1132 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1133 else
a08abd8c 1134 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1135
91c00924
DW
1136 return tx;
1137}
1138
ac6b53b6
DW
1139/* set_syndrome_sources - populate source buffers for gen_syndrome
1140 * @srcs - (struct page *) array of size sh->disks
1141 * @sh - stripe_head to parse
1142 *
1143 * Populates srcs in proper layout order for the stripe and returns the
1144 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1145 * destination buffer is recorded in srcs[count] and the Q destination
1146 * is recorded in srcs[count+1]].
1147 */
1148static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1149{
1150 int disks = sh->disks;
1151 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1152 int d0_idx = raid6_d0(sh);
1153 int count;
1154 int i;
1155
1156 for (i = 0; i < disks; i++)
5dd33c9a 1157 srcs[i] = NULL;
ac6b53b6
DW
1158
1159 count = 0;
1160 i = d0_idx;
1161 do {
1162 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1163
1164 srcs[slot] = sh->dev[i].page;
1165 i = raid6_next_disk(i, disks);
1166 } while (i != d0_idx);
ac6b53b6 1167
e4424fee 1168 return syndrome_disks;
ac6b53b6
DW
1169}
1170
1171static struct dma_async_tx_descriptor *
1172ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1173{
1174 int disks = sh->disks;
1175 struct page **blocks = percpu->scribble;
1176 int target;
1177 int qd_idx = sh->qd_idx;
1178 struct dma_async_tx_descriptor *tx;
1179 struct async_submit_ctl submit;
1180 struct r5dev *tgt;
1181 struct page *dest;
1182 int i;
1183 int count;
1184
1185 if (sh->ops.target < 0)
1186 target = sh->ops.target2;
1187 else if (sh->ops.target2 < 0)
1188 target = sh->ops.target;
91c00924 1189 else
ac6b53b6
DW
1190 /* we should only have one valid target */
1191 BUG();
1192 BUG_ON(target < 0);
1193 pr_debug("%s: stripe %llu block: %d\n",
1194 __func__, (unsigned long long)sh->sector, target);
1195
1196 tgt = &sh->dev[target];
1197 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1198 dest = tgt->page;
1199
1200 atomic_inc(&sh->count);
1201
1202 if (target == qd_idx) {
1203 count = set_syndrome_sources(blocks, sh);
1204 blocks[count] = NULL; /* regenerating p is not necessary */
1205 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1206 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1207 ops_complete_compute, sh,
ac6b53b6
DW
1208 to_addr_conv(sh, percpu));
1209 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1210 } else {
1211 /* Compute any data- or p-drive using XOR */
1212 count = 0;
1213 for (i = disks; i-- ; ) {
1214 if (i == target || i == qd_idx)
1215 continue;
1216 blocks[count++] = sh->dev[i].page;
1217 }
1218
0403e382
DW
1219 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1220 NULL, ops_complete_compute, sh,
ac6b53b6
DW
1221 to_addr_conv(sh, percpu));
1222 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1223 }
91c00924 1224
91c00924
DW
1225 return tx;
1226}
1227
ac6b53b6
DW
1228static struct dma_async_tx_descriptor *
1229ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1230{
1231 int i, count, disks = sh->disks;
1232 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1233 int d0_idx = raid6_d0(sh);
1234 int faila = -1, failb = -1;
1235 int target = sh->ops.target;
1236 int target2 = sh->ops.target2;
1237 struct r5dev *tgt = &sh->dev[target];
1238 struct r5dev *tgt2 = &sh->dev[target2];
1239 struct dma_async_tx_descriptor *tx;
1240 struct page **blocks = percpu->scribble;
1241 struct async_submit_ctl submit;
1242
1243 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1244 __func__, (unsigned long long)sh->sector, target, target2);
1245 BUG_ON(target < 0 || target2 < 0);
1246 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1247 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1248
6c910a78 1249 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1250 * slot number conversion for 'faila' and 'failb'
1251 */
1252 for (i = 0; i < disks ; i++)
5dd33c9a 1253 blocks[i] = NULL;
ac6b53b6
DW
1254 count = 0;
1255 i = d0_idx;
1256 do {
1257 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1258
1259 blocks[slot] = sh->dev[i].page;
1260
1261 if (i == target)
1262 faila = slot;
1263 if (i == target2)
1264 failb = slot;
1265 i = raid6_next_disk(i, disks);
1266 } while (i != d0_idx);
ac6b53b6
DW
1267
1268 BUG_ON(faila == failb);
1269 if (failb < faila)
1270 swap(faila, failb);
1271 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1272 __func__, (unsigned long long)sh->sector, faila, failb);
1273
1274 atomic_inc(&sh->count);
1275
1276 if (failb == syndrome_disks+1) {
1277 /* Q disk is one of the missing disks */
1278 if (faila == syndrome_disks) {
1279 /* Missing P+Q, just recompute */
0403e382
DW
1280 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1281 ops_complete_compute, sh,
1282 to_addr_conv(sh, percpu));
e4424fee 1283 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1284 STRIPE_SIZE, &submit);
1285 } else {
1286 struct page *dest;
1287 int data_target;
1288 int qd_idx = sh->qd_idx;
1289
1290 /* Missing D+Q: recompute D from P, then recompute Q */
1291 if (target == qd_idx)
1292 data_target = target2;
1293 else
1294 data_target = target;
1295
1296 count = 0;
1297 for (i = disks; i-- ; ) {
1298 if (i == data_target || i == qd_idx)
1299 continue;
1300 blocks[count++] = sh->dev[i].page;
1301 }
1302 dest = sh->dev[data_target].page;
0403e382
DW
1303 init_async_submit(&submit,
1304 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1305 NULL, NULL, NULL,
1306 to_addr_conv(sh, percpu));
ac6b53b6
DW
1307 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1308 &submit);
1309
1310 count = set_syndrome_sources(blocks, sh);
0403e382
DW
1311 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1312 ops_complete_compute, sh,
1313 to_addr_conv(sh, percpu));
ac6b53b6
DW
1314 return async_gen_syndrome(blocks, 0, count+2,
1315 STRIPE_SIZE, &submit);
1316 }
ac6b53b6 1317 } else {
6c910a78
DW
1318 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1319 ops_complete_compute, sh,
1320 to_addr_conv(sh, percpu));
1321 if (failb == syndrome_disks) {
1322 /* We're missing D+P. */
1323 return async_raid6_datap_recov(syndrome_disks+2,
1324 STRIPE_SIZE, faila,
1325 blocks, &submit);
1326 } else {
1327 /* We're missing D+D. */
1328 return async_raid6_2data_recov(syndrome_disks+2,
1329 STRIPE_SIZE, faila, failb,
1330 blocks, &submit);
1331 }
ac6b53b6
DW
1332 }
1333}
1334
1335
91c00924
DW
1336static void ops_complete_prexor(void *stripe_head_ref)
1337{
1338 struct stripe_head *sh = stripe_head_ref;
1339
e46b272b 1340 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1341 (unsigned long long)sh->sector);
91c00924
DW
1342}
1343
1344static struct dma_async_tx_descriptor *
d6f38f31
DW
1345ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1346 struct dma_async_tx_descriptor *tx)
91c00924 1347{
91c00924 1348 int disks = sh->disks;
d6f38f31 1349 struct page **xor_srcs = percpu->scribble;
91c00924 1350 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1351 struct async_submit_ctl submit;
91c00924
DW
1352
1353 /* existing parity data subtracted */
1354 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1355
e46b272b 1356 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1357 (unsigned long long)sh->sector);
1358
1359 for (i = disks; i--; ) {
1360 struct r5dev *dev = &sh->dev[i];
1361 /* Only process blocks that are known to be uptodate */
d8ee0728 1362 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1363 xor_srcs[count++] = dev->page;
1364 }
1365
0403e382 1366 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 1367 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 1368 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1369
1370 return tx;
1371}
1372
1373static struct dma_async_tx_descriptor *
d8ee0728 1374ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1375{
1376 int disks = sh->disks;
d8ee0728 1377 int i;
91c00924 1378
e46b272b 1379 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1380 (unsigned long long)sh->sector);
1381
1382 for (i = disks; i--; ) {
1383 struct r5dev *dev = &sh->dev[i];
1384 struct bio *chosen;
91c00924 1385
d8ee0728 1386 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
1387 struct bio *wbi;
1388
b17459c0 1389 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1390 chosen = dev->towrite;
1391 dev->towrite = NULL;
1392 BUG_ON(dev->written);
1393 wbi = dev->written = chosen;
b17459c0 1394 spin_unlock_irq(&sh->stripe_lock);
91c00924 1395
4f024f37 1396 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1397 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1398 if (wbi->bi_rw & REQ_FUA)
1399 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1400 if (wbi->bi_rw & REQ_SYNC)
1401 set_bit(R5_SyncIO, &dev->flags);
9e444768 1402 if (wbi->bi_rw & REQ_DISCARD)
620125f2 1403 set_bit(R5_Discard, &dev->flags);
9e444768 1404 else
620125f2
SL
1405 tx = async_copy_data(1, wbi, dev->page,
1406 dev->sector, tx);
91c00924
DW
1407 wbi = r5_next_bio(wbi, dev->sector);
1408 }
1409 }
1410 }
1411
1412 return tx;
1413}
1414
ac6b53b6 1415static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1416{
1417 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1418 int disks = sh->disks;
1419 int pd_idx = sh->pd_idx;
1420 int qd_idx = sh->qd_idx;
1421 int i;
9e444768 1422 bool fua = false, sync = false, discard = false;
91c00924 1423
e46b272b 1424 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1425 (unsigned long long)sh->sector);
1426
bc0934f0 1427 for (i = disks; i--; ) {
e9c7469b 1428 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1429 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1430 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1431 }
e9c7469b 1432
91c00924
DW
1433 for (i = disks; i--; ) {
1434 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1435
e9c7469b 1436 if (dev->written || i == pd_idx || i == qd_idx) {
9e444768
SL
1437 if (!discard)
1438 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1439 if (fua)
1440 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1441 if (sync)
1442 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1443 }
91c00924
DW
1444 }
1445
d8ee0728
DW
1446 if (sh->reconstruct_state == reconstruct_state_drain_run)
1447 sh->reconstruct_state = reconstruct_state_drain_result;
1448 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1449 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1450 else {
1451 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1452 sh->reconstruct_state = reconstruct_state_result;
1453 }
91c00924
DW
1454
1455 set_bit(STRIPE_HANDLE, &sh->state);
1456 release_stripe(sh);
1457}
1458
1459static void
ac6b53b6
DW
1460ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1461 struct dma_async_tx_descriptor *tx)
91c00924 1462{
91c00924 1463 int disks = sh->disks;
d6f38f31 1464 struct page **xor_srcs = percpu->scribble;
a08abd8c 1465 struct async_submit_ctl submit;
91c00924
DW
1466 int count = 0, pd_idx = sh->pd_idx, i;
1467 struct page *xor_dest;
d8ee0728 1468 int prexor = 0;
91c00924 1469 unsigned long flags;
91c00924 1470
e46b272b 1471 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1472 (unsigned long long)sh->sector);
1473
620125f2
SL
1474 for (i = 0; i < sh->disks; i++) {
1475 if (pd_idx == i)
1476 continue;
1477 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1478 break;
1479 }
1480 if (i >= sh->disks) {
1481 atomic_inc(&sh->count);
620125f2
SL
1482 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1483 ops_complete_reconstruct(sh);
1484 return;
1485 }
91c00924
DW
1486 /* check if prexor is active which means only process blocks
1487 * that are part of a read-modify-write (written)
1488 */
d8ee0728
DW
1489 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1490 prexor = 1;
91c00924
DW
1491 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1492 for (i = disks; i--; ) {
1493 struct r5dev *dev = &sh->dev[i];
1494 if (dev->written)
1495 xor_srcs[count++] = dev->page;
1496 }
1497 } else {
1498 xor_dest = sh->dev[pd_idx].page;
1499 for (i = disks; i--; ) {
1500 struct r5dev *dev = &sh->dev[i];
1501 if (i != pd_idx)
1502 xor_srcs[count++] = dev->page;
1503 }
1504 }
1505
91c00924
DW
1506 /* 1/ if we prexor'd then the dest is reused as a source
1507 * 2/ if we did not prexor then we are redoing the parity
1508 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1509 * for the synchronous xor case
1510 */
88ba2aa5 1511 flags = ASYNC_TX_ACK |
91c00924
DW
1512 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1513
1514 atomic_inc(&sh->count);
1515
ac6b53b6 1516 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1517 to_addr_conv(sh, percpu));
a08abd8c
DW
1518 if (unlikely(count == 1))
1519 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1520 else
1521 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1522}
1523
ac6b53b6
DW
1524static void
1525ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1526 struct dma_async_tx_descriptor *tx)
1527{
1528 struct async_submit_ctl submit;
1529 struct page **blocks = percpu->scribble;
620125f2 1530 int count, i;
ac6b53b6
DW
1531
1532 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1533
620125f2
SL
1534 for (i = 0; i < sh->disks; i++) {
1535 if (sh->pd_idx == i || sh->qd_idx == i)
1536 continue;
1537 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1538 break;
1539 }
1540 if (i >= sh->disks) {
1541 atomic_inc(&sh->count);
620125f2
SL
1542 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1543 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1544 ops_complete_reconstruct(sh);
1545 return;
1546 }
1547
ac6b53b6
DW
1548 count = set_syndrome_sources(blocks, sh);
1549
1550 atomic_inc(&sh->count);
1551
1552 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1553 sh, to_addr_conv(sh, percpu));
1554 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1555}
1556
1557static void ops_complete_check(void *stripe_head_ref)
1558{
1559 struct stripe_head *sh = stripe_head_ref;
91c00924 1560
e46b272b 1561 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1562 (unsigned long long)sh->sector);
1563
ecc65c9b 1564 sh->check_state = check_state_check_result;
91c00924
DW
1565 set_bit(STRIPE_HANDLE, &sh->state);
1566 release_stripe(sh);
1567}
1568
ac6b53b6 1569static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1570{
91c00924 1571 int disks = sh->disks;
ac6b53b6
DW
1572 int pd_idx = sh->pd_idx;
1573 int qd_idx = sh->qd_idx;
1574 struct page *xor_dest;
d6f38f31 1575 struct page **xor_srcs = percpu->scribble;
91c00924 1576 struct dma_async_tx_descriptor *tx;
a08abd8c 1577 struct async_submit_ctl submit;
ac6b53b6
DW
1578 int count;
1579 int i;
91c00924 1580
e46b272b 1581 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1582 (unsigned long long)sh->sector);
1583
ac6b53b6
DW
1584 count = 0;
1585 xor_dest = sh->dev[pd_idx].page;
1586 xor_srcs[count++] = xor_dest;
91c00924 1587 for (i = disks; i--; ) {
ac6b53b6
DW
1588 if (i == pd_idx || i == qd_idx)
1589 continue;
1590 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1591 }
1592
d6f38f31
DW
1593 init_async_submit(&submit, 0, NULL, NULL, NULL,
1594 to_addr_conv(sh, percpu));
099f53cb 1595 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1596 &sh->ops.zero_sum_result, &submit);
91c00924 1597
91c00924 1598 atomic_inc(&sh->count);
a08abd8c
DW
1599 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1600 tx = async_trigger_callback(&submit);
91c00924
DW
1601}
1602
ac6b53b6
DW
1603static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1604{
1605 struct page **srcs = percpu->scribble;
1606 struct async_submit_ctl submit;
1607 int count;
1608
1609 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1610 (unsigned long long)sh->sector, checkp);
1611
1612 count = set_syndrome_sources(srcs, sh);
1613 if (!checkp)
1614 srcs[count] = NULL;
91c00924 1615
91c00924 1616 atomic_inc(&sh->count);
ac6b53b6
DW
1617 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1618 sh, to_addr_conv(sh, percpu));
1619 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1620 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1621}
1622
51acbcec 1623static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1624{
1625 int overlap_clear = 0, i, disks = sh->disks;
1626 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1627 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1628 int level = conf->level;
d6f38f31
DW
1629 struct raid5_percpu *percpu;
1630 unsigned long cpu;
91c00924 1631
d6f38f31
DW
1632 cpu = get_cpu();
1633 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1634 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1635 ops_run_biofill(sh);
1636 overlap_clear++;
1637 }
1638
7b3a871e 1639 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1640 if (level < 6)
1641 tx = ops_run_compute5(sh, percpu);
1642 else {
1643 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1644 tx = ops_run_compute6_1(sh, percpu);
1645 else
1646 tx = ops_run_compute6_2(sh, percpu);
1647 }
1648 /* terminate the chain if reconstruct is not set to be run */
1649 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1650 async_tx_ack(tx);
1651 }
91c00924 1652
600aa109 1653 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1654 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1655
600aa109 1656 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1657 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1658 overlap_clear++;
1659 }
1660
ac6b53b6
DW
1661 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1662 if (level < 6)
1663 ops_run_reconstruct5(sh, percpu, tx);
1664 else
1665 ops_run_reconstruct6(sh, percpu, tx);
1666 }
91c00924 1667
ac6b53b6
DW
1668 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1669 if (sh->check_state == check_state_run)
1670 ops_run_check_p(sh, percpu);
1671 else if (sh->check_state == check_state_run_q)
1672 ops_run_check_pq(sh, percpu, 0);
1673 else if (sh->check_state == check_state_run_pq)
1674 ops_run_check_pq(sh, percpu, 1);
1675 else
1676 BUG();
1677 }
91c00924 1678
91c00924
DW
1679 if (overlap_clear)
1680 for (i = disks; i--; ) {
1681 struct r5dev *dev = &sh->dev[i];
1682 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1683 wake_up(&sh->raid_conf->wait_for_overlap);
1684 }
d6f38f31 1685 put_cpu();
91c00924
DW
1686}
1687
566c09c5 1688static int grow_one_stripe(struct r5conf *conf, int hash)
1da177e4
LT
1689{
1690 struct stripe_head *sh;
6ce32846 1691 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
3f294f4f
N
1692 if (!sh)
1693 return 0;
6ce32846 1694
3f294f4f 1695 sh->raid_conf = conf;
3f294f4f 1696
b17459c0
SL
1697 spin_lock_init(&sh->stripe_lock);
1698
e4e11e38
N
1699 if (grow_buffers(sh)) {
1700 shrink_buffers(sh);
3f294f4f
N
1701 kmem_cache_free(conf->slab_cache, sh);
1702 return 0;
1703 }
566c09c5 1704 sh->hash_lock_index = hash;
3f294f4f
N
1705 /* we just created an active stripe so... */
1706 atomic_set(&sh->count, 1);
1707 atomic_inc(&conf->active_stripes);
1708 INIT_LIST_HEAD(&sh->lru);
1709 release_stripe(sh);
1710 return 1;
1711}
1712
d1688a6d 1713static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 1714{
e18b890b 1715 struct kmem_cache *sc;
5e5e3e78 1716 int devs = max(conf->raid_disks, conf->previous_raid_disks);
566c09c5 1717 int hash;
1da177e4 1718
f4be6b43
N
1719 if (conf->mddev->gendisk)
1720 sprintf(conf->cache_name[0],
1721 "raid%d-%s", conf->level, mdname(conf->mddev));
1722 else
1723 sprintf(conf->cache_name[0],
1724 "raid%d-%p", conf->level, conf->mddev);
1725 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1726
ad01c9e3
N
1727 conf->active_name = 0;
1728 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1729 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1730 0, 0, NULL);
1da177e4
LT
1731 if (!sc)
1732 return 1;
1733 conf->slab_cache = sc;
ad01c9e3 1734 conf->pool_size = devs;
566c09c5
SL
1735 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1736 while (num--) {
1737 if (!grow_one_stripe(conf, hash))
1da177e4 1738 return 1;
566c09c5
SL
1739 conf->max_nr_stripes++;
1740 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1741 }
1da177e4
LT
1742 return 0;
1743}
29269553 1744
d6f38f31
DW
1745/**
1746 * scribble_len - return the required size of the scribble region
1747 * @num - total number of disks in the array
1748 *
1749 * The size must be enough to contain:
1750 * 1/ a struct page pointer for each device in the array +2
1751 * 2/ room to convert each entry in (1) to its corresponding dma
1752 * (dma_map_page()) or page (page_address()) address.
1753 *
1754 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1755 * calculate over all devices (not just the data blocks), using zeros in place
1756 * of the P and Q blocks.
1757 */
1758static size_t scribble_len(int num)
1759{
1760 size_t len;
1761
1762 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1763
1764 return len;
1765}
1766
d1688a6d 1767static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
1768{
1769 /* Make all the stripes able to hold 'newsize' devices.
1770 * New slots in each stripe get 'page' set to a new page.
1771 *
1772 * This happens in stages:
1773 * 1/ create a new kmem_cache and allocate the required number of
1774 * stripe_heads.
83f0d77a 1775 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
1776 * to the new stripe_heads. This will have the side effect of
1777 * freezing the array as once all stripe_heads have been collected,
1778 * no IO will be possible. Old stripe heads are freed once their
1779 * pages have been transferred over, and the old kmem_cache is
1780 * freed when all stripes are done.
1781 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1782 * we simple return a failre status - no need to clean anything up.
1783 * 4/ allocate new pages for the new slots in the new stripe_heads.
1784 * If this fails, we don't bother trying the shrink the
1785 * stripe_heads down again, we just leave them as they are.
1786 * As each stripe_head is processed the new one is released into
1787 * active service.
1788 *
1789 * Once step2 is started, we cannot afford to wait for a write,
1790 * so we use GFP_NOIO allocations.
1791 */
1792 struct stripe_head *osh, *nsh;
1793 LIST_HEAD(newstripes);
1794 struct disk_info *ndisks;
d6f38f31 1795 unsigned long cpu;
b5470dc5 1796 int err;
e18b890b 1797 struct kmem_cache *sc;
ad01c9e3 1798 int i;
566c09c5 1799 int hash, cnt;
ad01c9e3
N
1800
1801 if (newsize <= conf->pool_size)
1802 return 0; /* never bother to shrink */
1803
b5470dc5
DW
1804 err = md_allow_write(conf->mddev);
1805 if (err)
1806 return err;
2a2275d6 1807
ad01c9e3
N
1808 /* Step 1 */
1809 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1810 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1811 0, 0, NULL);
ad01c9e3
N
1812 if (!sc)
1813 return -ENOMEM;
1814
1815 for (i = conf->max_nr_stripes; i; i--) {
6ce32846 1816 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
ad01c9e3
N
1817 if (!nsh)
1818 break;
1819
ad01c9e3 1820 nsh->raid_conf = conf;
cb13ff69 1821 spin_lock_init(&nsh->stripe_lock);
ad01c9e3
N
1822
1823 list_add(&nsh->lru, &newstripes);
1824 }
1825 if (i) {
1826 /* didn't get enough, give up */
1827 while (!list_empty(&newstripes)) {
1828 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1829 list_del(&nsh->lru);
1830 kmem_cache_free(sc, nsh);
1831 }
1832 kmem_cache_destroy(sc);
1833 return -ENOMEM;
1834 }
1835 /* Step 2 - Must use GFP_NOIO now.
1836 * OK, we have enough stripes, start collecting inactive
1837 * stripes and copying them over
1838 */
566c09c5
SL
1839 hash = 0;
1840 cnt = 0;
ad01c9e3 1841 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5
SL
1842 lock_device_hash_lock(conf, hash);
1843 wait_event_cmd(conf->wait_for_stripe,
1844 !list_empty(conf->inactive_list + hash),
1845 unlock_device_hash_lock(conf, hash),
1846 lock_device_hash_lock(conf, hash));
1847 osh = get_free_stripe(conf, hash);
1848 unlock_device_hash_lock(conf, hash);
ad01c9e3
N
1849 atomic_set(&nsh->count, 1);
1850 for(i=0; i<conf->pool_size; i++)
1851 nsh->dev[i].page = osh->dev[i].page;
1852 for( ; i<newsize; i++)
1853 nsh->dev[i].page = NULL;
566c09c5 1854 nsh->hash_lock_index = hash;
ad01c9e3 1855 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
1856 cnt++;
1857 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1858 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1859 hash++;
1860 cnt = 0;
1861 }
ad01c9e3
N
1862 }
1863 kmem_cache_destroy(conf->slab_cache);
1864
1865 /* Step 3.
1866 * At this point, we are holding all the stripes so the array
1867 * is completely stalled, so now is a good time to resize
d6f38f31 1868 * conf->disks and the scribble region
ad01c9e3
N
1869 */
1870 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1871 if (ndisks) {
1872 for (i=0; i<conf->raid_disks; i++)
1873 ndisks[i] = conf->disks[i];
1874 kfree(conf->disks);
1875 conf->disks = ndisks;
1876 } else
1877 err = -ENOMEM;
1878
d6f38f31
DW
1879 get_online_cpus();
1880 conf->scribble_len = scribble_len(newsize);
1881 for_each_present_cpu(cpu) {
1882 struct raid5_percpu *percpu;
1883 void *scribble;
1884
1885 percpu = per_cpu_ptr(conf->percpu, cpu);
1886 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1887
1888 if (scribble) {
1889 kfree(percpu->scribble);
1890 percpu->scribble = scribble;
1891 } else {
1892 err = -ENOMEM;
1893 break;
1894 }
1895 }
1896 put_online_cpus();
1897
ad01c9e3
N
1898 /* Step 4, return new stripes to service */
1899 while(!list_empty(&newstripes)) {
1900 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1901 list_del_init(&nsh->lru);
d6f38f31 1902
ad01c9e3
N
1903 for (i=conf->raid_disks; i < newsize; i++)
1904 if (nsh->dev[i].page == NULL) {
1905 struct page *p = alloc_page(GFP_NOIO);
1906 nsh->dev[i].page = p;
1907 if (!p)
1908 err = -ENOMEM;
1909 }
1910 release_stripe(nsh);
1911 }
1912 /* critical section pass, GFP_NOIO no longer needed */
1913
1914 conf->slab_cache = sc;
1915 conf->active_name = 1-conf->active_name;
1916 conf->pool_size = newsize;
1917 return err;
1918}
1da177e4 1919
566c09c5 1920static int drop_one_stripe(struct r5conf *conf, int hash)
1da177e4
LT
1921{
1922 struct stripe_head *sh;
1923
566c09c5
SL
1924 spin_lock_irq(conf->hash_locks + hash);
1925 sh = get_free_stripe(conf, hash);
1926 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
1927 if (!sh)
1928 return 0;
78bafebd 1929 BUG_ON(atomic_read(&sh->count));
e4e11e38 1930 shrink_buffers(sh);
3f294f4f
N
1931 kmem_cache_free(conf->slab_cache, sh);
1932 atomic_dec(&conf->active_stripes);
1933 return 1;
1934}
1935
d1688a6d 1936static void shrink_stripes(struct r5conf *conf)
3f294f4f 1937{
566c09c5
SL
1938 int hash;
1939 for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1940 while (drop_one_stripe(conf, hash))
1941 ;
3f294f4f 1942
29fc7e3e
N
1943 if (conf->slab_cache)
1944 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1945 conf->slab_cache = NULL;
1946}
1947
6712ecf8 1948static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1949{
99c0fb5f 1950 struct stripe_head *sh = bi->bi_private;
d1688a6d 1951 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1952 int disks = sh->disks, i;
1da177e4 1953 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432 1954 char b[BDEVNAME_SIZE];
dd054fce 1955 struct md_rdev *rdev = NULL;
05616be5 1956 sector_t s;
1da177e4
LT
1957
1958 for (i=0 ; i<disks; i++)
1959 if (bi == &sh->dev[i].req)
1960 break;
1961
45b4233c
DW
1962 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1963 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1964 uptodate);
1965 if (i == disks) {
1966 BUG();
6712ecf8 1967 return;
1da177e4 1968 }
14a75d3e 1969 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
1970 /* If replacement finished while this request was outstanding,
1971 * 'replacement' might be NULL already.
1972 * In that case it moved down to 'rdev'.
1973 * rdev is not removed until all requests are finished.
1974 */
14a75d3e 1975 rdev = conf->disks[i].replacement;
dd054fce 1976 if (!rdev)
14a75d3e 1977 rdev = conf->disks[i].rdev;
1da177e4 1978
05616be5
N
1979 if (use_new_offset(conf, sh))
1980 s = sh->sector + rdev->new_data_offset;
1981 else
1982 s = sh->sector + rdev->data_offset;
1da177e4 1983 if (uptodate) {
1da177e4 1984 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1985 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
1986 /* Note that this cannot happen on a
1987 * replacement device. We just fail those on
1988 * any error
1989 */
8bda470e
CD
1990 printk_ratelimited(
1991 KERN_INFO
1992 "md/raid:%s: read error corrected"
1993 " (%lu sectors at %llu on %s)\n",
1994 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 1995 (unsigned long long)s,
8bda470e 1996 bdevname(rdev->bdev, b));
ddd5115f 1997 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
1998 clear_bit(R5_ReadError, &sh->dev[i].flags);
1999 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2000 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2001 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2002
14a75d3e
N
2003 if (atomic_read(&rdev->read_errors))
2004 atomic_set(&rdev->read_errors, 0);
1da177e4 2005 } else {
14a75d3e 2006 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2007 int retry = 0;
2e8ac303 2008 int set_bad = 0;
d6950432 2009
1da177e4 2010 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2011 atomic_inc(&rdev->read_errors);
14a75d3e
N
2012 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2013 printk_ratelimited(
2014 KERN_WARNING
2015 "md/raid:%s: read error on replacement device "
2016 "(sector %llu on %s).\n",
2017 mdname(conf->mddev),
05616be5 2018 (unsigned long long)s,
14a75d3e 2019 bdn);
2e8ac303 2020 else if (conf->mddev->degraded >= conf->max_degraded) {
2021 set_bad = 1;
8bda470e
CD
2022 printk_ratelimited(
2023 KERN_WARNING
2024 "md/raid:%s: read error not correctable "
2025 "(sector %llu on %s).\n",
2026 mdname(conf->mddev),
05616be5 2027 (unsigned long long)s,
8bda470e 2028 bdn);
2e8ac303 2029 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2030 /* Oh, no!!! */
2e8ac303 2031 set_bad = 1;
8bda470e
CD
2032 printk_ratelimited(
2033 KERN_WARNING
2034 "md/raid:%s: read error NOT corrected!! "
2035 "(sector %llu on %s).\n",
2036 mdname(conf->mddev),
05616be5 2037 (unsigned long long)s,
8bda470e 2038 bdn);
2e8ac303 2039 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2040 > conf->max_nr_stripes)
14f8d26b 2041 printk(KERN_WARNING
0c55e022 2042 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2043 mdname(conf->mddev), bdn);
ba22dcbf
N
2044 else
2045 retry = 1;
edfa1f65
BY
2046 if (set_bad && test_bit(In_sync, &rdev->flags)
2047 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2048 retry = 1;
ba22dcbf 2049 if (retry)
3f9e7c14 2050 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2051 set_bit(R5_ReadError, &sh->dev[i].flags);
2052 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2053 } else
2054 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2055 else {
4e5314b5
N
2056 clear_bit(R5_ReadError, &sh->dev[i].flags);
2057 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2058 if (!(set_bad
2059 && test_bit(In_sync, &rdev->flags)
2060 && rdev_set_badblocks(
2061 rdev, sh->sector, STRIPE_SECTORS, 0)))
2062 md_error(conf->mddev, rdev);
ba22dcbf 2063 }
1da177e4 2064 }
14a75d3e 2065 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
2066 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2067 set_bit(STRIPE_HANDLE, &sh->state);
2068 release_stripe(sh);
1da177e4
LT
2069}
2070
d710e138 2071static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 2072{
99c0fb5f 2073 struct stripe_head *sh = bi->bi_private;
d1688a6d 2074 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2075 int disks = sh->disks, i;
977df362 2076 struct md_rdev *uninitialized_var(rdev);
1da177e4 2077 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
b84db560
N
2078 sector_t first_bad;
2079 int bad_sectors;
977df362 2080 int replacement = 0;
1da177e4 2081
977df362
N
2082 for (i = 0 ; i < disks; i++) {
2083 if (bi == &sh->dev[i].req) {
2084 rdev = conf->disks[i].rdev;
1da177e4 2085 break;
977df362
N
2086 }
2087 if (bi == &sh->dev[i].rreq) {
2088 rdev = conf->disks[i].replacement;
dd054fce
N
2089 if (rdev)
2090 replacement = 1;
2091 else
2092 /* rdev was removed and 'replacement'
2093 * replaced it. rdev is not removed
2094 * until all requests are finished.
2095 */
2096 rdev = conf->disks[i].rdev;
977df362
N
2097 break;
2098 }
2099 }
45b4233c 2100 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
2101 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2102 uptodate);
2103 if (i == disks) {
2104 BUG();
6712ecf8 2105 return;
1da177e4
LT
2106 }
2107
977df362
N
2108 if (replacement) {
2109 if (!uptodate)
2110 md_error(conf->mddev, rdev);
2111 else if (is_badblock(rdev, sh->sector,
2112 STRIPE_SECTORS,
2113 &first_bad, &bad_sectors))
2114 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2115 } else {
2116 if (!uptodate) {
9f97e4b1 2117 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2118 set_bit(WriteErrorSeen, &rdev->flags);
2119 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2120 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2121 set_bit(MD_RECOVERY_NEEDED,
2122 &rdev->mddev->recovery);
977df362
N
2123 } else if (is_badblock(rdev, sh->sector,
2124 STRIPE_SECTORS,
c0b32972 2125 &first_bad, &bad_sectors)) {
977df362 2126 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2127 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2128 /* That was a successful write so make
2129 * sure it looks like we already did
2130 * a re-write.
2131 */
2132 set_bit(R5_ReWrite, &sh->dev[i].flags);
2133 }
977df362
N
2134 }
2135 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2136
977df362
N
2137 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2138 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2139 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 2140 release_stripe(sh);
1da177e4
LT
2141}
2142
784052ec 2143static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 2144
784052ec 2145static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2146{
2147 struct r5dev *dev = &sh->dev[i];
2148
2149 bio_init(&dev->req);
2150 dev->req.bi_io_vec = &dev->vec;
2151 dev->req.bi_vcnt++;
2152 dev->req.bi_max_vecs++;
1da177e4 2153 dev->req.bi_private = sh;
995c4275 2154 dev->vec.bv_page = dev->page;
1da177e4 2155
977df362
N
2156 bio_init(&dev->rreq);
2157 dev->rreq.bi_io_vec = &dev->rvec;
2158 dev->rreq.bi_vcnt++;
2159 dev->rreq.bi_max_vecs++;
2160 dev->rreq.bi_private = sh;
2161 dev->rvec.bv_page = dev->page;
2162
1da177e4 2163 dev->flags = 0;
784052ec 2164 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
2165}
2166
fd01b88c 2167static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2168{
2169 char b[BDEVNAME_SIZE];
d1688a6d 2170 struct r5conf *conf = mddev->private;
908f4fbd 2171 unsigned long flags;
0c55e022 2172 pr_debug("raid456: error called\n");
1da177e4 2173
908f4fbd
N
2174 spin_lock_irqsave(&conf->device_lock, flags);
2175 clear_bit(In_sync, &rdev->flags);
2176 mddev->degraded = calc_degraded(conf);
2177 spin_unlock_irqrestore(&conf->device_lock, flags);
2178 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2179
de393cde 2180 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
2181 set_bit(Faulty, &rdev->flags);
2182 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2183 printk(KERN_ALERT
2184 "md/raid:%s: Disk failure on %s, disabling device.\n"
2185 "md/raid:%s: Operation continuing on %d devices.\n",
2186 mdname(mddev),
2187 bdevname(rdev->bdev, b),
2188 mdname(mddev),
2189 conf->raid_disks - mddev->degraded);
16a53ecc 2190}
1da177e4
LT
2191
2192/*
2193 * Input: a 'big' sector number,
2194 * Output: index of the data and parity disk, and the sector # in them.
2195 */
d1688a6d 2196static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
911d4ee8
N
2197 int previous, int *dd_idx,
2198 struct stripe_head *sh)
1da177e4 2199{
6e3b96ed 2200 sector_t stripe, stripe2;
35f2a591 2201 sector_t chunk_number;
1da177e4 2202 unsigned int chunk_offset;
911d4ee8 2203 int pd_idx, qd_idx;
67cc2b81 2204 int ddf_layout = 0;
1da177e4 2205 sector_t new_sector;
e183eaed
N
2206 int algorithm = previous ? conf->prev_algo
2207 : conf->algorithm;
09c9e5fa
AN
2208 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2209 : conf->chunk_sectors;
112bf897
N
2210 int raid_disks = previous ? conf->previous_raid_disks
2211 : conf->raid_disks;
2212 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2213
2214 /* First compute the information on this sector */
2215
2216 /*
2217 * Compute the chunk number and the sector offset inside the chunk
2218 */
2219 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2220 chunk_number = r_sector;
1da177e4
LT
2221
2222 /*
2223 * Compute the stripe number
2224 */
35f2a591
N
2225 stripe = chunk_number;
2226 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2227 stripe2 = stripe;
1da177e4
LT
2228 /*
2229 * Select the parity disk based on the user selected algorithm.
2230 */
84789554 2231 pd_idx = qd_idx = -1;
16a53ecc
N
2232 switch(conf->level) {
2233 case 4:
911d4ee8 2234 pd_idx = data_disks;
16a53ecc
N
2235 break;
2236 case 5:
e183eaed 2237 switch (algorithm) {
1da177e4 2238 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2239 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2240 if (*dd_idx >= pd_idx)
1da177e4
LT
2241 (*dd_idx)++;
2242 break;
2243 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2244 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2245 if (*dd_idx >= pd_idx)
1da177e4
LT
2246 (*dd_idx)++;
2247 break;
2248 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2249 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2250 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2251 break;
2252 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2253 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2254 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2255 break;
99c0fb5f
N
2256 case ALGORITHM_PARITY_0:
2257 pd_idx = 0;
2258 (*dd_idx)++;
2259 break;
2260 case ALGORITHM_PARITY_N:
2261 pd_idx = data_disks;
2262 break;
1da177e4 2263 default:
99c0fb5f 2264 BUG();
16a53ecc
N
2265 }
2266 break;
2267 case 6:
2268
e183eaed 2269 switch (algorithm) {
16a53ecc 2270 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2271 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2272 qd_idx = pd_idx + 1;
2273 if (pd_idx == raid_disks-1) {
99c0fb5f 2274 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2275 qd_idx = 0;
2276 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2277 (*dd_idx) += 2; /* D D P Q D */
2278 break;
2279 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2280 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2281 qd_idx = pd_idx + 1;
2282 if (pd_idx == raid_disks-1) {
99c0fb5f 2283 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2284 qd_idx = 0;
2285 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2286 (*dd_idx) += 2; /* D D P Q D */
2287 break;
2288 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2289 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2290 qd_idx = (pd_idx + 1) % raid_disks;
2291 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2292 break;
2293 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2294 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2295 qd_idx = (pd_idx + 1) % raid_disks;
2296 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2297 break;
99c0fb5f
N
2298
2299 case ALGORITHM_PARITY_0:
2300 pd_idx = 0;
2301 qd_idx = 1;
2302 (*dd_idx) += 2;
2303 break;
2304 case ALGORITHM_PARITY_N:
2305 pd_idx = data_disks;
2306 qd_idx = data_disks + 1;
2307 break;
2308
2309 case ALGORITHM_ROTATING_ZERO_RESTART:
2310 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2311 * of blocks for computing Q is different.
2312 */
6e3b96ed 2313 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2314 qd_idx = pd_idx + 1;
2315 if (pd_idx == raid_disks-1) {
2316 (*dd_idx)++; /* Q D D D P */
2317 qd_idx = 0;
2318 } else if (*dd_idx >= pd_idx)
2319 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2320 ddf_layout = 1;
99c0fb5f
N
2321 break;
2322
2323 case ALGORITHM_ROTATING_N_RESTART:
2324 /* Same a left_asymmetric, by first stripe is
2325 * D D D P Q rather than
2326 * Q D D D P
2327 */
6e3b96ed
N
2328 stripe2 += 1;
2329 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2330 qd_idx = pd_idx + 1;
2331 if (pd_idx == raid_disks-1) {
2332 (*dd_idx)++; /* Q D D D P */
2333 qd_idx = 0;
2334 } else if (*dd_idx >= pd_idx)
2335 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2336 ddf_layout = 1;
99c0fb5f
N
2337 break;
2338
2339 case ALGORITHM_ROTATING_N_CONTINUE:
2340 /* Same as left_symmetric but Q is before P */
6e3b96ed 2341 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2342 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2343 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2344 ddf_layout = 1;
99c0fb5f
N
2345 break;
2346
2347 case ALGORITHM_LEFT_ASYMMETRIC_6:
2348 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2349 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2350 if (*dd_idx >= pd_idx)
2351 (*dd_idx)++;
2352 qd_idx = raid_disks - 1;
2353 break;
2354
2355 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2356 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2357 if (*dd_idx >= pd_idx)
2358 (*dd_idx)++;
2359 qd_idx = raid_disks - 1;
2360 break;
2361
2362 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2363 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2364 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2365 qd_idx = raid_disks - 1;
2366 break;
2367
2368 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2369 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2370 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2371 qd_idx = raid_disks - 1;
2372 break;
2373
2374 case ALGORITHM_PARITY_0_6:
2375 pd_idx = 0;
2376 (*dd_idx)++;
2377 qd_idx = raid_disks - 1;
2378 break;
2379
16a53ecc 2380 default:
99c0fb5f 2381 BUG();
16a53ecc
N
2382 }
2383 break;
1da177e4
LT
2384 }
2385
911d4ee8
N
2386 if (sh) {
2387 sh->pd_idx = pd_idx;
2388 sh->qd_idx = qd_idx;
67cc2b81 2389 sh->ddf_layout = ddf_layout;
911d4ee8 2390 }
1da177e4
LT
2391 /*
2392 * Finally, compute the new sector number
2393 */
2394 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2395 return new_sector;
2396}
2397
2398
784052ec 2399static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2400{
d1688a6d 2401 struct r5conf *conf = sh->raid_conf;
b875e531
N
2402 int raid_disks = sh->disks;
2403 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2404 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2405 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2406 : conf->chunk_sectors;
e183eaed
N
2407 int algorithm = previous ? conf->prev_algo
2408 : conf->algorithm;
1da177e4
LT
2409 sector_t stripe;
2410 int chunk_offset;
35f2a591
N
2411 sector_t chunk_number;
2412 int dummy1, dd_idx = i;
1da177e4 2413 sector_t r_sector;
911d4ee8 2414 struct stripe_head sh2;
1da177e4 2415
16a53ecc 2416
1da177e4
LT
2417 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2418 stripe = new_sector;
1da177e4 2419
16a53ecc
N
2420 if (i == sh->pd_idx)
2421 return 0;
2422 switch(conf->level) {
2423 case 4: break;
2424 case 5:
e183eaed 2425 switch (algorithm) {
1da177e4
LT
2426 case ALGORITHM_LEFT_ASYMMETRIC:
2427 case ALGORITHM_RIGHT_ASYMMETRIC:
2428 if (i > sh->pd_idx)
2429 i--;
2430 break;
2431 case ALGORITHM_LEFT_SYMMETRIC:
2432 case ALGORITHM_RIGHT_SYMMETRIC:
2433 if (i < sh->pd_idx)
2434 i += raid_disks;
2435 i -= (sh->pd_idx + 1);
2436 break;
99c0fb5f
N
2437 case ALGORITHM_PARITY_0:
2438 i -= 1;
2439 break;
2440 case ALGORITHM_PARITY_N:
2441 break;
1da177e4 2442 default:
99c0fb5f 2443 BUG();
16a53ecc
N
2444 }
2445 break;
2446 case 6:
d0dabf7e 2447 if (i == sh->qd_idx)
16a53ecc 2448 return 0; /* It is the Q disk */
e183eaed 2449 switch (algorithm) {
16a53ecc
N
2450 case ALGORITHM_LEFT_ASYMMETRIC:
2451 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2452 case ALGORITHM_ROTATING_ZERO_RESTART:
2453 case ALGORITHM_ROTATING_N_RESTART:
2454 if (sh->pd_idx == raid_disks-1)
2455 i--; /* Q D D D P */
16a53ecc
N
2456 else if (i > sh->pd_idx)
2457 i -= 2; /* D D P Q D */
2458 break;
2459 case ALGORITHM_LEFT_SYMMETRIC:
2460 case ALGORITHM_RIGHT_SYMMETRIC:
2461 if (sh->pd_idx == raid_disks-1)
2462 i--; /* Q D D D P */
2463 else {
2464 /* D D P Q D */
2465 if (i < sh->pd_idx)
2466 i += raid_disks;
2467 i -= (sh->pd_idx + 2);
2468 }
2469 break;
99c0fb5f
N
2470 case ALGORITHM_PARITY_0:
2471 i -= 2;
2472 break;
2473 case ALGORITHM_PARITY_N:
2474 break;
2475 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2476 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2477 if (sh->pd_idx == 0)
2478 i--; /* P D D D Q */
e4424fee
N
2479 else {
2480 /* D D Q P D */
2481 if (i < sh->pd_idx)
2482 i += raid_disks;
2483 i -= (sh->pd_idx + 1);
2484 }
99c0fb5f
N
2485 break;
2486 case ALGORITHM_LEFT_ASYMMETRIC_6:
2487 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2488 if (i > sh->pd_idx)
2489 i--;
2490 break;
2491 case ALGORITHM_LEFT_SYMMETRIC_6:
2492 case ALGORITHM_RIGHT_SYMMETRIC_6:
2493 if (i < sh->pd_idx)
2494 i += data_disks + 1;
2495 i -= (sh->pd_idx + 1);
2496 break;
2497 case ALGORITHM_PARITY_0_6:
2498 i -= 1;
2499 break;
16a53ecc 2500 default:
99c0fb5f 2501 BUG();
16a53ecc
N
2502 }
2503 break;
1da177e4
LT
2504 }
2505
2506 chunk_number = stripe * data_disks + i;
35f2a591 2507 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2508
112bf897 2509 check = raid5_compute_sector(conf, r_sector,
784052ec 2510 previous, &dummy1, &sh2);
911d4ee8
N
2511 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2512 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2513 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2514 mdname(conf->mddev));
1da177e4
LT
2515 return 0;
2516 }
2517 return r_sector;
2518}
2519
2520
600aa109 2521static void
c0f7bddb 2522schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2523 int rcw, int expand)
e33129d8
DW
2524{
2525 int i, pd_idx = sh->pd_idx, disks = sh->disks;
d1688a6d 2526 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2527 int level = conf->level;
e33129d8
DW
2528
2529 if (rcw) {
e33129d8
DW
2530
2531 for (i = disks; i--; ) {
2532 struct r5dev *dev = &sh->dev[i];
2533
2534 if (dev->towrite) {
2535 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2536 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2537 if (!expand)
2538 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2539 s->locked++;
e33129d8
DW
2540 }
2541 }
ce7d363a
N
2542 /* if we are not expanding this is a proper write request, and
2543 * there will be bios with new data to be drained into the
2544 * stripe cache
2545 */
2546 if (!expand) {
2547 if (!s->locked)
2548 /* False alarm, nothing to do */
2549 return;
2550 sh->reconstruct_state = reconstruct_state_drain_run;
2551 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2552 } else
2553 sh->reconstruct_state = reconstruct_state_run;
2554
2555 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2556
c0f7bddb 2557 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2558 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2559 atomic_inc(&conf->pending_full_writes);
e33129d8 2560 } else {
c0f7bddb 2561 BUG_ON(level == 6);
e33129d8
DW
2562 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2563 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2564
e33129d8
DW
2565 for (i = disks; i--; ) {
2566 struct r5dev *dev = &sh->dev[i];
2567 if (i == pd_idx)
2568 continue;
2569
e33129d8
DW
2570 if (dev->towrite &&
2571 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2572 test_bit(R5_Wantcompute, &dev->flags))) {
2573 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2574 set_bit(R5_LOCKED, &dev->flags);
2575 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2576 s->locked++;
e33129d8
DW
2577 }
2578 }
ce7d363a
N
2579 if (!s->locked)
2580 /* False alarm - nothing to do */
2581 return;
2582 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2583 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2584 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2585 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2586 }
2587
c0f7bddb 2588 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2589 * are in flight
2590 */
2591 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2592 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2593 s->locked++;
e33129d8 2594
c0f7bddb
YT
2595 if (level == 6) {
2596 int qd_idx = sh->qd_idx;
2597 struct r5dev *dev = &sh->dev[qd_idx];
2598
2599 set_bit(R5_LOCKED, &dev->flags);
2600 clear_bit(R5_UPTODATE, &dev->flags);
2601 s->locked++;
2602 }
2603
600aa109 2604 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2605 __func__, (unsigned long long)sh->sector,
600aa109 2606 s->locked, s->ops_request);
e33129d8 2607}
16a53ecc 2608
1da177e4
LT
2609/*
2610 * Each stripe/dev can have one or more bion attached.
16a53ecc 2611 * toread/towrite point to the first in a chain.
1da177e4
LT
2612 * The bi_next chain must be in order.
2613 */
2614static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2615{
2616 struct bio **bip;
d1688a6d 2617 struct r5conf *conf = sh->raid_conf;
72626685 2618 int firstwrite=0;
1da177e4 2619
cbe47ec5 2620 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 2621 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
2622 (unsigned long long)sh->sector);
2623
b17459c0
SL
2624 /*
2625 * If several bio share a stripe. The bio bi_phys_segments acts as a
2626 * reference count to avoid race. The reference count should already be
2627 * increased before this function is called (for example, in
2628 * make_request()), so other bio sharing this stripe will not free the
2629 * stripe. If a stripe is owned by one stripe, the stripe lock will
2630 * protect it.
2631 */
2632 spin_lock_irq(&sh->stripe_lock);
72626685 2633 if (forwrite) {
1da177e4 2634 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2635 if (*bip == NULL)
72626685
N
2636 firstwrite = 1;
2637 } else
1da177e4 2638 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
2639 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2640 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
2641 goto overlap;
2642 bip = & (*bip)->bi_next;
2643 }
4f024f37 2644 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
2645 goto overlap;
2646
78bafebd 2647 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2648 if (*bip)
2649 bi->bi_next = *bip;
2650 *bip = bi;
e7836bd6 2651 raid5_inc_bi_active_stripes(bi);
72626685 2652
1da177e4
LT
2653 if (forwrite) {
2654 /* check if page is covered */
2655 sector_t sector = sh->dev[dd_idx].sector;
2656 for (bi=sh->dev[dd_idx].towrite;
2657 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 2658 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 2659 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
2660 if (bio_end_sector(bi) >= sector)
2661 sector = bio_end_sector(bi);
1da177e4
LT
2662 }
2663 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2664 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2665 }
cbe47ec5
N
2666
2667 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 2668 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5 2669 (unsigned long long)sh->sector, dd_idx);
b97390ae 2670 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
2671
2672 if (conf->mddev->bitmap && firstwrite) {
2673 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2674 STRIPE_SECTORS, 0);
2675 sh->bm_seq = conf->seq_flush+1;
2676 set_bit(STRIPE_BIT_DELAY, &sh->state);
2677 }
1da177e4
LT
2678 return 1;
2679
2680 overlap:
2681 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 2682 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
2683 return 0;
2684}
2685
d1688a6d 2686static void end_reshape(struct r5conf *conf);
29269553 2687
d1688a6d 2688static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 2689 struct stripe_head *sh)
ccfcc3c1 2690{
784052ec 2691 int sectors_per_chunk =
09c9e5fa 2692 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2693 int dd_idx;
2d2063ce 2694 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2695 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2696
112bf897
N
2697 raid5_compute_sector(conf,
2698 stripe * (disks - conf->max_degraded)
b875e531 2699 *sectors_per_chunk + chunk_offset,
112bf897 2700 previous,
911d4ee8 2701 &dd_idx, sh);
ccfcc3c1
N
2702}
2703
a4456856 2704static void
d1688a6d 2705handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2706 struct stripe_head_state *s, int disks,
2707 struct bio **return_bi)
2708{
2709 int i;
2710 for (i = disks; i--; ) {
2711 struct bio *bi;
2712 int bitmap_end = 0;
2713
2714 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 2715 struct md_rdev *rdev;
a4456856
DW
2716 rcu_read_lock();
2717 rdev = rcu_dereference(conf->disks[i].rdev);
2718 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
2719 atomic_inc(&rdev->nr_pending);
2720 else
2721 rdev = NULL;
a4456856 2722 rcu_read_unlock();
7f0da59b
N
2723 if (rdev) {
2724 if (!rdev_set_badblocks(
2725 rdev,
2726 sh->sector,
2727 STRIPE_SECTORS, 0))
2728 md_error(conf->mddev, rdev);
2729 rdev_dec_pending(rdev, conf->mddev);
2730 }
a4456856 2731 }
b17459c0 2732 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
2733 /* fail all writes first */
2734 bi = sh->dev[i].towrite;
2735 sh->dev[i].towrite = NULL;
b17459c0 2736 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 2737 if (bi)
a4456856 2738 bitmap_end = 1;
a4456856
DW
2739
2740 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2741 wake_up(&conf->wait_for_overlap);
2742
4f024f37 2743 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
2744 sh->dev[i].sector + STRIPE_SECTORS) {
2745 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2746 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 2747 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
2748 md_write_end(conf->mddev);
2749 bi->bi_next = *return_bi;
2750 *return_bi = bi;
2751 }
2752 bi = nextbi;
2753 }
7eaf7e8e
SL
2754 if (bitmap_end)
2755 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2756 STRIPE_SECTORS, 0, 0);
2757 bitmap_end = 0;
a4456856
DW
2758 /* and fail all 'written' */
2759 bi = sh->dev[i].written;
2760 sh->dev[i].written = NULL;
2761 if (bi) bitmap_end = 1;
4f024f37 2762 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
2763 sh->dev[i].sector + STRIPE_SECTORS) {
2764 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2765 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 2766 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
2767 md_write_end(conf->mddev);
2768 bi->bi_next = *return_bi;
2769 *return_bi = bi;
2770 }
2771 bi = bi2;
2772 }
2773
b5e98d65
DW
2774 /* fail any reads if this device is non-operational and
2775 * the data has not reached the cache yet.
2776 */
2777 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2778 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2779 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 2780 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
2781 bi = sh->dev[i].toread;
2782 sh->dev[i].toread = NULL;
143c4d05 2783 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
2784 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2785 wake_up(&conf->wait_for_overlap);
4f024f37 2786 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
2787 sh->dev[i].sector + STRIPE_SECTORS) {
2788 struct bio *nextbi =
2789 r5_next_bio(bi, sh->dev[i].sector);
2790 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 2791 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
2792 bi->bi_next = *return_bi;
2793 *return_bi = bi;
2794 }
2795 bi = nextbi;
2796 }
2797 }
a4456856
DW
2798 if (bitmap_end)
2799 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2800 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
2801 /* If we were in the middle of a write the parity block might
2802 * still be locked - so just clear all R5_LOCKED flags
2803 */
2804 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
2805 }
2806
8b3e6cdc
DW
2807 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2808 if (atomic_dec_and_test(&conf->pending_full_writes))
2809 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2810}
2811
7f0da59b 2812static void
d1688a6d 2813handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
2814 struct stripe_head_state *s)
2815{
2816 int abort = 0;
2817 int i;
2818
7f0da59b 2819 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
2820 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2821 wake_up(&conf->wait_for_overlap);
7f0da59b 2822 s->syncing = 0;
9a3e1101 2823 s->replacing = 0;
7f0da59b 2824 /* There is nothing more to do for sync/check/repair.
18b9837e
N
2825 * Don't even need to abort as that is handled elsewhere
2826 * if needed, and not always wanted e.g. if there is a known
2827 * bad block here.
9a3e1101 2828 * For recover/replace we need to record a bad block on all
7f0da59b
N
2829 * non-sync devices, or abort the recovery
2830 */
18b9837e
N
2831 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2832 /* During recovery devices cannot be removed, so
2833 * locking and refcounting of rdevs is not needed
2834 */
2835 for (i = 0; i < conf->raid_disks; i++) {
2836 struct md_rdev *rdev = conf->disks[i].rdev;
2837 if (rdev
2838 && !test_bit(Faulty, &rdev->flags)
2839 && !test_bit(In_sync, &rdev->flags)
2840 && !rdev_set_badblocks(rdev, sh->sector,
2841 STRIPE_SECTORS, 0))
2842 abort = 1;
2843 rdev = conf->disks[i].replacement;
2844 if (rdev
2845 && !test_bit(Faulty, &rdev->flags)
2846 && !test_bit(In_sync, &rdev->flags)
2847 && !rdev_set_badblocks(rdev, sh->sector,
2848 STRIPE_SECTORS, 0))
2849 abort = 1;
2850 }
2851 if (abort)
2852 conf->recovery_disabled =
2853 conf->mddev->recovery_disabled;
7f0da59b 2854 }
18b9837e 2855 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
2856}
2857
9a3e1101
N
2858static int want_replace(struct stripe_head *sh, int disk_idx)
2859{
2860 struct md_rdev *rdev;
2861 int rv = 0;
2862 /* Doing recovery so rcu locking not required */
2863 rdev = sh->raid_conf->disks[disk_idx].replacement;
2864 if (rdev
2865 && !test_bit(Faulty, &rdev->flags)
2866 && !test_bit(In_sync, &rdev->flags)
2867 && (rdev->recovery_offset <= sh->sector
2868 || rdev->mddev->recovery_cp <= sh->sector))
2869 rv = 1;
2870
2871 return rv;
2872}
2873
93b3dbce 2874/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
2875 * to be read or computed to satisfy a request.
2876 *
2877 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 2878 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 2879 */
93b3dbce
N
2880static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2881 int disk_idx, int disks)
a4456856 2882{
5599becc 2883 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
2884 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2885 &sh->dev[s->failed_num[1]] };
5599becc 2886
93b3dbce 2887 /* is the data in this block needed, and can we get it? */
5599becc
YT
2888 if (!test_bit(R5_LOCKED, &dev->flags) &&
2889 !test_bit(R5_UPTODATE, &dev->flags) &&
2890 (dev->toread ||
2891 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2892 s->syncing || s->expanding ||
9a3e1101 2893 (s->replacing && want_replace(sh, disk_idx)) ||
5d35e09c
N
2894 (s->failed >= 1 && fdev[0]->toread) ||
2895 (s->failed >= 2 && fdev[1]->toread) ||
93b3dbce 2896 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
67f45548 2897 (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) &&
93b3dbce 2898 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
67f45548
N
2899 (sh->raid_conf->level == 6 && s->failed && s->to_write &&
2900 s->to_write < sh->raid_conf->raid_disks - 2 &&
2901 (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))))) {
5599becc
YT
2902 /* we would like to get this block, possibly by computing it,
2903 * otherwise read it if the backing disk is insync
2904 */
2905 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2906 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2907 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
2908 (s->failed && (disk_idx == s->failed_num[0] ||
2909 disk_idx == s->failed_num[1]))) {
5599becc
YT
2910 /* have disk failed, and we're requested to fetch it;
2911 * do compute it
a4456856 2912 */
5599becc
YT
2913 pr_debug("Computing stripe %llu block %d\n",
2914 (unsigned long long)sh->sector, disk_idx);
2915 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2916 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2917 set_bit(R5_Wantcompute, &dev->flags);
2918 sh->ops.target = disk_idx;
2919 sh->ops.target2 = -1; /* no 2nd target */
2920 s->req_compute = 1;
93b3dbce
N
2921 /* Careful: from this point on 'uptodate' is in the eye
2922 * of raid_run_ops which services 'compute' operations
2923 * before writes. R5_Wantcompute flags a block that will
2924 * be R5_UPTODATE by the time it is needed for a
2925 * subsequent operation.
2926 */
5599becc
YT
2927 s->uptodate++;
2928 return 1;
2929 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2930 /* Computing 2-failure is *very* expensive; only
2931 * do it if failed >= 2
2932 */
2933 int other;
2934 for (other = disks; other--; ) {
2935 if (other == disk_idx)
2936 continue;
2937 if (!test_bit(R5_UPTODATE,
2938 &sh->dev[other].flags))
2939 break;
a4456856 2940 }
5599becc
YT
2941 BUG_ON(other < 0);
2942 pr_debug("Computing stripe %llu blocks %d,%d\n",
2943 (unsigned long long)sh->sector,
2944 disk_idx, other);
2945 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2946 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2947 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2948 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2949 sh->ops.target = disk_idx;
2950 sh->ops.target2 = other;
2951 s->uptodate += 2;
2952 s->req_compute = 1;
2953 return 1;
2954 } else if (test_bit(R5_Insync, &dev->flags)) {
2955 set_bit(R5_LOCKED, &dev->flags);
2956 set_bit(R5_Wantread, &dev->flags);
2957 s->locked++;
2958 pr_debug("Reading block %d (sync=%d)\n",
2959 disk_idx, s->syncing);
a4456856
DW
2960 }
2961 }
5599becc
YT
2962
2963 return 0;
2964}
2965
2966/**
93b3dbce 2967 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 2968 */
93b3dbce
N
2969static void handle_stripe_fill(struct stripe_head *sh,
2970 struct stripe_head_state *s,
2971 int disks)
5599becc
YT
2972{
2973 int i;
2974
2975 /* look for blocks to read/compute, skip this if a compute
2976 * is already in flight, or if the stripe contents are in the
2977 * midst of changing due to a write
2978 */
2979 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2980 !sh->reconstruct_state)
2981 for (i = disks; i--; )
93b3dbce 2982 if (fetch_block(sh, s, i, disks))
5599becc 2983 break;
a4456856
DW
2984 set_bit(STRIPE_HANDLE, &sh->state);
2985}
2986
2987
1fe797e6 2988/* handle_stripe_clean_event
a4456856
DW
2989 * any written block on an uptodate or failed drive can be returned.
2990 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2991 * never LOCKED, so we don't need to test 'failed' directly.
2992 */
d1688a6d 2993static void handle_stripe_clean_event(struct r5conf *conf,
a4456856
DW
2994 struct stripe_head *sh, int disks, struct bio **return_bi)
2995{
2996 int i;
2997 struct r5dev *dev;
f8dfcffd 2998 int discard_pending = 0;
a4456856
DW
2999
3000 for (i = disks; i--; )
3001 if (sh->dev[i].written) {
3002 dev = &sh->dev[i];
3003 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3004 (test_bit(R5_UPTODATE, &dev->flags) ||
ca64cae9 3005 test_bit(R5_Discard, &dev->flags))) {
a4456856
DW
3006 /* We can return any write requests */
3007 struct bio *wbi, *wbi2;
45b4233c 3008 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3009 if (test_and_clear_bit(R5_Discard, &dev->flags))
3010 clear_bit(R5_UPTODATE, &dev->flags);
a4456856
DW
3011 wbi = dev->written;
3012 dev->written = NULL;
4f024f37 3013 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3014 dev->sector + STRIPE_SECTORS) {
3015 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 3016 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856
DW
3017 md_write_end(conf->mddev);
3018 wbi->bi_next = *return_bi;
3019 *return_bi = wbi;
3020 }
3021 wbi = wbi2;
3022 }
7eaf7e8e
SL
3023 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3024 STRIPE_SECTORS,
a4456856 3025 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3026 0);
f8dfcffd
N
3027 } else if (test_bit(R5_Discard, &dev->flags))
3028 discard_pending = 1;
3029 }
3030 if (!discard_pending &&
3031 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3032 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3033 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3034 if (sh->qd_idx >= 0) {
3035 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3036 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3037 }
3038 /* now that discard is done we can proceed with any sync */
3039 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3040 /*
3041 * SCSI discard will change some bio fields and the stripe has
3042 * no updated data, so remove it from hash list and the stripe
3043 * will be reinitialized
3044 */
3045 spin_lock_irq(&conf->device_lock);
3046 remove_hash(sh);
3047 spin_unlock_irq(&conf->device_lock);
f8dfcffd
N
3048 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3049 set_bit(STRIPE_HANDLE, &sh->state);
3050
3051 }
8b3e6cdc
DW
3052
3053 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3054 if (atomic_dec_and_test(&conf->pending_full_writes))
3055 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3056}
3057
d1688a6d 3058static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
3059 struct stripe_head *sh,
3060 struct stripe_head_state *s,
3061 int disks)
a4456856
DW
3062{
3063 int rmw = 0, rcw = 0, i;
a7854487
AL
3064 sector_t recovery_cp = conf->mddev->recovery_cp;
3065
3066 /* RAID6 requires 'rcw' in current implementation.
3067 * Otherwise, check whether resync is now happening or should start.
3068 * If yes, then the array is dirty (after unclean shutdown or
3069 * initial creation), so parity in some stripes might be inconsistent.
3070 * In this case, we need to always do reconstruct-write, to ensure
3071 * that in case of drive failure or read-error correction, we
3072 * generate correct data from the parity.
3073 */
3074 if (conf->max_degraded == 2 ||
3075 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3076 /* Calculate the real rcw later - for now make it
c8ac1803
N
3077 * look like rcw is cheaper
3078 */
3079 rcw = 1; rmw = 2;
a7854487
AL
3080 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3081 conf->max_degraded, (unsigned long long)recovery_cp,
3082 (unsigned long long)sh->sector);
c8ac1803 3083 } else for (i = disks; i--; ) {
a4456856
DW
3084 /* would I have to read this buffer for read_modify_write */
3085 struct r5dev *dev = &sh->dev[i];
3086 if ((dev->towrite || i == sh->pd_idx) &&
3087 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3088 !(test_bit(R5_UPTODATE, &dev->flags) ||
3089 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3090 if (test_bit(R5_Insync, &dev->flags))
3091 rmw++;
3092 else
3093 rmw += 2*disks; /* cannot read it */
3094 }
3095 /* Would I have to read this buffer for reconstruct_write */
3096 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3097 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3098 !(test_bit(R5_UPTODATE, &dev->flags) ||
3099 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3100 if (test_bit(R5_Insync, &dev->flags))
3101 rcw++;
a4456856
DW
3102 else
3103 rcw += 2*disks;
3104 }
3105 }
45b4233c 3106 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
3107 (unsigned long long)sh->sector, rmw, rcw);
3108 set_bit(STRIPE_HANDLE, &sh->state);
a9add5d9 3109 if (rmw < rcw && rmw > 0) {
a4456856 3110 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3111 if (conf->mddev->queue)
3112 blk_add_trace_msg(conf->mddev->queue,
3113 "raid5 rmw %llu %d",
3114 (unsigned long long)sh->sector, rmw);
a4456856
DW
3115 for (i = disks; i--; ) {
3116 struct r5dev *dev = &sh->dev[i];
3117 if ((dev->towrite || i == sh->pd_idx) &&
3118 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3119 !(test_bit(R5_UPTODATE, &dev->flags) ||
3120 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3121 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3122 if (test_bit(STRIPE_PREREAD_ACTIVE,
3123 &sh->state)) {
3124 pr_debug("Read_old block %d for r-m-w\n",
3125 i);
a4456856
DW
3126 set_bit(R5_LOCKED, &dev->flags);
3127 set_bit(R5_Wantread, &dev->flags);
3128 s->locked++;
3129 } else {
3130 set_bit(STRIPE_DELAYED, &sh->state);
3131 set_bit(STRIPE_HANDLE, &sh->state);
3132 }
3133 }
3134 }
a9add5d9 3135 }
c8ac1803 3136 if (rcw <= rmw && rcw > 0) {
a4456856 3137 /* want reconstruct write, but need to get some data */
a9add5d9 3138 int qread =0;
c8ac1803 3139 rcw = 0;
a4456856
DW
3140 for (i = disks; i--; ) {
3141 struct r5dev *dev = &sh->dev[i];
3142 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3143 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3144 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3145 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3146 test_bit(R5_Wantcompute, &dev->flags))) {
3147 rcw++;
67f45548
N
3148 if (test_bit(R5_Insync, &dev->flags) &&
3149 test_bit(STRIPE_PREREAD_ACTIVE,
3150 &sh->state)) {
45b4233c 3151 pr_debug("Read_old block "
a4456856
DW
3152 "%d for Reconstruct\n", i);
3153 set_bit(R5_LOCKED, &dev->flags);
3154 set_bit(R5_Wantread, &dev->flags);
3155 s->locked++;
a9add5d9 3156 qread++;
a4456856
DW
3157 } else {
3158 set_bit(STRIPE_DELAYED, &sh->state);
3159 set_bit(STRIPE_HANDLE, &sh->state);
3160 }
3161 }
3162 }
e3620a3a 3163 if (rcw && conf->mddev->queue)
a9add5d9
N
3164 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3165 (unsigned long long)sh->sector,
3166 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3167 }
a4456856
DW
3168 /* now if nothing is locked, and if we have enough data,
3169 * we can start a write request
3170 */
f38e1219
DW
3171 /* since handle_stripe can be called at any time we need to handle the
3172 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
3173 * subsequent call wants to start a write request. raid_run_ops only
3174 * handles the case where compute block and reconstruct are requested
f38e1219
DW
3175 * simultaneously. If this is not the case then new writes need to be
3176 * held off until the compute completes.
3177 */
976ea8d4
DW
3178 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3179 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3180 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 3181 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
3182}
3183
d1688a6d 3184static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3185 struct stripe_head_state *s, int disks)
3186{
ecc65c9b 3187 struct r5dev *dev = NULL;
bd2ab670 3188
a4456856 3189 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 3190
ecc65c9b
DW
3191 switch (sh->check_state) {
3192 case check_state_idle:
3193 /* start a new check operation if there are no failures */
bd2ab670 3194 if (s->failed == 0) {
bd2ab670 3195 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
3196 sh->check_state = check_state_run;
3197 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 3198 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 3199 s->uptodate--;
ecc65c9b 3200 break;
bd2ab670 3201 }
f2b3b44d 3202 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
3203 /* fall through */
3204 case check_state_compute_result:
3205 sh->check_state = check_state_idle;
3206 if (!dev)
3207 dev = &sh->dev[sh->pd_idx];
3208
3209 /* check that a write has not made the stripe insync */
3210 if (test_bit(STRIPE_INSYNC, &sh->state))
3211 break;
c8894419 3212
a4456856 3213 /* either failed parity check, or recovery is happening */
a4456856
DW
3214 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3215 BUG_ON(s->uptodate != disks);
3216
3217 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 3218 s->locked++;
a4456856 3219 set_bit(R5_Wantwrite, &dev->flags);
830ea016 3220
a4456856 3221 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 3222 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
3223 break;
3224 case check_state_run:
3225 break; /* we will be called again upon completion */
3226 case check_state_check_result:
3227 sh->check_state = check_state_idle;
3228
3229 /* if a failure occurred during the check operation, leave
3230 * STRIPE_INSYNC not set and let the stripe be handled again
3231 */
3232 if (s->failed)
3233 break;
3234
3235 /* handle a successful check operation, if parity is correct
3236 * we are done. Otherwise update the mismatch count and repair
3237 * parity if !MD_RECOVERY_CHECK
3238 */
ad283ea4 3239 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
3240 /* parity is correct (on disc,
3241 * not in buffer any more)
3242 */
3243 set_bit(STRIPE_INSYNC, &sh->state);
3244 else {
7f7583d4 3245 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
3246 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3247 /* don't try to repair!! */
3248 set_bit(STRIPE_INSYNC, &sh->state);
3249 else {
3250 sh->check_state = check_state_compute_run;
976ea8d4 3251 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3252 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3253 set_bit(R5_Wantcompute,
3254 &sh->dev[sh->pd_idx].flags);
3255 sh->ops.target = sh->pd_idx;
ac6b53b6 3256 sh->ops.target2 = -1;
ecc65c9b
DW
3257 s->uptodate++;
3258 }
3259 }
3260 break;
3261 case check_state_compute_run:
3262 break;
3263 default:
3264 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3265 __func__, sh->check_state,
3266 (unsigned long long) sh->sector);
3267 BUG();
a4456856
DW
3268 }
3269}
3270
3271
d1688a6d 3272static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3273 struct stripe_head_state *s,
f2b3b44d 3274 int disks)
a4456856 3275{
a4456856 3276 int pd_idx = sh->pd_idx;
34e04e87 3277 int qd_idx = sh->qd_idx;
d82dfee0 3278 struct r5dev *dev;
a4456856
DW
3279
3280 set_bit(STRIPE_HANDLE, &sh->state);
3281
3282 BUG_ON(s->failed > 2);
d82dfee0 3283
a4456856
DW
3284 /* Want to check and possibly repair P and Q.
3285 * However there could be one 'failed' device, in which
3286 * case we can only check one of them, possibly using the
3287 * other to generate missing data
3288 */
3289
d82dfee0
DW
3290 switch (sh->check_state) {
3291 case check_state_idle:
3292 /* start a new check operation if there are < 2 failures */
f2b3b44d 3293 if (s->failed == s->q_failed) {
d82dfee0 3294 /* The only possible failed device holds Q, so it
a4456856
DW
3295 * makes sense to check P (If anything else were failed,
3296 * we would have used P to recreate it).
3297 */
d82dfee0 3298 sh->check_state = check_state_run;
a4456856 3299 }
f2b3b44d 3300 if (!s->q_failed && s->failed < 2) {
d82dfee0 3301 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3302 * anything, so it makes sense to check it
3303 */
d82dfee0
DW
3304 if (sh->check_state == check_state_run)
3305 sh->check_state = check_state_run_pq;
3306 else
3307 sh->check_state = check_state_run_q;
a4456856 3308 }
a4456856 3309
d82dfee0
DW
3310 /* discard potentially stale zero_sum_result */
3311 sh->ops.zero_sum_result = 0;
a4456856 3312
d82dfee0
DW
3313 if (sh->check_state == check_state_run) {
3314 /* async_xor_zero_sum destroys the contents of P */
3315 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3316 s->uptodate--;
a4456856 3317 }
d82dfee0
DW
3318 if (sh->check_state >= check_state_run &&
3319 sh->check_state <= check_state_run_pq) {
3320 /* async_syndrome_zero_sum preserves P and Q, so
3321 * no need to mark them !uptodate here
3322 */
3323 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3324 break;
a4456856
DW
3325 }
3326
d82dfee0
DW
3327 /* we have 2-disk failure */
3328 BUG_ON(s->failed != 2);
3329 /* fall through */
3330 case check_state_compute_result:
3331 sh->check_state = check_state_idle;
a4456856 3332
d82dfee0
DW
3333 /* check that a write has not made the stripe insync */
3334 if (test_bit(STRIPE_INSYNC, &sh->state))
3335 break;
a4456856
DW
3336
3337 /* now write out any block on a failed drive,
d82dfee0 3338 * or P or Q if they were recomputed
a4456856 3339 */
d82dfee0 3340 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3341 if (s->failed == 2) {
f2b3b44d 3342 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3343 s->locked++;
3344 set_bit(R5_LOCKED, &dev->flags);
3345 set_bit(R5_Wantwrite, &dev->flags);
3346 }
3347 if (s->failed >= 1) {
f2b3b44d 3348 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3349 s->locked++;
3350 set_bit(R5_LOCKED, &dev->flags);
3351 set_bit(R5_Wantwrite, &dev->flags);
3352 }
d82dfee0 3353 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3354 dev = &sh->dev[pd_idx];
3355 s->locked++;
3356 set_bit(R5_LOCKED, &dev->flags);
3357 set_bit(R5_Wantwrite, &dev->flags);
3358 }
d82dfee0 3359 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3360 dev = &sh->dev[qd_idx];
3361 s->locked++;
3362 set_bit(R5_LOCKED, &dev->flags);
3363 set_bit(R5_Wantwrite, &dev->flags);
3364 }
3365 clear_bit(STRIPE_DEGRADED, &sh->state);
3366
3367 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3368 break;
3369 case check_state_run:
3370 case check_state_run_q:
3371 case check_state_run_pq:
3372 break; /* we will be called again upon completion */
3373 case check_state_check_result:
3374 sh->check_state = check_state_idle;
3375
3376 /* handle a successful check operation, if parity is correct
3377 * we are done. Otherwise update the mismatch count and repair
3378 * parity if !MD_RECOVERY_CHECK
3379 */
3380 if (sh->ops.zero_sum_result == 0) {
3381 /* both parities are correct */
3382 if (!s->failed)
3383 set_bit(STRIPE_INSYNC, &sh->state);
3384 else {
3385 /* in contrast to the raid5 case we can validate
3386 * parity, but still have a failure to write
3387 * back
3388 */
3389 sh->check_state = check_state_compute_result;
3390 /* Returning at this point means that we may go
3391 * off and bring p and/or q uptodate again so
3392 * we make sure to check zero_sum_result again
3393 * to verify if p or q need writeback
3394 */
3395 }
3396 } else {
7f7583d4 3397 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3398 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3399 /* don't try to repair!! */
3400 set_bit(STRIPE_INSYNC, &sh->state);
3401 else {
3402 int *target = &sh->ops.target;
3403
3404 sh->ops.target = -1;
3405 sh->ops.target2 = -1;
3406 sh->check_state = check_state_compute_run;
3407 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3408 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3409 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3410 set_bit(R5_Wantcompute,
3411 &sh->dev[pd_idx].flags);
3412 *target = pd_idx;
3413 target = &sh->ops.target2;
3414 s->uptodate++;
3415 }
3416 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3417 set_bit(R5_Wantcompute,
3418 &sh->dev[qd_idx].flags);
3419 *target = qd_idx;
3420 s->uptodate++;
3421 }
3422 }
3423 }
3424 break;
3425 case check_state_compute_run:
3426 break;
3427 default:
3428 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3429 __func__, sh->check_state,
3430 (unsigned long long) sh->sector);
3431 BUG();
a4456856
DW
3432 }
3433}
3434
d1688a6d 3435static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3436{
3437 int i;
3438
3439 /* We have read all the blocks in this stripe and now we need to
3440 * copy some of them into a target stripe for expand.
3441 */
f0a50d37 3442 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
3443 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3444 for (i = 0; i < sh->disks; i++)
34e04e87 3445 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3446 int dd_idx, j;
a4456856 3447 struct stripe_head *sh2;
a08abd8c 3448 struct async_submit_ctl submit;
a4456856 3449
784052ec 3450 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
3451 sector_t s = raid5_compute_sector(conf, bn, 0,
3452 &dd_idx, NULL);
a8c906ca 3453 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3454 if (sh2 == NULL)
3455 /* so far only the early blocks of this stripe
3456 * have been requested. When later blocks
3457 * get requested, we will try again
3458 */
3459 continue;
3460 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3461 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3462 /* must have already done this block */
3463 release_stripe(sh2);
3464 continue;
3465 }
f0a50d37
DW
3466
3467 /* place all the copies on one channel */
a08abd8c 3468 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3469 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3470 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3471 &submit);
f0a50d37 3472
a4456856
DW
3473 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3474 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3475 for (j = 0; j < conf->raid_disks; j++)
3476 if (j != sh2->pd_idx &&
86c374ba 3477 j != sh2->qd_idx &&
a4456856
DW
3478 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3479 break;
3480 if (j == conf->raid_disks) {
3481 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3482 set_bit(STRIPE_HANDLE, &sh2->state);
3483 }
3484 release_stripe(sh2);
f0a50d37 3485
a4456856 3486 }
a2e08551 3487 /* done submitting copies, wait for them to complete */
749586b7 3488 async_tx_quiesce(&tx);
a4456856 3489}
1da177e4
LT
3490
3491/*
3492 * handle_stripe - do things to a stripe.
3493 *
9a3e1101
N
3494 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3495 * state of various bits to see what needs to be done.
1da177e4 3496 * Possible results:
9a3e1101
N
3497 * return some read requests which now have data
3498 * return some write requests which are safely on storage
1da177e4
LT
3499 * schedule a read on some buffers
3500 * schedule a write of some buffers
3501 * return confirmation of parity correctness
3502 *
1da177e4 3503 */
a4456856 3504
acfe726b 3505static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 3506{
d1688a6d 3507 struct r5conf *conf = sh->raid_conf;
f416885e 3508 int disks = sh->disks;
474af965
N
3509 struct r5dev *dev;
3510 int i;
9a3e1101 3511 int do_recovery = 0;
1da177e4 3512
acfe726b
N
3513 memset(s, 0, sizeof(*s));
3514
acfe726b
N
3515 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3516 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3517 s->failed_num[0] = -1;
3518 s->failed_num[1] = -1;
1da177e4 3519
acfe726b 3520 /* Now to look around and see what can be done */
1da177e4 3521 rcu_read_lock();
16a53ecc 3522 for (i=disks; i--; ) {
3cb03002 3523 struct md_rdev *rdev;
31c176ec
N
3524 sector_t first_bad;
3525 int bad_sectors;
3526 int is_bad = 0;
acfe726b 3527
16a53ecc 3528 dev = &sh->dev[i];
1da177e4 3529
45b4233c 3530 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
3531 i, dev->flags,
3532 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3533 /* maybe we can reply to a read
3534 *
3535 * new wantfill requests are only permitted while
3536 * ops_complete_biofill is guaranteed to be inactive
3537 */
3538 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3539 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3540 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3541
16a53ecc 3542 /* now count some things */
cc94015a
N
3543 if (test_bit(R5_LOCKED, &dev->flags))
3544 s->locked++;
3545 if (test_bit(R5_UPTODATE, &dev->flags))
3546 s->uptodate++;
2d6e4ecc 3547 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
3548 s->compute++;
3549 BUG_ON(s->compute > 2);
2d6e4ecc 3550 }
1da177e4 3551
acfe726b 3552 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 3553 s->to_fill++;
acfe726b 3554 else if (dev->toread)
cc94015a 3555 s->to_read++;
16a53ecc 3556 if (dev->towrite) {
cc94015a 3557 s->to_write++;
16a53ecc 3558 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 3559 s->non_overwrite++;
16a53ecc 3560 }
a4456856 3561 if (dev->written)
cc94015a 3562 s->written++;
14a75d3e
N
3563 /* Prefer to use the replacement for reads, but only
3564 * if it is recovered enough and has no bad blocks.
3565 */
3566 rdev = rcu_dereference(conf->disks[i].replacement);
3567 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3568 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3569 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3570 &first_bad, &bad_sectors))
3571 set_bit(R5_ReadRepl, &dev->flags);
3572 else {
9a3e1101
N
3573 if (rdev)
3574 set_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
3575 rdev = rcu_dereference(conf->disks[i].rdev);
3576 clear_bit(R5_ReadRepl, &dev->flags);
3577 }
9283d8c5
N
3578 if (rdev && test_bit(Faulty, &rdev->flags))
3579 rdev = NULL;
31c176ec
N
3580 if (rdev) {
3581 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3582 &first_bad, &bad_sectors);
3583 if (s->blocked_rdev == NULL
3584 && (test_bit(Blocked, &rdev->flags)
3585 || is_bad < 0)) {
3586 if (is_bad < 0)
3587 set_bit(BlockedBadBlocks,
3588 &rdev->flags);
3589 s->blocked_rdev = rdev;
3590 atomic_inc(&rdev->nr_pending);
3591 }
6bfe0b49 3592 }
415e72d0
N
3593 clear_bit(R5_Insync, &dev->flags);
3594 if (!rdev)
3595 /* Not in-sync */;
31c176ec
N
3596 else if (is_bad) {
3597 /* also not in-sync */
18b9837e
N
3598 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3599 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
3600 /* treat as in-sync, but with a read error
3601 * which we can now try to correct
3602 */
3603 set_bit(R5_Insync, &dev->flags);
3604 set_bit(R5_ReadError, &dev->flags);
3605 }
3606 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 3607 set_bit(R5_Insync, &dev->flags);
30d7a483 3608 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 3609 /* in sync if before recovery_offset */
30d7a483
N
3610 set_bit(R5_Insync, &dev->flags);
3611 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3612 test_bit(R5_Expanded, &dev->flags))
3613 /* If we've reshaped into here, we assume it is Insync.
3614 * We will shortly update recovery_offset to make
3615 * it official.
3616 */
3617 set_bit(R5_Insync, &dev->flags);
3618
1cc03eb9 3619 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
3620 /* This flag does not apply to '.replacement'
3621 * only to .rdev, so make sure to check that*/
3622 struct md_rdev *rdev2 = rcu_dereference(
3623 conf->disks[i].rdev);
3624 if (rdev2 == rdev)
3625 clear_bit(R5_Insync, &dev->flags);
3626 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 3627 s->handle_bad_blocks = 1;
14a75d3e 3628 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
3629 } else
3630 clear_bit(R5_WriteError, &dev->flags);
3631 }
1cc03eb9 3632 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
3633 /* This flag does not apply to '.replacement'
3634 * only to .rdev, so make sure to check that*/
3635 struct md_rdev *rdev2 = rcu_dereference(
3636 conf->disks[i].rdev);
3637 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 3638 s->handle_bad_blocks = 1;
14a75d3e 3639 atomic_inc(&rdev2->nr_pending);
b84db560
N
3640 } else
3641 clear_bit(R5_MadeGood, &dev->flags);
3642 }
977df362
N
3643 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3644 struct md_rdev *rdev2 = rcu_dereference(
3645 conf->disks[i].replacement);
3646 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3647 s->handle_bad_blocks = 1;
3648 atomic_inc(&rdev2->nr_pending);
3649 } else
3650 clear_bit(R5_MadeGoodRepl, &dev->flags);
3651 }
415e72d0 3652 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
3653 /* The ReadError flag will just be confusing now */
3654 clear_bit(R5_ReadError, &dev->flags);
3655 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3656 }
415e72d0
N
3657 if (test_bit(R5_ReadError, &dev->flags))
3658 clear_bit(R5_Insync, &dev->flags);
3659 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
3660 if (s->failed < 2)
3661 s->failed_num[s->failed] = i;
3662 s->failed++;
9a3e1101
N
3663 if (rdev && !test_bit(Faulty, &rdev->flags))
3664 do_recovery = 1;
415e72d0 3665 }
1da177e4 3666 }
9a3e1101
N
3667 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3668 /* If there is a failed device being replaced,
3669 * we must be recovering.
3670 * else if we are after recovery_cp, we must be syncing
c6d2e084 3671 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
3672 * else we can only be replacing
3673 * sync and recovery both need to read all devices, and so
3674 * use the same flag.
3675 */
3676 if (do_recovery ||
c6d2e084 3677 sh->sector >= conf->mddev->recovery_cp ||
3678 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
3679 s->syncing = 1;
3680 else
3681 s->replacing = 1;
3682 }
1da177e4 3683 rcu_read_unlock();
cc94015a
N
3684}
3685
3686static void handle_stripe(struct stripe_head *sh)
3687{
3688 struct stripe_head_state s;
d1688a6d 3689 struct r5conf *conf = sh->raid_conf;
3687c061 3690 int i;
84789554
N
3691 int prexor;
3692 int disks = sh->disks;
474af965 3693 struct r5dev *pdev, *qdev;
cc94015a
N
3694
3695 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 3696 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
3697 /* already being handled, ensure it gets handled
3698 * again when current action finishes */
3699 set_bit(STRIPE_HANDLE, &sh->state);
3700 return;
3701 }
3702
f8dfcffd
N
3703 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3704 spin_lock(&sh->stripe_lock);
3705 /* Cannot process 'sync' concurrently with 'discard' */
3706 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3707 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3708 set_bit(STRIPE_SYNCING, &sh->state);
3709 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 3710 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
3711 }
3712 spin_unlock(&sh->stripe_lock);
cc94015a
N
3713 }
3714 clear_bit(STRIPE_DELAYED, &sh->state);
3715
3716 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3717 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3718 (unsigned long long)sh->sector, sh->state,
3719 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3720 sh->check_state, sh->reconstruct_state);
3687c061 3721
acfe726b 3722 analyse_stripe(sh, &s);
c5a31000 3723
bc2607f3
N
3724 if (s.handle_bad_blocks) {
3725 set_bit(STRIPE_HANDLE, &sh->state);
3726 goto finish;
3727 }
3728
474af965
N
3729 if (unlikely(s.blocked_rdev)) {
3730 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 3731 s.replacing || s.to_write || s.written) {
474af965
N
3732 set_bit(STRIPE_HANDLE, &sh->state);
3733 goto finish;
3734 }
3735 /* There is nothing for the blocked_rdev to block */
3736 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3737 s.blocked_rdev = NULL;
3738 }
3739
3740 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3741 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3742 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3743 }
3744
3745 pr_debug("locked=%d uptodate=%d to_read=%d"
3746 " to_write=%d failed=%d failed_num=%d,%d\n",
3747 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3748 s.failed_num[0], s.failed_num[1]);
3749 /* check if the array has lost more than max_degraded devices and,
3750 * if so, some requests might need to be failed.
3751 */
9a3f530f
N
3752 if (s.failed > conf->max_degraded) {
3753 sh->check_state = 0;
3754 sh->reconstruct_state = 0;
3755 if (s.to_read+s.to_write+s.written)
3756 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 3757 if (s.syncing + s.replacing)
9a3f530f
N
3758 handle_failed_sync(conf, sh, &s);
3759 }
474af965 3760
84789554
N
3761 /* Now we check to see if any write operations have recently
3762 * completed
3763 */
3764 prexor = 0;
3765 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3766 prexor = 1;
3767 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3768 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3769 sh->reconstruct_state = reconstruct_state_idle;
3770
3771 /* All the 'written' buffers and the parity block are ready to
3772 * be written back to disk
3773 */
9e444768
SL
3774 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3775 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 3776 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
3777 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3778 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
3779 for (i = disks; i--; ) {
3780 struct r5dev *dev = &sh->dev[i];
3781 if (test_bit(R5_LOCKED, &dev->flags) &&
3782 (i == sh->pd_idx || i == sh->qd_idx ||
3783 dev->written)) {
3784 pr_debug("Writing block %d\n", i);
3785 set_bit(R5_Wantwrite, &dev->flags);
3786 if (prexor)
3787 continue;
3788 if (!test_bit(R5_Insync, &dev->flags) ||
3789 ((i == sh->pd_idx || i == sh->qd_idx) &&
3790 s.failed == 0))
3791 set_bit(STRIPE_INSYNC, &sh->state);
3792 }
3793 }
3794 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3795 s.dec_preread_active = 1;
3796 }
3797
ef5b7c69
N
3798 /*
3799 * might be able to return some write requests if the parity blocks
3800 * are safe, or on a failed drive
3801 */
3802 pdev = &sh->dev[sh->pd_idx];
3803 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3804 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3805 qdev = &sh->dev[sh->qd_idx];
3806 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3807 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3808 || conf->level < 6;
3809
3810 if (s.written &&
3811 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3812 && !test_bit(R5_LOCKED, &pdev->flags)
3813 && (test_bit(R5_UPTODATE, &pdev->flags) ||
3814 test_bit(R5_Discard, &pdev->flags))))) &&
3815 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3816 && !test_bit(R5_LOCKED, &qdev->flags)
3817 && (test_bit(R5_UPTODATE, &qdev->flags) ||
3818 test_bit(R5_Discard, &qdev->flags))))))
3819 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3820
3821 /* Now we might consider reading some blocks, either to check/generate
3822 * parity, or to satisfy requests
3823 * or to load a block that is being partially written.
3824 */
3825 if (s.to_read || s.non_overwrite
3826 || (conf->level == 6 && s.to_write && s.failed)
3827 || (s.syncing && (s.uptodate + s.compute < disks))
3828 || s.replacing
3829 || s.expanding)
3830 handle_stripe_fill(sh, &s, disks);
3831
84789554
N
3832 /* Now to consider new write requests and what else, if anything
3833 * should be read. We do not handle new writes when:
3834 * 1/ A 'write' operation (copy+xor) is already in flight.
3835 * 2/ A 'check' operation is in flight, as it may clobber the parity
3836 * block.
3837 */
3838 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3839 handle_stripe_dirtying(conf, sh, &s, disks);
3840
3841 /* maybe we need to check and possibly fix the parity for this stripe
3842 * Any reads will already have been scheduled, so we just see if enough
3843 * data is available. The parity check is held off while parity
3844 * dependent operations are in flight.
3845 */
3846 if (sh->check_state ||
3847 (s.syncing && s.locked == 0 &&
3848 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3849 !test_bit(STRIPE_INSYNC, &sh->state))) {
3850 if (conf->level == 6)
3851 handle_parity_checks6(conf, sh, &s, disks);
3852 else
3853 handle_parity_checks5(conf, sh, &s, disks);
3854 }
c5a31000 3855
f94c0b66
N
3856 if ((s.replacing || s.syncing) && s.locked == 0
3857 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3858 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
3859 /* Write out to replacement devices where possible */
3860 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
3861 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3862 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
3863 set_bit(R5_WantReplace, &sh->dev[i].flags);
3864 set_bit(R5_LOCKED, &sh->dev[i].flags);
3865 s.locked++;
3866 }
f94c0b66
N
3867 if (s.replacing)
3868 set_bit(STRIPE_INSYNC, &sh->state);
3869 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
3870 }
3871 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 3872 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 3873 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
3874 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3875 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3876 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3877 wake_up(&conf->wait_for_overlap);
c5a31000
N
3878 }
3879
3880 /* If the failed drives are just a ReadError, then we might need
3881 * to progress the repair/check process
3882 */
3883 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3884 for (i = 0; i < s.failed; i++) {
3885 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3886 if (test_bit(R5_ReadError, &dev->flags)
3887 && !test_bit(R5_LOCKED, &dev->flags)
3888 && test_bit(R5_UPTODATE, &dev->flags)
3889 ) {
3890 if (!test_bit(R5_ReWrite, &dev->flags)) {
3891 set_bit(R5_Wantwrite, &dev->flags);
3892 set_bit(R5_ReWrite, &dev->flags);
3893 set_bit(R5_LOCKED, &dev->flags);
3894 s.locked++;
3895 } else {
3896 /* let's read it back */
3897 set_bit(R5_Wantread, &dev->flags);
3898 set_bit(R5_LOCKED, &dev->flags);
3899 s.locked++;
3900 }
3901 }
3902 }
3903
3904
3687c061
N
3905 /* Finish reconstruct operations initiated by the expansion process */
3906 if (sh->reconstruct_state == reconstruct_state_result) {
3907 struct stripe_head *sh_src
3908 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3909 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3910 /* sh cannot be written until sh_src has been read.
3911 * so arrange for sh to be delayed a little
3912 */
3913 set_bit(STRIPE_DELAYED, &sh->state);
3914 set_bit(STRIPE_HANDLE, &sh->state);
3915 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3916 &sh_src->state))
3917 atomic_inc(&conf->preread_active_stripes);
3918 release_stripe(sh_src);
3919 goto finish;
3920 }
3921 if (sh_src)
3922 release_stripe(sh_src);
3923
3924 sh->reconstruct_state = reconstruct_state_idle;
3925 clear_bit(STRIPE_EXPANDING, &sh->state);
3926 for (i = conf->raid_disks; i--; ) {
3927 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3928 set_bit(R5_LOCKED, &sh->dev[i].flags);
3929 s.locked++;
3930 }
3931 }
f416885e 3932
3687c061
N
3933 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3934 !sh->reconstruct_state) {
3935 /* Need to write out all blocks after computing parity */
3936 sh->disks = conf->raid_disks;
3937 stripe_set_idx(sh->sector, conf, 0, sh);
3938 schedule_reconstruction(sh, &s, 1, 1);
3939 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3940 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3941 atomic_dec(&conf->reshape_stripes);
3942 wake_up(&conf->wait_for_overlap);
3943 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3944 }
3945
3946 if (s.expanding && s.locked == 0 &&
3947 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3948 handle_stripe_expansion(conf, sh);
16a53ecc 3949
3687c061 3950finish:
6bfe0b49 3951 /* wait for this device to become unblocked */
5f066c63
N
3952 if (unlikely(s.blocked_rdev)) {
3953 if (conf->mddev->external)
3954 md_wait_for_blocked_rdev(s.blocked_rdev,
3955 conf->mddev);
3956 else
3957 /* Internal metadata will immediately
3958 * be written by raid5d, so we don't
3959 * need to wait here.
3960 */
3961 rdev_dec_pending(s.blocked_rdev,
3962 conf->mddev);
3963 }
6bfe0b49 3964
bc2607f3
N
3965 if (s.handle_bad_blocks)
3966 for (i = disks; i--; ) {
3cb03002 3967 struct md_rdev *rdev;
bc2607f3
N
3968 struct r5dev *dev = &sh->dev[i];
3969 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3970 /* We own a safe reference to the rdev */
3971 rdev = conf->disks[i].rdev;
3972 if (!rdev_set_badblocks(rdev, sh->sector,
3973 STRIPE_SECTORS, 0))
3974 md_error(conf->mddev, rdev);
3975 rdev_dec_pending(rdev, conf->mddev);
3976 }
b84db560
N
3977 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3978 rdev = conf->disks[i].rdev;
3979 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 3980 STRIPE_SECTORS, 0);
b84db560
N
3981 rdev_dec_pending(rdev, conf->mddev);
3982 }
977df362
N
3983 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3984 rdev = conf->disks[i].replacement;
dd054fce
N
3985 if (!rdev)
3986 /* rdev have been moved down */
3987 rdev = conf->disks[i].rdev;
977df362 3988 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 3989 STRIPE_SECTORS, 0);
977df362
N
3990 rdev_dec_pending(rdev, conf->mddev);
3991 }
bc2607f3
N
3992 }
3993
6c0069c0
YT
3994 if (s.ops_request)
3995 raid_run_ops(sh, s.ops_request);
3996
f0e43bcd 3997 ops_run_io(sh, &s);
16a53ecc 3998
c5709ef6 3999 if (s.dec_preread_active) {
729a1866 4000 /* We delay this until after ops_run_io so that if make_request
e9c7469b 4001 * is waiting on a flush, it won't continue until the writes
729a1866
N
4002 * have actually been submitted.
4003 */
4004 atomic_dec(&conf->preread_active_stripes);
4005 if (atomic_read(&conf->preread_active_stripes) <
4006 IO_THRESHOLD)
4007 md_wakeup_thread(conf->mddev->thread);
4008 }
4009
c5709ef6 4010 return_io(s.return_bi);
16a53ecc 4011
257a4b42 4012 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
4013}
4014
d1688a6d 4015static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
4016{
4017 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4018 while (!list_empty(&conf->delayed_list)) {
4019 struct list_head *l = conf->delayed_list.next;
4020 struct stripe_head *sh;
4021 sh = list_entry(l, struct stripe_head, lru);
4022 list_del_init(l);
4023 clear_bit(STRIPE_DELAYED, &sh->state);
4024 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4025 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 4026 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 4027 raid5_wakeup_stripe_thread(sh);
16a53ecc 4028 }
482c0834 4029 }
16a53ecc
N
4030}
4031
566c09c5
SL
4032static void activate_bit_delay(struct r5conf *conf,
4033 struct list_head *temp_inactive_list)
16a53ecc
N
4034{
4035 /* device_lock is held */
4036 struct list_head head;
4037 list_add(&head, &conf->bitmap_list);
4038 list_del_init(&conf->bitmap_list);
4039 while (!list_empty(&head)) {
4040 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 4041 int hash;
16a53ecc
N
4042 list_del_init(&sh->lru);
4043 atomic_inc(&sh->count);
566c09c5
SL
4044 hash = sh->hash_lock_index;
4045 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
4046 }
4047}
4048
fd01b88c 4049int md_raid5_congested(struct mddev *mddev, int bits)
f022b2fd 4050{
d1688a6d 4051 struct r5conf *conf = mddev->private;
f022b2fd
N
4052
4053 /* No difference between reads and writes. Just check
4054 * how busy the stripe_cache is
4055 */
3fa841d7 4056
f022b2fd
N
4057 if (conf->inactive_blocked)
4058 return 1;
4059 if (conf->quiesce)
4060 return 1;
4bda556a 4061 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
4062 return 1;
4063
4064 return 0;
4065}
11d8a6e3
N
4066EXPORT_SYMBOL_GPL(md_raid5_congested);
4067
4068static int raid5_congested(void *data, int bits)
4069{
fd01b88c 4070 struct mddev *mddev = data;
11d8a6e3
N
4071
4072 return mddev_congested(mddev, bits) ||
4073 md_raid5_congested(mddev, bits);
4074}
f022b2fd 4075
23032a0e
RBJ
4076/* We want read requests to align with chunks where possible,
4077 * but write requests don't need to.
4078 */
cc371e66
AK
4079static int raid5_mergeable_bvec(struct request_queue *q,
4080 struct bvec_merge_data *bvm,
4081 struct bio_vec *biovec)
23032a0e 4082{
fd01b88c 4083 struct mddev *mddev = q->queuedata;
cc371e66 4084 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 4085 int max;
9d8f0363 4086 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 4087 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 4088
cc371e66 4089 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
4090 return biovec->bv_len; /* always allow writes to be mergeable */
4091
664e7c41
AN
4092 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4093 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
4094 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4095 if (max < 0) max = 0;
4096 if (max <= biovec->bv_len && bio_sectors == 0)
4097 return biovec->bv_len;
4098 else
4099 return max;
4100}
4101
f679623f 4102
fd01b88c 4103static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 4104{
4f024f37 4105 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 4106 unsigned int chunk_sectors = mddev->chunk_sectors;
aa8b57aa 4107 unsigned int bio_sectors = bio_sectors(bio);
f679623f 4108
664e7c41
AN
4109 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4110 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
4111 return chunk_sectors >=
4112 ((sector & (chunk_sectors - 1)) + bio_sectors);
4113}
4114
46031f9a
RBJ
4115/*
4116 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4117 * later sampled by raid5d.
4118 */
d1688a6d 4119static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
4120{
4121 unsigned long flags;
4122
4123 spin_lock_irqsave(&conf->device_lock, flags);
4124
4125 bi->bi_next = conf->retry_read_aligned_list;
4126 conf->retry_read_aligned_list = bi;
4127
4128 spin_unlock_irqrestore(&conf->device_lock, flags);
4129 md_wakeup_thread(conf->mddev->thread);
4130}
4131
4132
d1688a6d 4133static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
4134{
4135 struct bio *bi;
4136
4137 bi = conf->retry_read_aligned;
4138 if (bi) {
4139 conf->retry_read_aligned = NULL;
4140 return bi;
4141 }
4142 bi = conf->retry_read_aligned_list;
4143 if(bi) {
387bb173 4144 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 4145 bi->bi_next = NULL;
960e739d
JA
4146 /*
4147 * this sets the active strip count to 1 and the processed
4148 * strip count to zero (upper 8 bits)
4149 */
e7836bd6 4150 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
4151 }
4152
4153 return bi;
4154}
4155
4156
f679623f
RBJ
4157/*
4158 * The "raid5_align_endio" should check if the read succeeded and if it
4159 * did, call bio_endio on the original bio (having bio_put the new bio
4160 * first).
4161 * If the read failed..
4162 */
6712ecf8 4163static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
4164{
4165 struct bio* raid_bi = bi->bi_private;
fd01b88c 4166 struct mddev *mddev;
d1688a6d 4167 struct r5conf *conf;
46031f9a 4168 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3cb03002 4169 struct md_rdev *rdev;
46031f9a 4170
f679623f 4171 bio_put(bi);
46031f9a 4172
46031f9a
RBJ
4173 rdev = (void*)raid_bi->bi_next;
4174 raid_bi->bi_next = NULL;
2b7f2228
N
4175 mddev = rdev->mddev;
4176 conf = mddev->private;
46031f9a
RBJ
4177
4178 rdev_dec_pending(rdev, conf->mddev);
4179
4180 if (!error && uptodate) {
0a82a8d1
LT
4181 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4182 raid_bi, 0);
6712ecf8 4183 bio_endio(raid_bi, 0);
46031f9a
RBJ
4184 if (atomic_dec_and_test(&conf->active_aligned_reads))
4185 wake_up(&conf->wait_for_stripe);
6712ecf8 4186 return;
46031f9a
RBJ
4187 }
4188
4189
45b4233c 4190 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
4191
4192 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
4193}
4194
387bb173
NB
4195static int bio_fits_rdev(struct bio *bi)
4196{
165125e1 4197 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 4198
aa8b57aa 4199 if (bio_sectors(bi) > queue_max_sectors(q))
387bb173
NB
4200 return 0;
4201 blk_recount_segments(q, bi);
8a78362c 4202 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
4203 return 0;
4204
4205 if (q->merge_bvec_fn)
4206 /* it's too hard to apply the merge_bvec_fn at this stage,
4207 * just just give up
4208 */
4209 return 0;
4210
4211 return 1;
4212}
4213
4214
fd01b88c 4215static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
f679623f 4216{
d1688a6d 4217 struct r5conf *conf = mddev->private;
8553fe7e 4218 int dd_idx;
f679623f 4219 struct bio* align_bi;
3cb03002 4220 struct md_rdev *rdev;
671488cc 4221 sector_t end_sector;
f679623f
RBJ
4222
4223 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 4224 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
4225 return 0;
4226 }
4227 /*
a167f663 4228 * use bio_clone_mddev to make a copy of the bio
f679623f 4229 */
a167f663 4230 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
4231 if (!align_bi)
4232 return 0;
4233 /*
4234 * set bi_end_io to a new function, and set bi_private to the
4235 * original bio.
4236 */
4237 align_bi->bi_end_io = raid5_align_endio;
4238 align_bi->bi_private = raid_bio;
4239 /*
4240 * compute position
4241 */
4f024f37
KO
4242 align_bi->bi_iter.bi_sector =
4243 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4244 0, &dd_idx, NULL);
f679623f 4245
f73a1c7d 4246 end_sector = bio_end_sector(align_bi);
f679623f 4247 rcu_read_lock();
671488cc
N
4248 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4249 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4250 rdev->recovery_offset < end_sector) {
4251 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4252 if (rdev &&
4253 (test_bit(Faulty, &rdev->flags) ||
4254 !(test_bit(In_sync, &rdev->flags) ||
4255 rdev->recovery_offset >= end_sector)))
4256 rdev = NULL;
4257 }
4258 if (rdev) {
31c176ec
N
4259 sector_t first_bad;
4260 int bad_sectors;
4261
f679623f
RBJ
4262 atomic_inc(&rdev->nr_pending);
4263 rcu_read_unlock();
46031f9a
RBJ
4264 raid_bio->bi_next = (void*)rdev;
4265 align_bi->bi_bdev = rdev->bdev;
4266 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
46031f9a 4267
31c176ec 4268 if (!bio_fits_rdev(align_bi) ||
4f024f37
KO
4269 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4270 bio_sectors(align_bi),
31c176ec
N
4271 &first_bad, &bad_sectors)) {
4272 /* too big in some way, or has a known bad block */
387bb173
NB
4273 bio_put(align_bi);
4274 rdev_dec_pending(rdev, mddev);
4275 return 0;
4276 }
4277
6c0544e2 4278 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 4279 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 4280
46031f9a
RBJ
4281 spin_lock_irq(&conf->device_lock);
4282 wait_event_lock_irq(conf->wait_for_stripe,
4283 conf->quiesce == 0,
eed8c02e 4284 conf->device_lock);
46031f9a
RBJ
4285 atomic_inc(&conf->active_aligned_reads);
4286 spin_unlock_irq(&conf->device_lock);
4287
e3620a3a
JB
4288 if (mddev->gendisk)
4289 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4290 align_bi, disk_devt(mddev->gendisk),
4f024f37 4291 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
4292 generic_make_request(align_bi);
4293 return 1;
4294 } else {
4295 rcu_read_unlock();
46031f9a 4296 bio_put(align_bi);
f679623f
RBJ
4297 return 0;
4298 }
4299}
4300
8b3e6cdc
DW
4301/* __get_priority_stripe - get the next stripe to process
4302 *
4303 * Full stripe writes are allowed to pass preread active stripes up until
4304 * the bypass_threshold is exceeded. In general the bypass_count
4305 * increments when the handle_list is handled before the hold_list; however, it
4306 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4307 * stripe with in flight i/o. The bypass_count will be reset when the
4308 * head of the hold_list has changed, i.e. the head was promoted to the
4309 * handle_list.
4310 */
851c30c9 4311static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 4312{
851c30c9
SL
4313 struct stripe_head *sh = NULL, *tmp;
4314 struct list_head *handle_list = NULL;
bfc90cb0 4315 struct r5worker_group *wg = NULL;
851c30c9
SL
4316
4317 if (conf->worker_cnt_per_group == 0) {
4318 handle_list = &conf->handle_list;
4319 } else if (group != ANY_GROUP) {
4320 handle_list = &conf->worker_groups[group].handle_list;
bfc90cb0 4321 wg = &conf->worker_groups[group];
851c30c9
SL
4322 } else {
4323 int i;
4324 for (i = 0; i < conf->group_cnt; i++) {
4325 handle_list = &conf->worker_groups[i].handle_list;
bfc90cb0 4326 wg = &conf->worker_groups[i];
851c30c9
SL
4327 if (!list_empty(handle_list))
4328 break;
4329 }
4330 }
8b3e6cdc
DW
4331
4332 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4333 __func__,
851c30c9 4334 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
4335 list_empty(&conf->hold_list) ? "empty" : "busy",
4336 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4337
851c30c9
SL
4338 if (!list_empty(handle_list)) {
4339 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
4340
4341 if (list_empty(&conf->hold_list))
4342 conf->bypass_count = 0;
4343 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4344 if (conf->hold_list.next == conf->last_hold)
4345 conf->bypass_count++;
4346 else {
4347 conf->last_hold = conf->hold_list.next;
4348 conf->bypass_count -= conf->bypass_threshold;
4349 if (conf->bypass_count < 0)
4350 conf->bypass_count = 0;
4351 }
4352 }
4353 } else if (!list_empty(&conf->hold_list) &&
4354 ((conf->bypass_threshold &&
4355 conf->bypass_count > conf->bypass_threshold) ||
4356 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
4357
4358 list_for_each_entry(tmp, &conf->hold_list, lru) {
4359 if (conf->worker_cnt_per_group == 0 ||
4360 group == ANY_GROUP ||
4361 !cpu_online(tmp->cpu) ||
4362 cpu_to_group(tmp->cpu) == group) {
4363 sh = tmp;
4364 break;
4365 }
4366 }
4367
4368 if (sh) {
4369 conf->bypass_count -= conf->bypass_threshold;
4370 if (conf->bypass_count < 0)
4371 conf->bypass_count = 0;
4372 }
bfc90cb0 4373 wg = NULL;
851c30c9
SL
4374 }
4375
4376 if (!sh)
8b3e6cdc
DW
4377 return NULL;
4378
bfc90cb0
SL
4379 if (wg) {
4380 wg->stripes_cnt--;
4381 sh->group = NULL;
4382 }
8b3e6cdc 4383 list_del_init(&sh->lru);
c7a6d35e 4384 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
4385 return sh;
4386}
f679623f 4387
8811b596
SL
4388struct raid5_plug_cb {
4389 struct blk_plug_cb cb;
4390 struct list_head list;
566c09c5 4391 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
4392};
4393
4394static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4395{
4396 struct raid5_plug_cb *cb = container_of(
4397 blk_cb, struct raid5_plug_cb, cb);
4398 struct stripe_head *sh;
4399 struct mddev *mddev = cb->cb.data;
4400 struct r5conf *conf = mddev->private;
a9add5d9 4401 int cnt = 0;
566c09c5 4402 int hash;
8811b596
SL
4403
4404 if (cb->list.next && !list_empty(&cb->list)) {
4405 spin_lock_irq(&conf->device_lock);
4406 while (!list_empty(&cb->list)) {
4407 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4408 list_del_init(&sh->lru);
4409 /*
4410 * avoid race release_stripe_plug() sees
4411 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4412 * is still in our list
4413 */
4414 smp_mb__before_clear_bit();
4415 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
4416 /*
4417 * STRIPE_ON_RELEASE_LIST could be set here. In that
4418 * case, the count is always > 1 here
4419 */
566c09c5
SL
4420 hash = sh->hash_lock_index;
4421 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 4422 cnt++;
8811b596
SL
4423 }
4424 spin_unlock_irq(&conf->device_lock);
4425 }
566c09c5
SL
4426 release_inactive_stripe_list(conf, cb->temp_inactive_list,
4427 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
4428 if (mddev->queue)
4429 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
4430 kfree(cb);
4431}
4432
4433static void release_stripe_plug(struct mddev *mddev,
4434 struct stripe_head *sh)
4435{
4436 struct blk_plug_cb *blk_cb = blk_check_plugged(
4437 raid5_unplug, mddev,
4438 sizeof(struct raid5_plug_cb));
4439 struct raid5_plug_cb *cb;
4440
4441 if (!blk_cb) {
4442 release_stripe(sh);
4443 return;
4444 }
4445
4446 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4447
566c09c5
SL
4448 if (cb->list.next == NULL) {
4449 int i;
8811b596 4450 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
4451 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4452 INIT_LIST_HEAD(cb->temp_inactive_list + i);
4453 }
8811b596
SL
4454
4455 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4456 list_add_tail(&sh->lru, &cb->list);
4457 else
4458 release_stripe(sh);
4459}
4460
620125f2
SL
4461static void make_discard_request(struct mddev *mddev, struct bio *bi)
4462{
4463 struct r5conf *conf = mddev->private;
4464 sector_t logical_sector, last_sector;
4465 struct stripe_head *sh;
4466 int remaining;
4467 int stripe_sectors;
4468
4469 if (mddev->reshape_position != MaxSector)
4470 /* Skip discard while reshape is happening */
4471 return;
4472
4f024f37
KO
4473 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4474 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
4475
4476 bi->bi_next = NULL;
4477 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4478
4479 stripe_sectors = conf->chunk_sectors *
4480 (conf->raid_disks - conf->max_degraded);
4481 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4482 stripe_sectors);
4483 sector_div(last_sector, stripe_sectors);
4484
4485 logical_sector *= conf->chunk_sectors;
4486 last_sector *= conf->chunk_sectors;
4487
4488 for (; logical_sector < last_sector;
4489 logical_sector += STRIPE_SECTORS) {
4490 DEFINE_WAIT(w);
4491 int d;
4492 again:
4493 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4494 prepare_to_wait(&conf->wait_for_overlap, &w,
4495 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
4496 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4497 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4498 release_stripe(sh);
4499 schedule();
4500 goto again;
4501 }
4502 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
4503 spin_lock_irq(&sh->stripe_lock);
4504 for (d = 0; d < conf->raid_disks; d++) {
4505 if (d == sh->pd_idx || d == sh->qd_idx)
4506 continue;
4507 if (sh->dev[d].towrite || sh->dev[d].toread) {
4508 set_bit(R5_Overlap, &sh->dev[d].flags);
4509 spin_unlock_irq(&sh->stripe_lock);
4510 release_stripe(sh);
4511 schedule();
4512 goto again;
4513 }
4514 }
f8dfcffd 4515 set_bit(STRIPE_DISCARD, &sh->state);
620125f2
SL
4516 finish_wait(&conf->wait_for_overlap, &w);
4517 for (d = 0; d < conf->raid_disks; d++) {
4518 if (d == sh->pd_idx || d == sh->qd_idx)
4519 continue;
4520 sh->dev[d].towrite = bi;
4521 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4522 raid5_inc_bi_active_stripes(bi);
4523 }
4524 spin_unlock_irq(&sh->stripe_lock);
4525 if (conf->mddev->bitmap) {
4526 for (d = 0;
4527 d < conf->raid_disks - conf->max_degraded;
4528 d++)
4529 bitmap_startwrite(mddev->bitmap,
4530 sh->sector,
4531 STRIPE_SECTORS,
4532 0);
4533 sh->bm_seq = conf->seq_flush + 1;
4534 set_bit(STRIPE_BIT_DELAY, &sh->state);
4535 }
4536
4537 set_bit(STRIPE_HANDLE, &sh->state);
4538 clear_bit(STRIPE_DELAYED, &sh->state);
4539 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4540 atomic_inc(&conf->preread_active_stripes);
4541 release_stripe_plug(mddev, sh);
4542 }
4543
4544 remaining = raid5_dec_bi_active_stripes(bi);
4545 if (remaining == 0) {
4546 md_write_end(mddev);
4547 bio_endio(bi, 0);
4548 }
4549}
4550
b4fdcb02 4551static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 4552{
d1688a6d 4553 struct r5conf *conf = mddev->private;
911d4ee8 4554 int dd_idx;
1da177e4
LT
4555 sector_t new_sector;
4556 sector_t logical_sector, last_sector;
4557 struct stripe_head *sh;
a362357b 4558 const int rw = bio_data_dir(bi);
49077326 4559 int remaining;
27c0f68f
SL
4560 DEFINE_WAIT(w);
4561 bool do_prepare;
1da177e4 4562
e9c7469b
TH
4563 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4564 md_flush_request(mddev, bi);
5a7bbad2 4565 return;
e5dcdd80
N
4566 }
4567
3d310eb7 4568 md_write_start(mddev, bi);
06d91a5f 4569
802ba064 4570 if (rw == READ &&
52488615 4571 mddev->reshape_position == MaxSector &&
21a52c6d 4572 chunk_aligned_read(mddev,bi))
5a7bbad2 4573 return;
52488615 4574
620125f2
SL
4575 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4576 make_discard_request(mddev, bi);
4577 return;
4578 }
4579
4f024f37 4580 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 4581 last_sector = bio_end_sector(bi);
1da177e4
LT
4582 bi->bi_next = NULL;
4583 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 4584
27c0f68f 4585 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 4586 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 4587 int previous;
c46501b2 4588 int seq;
b578d55f 4589
27c0f68f 4590 do_prepare = false;
7ecaa1e6 4591 retry:
c46501b2 4592 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 4593 previous = 0;
27c0f68f
SL
4594 if (do_prepare)
4595 prepare_to_wait(&conf->wait_for_overlap, &w,
4596 TASK_UNINTERRUPTIBLE);
b0f9ec04 4597 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 4598 /* spinlock is needed as reshape_progress may be
df8e7f76
N
4599 * 64bit on a 32bit platform, and so it might be
4600 * possible to see a half-updated value
aeb878b0 4601 * Of course reshape_progress could change after
df8e7f76
N
4602 * the lock is dropped, so once we get a reference
4603 * to the stripe that we think it is, we will have
4604 * to check again.
4605 */
7ecaa1e6 4606 spin_lock_irq(&conf->device_lock);
2c810cdd 4607 if (mddev->reshape_backwards
fef9c61f
N
4608 ? logical_sector < conf->reshape_progress
4609 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
4610 previous = 1;
4611 } else {
2c810cdd 4612 if (mddev->reshape_backwards
fef9c61f
N
4613 ? logical_sector < conf->reshape_safe
4614 : logical_sector >= conf->reshape_safe) {
b578d55f
N
4615 spin_unlock_irq(&conf->device_lock);
4616 schedule();
27c0f68f 4617 do_prepare = true;
b578d55f
N
4618 goto retry;
4619 }
4620 }
7ecaa1e6
N
4621 spin_unlock_irq(&conf->device_lock);
4622 }
16a53ecc 4623
112bf897
N
4624 new_sector = raid5_compute_sector(conf, logical_sector,
4625 previous,
911d4ee8 4626 &dd_idx, NULL);
0c55e022 4627 pr_debug("raid456: make_request, sector %llu logical %llu\n",
c46501b2 4628 (unsigned long long)new_sector,
1da177e4
LT
4629 (unsigned long long)logical_sector);
4630
b5663ba4 4631 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 4632 (bi->bi_rw&RWA_MASK), 0);
1da177e4 4633 if (sh) {
b0f9ec04 4634 if (unlikely(previous)) {
7ecaa1e6 4635 /* expansion might have moved on while waiting for a
df8e7f76
N
4636 * stripe, so we must do the range check again.
4637 * Expansion could still move past after this
4638 * test, but as we are holding a reference to
4639 * 'sh', we know that if that happens,
4640 * STRIPE_EXPANDING will get set and the expansion
4641 * won't proceed until we finish with the stripe.
7ecaa1e6
N
4642 */
4643 int must_retry = 0;
4644 spin_lock_irq(&conf->device_lock);
2c810cdd 4645 if (mddev->reshape_backwards
b0f9ec04
N
4646 ? logical_sector >= conf->reshape_progress
4647 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
4648 /* mismatch, need to try again */
4649 must_retry = 1;
4650 spin_unlock_irq(&conf->device_lock);
4651 if (must_retry) {
4652 release_stripe(sh);
7a3ab908 4653 schedule();
27c0f68f 4654 do_prepare = true;
7ecaa1e6
N
4655 goto retry;
4656 }
4657 }
c46501b2
N
4658 if (read_seqcount_retry(&conf->gen_lock, seq)) {
4659 /* Might have got the wrong stripe_head
4660 * by accident
4661 */
4662 release_stripe(sh);
4663 goto retry;
4664 }
e62e58a5 4665
ffd96e35 4666 if (rw == WRITE &&
a5c308d4 4667 logical_sector >= mddev->suspend_lo &&
e464eafd
N
4668 logical_sector < mddev->suspend_hi) {
4669 release_stripe(sh);
e62e58a5
N
4670 /* As the suspend_* range is controlled by
4671 * userspace, we want an interruptible
4672 * wait.
4673 */
4674 flush_signals(current);
4675 prepare_to_wait(&conf->wait_for_overlap,
4676 &w, TASK_INTERRUPTIBLE);
4677 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 4678 logical_sector < mddev->suspend_hi) {
e62e58a5 4679 schedule();
27c0f68f
SL
4680 do_prepare = true;
4681 }
e464eafd
N
4682 goto retry;
4683 }
7ecaa1e6
N
4684
4685 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
ffd96e35 4686 !add_stripe_bio(sh, bi, dd_idx, rw)) {
7ecaa1e6
N
4687 /* Stripe is busy expanding or
4688 * add failed due to overlap. Flush everything
1da177e4
LT
4689 * and wait a while
4690 */
482c0834 4691 md_wakeup_thread(mddev->thread);
1da177e4
LT
4692 release_stripe(sh);
4693 schedule();
27c0f68f 4694 do_prepare = true;
1da177e4
LT
4695 goto retry;
4696 }
6ed3003c
N
4697 set_bit(STRIPE_HANDLE, &sh->state);
4698 clear_bit(STRIPE_DELAYED, &sh->state);
a852d7b8 4699 if ((bi->bi_rw & REQ_SYNC) &&
729a1866
N
4700 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4701 atomic_inc(&conf->preread_active_stripes);
8811b596 4702 release_stripe_plug(mddev, sh);
1da177e4
LT
4703 } else {
4704 /* cannot get stripe for read-ahead, just give-up */
4705 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1da177e4
LT
4706 break;
4707 }
1da177e4 4708 }
27c0f68f 4709 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 4710
e7836bd6 4711 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 4712 if (remaining == 0) {
1da177e4 4713
16a53ecc 4714 if ( rw == WRITE )
1da177e4 4715 md_write_end(mddev);
6712ecf8 4716
0a82a8d1
LT
4717 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4718 bi, 0);
0e13fe23 4719 bio_endio(bi, 0);
1da177e4 4720 }
1da177e4
LT
4721}
4722
fd01b88c 4723static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 4724
fd01b88c 4725static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 4726{
52c03291
N
4727 /* reshaping is quite different to recovery/resync so it is
4728 * handled quite separately ... here.
4729 *
4730 * On each call to sync_request, we gather one chunk worth of
4731 * destination stripes and flag them as expanding.
4732 * Then we find all the source stripes and request reads.
4733 * As the reads complete, handle_stripe will copy the data
4734 * into the destination stripe and release that stripe.
4735 */
d1688a6d 4736 struct r5conf *conf = mddev->private;
1da177e4 4737 struct stripe_head *sh;
ccfcc3c1 4738 sector_t first_sector, last_sector;
f416885e
N
4739 int raid_disks = conf->previous_raid_disks;
4740 int data_disks = raid_disks - conf->max_degraded;
4741 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
4742 int i;
4743 int dd_idx;
c8f517c4 4744 sector_t writepos, readpos, safepos;
ec32a2bd 4745 sector_t stripe_addr;
7a661381 4746 int reshape_sectors;
ab69ae12 4747 struct list_head stripes;
52c03291 4748
fef9c61f
N
4749 if (sector_nr == 0) {
4750 /* If restarting in the middle, skip the initial sectors */
2c810cdd 4751 if (mddev->reshape_backwards &&
fef9c61f
N
4752 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4753 sector_nr = raid5_size(mddev, 0, 0)
4754 - conf->reshape_progress;
2c810cdd 4755 } else if (!mddev->reshape_backwards &&
fef9c61f
N
4756 conf->reshape_progress > 0)
4757 sector_nr = conf->reshape_progress;
f416885e 4758 sector_div(sector_nr, new_data_disks);
fef9c61f 4759 if (sector_nr) {
8dee7211
N
4760 mddev->curr_resync_completed = sector_nr;
4761 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
4762 *skipped = 1;
4763 return sector_nr;
4764 }
52c03291
N
4765 }
4766
7a661381
N
4767 /* We need to process a full chunk at a time.
4768 * If old and new chunk sizes differ, we need to process the
4769 * largest of these
4770 */
664e7c41
AN
4771 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4772 reshape_sectors = mddev->new_chunk_sectors;
7a661381 4773 else
9d8f0363 4774 reshape_sectors = mddev->chunk_sectors;
7a661381 4775
b5254dd5
N
4776 /* We update the metadata at least every 10 seconds, or when
4777 * the data about to be copied would over-write the source of
4778 * the data at the front of the range. i.e. one new_stripe
4779 * along from reshape_progress new_maps to after where
4780 * reshape_safe old_maps to
52c03291 4781 */
fef9c61f 4782 writepos = conf->reshape_progress;
f416885e 4783 sector_div(writepos, new_data_disks);
c8f517c4
N
4784 readpos = conf->reshape_progress;
4785 sector_div(readpos, data_disks);
fef9c61f 4786 safepos = conf->reshape_safe;
f416885e 4787 sector_div(safepos, data_disks);
2c810cdd 4788 if (mddev->reshape_backwards) {
ed37d83e 4789 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 4790 readpos += reshape_sectors;
7a661381 4791 safepos += reshape_sectors;
fef9c61f 4792 } else {
7a661381 4793 writepos += reshape_sectors;
ed37d83e
N
4794 readpos -= min_t(sector_t, reshape_sectors, readpos);
4795 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 4796 }
52c03291 4797
b5254dd5
N
4798 /* Having calculated the 'writepos' possibly use it
4799 * to set 'stripe_addr' which is where we will write to.
4800 */
4801 if (mddev->reshape_backwards) {
4802 BUG_ON(conf->reshape_progress == 0);
4803 stripe_addr = writepos;
4804 BUG_ON((mddev->dev_sectors &
4805 ~((sector_t)reshape_sectors - 1))
4806 - reshape_sectors - stripe_addr
4807 != sector_nr);
4808 } else {
4809 BUG_ON(writepos != sector_nr + reshape_sectors);
4810 stripe_addr = sector_nr;
4811 }
4812
c8f517c4
N
4813 /* 'writepos' is the most advanced device address we might write.
4814 * 'readpos' is the least advanced device address we might read.
4815 * 'safepos' is the least address recorded in the metadata as having
4816 * been reshaped.
b5254dd5
N
4817 * If there is a min_offset_diff, these are adjusted either by
4818 * increasing the safepos/readpos if diff is negative, or
4819 * increasing writepos if diff is positive.
4820 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
4821 * ensure safety in the face of a crash - that must be done by userspace
4822 * making a backup of the data. So in that case there is no particular
4823 * rush to update metadata.
4824 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4825 * update the metadata to advance 'safepos' to match 'readpos' so that
4826 * we can be safe in the event of a crash.
4827 * So we insist on updating metadata if safepos is behind writepos and
4828 * readpos is beyond writepos.
4829 * In any case, update the metadata every 10 seconds.
4830 * Maybe that number should be configurable, but I'm not sure it is
4831 * worth it.... maybe it could be a multiple of safemode_delay???
4832 */
b5254dd5
N
4833 if (conf->min_offset_diff < 0) {
4834 safepos += -conf->min_offset_diff;
4835 readpos += -conf->min_offset_diff;
4836 } else
4837 writepos += conf->min_offset_diff;
4838
2c810cdd 4839 if ((mddev->reshape_backwards
c8f517c4
N
4840 ? (safepos > writepos && readpos < writepos)
4841 : (safepos < writepos && readpos > writepos)) ||
4842 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
4843 /* Cannot proceed until we've updated the superblock... */
4844 wait_event(conf->wait_for_overlap,
c91abf5a
N
4845 atomic_read(&conf->reshape_stripes)==0
4846 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4847 if (atomic_read(&conf->reshape_stripes) != 0)
4848 return 0;
fef9c61f 4849 mddev->reshape_position = conf->reshape_progress;
75d3da43 4850 mddev->curr_resync_completed = sector_nr;
c8f517c4 4851 conf->reshape_checkpoint = jiffies;
850b2b42 4852 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 4853 md_wakeup_thread(mddev->thread);
850b2b42 4854 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
4855 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4856 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4857 return 0;
52c03291 4858 spin_lock_irq(&conf->device_lock);
fef9c61f 4859 conf->reshape_safe = mddev->reshape_position;
52c03291
N
4860 spin_unlock_irq(&conf->device_lock);
4861 wake_up(&conf->wait_for_overlap);
acb180b0 4862 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
4863 }
4864
ab69ae12 4865 INIT_LIST_HEAD(&stripes);
7a661381 4866 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 4867 int j;
a9f326eb 4868 int skipped_disk = 0;
a8c906ca 4869 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
4870 set_bit(STRIPE_EXPANDING, &sh->state);
4871 atomic_inc(&conf->reshape_stripes);
4872 /* If any of this stripe is beyond the end of the old
4873 * array, then we need to zero those blocks
4874 */
4875 for (j=sh->disks; j--;) {
4876 sector_t s;
4877 if (j == sh->pd_idx)
4878 continue;
f416885e 4879 if (conf->level == 6 &&
d0dabf7e 4880 j == sh->qd_idx)
f416885e 4881 continue;
784052ec 4882 s = compute_blocknr(sh, j, 0);
b522adcd 4883 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 4884 skipped_disk = 1;
52c03291
N
4885 continue;
4886 }
4887 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4888 set_bit(R5_Expanded, &sh->dev[j].flags);
4889 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4890 }
a9f326eb 4891 if (!skipped_disk) {
52c03291
N
4892 set_bit(STRIPE_EXPAND_READY, &sh->state);
4893 set_bit(STRIPE_HANDLE, &sh->state);
4894 }
ab69ae12 4895 list_add(&sh->lru, &stripes);
52c03291
N
4896 }
4897 spin_lock_irq(&conf->device_lock);
2c810cdd 4898 if (mddev->reshape_backwards)
7a661381 4899 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4900 else
7a661381 4901 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4902 spin_unlock_irq(&conf->device_lock);
4903 /* Ok, those stripe are ready. We can start scheduling
4904 * reads on the source stripes.
4905 * The source stripes are determined by mapping the first and last
4906 * block on the destination stripes.
4907 */
52c03291 4908 first_sector =
ec32a2bd 4909 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4910 1, &dd_idx, NULL);
52c03291 4911 last_sector =
0e6e0271 4912 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 4913 * new_data_disks - 1),
911d4ee8 4914 1, &dd_idx, NULL);
58c0fed4
AN
4915 if (last_sector >= mddev->dev_sectors)
4916 last_sector = mddev->dev_sectors - 1;
52c03291 4917 while (first_sector <= last_sector) {
a8c906ca 4918 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
4919 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4920 set_bit(STRIPE_HANDLE, &sh->state);
4921 release_stripe(sh);
4922 first_sector += STRIPE_SECTORS;
4923 }
ab69ae12
N
4924 /* Now that the sources are clearly marked, we can release
4925 * the destination stripes
4926 */
4927 while (!list_empty(&stripes)) {
4928 sh = list_entry(stripes.next, struct stripe_head, lru);
4929 list_del_init(&sh->lru);
4930 release_stripe(sh);
4931 }
c6207277
N
4932 /* If this takes us to the resync_max point where we have to pause,
4933 * then we need to write out the superblock.
4934 */
7a661381 4935 sector_nr += reshape_sectors;
c03f6a19
N
4936 if ((sector_nr - mddev->curr_resync_completed) * 2
4937 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
4938 /* Cannot proceed until we've updated the superblock... */
4939 wait_event(conf->wait_for_overlap,
c91abf5a
N
4940 atomic_read(&conf->reshape_stripes) == 0
4941 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4942 if (atomic_read(&conf->reshape_stripes) != 0)
4943 goto ret;
fef9c61f 4944 mddev->reshape_position = conf->reshape_progress;
75d3da43 4945 mddev->curr_resync_completed = sector_nr;
c8f517c4 4946 conf->reshape_checkpoint = jiffies;
c6207277
N
4947 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4948 md_wakeup_thread(mddev->thread);
4949 wait_event(mddev->sb_wait,
4950 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
c91abf5a
N
4951 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4952 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4953 goto ret;
c6207277 4954 spin_lock_irq(&conf->device_lock);
fef9c61f 4955 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4956 spin_unlock_irq(&conf->device_lock);
4957 wake_up(&conf->wait_for_overlap);
acb180b0 4958 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 4959 }
c91abf5a 4960ret:
7a661381 4961 return reshape_sectors;
52c03291
N
4962}
4963
4964/* FIXME go_faster isn't used */
fd01b88c 4965static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
52c03291 4966{
d1688a6d 4967 struct r5conf *conf = mddev->private;
52c03291 4968 struct stripe_head *sh;
58c0fed4 4969 sector_t max_sector = mddev->dev_sectors;
57dab0bd 4970 sector_t sync_blocks;
16a53ecc
N
4971 int still_degraded = 0;
4972 int i;
1da177e4 4973
72626685 4974 if (sector_nr >= max_sector) {
1da177e4 4975 /* just being told to finish up .. nothing much to do */
cea9c228 4976
29269553
N
4977 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4978 end_reshape(conf);
4979 return 0;
4980 }
72626685
N
4981
4982 if (mddev->curr_resync < max_sector) /* aborted */
4983 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4984 &sync_blocks, 1);
16a53ecc 4985 else /* completed sync */
72626685
N
4986 conf->fullsync = 0;
4987 bitmap_close_sync(mddev->bitmap);
4988
1da177e4
LT
4989 return 0;
4990 }
ccfcc3c1 4991
64bd660b
N
4992 /* Allow raid5_quiesce to complete */
4993 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4994
52c03291
N
4995 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4996 return reshape_request(mddev, sector_nr, skipped);
f6705578 4997
c6207277
N
4998 /* No need to check resync_max as we never do more than one
4999 * stripe, and as resync_max will always be on a chunk boundary,
5000 * if the check in md_do_sync didn't fire, there is no chance
5001 * of overstepping resync_max here
5002 */
5003
16a53ecc 5004 /* if there is too many failed drives and we are trying
1da177e4
LT
5005 * to resync, then assert that we are finished, because there is
5006 * nothing we can do.
5007 */
3285edf1 5008 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 5009 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 5010 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 5011 *skipped = 1;
1da177e4
LT
5012 return rv;
5013 }
6f608040 5014 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5015 !conf->fullsync &&
5016 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5017 sync_blocks >= STRIPE_SECTORS) {
72626685
N
5018 /* we can skip this block, and probably more */
5019 sync_blocks /= STRIPE_SECTORS;
5020 *skipped = 1;
5021 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5022 }
1da177e4 5023
b47490c9
N
5024 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5025
a8c906ca 5026 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 5027 if (sh == NULL) {
a8c906ca 5028 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 5029 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 5030 * is trying to get access
1da177e4 5031 */
66c006a5 5032 schedule_timeout_uninterruptible(1);
1da177e4 5033 }
16a53ecc
N
5034 /* Need to check if array will still be degraded after recovery/resync
5035 * We don't need to check the 'failed' flag as when that gets set,
5036 * recovery aborts.
5037 */
f001a70c 5038 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
5039 if (conf->disks[i].rdev == NULL)
5040 still_degraded = 1;
5041
5042 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5043
83206d66 5044 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
1da177e4 5045
1442577b 5046 handle_stripe(sh);
1da177e4
LT
5047 release_stripe(sh);
5048
5049 return STRIPE_SECTORS;
5050}
5051
d1688a6d 5052static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
5053{
5054 /* We may not be able to submit a whole bio at once as there
5055 * may not be enough stripe_heads available.
5056 * We cannot pre-allocate enough stripe_heads as we may need
5057 * more than exist in the cache (if we allow ever large chunks).
5058 * So we do one stripe head at a time and record in
5059 * ->bi_hw_segments how many have been done.
5060 *
5061 * We *know* that this entire raid_bio is in one chunk, so
5062 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5063 */
5064 struct stripe_head *sh;
911d4ee8 5065 int dd_idx;
46031f9a
RBJ
5066 sector_t sector, logical_sector, last_sector;
5067 int scnt = 0;
5068 int remaining;
5069 int handled = 0;
5070
4f024f37
KO
5071 logical_sector = raid_bio->bi_iter.bi_sector &
5072 ~((sector_t)STRIPE_SECTORS-1);
112bf897 5073 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 5074 0, &dd_idx, NULL);
f73a1c7d 5075 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
5076
5077 for (; logical_sector < last_sector;
387bb173
NB
5078 logical_sector += STRIPE_SECTORS,
5079 sector += STRIPE_SECTORS,
5080 scnt++) {
46031f9a 5081
e7836bd6 5082 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
5083 /* already done this stripe */
5084 continue;
5085
a8c906ca 5086 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
5087
5088 if (!sh) {
5089 /* failed to get a stripe - must wait */
e7836bd6 5090 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
5091 conf->retry_read_aligned = raid_bio;
5092 return handled;
5093 }
5094
387bb173
NB
5095 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5096 release_stripe(sh);
e7836bd6 5097 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
5098 conf->retry_read_aligned = raid_bio;
5099 return handled;
5100 }
5101
3f9e7c14 5102 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 5103 handle_stripe(sh);
46031f9a
RBJ
5104 release_stripe(sh);
5105 handled++;
5106 }
e7836bd6 5107 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
5108 if (remaining == 0) {
5109 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5110 raid_bio, 0);
0e13fe23 5111 bio_endio(raid_bio, 0);
0a82a8d1 5112 }
46031f9a
RBJ
5113 if (atomic_dec_and_test(&conf->active_aligned_reads))
5114 wake_up(&conf->wait_for_stripe);
5115 return handled;
5116}
5117
bfc90cb0 5118static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
5119 struct r5worker *worker,
5120 struct list_head *temp_inactive_list)
46a06401
SL
5121{
5122 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
5123 int i, batch_size = 0, hash;
5124 bool release_inactive = false;
46a06401
SL
5125
5126 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 5127 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
5128 batch[batch_size++] = sh;
5129
566c09c5
SL
5130 if (batch_size == 0) {
5131 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5132 if (!list_empty(temp_inactive_list + i))
5133 break;
5134 if (i == NR_STRIPE_HASH_LOCKS)
5135 return batch_size;
5136 release_inactive = true;
5137 }
46a06401
SL
5138 spin_unlock_irq(&conf->device_lock);
5139
566c09c5
SL
5140 release_inactive_stripe_list(conf, temp_inactive_list,
5141 NR_STRIPE_HASH_LOCKS);
5142
5143 if (release_inactive) {
5144 spin_lock_irq(&conf->device_lock);
5145 return 0;
5146 }
5147
46a06401
SL
5148 for (i = 0; i < batch_size; i++)
5149 handle_stripe(batch[i]);
5150
5151 cond_resched();
5152
5153 spin_lock_irq(&conf->device_lock);
566c09c5
SL
5154 for (i = 0; i < batch_size; i++) {
5155 hash = batch[i]->hash_lock_index;
5156 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5157 }
46a06401
SL
5158 return batch_size;
5159}
46031f9a 5160
851c30c9
SL
5161static void raid5_do_work(struct work_struct *work)
5162{
5163 struct r5worker *worker = container_of(work, struct r5worker, work);
5164 struct r5worker_group *group = worker->group;
5165 struct r5conf *conf = group->conf;
5166 int group_id = group - conf->worker_groups;
5167 int handled;
5168 struct blk_plug plug;
5169
5170 pr_debug("+++ raid5worker active\n");
5171
5172 blk_start_plug(&plug);
5173 handled = 0;
5174 spin_lock_irq(&conf->device_lock);
5175 while (1) {
5176 int batch_size, released;
5177
566c09c5 5178 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 5179
566c09c5
SL
5180 batch_size = handle_active_stripes(conf, group_id, worker,
5181 worker->temp_inactive_list);
bfc90cb0 5182 worker->working = false;
851c30c9
SL
5183 if (!batch_size && !released)
5184 break;
5185 handled += batch_size;
5186 }
5187 pr_debug("%d stripes handled\n", handled);
5188
5189 spin_unlock_irq(&conf->device_lock);
5190 blk_finish_plug(&plug);
5191
5192 pr_debug("--- raid5worker inactive\n");
5193}
5194
1da177e4
LT
5195/*
5196 * This is our raid5 kernel thread.
5197 *
5198 * We scan the hash table for stripes which can be handled now.
5199 * During the scan, completed stripes are saved for us by the interrupt
5200 * handler, so that they will not have to wait for our next wakeup.
5201 */
4ed8731d 5202static void raid5d(struct md_thread *thread)
1da177e4 5203{
4ed8731d 5204 struct mddev *mddev = thread->mddev;
d1688a6d 5205 struct r5conf *conf = mddev->private;
1da177e4 5206 int handled;
e1dfa0a2 5207 struct blk_plug plug;
1da177e4 5208
45b4233c 5209 pr_debug("+++ raid5d active\n");
1da177e4
LT
5210
5211 md_check_recovery(mddev);
1da177e4 5212
e1dfa0a2 5213 blk_start_plug(&plug);
1da177e4
LT
5214 handled = 0;
5215 spin_lock_irq(&conf->device_lock);
5216 while (1) {
46031f9a 5217 struct bio *bio;
773ca82f
SL
5218 int batch_size, released;
5219
566c09c5 5220 released = release_stripe_list(conf, conf->temp_inactive_list);
1da177e4 5221
0021b7bc 5222 if (
7c13edc8
N
5223 !list_empty(&conf->bitmap_list)) {
5224 /* Now is a good time to flush some bitmap updates */
5225 conf->seq_flush++;
700e432d 5226 spin_unlock_irq(&conf->device_lock);
72626685 5227 bitmap_unplug(mddev->bitmap);
700e432d 5228 spin_lock_irq(&conf->device_lock);
7c13edc8 5229 conf->seq_write = conf->seq_flush;
566c09c5 5230 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 5231 }
0021b7bc 5232 raid5_activate_delayed(conf);
72626685 5233
46031f9a
RBJ
5234 while ((bio = remove_bio_from_retry(conf))) {
5235 int ok;
5236 spin_unlock_irq(&conf->device_lock);
5237 ok = retry_aligned_read(conf, bio);
5238 spin_lock_irq(&conf->device_lock);
5239 if (!ok)
5240 break;
5241 handled++;
5242 }
5243
566c09c5
SL
5244 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5245 conf->temp_inactive_list);
773ca82f 5246 if (!batch_size && !released)
1da177e4 5247 break;
46a06401 5248 handled += batch_size;
1da177e4 5249
46a06401
SL
5250 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5251 spin_unlock_irq(&conf->device_lock);
de393cde 5252 md_check_recovery(mddev);
46a06401
SL
5253 spin_lock_irq(&conf->device_lock);
5254 }
1da177e4 5255 }
45b4233c 5256 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
5257
5258 spin_unlock_irq(&conf->device_lock);
5259
c9f21aaf 5260 async_tx_issue_pending_all();
e1dfa0a2 5261 blk_finish_plug(&plug);
1da177e4 5262
45b4233c 5263 pr_debug("--- raid5d inactive\n");
1da177e4
LT
5264}
5265
3f294f4f 5266static ssize_t
fd01b88c 5267raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 5268{
d1688a6d 5269 struct r5conf *conf = mddev->private;
96de1e66
N
5270 if (conf)
5271 return sprintf(page, "%d\n", conf->max_nr_stripes);
5272 else
5273 return 0;
3f294f4f
N
5274}
5275
c41d4ac4 5276int
fd01b88c 5277raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 5278{
d1688a6d 5279 struct r5conf *conf = mddev->private;
b5470dc5 5280 int err;
566c09c5 5281 int hash;
b5470dc5 5282
c41d4ac4 5283 if (size <= 16 || size > 32768)
3f294f4f 5284 return -EINVAL;
566c09c5 5285 hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
c41d4ac4 5286 while (size < conf->max_nr_stripes) {
566c09c5 5287 if (drop_one_stripe(conf, hash))
3f294f4f
N
5288 conf->max_nr_stripes--;
5289 else
5290 break;
566c09c5
SL
5291 hash--;
5292 if (hash < 0)
5293 hash = NR_STRIPE_HASH_LOCKS - 1;
3f294f4f 5294 }
b5470dc5
DW
5295 err = md_allow_write(mddev);
5296 if (err)
5297 return err;
566c09c5 5298 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
c41d4ac4 5299 while (size > conf->max_nr_stripes) {
566c09c5 5300 if (grow_one_stripe(conf, hash))
3f294f4f
N
5301 conf->max_nr_stripes++;
5302 else break;
566c09c5 5303 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
3f294f4f 5304 }
c41d4ac4
N
5305 return 0;
5306}
5307EXPORT_SYMBOL(raid5_set_cache_size);
5308
5309static ssize_t
fd01b88c 5310raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 5311{
d1688a6d 5312 struct r5conf *conf = mddev->private;
c41d4ac4
N
5313 unsigned long new;
5314 int err;
5315
5316 if (len >= PAGE_SIZE)
5317 return -EINVAL;
5318 if (!conf)
5319 return -ENODEV;
5320
b29bebd6 5321 if (kstrtoul(page, 10, &new))
c41d4ac4
N
5322 return -EINVAL;
5323 err = raid5_set_cache_size(mddev, new);
5324 if (err)
5325 return err;
3f294f4f
N
5326 return len;
5327}
007583c9 5328
96de1e66
N
5329static struct md_sysfs_entry
5330raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5331 raid5_show_stripe_cache_size,
5332 raid5_store_stripe_cache_size);
3f294f4f 5333
8b3e6cdc 5334static ssize_t
fd01b88c 5335raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 5336{
d1688a6d 5337 struct r5conf *conf = mddev->private;
8b3e6cdc
DW
5338 if (conf)
5339 return sprintf(page, "%d\n", conf->bypass_threshold);
5340 else
5341 return 0;
5342}
5343
5344static ssize_t
fd01b88c 5345raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 5346{
d1688a6d 5347 struct r5conf *conf = mddev->private;
4ef197d8 5348 unsigned long new;
8b3e6cdc
DW
5349 if (len >= PAGE_SIZE)
5350 return -EINVAL;
5351 if (!conf)
5352 return -ENODEV;
5353
b29bebd6 5354 if (kstrtoul(page, 10, &new))
8b3e6cdc 5355 return -EINVAL;
4ef197d8 5356 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
5357 return -EINVAL;
5358 conf->bypass_threshold = new;
5359 return len;
5360}
5361
5362static struct md_sysfs_entry
5363raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5364 S_IRUGO | S_IWUSR,
5365 raid5_show_preread_threshold,
5366 raid5_store_preread_threshold);
5367
3f294f4f 5368static ssize_t
fd01b88c 5369stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 5370{
d1688a6d 5371 struct r5conf *conf = mddev->private;
96de1e66
N
5372 if (conf)
5373 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5374 else
5375 return 0;
3f294f4f
N
5376}
5377
96de1e66
N
5378static struct md_sysfs_entry
5379raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 5380
b721420e
SL
5381static ssize_t
5382raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5383{
5384 struct r5conf *conf = mddev->private;
5385 if (conf)
5386 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5387 else
5388 return 0;
5389}
5390
60aaf933 5391static int alloc_thread_groups(struct r5conf *conf, int cnt,
5392 int *group_cnt,
5393 int *worker_cnt_per_group,
5394 struct r5worker_group **worker_groups);
b721420e
SL
5395static ssize_t
5396raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5397{
5398 struct r5conf *conf = mddev->private;
5399 unsigned long new;
5400 int err;
60aaf933 5401 struct r5worker_group *new_groups, *old_groups;
5402 int group_cnt, worker_cnt_per_group;
b721420e
SL
5403
5404 if (len >= PAGE_SIZE)
5405 return -EINVAL;
5406 if (!conf)
5407 return -ENODEV;
5408
5409 if (kstrtoul(page, 10, &new))
5410 return -EINVAL;
5411
5412 if (new == conf->worker_cnt_per_group)
5413 return len;
5414
5415 mddev_suspend(mddev);
5416
5417 old_groups = conf->worker_groups;
d206dcfa 5418 if (old_groups)
5419 flush_workqueue(raid5_wq);
5420
60aaf933 5421 err = alloc_thread_groups(conf, new,
5422 &group_cnt, &worker_cnt_per_group,
5423 &new_groups);
5424 if (!err) {
5425 spin_lock_irq(&conf->device_lock);
5426 conf->group_cnt = group_cnt;
5427 conf->worker_cnt_per_group = worker_cnt_per_group;
5428 conf->worker_groups = new_groups;
5429 spin_unlock_irq(&conf->device_lock);
b721420e 5430
b721420e
SL
5431 if (old_groups)
5432 kfree(old_groups[0].workers);
5433 kfree(old_groups);
5434 }
5435
5436 mddev_resume(mddev);
5437
5438 if (err)
5439 return err;
5440 return len;
5441}
5442
5443static struct md_sysfs_entry
5444raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5445 raid5_show_group_thread_cnt,
5446 raid5_store_group_thread_cnt);
5447
007583c9 5448static struct attribute *raid5_attrs[] = {
3f294f4f
N
5449 &raid5_stripecache_size.attr,
5450 &raid5_stripecache_active.attr,
8b3e6cdc 5451 &raid5_preread_bypass_threshold.attr,
b721420e 5452 &raid5_group_thread_cnt.attr,
3f294f4f
N
5453 NULL,
5454};
007583c9
N
5455static struct attribute_group raid5_attrs_group = {
5456 .name = NULL,
5457 .attrs = raid5_attrs,
3f294f4f
N
5458};
5459
60aaf933 5460static int alloc_thread_groups(struct r5conf *conf, int cnt,
5461 int *group_cnt,
5462 int *worker_cnt_per_group,
5463 struct r5worker_group **worker_groups)
851c30c9 5464{
566c09c5 5465 int i, j, k;
851c30c9
SL
5466 ssize_t size;
5467 struct r5worker *workers;
5468
60aaf933 5469 *worker_cnt_per_group = cnt;
851c30c9 5470 if (cnt == 0) {
60aaf933 5471 *group_cnt = 0;
5472 *worker_groups = NULL;
851c30c9
SL
5473 return 0;
5474 }
60aaf933 5475 *group_cnt = num_possible_nodes();
851c30c9 5476 size = sizeof(struct r5worker) * cnt;
60aaf933 5477 workers = kzalloc(size * *group_cnt, GFP_NOIO);
5478 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5479 *group_cnt, GFP_NOIO);
5480 if (!*worker_groups || !workers) {
851c30c9 5481 kfree(workers);
60aaf933 5482 kfree(*worker_groups);
851c30c9
SL
5483 return -ENOMEM;
5484 }
5485
60aaf933 5486 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
5487 struct r5worker_group *group;
5488
0c775d52 5489 group = &(*worker_groups)[i];
851c30c9
SL
5490 INIT_LIST_HEAD(&group->handle_list);
5491 group->conf = conf;
5492 group->workers = workers + i * cnt;
5493
5494 for (j = 0; j < cnt; j++) {
566c09c5
SL
5495 struct r5worker *worker = group->workers + j;
5496 worker->group = group;
5497 INIT_WORK(&worker->work, raid5_do_work);
5498
5499 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5500 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
5501 }
5502 }
5503
5504 return 0;
5505}
5506
5507static void free_thread_groups(struct r5conf *conf)
5508{
5509 if (conf->worker_groups)
5510 kfree(conf->worker_groups[0].workers);
5511 kfree(conf->worker_groups);
5512 conf->worker_groups = NULL;
5513}
5514
80c3a6ce 5515static sector_t
fd01b88c 5516raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 5517{
d1688a6d 5518 struct r5conf *conf = mddev->private;
80c3a6ce
DW
5519
5520 if (!sectors)
5521 sectors = mddev->dev_sectors;
5e5e3e78 5522 if (!raid_disks)
7ec05478 5523 /* size is defined by the smallest of previous and new size */
5e5e3e78 5524 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 5525
9d8f0363 5526 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 5527 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
5528 return sectors * (raid_disks - conf->max_degraded);
5529}
5530
789b5e03
ON
5531static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5532{
5533 safe_put_page(percpu->spare_page);
5534 kfree(percpu->scribble);
5535 percpu->spare_page = NULL;
5536 percpu->scribble = NULL;
5537}
5538
5539static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5540{
5541 if (conf->level == 6 && !percpu->spare_page)
5542 percpu->spare_page = alloc_page(GFP_KERNEL);
5543 if (!percpu->scribble)
5544 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5545
5546 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5547 free_scratch_buffer(conf, percpu);
5548 return -ENOMEM;
5549 }
5550
5551 return 0;
5552}
5553
d1688a6d 5554static void raid5_free_percpu(struct r5conf *conf)
36d1c647 5555{
36d1c647
DW
5556 unsigned long cpu;
5557
5558 if (!conf->percpu)
5559 return;
5560
36d1c647
DW
5561#ifdef CONFIG_HOTPLUG_CPU
5562 unregister_cpu_notifier(&conf->cpu_notify);
5563#endif
789b5e03
ON
5564
5565 get_online_cpus();
5566 for_each_possible_cpu(cpu)
5567 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
5568 put_online_cpus();
5569
5570 free_percpu(conf->percpu);
5571}
5572
d1688a6d 5573static void free_conf(struct r5conf *conf)
95fc17aa 5574{
851c30c9 5575 free_thread_groups(conf);
95fc17aa 5576 shrink_stripes(conf);
36d1c647 5577 raid5_free_percpu(conf);
95fc17aa
DW
5578 kfree(conf->disks);
5579 kfree(conf->stripe_hashtbl);
5580 kfree(conf);
5581}
5582
36d1c647
DW
5583#ifdef CONFIG_HOTPLUG_CPU
5584static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5585 void *hcpu)
5586{
d1688a6d 5587 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
5588 long cpu = (long)hcpu;
5589 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5590
5591 switch (action) {
5592 case CPU_UP_PREPARE:
5593 case CPU_UP_PREPARE_FROZEN:
789b5e03 5594 if (alloc_scratch_buffer(conf, percpu)) {
36d1c647
DW
5595 pr_err("%s: failed memory allocation for cpu%ld\n",
5596 __func__, cpu);
55af6bb5 5597 return notifier_from_errno(-ENOMEM);
36d1c647
DW
5598 }
5599 break;
5600 case CPU_DEAD:
5601 case CPU_DEAD_FROZEN:
789b5e03 5602 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
5603 break;
5604 default:
5605 break;
5606 }
5607 return NOTIFY_OK;
5608}
5609#endif
5610
d1688a6d 5611static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
5612{
5613 unsigned long cpu;
789b5e03 5614 int err = 0;
36d1c647 5615
789b5e03
ON
5616 conf->percpu = alloc_percpu(struct raid5_percpu);
5617 if (!conf->percpu)
36d1c647 5618 return -ENOMEM;
789b5e03
ON
5619
5620#ifdef CONFIG_HOTPLUG_CPU
5621 conf->cpu_notify.notifier_call = raid456_cpu_notify;
5622 conf->cpu_notify.priority = 0;
5623 err = register_cpu_notifier(&conf->cpu_notify);
5624 if (err)
5625 return err;
5626#endif
36d1c647
DW
5627
5628 get_online_cpus();
36d1c647 5629 for_each_present_cpu(cpu) {
789b5e03
ON
5630 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5631 if (err) {
5632 pr_err("%s: failed memory allocation for cpu%ld\n",
5633 __func__, cpu);
36d1c647
DW
5634 break;
5635 }
36d1c647 5636 }
36d1c647
DW
5637 put_online_cpus();
5638
5639 return err;
5640}
5641
d1688a6d 5642static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 5643{
d1688a6d 5644 struct r5conf *conf;
5e5e3e78 5645 int raid_disk, memory, max_disks;
3cb03002 5646 struct md_rdev *rdev;
1da177e4 5647 struct disk_info *disk;
0232605d 5648 char pers_name[6];
566c09c5 5649 int i;
60aaf933 5650 int group_cnt, worker_cnt_per_group;
5651 struct r5worker_group *new_group;
1da177e4 5652
91adb564
N
5653 if (mddev->new_level != 5
5654 && mddev->new_level != 4
5655 && mddev->new_level != 6) {
0c55e022 5656 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
5657 mdname(mddev), mddev->new_level);
5658 return ERR_PTR(-EIO);
1da177e4 5659 }
91adb564
N
5660 if ((mddev->new_level == 5
5661 && !algorithm_valid_raid5(mddev->new_layout)) ||
5662 (mddev->new_level == 6
5663 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 5664 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
5665 mdname(mddev), mddev->new_layout);
5666 return ERR_PTR(-EIO);
99c0fb5f 5667 }
91adb564 5668 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 5669 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
5670 mdname(mddev), mddev->raid_disks);
5671 return ERR_PTR(-EINVAL);
4bbf3771
N
5672 }
5673
664e7c41
AN
5674 if (!mddev->new_chunk_sectors ||
5675 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5676 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
5677 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5678 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 5679 return ERR_PTR(-EINVAL);
f6705578
N
5680 }
5681
d1688a6d 5682 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 5683 if (conf == NULL)
1da177e4 5684 goto abort;
851c30c9 5685 /* Don't enable multi-threading by default*/
60aaf933 5686 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5687 &new_group)) {
5688 conf->group_cnt = group_cnt;
5689 conf->worker_cnt_per_group = worker_cnt_per_group;
5690 conf->worker_groups = new_group;
5691 } else
851c30c9 5692 goto abort;
f5efd45a 5693 spin_lock_init(&conf->device_lock);
c46501b2 5694 seqcount_init(&conf->gen_lock);
f5efd45a
DW
5695 init_waitqueue_head(&conf->wait_for_stripe);
5696 init_waitqueue_head(&conf->wait_for_overlap);
5697 INIT_LIST_HEAD(&conf->handle_list);
5698 INIT_LIST_HEAD(&conf->hold_list);
5699 INIT_LIST_HEAD(&conf->delayed_list);
5700 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 5701 init_llist_head(&conf->released_stripes);
f5efd45a
DW
5702 atomic_set(&conf->active_stripes, 0);
5703 atomic_set(&conf->preread_active_stripes, 0);
5704 atomic_set(&conf->active_aligned_reads, 0);
5705 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 5706 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
5707
5708 conf->raid_disks = mddev->raid_disks;
5709 if (mddev->reshape_position == MaxSector)
5710 conf->previous_raid_disks = mddev->raid_disks;
5711 else
f6705578 5712 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
5713 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5714 conf->scribble_len = scribble_len(max_disks);
f6705578 5715
5e5e3e78 5716 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
5717 GFP_KERNEL);
5718 if (!conf->disks)
5719 goto abort;
9ffae0cf 5720
1da177e4
LT
5721 conf->mddev = mddev;
5722
fccddba0 5723 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 5724 goto abort;
1da177e4 5725
566c09c5
SL
5726 /* We init hash_locks[0] separately to that it can be used
5727 * as the reference lock in the spin_lock_nest_lock() call
5728 * in lock_all_device_hash_locks_irq in order to convince
5729 * lockdep that we know what we are doing.
5730 */
5731 spin_lock_init(conf->hash_locks);
5732 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5733 spin_lock_init(conf->hash_locks + i);
5734
5735 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5736 INIT_LIST_HEAD(conf->inactive_list + i);
5737
5738 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5739 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5740
36d1c647
DW
5741 conf->level = mddev->new_level;
5742 if (raid5_alloc_percpu(conf) != 0)
5743 goto abort;
5744
0c55e022 5745 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 5746
dafb20fa 5747 rdev_for_each(rdev, mddev) {
1da177e4 5748 raid_disk = rdev->raid_disk;
5e5e3e78 5749 if (raid_disk >= max_disks
1da177e4
LT
5750 || raid_disk < 0)
5751 continue;
5752 disk = conf->disks + raid_disk;
5753
17045f52
N
5754 if (test_bit(Replacement, &rdev->flags)) {
5755 if (disk->replacement)
5756 goto abort;
5757 disk->replacement = rdev;
5758 } else {
5759 if (disk->rdev)
5760 goto abort;
5761 disk->rdev = rdev;
5762 }
1da177e4 5763
b2d444d7 5764 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 5765 char b[BDEVNAME_SIZE];
0c55e022
N
5766 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5767 " disk %d\n",
5768 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 5769 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
5770 /* Cannot rely on bitmap to complete recovery */
5771 conf->fullsync = 1;
1da177e4
LT
5772 }
5773
09c9e5fa 5774 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 5775 conf->level = mddev->new_level;
16a53ecc
N
5776 if (conf->level == 6)
5777 conf->max_degraded = 2;
5778 else
5779 conf->max_degraded = 1;
91adb564 5780 conf->algorithm = mddev->new_layout;
fef9c61f 5781 conf->reshape_progress = mddev->reshape_position;
e183eaed 5782 if (conf->reshape_progress != MaxSector) {
09c9e5fa 5783 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
5784 conf->prev_algo = mddev->layout;
5785 }
1da177e4 5786
91adb564 5787 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 5788 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 5789 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
566c09c5 5790 if (grow_stripes(conf, NR_STRIPES)) {
91adb564 5791 printk(KERN_ERR
0c55e022
N
5792 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5793 mdname(mddev), memory);
91adb564
N
5794 goto abort;
5795 } else
0c55e022
N
5796 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5797 mdname(mddev), memory);
1da177e4 5798
0232605d
N
5799 sprintf(pers_name, "raid%d", mddev->new_level);
5800 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
5801 if (!conf->thread) {
5802 printk(KERN_ERR
0c55e022 5803 "md/raid:%s: couldn't allocate thread.\n",
91adb564 5804 mdname(mddev));
16a53ecc
N
5805 goto abort;
5806 }
91adb564
N
5807
5808 return conf;
5809
5810 abort:
5811 if (conf) {
95fc17aa 5812 free_conf(conf);
91adb564
N
5813 return ERR_PTR(-EIO);
5814 } else
5815 return ERR_PTR(-ENOMEM);
5816}
5817
c148ffdc
N
5818
5819static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5820{
5821 switch (algo) {
5822 case ALGORITHM_PARITY_0:
5823 if (raid_disk < max_degraded)
5824 return 1;
5825 break;
5826 case ALGORITHM_PARITY_N:
5827 if (raid_disk >= raid_disks - max_degraded)
5828 return 1;
5829 break;
5830 case ALGORITHM_PARITY_0_6:
5831 if (raid_disk == 0 ||
5832 raid_disk == raid_disks - 1)
5833 return 1;
5834 break;
5835 case ALGORITHM_LEFT_ASYMMETRIC_6:
5836 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5837 case ALGORITHM_LEFT_SYMMETRIC_6:
5838 case ALGORITHM_RIGHT_SYMMETRIC_6:
5839 if (raid_disk == raid_disks - 1)
5840 return 1;
5841 }
5842 return 0;
5843}
5844
fd01b88c 5845static int run(struct mddev *mddev)
91adb564 5846{
d1688a6d 5847 struct r5conf *conf;
9f7c2220 5848 int working_disks = 0;
c148ffdc 5849 int dirty_parity_disks = 0;
3cb03002 5850 struct md_rdev *rdev;
c148ffdc 5851 sector_t reshape_offset = 0;
17045f52 5852 int i;
b5254dd5
N
5853 long long min_offset_diff = 0;
5854 int first = 1;
91adb564 5855
8c6ac868 5856 if (mddev->recovery_cp != MaxSector)
0c55e022 5857 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
5858 " -- starting background reconstruction\n",
5859 mdname(mddev));
b5254dd5
N
5860
5861 rdev_for_each(rdev, mddev) {
5862 long long diff;
5863 if (rdev->raid_disk < 0)
5864 continue;
5865 diff = (rdev->new_data_offset - rdev->data_offset);
5866 if (first) {
5867 min_offset_diff = diff;
5868 first = 0;
5869 } else if (mddev->reshape_backwards &&
5870 diff < min_offset_diff)
5871 min_offset_diff = diff;
5872 else if (!mddev->reshape_backwards &&
5873 diff > min_offset_diff)
5874 min_offset_diff = diff;
5875 }
5876
91adb564
N
5877 if (mddev->reshape_position != MaxSector) {
5878 /* Check that we can continue the reshape.
b5254dd5
N
5879 * Difficulties arise if the stripe we would write to
5880 * next is at or after the stripe we would read from next.
5881 * For a reshape that changes the number of devices, this
5882 * is only possible for a very short time, and mdadm makes
5883 * sure that time appears to have past before assembling
5884 * the array. So we fail if that time hasn't passed.
5885 * For a reshape that keeps the number of devices the same
5886 * mdadm must be monitoring the reshape can keeping the
5887 * critical areas read-only and backed up. It will start
5888 * the array in read-only mode, so we check for that.
91adb564
N
5889 */
5890 sector_t here_new, here_old;
5891 int old_disks;
18b00334 5892 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 5893
88ce4930 5894 if (mddev->new_level != mddev->level) {
0c55e022 5895 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
5896 "required - aborting.\n",
5897 mdname(mddev));
5898 return -EINVAL;
5899 }
91adb564
N
5900 old_disks = mddev->raid_disks - mddev->delta_disks;
5901 /* reshape_position must be on a new-stripe boundary, and one
5902 * further up in new geometry must map after here in old
5903 * geometry.
5904 */
5905 here_new = mddev->reshape_position;
664e7c41 5906 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 5907 (mddev->raid_disks - max_degraded))) {
0c55e022
N
5908 printk(KERN_ERR "md/raid:%s: reshape_position not "
5909 "on a stripe boundary\n", mdname(mddev));
91adb564
N
5910 return -EINVAL;
5911 }
c148ffdc 5912 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
5913 /* here_new is the stripe we will write to */
5914 here_old = mddev->reshape_position;
9d8f0363 5915 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
5916 (old_disks-max_degraded));
5917 /* here_old is the first stripe that we might need to read
5918 * from */
67ac6011 5919 if (mddev->delta_disks == 0) {
b5254dd5
N
5920 if ((here_new * mddev->new_chunk_sectors !=
5921 here_old * mddev->chunk_sectors)) {
5922 printk(KERN_ERR "md/raid:%s: reshape position is"
5923 " confused - aborting\n", mdname(mddev));
5924 return -EINVAL;
5925 }
67ac6011 5926 /* We cannot be sure it is safe to start an in-place
b5254dd5 5927 * reshape. It is only safe if user-space is monitoring
67ac6011
N
5928 * and taking constant backups.
5929 * mdadm always starts a situation like this in
5930 * readonly mode so it can take control before
5931 * allowing any writes. So just check for that.
5932 */
b5254dd5
N
5933 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5934 abs(min_offset_diff) >= mddev->new_chunk_sectors)
5935 /* not really in-place - so OK */;
5936 else if (mddev->ro == 0) {
5937 printk(KERN_ERR "md/raid:%s: in-place reshape "
5938 "must be started in read-only mode "
5939 "- aborting\n",
0c55e022 5940 mdname(mddev));
67ac6011
N
5941 return -EINVAL;
5942 }
2c810cdd 5943 } else if (mddev->reshape_backwards
b5254dd5 5944 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
67ac6011
N
5945 here_old * mddev->chunk_sectors)
5946 : (here_new * mddev->new_chunk_sectors >=
b5254dd5 5947 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
91adb564 5948 /* Reading from the same stripe as writing to - bad */
0c55e022
N
5949 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5950 "auto-recovery - aborting.\n",
5951 mdname(mddev));
91adb564
N
5952 return -EINVAL;
5953 }
0c55e022
N
5954 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5955 mdname(mddev));
91adb564
N
5956 /* OK, we should be able to continue; */
5957 } else {
5958 BUG_ON(mddev->level != mddev->new_level);
5959 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 5960 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 5961 BUG_ON(mddev->delta_disks != 0);
1da177e4 5962 }
91adb564 5963
245f46c2
N
5964 if (mddev->private == NULL)
5965 conf = setup_conf(mddev);
5966 else
5967 conf = mddev->private;
5968
91adb564
N
5969 if (IS_ERR(conf))
5970 return PTR_ERR(conf);
5971
b5254dd5 5972 conf->min_offset_diff = min_offset_diff;
91adb564
N
5973 mddev->thread = conf->thread;
5974 conf->thread = NULL;
5975 mddev->private = conf;
5976
17045f52
N
5977 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5978 i++) {
5979 rdev = conf->disks[i].rdev;
5980 if (!rdev && conf->disks[i].replacement) {
5981 /* The replacement is all we have yet */
5982 rdev = conf->disks[i].replacement;
5983 conf->disks[i].replacement = NULL;
5984 clear_bit(Replacement, &rdev->flags);
5985 conf->disks[i].rdev = rdev;
5986 }
5987 if (!rdev)
c148ffdc 5988 continue;
17045f52
N
5989 if (conf->disks[i].replacement &&
5990 conf->reshape_progress != MaxSector) {
5991 /* replacements and reshape simply do not mix. */
5992 printk(KERN_ERR "md: cannot handle concurrent "
5993 "replacement and reshape.\n");
5994 goto abort;
5995 }
2f115882 5996 if (test_bit(In_sync, &rdev->flags)) {
91adb564 5997 working_disks++;
2f115882
N
5998 continue;
5999 }
c148ffdc
N
6000 /* This disc is not fully in-sync. However if it
6001 * just stored parity (beyond the recovery_offset),
6002 * when we don't need to be concerned about the
6003 * array being dirty.
6004 * When reshape goes 'backwards', we never have
6005 * partially completed devices, so we only need
6006 * to worry about reshape going forwards.
6007 */
6008 /* Hack because v0.91 doesn't store recovery_offset properly. */
6009 if (mddev->major_version == 0 &&
6010 mddev->minor_version > 90)
6011 rdev->recovery_offset = reshape_offset;
5026d7a9 6012
c148ffdc
N
6013 if (rdev->recovery_offset < reshape_offset) {
6014 /* We need to check old and new layout */
6015 if (!only_parity(rdev->raid_disk,
6016 conf->algorithm,
6017 conf->raid_disks,
6018 conf->max_degraded))
6019 continue;
6020 }
6021 if (!only_parity(rdev->raid_disk,
6022 conf->prev_algo,
6023 conf->previous_raid_disks,
6024 conf->max_degraded))
6025 continue;
6026 dirty_parity_disks++;
6027 }
91adb564 6028
17045f52
N
6029 /*
6030 * 0 for a fully functional array, 1 or 2 for a degraded array.
6031 */
908f4fbd 6032 mddev->degraded = calc_degraded(conf);
91adb564 6033
674806d6 6034 if (has_failed(conf)) {
0c55e022 6035 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 6036 " (%d/%d failed)\n",
02c2de8c 6037 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
6038 goto abort;
6039 }
6040
91adb564 6041 /* device size must be a multiple of chunk size */
9d8f0363 6042 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
6043 mddev->resync_max_sectors = mddev->dev_sectors;
6044
c148ffdc 6045 if (mddev->degraded > dirty_parity_disks &&
1da177e4 6046 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
6047 if (mddev->ok_start_degraded)
6048 printk(KERN_WARNING
0c55e022
N
6049 "md/raid:%s: starting dirty degraded array"
6050 " - data corruption possible.\n",
6ff8d8ec
N
6051 mdname(mddev));
6052 else {
6053 printk(KERN_ERR
0c55e022 6054 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
6055 mdname(mddev));
6056 goto abort;
6057 }
1da177e4
LT
6058 }
6059
1da177e4 6060 if (mddev->degraded == 0)
0c55e022
N
6061 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6062 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
6063 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6064 mddev->new_layout);
1da177e4 6065 else
0c55e022
N
6066 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6067 " out of %d devices, algorithm %d\n",
6068 mdname(mddev), conf->level,
6069 mddev->raid_disks - mddev->degraded,
6070 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
6071
6072 print_raid5_conf(conf);
6073
fef9c61f 6074 if (conf->reshape_progress != MaxSector) {
fef9c61f 6075 conf->reshape_safe = conf->reshape_progress;
f6705578
N
6076 atomic_set(&conf->reshape_stripes, 0);
6077 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6078 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6079 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6080 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6081 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6082 "reshape");
f6705578
N
6083 }
6084
1da177e4
LT
6085
6086 /* Ok, everything is just fine now */
a64c876f
N
6087 if (mddev->to_remove == &raid5_attrs_group)
6088 mddev->to_remove = NULL;
00bcb4ac
N
6089 else if (mddev->kobj.sd &&
6090 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 6091 printk(KERN_WARNING
4a5add49 6092 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 6093 mdname(mddev));
4a5add49 6094 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 6095
4a5add49 6096 if (mddev->queue) {
9f7c2220 6097 int chunk_size;
620125f2 6098 bool discard_supported = true;
4a5add49
N
6099 /* read-ahead size must cover two whole stripes, which
6100 * is 2 * (datadisks) * chunksize where 'n' is the
6101 * number of raid devices
6102 */
6103 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6104 int stripe = data_disks *
6105 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6106 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6107 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 6108
4a5add49 6109 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
f022b2fd 6110
11d8a6e3
N
6111 mddev->queue->backing_dev_info.congested_data = mddev;
6112 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
7a5febe9 6113
9f7c2220
N
6114 chunk_size = mddev->chunk_sectors << 9;
6115 blk_queue_io_min(mddev->queue, chunk_size);
6116 blk_queue_io_opt(mddev->queue, chunk_size *
6117 (conf->raid_disks - conf->max_degraded));
c78afc62 6118 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
6119 /*
6120 * We can only discard a whole stripe. It doesn't make sense to
6121 * discard data disk but write parity disk
6122 */
6123 stripe = stripe * PAGE_SIZE;
4ac6875e
N
6124 /* Round up to power of 2, as discard handling
6125 * currently assumes that */
6126 while ((stripe-1) & stripe)
6127 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
6128 mddev->queue->limits.discard_alignment = stripe;
6129 mddev->queue->limits.discard_granularity = stripe;
6130 /*
6131 * unaligned part of discard request will be ignored, so can't
6132 * guarantee discard_zerors_data
6133 */
6134 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 6135
5026d7a9
PA
6136 blk_queue_max_write_same_sectors(mddev->queue, 0);
6137
05616be5 6138 rdev_for_each(rdev, mddev) {
9f7c2220
N
6139 disk_stack_limits(mddev->gendisk, rdev->bdev,
6140 rdev->data_offset << 9);
05616be5
N
6141 disk_stack_limits(mddev->gendisk, rdev->bdev,
6142 rdev->new_data_offset << 9);
620125f2
SL
6143 /*
6144 * discard_zeroes_data is required, otherwise data
6145 * could be lost. Consider a scenario: discard a stripe
6146 * (the stripe could be inconsistent if
6147 * discard_zeroes_data is 0); write one disk of the
6148 * stripe (the stripe could be inconsistent again
6149 * depending on which disks are used to calculate
6150 * parity); the disk is broken; The stripe data of this
6151 * disk is lost.
6152 */
6153 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6154 !bdev_get_queue(rdev->bdev)->
6155 limits.discard_zeroes_data)
6156 discard_supported = false;
05616be5 6157 }
620125f2
SL
6158
6159 if (discard_supported &&
6160 mddev->queue->limits.max_discard_sectors >= stripe &&
6161 mddev->queue->limits.discard_granularity >= stripe)
6162 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6163 mddev->queue);
6164 else
6165 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6166 mddev->queue);
9f7c2220 6167 }
23032a0e 6168
1da177e4
LT
6169 return 0;
6170abort:
01f96c0a 6171 md_unregister_thread(&mddev->thread);
e4f869d9
N
6172 print_raid5_conf(conf);
6173 free_conf(conf);
1da177e4 6174 mddev->private = NULL;
0c55e022 6175 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
6176 return -EIO;
6177}
6178
fd01b88c 6179static int stop(struct mddev *mddev)
1da177e4 6180{
d1688a6d 6181 struct r5conf *conf = mddev->private;
1da177e4 6182
01f96c0a 6183 md_unregister_thread(&mddev->thread);
11d8a6e3
N
6184 if (mddev->queue)
6185 mddev->queue->backing_dev_info.congested_fn = NULL;
95fc17aa 6186 free_conf(conf);
a64c876f
N
6187 mddev->private = NULL;
6188 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
6189 return 0;
6190}
6191
fd01b88c 6192static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 6193{
d1688a6d 6194 struct r5conf *conf = mddev->private;
1da177e4
LT
6195 int i;
6196
9d8f0363
AN
6197 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6198 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 6199 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
6200 for (i = 0; i < conf->raid_disks; i++)
6201 seq_printf (seq, "%s",
6202 conf->disks[i].rdev &&
b2d444d7 6203 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 6204 seq_printf (seq, "]");
1da177e4
LT
6205}
6206
d1688a6d 6207static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
6208{
6209 int i;
6210 struct disk_info *tmp;
6211
0c55e022 6212 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
6213 if (!conf) {
6214 printk("(conf==NULL)\n");
6215 return;
6216 }
0c55e022
N
6217 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6218 conf->raid_disks,
6219 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
6220
6221 for (i = 0; i < conf->raid_disks; i++) {
6222 char b[BDEVNAME_SIZE];
6223 tmp = conf->disks + i;
6224 if (tmp->rdev)
0c55e022
N
6225 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6226 i, !test_bit(Faulty, &tmp->rdev->flags),
6227 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
6228 }
6229}
6230
fd01b88c 6231static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
6232{
6233 int i;
d1688a6d 6234 struct r5conf *conf = mddev->private;
1da177e4 6235 struct disk_info *tmp;
6b965620
N
6236 int count = 0;
6237 unsigned long flags;
1da177e4
LT
6238
6239 for (i = 0; i < conf->raid_disks; i++) {
6240 tmp = conf->disks + i;
dd054fce
N
6241 if (tmp->replacement
6242 && tmp->replacement->recovery_offset == MaxSector
6243 && !test_bit(Faulty, &tmp->replacement->flags)
6244 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6245 /* Replacement has just become active. */
6246 if (!tmp->rdev
6247 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6248 count++;
6249 if (tmp->rdev) {
6250 /* Replaced device not technically faulty,
6251 * but we need to be sure it gets removed
6252 * and never re-added.
6253 */
6254 set_bit(Faulty, &tmp->rdev->flags);
6255 sysfs_notify_dirent_safe(
6256 tmp->rdev->sysfs_state);
6257 }
6258 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6259 } else if (tmp->rdev
70fffd0b 6260 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 6261 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 6262 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 6263 count++;
43c73ca4 6264 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
6265 }
6266 }
6b965620 6267 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 6268 mddev->degraded = calc_degraded(conf);
6b965620 6269 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 6270 print_raid5_conf(conf);
6b965620 6271 return count;
1da177e4
LT
6272}
6273
b8321b68 6274static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 6275{
d1688a6d 6276 struct r5conf *conf = mddev->private;
1da177e4 6277 int err = 0;
b8321b68 6278 int number = rdev->raid_disk;
657e3e4d 6279 struct md_rdev **rdevp;
1da177e4
LT
6280 struct disk_info *p = conf->disks + number;
6281
6282 print_raid5_conf(conf);
657e3e4d
N
6283 if (rdev == p->rdev)
6284 rdevp = &p->rdev;
6285 else if (rdev == p->replacement)
6286 rdevp = &p->replacement;
6287 else
6288 return 0;
6289
6290 if (number >= conf->raid_disks &&
6291 conf->reshape_progress == MaxSector)
6292 clear_bit(In_sync, &rdev->flags);
6293
6294 if (test_bit(In_sync, &rdev->flags) ||
6295 atomic_read(&rdev->nr_pending)) {
6296 err = -EBUSY;
6297 goto abort;
6298 }
6299 /* Only remove non-faulty devices if recovery
6300 * isn't possible.
6301 */
6302 if (!test_bit(Faulty, &rdev->flags) &&
6303 mddev->recovery_disabled != conf->recovery_disabled &&
6304 !has_failed(conf) &&
dd054fce 6305 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
6306 number < conf->raid_disks) {
6307 err = -EBUSY;
6308 goto abort;
6309 }
6310 *rdevp = NULL;
6311 synchronize_rcu();
6312 if (atomic_read(&rdev->nr_pending)) {
6313 /* lost the race, try later */
6314 err = -EBUSY;
6315 *rdevp = rdev;
dd054fce
N
6316 } else if (p->replacement) {
6317 /* We must have just cleared 'rdev' */
6318 p->rdev = p->replacement;
6319 clear_bit(Replacement, &p->replacement->flags);
6320 smp_mb(); /* Make sure other CPUs may see both as identical
6321 * but will never see neither - if they are careful
6322 */
6323 p->replacement = NULL;
6324 clear_bit(WantReplacement, &rdev->flags);
6325 } else
6326 /* We might have just removed the Replacement as faulty-
6327 * clear the bit just in case
6328 */
6329 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
6330abort:
6331
6332 print_raid5_conf(conf);
6333 return err;
6334}
6335
fd01b88c 6336static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 6337{
d1688a6d 6338 struct r5conf *conf = mddev->private;
199050ea 6339 int err = -EEXIST;
1da177e4
LT
6340 int disk;
6341 struct disk_info *p;
6c2fce2e
NB
6342 int first = 0;
6343 int last = conf->raid_disks - 1;
1da177e4 6344
7f0da59b
N
6345 if (mddev->recovery_disabled == conf->recovery_disabled)
6346 return -EBUSY;
6347
dc10c643 6348 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 6349 /* no point adding a device */
199050ea 6350 return -EINVAL;
1da177e4 6351
6c2fce2e
NB
6352 if (rdev->raid_disk >= 0)
6353 first = last = rdev->raid_disk;
1da177e4
LT
6354
6355 /*
16a53ecc
N
6356 * find the disk ... but prefer rdev->saved_raid_disk
6357 * if possible.
1da177e4 6358 */
16a53ecc 6359 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 6360 rdev->saved_raid_disk >= first &&
16a53ecc 6361 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
6362 first = rdev->saved_raid_disk;
6363
6364 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
6365 p = conf->disks + disk;
6366 if (p->rdev == NULL) {
b2d444d7 6367 clear_bit(In_sync, &rdev->flags);
1da177e4 6368 rdev->raid_disk = disk;
199050ea 6369 err = 0;
72626685
N
6370 if (rdev->saved_raid_disk != disk)
6371 conf->fullsync = 1;
d6065f7b 6372 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 6373 goto out;
1da177e4 6374 }
5cfb22a1
N
6375 }
6376 for (disk = first; disk <= last; disk++) {
6377 p = conf->disks + disk;
7bfec5f3
N
6378 if (test_bit(WantReplacement, &p->rdev->flags) &&
6379 p->replacement == NULL) {
6380 clear_bit(In_sync, &rdev->flags);
6381 set_bit(Replacement, &rdev->flags);
6382 rdev->raid_disk = disk;
6383 err = 0;
6384 conf->fullsync = 1;
6385 rcu_assign_pointer(p->replacement, rdev);
6386 break;
6387 }
6388 }
5cfb22a1 6389out:
1da177e4 6390 print_raid5_conf(conf);
199050ea 6391 return err;
1da177e4
LT
6392}
6393
fd01b88c 6394static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
6395{
6396 /* no resync is happening, and there is enough space
6397 * on all devices, so we can resize.
6398 * We need to make sure resync covers any new space.
6399 * If the array is shrinking we should possibly wait until
6400 * any io in the removed space completes, but it hardly seems
6401 * worth it.
6402 */
a4a6125a 6403 sector_t newsize;
9d8f0363 6404 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
a4a6125a
N
6405 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6406 if (mddev->external_size &&
6407 mddev->array_sectors > newsize)
b522adcd 6408 return -EINVAL;
a4a6125a
N
6409 if (mddev->bitmap) {
6410 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6411 if (ret)
6412 return ret;
6413 }
6414 md_set_array_sectors(mddev, newsize);
f233ea5c 6415 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 6416 revalidate_disk(mddev->gendisk);
b098636c
N
6417 if (sectors > mddev->dev_sectors &&
6418 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 6419 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
6420 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6421 }
58c0fed4 6422 mddev->dev_sectors = sectors;
4b5c7ae8 6423 mddev->resync_max_sectors = sectors;
1da177e4
LT
6424 return 0;
6425}
6426
fd01b88c 6427static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
6428{
6429 /* Can only proceed if there are plenty of stripe_heads.
6430 * We need a minimum of one full stripe,, and for sensible progress
6431 * it is best to have about 4 times that.
6432 * If we require 4 times, then the default 256 4K stripe_heads will
6433 * allow for chunk sizes up to 256K, which is probably OK.
6434 * If the chunk size is greater, user-space should request more
6435 * stripe_heads first.
6436 */
d1688a6d 6437 struct r5conf *conf = mddev->private;
01ee22b4
N
6438 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6439 > conf->max_nr_stripes ||
6440 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6441 > conf->max_nr_stripes) {
0c55e022
N
6442 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
6443 mdname(mddev),
01ee22b4
N
6444 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6445 / STRIPE_SIZE)*4);
6446 return 0;
6447 }
6448 return 1;
6449}
6450
fd01b88c 6451static int check_reshape(struct mddev *mddev)
29269553 6452{
d1688a6d 6453 struct r5conf *conf = mddev->private;
29269553 6454
88ce4930
N
6455 if (mddev->delta_disks == 0 &&
6456 mddev->new_layout == mddev->layout &&
664e7c41 6457 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 6458 return 0; /* nothing to do */
674806d6 6459 if (has_failed(conf))
ec32a2bd 6460 return -EINVAL;
fdcfbbb6 6461 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
6462 /* We might be able to shrink, but the devices must
6463 * be made bigger first.
6464 * For raid6, 4 is the minimum size.
6465 * Otherwise 2 is the minimum
6466 */
6467 int min = 2;
6468 if (mddev->level == 6)
6469 min = 4;
6470 if (mddev->raid_disks + mddev->delta_disks < min)
6471 return -EINVAL;
6472 }
29269553 6473
01ee22b4 6474 if (!check_stripe_cache(mddev))
29269553 6475 return -ENOSPC;
29269553 6476
e56108d6
N
6477 return resize_stripes(conf, (conf->previous_raid_disks
6478 + mddev->delta_disks));
63c70c4f
N
6479}
6480
fd01b88c 6481static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 6482{
d1688a6d 6483 struct r5conf *conf = mddev->private;
3cb03002 6484 struct md_rdev *rdev;
63c70c4f 6485 int spares = 0;
c04be0aa 6486 unsigned long flags;
63c70c4f 6487
f416885e 6488 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
6489 return -EBUSY;
6490
01ee22b4
N
6491 if (!check_stripe_cache(mddev))
6492 return -ENOSPC;
6493
30b67645
N
6494 if (has_failed(conf))
6495 return -EINVAL;
6496
c6563a8c 6497 rdev_for_each(rdev, mddev) {
469518a3
N
6498 if (!test_bit(In_sync, &rdev->flags)
6499 && !test_bit(Faulty, &rdev->flags))
29269553 6500 spares++;
c6563a8c 6501 }
63c70c4f 6502
f416885e 6503 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
6504 /* Not enough devices even to make a degraded array
6505 * of that size
6506 */
6507 return -EINVAL;
6508
ec32a2bd
N
6509 /* Refuse to reduce size of the array. Any reductions in
6510 * array size must be through explicit setting of array_size
6511 * attribute.
6512 */
6513 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6514 < mddev->array_sectors) {
0c55e022 6515 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
6516 "before number of disks\n", mdname(mddev));
6517 return -EINVAL;
6518 }
6519
f6705578 6520 atomic_set(&conf->reshape_stripes, 0);
29269553 6521 spin_lock_irq(&conf->device_lock);
c46501b2 6522 write_seqcount_begin(&conf->gen_lock);
29269553 6523 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 6524 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
6525 conf->prev_chunk_sectors = conf->chunk_sectors;
6526 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
6527 conf->prev_algo = conf->algorithm;
6528 conf->algorithm = mddev->new_layout;
05616be5
N
6529 conf->generation++;
6530 /* Code that selects data_offset needs to see the generation update
6531 * if reshape_progress has been set - so a memory barrier needed.
6532 */
6533 smp_mb();
2c810cdd 6534 if (mddev->reshape_backwards)
fef9c61f
N
6535 conf->reshape_progress = raid5_size(mddev, 0, 0);
6536 else
6537 conf->reshape_progress = 0;
6538 conf->reshape_safe = conf->reshape_progress;
c46501b2 6539 write_seqcount_end(&conf->gen_lock);
29269553
N
6540 spin_unlock_irq(&conf->device_lock);
6541
4d77e3ba
N
6542 /* Now make sure any requests that proceeded on the assumption
6543 * the reshape wasn't running - like Discard or Read - have
6544 * completed.
6545 */
6546 mddev_suspend(mddev);
6547 mddev_resume(mddev);
6548
29269553
N
6549 /* Add some new drives, as many as will fit.
6550 * We know there are enough to make the newly sized array work.
3424bf6a
N
6551 * Don't add devices if we are reducing the number of
6552 * devices in the array. This is because it is not possible
6553 * to correctly record the "partially reconstructed" state of
6554 * such devices during the reshape and confusion could result.
29269553 6555 */
87a8dec9 6556 if (mddev->delta_disks >= 0) {
dafb20fa 6557 rdev_for_each(rdev, mddev)
87a8dec9
N
6558 if (rdev->raid_disk < 0 &&
6559 !test_bit(Faulty, &rdev->flags)) {
6560 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 6561 if (rdev->raid_disk
9d4c7d87 6562 >= conf->previous_raid_disks)
87a8dec9 6563 set_bit(In_sync, &rdev->flags);
9d4c7d87 6564 else
87a8dec9 6565 rdev->recovery_offset = 0;
36fad858
NK
6566
6567 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 6568 /* Failure here is OK */;
50da0840 6569 }
87a8dec9
N
6570 } else if (rdev->raid_disk >= conf->previous_raid_disks
6571 && !test_bit(Faulty, &rdev->flags)) {
6572 /* This is a spare that was manually added */
6573 set_bit(In_sync, &rdev->flags);
87a8dec9 6574 }
29269553 6575
87a8dec9
N
6576 /* When a reshape changes the number of devices,
6577 * ->degraded is measured against the larger of the
6578 * pre and post number of devices.
6579 */
ec32a2bd 6580 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 6581 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
6582 spin_unlock_irqrestore(&conf->device_lock, flags);
6583 }
63c70c4f 6584 mddev->raid_disks = conf->raid_disks;
e516402c 6585 mddev->reshape_position = conf->reshape_progress;
850b2b42 6586 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 6587
29269553
N
6588 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6589 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6590 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6591 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6592 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6593 "reshape");
29269553
N
6594 if (!mddev->sync_thread) {
6595 mddev->recovery = 0;
6596 spin_lock_irq(&conf->device_lock);
ba8805b9 6597 write_seqcount_begin(&conf->gen_lock);
29269553 6598 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
6599 mddev->new_chunk_sectors =
6600 conf->chunk_sectors = conf->prev_chunk_sectors;
6601 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
6602 rdev_for_each(rdev, mddev)
6603 rdev->new_data_offset = rdev->data_offset;
6604 smp_wmb();
ba8805b9 6605 conf->generation --;
fef9c61f 6606 conf->reshape_progress = MaxSector;
1e3fa9bd 6607 mddev->reshape_position = MaxSector;
ba8805b9 6608 write_seqcount_end(&conf->gen_lock);
29269553
N
6609 spin_unlock_irq(&conf->device_lock);
6610 return -EAGAIN;
6611 }
c8f517c4 6612 conf->reshape_checkpoint = jiffies;
29269553
N
6613 md_wakeup_thread(mddev->sync_thread);
6614 md_new_event(mddev);
6615 return 0;
6616}
29269553 6617
ec32a2bd
N
6618/* This is called from the reshape thread and should make any
6619 * changes needed in 'conf'
6620 */
d1688a6d 6621static void end_reshape(struct r5conf *conf)
29269553 6622{
29269553 6623
f6705578 6624 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 6625 struct md_rdev *rdev;
f6705578 6626
f6705578 6627 spin_lock_irq(&conf->device_lock);
cea9c228 6628 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
6629 rdev_for_each(rdev, conf->mddev)
6630 rdev->data_offset = rdev->new_data_offset;
6631 smp_wmb();
fef9c61f 6632 conf->reshape_progress = MaxSector;
f6705578 6633 spin_unlock_irq(&conf->device_lock);
b0f9ec04 6634 wake_up(&conf->wait_for_overlap);
16a53ecc
N
6635
6636 /* read-ahead size must cover two whole stripes, which is
6637 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6638 */
4a5add49 6639 if (conf->mddev->queue) {
cea9c228 6640 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 6641 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 6642 / PAGE_SIZE);
16a53ecc
N
6643 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6644 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6645 }
29269553 6646 }
29269553
N
6647}
6648
ec32a2bd
N
6649/* This is called from the raid5d thread with mddev_lock held.
6650 * It makes config changes to the device.
6651 */
fd01b88c 6652static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 6653{
d1688a6d 6654 struct r5conf *conf = mddev->private;
cea9c228
N
6655
6656 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6657
ec32a2bd
N
6658 if (mddev->delta_disks > 0) {
6659 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6660 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 6661 revalidate_disk(mddev->gendisk);
ec32a2bd
N
6662 } else {
6663 int d;
908f4fbd
N
6664 spin_lock_irq(&conf->device_lock);
6665 mddev->degraded = calc_degraded(conf);
6666 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
6667 for (d = conf->raid_disks ;
6668 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 6669 d++) {
3cb03002 6670 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
6671 if (rdev)
6672 clear_bit(In_sync, &rdev->flags);
6673 rdev = conf->disks[d].replacement;
6674 if (rdev)
6675 clear_bit(In_sync, &rdev->flags);
1a67dde0 6676 }
cea9c228 6677 }
88ce4930 6678 mddev->layout = conf->algorithm;
09c9e5fa 6679 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
6680 mddev->reshape_position = MaxSector;
6681 mddev->delta_disks = 0;
2c810cdd 6682 mddev->reshape_backwards = 0;
cea9c228
N
6683 }
6684}
6685
fd01b88c 6686static void raid5_quiesce(struct mddev *mddev, int state)
72626685 6687{
d1688a6d 6688 struct r5conf *conf = mddev->private;
72626685
N
6689
6690 switch(state) {
e464eafd
N
6691 case 2: /* resume for a suspend */
6692 wake_up(&conf->wait_for_overlap);
6693 break;
6694
72626685 6695 case 1: /* stop all writes */
566c09c5 6696 lock_all_device_hash_locks_irq(conf);
64bd660b
N
6697 /* '2' tells resync/reshape to pause so that all
6698 * active stripes can drain
6699 */
6700 conf->quiesce = 2;
566c09c5 6701 wait_event_cmd(conf->wait_for_stripe,
46031f9a
RBJ
6702 atomic_read(&conf->active_stripes) == 0 &&
6703 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
6704 unlock_all_device_hash_locks_irq(conf),
6705 lock_all_device_hash_locks_irq(conf));
64bd660b 6706 conf->quiesce = 1;
566c09c5 6707 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
6708 /* allow reshape to continue */
6709 wake_up(&conf->wait_for_overlap);
72626685
N
6710 break;
6711
6712 case 0: /* re-enable writes */
566c09c5 6713 lock_all_device_hash_locks_irq(conf);
72626685
N
6714 conf->quiesce = 0;
6715 wake_up(&conf->wait_for_stripe);
e464eafd 6716 wake_up(&conf->wait_for_overlap);
566c09c5 6717 unlock_all_device_hash_locks_irq(conf);
72626685
N
6718 break;
6719 }
72626685 6720}
b15c2e57 6721
d562b0c4 6722
fd01b88c 6723static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 6724{
e373ab10 6725 struct r0conf *raid0_conf = mddev->private;
d76c8420 6726 sector_t sectors;
54071b38 6727
f1b29bca 6728 /* for raid0 takeover only one zone is supported */
e373ab10 6729 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
6730 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6731 mdname(mddev));
f1b29bca
DW
6732 return ERR_PTR(-EINVAL);
6733 }
6734
e373ab10
N
6735 sectors = raid0_conf->strip_zone[0].zone_end;
6736 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 6737 mddev->dev_sectors = sectors;
f1b29bca 6738 mddev->new_level = level;
54071b38
TM
6739 mddev->new_layout = ALGORITHM_PARITY_N;
6740 mddev->new_chunk_sectors = mddev->chunk_sectors;
6741 mddev->raid_disks += 1;
6742 mddev->delta_disks = 1;
6743 /* make sure it will be not marked as dirty */
6744 mddev->recovery_cp = MaxSector;
6745
6746 return setup_conf(mddev);
6747}
6748
6749
fd01b88c 6750static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
6751{
6752 int chunksect;
6753
6754 if (mddev->raid_disks != 2 ||
6755 mddev->degraded > 1)
6756 return ERR_PTR(-EINVAL);
6757
6758 /* Should check if there are write-behind devices? */
6759
6760 chunksect = 64*2; /* 64K by default */
6761
6762 /* The array must be an exact multiple of chunksize */
6763 while (chunksect && (mddev->array_sectors & (chunksect-1)))
6764 chunksect >>= 1;
6765
6766 if ((chunksect<<9) < STRIPE_SIZE)
6767 /* array size does not allow a suitable chunk size */
6768 return ERR_PTR(-EINVAL);
6769
6770 mddev->new_level = 5;
6771 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 6772 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
6773
6774 return setup_conf(mddev);
6775}
6776
fd01b88c 6777static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
6778{
6779 int new_layout;
6780
6781 switch (mddev->layout) {
6782 case ALGORITHM_LEFT_ASYMMETRIC_6:
6783 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6784 break;
6785 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6786 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6787 break;
6788 case ALGORITHM_LEFT_SYMMETRIC_6:
6789 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6790 break;
6791 case ALGORITHM_RIGHT_SYMMETRIC_6:
6792 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6793 break;
6794 case ALGORITHM_PARITY_0_6:
6795 new_layout = ALGORITHM_PARITY_0;
6796 break;
6797 case ALGORITHM_PARITY_N:
6798 new_layout = ALGORITHM_PARITY_N;
6799 break;
6800 default:
6801 return ERR_PTR(-EINVAL);
6802 }
6803 mddev->new_level = 5;
6804 mddev->new_layout = new_layout;
6805 mddev->delta_disks = -1;
6806 mddev->raid_disks -= 1;
6807 return setup_conf(mddev);
6808}
6809
d562b0c4 6810
fd01b88c 6811static int raid5_check_reshape(struct mddev *mddev)
b3546035 6812{
88ce4930
N
6813 /* For a 2-drive array, the layout and chunk size can be changed
6814 * immediately as not restriping is needed.
6815 * For larger arrays we record the new value - after validation
6816 * to be used by a reshape pass.
b3546035 6817 */
d1688a6d 6818 struct r5conf *conf = mddev->private;
597a711b 6819 int new_chunk = mddev->new_chunk_sectors;
b3546035 6820
597a711b 6821 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
6822 return -EINVAL;
6823 if (new_chunk > 0) {
0ba459d2 6824 if (!is_power_of_2(new_chunk))
b3546035 6825 return -EINVAL;
597a711b 6826 if (new_chunk < (PAGE_SIZE>>9))
b3546035 6827 return -EINVAL;
597a711b 6828 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
6829 /* not factor of array size */
6830 return -EINVAL;
6831 }
6832
6833 /* They look valid */
6834
88ce4930 6835 if (mddev->raid_disks == 2) {
597a711b
N
6836 /* can make the change immediately */
6837 if (mddev->new_layout >= 0) {
6838 conf->algorithm = mddev->new_layout;
6839 mddev->layout = mddev->new_layout;
88ce4930
N
6840 }
6841 if (new_chunk > 0) {
597a711b
N
6842 conf->chunk_sectors = new_chunk ;
6843 mddev->chunk_sectors = new_chunk;
88ce4930
N
6844 }
6845 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6846 md_wakeup_thread(mddev->thread);
b3546035 6847 }
50ac168a 6848 return check_reshape(mddev);
88ce4930
N
6849}
6850
fd01b88c 6851static int raid6_check_reshape(struct mddev *mddev)
88ce4930 6852{
597a711b 6853 int new_chunk = mddev->new_chunk_sectors;
50ac168a 6854
597a711b 6855 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 6856 return -EINVAL;
b3546035 6857 if (new_chunk > 0) {
0ba459d2 6858 if (!is_power_of_2(new_chunk))
88ce4930 6859 return -EINVAL;
597a711b 6860 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 6861 return -EINVAL;
597a711b 6862 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
6863 /* not factor of array size */
6864 return -EINVAL;
b3546035 6865 }
88ce4930
N
6866
6867 /* They look valid */
50ac168a 6868 return check_reshape(mddev);
b3546035
N
6869}
6870
fd01b88c 6871static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
6872{
6873 /* raid5 can take over:
f1b29bca 6874 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
6875 * raid1 - if there are two drives. We need to know the chunk size
6876 * raid4 - trivial - just use a raid4 layout.
6877 * raid6 - Providing it is a *_6 layout
d562b0c4 6878 */
f1b29bca
DW
6879 if (mddev->level == 0)
6880 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
6881 if (mddev->level == 1)
6882 return raid5_takeover_raid1(mddev);
e9d4758f
N
6883 if (mddev->level == 4) {
6884 mddev->new_layout = ALGORITHM_PARITY_N;
6885 mddev->new_level = 5;
6886 return setup_conf(mddev);
6887 }
fc9739c6
N
6888 if (mddev->level == 6)
6889 return raid5_takeover_raid6(mddev);
d562b0c4
N
6890
6891 return ERR_PTR(-EINVAL);
6892}
6893
fd01b88c 6894static void *raid4_takeover(struct mddev *mddev)
a78d38a1 6895{
f1b29bca
DW
6896 /* raid4 can take over:
6897 * raid0 - if there is only one strip zone
6898 * raid5 - if layout is right
a78d38a1 6899 */
f1b29bca
DW
6900 if (mddev->level == 0)
6901 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
6902 if (mddev->level == 5 &&
6903 mddev->layout == ALGORITHM_PARITY_N) {
6904 mddev->new_layout = 0;
6905 mddev->new_level = 4;
6906 return setup_conf(mddev);
6907 }
6908 return ERR_PTR(-EINVAL);
6909}
d562b0c4 6910
84fc4b56 6911static struct md_personality raid5_personality;
245f46c2 6912
fd01b88c 6913static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
6914{
6915 /* Currently can only take over a raid5. We map the
6916 * personality to an equivalent raid6 personality
6917 * with the Q block at the end.
6918 */
6919 int new_layout;
6920
6921 if (mddev->pers != &raid5_personality)
6922 return ERR_PTR(-EINVAL);
6923 if (mddev->degraded > 1)
6924 return ERR_PTR(-EINVAL);
6925 if (mddev->raid_disks > 253)
6926 return ERR_PTR(-EINVAL);
6927 if (mddev->raid_disks < 3)
6928 return ERR_PTR(-EINVAL);
6929
6930 switch (mddev->layout) {
6931 case ALGORITHM_LEFT_ASYMMETRIC:
6932 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6933 break;
6934 case ALGORITHM_RIGHT_ASYMMETRIC:
6935 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6936 break;
6937 case ALGORITHM_LEFT_SYMMETRIC:
6938 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6939 break;
6940 case ALGORITHM_RIGHT_SYMMETRIC:
6941 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6942 break;
6943 case ALGORITHM_PARITY_0:
6944 new_layout = ALGORITHM_PARITY_0_6;
6945 break;
6946 case ALGORITHM_PARITY_N:
6947 new_layout = ALGORITHM_PARITY_N;
6948 break;
6949 default:
6950 return ERR_PTR(-EINVAL);
6951 }
6952 mddev->new_level = 6;
6953 mddev->new_layout = new_layout;
6954 mddev->delta_disks = 1;
6955 mddev->raid_disks += 1;
6956 return setup_conf(mddev);
6957}
6958
6959
84fc4b56 6960static struct md_personality raid6_personality =
16a53ecc
N
6961{
6962 .name = "raid6",
6963 .level = 6,
6964 .owner = THIS_MODULE,
6965 .make_request = make_request,
6966 .run = run,
6967 .stop = stop,
6968 .status = status,
6969 .error_handler = error,
6970 .hot_add_disk = raid5_add_disk,
6971 .hot_remove_disk= raid5_remove_disk,
6972 .spare_active = raid5_spare_active,
6973 .sync_request = sync_request,
6974 .resize = raid5_resize,
80c3a6ce 6975 .size = raid5_size,
50ac168a 6976 .check_reshape = raid6_check_reshape,
f416885e 6977 .start_reshape = raid5_start_reshape,
cea9c228 6978 .finish_reshape = raid5_finish_reshape,
16a53ecc 6979 .quiesce = raid5_quiesce,
245f46c2 6980 .takeover = raid6_takeover,
16a53ecc 6981};
84fc4b56 6982static struct md_personality raid5_personality =
1da177e4
LT
6983{
6984 .name = "raid5",
2604b703 6985 .level = 5,
1da177e4
LT
6986 .owner = THIS_MODULE,
6987 .make_request = make_request,
6988 .run = run,
6989 .stop = stop,
6990 .status = status,
6991 .error_handler = error,
6992 .hot_add_disk = raid5_add_disk,
6993 .hot_remove_disk= raid5_remove_disk,
6994 .spare_active = raid5_spare_active,
6995 .sync_request = sync_request,
6996 .resize = raid5_resize,
80c3a6ce 6997 .size = raid5_size,
63c70c4f
N
6998 .check_reshape = raid5_check_reshape,
6999 .start_reshape = raid5_start_reshape,
cea9c228 7000 .finish_reshape = raid5_finish_reshape,
72626685 7001 .quiesce = raid5_quiesce,
d562b0c4 7002 .takeover = raid5_takeover,
1da177e4
LT
7003};
7004
84fc4b56 7005static struct md_personality raid4_personality =
1da177e4 7006{
2604b703
N
7007 .name = "raid4",
7008 .level = 4,
7009 .owner = THIS_MODULE,
7010 .make_request = make_request,
7011 .run = run,
7012 .stop = stop,
7013 .status = status,
7014 .error_handler = error,
7015 .hot_add_disk = raid5_add_disk,
7016 .hot_remove_disk= raid5_remove_disk,
7017 .spare_active = raid5_spare_active,
7018 .sync_request = sync_request,
7019 .resize = raid5_resize,
80c3a6ce 7020 .size = raid5_size,
3d37890b
N
7021 .check_reshape = raid5_check_reshape,
7022 .start_reshape = raid5_start_reshape,
cea9c228 7023 .finish_reshape = raid5_finish_reshape,
2604b703 7024 .quiesce = raid5_quiesce,
a78d38a1 7025 .takeover = raid4_takeover,
2604b703
N
7026};
7027
7028static int __init raid5_init(void)
7029{
851c30c9
SL
7030 raid5_wq = alloc_workqueue("raid5wq",
7031 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7032 if (!raid5_wq)
7033 return -ENOMEM;
16a53ecc 7034 register_md_personality(&raid6_personality);
2604b703
N
7035 register_md_personality(&raid5_personality);
7036 register_md_personality(&raid4_personality);
7037 return 0;
1da177e4
LT
7038}
7039
2604b703 7040static void raid5_exit(void)
1da177e4 7041{
16a53ecc 7042 unregister_md_personality(&raid6_personality);
2604b703
N
7043 unregister_md_personality(&raid5_personality);
7044 unregister_md_personality(&raid4_personality);
851c30c9 7045 destroy_workqueue(raid5_wq);
1da177e4
LT
7046}
7047
7048module_init(raid5_init);
7049module_exit(raid5_exit);
7050MODULE_LICENSE("GPL");
0efb9e61 7051MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 7052MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
7053MODULE_ALIAS("md-raid5");
7054MODULE_ALIAS("md-raid4");
2604b703
N
7055MODULE_ALIAS("md-level-5");
7056MODULE_ALIAS("md-level-4");
16a53ecc
N
7057MODULE_ALIAS("md-personality-8"); /* RAID6 */
7058MODULE_ALIAS("md-raid6");
7059MODULE_ALIAS("md-level-6");
7060
7061/* This used to be two separate modules, they were: */
7062MODULE_ALIAS("raid5");
7063MODULE_ALIAS("raid6");