]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/md/raid5.c
block: trace completion of all bios.
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
3f07c014
IM
58#include <linux/sched/signal.h>
59
a9add5d9
N
60#include <trace/events/block.h>
61
43b2e5d8 62#include "md.h"
bff61975 63#include "raid5.h"
54071b38 64#include "raid0.h"
ef740c37 65#include "bitmap.h"
72626685 66
394ed8e4
SL
67#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
68
851c30c9
SL
69#define cpu_to_group(cpu) cpu_to_node(cpu)
70#define ANY_GROUP NUMA_NO_NODE
71
8e0e99ba
N
72static bool devices_handle_discard_safely = false;
73module_param(devices_handle_discard_safely, bool, 0644);
74MODULE_PARM_DESC(devices_handle_discard_safely,
75 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 76static struct workqueue_struct *raid5_wq;
1da177e4 77
d1688a6d 78static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
79{
80 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
81 return &conf->stripe_hashtbl[hash];
82}
1da177e4 83
566c09c5
SL
84static inline int stripe_hash_locks_hash(sector_t sect)
85{
86 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
87}
88
89static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
90{
91 spin_lock_irq(conf->hash_locks + hash);
92 spin_lock(&conf->device_lock);
93}
94
95static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
96{
97 spin_unlock(&conf->device_lock);
98 spin_unlock_irq(conf->hash_locks + hash);
99}
100
101static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
102{
103 int i;
104 local_irq_disable();
105 spin_lock(conf->hash_locks);
106 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
107 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
108 spin_lock(&conf->device_lock);
109}
110
111static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
112{
113 int i;
114 spin_unlock(&conf->device_lock);
115 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
116 spin_unlock(conf->hash_locks + i - 1);
117 local_irq_enable();
118}
119
d0dabf7e
N
120/* Find first data disk in a raid6 stripe */
121static inline int raid6_d0(struct stripe_head *sh)
122{
67cc2b81
N
123 if (sh->ddf_layout)
124 /* ddf always start from first device */
125 return 0;
126 /* md starts just after Q block */
d0dabf7e
N
127 if (sh->qd_idx == sh->disks - 1)
128 return 0;
129 else
130 return sh->qd_idx + 1;
131}
16a53ecc
N
132static inline int raid6_next_disk(int disk, int raid_disks)
133{
134 disk++;
135 return (disk < raid_disks) ? disk : 0;
136}
a4456856 137
d0dabf7e
N
138/* When walking through the disks in a raid5, starting at raid6_d0,
139 * We need to map each disk to a 'slot', where the data disks are slot
140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141 * is raid_disks-1. This help does that mapping.
142 */
67cc2b81
N
143static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144 int *count, int syndrome_disks)
d0dabf7e 145{
6629542e 146 int slot = *count;
67cc2b81 147
e4424fee 148 if (sh->ddf_layout)
6629542e 149 (*count)++;
d0dabf7e 150 if (idx == sh->pd_idx)
67cc2b81 151 return syndrome_disks;
d0dabf7e 152 if (idx == sh->qd_idx)
67cc2b81 153 return syndrome_disks + 1;
e4424fee 154 if (!sh->ddf_layout)
6629542e 155 (*count)++;
d0dabf7e
N
156 return slot;
157}
158
34a6f80e 159static void return_io(struct bio_list *return_bi)
a4456856 160{
34a6f80e
N
161 struct bio *bi;
162 while ((bi = bio_list_pop(return_bi)) != NULL) {
4f024f37 163 bi->bi_iter.bi_size = 0;
0a82a8d1
LT
164 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
165 bi, 0);
4246a0b6 166 bio_endio(bi);
a4456856
DW
167 }
168}
169
d1688a6d 170static void print_raid5_conf (struct r5conf *conf);
1da177e4 171
600aa109
DW
172static int stripe_operations_active(struct stripe_head *sh)
173{
174 return sh->check_state || sh->reconstruct_state ||
175 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
176 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
177}
178
851c30c9
SL
179static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
180{
181 struct r5conf *conf = sh->raid_conf;
182 struct r5worker_group *group;
bfc90cb0 183 int thread_cnt;
851c30c9
SL
184 int i, cpu = sh->cpu;
185
186 if (!cpu_online(cpu)) {
187 cpu = cpumask_any(cpu_online_mask);
188 sh->cpu = cpu;
189 }
190
191 if (list_empty(&sh->lru)) {
192 struct r5worker_group *group;
193 group = conf->worker_groups + cpu_to_group(cpu);
194 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
195 group->stripes_cnt++;
196 sh->group = group;
851c30c9
SL
197 }
198
199 if (conf->worker_cnt_per_group == 0) {
200 md_wakeup_thread(conf->mddev->thread);
201 return;
202 }
203
204 group = conf->worker_groups + cpu_to_group(sh->cpu);
205
bfc90cb0
SL
206 group->workers[0].working = true;
207 /* at least one worker should run to avoid race */
208 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209
210 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
211 /* wakeup more workers */
212 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
213 if (group->workers[i].working == false) {
214 group->workers[i].working = true;
215 queue_work_on(sh->cpu, raid5_wq,
216 &group->workers[i].work);
217 thread_cnt--;
218 }
219 }
851c30c9
SL
220}
221
566c09c5
SL
222static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
223 struct list_head *temp_inactive_list)
1da177e4 224{
1e6d690b
SL
225 int i;
226 int injournal = 0; /* number of date pages with R5_InJournal */
227
4eb788df
SL
228 BUG_ON(!list_empty(&sh->lru));
229 BUG_ON(atomic_read(&conf->active_stripes)==0);
1e6d690b
SL
230
231 if (r5c_is_writeback(conf->log))
232 for (i = sh->disks; i--; )
233 if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 injournal++;
a39f7afd
SL
235 /*
236 * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with
237 * data in journal, so they are not released to cached lists
238 */
239 if (conf->quiesce && r5c_is_writeback(conf->log) &&
240 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0) {
241 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
242 r5c_make_stripe_write_out(sh);
243 set_bit(STRIPE_HANDLE, &sh->state);
244 }
1e6d690b 245
4eb788df
SL
246 if (test_bit(STRIPE_HANDLE, &sh->state)) {
247 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 248 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 249 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 250 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
251 sh->bm_seq - conf->seq_write > 0)
252 list_add_tail(&sh->lru, &conf->bitmap_list);
253 else {
254 clear_bit(STRIPE_DELAYED, &sh->state);
255 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9
SL
256 if (conf->worker_cnt_per_group == 0) {
257 list_add_tail(&sh->lru, &conf->handle_list);
258 } else {
259 raid5_wakeup_stripe_thread(sh);
260 return;
261 }
4eb788df
SL
262 }
263 md_wakeup_thread(conf->mddev->thread);
264 } else {
265 BUG_ON(stripe_operations_active(sh));
266 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
267 if (atomic_dec_return(&conf->preread_active_stripes)
268 < IO_THRESHOLD)
269 md_wakeup_thread(conf->mddev->thread);
270 atomic_dec(&conf->active_stripes);
1e6d690b
SL
271 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
272 if (!r5c_is_writeback(conf->log))
273 list_add_tail(&sh->lru, temp_inactive_list);
274 else {
275 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
276 if (injournal == 0)
277 list_add_tail(&sh->lru, temp_inactive_list);
278 else if (injournal == conf->raid_disks - conf->max_degraded) {
279 /* full stripe */
280 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
281 atomic_inc(&conf->r5c_cached_full_stripes);
282 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
283 atomic_dec(&conf->r5c_cached_partial_stripes);
284 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
a39f7afd 285 r5c_check_cached_full_stripe(conf);
03b047f4
SL
286 } else
287 /*
288 * STRIPE_R5C_PARTIAL_STRIPE is set in
289 * r5c_try_caching_write(). No need to
290 * set it again.
291 */
1e6d690b 292 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
1e6d690b
SL
293 }
294 }
1da177e4
LT
295 }
296}
d0dabf7e 297
566c09c5
SL
298static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
299 struct list_head *temp_inactive_list)
4eb788df
SL
300{
301 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
302 do_release_stripe(conf, sh, temp_inactive_list);
303}
304
305/*
306 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
307 *
308 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
309 * given time. Adding stripes only takes device lock, while deleting stripes
310 * only takes hash lock.
311 */
312static void release_inactive_stripe_list(struct r5conf *conf,
313 struct list_head *temp_inactive_list,
314 int hash)
315{
316 int size;
6ab2a4b8 317 bool do_wakeup = false;
566c09c5
SL
318 unsigned long flags;
319
320 if (hash == NR_STRIPE_HASH_LOCKS) {
321 size = NR_STRIPE_HASH_LOCKS;
322 hash = NR_STRIPE_HASH_LOCKS - 1;
323 } else
324 size = 1;
325 while (size) {
326 struct list_head *list = &temp_inactive_list[size - 1];
327
328 /*
6d036f7d 329 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
330 * remove stripes from the list
331 */
332 if (!list_empty_careful(list)) {
333 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
334 if (list_empty(conf->inactive_list + hash) &&
335 !list_empty(list))
336 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 337 list_splice_tail_init(list, conf->inactive_list + hash);
6ab2a4b8 338 do_wakeup = true;
566c09c5
SL
339 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
340 }
341 size--;
342 hash--;
343 }
344
345 if (do_wakeup) {
6ab2a4b8 346 wake_up(&conf->wait_for_stripe);
b1b46486
YL
347 if (atomic_read(&conf->active_stripes) == 0)
348 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
349 if (conf->retry_read_aligned)
350 md_wakeup_thread(conf->mddev->thread);
351 }
4eb788df
SL
352}
353
773ca82f 354/* should hold conf->device_lock already */
566c09c5
SL
355static int release_stripe_list(struct r5conf *conf,
356 struct list_head *temp_inactive_list)
773ca82f 357{
eae8263f 358 struct stripe_head *sh, *t;
773ca82f
SL
359 int count = 0;
360 struct llist_node *head;
361
362 head = llist_del_all(&conf->released_stripes);
d265d9dc 363 head = llist_reverse_order(head);
eae8263f 364 llist_for_each_entry_safe(sh, t, head, release_list) {
566c09c5
SL
365 int hash;
366
773ca82f
SL
367 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
368 smp_mb();
369 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
370 /*
371 * Don't worry the bit is set here, because if the bit is set
372 * again, the count is always > 1. This is true for
373 * STRIPE_ON_UNPLUG_LIST bit too.
374 */
566c09c5
SL
375 hash = sh->hash_lock_index;
376 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
377 count++;
378 }
379
380 return count;
381}
382
6d036f7d 383void raid5_release_stripe(struct stripe_head *sh)
1da177e4 384{
d1688a6d 385 struct r5conf *conf = sh->raid_conf;
1da177e4 386 unsigned long flags;
566c09c5
SL
387 struct list_head list;
388 int hash;
773ca82f 389 bool wakeup;
16a53ecc 390
cf170f3f
ES
391 /* Avoid release_list until the last reference.
392 */
393 if (atomic_add_unless(&sh->count, -1, 1))
394 return;
395
ad4068de 396 if (unlikely(!conf->mddev->thread) ||
397 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
398 goto slow_path;
399 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
400 if (wakeup)
401 md_wakeup_thread(conf->mddev->thread);
402 return;
403slow_path:
4eb788df 404 local_irq_save(flags);
773ca82f 405 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 406 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
407 INIT_LIST_HEAD(&list);
408 hash = sh->hash_lock_index;
409 do_release_stripe(conf, sh, &list);
4eb788df 410 spin_unlock(&conf->device_lock);
566c09c5 411 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
412 }
413 local_irq_restore(flags);
1da177e4
LT
414}
415
fccddba0 416static inline void remove_hash(struct stripe_head *sh)
1da177e4 417{
45b4233c
DW
418 pr_debug("remove_hash(), stripe %llu\n",
419 (unsigned long long)sh->sector);
1da177e4 420
fccddba0 421 hlist_del_init(&sh->hash);
1da177e4
LT
422}
423
d1688a6d 424static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 425{
fccddba0 426 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 427
45b4233c
DW
428 pr_debug("insert_hash(), stripe %llu\n",
429 (unsigned long long)sh->sector);
1da177e4 430
fccddba0 431 hlist_add_head(&sh->hash, hp);
1da177e4
LT
432}
433
1da177e4 434/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 435static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
436{
437 struct stripe_head *sh = NULL;
438 struct list_head *first;
439
566c09c5 440 if (list_empty(conf->inactive_list + hash))
1da177e4 441 goto out;
566c09c5 442 first = (conf->inactive_list + hash)->next;
1da177e4
LT
443 sh = list_entry(first, struct stripe_head, lru);
444 list_del_init(first);
445 remove_hash(sh);
446 atomic_inc(&conf->active_stripes);
566c09c5 447 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
448 if (list_empty(conf->inactive_list + hash))
449 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
450out:
451 return sh;
452}
453
e4e11e38 454static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
455{
456 struct page *p;
457 int i;
e4e11e38 458 int num = sh->raid_conf->pool_size;
1da177e4 459
e4e11e38 460 for (i = 0; i < num ; i++) {
d592a996 461 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
462 p = sh->dev[i].page;
463 if (!p)
464 continue;
465 sh->dev[i].page = NULL;
2d1f3b5d 466 put_page(p);
1da177e4
LT
467 }
468}
469
a9683a79 470static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
471{
472 int i;
e4e11e38 473 int num = sh->raid_conf->pool_size;
1da177e4 474
e4e11e38 475 for (i = 0; i < num; i++) {
1da177e4
LT
476 struct page *page;
477
a9683a79 478 if (!(page = alloc_page(gfp))) {
1da177e4
LT
479 return 1;
480 }
481 sh->dev[i].page = page;
d592a996 482 sh->dev[i].orig_page = page;
1da177e4
LT
483 }
484 return 0;
485}
486
784052ec 487static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 488static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 489 struct stripe_head *sh);
1da177e4 490
b5663ba4 491static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 492{
d1688a6d 493 struct r5conf *conf = sh->raid_conf;
566c09c5 494 int i, seq;
1da177e4 495
78bafebd
ES
496 BUG_ON(atomic_read(&sh->count) != 0);
497 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 498 BUG_ON(stripe_operations_active(sh));
59fc630b 499 BUG_ON(sh->batch_head);
d84e0f10 500
45b4233c 501 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 502 (unsigned long long)sector);
566c09c5
SL
503retry:
504 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 505 sh->generation = conf->generation - previous;
b5663ba4 506 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 507 sh->sector = sector;
911d4ee8 508 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
509 sh->state = 0;
510
7ecaa1e6 511 for (i = sh->disks; i--; ) {
1da177e4
LT
512 struct r5dev *dev = &sh->dev[i];
513
d84e0f10 514 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 515 test_bit(R5_LOCKED, &dev->flags)) {
cc6167b4 516 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 517 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 518 dev->read, dev->towrite, dev->written,
1da177e4 519 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 520 WARN_ON(1);
1da177e4
LT
521 }
522 dev->flags = 0;
784052ec 523 raid5_build_block(sh, i, previous);
1da177e4 524 }
566c09c5
SL
525 if (read_seqcount_retry(&conf->gen_lock, seq))
526 goto retry;
7a87f434 527 sh->overwrite_disks = 0;
1da177e4 528 insert_hash(conf, sh);
851c30c9 529 sh->cpu = smp_processor_id();
da41ba65 530 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
531}
532
d1688a6d 533static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 534 short generation)
1da177e4
LT
535{
536 struct stripe_head *sh;
537
45b4233c 538 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 539 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 540 if (sh->sector == sector && sh->generation == generation)
1da177e4 541 return sh;
45b4233c 542 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
543 return NULL;
544}
545
674806d6
N
546/*
547 * Need to check if array has failed when deciding whether to:
548 * - start an array
549 * - remove non-faulty devices
550 * - add a spare
551 * - allow a reshape
552 * This determination is simple when no reshape is happening.
553 * However if there is a reshape, we need to carefully check
554 * both the before and after sections.
555 * This is because some failed devices may only affect one
556 * of the two sections, and some non-in_sync devices may
557 * be insync in the section most affected by failed devices.
558 */
2e38a37f 559int raid5_calc_degraded(struct r5conf *conf)
674806d6 560{
908f4fbd 561 int degraded, degraded2;
674806d6 562 int i;
674806d6
N
563
564 rcu_read_lock();
565 degraded = 0;
566 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 567 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
568 if (rdev && test_bit(Faulty, &rdev->flags))
569 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
570 if (!rdev || test_bit(Faulty, &rdev->flags))
571 degraded++;
572 else if (test_bit(In_sync, &rdev->flags))
573 ;
574 else
575 /* not in-sync or faulty.
576 * If the reshape increases the number of devices,
577 * this is being recovered by the reshape, so
578 * this 'previous' section is not in_sync.
579 * If the number of devices is being reduced however,
580 * the device can only be part of the array if
581 * we are reverting a reshape, so this section will
582 * be in-sync.
583 */
584 if (conf->raid_disks >= conf->previous_raid_disks)
585 degraded++;
586 }
587 rcu_read_unlock();
908f4fbd
N
588 if (conf->raid_disks == conf->previous_raid_disks)
589 return degraded;
674806d6 590 rcu_read_lock();
908f4fbd 591 degraded2 = 0;
674806d6 592 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 593 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
594 if (rdev && test_bit(Faulty, &rdev->flags))
595 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 596 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 597 degraded2++;
674806d6
N
598 else if (test_bit(In_sync, &rdev->flags))
599 ;
600 else
601 /* not in-sync or faulty.
602 * If reshape increases the number of devices, this
603 * section has already been recovered, else it
604 * almost certainly hasn't.
605 */
606 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 607 degraded2++;
674806d6
N
608 }
609 rcu_read_unlock();
908f4fbd
N
610 if (degraded2 > degraded)
611 return degraded2;
612 return degraded;
613}
614
615static int has_failed(struct r5conf *conf)
616{
617 int degraded;
618
619 if (conf->mddev->reshape_position == MaxSector)
620 return conf->mddev->degraded > conf->max_degraded;
621
2e38a37f 622 degraded = raid5_calc_degraded(conf);
674806d6
N
623 if (degraded > conf->max_degraded)
624 return 1;
625 return 0;
626}
627
6d036f7d
SL
628struct stripe_head *
629raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
630 int previous, int noblock, int noquiesce)
1da177e4
LT
631{
632 struct stripe_head *sh;
566c09c5 633 int hash = stripe_hash_locks_hash(sector);
ff00d3b4 634 int inc_empty_inactive_list_flag;
1da177e4 635
45b4233c 636 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 637
566c09c5 638 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
639
640 do {
b1b46486 641 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 642 conf->quiesce == 0 || noquiesce,
566c09c5 643 *(conf->hash_locks + hash));
86b42c71 644 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 645 if (!sh) {
edbe83ab 646 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 647 sh = get_free_stripe(conf, hash);
713bc5c2
SL
648 if (!sh && !test_bit(R5_DID_ALLOC,
649 &conf->cache_state))
edbe83ab
N
650 set_bit(R5_ALLOC_MORE,
651 &conf->cache_state);
652 }
1da177e4
LT
653 if (noblock && sh == NULL)
654 break;
a39f7afd
SL
655
656 r5c_check_stripe_cache_usage(conf);
1da177e4 657 if (!sh) {
5423399a
N
658 set_bit(R5_INACTIVE_BLOCKED,
659 &conf->cache_state);
a39f7afd 660 r5l_wake_reclaim(conf->log, 0);
6ab2a4b8
SL
661 wait_event_lock_irq(
662 conf->wait_for_stripe,
566c09c5
SL
663 !list_empty(conf->inactive_list + hash) &&
664 (atomic_read(&conf->active_stripes)
665 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
666 || !test_bit(R5_INACTIVE_BLOCKED,
667 &conf->cache_state)),
6ab2a4b8 668 *(conf->hash_locks + hash));
5423399a
N
669 clear_bit(R5_INACTIVE_BLOCKED,
670 &conf->cache_state);
7da9d450 671 } else {
b5663ba4 672 init_stripe(sh, sector, previous);
7da9d450
N
673 atomic_inc(&sh->count);
674 }
e240c183 675 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 676 spin_lock(&conf->device_lock);
e240c183 677 if (!atomic_read(&sh->count)) {
1da177e4
LT
678 if (!test_bit(STRIPE_HANDLE, &sh->state))
679 atomic_inc(&conf->active_stripes);
5af9bef7
N
680 BUG_ON(list_empty(&sh->lru) &&
681 !test_bit(STRIPE_EXPANDING, &sh->state));
ff00d3b4
ZL
682 inc_empty_inactive_list_flag = 0;
683 if (!list_empty(conf->inactive_list + hash))
684 inc_empty_inactive_list_flag = 1;
16a53ecc 685 list_del_init(&sh->lru);
ff00d3b4
ZL
686 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
687 atomic_inc(&conf->empty_inactive_list_nr);
bfc90cb0
SL
688 if (sh->group) {
689 sh->group->stripes_cnt--;
690 sh->group = NULL;
691 }
1da177e4 692 }
7da9d450 693 atomic_inc(&sh->count);
6d183de4 694 spin_unlock(&conf->device_lock);
1da177e4
LT
695 }
696 } while (sh == NULL);
697
566c09c5 698 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
699 return sh;
700}
701
7a87f434 702static bool is_full_stripe_write(struct stripe_head *sh)
703{
704 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
705 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
706}
707
59fc630b 708static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
709{
710 local_irq_disable();
711 if (sh1 > sh2) {
712 spin_lock(&sh2->stripe_lock);
713 spin_lock_nested(&sh1->stripe_lock, 1);
714 } else {
715 spin_lock(&sh1->stripe_lock);
716 spin_lock_nested(&sh2->stripe_lock, 1);
717 }
718}
719
720static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
721{
722 spin_unlock(&sh1->stripe_lock);
723 spin_unlock(&sh2->stripe_lock);
724 local_irq_enable();
725}
726
727/* Only freshly new full stripe normal write stripe can be added to a batch list */
728static bool stripe_can_batch(struct stripe_head *sh)
729{
9c3e333d
SL
730 struct r5conf *conf = sh->raid_conf;
731
732 if (conf->log)
733 return false;
59fc630b 734 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 735 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 736 is_full_stripe_write(sh);
737}
738
739/* we only do back search */
740static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
741{
742 struct stripe_head *head;
743 sector_t head_sector, tmp_sec;
744 int hash;
745 int dd_idx;
ff00d3b4 746 int inc_empty_inactive_list_flag;
59fc630b 747
59fc630b 748 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
749 tmp_sec = sh->sector;
750 if (!sector_div(tmp_sec, conf->chunk_sectors))
751 return;
752 head_sector = sh->sector - STRIPE_SECTORS;
753
754 hash = stripe_hash_locks_hash(head_sector);
755 spin_lock_irq(conf->hash_locks + hash);
756 head = __find_stripe(conf, head_sector, conf->generation);
757 if (head && !atomic_inc_not_zero(&head->count)) {
758 spin_lock(&conf->device_lock);
759 if (!atomic_read(&head->count)) {
760 if (!test_bit(STRIPE_HANDLE, &head->state))
761 atomic_inc(&conf->active_stripes);
762 BUG_ON(list_empty(&head->lru) &&
763 !test_bit(STRIPE_EXPANDING, &head->state));
ff00d3b4
ZL
764 inc_empty_inactive_list_flag = 0;
765 if (!list_empty(conf->inactive_list + hash))
766 inc_empty_inactive_list_flag = 1;
59fc630b 767 list_del_init(&head->lru);
ff00d3b4
ZL
768 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
769 atomic_inc(&conf->empty_inactive_list_nr);
59fc630b 770 if (head->group) {
771 head->group->stripes_cnt--;
772 head->group = NULL;
773 }
774 }
775 atomic_inc(&head->count);
776 spin_unlock(&conf->device_lock);
777 }
778 spin_unlock_irq(conf->hash_locks + hash);
779
780 if (!head)
781 return;
782 if (!stripe_can_batch(head))
783 goto out;
784
785 lock_two_stripes(head, sh);
786 /* clear_batch_ready clear the flag */
787 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
788 goto unlock_out;
789
790 if (sh->batch_head)
791 goto unlock_out;
792
793 dd_idx = 0;
794 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
795 dd_idx++;
1eff9d32 796 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796a5cf0 797 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
59fc630b 798 goto unlock_out;
799
800 if (head->batch_head) {
801 spin_lock(&head->batch_head->batch_lock);
802 /* This batch list is already running */
803 if (!stripe_can_batch(head)) {
804 spin_unlock(&head->batch_head->batch_lock);
805 goto unlock_out;
806 }
807
808 /*
809 * at this point, head's BATCH_READY could be cleared, but we
810 * can still add the stripe to batch list
811 */
812 list_add(&sh->batch_list, &head->batch_list);
813 spin_unlock(&head->batch_head->batch_lock);
814
815 sh->batch_head = head->batch_head;
816 } else {
817 head->batch_head = head;
818 sh->batch_head = head->batch_head;
819 spin_lock(&head->batch_lock);
820 list_add_tail(&sh->batch_list, &head->batch_list);
821 spin_unlock(&head->batch_lock);
822 }
823
824 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
825 if (atomic_dec_return(&conf->preread_active_stripes)
826 < IO_THRESHOLD)
827 md_wakeup_thread(conf->mddev->thread);
828
2b6b2457
N
829 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
830 int seq = sh->bm_seq;
831 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
832 sh->batch_head->bm_seq > seq)
833 seq = sh->batch_head->bm_seq;
834 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
835 sh->batch_head->bm_seq = seq;
836 }
837
59fc630b 838 atomic_inc(&sh->count);
839unlock_out:
840 unlock_two_stripes(head, sh);
841out:
6d036f7d 842 raid5_release_stripe(head);
59fc630b 843}
844
05616be5
N
845/* Determine if 'data_offset' or 'new_data_offset' should be used
846 * in this stripe_head.
847 */
848static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
849{
850 sector_t progress = conf->reshape_progress;
851 /* Need a memory barrier to make sure we see the value
852 * of conf->generation, or ->data_offset that was set before
853 * reshape_progress was updated.
854 */
855 smp_rmb();
856 if (progress == MaxSector)
857 return 0;
858 if (sh->generation == conf->generation - 1)
859 return 0;
860 /* We are in a reshape, and this is a new-generation stripe,
861 * so use new_data_offset.
862 */
863 return 1;
864}
865
765d704d
SL
866static void flush_deferred_bios(struct r5conf *conf)
867{
868 struct bio_list tmp;
869 struct bio *bio;
870
871 if (!conf->batch_bio_dispatch || !conf->group_cnt)
872 return;
873
874 bio_list_init(&tmp);
875 spin_lock(&conf->pending_bios_lock);
876 bio_list_merge(&tmp, &conf->pending_bios);
877 bio_list_init(&conf->pending_bios);
878 spin_unlock(&conf->pending_bios_lock);
879
880 while ((bio = bio_list_pop(&tmp)))
881 generic_make_request(bio);
882}
883
884static void defer_bio_issue(struct r5conf *conf, struct bio *bio)
885{
886 /*
887 * change group_cnt will drain all bios, so this is safe
888 *
889 * A read generally means a read-modify-write, which usually means a
890 * randwrite, so we don't delay it
891 */
892 if (!conf->batch_bio_dispatch || !conf->group_cnt ||
893 bio_op(bio) == REQ_OP_READ) {
894 generic_make_request(bio);
895 return;
896 }
897 spin_lock(&conf->pending_bios_lock);
898 bio_list_add(&conf->pending_bios, bio);
899 spin_unlock(&conf->pending_bios_lock);
900 md_wakeup_thread(conf->mddev->thread);
901}
902
6712ecf8 903static void
4246a0b6 904raid5_end_read_request(struct bio *bi);
6712ecf8 905static void
4246a0b6 906raid5_end_write_request(struct bio *bi);
91c00924 907
c4e5ac0a 908static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 909{
d1688a6d 910 struct r5conf *conf = sh->raid_conf;
91c00924 911 int i, disks = sh->disks;
59fc630b 912 struct stripe_head *head_sh = sh;
91c00924
DW
913
914 might_sleep();
915
1e6d690b
SL
916 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
917 /* writing out phase */
d7bd398e
SL
918 if (s->waiting_extra_page)
919 return;
1e6d690b
SL
920 if (r5l_write_stripe(conf->log, sh) == 0)
921 return;
922 } else { /* caching phase */
923 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) {
924 r5c_cache_data(conf->log, sh, s);
925 return;
926 }
927 }
928
91c00924 929 for (i = disks; i--; ) {
796a5cf0 930 int op, op_flags = 0;
9a3e1101 931 int replace_only = 0;
977df362
N
932 struct bio *bi, *rbi;
933 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 934
935 sh = head_sh;
e9c7469b 936 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
796a5cf0 937 op = REQ_OP_WRITE;
e9c7469b 938 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
70fd7614 939 op_flags = REQ_FUA;
9e444768 940 if (test_bit(R5_Discard, &sh->dev[i].flags))
796a5cf0 941 op = REQ_OP_DISCARD;
e9c7469b 942 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
796a5cf0 943 op = REQ_OP_READ;
9a3e1101
N
944 else if (test_and_clear_bit(R5_WantReplace,
945 &sh->dev[i].flags)) {
796a5cf0 946 op = REQ_OP_WRITE;
9a3e1101
N
947 replace_only = 1;
948 } else
91c00924 949 continue;
bc0934f0 950 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
796a5cf0 951 op_flags |= REQ_SYNC;
91c00924 952
59fc630b 953again:
91c00924 954 bi = &sh->dev[i].req;
977df362 955 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 956
91c00924 957 rcu_read_lock();
9a3e1101 958 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
959 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
960 rdev = rcu_dereference(conf->disks[i].rdev);
961 if (!rdev) {
962 rdev = rrdev;
963 rrdev = NULL;
964 }
796a5cf0 965 if (op_is_write(op)) {
9a3e1101
N
966 if (replace_only)
967 rdev = NULL;
dd054fce
N
968 if (rdev == rrdev)
969 /* We raced and saw duplicates */
970 rrdev = NULL;
9a3e1101 971 } else {
59fc630b 972 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
973 rdev = rrdev;
974 rrdev = NULL;
975 }
977df362 976
91c00924
DW
977 if (rdev && test_bit(Faulty, &rdev->flags))
978 rdev = NULL;
979 if (rdev)
980 atomic_inc(&rdev->nr_pending);
977df362
N
981 if (rrdev && test_bit(Faulty, &rrdev->flags))
982 rrdev = NULL;
983 if (rrdev)
984 atomic_inc(&rrdev->nr_pending);
91c00924
DW
985 rcu_read_unlock();
986
73e92e51 987 /* We have already checked bad blocks for reads. Now
977df362
N
988 * need to check for writes. We never accept write errors
989 * on the replacement, so we don't to check rrdev.
73e92e51 990 */
796a5cf0 991 while (op_is_write(op) && rdev &&
73e92e51
N
992 test_bit(WriteErrorSeen, &rdev->flags)) {
993 sector_t first_bad;
994 int bad_sectors;
995 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
996 &first_bad, &bad_sectors);
997 if (!bad)
998 break;
999
1000 if (bad < 0) {
1001 set_bit(BlockedBadBlocks, &rdev->flags);
1002 if (!conf->mddev->external &&
2953079c 1003 conf->mddev->sb_flags) {
73e92e51
N
1004 /* It is very unlikely, but we might
1005 * still need to write out the
1006 * bad block log - better give it
1007 * a chance*/
1008 md_check_recovery(conf->mddev);
1009 }
1850753d 1010 /*
1011 * Because md_wait_for_blocked_rdev
1012 * will dec nr_pending, we must
1013 * increment it first.
1014 */
1015 atomic_inc(&rdev->nr_pending);
73e92e51
N
1016 md_wait_for_blocked_rdev(rdev, conf->mddev);
1017 } else {
1018 /* Acknowledged bad block - skip the write */
1019 rdev_dec_pending(rdev, conf->mddev);
1020 rdev = NULL;
1021 }
1022 }
1023
91c00924 1024 if (rdev) {
9a3e1101
N
1025 if (s->syncing || s->expanding || s->expanded
1026 || s->replacing)
91c00924
DW
1027 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1028
2b7497f0
DW
1029 set_bit(STRIPE_IO_STARTED, &sh->state);
1030
91c00924 1031 bi->bi_bdev = rdev->bdev;
796a5cf0
MC
1032 bio_set_op_attrs(bi, op, op_flags);
1033 bi->bi_end_io = op_is_write(op)
2f6db2a7
KO
1034 ? raid5_end_write_request
1035 : raid5_end_read_request;
1036 bi->bi_private = sh;
1037
6296b960 1038 pr_debug("%s: for %llu schedule op %d on disc %d\n",
e46b272b 1039 __func__, (unsigned long long)sh->sector,
1eff9d32 1040 bi->bi_opf, i);
91c00924 1041 atomic_inc(&sh->count);
59fc630b 1042 if (sh != head_sh)
1043 atomic_inc(&head_sh->count);
05616be5 1044 if (use_new_offset(conf, sh))
4f024f37 1045 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1046 + rdev->new_data_offset);
1047 else
4f024f37 1048 bi->bi_iter.bi_sector = (sh->sector
05616be5 1049 + rdev->data_offset);
59fc630b 1050 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1eff9d32 1051 bi->bi_opf |= REQ_NOMERGE;
3f9e7c14 1052
d592a996
SL
1053 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1054 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
86aa1397
SL
1055
1056 if (!op_is_write(op) &&
1057 test_bit(R5_InJournal, &sh->dev[i].flags))
1058 /*
1059 * issuing read for a page in journal, this
1060 * must be preparing for prexor in rmw; read
1061 * the data into orig_page
1062 */
1063 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1064 else
1065 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1066 bi->bi_vcnt = 1;
91c00924
DW
1067 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1068 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1069 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1070 /*
1071 * If this is discard request, set bi_vcnt 0. We don't
1072 * want to confuse SCSI because SCSI will replace payload
1073 */
796a5cf0 1074 if (op == REQ_OP_DISCARD)
37c61ff3 1075 bi->bi_vcnt = 0;
977df362
N
1076 if (rrdev)
1077 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1078
1079 if (conf->mddev->gendisk)
1080 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1081 bi, disk_devt(conf->mddev->gendisk),
1082 sh->dev[i].sector);
765d704d 1083 defer_bio_issue(conf, bi);
977df362
N
1084 }
1085 if (rrdev) {
9a3e1101
N
1086 if (s->syncing || s->expanding || s->expanded
1087 || s->replacing)
977df362
N
1088 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1089
1090 set_bit(STRIPE_IO_STARTED, &sh->state);
1091
1092 rbi->bi_bdev = rrdev->bdev;
796a5cf0
MC
1093 bio_set_op_attrs(rbi, op, op_flags);
1094 BUG_ON(!op_is_write(op));
2f6db2a7
KO
1095 rbi->bi_end_io = raid5_end_write_request;
1096 rbi->bi_private = sh;
1097
6296b960 1098 pr_debug("%s: for %llu schedule op %d on "
977df362
N
1099 "replacement disc %d\n",
1100 __func__, (unsigned long long)sh->sector,
1eff9d32 1101 rbi->bi_opf, i);
977df362 1102 atomic_inc(&sh->count);
59fc630b 1103 if (sh != head_sh)
1104 atomic_inc(&head_sh->count);
05616be5 1105 if (use_new_offset(conf, sh))
4f024f37 1106 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1107 + rrdev->new_data_offset);
1108 else
4f024f37 1109 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1110 + rrdev->data_offset);
d592a996
SL
1111 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1112 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1113 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1114 rbi->bi_vcnt = 1;
977df362
N
1115 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1116 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1117 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1118 /*
1119 * If this is discard request, set bi_vcnt 0. We don't
1120 * want to confuse SCSI because SCSI will replace payload
1121 */
796a5cf0 1122 if (op == REQ_OP_DISCARD)
37c61ff3 1123 rbi->bi_vcnt = 0;
e3620a3a
JB
1124 if (conf->mddev->gendisk)
1125 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1126 rbi, disk_devt(conf->mddev->gendisk),
1127 sh->dev[i].sector);
765d704d 1128 defer_bio_issue(conf, rbi);
977df362
N
1129 }
1130 if (!rdev && !rrdev) {
796a5cf0 1131 if (op_is_write(op))
91c00924 1132 set_bit(STRIPE_DEGRADED, &sh->state);
6296b960 1133 pr_debug("skip op %d on disc %d for sector %llu\n",
1eff9d32 1134 bi->bi_opf, i, (unsigned long long)sh->sector);
91c00924
DW
1135 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1136 set_bit(STRIPE_HANDLE, &sh->state);
1137 }
59fc630b 1138
1139 if (!head_sh->batch_head)
1140 continue;
1141 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1142 batch_list);
1143 if (sh != head_sh)
1144 goto again;
91c00924
DW
1145 }
1146}
1147
1148static struct dma_async_tx_descriptor *
d592a996
SL
1149async_copy_data(int frombio, struct bio *bio, struct page **page,
1150 sector_t sector, struct dma_async_tx_descriptor *tx,
1e6d690b 1151 struct stripe_head *sh, int no_skipcopy)
91c00924 1152{
7988613b
KO
1153 struct bio_vec bvl;
1154 struct bvec_iter iter;
91c00924 1155 struct page *bio_page;
91c00924 1156 int page_offset;
a08abd8c 1157 struct async_submit_ctl submit;
0403e382 1158 enum async_tx_flags flags = 0;
91c00924 1159
4f024f37
KO
1160 if (bio->bi_iter.bi_sector >= sector)
1161 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1162 else
4f024f37 1163 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1164
0403e382
DW
1165 if (frombio)
1166 flags |= ASYNC_TX_FENCE;
1167 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1168
7988613b
KO
1169 bio_for_each_segment(bvl, bio, iter) {
1170 int len = bvl.bv_len;
91c00924
DW
1171 int clen;
1172 int b_offset = 0;
1173
1174 if (page_offset < 0) {
1175 b_offset = -page_offset;
1176 page_offset += b_offset;
1177 len -= b_offset;
1178 }
1179
1180 if (len > 0 && page_offset + len > STRIPE_SIZE)
1181 clen = STRIPE_SIZE - page_offset;
1182 else
1183 clen = len;
1184
1185 if (clen > 0) {
7988613b
KO
1186 b_offset += bvl.bv_offset;
1187 bio_page = bvl.bv_page;
d592a996
SL
1188 if (frombio) {
1189 if (sh->raid_conf->skip_copy &&
1190 b_offset == 0 && page_offset == 0 &&
1e6d690b
SL
1191 clen == STRIPE_SIZE &&
1192 !no_skipcopy)
d592a996
SL
1193 *page = bio_page;
1194 else
1195 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1196 b_offset, clen, &submit);
d592a996
SL
1197 } else
1198 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1199 page_offset, clen, &submit);
91c00924 1200 }
a08abd8c
DW
1201 /* chain the operations */
1202 submit.depend_tx = tx;
1203
91c00924
DW
1204 if (clen < len) /* hit end of page */
1205 break;
1206 page_offset += len;
1207 }
1208
1209 return tx;
1210}
1211
1212static void ops_complete_biofill(void *stripe_head_ref)
1213{
1214 struct stripe_head *sh = stripe_head_ref;
34a6f80e 1215 struct bio_list return_bi = BIO_EMPTY_LIST;
e4d84909 1216 int i;
91c00924 1217
e46b272b 1218 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1219 (unsigned long long)sh->sector);
1220
1221 /* clear completed biofills */
1222 for (i = sh->disks; i--; ) {
1223 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1224
1225 /* acknowledge completion of a biofill operation */
e4d84909
DW
1226 /* and check if we need to reply to a read request,
1227 * new R5_Wantfill requests are held off until
83de75cc 1228 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1229 */
1230 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1231 struct bio *rbi, *rbi2;
91c00924 1232
91c00924
DW
1233 BUG_ON(!dev->read);
1234 rbi = dev->read;
1235 dev->read = NULL;
4f024f37 1236 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1237 dev->sector + STRIPE_SECTORS) {
1238 rbi2 = r5_next_bio(rbi, dev->sector);
34a6f80e
N
1239 if (!raid5_dec_bi_active_stripes(rbi))
1240 bio_list_add(&return_bi, rbi);
91c00924
DW
1241 rbi = rbi2;
1242 }
1243 }
1244 }
83de75cc 1245 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1246
34a6f80e 1247 return_io(&return_bi);
91c00924 1248
e4d84909 1249 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1250 raid5_release_stripe(sh);
91c00924
DW
1251}
1252
1253static void ops_run_biofill(struct stripe_head *sh)
1254{
1255 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1256 struct async_submit_ctl submit;
91c00924
DW
1257 int i;
1258
59fc630b 1259 BUG_ON(sh->batch_head);
e46b272b 1260 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1261 (unsigned long long)sh->sector);
1262
1263 for (i = sh->disks; i--; ) {
1264 struct r5dev *dev = &sh->dev[i];
1265 if (test_bit(R5_Wantfill, &dev->flags)) {
1266 struct bio *rbi;
b17459c0 1267 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1268 dev->read = rbi = dev->toread;
1269 dev->toread = NULL;
b17459c0 1270 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1271 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1272 dev->sector + STRIPE_SECTORS) {
d592a996 1273 tx = async_copy_data(0, rbi, &dev->page,
1e6d690b 1274 dev->sector, tx, sh, 0);
91c00924
DW
1275 rbi = r5_next_bio(rbi, dev->sector);
1276 }
1277 }
1278 }
1279
1280 atomic_inc(&sh->count);
a08abd8c
DW
1281 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1282 async_trigger_callback(&submit);
91c00924
DW
1283}
1284
4e7d2c0a 1285static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1286{
4e7d2c0a 1287 struct r5dev *tgt;
91c00924 1288
4e7d2c0a
DW
1289 if (target < 0)
1290 return;
91c00924 1291
4e7d2c0a 1292 tgt = &sh->dev[target];
91c00924
DW
1293 set_bit(R5_UPTODATE, &tgt->flags);
1294 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1295 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1296}
1297
ac6b53b6 1298static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1299{
1300 struct stripe_head *sh = stripe_head_ref;
91c00924 1301
e46b272b 1302 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1303 (unsigned long long)sh->sector);
1304
ac6b53b6 1305 /* mark the computed target(s) as uptodate */
4e7d2c0a 1306 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1307 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1308
ecc65c9b
DW
1309 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1310 if (sh->check_state == check_state_compute_run)
1311 sh->check_state = check_state_compute_result;
91c00924 1312 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1313 raid5_release_stripe(sh);
91c00924
DW
1314}
1315
d6f38f31
DW
1316/* return a pointer to the address conversion region of the scribble buffer */
1317static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1318 struct raid5_percpu *percpu, int i)
d6f38f31 1319{
46d5b785 1320 void *addr;
1321
1322 addr = flex_array_get(percpu->scribble, i);
1323 return addr + sizeof(struct page *) * (sh->disks + 2);
1324}
1325
1326/* return a pointer to the address conversion region of the scribble buffer */
1327static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1328{
1329 void *addr;
1330
1331 addr = flex_array_get(percpu->scribble, i);
1332 return addr;
d6f38f31
DW
1333}
1334
1335static struct dma_async_tx_descriptor *
1336ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1337{
91c00924 1338 int disks = sh->disks;
46d5b785 1339 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1340 int target = sh->ops.target;
1341 struct r5dev *tgt = &sh->dev[target];
1342 struct page *xor_dest = tgt->page;
1343 int count = 0;
1344 struct dma_async_tx_descriptor *tx;
a08abd8c 1345 struct async_submit_ctl submit;
91c00924
DW
1346 int i;
1347
59fc630b 1348 BUG_ON(sh->batch_head);
1349
91c00924 1350 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1351 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1352 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1353
1354 for (i = disks; i--; )
1355 if (i != target)
1356 xor_srcs[count++] = sh->dev[i].page;
1357
1358 atomic_inc(&sh->count);
1359
0403e382 1360 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1361 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1362 if (unlikely(count == 1))
a08abd8c 1363 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1364 else
a08abd8c 1365 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1366
91c00924
DW
1367 return tx;
1368}
1369
ac6b53b6
DW
1370/* set_syndrome_sources - populate source buffers for gen_syndrome
1371 * @srcs - (struct page *) array of size sh->disks
1372 * @sh - stripe_head to parse
1373 *
1374 * Populates srcs in proper layout order for the stripe and returns the
1375 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1376 * destination buffer is recorded in srcs[count] and the Q destination
1377 * is recorded in srcs[count+1]].
1378 */
584acdd4
MS
1379static int set_syndrome_sources(struct page **srcs,
1380 struct stripe_head *sh,
1381 int srctype)
ac6b53b6
DW
1382{
1383 int disks = sh->disks;
1384 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1385 int d0_idx = raid6_d0(sh);
1386 int count;
1387 int i;
1388
1389 for (i = 0; i < disks; i++)
5dd33c9a 1390 srcs[i] = NULL;
ac6b53b6
DW
1391
1392 count = 0;
1393 i = d0_idx;
1394 do {
1395 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1396 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1397
584acdd4
MS
1398 if (i == sh->qd_idx || i == sh->pd_idx ||
1399 (srctype == SYNDROME_SRC_ALL) ||
1400 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1e6d690b
SL
1401 (test_bit(R5_Wantdrain, &dev->flags) ||
1402 test_bit(R5_InJournal, &dev->flags))) ||
584acdd4 1403 (srctype == SYNDROME_SRC_WRITTEN &&
0977762f
SL
1404 (dev->written ||
1405 test_bit(R5_InJournal, &dev->flags)))) {
1e6d690b
SL
1406 if (test_bit(R5_InJournal, &dev->flags))
1407 srcs[slot] = sh->dev[i].orig_page;
1408 else
1409 srcs[slot] = sh->dev[i].page;
1410 }
ac6b53b6
DW
1411 i = raid6_next_disk(i, disks);
1412 } while (i != d0_idx);
ac6b53b6 1413
e4424fee 1414 return syndrome_disks;
ac6b53b6
DW
1415}
1416
1417static struct dma_async_tx_descriptor *
1418ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1419{
1420 int disks = sh->disks;
46d5b785 1421 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1422 int target;
1423 int qd_idx = sh->qd_idx;
1424 struct dma_async_tx_descriptor *tx;
1425 struct async_submit_ctl submit;
1426 struct r5dev *tgt;
1427 struct page *dest;
1428 int i;
1429 int count;
1430
59fc630b 1431 BUG_ON(sh->batch_head);
ac6b53b6
DW
1432 if (sh->ops.target < 0)
1433 target = sh->ops.target2;
1434 else if (sh->ops.target2 < 0)
1435 target = sh->ops.target;
91c00924 1436 else
ac6b53b6
DW
1437 /* we should only have one valid target */
1438 BUG();
1439 BUG_ON(target < 0);
1440 pr_debug("%s: stripe %llu block: %d\n",
1441 __func__, (unsigned long long)sh->sector, target);
1442
1443 tgt = &sh->dev[target];
1444 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1445 dest = tgt->page;
1446
1447 atomic_inc(&sh->count);
1448
1449 if (target == qd_idx) {
584acdd4 1450 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1451 blocks[count] = NULL; /* regenerating p is not necessary */
1452 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1453 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1454 ops_complete_compute, sh,
46d5b785 1455 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1456 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1457 } else {
1458 /* Compute any data- or p-drive using XOR */
1459 count = 0;
1460 for (i = disks; i-- ; ) {
1461 if (i == target || i == qd_idx)
1462 continue;
1463 blocks[count++] = sh->dev[i].page;
1464 }
1465
0403e382
DW
1466 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1467 NULL, ops_complete_compute, sh,
46d5b785 1468 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1469 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1470 }
91c00924 1471
91c00924
DW
1472 return tx;
1473}
1474
ac6b53b6
DW
1475static struct dma_async_tx_descriptor *
1476ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1477{
1478 int i, count, disks = sh->disks;
1479 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1480 int d0_idx = raid6_d0(sh);
1481 int faila = -1, failb = -1;
1482 int target = sh->ops.target;
1483 int target2 = sh->ops.target2;
1484 struct r5dev *tgt = &sh->dev[target];
1485 struct r5dev *tgt2 = &sh->dev[target2];
1486 struct dma_async_tx_descriptor *tx;
46d5b785 1487 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1488 struct async_submit_ctl submit;
1489
59fc630b 1490 BUG_ON(sh->batch_head);
ac6b53b6
DW
1491 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1492 __func__, (unsigned long long)sh->sector, target, target2);
1493 BUG_ON(target < 0 || target2 < 0);
1494 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1495 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1496
6c910a78 1497 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1498 * slot number conversion for 'faila' and 'failb'
1499 */
1500 for (i = 0; i < disks ; i++)
5dd33c9a 1501 blocks[i] = NULL;
ac6b53b6
DW
1502 count = 0;
1503 i = d0_idx;
1504 do {
1505 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1506
1507 blocks[slot] = sh->dev[i].page;
1508
1509 if (i == target)
1510 faila = slot;
1511 if (i == target2)
1512 failb = slot;
1513 i = raid6_next_disk(i, disks);
1514 } while (i != d0_idx);
ac6b53b6
DW
1515
1516 BUG_ON(faila == failb);
1517 if (failb < faila)
1518 swap(faila, failb);
1519 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1520 __func__, (unsigned long long)sh->sector, faila, failb);
1521
1522 atomic_inc(&sh->count);
1523
1524 if (failb == syndrome_disks+1) {
1525 /* Q disk is one of the missing disks */
1526 if (faila == syndrome_disks) {
1527 /* Missing P+Q, just recompute */
0403e382
DW
1528 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1529 ops_complete_compute, sh,
46d5b785 1530 to_addr_conv(sh, percpu, 0));
e4424fee 1531 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1532 STRIPE_SIZE, &submit);
1533 } else {
1534 struct page *dest;
1535 int data_target;
1536 int qd_idx = sh->qd_idx;
1537
1538 /* Missing D+Q: recompute D from P, then recompute Q */
1539 if (target == qd_idx)
1540 data_target = target2;
1541 else
1542 data_target = target;
1543
1544 count = 0;
1545 for (i = disks; i-- ; ) {
1546 if (i == data_target || i == qd_idx)
1547 continue;
1548 blocks[count++] = sh->dev[i].page;
1549 }
1550 dest = sh->dev[data_target].page;
0403e382
DW
1551 init_async_submit(&submit,
1552 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1553 NULL, NULL, NULL,
46d5b785 1554 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1555 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1556 &submit);
1557
584acdd4 1558 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1559 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1560 ops_complete_compute, sh,
46d5b785 1561 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1562 return async_gen_syndrome(blocks, 0, count+2,
1563 STRIPE_SIZE, &submit);
1564 }
ac6b53b6 1565 } else {
6c910a78
DW
1566 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1567 ops_complete_compute, sh,
46d5b785 1568 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1569 if (failb == syndrome_disks) {
1570 /* We're missing D+P. */
1571 return async_raid6_datap_recov(syndrome_disks+2,
1572 STRIPE_SIZE, faila,
1573 blocks, &submit);
1574 } else {
1575 /* We're missing D+D. */
1576 return async_raid6_2data_recov(syndrome_disks+2,
1577 STRIPE_SIZE, faila, failb,
1578 blocks, &submit);
1579 }
ac6b53b6
DW
1580 }
1581}
1582
91c00924
DW
1583static void ops_complete_prexor(void *stripe_head_ref)
1584{
1585 struct stripe_head *sh = stripe_head_ref;
1586
e46b272b 1587 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1588 (unsigned long long)sh->sector);
1e6d690b
SL
1589
1590 if (r5c_is_writeback(sh->raid_conf->log))
1591 /*
1592 * raid5-cache write back uses orig_page during prexor.
1593 * After prexor, it is time to free orig_page
1594 */
1595 r5c_release_extra_page(sh);
91c00924
DW
1596}
1597
1598static struct dma_async_tx_descriptor *
584acdd4
MS
1599ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1600 struct dma_async_tx_descriptor *tx)
91c00924 1601{
91c00924 1602 int disks = sh->disks;
46d5b785 1603 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1604 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1605 struct async_submit_ctl submit;
91c00924
DW
1606
1607 /* existing parity data subtracted */
1608 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1609
59fc630b 1610 BUG_ON(sh->batch_head);
e46b272b 1611 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1612 (unsigned long long)sh->sector);
1613
1614 for (i = disks; i--; ) {
1615 struct r5dev *dev = &sh->dev[i];
1616 /* Only process blocks that are known to be uptodate */
1e6d690b
SL
1617 if (test_bit(R5_InJournal, &dev->flags))
1618 xor_srcs[count++] = dev->orig_page;
1619 else if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1620 xor_srcs[count++] = dev->page;
1621 }
1622
0403e382 1623 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1624 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1625 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1626
1627 return tx;
1628}
1629
584acdd4
MS
1630static struct dma_async_tx_descriptor *
1631ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1632 struct dma_async_tx_descriptor *tx)
1633{
1634 struct page **blocks = to_addr_page(percpu, 0);
1635 int count;
1636 struct async_submit_ctl submit;
1637
1638 pr_debug("%s: stripe %llu\n", __func__,
1639 (unsigned long long)sh->sector);
1640
1641 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1642
1643 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1644 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1645 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1646
1647 return tx;
1648}
1649
91c00924 1650static struct dma_async_tx_descriptor *
d8ee0728 1651ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924 1652{
1e6d690b 1653 struct r5conf *conf = sh->raid_conf;
91c00924 1654 int disks = sh->disks;
d8ee0728 1655 int i;
59fc630b 1656 struct stripe_head *head_sh = sh;
91c00924 1657
e46b272b 1658 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1659 (unsigned long long)sh->sector);
1660
1661 for (i = disks; i--; ) {
59fc630b 1662 struct r5dev *dev;
91c00924 1663 struct bio *chosen;
91c00924 1664
59fc630b 1665 sh = head_sh;
1666 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1667 struct bio *wbi;
1668
59fc630b 1669again:
1670 dev = &sh->dev[i];
1e6d690b
SL
1671 /*
1672 * clear R5_InJournal, so when rewriting a page in
1673 * journal, it is not skipped by r5l_log_stripe()
1674 */
1675 clear_bit(R5_InJournal, &dev->flags);
b17459c0 1676 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1677 chosen = dev->towrite;
1678 dev->towrite = NULL;
7a87f434 1679 sh->overwrite_disks = 0;
91c00924
DW
1680 BUG_ON(dev->written);
1681 wbi = dev->written = chosen;
b17459c0 1682 spin_unlock_irq(&sh->stripe_lock);
d592a996 1683 WARN_ON(dev->page != dev->orig_page);
91c00924 1684
4f024f37 1685 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1686 dev->sector + STRIPE_SECTORS) {
1eff9d32 1687 if (wbi->bi_opf & REQ_FUA)
e9c7469b 1688 set_bit(R5_WantFUA, &dev->flags);
1eff9d32 1689 if (wbi->bi_opf & REQ_SYNC)
bc0934f0 1690 set_bit(R5_SyncIO, &dev->flags);
796a5cf0 1691 if (bio_op(wbi) == REQ_OP_DISCARD)
620125f2 1692 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1693 else {
1694 tx = async_copy_data(1, wbi, &dev->page,
1e6d690b
SL
1695 dev->sector, tx, sh,
1696 r5c_is_writeback(conf->log));
1697 if (dev->page != dev->orig_page &&
1698 !r5c_is_writeback(conf->log)) {
d592a996
SL
1699 set_bit(R5_SkipCopy, &dev->flags);
1700 clear_bit(R5_UPTODATE, &dev->flags);
1701 clear_bit(R5_OVERWRITE, &dev->flags);
1702 }
1703 }
91c00924
DW
1704 wbi = r5_next_bio(wbi, dev->sector);
1705 }
59fc630b 1706
1707 if (head_sh->batch_head) {
1708 sh = list_first_entry(&sh->batch_list,
1709 struct stripe_head,
1710 batch_list);
1711 if (sh == head_sh)
1712 continue;
1713 goto again;
1714 }
91c00924
DW
1715 }
1716 }
1717
1718 return tx;
1719}
1720
ac6b53b6 1721static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1722{
1723 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1724 int disks = sh->disks;
1725 int pd_idx = sh->pd_idx;
1726 int qd_idx = sh->qd_idx;
1727 int i;
9e444768 1728 bool fua = false, sync = false, discard = false;
91c00924 1729
e46b272b 1730 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1731 (unsigned long long)sh->sector);
1732
bc0934f0 1733 for (i = disks; i--; ) {
e9c7469b 1734 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1735 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1736 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1737 }
e9c7469b 1738
91c00924
DW
1739 for (i = disks; i--; ) {
1740 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1741
e9c7469b 1742 if (dev->written || i == pd_idx || i == qd_idx) {
d592a996 1743 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
9e444768 1744 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1745 if (fua)
1746 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1747 if (sync)
1748 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1749 }
91c00924
DW
1750 }
1751
d8ee0728
DW
1752 if (sh->reconstruct_state == reconstruct_state_drain_run)
1753 sh->reconstruct_state = reconstruct_state_drain_result;
1754 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1755 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1756 else {
1757 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1758 sh->reconstruct_state = reconstruct_state_result;
1759 }
91c00924
DW
1760
1761 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1762 raid5_release_stripe(sh);
91c00924
DW
1763}
1764
1765static void
ac6b53b6
DW
1766ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1767 struct dma_async_tx_descriptor *tx)
91c00924 1768{
91c00924 1769 int disks = sh->disks;
59fc630b 1770 struct page **xor_srcs;
a08abd8c 1771 struct async_submit_ctl submit;
59fc630b 1772 int count, pd_idx = sh->pd_idx, i;
91c00924 1773 struct page *xor_dest;
d8ee0728 1774 int prexor = 0;
91c00924 1775 unsigned long flags;
59fc630b 1776 int j = 0;
1777 struct stripe_head *head_sh = sh;
1778 int last_stripe;
91c00924 1779
e46b272b 1780 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1781 (unsigned long long)sh->sector);
1782
620125f2
SL
1783 for (i = 0; i < sh->disks; i++) {
1784 if (pd_idx == i)
1785 continue;
1786 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1787 break;
1788 }
1789 if (i >= sh->disks) {
1790 atomic_inc(&sh->count);
620125f2
SL
1791 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1792 ops_complete_reconstruct(sh);
1793 return;
1794 }
59fc630b 1795again:
1796 count = 0;
1797 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1798 /* check if prexor is active which means only process blocks
1799 * that are part of a read-modify-write (written)
1800 */
59fc630b 1801 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1802 prexor = 1;
91c00924
DW
1803 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1804 for (i = disks; i--; ) {
1805 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
1806 if (head_sh->dev[i].written ||
1807 test_bit(R5_InJournal, &head_sh->dev[i].flags))
91c00924
DW
1808 xor_srcs[count++] = dev->page;
1809 }
1810 } else {
1811 xor_dest = sh->dev[pd_idx].page;
1812 for (i = disks; i--; ) {
1813 struct r5dev *dev = &sh->dev[i];
1814 if (i != pd_idx)
1815 xor_srcs[count++] = dev->page;
1816 }
1817 }
1818
91c00924
DW
1819 /* 1/ if we prexor'd then the dest is reused as a source
1820 * 2/ if we did not prexor then we are redoing the parity
1821 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1822 * for the synchronous xor case
1823 */
59fc630b 1824 last_stripe = !head_sh->batch_head ||
1825 list_first_entry(&sh->batch_list,
1826 struct stripe_head, batch_list) == head_sh;
1827 if (last_stripe) {
1828 flags = ASYNC_TX_ACK |
1829 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1830
1831 atomic_inc(&head_sh->count);
1832 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1833 to_addr_conv(sh, percpu, j));
1834 } else {
1835 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1836 init_async_submit(&submit, flags, tx, NULL, NULL,
1837 to_addr_conv(sh, percpu, j));
1838 }
91c00924 1839
a08abd8c
DW
1840 if (unlikely(count == 1))
1841 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1842 else
1843 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1844 if (!last_stripe) {
1845 j++;
1846 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1847 batch_list);
1848 goto again;
1849 }
91c00924
DW
1850}
1851
ac6b53b6
DW
1852static void
1853ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1854 struct dma_async_tx_descriptor *tx)
1855{
1856 struct async_submit_ctl submit;
59fc630b 1857 struct page **blocks;
1858 int count, i, j = 0;
1859 struct stripe_head *head_sh = sh;
1860 int last_stripe;
584acdd4
MS
1861 int synflags;
1862 unsigned long txflags;
ac6b53b6
DW
1863
1864 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1865
620125f2
SL
1866 for (i = 0; i < sh->disks; i++) {
1867 if (sh->pd_idx == i || sh->qd_idx == i)
1868 continue;
1869 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1870 break;
1871 }
1872 if (i >= sh->disks) {
1873 atomic_inc(&sh->count);
620125f2
SL
1874 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1875 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1876 ops_complete_reconstruct(sh);
1877 return;
1878 }
1879
59fc630b 1880again:
1881 blocks = to_addr_page(percpu, j);
584acdd4
MS
1882
1883 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1884 synflags = SYNDROME_SRC_WRITTEN;
1885 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1886 } else {
1887 synflags = SYNDROME_SRC_ALL;
1888 txflags = ASYNC_TX_ACK;
1889 }
1890
1891 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1892 last_stripe = !head_sh->batch_head ||
1893 list_first_entry(&sh->batch_list,
1894 struct stripe_head, batch_list) == head_sh;
1895
1896 if (last_stripe) {
1897 atomic_inc(&head_sh->count);
584acdd4 1898 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1899 head_sh, to_addr_conv(sh, percpu, j));
1900 } else
1901 init_async_submit(&submit, 0, tx, NULL, NULL,
1902 to_addr_conv(sh, percpu, j));
48769695 1903 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1904 if (!last_stripe) {
1905 j++;
1906 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1907 batch_list);
1908 goto again;
1909 }
91c00924
DW
1910}
1911
1912static void ops_complete_check(void *stripe_head_ref)
1913{
1914 struct stripe_head *sh = stripe_head_ref;
91c00924 1915
e46b272b 1916 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1917 (unsigned long long)sh->sector);
1918
ecc65c9b 1919 sh->check_state = check_state_check_result;
91c00924 1920 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1921 raid5_release_stripe(sh);
91c00924
DW
1922}
1923
ac6b53b6 1924static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1925{
91c00924 1926 int disks = sh->disks;
ac6b53b6
DW
1927 int pd_idx = sh->pd_idx;
1928 int qd_idx = sh->qd_idx;
1929 struct page *xor_dest;
46d5b785 1930 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1931 struct dma_async_tx_descriptor *tx;
a08abd8c 1932 struct async_submit_ctl submit;
ac6b53b6
DW
1933 int count;
1934 int i;
91c00924 1935
e46b272b 1936 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1937 (unsigned long long)sh->sector);
1938
59fc630b 1939 BUG_ON(sh->batch_head);
ac6b53b6
DW
1940 count = 0;
1941 xor_dest = sh->dev[pd_idx].page;
1942 xor_srcs[count++] = xor_dest;
91c00924 1943 for (i = disks; i--; ) {
ac6b53b6
DW
1944 if (i == pd_idx || i == qd_idx)
1945 continue;
1946 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1947 }
1948
d6f38f31 1949 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 1950 to_addr_conv(sh, percpu, 0));
099f53cb 1951 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1952 &sh->ops.zero_sum_result, &submit);
91c00924 1953
91c00924 1954 atomic_inc(&sh->count);
a08abd8c
DW
1955 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1956 tx = async_trigger_callback(&submit);
91c00924
DW
1957}
1958
ac6b53b6
DW
1959static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1960{
46d5b785 1961 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
1962 struct async_submit_ctl submit;
1963 int count;
1964
1965 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1966 (unsigned long long)sh->sector, checkp);
1967
59fc630b 1968 BUG_ON(sh->batch_head);
584acdd4 1969 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1970 if (!checkp)
1971 srcs[count] = NULL;
91c00924 1972
91c00924 1973 atomic_inc(&sh->count);
ac6b53b6 1974 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 1975 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1976 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1977 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1978}
1979
51acbcec 1980static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1981{
1982 int overlap_clear = 0, i, disks = sh->disks;
1983 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1984 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1985 int level = conf->level;
d6f38f31
DW
1986 struct raid5_percpu *percpu;
1987 unsigned long cpu;
91c00924 1988
d6f38f31
DW
1989 cpu = get_cpu();
1990 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1991 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1992 ops_run_biofill(sh);
1993 overlap_clear++;
1994 }
1995
7b3a871e 1996 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1997 if (level < 6)
1998 tx = ops_run_compute5(sh, percpu);
1999 else {
2000 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2001 tx = ops_run_compute6_1(sh, percpu);
2002 else
2003 tx = ops_run_compute6_2(sh, percpu);
2004 }
2005 /* terminate the chain if reconstruct is not set to be run */
2006 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
2007 async_tx_ack(tx);
2008 }
91c00924 2009
584acdd4
MS
2010 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2011 if (level < 6)
2012 tx = ops_run_prexor5(sh, percpu, tx);
2013 else
2014 tx = ops_run_prexor6(sh, percpu, tx);
2015 }
91c00924 2016
600aa109 2017 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 2018 tx = ops_run_biodrain(sh, tx);
91c00924
DW
2019 overlap_clear++;
2020 }
2021
ac6b53b6
DW
2022 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2023 if (level < 6)
2024 ops_run_reconstruct5(sh, percpu, tx);
2025 else
2026 ops_run_reconstruct6(sh, percpu, tx);
2027 }
91c00924 2028
ac6b53b6
DW
2029 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2030 if (sh->check_state == check_state_run)
2031 ops_run_check_p(sh, percpu);
2032 else if (sh->check_state == check_state_run_q)
2033 ops_run_check_pq(sh, percpu, 0);
2034 else if (sh->check_state == check_state_run_pq)
2035 ops_run_check_pq(sh, percpu, 1);
2036 else
2037 BUG();
2038 }
91c00924 2039
59fc630b 2040 if (overlap_clear && !sh->batch_head)
91c00924
DW
2041 for (i = disks; i--; ) {
2042 struct r5dev *dev = &sh->dev[i];
2043 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2044 wake_up(&sh->raid_conf->wait_for_overlap);
2045 }
d6f38f31 2046 put_cpu();
91c00924
DW
2047}
2048
5f9d1fde
SL
2049static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2050 int disks)
f18c1a35
N
2051{
2052 struct stripe_head *sh;
5f9d1fde 2053 int i;
f18c1a35
N
2054
2055 sh = kmem_cache_zalloc(sc, gfp);
2056 if (sh) {
2057 spin_lock_init(&sh->stripe_lock);
2058 spin_lock_init(&sh->batch_lock);
2059 INIT_LIST_HEAD(&sh->batch_list);
2060 INIT_LIST_HEAD(&sh->lru);
a39f7afd 2061 INIT_LIST_HEAD(&sh->r5c);
d7bd398e 2062 INIT_LIST_HEAD(&sh->log_list);
f18c1a35 2063 atomic_set(&sh->count, 1);
a39f7afd 2064 sh->log_start = MaxSector;
5f9d1fde
SL
2065 for (i = 0; i < disks; i++) {
2066 struct r5dev *dev = &sh->dev[i];
2067
3a83f467
ML
2068 bio_init(&dev->req, &dev->vec, 1);
2069 bio_init(&dev->rreq, &dev->rvec, 1);
5f9d1fde 2070 }
f18c1a35
N
2071 }
2072 return sh;
2073}
486f0644 2074static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2075{
2076 struct stripe_head *sh;
f18c1a35 2077
5f9d1fde 2078 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size);
3f294f4f
N
2079 if (!sh)
2080 return 0;
6ce32846 2081
3f294f4f 2082 sh->raid_conf = conf;
3f294f4f 2083
a9683a79 2084 if (grow_buffers(sh, gfp)) {
e4e11e38 2085 shrink_buffers(sh);
3f294f4f
N
2086 kmem_cache_free(conf->slab_cache, sh);
2087 return 0;
2088 }
486f0644
N
2089 sh->hash_lock_index =
2090 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2091 /* we just created an active stripe so... */
3f294f4f 2092 atomic_inc(&conf->active_stripes);
59fc630b 2093
6d036f7d 2094 raid5_release_stripe(sh);
486f0644 2095 conf->max_nr_stripes++;
3f294f4f
N
2096 return 1;
2097}
2098
d1688a6d 2099static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2100{
e18b890b 2101 struct kmem_cache *sc;
5e5e3e78 2102 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2103
f4be6b43
N
2104 if (conf->mddev->gendisk)
2105 sprintf(conf->cache_name[0],
2106 "raid%d-%s", conf->level, mdname(conf->mddev));
2107 else
2108 sprintf(conf->cache_name[0],
2109 "raid%d-%p", conf->level, conf->mddev);
2110 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2111
ad01c9e3
N
2112 conf->active_name = 0;
2113 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2114 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2115 0, 0, NULL);
1da177e4
LT
2116 if (!sc)
2117 return 1;
2118 conf->slab_cache = sc;
ad01c9e3 2119 conf->pool_size = devs;
486f0644
N
2120 while (num--)
2121 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2122 return 1;
486f0644 2123
1da177e4
LT
2124 return 0;
2125}
29269553 2126
d6f38f31
DW
2127/**
2128 * scribble_len - return the required size of the scribble region
2129 * @num - total number of disks in the array
2130 *
2131 * The size must be enough to contain:
2132 * 1/ a struct page pointer for each device in the array +2
2133 * 2/ room to convert each entry in (1) to its corresponding dma
2134 * (dma_map_page()) or page (page_address()) address.
2135 *
2136 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2137 * calculate over all devices (not just the data blocks), using zeros in place
2138 * of the P and Q blocks.
2139 */
46d5b785 2140static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2141{
46d5b785 2142 struct flex_array *ret;
d6f38f31
DW
2143 size_t len;
2144
2145 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2146 ret = flex_array_alloc(len, cnt, flags);
2147 if (!ret)
2148 return NULL;
2149 /* always prealloc all elements, so no locking is required */
2150 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2151 flex_array_free(ret);
2152 return NULL;
2153 }
2154 return ret;
d6f38f31
DW
2155}
2156
738a2738
N
2157static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2158{
2159 unsigned long cpu;
2160 int err = 0;
2161
27a353c0
SL
2162 /*
2163 * Never shrink. And mddev_suspend() could deadlock if this is called
2164 * from raid5d. In that case, scribble_disks and scribble_sectors
2165 * should equal to new_disks and new_sectors
2166 */
2167 if (conf->scribble_disks >= new_disks &&
2168 conf->scribble_sectors >= new_sectors)
2169 return 0;
738a2738
N
2170 mddev_suspend(conf->mddev);
2171 get_online_cpus();
2172 for_each_present_cpu(cpu) {
2173 struct raid5_percpu *percpu;
2174 struct flex_array *scribble;
2175
2176 percpu = per_cpu_ptr(conf->percpu, cpu);
2177 scribble = scribble_alloc(new_disks,
2178 new_sectors / STRIPE_SECTORS,
2179 GFP_NOIO);
2180
2181 if (scribble) {
2182 flex_array_free(percpu->scribble);
2183 percpu->scribble = scribble;
2184 } else {
2185 err = -ENOMEM;
2186 break;
2187 }
2188 }
2189 put_online_cpus();
2190 mddev_resume(conf->mddev);
27a353c0
SL
2191 if (!err) {
2192 conf->scribble_disks = new_disks;
2193 conf->scribble_sectors = new_sectors;
2194 }
738a2738
N
2195 return err;
2196}
2197
d1688a6d 2198static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2199{
2200 /* Make all the stripes able to hold 'newsize' devices.
2201 * New slots in each stripe get 'page' set to a new page.
2202 *
2203 * This happens in stages:
2204 * 1/ create a new kmem_cache and allocate the required number of
2205 * stripe_heads.
83f0d77a 2206 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2207 * to the new stripe_heads. This will have the side effect of
2208 * freezing the array as once all stripe_heads have been collected,
2209 * no IO will be possible. Old stripe heads are freed once their
2210 * pages have been transferred over, and the old kmem_cache is
2211 * freed when all stripes are done.
2212 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2213 * we simple return a failre status - no need to clean anything up.
2214 * 4/ allocate new pages for the new slots in the new stripe_heads.
2215 * If this fails, we don't bother trying the shrink the
2216 * stripe_heads down again, we just leave them as they are.
2217 * As each stripe_head is processed the new one is released into
2218 * active service.
2219 *
2220 * Once step2 is started, we cannot afford to wait for a write,
2221 * so we use GFP_NOIO allocations.
2222 */
2223 struct stripe_head *osh, *nsh;
2224 LIST_HEAD(newstripes);
2225 struct disk_info *ndisks;
b5470dc5 2226 int err;
e18b890b 2227 struct kmem_cache *sc;
ad01c9e3 2228 int i;
566c09c5 2229 int hash, cnt;
ad01c9e3
N
2230
2231 if (newsize <= conf->pool_size)
2232 return 0; /* never bother to shrink */
2233
b5470dc5
DW
2234 err = md_allow_write(conf->mddev);
2235 if (err)
2236 return err;
2a2275d6 2237
ad01c9e3
N
2238 /* Step 1 */
2239 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2240 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2241 0, 0, NULL);
ad01c9e3
N
2242 if (!sc)
2243 return -ENOMEM;
2244
2d5b569b
N
2245 /* Need to ensure auto-resizing doesn't interfere */
2246 mutex_lock(&conf->cache_size_mutex);
2247
ad01c9e3 2248 for (i = conf->max_nr_stripes; i; i--) {
5f9d1fde 2249 nsh = alloc_stripe(sc, GFP_KERNEL, newsize);
ad01c9e3
N
2250 if (!nsh)
2251 break;
2252
ad01c9e3 2253 nsh->raid_conf = conf;
ad01c9e3
N
2254 list_add(&nsh->lru, &newstripes);
2255 }
2256 if (i) {
2257 /* didn't get enough, give up */
2258 while (!list_empty(&newstripes)) {
2259 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2260 list_del(&nsh->lru);
2261 kmem_cache_free(sc, nsh);
2262 }
2263 kmem_cache_destroy(sc);
2d5b569b 2264 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2265 return -ENOMEM;
2266 }
2267 /* Step 2 - Must use GFP_NOIO now.
2268 * OK, we have enough stripes, start collecting inactive
2269 * stripes and copying them over
2270 */
566c09c5
SL
2271 hash = 0;
2272 cnt = 0;
ad01c9e3 2273 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2274 lock_device_hash_lock(conf, hash);
6ab2a4b8 2275 wait_event_cmd(conf->wait_for_stripe,
566c09c5
SL
2276 !list_empty(conf->inactive_list + hash),
2277 unlock_device_hash_lock(conf, hash),
2278 lock_device_hash_lock(conf, hash));
2279 osh = get_free_stripe(conf, hash);
2280 unlock_device_hash_lock(conf, hash);
f18c1a35 2281
d592a996 2282 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2283 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2284 nsh->dev[i].orig_page = osh->dev[i].page;
2285 }
566c09c5 2286 nsh->hash_lock_index = hash;
ad01c9e3 2287 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
2288 cnt++;
2289 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2290 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2291 hash++;
2292 cnt = 0;
2293 }
ad01c9e3
N
2294 }
2295 kmem_cache_destroy(conf->slab_cache);
2296
2297 /* Step 3.
2298 * At this point, we are holding all the stripes so the array
2299 * is completely stalled, so now is a good time to resize
d6f38f31 2300 * conf->disks and the scribble region
ad01c9e3
N
2301 */
2302 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2303 if (ndisks) {
d7bd398e 2304 for (i = 0; i < conf->pool_size; i++)
ad01c9e3 2305 ndisks[i] = conf->disks[i];
d7bd398e
SL
2306
2307 for (i = conf->pool_size; i < newsize; i++) {
2308 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2309 if (!ndisks[i].extra_page)
2310 err = -ENOMEM;
2311 }
2312
2313 if (err) {
2314 for (i = conf->pool_size; i < newsize; i++)
2315 if (ndisks[i].extra_page)
2316 put_page(ndisks[i].extra_page);
2317 kfree(ndisks);
2318 } else {
2319 kfree(conf->disks);
2320 conf->disks = ndisks;
2321 }
ad01c9e3
N
2322 } else
2323 err = -ENOMEM;
2324
2d5b569b 2325 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2326 /* Step 4, return new stripes to service */
2327 while(!list_empty(&newstripes)) {
2328 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2329 list_del_init(&nsh->lru);
d6f38f31 2330
ad01c9e3
N
2331 for (i=conf->raid_disks; i < newsize; i++)
2332 if (nsh->dev[i].page == NULL) {
2333 struct page *p = alloc_page(GFP_NOIO);
2334 nsh->dev[i].page = p;
d592a996 2335 nsh->dev[i].orig_page = p;
ad01c9e3
N
2336 if (!p)
2337 err = -ENOMEM;
2338 }
6d036f7d 2339 raid5_release_stripe(nsh);
ad01c9e3
N
2340 }
2341 /* critical section pass, GFP_NOIO no longer needed */
2342
2343 conf->slab_cache = sc;
2344 conf->active_name = 1-conf->active_name;
6e9eac2d
N
2345 if (!err)
2346 conf->pool_size = newsize;
ad01c9e3
N
2347 return err;
2348}
1da177e4 2349
486f0644 2350static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2351{
2352 struct stripe_head *sh;
49895bcc 2353 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2354
566c09c5
SL
2355 spin_lock_irq(conf->hash_locks + hash);
2356 sh = get_free_stripe(conf, hash);
2357 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2358 if (!sh)
2359 return 0;
78bafebd 2360 BUG_ON(atomic_read(&sh->count));
e4e11e38 2361 shrink_buffers(sh);
3f294f4f
N
2362 kmem_cache_free(conf->slab_cache, sh);
2363 atomic_dec(&conf->active_stripes);
486f0644 2364 conf->max_nr_stripes--;
3f294f4f
N
2365 return 1;
2366}
2367
d1688a6d 2368static void shrink_stripes(struct r5conf *conf)
3f294f4f 2369{
486f0644
N
2370 while (conf->max_nr_stripes &&
2371 drop_one_stripe(conf))
2372 ;
3f294f4f 2373
644df1a8 2374 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2375 conf->slab_cache = NULL;
2376}
2377
4246a0b6 2378static void raid5_end_read_request(struct bio * bi)
1da177e4 2379{
99c0fb5f 2380 struct stripe_head *sh = bi->bi_private;
d1688a6d 2381 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2382 int disks = sh->disks, i;
d6950432 2383 char b[BDEVNAME_SIZE];
dd054fce 2384 struct md_rdev *rdev = NULL;
05616be5 2385 sector_t s;
1da177e4
LT
2386
2387 for (i=0 ; i<disks; i++)
2388 if (bi == &sh->dev[i].req)
2389 break;
2390
4246a0b6 2391 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2392 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2393 bi->bi_error);
1da177e4 2394 if (i == disks) {
5f9d1fde 2395 bio_reset(bi);
1da177e4 2396 BUG();
6712ecf8 2397 return;
1da177e4 2398 }
14a75d3e 2399 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2400 /* If replacement finished while this request was outstanding,
2401 * 'replacement' might be NULL already.
2402 * In that case it moved down to 'rdev'.
2403 * rdev is not removed until all requests are finished.
2404 */
14a75d3e 2405 rdev = conf->disks[i].replacement;
dd054fce 2406 if (!rdev)
14a75d3e 2407 rdev = conf->disks[i].rdev;
1da177e4 2408
05616be5
N
2409 if (use_new_offset(conf, sh))
2410 s = sh->sector + rdev->new_data_offset;
2411 else
2412 s = sh->sector + rdev->data_offset;
4246a0b6 2413 if (!bi->bi_error) {
1da177e4 2414 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2415 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2416 /* Note that this cannot happen on a
2417 * replacement device. We just fail those on
2418 * any error
2419 */
cc6167b4
N
2420 pr_info_ratelimited(
2421 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
8bda470e 2422 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2423 (unsigned long long)s,
8bda470e 2424 bdevname(rdev->bdev, b));
ddd5115f 2425 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2426 clear_bit(R5_ReadError, &sh->dev[i].flags);
2427 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2428 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2429 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2430
86aa1397
SL
2431 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2432 /*
2433 * end read for a page in journal, this
2434 * must be preparing for prexor in rmw
2435 */
2436 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2437
14a75d3e
N
2438 if (atomic_read(&rdev->read_errors))
2439 atomic_set(&rdev->read_errors, 0);
1da177e4 2440 } else {
14a75d3e 2441 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2442 int retry = 0;
2e8ac303 2443 int set_bad = 0;
d6950432 2444
1da177e4 2445 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2446 atomic_inc(&rdev->read_errors);
14a75d3e 2447 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
cc6167b4
N
2448 pr_warn_ratelimited(
2449 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
14a75d3e 2450 mdname(conf->mddev),
05616be5 2451 (unsigned long long)s,
14a75d3e 2452 bdn);
2e8ac303 2453 else if (conf->mddev->degraded >= conf->max_degraded) {
2454 set_bad = 1;
cc6167b4
N
2455 pr_warn_ratelimited(
2456 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
8bda470e 2457 mdname(conf->mddev),
05616be5 2458 (unsigned long long)s,
8bda470e 2459 bdn);
2e8ac303 2460 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2461 /* Oh, no!!! */
2e8ac303 2462 set_bad = 1;
cc6167b4
N
2463 pr_warn_ratelimited(
2464 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
8bda470e 2465 mdname(conf->mddev),
05616be5 2466 (unsigned long long)s,
8bda470e 2467 bdn);
2e8ac303 2468 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2469 > conf->max_nr_stripes)
cc6167b4 2470 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2471 mdname(conf->mddev), bdn);
ba22dcbf
N
2472 else
2473 retry = 1;
edfa1f65
BY
2474 if (set_bad && test_bit(In_sync, &rdev->flags)
2475 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2476 retry = 1;
ba22dcbf 2477 if (retry)
3f9e7c14 2478 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2479 set_bit(R5_ReadError, &sh->dev[i].flags);
2480 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2481 } else
2482 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2483 else {
4e5314b5
N
2484 clear_bit(R5_ReadError, &sh->dev[i].flags);
2485 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2486 if (!(set_bad
2487 && test_bit(In_sync, &rdev->flags)
2488 && rdev_set_badblocks(
2489 rdev, sh->sector, STRIPE_SECTORS, 0)))
2490 md_error(conf->mddev, rdev);
ba22dcbf 2491 }
1da177e4 2492 }
14a75d3e 2493 rdev_dec_pending(rdev, conf->mddev);
c9445555 2494 bio_reset(bi);
1da177e4
LT
2495 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2496 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2497 raid5_release_stripe(sh);
1da177e4
LT
2498}
2499
4246a0b6 2500static void raid5_end_write_request(struct bio *bi)
1da177e4 2501{
99c0fb5f 2502 struct stripe_head *sh = bi->bi_private;
d1688a6d 2503 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2504 int disks = sh->disks, i;
977df362 2505 struct md_rdev *uninitialized_var(rdev);
b84db560
N
2506 sector_t first_bad;
2507 int bad_sectors;
977df362 2508 int replacement = 0;
1da177e4 2509
977df362
N
2510 for (i = 0 ; i < disks; i++) {
2511 if (bi == &sh->dev[i].req) {
2512 rdev = conf->disks[i].rdev;
1da177e4 2513 break;
977df362
N
2514 }
2515 if (bi == &sh->dev[i].rreq) {
2516 rdev = conf->disks[i].replacement;
dd054fce
N
2517 if (rdev)
2518 replacement = 1;
2519 else
2520 /* rdev was removed and 'replacement'
2521 * replaced it. rdev is not removed
2522 * until all requests are finished.
2523 */
2524 rdev = conf->disks[i].rdev;
977df362
N
2525 break;
2526 }
2527 }
4246a0b6 2528 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2529 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2530 bi->bi_error);
1da177e4 2531 if (i == disks) {
5f9d1fde 2532 bio_reset(bi);
1da177e4 2533 BUG();
6712ecf8 2534 return;
1da177e4
LT
2535 }
2536
977df362 2537 if (replacement) {
4246a0b6 2538 if (bi->bi_error)
977df362
N
2539 md_error(conf->mddev, rdev);
2540 else if (is_badblock(rdev, sh->sector,
2541 STRIPE_SECTORS,
2542 &first_bad, &bad_sectors))
2543 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2544 } else {
4246a0b6 2545 if (bi->bi_error) {
9f97e4b1 2546 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2547 set_bit(WriteErrorSeen, &rdev->flags);
2548 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2549 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2550 set_bit(MD_RECOVERY_NEEDED,
2551 &rdev->mddev->recovery);
977df362
N
2552 } else if (is_badblock(rdev, sh->sector,
2553 STRIPE_SECTORS,
c0b32972 2554 &first_bad, &bad_sectors)) {
977df362 2555 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2556 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2557 /* That was a successful write so make
2558 * sure it looks like we already did
2559 * a re-write.
2560 */
2561 set_bit(R5_ReWrite, &sh->dev[i].flags);
2562 }
977df362
N
2563 }
2564 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2565
4246a0b6 2566 if (sh->batch_head && bi->bi_error && !replacement)
72ac7330 2567 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2568
c9445555 2569 bio_reset(bi);
977df362
N
2570 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2571 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2572 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2573 raid5_release_stripe(sh);
59fc630b 2574
2575 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2576 raid5_release_stripe(sh->batch_head);
1da177e4
LT
2577}
2578
784052ec 2579static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2580{
2581 struct r5dev *dev = &sh->dev[i];
2582
1da177e4 2583 dev->flags = 0;
6d036f7d 2584 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4
LT
2585}
2586
849674e4 2587static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2588{
2589 char b[BDEVNAME_SIZE];
d1688a6d 2590 struct r5conf *conf = mddev->private;
908f4fbd 2591 unsigned long flags;
0c55e022 2592 pr_debug("raid456: error called\n");
1da177e4 2593
908f4fbd
N
2594 spin_lock_irqsave(&conf->device_lock, flags);
2595 clear_bit(In_sync, &rdev->flags);
2e38a37f 2596 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd
N
2597 spin_unlock_irqrestore(&conf->device_lock, flags);
2598 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2599
de393cde 2600 set_bit(Blocked, &rdev->flags);
6f8d0c77 2601 set_bit(Faulty, &rdev->flags);
2953079c
SL
2602 set_mask_bits(&mddev->sb_flags, 0,
2603 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
cc6167b4
N
2604 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2605 "md/raid:%s: Operation continuing on %d devices.\n",
2606 mdname(mddev),
2607 bdevname(rdev->bdev, b),
2608 mdname(mddev),
2609 conf->raid_disks - mddev->degraded);
2e38a37f 2610 r5c_update_on_rdev_error(mddev);
16a53ecc 2611}
1da177e4
LT
2612
2613/*
2614 * Input: a 'big' sector number,
2615 * Output: index of the data and parity disk, and the sector # in them.
2616 */
6d036f7d
SL
2617sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2618 int previous, int *dd_idx,
2619 struct stripe_head *sh)
1da177e4 2620{
6e3b96ed 2621 sector_t stripe, stripe2;
35f2a591 2622 sector_t chunk_number;
1da177e4 2623 unsigned int chunk_offset;
911d4ee8 2624 int pd_idx, qd_idx;
67cc2b81 2625 int ddf_layout = 0;
1da177e4 2626 sector_t new_sector;
e183eaed
N
2627 int algorithm = previous ? conf->prev_algo
2628 : conf->algorithm;
09c9e5fa
AN
2629 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2630 : conf->chunk_sectors;
112bf897
N
2631 int raid_disks = previous ? conf->previous_raid_disks
2632 : conf->raid_disks;
2633 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2634
2635 /* First compute the information on this sector */
2636
2637 /*
2638 * Compute the chunk number and the sector offset inside the chunk
2639 */
2640 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2641 chunk_number = r_sector;
1da177e4
LT
2642
2643 /*
2644 * Compute the stripe number
2645 */
35f2a591
N
2646 stripe = chunk_number;
2647 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2648 stripe2 = stripe;
1da177e4
LT
2649 /*
2650 * Select the parity disk based on the user selected algorithm.
2651 */
84789554 2652 pd_idx = qd_idx = -1;
16a53ecc
N
2653 switch(conf->level) {
2654 case 4:
911d4ee8 2655 pd_idx = data_disks;
16a53ecc
N
2656 break;
2657 case 5:
e183eaed 2658 switch (algorithm) {
1da177e4 2659 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2660 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2661 if (*dd_idx >= pd_idx)
1da177e4
LT
2662 (*dd_idx)++;
2663 break;
2664 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2665 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2666 if (*dd_idx >= pd_idx)
1da177e4
LT
2667 (*dd_idx)++;
2668 break;
2669 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2670 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2671 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2672 break;
2673 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2674 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2675 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2676 break;
99c0fb5f
N
2677 case ALGORITHM_PARITY_0:
2678 pd_idx = 0;
2679 (*dd_idx)++;
2680 break;
2681 case ALGORITHM_PARITY_N:
2682 pd_idx = data_disks;
2683 break;
1da177e4 2684 default:
99c0fb5f 2685 BUG();
16a53ecc
N
2686 }
2687 break;
2688 case 6:
2689
e183eaed 2690 switch (algorithm) {
16a53ecc 2691 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2692 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2693 qd_idx = pd_idx + 1;
2694 if (pd_idx == raid_disks-1) {
99c0fb5f 2695 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2696 qd_idx = 0;
2697 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2698 (*dd_idx) += 2; /* D D P Q D */
2699 break;
2700 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2701 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2702 qd_idx = pd_idx + 1;
2703 if (pd_idx == raid_disks-1) {
99c0fb5f 2704 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2705 qd_idx = 0;
2706 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2707 (*dd_idx) += 2; /* D D P Q D */
2708 break;
2709 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2710 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2711 qd_idx = (pd_idx + 1) % raid_disks;
2712 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2713 break;
2714 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2715 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2716 qd_idx = (pd_idx + 1) % raid_disks;
2717 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2718 break;
99c0fb5f
N
2719
2720 case ALGORITHM_PARITY_0:
2721 pd_idx = 0;
2722 qd_idx = 1;
2723 (*dd_idx) += 2;
2724 break;
2725 case ALGORITHM_PARITY_N:
2726 pd_idx = data_disks;
2727 qd_idx = data_disks + 1;
2728 break;
2729
2730 case ALGORITHM_ROTATING_ZERO_RESTART:
2731 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2732 * of blocks for computing Q is different.
2733 */
6e3b96ed 2734 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2735 qd_idx = pd_idx + 1;
2736 if (pd_idx == raid_disks-1) {
2737 (*dd_idx)++; /* Q D D D P */
2738 qd_idx = 0;
2739 } else if (*dd_idx >= pd_idx)
2740 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2741 ddf_layout = 1;
99c0fb5f
N
2742 break;
2743
2744 case ALGORITHM_ROTATING_N_RESTART:
2745 /* Same a left_asymmetric, by first stripe is
2746 * D D D P Q rather than
2747 * Q D D D P
2748 */
6e3b96ed
N
2749 stripe2 += 1;
2750 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2751 qd_idx = pd_idx + 1;
2752 if (pd_idx == raid_disks-1) {
2753 (*dd_idx)++; /* Q D D D P */
2754 qd_idx = 0;
2755 } else if (*dd_idx >= pd_idx)
2756 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2757 ddf_layout = 1;
99c0fb5f
N
2758 break;
2759
2760 case ALGORITHM_ROTATING_N_CONTINUE:
2761 /* Same as left_symmetric but Q is before P */
6e3b96ed 2762 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2763 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2764 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2765 ddf_layout = 1;
99c0fb5f
N
2766 break;
2767
2768 case ALGORITHM_LEFT_ASYMMETRIC_6:
2769 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2770 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2771 if (*dd_idx >= pd_idx)
2772 (*dd_idx)++;
2773 qd_idx = raid_disks - 1;
2774 break;
2775
2776 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2777 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2778 if (*dd_idx >= pd_idx)
2779 (*dd_idx)++;
2780 qd_idx = raid_disks - 1;
2781 break;
2782
2783 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2784 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2785 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2786 qd_idx = raid_disks - 1;
2787 break;
2788
2789 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2790 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2791 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2792 qd_idx = raid_disks - 1;
2793 break;
2794
2795 case ALGORITHM_PARITY_0_6:
2796 pd_idx = 0;
2797 (*dd_idx)++;
2798 qd_idx = raid_disks - 1;
2799 break;
2800
16a53ecc 2801 default:
99c0fb5f 2802 BUG();
16a53ecc
N
2803 }
2804 break;
1da177e4
LT
2805 }
2806
911d4ee8
N
2807 if (sh) {
2808 sh->pd_idx = pd_idx;
2809 sh->qd_idx = qd_idx;
67cc2b81 2810 sh->ddf_layout = ddf_layout;
911d4ee8 2811 }
1da177e4
LT
2812 /*
2813 * Finally, compute the new sector number
2814 */
2815 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2816 return new_sector;
2817}
2818
6d036f7d 2819sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2820{
d1688a6d 2821 struct r5conf *conf = sh->raid_conf;
b875e531
N
2822 int raid_disks = sh->disks;
2823 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2824 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2825 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2826 : conf->chunk_sectors;
e183eaed
N
2827 int algorithm = previous ? conf->prev_algo
2828 : conf->algorithm;
1da177e4
LT
2829 sector_t stripe;
2830 int chunk_offset;
35f2a591
N
2831 sector_t chunk_number;
2832 int dummy1, dd_idx = i;
1da177e4 2833 sector_t r_sector;
911d4ee8 2834 struct stripe_head sh2;
1da177e4
LT
2835
2836 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2837 stripe = new_sector;
1da177e4 2838
16a53ecc
N
2839 if (i == sh->pd_idx)
2840 return 0;
2841 switch(conf->level) {
2842 case 4: break;
2843 case 5:
e183eaed 2844 switch (algorithm) {
1da177e4
LT
2845 case ALGORITHM_LEFT_ASYMMETRIC:
2846 case ALGORITHM_RIGHT_ASYMMETRIC:
2847 if (i > sh->pd_idx)
2848 i--;
2849 break;
2850 case ALGORITHM_LEFT_SYMMETRIC:
2851 case ALGORITHM_RIGHT_SYMMETRIC:
2852 if (i < sh->pd_idx)
2853 i += raid_disks;
2854 i -= (sh->pd_idx + 1);
2855 break;
99c0fb5f
N
2856 case ALGORITHM_PARITY_0:
2857 i -= 1;
2858 break;
2859 case ALGORITHM_PARITY_N:
2860 break;
1da177e4 2861 default:
99c0fb5f 2862 BUG();
16a53ecc
N
2863 }
2864 break;
2865 case 6:
d0dabf7e 2866 if (i == sh->qd_idx)
16a53ecc 2867 return 0; /* It is the Q disk */
e183eaed 2868 switch (algorithm) {
16a53ecc
N
2869 case ALGORITHM_LEFT_ASYMMETRIC:
2870 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2871 case ALGORITHM_ROTATING_ZERO_RESTART:
2872 case ALGORITHM_ROTATING_N_RESTART:
2873 if (sh->pd_idx == raid_disks-1)
2874 i--; /* Q D D D P */
16a53ecc
N
2875 else if (i > sh->pd_idx)
2876 i -= 2; /* D D P Q D */
2877 break;
2878 case ALGORITHM_LEFT_SYMMETRIC:
2879 case ALGORITHM_RIGHT_SYMMETRIC:
2880 if (sh->pd_idx == raid_disks-1)
2881 i--; /* Q D D D P */
2882 else {
2883 /* D D P Q D */
2884 if (i < sh->pd_idx)
2885 i += raid_disks;
2886 i -= (sh->pd_idx + 2);
2887 }
2888 break;
99c0fb5f
N
2889 case ALGORITHM_PARITY_0:
2890 i -= 2;
2891 break;
2892 case ALGORITHM_PARITY_N:
2893 break;
2894 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2895 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2896 if (sh->pd_idx == 0)
2897 i--; /* P D D D Q */
e4424fee
N
2898 else {
2899 /* D D Q P D */
2900 if (i < sh->pd_idx)
2901 i += raid_disks;
2902 i -= (sh->pd_idx + 1);
2903 }
99c0fb5f
N
2904 break;
2905 case ALGORITHM_LEFT_ASYMMETRIC_6:
2906 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2907 if (i > sh->pd_idx)
2908 i--;
2909 break;
2910 case ALGORITHM_LEFT_SYMMETRIC_6:
2911 case ALGORITHM_RIGHT_SYMMETRIC_6:
2912 if (i < sh->pd_idx)
2913 i += data_disks + 1;
2914 i -= (sh->pd_idx + 1);
2915 break;
2916 case ALGORITHM_PARITY_0_6:
2917 i -= 1;
2918 break;
16a53ecc 2919 default:
99c0fb5f 2920 BUG();
16a53ecc
N
2921 }
2922 break;
1da177e4
LT
2923 }
2924
2925 chunk_number = stripe * data_disks + i;
35f2a591 2926 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2927
112bf897 2928 check = raid5_compute_sector(conf, r_sector,
784052ec 2929 previous, &dummy1, &sh2);
911d4ee8
N
2930 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2931 || sh2.qd_idx != sh->qd_idx) {
cc6167b4
N
2932 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
2933 mdname(conf->mddev));
1da177e4
LT
2934 return 0;
2935 }
2936 return r_sector;
2937}
2938
07e83364
SL
2939/*
2940 * There are cases where we want handle_stripe_dirtying() and
2941 * schedule_reconstruction() to delay towrite to some dev of a stripe.
2942 *
2943 * This function checks whether we want to delay the towrite. Specifically,
2944 * we delay the towrite when:
2945 *
2946 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
2947 * stripe has data in journal (for other devices).
2948 *
2949 * In this case, when reading data for the non-overwrite dev, it is
2950 * necessary to handle complex rmw of write back cache (prexor with
2951 * orig_page, and xor with page). To keep read path simple, we would
2952 * like to flush data in journal to RAID disks first, so complex rmw
2953 * is handled in the write patch (handle_stripe_dirtying).
2954 *
39b99586
SL
2955 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
2956 *
2957 * It is important to be able to flush all stripes in raid5-cache.
2958 * Therefore, we need reserve some space on the journal device for
2959 * these flushes. If flush operation includes pending writes to the
2960 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
2961 * for the flush out. If we exclude these pending writes from flush
2962 * operation, we only need (conf->max_degraded + 1) pages per stripe.
2963 * Therefore, excluding pending writes in these cases enables more
2964 * efficient use of the journal device.
2965 *
2966 * Note: To make sure the stripe makes progress, we only delay
2967 * towrite for stripes with data already in journal (injournal > 0).
2968 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
2969 * no_space_stripes list.
2970 *
07e83364 2971 */
39b99586
SL
2972static inline bool delay_towrite(struct r5conf *conf,
2973 struct r5dev *dev,
2974 struct stripe_head_state *s)
07e83364 2975{
39b99586
SL
2976 /* case 1 above */
2977 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2978 !test_bit(R5_Insync, &dev->flags) && s->injournal)
2979 return true;
2980 /* case 2 above */
2981 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2982 s->injournal > 0)
2983 return true;
2984 return false;
07e83364
SL
2985}
2986
600aa109 2987static void
c0f7bddb 2988schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2989 int rcw, int expand)
e33129d8 2990{
584acdd4 2991 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 2992 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2993 int level = conf->level;
e33129d8
DW
2994
2995 if (rcw) {
1e6d690b
SL
2996 /*
2997 * In some cases, handle_stripe_dirtying initially decided to
2998 * run rmw and allocates extra page for prexor. However, rcw is
2999 * cheaper later on. We need to free the extra page now,
3000 * because we won't be able to do that in ops_complete_prexor().
3001 */
3002 r5c_release_extra_page(sh);
e33129d8
DW
3003
3004 for (i = disks; i--; ) {
3005 struct r5dev *dev = &sh->dev[i];
3006
39b99586 3007 if (dev->towrite && !delay_towrite(conf, dev, s)) {
e33129d8 3008 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 3009 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3010 if (!expand)
3011 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3012 s->locked++;
1e6d690b
SL
3013 } else if (test_bit(R5_InJournal, &dev->flags)) {
3014 set_bit(R5_LOCKED, &dev->flags);
3015 s->locked++;
e33129d8
DW
3016 }
3017 }
ce7d363a
N
3018 /* if we are not expanding this is a proper write request, and
3019 * there will be bios with new data to be drained into the
3020 * stripe cache
3021 */
3022 if (!expand) {
3023 if (!s->locked)
3024 /* False alarm, nothing to do */
3025 return;
3026 sh->reconstruct_state = reconstruct_state_drain_run;
3027 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3028 } else
3029 sh->reconstruct_state = reconstruct_state_run;
3030
3031 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3032
c0f7bddb 3033 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 3034 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 3035 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
3036 } else {
3037 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3038 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
3039 BUG_ON(level == 6 &&
3040 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3041 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 3042
e33129d8
DW
3043 for (i = disks; i--; ) {
3044 struct r5dev *dev = &sh->dev[i];
584acdd4 3045 if (i == pd_idx || i == qd_idx)
e33129d8
DW
3046 continue;
3047
e33129d8
DW
3048 if (dev->towrite &&
3049 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
3050 test_bit(R5_Wantcompute, &dev->flags))) {
3051 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3052 set_bit(R5_LOCKED, &dev->flags);
3053 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3054 s->locked++;
1e6d690b
SL
3055 } else if (test_bit(R5_InJournal, &dev->flags)) {
3056 set_bit(R5_LOCKED, &dev->flags);
3057 s->locked++;
e33129d8
DW
3058 }
3059 }
ce7d363a
N
3060 if (!s->locked)
3061 /* False alarm - nothing to do */
3062 return;
3063 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3064 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3065 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3066 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
3067 }
3068
c0f7bddb 3069 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
3070 * are in flight
3071 */
3072 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3073 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 3074 s->locked++;
e33129d8 3075
c0f7bddb
YT
3076 if (level == 6) {
3077 int qd_idx = sh->qd_idx;
3078 struct r5dev *dev = &sh->dev[qd_idx];
3079
3080 set_bit(R5_LOCKED, &dev->flags);
3081 clear_bit(R5_UPTODATE, &dev->flags);
3082 s->locked++;
3083 }
3084
600aa109 3085 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 3086 __func__, (unsigned long long)sh->sector,
600aa109 3087 s->locked, s->ops_request);
e33129d8 3088}
16a53ecc 3089
1da177e4
LT
3090/*
3091 * Each stripe/dev can have one or more bion attached.
16a53ecc 3092 * toread/towrite point to the first in a chain.
1da177e4
LT
3093 * The bi_next chain must be in order.
3094 */
da41ba65 3095static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3096 int forwrite, int previous)
1da177e4
LT
3097{
3098 struct bio **bip;
d1688a6d 3099 struct r5conf *conf = sh->raid_conf;
72626685 3100 int firstwrite=0;
1da177e4 3101
cbe47ec5 3102 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 3103 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
3104 (unsigned long long)sh->sector);
3105
b17459c0
SL
3106 /*
3107 * If several bio share a stripe. The bio bi_phys_segments acts as a
3108 * reference count to avoid race. The reference count should already be
3109 * increased before this function is called (for example, in
849674e4 3110 * raid5_make_request()), so other bio sharing this stripe will not free the
b17459c0
SL
3111 * stripe. If a stripe is owned by one stripe, the stripe lock will
3112 * protect it.
3113 */
3114 spin_lock_irq(&sh->stripe_lock);
59fc630b 3115 /* Don't allow new IO added to stripes in batch list */
3116 if (sh->batch_head)
3117 goto overlap;
72626685 3118 if (forwrite) {
1da177e4 3119 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 3120 if (*bip == NULL)
72626685
N
3121 firstwrite = 1;
3122 } else
1da177e4 3123 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
3124 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3125 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
3126 goto overlap;
3127 bip = & (*bip)->bi_next;
3128 }
4f024f37 3129 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
3130 goto overlap;
3131
da41ba65 3132 if (!forwrite || previous)
3133 clear_bit(STRIPE_BATCH_READY, &sh->state);
3134
78bafebd 3135 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
3136 if (*bip)
3137 bi->bi_next = *bip;
3138 *bip = bi;
e7836bd6 3139 raid5_inc_bi_active_stripes(bi);
72626685 3140
1da177e4
LT
3141 if (forwrite) {
3142 /* check if page is covered */
3143 sector_t sector = sh->dev[dd_idx].sector;
3144 for (bi=sh->dev[dd_idx].towrite;
3145 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 3146 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 3147 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
3148 if (bio_end_sector(bi) >= sector)
3149 sector = bio_end_sector(bi);
1da177e4
LT
3150 }
3151 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 3152 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3153 sh->overwrite_disks++;
1da177e4 3154 }
cbe47ec5
N
3155
3156 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3157 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3158 (unsigned long long)sh->sector, dd_idx);
3159
3160 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3161 /* Cannot hold spinlock over bitmap_startwrite,
3162 * but must ensure this isn't added to a batch until
3163 * we have added to the bitmap and set bm_seq.
3164 * So set STRIPE_BITMAP_PENDING to prevent
3165 * batching.
3166 * If multiple add_stripe_bio() calls race here they
3167 * much all set STRIPE_BITMAP_PENDING. So only the first one
3168 * to complete "bitmap_startwrite" gets to set
3169 * STRIPE_BIT_DELAY. This is important as once a stripe
3170 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3171 * any more.
3172 */
3173 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3174 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
3175 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3176 STRIPE_SECTORS, 0);
d0852df5
N
3177 spin_lock_irq(&sh->stripe_lock);
3178 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3179 if (!sh->batch_head) {
3180 sh->bm_seq = conf->seq_flush+1;
3181 set_bit(STRIPE_BIT_DELAY, &sh->state);
3182 }
cbe47ec5 3183 }
d0852df5 3184 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3185
3186 if (stripe_can_batch(sh))
3187 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3188 return 1;
3189
3190 overlap:
3191 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3192 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3193 return 0;
3194}
3195
d1688a6d 3196static void end_reshape(struct r5conf *conf);
29269553 3197
d1688a6d 3198static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3199 struct stripe_head *sh)
ccfcc3c1 3200{
784052ec 3201 int sectors_per_chunk =
09c9e5fa 3202 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3203 int dd_idx;
2d2063ce 3204 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3205 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3206
112bf897
N
3207 raid5_compute_sector(conf,
3208 stripe * (disks - conf->max_degraded)
b875e531 3209 *sectors_per_chunk + chunk_offset,
112bf897 3210 previous,
911d4ee8 3211 &dd_idx, sh);
ccfcc3c1
N
3212}
3213
a4456856 3214static void
d1688a6d 3215handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856 3216 struct stripe_head_state *s, int disks,
34a6f80e 3217 struct bio_list *return_bi)
a4456856
DW
3218{
3219 int i;
59fc630b 3220 BUG_ON(sh->batch_head);
a4456856
DW
3221 for (i = disks; i--; ) {
3222 struct bio *bi;
3223 int bitmap_end = 0;
3224
3225 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3226 struct md_rdev *rdev;
a4456856
DW
3227 rcu_read_lock();
3228 rdev = rcu_dereference(conf->disks[i].rdev);
f5b67ae8
N
3229 if (rdev && test_bit(In_sync, &rdev->flags) &&
3230 !test_bit(Faulty, &rdev->flags))
7f0da59b
N
3231 atomic_inc(&rdev->nr_pending);
3232 else
3233 rdev = NULL;
a4456856 3234 rcu_read_unlock();
7f0da59b
N
3235 if (rdev) {
3236 if (!rdev_set_badblocks(
3237 rdev,
3238 sh->sector,
3239 STRIPE_SECTORS, 0))
3240 md_error(conf->mddev, rdev);
3241 rdev_dec_pending(rdev, conf->mddev);
3242 }
a4456856 3243 }
b17459c0 3244 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3245 /* fail all writes first */
3246 bi = sh->dev[i].towrite;
3247 sh->dev[i].towrite = NULL;
7a87f434 3248 sh->overwrite_disks = 0;
b17459c0 3249 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3250 if (bi)
a4456856 3251 bitmap_end = 1;
a4456856 3252
0576b1c6
SL
3253 r5l_stripe_write_finished(sh);
3254
a4456856
DW
3255 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3256 wake_up(&conf->wait_for_overlap);
3257
4f024f37 3258 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3259 sh->dev[i].sector + STRIPE_SECTORS) {
3260 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3261
3262 bi->bi_error = -EIO;
e7836bd6 3263 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856 3264 md_write_end(conf->mddev);
34a6f80e 3265 bio_list_add(return_bi, bi);
a4456856
DW
3266 }
3267 bi = nextbi;
3268 }
7eaf7e8e
SL
3269 if (bitmap_end)
3270 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3271 STRIPE_SECTORS, 0, 0);
3272 bitmap_end = 0;
a4456856
DW
3273 /* and fail all 'written' */
3274 bi = sh->dev[i].written;
3275 sh->dev[i].written = NULL;
d592a996
SL
3276 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3277 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3278 sh->dev[i].page = sh->dev[i].orig_page;
3279 }
3280
a4456856 3281 if (bi) bitmap_end = 1;
4f024f37 3282 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3283 sh->dev[i].sector + STRIPE_SECTORS) {
3284 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3285
3286 bi->bi_error = -EIO;
e7836bd6 3287 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856 3288 md_write_end(conf->mddev);
34a6f80e 3289 bio_list_add(return_bi, bi);
a4456856
DW
3290 }
3291 bi = bi2;
3292 }
3293
b5e98d65
DW
3294 /* fail any reads if this device is non-operational and
3295 * the data has not reached the cache yet.
3296 */
3297 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
6e74a9cf 3298 s->failed > conf->max_degraded &&
b5e98d65
DW
3299 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3300 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3301 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3302 bi = sh->dev[i].toread;
3303 sh->dev[i].toread = NULL;
143c4d05 3304 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3305 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3306 wake_up(&conf->wait_for_overlap);
ebda780b
SL
3307 if (bi)
3308 s->to_read--;
4f024f37 3309 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3310 sh->dev[i].sector + STRIPE_SECTORS) {
3311 struct bio *nextbi =
3312 r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3313
3314 bi->bi_error = -EIO;
34a6f80e
N
3315 if (!raid5_dec_bi_active_stripes(bi))
3316 bio_list_add(return_bi, bi);
a4456856
DW
3317 bi = nextbi;
3318 }
3319 }
a4456856
DW
3320 if (bitmap_end)
3321 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3322 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3323 /* If we were in the middle of a write the parity block might
3324 * still be locked - so just clear all R5_LOCKED flags
3325 */
3326 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3327 }
ebda780b
SL
3328 s->to_write = 0;
3329 s->written = 0;
a4456856 3330
8b3e6cdc
DW
3331 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3332 if (atomic_dec_and_test(&conf->pending_full_writes))
3333 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3334}
3335
7f0da59b 3336static void
d1688a6d 3337handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3338 struct stripe_head_state *s)
3339{
3340 int abort = 0;
3341 int i;
3342
59fc630b 3343 BUG_ON(sh->batch_head);
7f0da59b 3344 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3345 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3346 wake_up(&conf->wait_for_overlap);
7f0da59b 3347 s->syncing = 0;
9a3e1101 3348 s->replacing = 0;
7f0da59b 3349 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3350 * Don't even need to abort as that is handled elsewhere
3351 * if needed, and not always wanted e.g. if there is a known
3352 * bad block here.
9a3e1101 3353 * For recover/replace we need to record a bad block on all
7f0da59b
N
3354 * non-sync devices, or abort the recovery
3355 */
18b9837e
N
3356 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3357 /* During recovery devices cannot be removed, so
3358 * locking and refcounting of rdevs is not needed
3359 */
e50d3992 3360 rcu_read_lock();
18b9837e 3361 for (i = 0; i < conf->raid_disks; i++) {
e50d3992 3362 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
18b9837e
N
3363 if (rdev
3364 && !test_bit(Faulty, &rdev->flags)
3365 && !test_bit(In_sync, &rdev->flags)
3366 && !rdev_set_badblocks(rdev, sh->sector,
3367 STRIPE_SECTORS, 0))
3368 abort = 1;
e50d3992 3369 rdev = rcu_dereference(conf->disks[i].replacement);
18b9837e
N
3370 if (rdev
3371 && !test_bit(Faulty, &rdev->flags)
3372 && !test_bit(In_sync, &rdev->flags)
3373 && !rdev_set_badblocks(rdev, sh->sector,
3374 STRIPE_SECTORS, 0))
3375 abort = 1;
3376 }
e50d3992 3377 rcu_read_unlock();
18b9837e
N
3378 if (abort)
3379 conf->recovery_disabled =
3380 conf->mddev->recovery_disabled;
7f0da59b 3381 }
18b9837e 3382 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3383}
3384
9a3e1101
N
3385static int want_replace(struct stripe_head *sh, int disk_idx)
3386{
3387 struct md_rdev *rdev;
3388 int rv = 0;
3f232d6a
N
3389
3390 rcu_read_lock();
3391 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
9a3e1101
N
3392 if (rdev
3393 && !test_bit(Faulty, &rdev->flags)
3394 && !test_bit(In_sync, &rdev->flags)
3395 && (rdev->recovery_offset <= sh->sector
3396 || rdev->mddev->recovery_cp <= sh->sector))
3397 rv = 1;
3f232d6a 3398 rcu_read_unlock();
9a3e1101
N
3399 return rv;
3400}
3401
2c58f06e
N
3402static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3403 int disk_idx, int disks)
a4456856 3404{
5599becc 3405 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3406 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3407 &sh->dev[s->failed_num[1]] };
ea664c82 3408 int i;
5599becc 3409
a79cfe12
N
3410
3411 if (test_bit(R5_LOCKED, &dev->flags) ||
3412 test_bit(R5_UPTODATE, &dev->flags))
3413 /* No point reading this as we already have it or have
3414 * decided to get it.
3415 */
3416 return 0;
3417
3418 if (dev->toread ||
3419 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3420 /* We need this block to directly satisfy a request */
3421 return 1;
3422
3423 if (s->syncing || s->expanding ||
3424 (s->replacing && want_replace(sh, disk_idx)))
3425 /* When syncing, or expanding we read everything.
3426 * When replacing, we need the replaced block.
3427 */
3428 return 1;
3429
3430 if ((s->failed >= 1 && fdev[0]->toread) ||
3431 (s->failed >= 2 && fdev[1]->toread))
3432 /* If we want to read from a failed device, then
3433 * we need to actually read every other device.
3434 */
3435 return 1;
3436
a9d56950
N
3437 /* Sometimes neither read-modify-write nor reconstruct-write
3438 * cycles can work. In those cases we read every block we
3439 * can. Then the parity-update is certain to have enough to
3440 * work with.
3441 * This can only be a problem when we need to write something,
3442 * and some device has failed. If either of those tests
3443 * fail we need look no further.
3444 */
3445 if (!s->failed || !s->to_write)
3446 return 0;
3447
3448 if (test_bit(R5_Insync, &dev->flags) &&
3449 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3450 /* Pre-reads at not permitted until after short delay
3451 * to gather multiple requests. However if this
3452 * device is no Insync, the block could only be be computed
3453 * and there is no need to delay that.
3454 */
3455 return 0;
ea664c82 3456
36707bb2 3457 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3458 if (fdev[i]->towrite &&
3459 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3460 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3461 /* If we have a partial write to a failed
3462 * device, then we will need to reconstruct
3463 * the content of that device, so all other
3464 * devices must be read.
3465 */
3466 return 1;
3467 }
3468
3469 /* If we are forced to do a reconstruct-write, either because
3470 * the current RAID6 implementation only supports that, or
3471 * or because parity cannot be trusted and we are currently
3472 * recovering it, there is extra need to be careful.
3473 * If one of the devices that we would need to read, because
3474 * it is not being overwritten (and maybe not written at all)
3475 * is missing/faulty, then we need to read everything we can.
3476 */
3477 if (sh->raid_conf->level != 6 &&
3478 sh->sector < sh->raid_conf->mddev->recovery_cp)
3479 /* reconstruct-write isn't being forced */
3480 return 0;
36707bb2 3481 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3482 if (s->failed_num[i] != sh->pd_idx &&
3483 s->failed_num[i] != sh->qd_idx &&
3484 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3485 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3486 return 1;
3487 }
3488
2c58f06e
N
3489 return 0;
3490}
3491
ba02684d
SL
3492/* fetch_block - checks the given member device to see if its data needs
3493 * to be read or computed to satisfy a request.
3494 *
3495 * Returns 1 when no more member devices need to be checked, otherwise returns
3496 * 0 to tell the loop in handle_stripe_fill to continue
3497 */
2c58f06e
N
3498static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3499 int disk_idx, int disks)
3500{
3501 struct r5dev *dev = &sh->dev[disk_idx];
3502
3503 /* is the data in this block needed, and can we get it? */
3504 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3505 /* we would like to get this block, possibly by computing it,
3506 * otherwise read it if the backing disk is insync
3507 */
3508 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3509 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3510 BUG_ON(sh->batch_head);
5599becc 3511 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
3512 (s->failed && (disk_idx == s->failed_num[0] ||
3513 disk_idx == s->failed_num[1]))) {
5599becc
YT
3514 /* have disk failed, and we're requested to fetch it;
3515 * do compute it
a4456856 3516 */
5599becc
YT
3517 pr_debug("Computing stripe %llu block %d\n",
3518 (unsigned long long)sh->sector, disk_idx);
3519 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3520 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3521 set_bit(R5_Wantcompute, &dev->flags);
3522 sh->ops.target = disk_idx;
3523 sh->ops.target2 = -1; /* no 2nd target */
3524 s->req_compute = 1;
93b3dbce
N
3525 /* Careful: from this point on 'uptodate' is in the eye
3526 * of raid_run_ops which services 'compute' operations
3527 * before writes. R5_Wantcompute flags a block that will
3528 * be R5_UPTODATE by the time it is needed for a
3529 * subsequent operation.
3530 */
5599becc
YT
3531 s->uptodate++;
3532 return 1;
3533 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3534 /* Computing 2-failure is *very* expensive; only
3535 * do it if failed >= 2
3536 */
3537 int other;
3538 for (other = disks; other--; ) {
3539 if (other == disk_idx)
3540 continue;
3541 if (!test_bit(R5_UPTODATE,
3542 &sh->dev[other].flags))
3543 break;
a4456856 3544 }
5599becc
YT
3545 BUG_ON(other < 0);
3546 pr_debug("Computing stripe %llu blocks %d,%d\n",
3547 (unsigned long long)sh->sector,
3548 disk_idx, other);
3549 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3550 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3551 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3552 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3553 sh->ops.target = disk_idx;
3554 sh->ops.target2 = other;
3555 s->uptodate += 2;
3556 s->req_compute = 1;
3557 return 1;
3558 } else if (test_bit(R5_Insync, &dev->flags)) {
3559 set_bit(R5_LOCKED, &dev->flags);
3560 set_bit(R5_Wantread, &dev->flags);
3561 s->locked++;
3562 pr_debug("Reading block %d (sync=%d)\n",
3563 disk_idx, s->syncing);
a4456856
DW
3564 }
3565 }
5599becc
YT
3566
3567 return 0;
3568}
3569
3570/**
93b3dbce 3571 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3572 */
93b3dbce
N
3573static void handle_stripe_fill(struct stripe_head *sh,
3574 struct stripe_head_state *s,
3575 int disks)
5599becc
YT
3576{
3577 int i;
3578
3579 /* look for blocks to read/compute, skip this if a compute
3580 * is already in flight, or if the stripe contents are in the
3581 * midst of changing due to a write
3582 */
3583 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
07e83364
SL
3584 !sh->reconstruct_state) {
3585
3586 /*
3587 * For degraded stripe with data in journal, do not handle
3588 * read requests yet, instead, flush the stripe to raid
3589 * disks first, this avoids handling complex rmw of write
3590 * back cache (prexor with orig_page, and then xor with
3591 * page) in the read path
3592 */
3593 if (s->injournal && s->failed) {
3594 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3595 r5c_make_stripe_write_out(sh);
3596 goto out;
3597 }
3598
5599becc 3599 for (i = disks; i--; )
93b3dbce 3600 if (fetch_block(sh, s, i, disks))
5599becc 3601 break;
07e83364
SL
3602 }
3603out:
a4456856
DW
3604 set_bit(STRIPE_HANDLE, &sh->state);
3605}
3606
787b76fa
N
3607static void break_stripe_batch_list(struct stripe_head *head_sh,
3608 unsigned long handle_flags);
1fe797e6 3609/* handle_stripe_clean_event
a4456856
DW
3610 * any written block on an uptodate or failed drive can be returned.
3611 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3612 * never LOCKED, so we don't need to test 'failed' directly.
3613 */
d1688a6d 3614static void handle_stripe_clean_event(struct r5conf *conf,
34a6f80e 3615 struct stripe_head *sh, int disks, struct bio_list *return_bi)
a4456856
DW
3616{
3617 int i;
3618 struct r5dev *dev;
f8dfcffd 3619 int discard_pending = 0;
59fc630b 3620 struct stripe_head *head_sh = sh;
3621 bool do_endio = false;
a4456856
DW
3622
3623 for (i = disks; i--; )
3624 if (sh->dev[i].written) {
3625 dev = &sh->dev[i];
3626 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3627 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3628 test_bit(R5_Discard, &dev->flags) ||
3629 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3630 /* We can return any write requests */
3631 struct bio *wbi, *wbi2;
45b4233c 3632 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3633 if (test_and_clear_bit(R5_Discard, &dev->flags))
3634 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3635 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3636 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3637 }
59fc630b 3638 do_endio = true;
3639
3640returnbi:
3641 dev->page = dev->orig_page;
a4456856
DW
3642 wbi = dev->written;
3643 dev->written = NULL;
4f024f37 3644 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3645 dev->sector + STRIPE_SECTORS) {
3646 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 3647 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856 3648 md_write_end(conf->mddev);
34a6f80e 3649 bio_list_add(return_bi, wbi);
a4456856
DW
3650 }
3651 wbi = wbi2;
3652 }
7eaf7e8e
SL
3653 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3654 STRIPE_SECTORS,
a4456856 3655 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3656 0);
59fc630b 3657 if (head_sh->batch_head) {
3658 sh = list_first_entry(&sh->batch_list,
3659 struct stripe_head,
3660 batch_list);
3661 if (sh != head_sh) {
3662 dev = &sh->dev[i];
3663 goto returnbi;
3664 }
3665 }
3666 sh = head_sh;
3667 dev = &sh->dev[i];
f8dfcffd
N
3668 } else if (test_bit(R5_Discard, &dev->flags))
3669 discard_pending = 1;
3670 }
f6bed0ef 3671
0576b1c6
SL
3672 r5l_stripe_write_finished(sh);
3673
f8dfcffd
N
3674 if (!discard_pending &&
3675 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
b8a9d66d 3676 int hash;
f8dfcffd
N
3677 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3678 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3679 if (sh->qd_idx >= 0) {
3680 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3681 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3682 }
3683 /* now that discard is done we can proceed with any sync */
3684 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3685 /*
3686 * SCSI discard will change some bio fields and the stripe has
3687 * no updated data, so remove it from hash list and the stripe
3688 * will be reinitialized
3689 */
59fc630b 3690unhash:
b8a9d66d
RG
3691 hash = sh->hash_lock_index;
3692 spin_lock_irq(conf->hash_locks + hash);
d47648fc 3693 remove_hash(sh);
b8a9d66d 3694 spin_unlock_irq(conf->hash_locks + hash);
59fc630b 3695 if (head_sh->batch_head) {
3696 sh = list_first_entry(&sh->batch_list,
3697 struct stripe_head, batch_list);
3698 if (sh != head_sh)
3699 goto unhash;
3700 }
59fc630b 3701 sh = head_sh;
3702
f8dfcffd
N
3703 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3704 set_bit(STRIPE_HANDLE, &sh->state);
3705
3706 }
8b3e6cdc
DW
3707
3708 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3709 if (atomic_dec_and_test(&conf->pending_full_writes))
3710 md_wakeup_thread(conf->mddev->thread);
59fc630b 3711
787b76fa
N
3712 if (head_sh->batch_head && do_endio)
3713 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3714}
3715
86aa1397
SL
3716/*
3717 * For RMW in write back cache, we need extra page in prexor to store the
3718 * old data. This page is stored in dev->orig_page.
3719 *
3720 * This function checks whether we have data for prexor. The exact logic
3721 * is:
3722 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3723 */
3724static inline bool uptodate_for_rmw(struct r5dev *dev)
3725{
3726 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3727 (!test_bit(R5_InJournal, &dev->flags) ||
3728 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3729}
3730
d7bd398e
SL
3731static int handle_stripe_dirtying(struct r5conf *conf,
3732 struct stripe_head *sh,
3733 struct stripe_head_state *s,
3734 int disks)
a4456856
DW
3735{
3736 int rmw = 0, rcw = 0, i;
a7854487
AL
3737 sector_t recovery_cp = conf->mddev->recovery_cp;
3738
584acdd4 3739 /* Check whether resync is now happening or should start.
a7854487
AL
3740 * If yes, then the array is dirty (after unclean shutdown or
3741 * initial creation), so parity in some stripes might be inconsistent.
3742 * In this case, we need to always do reconstruct-write, to ensure
3743 * that in case of drive failure or read-error correction, we
3744 * generate correct data from the parity.
3745 */
584acdd4 3746 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3747 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3748 s->failed == 0)) {
a7854487 3749 /* Calculate the real rcw later - for now make it
c8ac1803
N
3750 * look like rcw is cheaper
3751 */
3752 rcw = 1; rmw = 2;
584acdd4
MS
3753 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3754 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3755 (unsigned long long)sh->sector);
c8ac1803 3756 } else for (i = disks; i--; ) {
a4456856
DW
3757 /* would I have to read this buffer for read_modify_write */
3758 struct r5dev *dev = &sh->dev[i];
39b99586 3759 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
07e83364 3760 i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b 3761 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3762 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3763 !(uptodate_for_rmw(dev) ||
f38e1219 3764 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3765 if (test_bit(R5_Insync, &dev->flags))
3766 rmw++;
3767 else
3768 rmw += 2*disks; /* cannot read it */
3769 }
3770 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3771 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3772 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3773 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3774 !(test_bit(R5_UPTODATE, &dev->flags) ||
1e6d690b 3775 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3776 if (test_bit(R5_Insync, &dev->flags))
3777 rcw++;
a4456856
DW
3778 else
3779 rcw += 2*disks;
3780 }
3781 }
1e6d690b 3782
39b99586
SL
3783 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3784 (unsigned long long)sh->sector, sh->state, rmw, rcw);
a4456856 3785 set_bit(STRIPE_HANDLE, &sh->state);
41257580 3786 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
a4456856 3787 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3788 if (conf->mddev->queue)
3789 blk_add_trace_msg(conf->mddev->queue,
3790 "raid5 rmw %llu %d",
3791 (unsigned long long)sh->sector, rmw);
a4456856
DW
3792 for (i = disks; i--; ) {
3793 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
3794 if (test_bit(R5_InJournal, &dev->flags) &&
3795 dev->page == dev->orig_page &&
3796 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3797 /* alloc page for prexor */
d7bd398e
SL
3798 struct page *p = alloc_page(GFP_NOIO);
3799
3800 if (p) {
3801 dev->orig_page = p;
3802 continue;
3803 }
3804
3805 /*
3806 * alloc_page() failed, try use
3807 * disk_info->extra_page
3808 */
3809 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3810 &conf->cache_state)) {
3811 r5c_use_extra_page(sh);
3812 break;
3813 }
1e6d690b 3814
d7bd398e
SL
3815 /* extra_page in use, add to delayed_list */
3816 set_bit(STRIPE_DELAYED, &sh->state);
3817 s->waiting_extra_page = 1;
3818 return -EAGAIN;
1e6d690b 3819 }
d7bd398e 3820 }
1e6d690b 3821
d7bd398e
SL
3822 for (i = disks; i--; ) {
3823 struct r5dev *dev = &sh->dev[i];
39b99586 3824 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
1e6d690b
SL
3825 i == sh->pd_idx || i == sh->qd_idx ||
3826 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3827 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3828 !(uptodate_for_rmw(dev) ||
1e6d690b 3829 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3830 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3831 if (test_bit(STRIPE_PREREAD_ACTIVE,
3832 &sh->state)) {
3833 pr_debug("Read_old block %d for r-m-w\n",
3834 i);
a4456856
DW
3835 set_bit(R5_LOCKED, &dev->flags);
3836 set_bit(R5_Wantread, &dev->flags);
3837 s->locked++;
3838 } else {
3839 set_bit(STRIPE_DELAYED, &sh->state);
3840 set_bit(STRIPE_HANDLE, &sh->state);
3841 }
3842 }
3843 }
a9add5d9 3844 }
41257580 3845 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
a4456856 3846 /* want reconstruct write, but need to get some data */
a9add5d9 3847 int qread =0;
c8ac1803 3848 rcw = 0;
a4456856
DW
3849 for (i = disks; i--; ) {
3850 struct r5dev *dev = &sh->dev[i];
3851 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3852 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3853 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3854 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3855 test_bit(R5_Wantcompute, &dev->flags))) {
3856 rcw++;
67f45548
N
3857 if (test_bit(R5_Insync, &dev->flags) &&
3858 test_bit(STRIPE_PREREAD_ACTIVE,
3859 &sh->state)) {
45b4233c 3860 pr_debug("Read_old block "
a4456856
DW
3861 "%d for Reconstruct\n", i);
3862 set_bit(R5_LOCKED, &dev->flags);
3863 set_bit(R5_Wantread, &dev->flags);
3864 s->locked++;
a9add5d9 3865 qread++;
a4456856
DW
3866 } else {
3867 set_bit(STRIPE_DELAYED, &sh->state);
3868 set_bit(STRIPE_HANDLE, &sh->state);
3869 }
3870 }
3871 }
e3620a3a 3872 if (rcw && conf->mddev->queue)
a9add5d9
N
3873 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3874 (unsigned long long)sh->sector,
3875 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3876 }
b1b02fe9
N
3877
3878 if (rcw > disks && rmw > disks &&
3879 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3880 set_bit(STRIPE_DELAYED, &sh->state);
3881
a4456856
DW
3882 /* now if nothing is locked, and if we have enough data,
3883 * we can start a write request
3884 */
f38e1219
DW
3885 /* since handle_stripe can be called at any time we need to handle the
3886 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
3887 * subsequent call wants to start a write request. raid_run_ops only
3888 * handles the case where compute block and reconstruct are requested
f38e1219
DW
3889 * simultaneously. If this is not the case then new writes need to be
3890 * held off until the compute completes.
3891 */
976ea8d4
DW
3892 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3893 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
1e6d690b 3894 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 3895 schedule_reconstruction(sh, s, rcw == 0, 0);
d7bd398e 3896 return 0;
a4456856
DW
3897}
3898
d1688a6d 3899static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3900 struct stripe_head_state *s, int disks)
3901{
ecc65c9b 3902 struct r5dev *dev = NULL;
bd2ab670 3903
59fc630b 3904 BUG_ON(sh->batch_head);
a4456856 3905 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 3906
ecc65c9b
DW
3907 switch (sh->check_state) {
3908 case check_state_idle:
3909 /* start a new check operation if there are no failures */
bd2ab670 3910 if (s->failed == 0) {
bd2ab670 3911 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
3912 sh->check_state = check_state_run;
3913 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 3914 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 3915 s->uptodate--;
ecc65c9b 3916 break;
bd2ab670 3917 }
f2b3b44d 3918 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
3919 /* fall through */
3920 case check_state_compute_result:
3921 sh->check_state = check_state_idle;
3922 if (!dev)
3923 dev = &sh->dev[sh->pd_idx];
3924
3925 /* check that a write has not made the stripe insync */
3926 if (test_bit(STRIPE_INSYNC, &sh->state))
3927 break;
c8894419 3928
a4456856 3929 /* either failed parity check, or recovery is happening */
a4456856
DW
3930 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3931 BUG_ON(s->uptodate != disks);
3932
3933 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 3934 s->locked++;
a4456856 3935 set_bit(R5_Wantwrite, &dev->flags);
830ea016 3936
a4456856 3937 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 3938 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
3939 break;
3940 case check_state_run:
3941 break; /* we will be called again upon completion */
3942 case check_state_check_result:
3943 sh->check_state = check_state_idle;
3944
3945 /* if a failure occurred during the check operation, leave
3946 * STRIPE_INSYNC not set and let the stripe be handled again
3947 */
3948 if (s->failed)
3949 break;
3950
3951 /* handle a successful check operation, if parity is correct
3952 * we are done. Otherwise update the mismatch count and repair
3953 * parity if !MD_RECOVERY_CHECK
3954 */
ad283ea4 3955 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
3956 /* parity is correct (on disc,
3957 * not in buffer any more)
3958 */
3959 set_bit(STRIPE_INSYNC, &sh->state);
3960 else {
7f7583d4 3961 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
3962 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3963 /* don't try to repair!! */
3964 set_bit(STRIPE_INSYNC, &sh->state);
3965 else {
3966 sh->check_state = check_state_compute_run;
976ea8d4 3967 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3968 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3969 set_bit(R5_Wantcompute,
3970 &sh->dev[sh->pd_idx].flags);
3971 sh->ops.target = sh->pd_idx;
ac6b53b6 3972 sh->ops.target2 = -1;
ecc65c9b
DW
3973 s->uptodate++;
3974 }
3975 }
3976 break;
3977 case check_state_compute_run:
3978 break;
3979 default:
cc6167b4 3980 pr_err("%s: unknown check_state: %d sector: %llu\n",
ecc65c9b
DW
3981 __func__, sh->check_state,
3982 (unsigned long long) sh->sector);
3983 BUG();
a4456856
DW
3984 }
3985}
3986
d1688a6d 3987static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3988 struct stripe_head_state *s,
f2b3b44d 3989 int disks)
a4456856 3990{
a4456856 3991 int pd_idx = sh->pd_idx;
34e04e87 3992 int qd_idx = sh->qd_idx;
d82dfee0 3993 struct r5dev *dev;
a4456856 3994
59fc630b 3995 BUG_ON(sh->batch_head);
a4456856
DW
3996 set_bit(STRIPE_HANDLE, &sh->state);
3997
3998 BUG_ON(s->failed > 2);
d82dfee0 3999
a4456856
DW
4000 /* Want to check and possibly repair P and Q.
4001 * However there could be one 'failed' device, in which
4002 * case we can only check one of them, possibly using the
4003 * other to generate missing data
4004 */
4005
d82dfee0
DW
4006 switch (sh->check_state) {
4007 case check_state_idle:
4008 /* start a new check operation if there are < 2 failures */
f2b3b44d 4009 if (s->failed == s->q_failed) {
d82dfee0 4010 /* The only possible failed device holds Q, so it
a4456856
DW
4011 * makes sense to check P (If anything else were failed,
4012 * we would have used P to recreate it).
4013 */
d82dfee0 4014 sh->check_state = check_state_run;
a4456856 4015 }
f2b3b44d 4016 if (!s->q_failed && s->failed < 2) {
d82dfee0 4017 /* Q is not failed, and we didn't use it to generate
a4456856
DW
4018 * anything, so it makes sense to check it
4019 */
d82dfee0
DW
4020 if (sh->check_state == check_state_run)
4021 sh->check_state = check_state_run_pq;
4022 else
4023 sh->check_state = check_state_run_q;
a4456856 4024 }
a4456856 4025
d82dfee0
DW
4026 /* discard potentially stale zero_sum_result */
4027 sh->ops.zero_sum_result = 0;
a4456856 4028
d82dfee0
DW
4029 if (sh->check_state == check_state_run) {
4030 /* async_xor_zero_sum destroys the contents of P */
4031 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4032 s->uptodate--;
a4456856 4033 }
d82dfee0
DW
4034 if (sh->check_state >= check_state_run &&
4035 sh->check_state <= check_state_run_pq) {
4036 /* async_syndrome_zero_sum preserves P and Q, so
4037 * no need to mark them !uptodate here
4038 */
4039 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4040 break;
a4456856
DW
4041 }
4042
d82dfee0
DW
4043 /* we have 2-disk failure */
4044 BUG_ON(s->failed != 2);
4045 /* fall through */
4046 case check_state_compute_result:
4047 sh->check_state = check_state_idle;
a4456856 4048
d82dfee0
DW
4049 /* check that a write has not made the stripe insync */
4050 if (test_bit(STRIPE_INSYNC, &sh->state))
4051 break;
a4456856
DW
4052
4053 /* now write out any block on a failed drive,
d82dfee0 4054 * or P or Q if they were recomputed
a4456856 4055 */
d82dfee0 4056 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 4057 if (s->failed == 2) {
f2b3b44d 4058 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
4059 s->locked++;
4060 set_bit(R5_LOCKED, &dev->flags);
4061 set_bit(R5_Wantwrite, &dev->flags);
4062 }
4063 if (s->failed >= 1) {
f2b3b44d 4064 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
4065 s->locked++;
4066 set_bit(R5_LOCKED, &dev->flags);
4067 set_bit(R5_Wantwrite, &dev->flags);
4068 }
d82dfee0 4069 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
4070 dev = &sh->dev[pd_idx];
4071 s->locked++;
4072 set_bit(R5_LOCKED, &dev->flags);
4073 set_bit(R5_Wantwrite, &dev->flags);
4074 }
d82dfee0 4075 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
4076 dev = &sh->dev[qd_idx];
4077 s->locked++;
4078 set_bit(R5_LOCKED, &dev->flags);
4079 set_bit(R5_Wantwrite, &dev->flags);
4080 }
4081 clear_bit(STRIPE_DEGRADED, &sh->state);
4082
4083 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
4084 break;
4085 case check_state_run:
4086 case check_state_run_q:
4087 case check_state_run_pq:
4088 break; /* we will be called again upon completion */
4089 case check_state_check_result:
4090 sh->check_state = check_state_idle;
4091
4092 /* handle a successful check operation, if parity is correct
4093 * we are done. Otherwise update the mismatch count and repair
4094 * parity if !MD_RECOVERY_CHECK
4095 */
4096 if (sh->ops.zero_sum_result == 0) {
4097 /* both parities are correct */
4098 if (!s->failed)
4099 set_bit(STRIPE_INSYNC, &sh->state);
4100 else {
4101 /* in contrast to the raid5 case we can validate
4102 * parity, but still have a failure to write
4103 * back
4104 */
4105 sh->check_state = check_state_compute_result;
4106 /* Returning at this point means that we may go
4107 * off and bring p and/or q uptodate again so
4108 * we make sure to check zero_sum_result again
4109 * to verify if p or q need writeback
4110 */
4111 }
4112 } else {
7f7583d4 4113 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
4114 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4115 /* don't try to repair!! */
4116 set_bit(STRIPE_INSYNC, &sh->state);
4117 else {
4118 int *target = &sh->ops.target;
4119
4120 sh->ops.target = -1;
4121 sh->ops.target2 = -1;
4122 sh->check_state = check_state_compute_run;
4123 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4124 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4125 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4126 set_bit(R5_Wantcompute,
4127 &sh->dev[pd_idx].flags);
4128 *target = pd_idx;
4129 target = &sh->ops.target2;
4130 s->uptodate++;
4131 }
4132 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4133 set_bit(R5_Wantcompute,
4134 &sh->dev[qd_idx].flags);
4135 *target = qd_idx;
4136 s->uptodate++;
4137 }
4138 }
4139 }
4140 break;
4141 case check_state_compute_run:
4142 break;
4143 default:
cc6167b4
N
4144 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4145 __func__, sh->check_state,
4146 (unsigned long long) sh->sector);
d82dfee0 4147 BUG();
a4456856
DW
4148 }
4149}
4150
d1688a6d 4151static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
4152{
4153 int i;
4154
4155 /* We have read all the blocks in this stripe and now we need to
4156 * copy some of them into a target stripe for expand.
4157 */
f0a50d37 4158 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 4159 BUG_ON(sh->batch_head);
a4456856
DW
4160 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4161 for (i = 0; i < sh->disks; i++)
34e04e87 4162 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 4163 int dd_idx, j;
a4456856 4164 struct stripe_head *sh2;
a08abd8c 4165 struct async_submit_ctl submit;
a4456856 4166
6d036f7d 4167 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
4168 sector_t s = raid5_compute_sector(conf, bn, 0,
4169 &dd_idx, NULL);
6d036f7d 4170 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
4171 if (sh2 == NULL)
4172 /* so far only the early blocks of this stripe
4173 * have been requested. When later blocks
4174 * get requested, we will try again
4175 */
4176 continue;
4177 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4178 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4179 /* must have already done this block */
6d036f7d 4180 raid5_release_stripe(sh2);
a4456856
DW
4181 continue;
4182 }
f0a50d37
DW
4183
4184 /* place all the copies on one channel */
a08abd8c 4185 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 4186 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 4187 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 4188 &submit);
f0a50d37 4189
a4456856
DW
4190 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4191 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4192 for (j = 0; j < conf->raid_disks; j++)
4193 if (j != sh2->pd_idx &&
86c374ba 4194 j != sh2->qd_idx &&
a4456856
DW
4195 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4196 break;
4197 if (j == conf->raid_disks) {
4198 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4199 set_bit(STRIPE_HANDLE, &sh2->state);
4200 }
6d036f7d 4201 raid5_release_stripe(sh2);
f0a50d37 4202
a4456856 4203 }
a2e08551 4204 /* done submitting copies, wait for them to complete */
749586b7 4205 async_tx_quiesce(&tx);
a4456856 4206}
1da177e4
LT
4207
4208/*
4209 * handle_stripe - do things to a stripe.
4210 *
9a3e1101
N
4211 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4212 * state of various bits to see what needs to be done.
1da177e4 4213 * Possible results:
9a3e1101
N
4214 * return some read requests which now have data
4215 * return some write requests which are safely on storage
1da177e4
LT
4216 * schedule a read on some buffers
4217 * schedule a write of some buffers
4218 * return confirmation of parity correctness
4219 *
1da177e4 4220 */
a4456856 4221
acfe726b 4222static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4223{
d1688a6d 4224 struct r5conf *conf = sh->raid_conf;
f416885e 4225 int disks = sh->disks;
474af965
N
4226 struct r5dev *dev;
4227 int i;
9a3e1101 4228 int do_recovery = 0;
1da177e4 4229
acfe726b
N
4230 memset(s, 0, sizeof(*s));
4231
dabc4ec6 4232 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4233 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4234 s->failed_num[0] = -1;
4235 s->failed_num[1] = -1;
6e74a9cf 4236 s->log_failed = r5l_log_disk_error(conf);
1da177e4 4237
acfe726b 4238 /* Now to look around and see what can be done */
1da177e4 4239 rcu_read_lock();
16a53ecc 4240 for (i=disks; i--; ) {
3cb03002 4241 struct md_rdev *rdev;
31c176ec
N
4242 sector_t first_bad;
4243 int bad_sectors;
4244 int is_bad = 0;
acfe726b 4245
16a53ecc 4246 dev = &sh->dev[i];
1da177e4 4247
45b4233c 4248 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4249 i, dev->flags,
4250 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4251 /* maybe we can reply to a read
4252 *
4253 * new wantfill requests are only permitted while
4254 * ops_complete_biofill is guaranteed to be inactive
4255 */
4256 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4257 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4258 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4259
16a53ecc 4260 /* now count some things */
cc94015a
N
4261 if (test_bit(R5_LOCKED, &dev->flags))
4262 s->locked++;
4263 if (test_bit(R5_UPTODATE, &dev->flags))
4264 s->uptodate++;
2d6e4ecc 4265 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4266 s->compute++;
4267 BUG_ON(s->compute > 2);
2d6e4ecc 4268 }
1da177e4 4269
acfe726b 4270 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4271 s->to_fill++;
acfe726b 4272 else if (dev->toread)
cc94015a 4273 s->to_read++;
16a53ecc 4274 if (dev->towrite) {
cc94015a 4275 s->to_write++;
16a53ecc 4276 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4277 s->non_overwrite++;
16a53ecc 4278 }
a4456856 4279 if (dev->written)
cc94015a 4280 s->written++;
14a75d3e
N
4281 /* Prefer to use the replacement for reads, but only
4282 * if it is recovered enough and has no bad blocks.
4283 */
4284 rdev = rcu_dereference(conf->disks[i].replacement);
4285 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4286 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4287 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4288 &first_bad, &bad_sectors))
4289 set_bit(R5_ReadRepl, &dev->flags);
4290 else {
e6030cb0 4291 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4292 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4293 else
4294 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4295 rdev = rcu_dereference(conf->disks[i].rdev);
4296 clear_bit(R5_ReadRepl, &dev->flags);
4297 }
9283d8c5
N
4298 if (rdev && test_bit(Faulty, &rdev->flags))
4299 rdev = NULL;
31c176ec
N
4300 if (rdev) {
4301 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4302 &first_bad, &bad_sectors);
4303 if (s->blocked_rdev == NULL
4304 && (test_bit(Blocked, &rdev->flags)
4305 || is_bad < 0)) {
4306 if (is_bad < 0)
4307 set_bit(BlockedBadBlocks,
4308 &rdev->flags);
4309 s->blocked_rdev = rdev;
4310 atomic_inc(&rdev->nr_pending);
4311 }
6bfe0b49 4312 }
415e72d0
N
4313 clear_bit(R5_Insync, &dev->flags);
4314 if (!rdev)
4315 /* Not in-sync */;
31c176ec
N
4316 else if (is_bad) {
4317 /* also not in-sync */
18b9837e
N
4318 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4319 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4320 /* treat as in-sync, but with a read error
4321 * which we can now try to correct
4322 */
4323 set_bit(R5_Insync, &dev->flags);
4324 set_bit(R5_ReadError, &dev->flags);
4325 }
4326 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4327 set_bit(R5_Insync, &dev->flags);
30d7a483 4328 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4329 /* in sync if before recovery_offset */
30d7a483
N
4330 set_bit(R5_Insync, &dev->flags);
4331 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4332 test_bit(R5_Expanded, &dev->flags))
4333 /* If we've reshaped into here, we assume it is Insync.
4334 * We will shortly update recovery_offset to make
4335 * it official.
4336 */
4337 set_bit(R5_Insync, &dev->flags);
4338
1cc03eb9 4339 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4340 /* This flag does not apply to '.replacement'
4341 * only to .rdev, so make sure to check that*/
4342 struct md_rdev *rdev2 = rcu_dereference(
4343 conf->disks[i].rdev);
4344 if (rdev2 == rdev)
4345 clear_bit(R5_Insync, &dev->flags);
4346 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4347 s->handle_bad_blocks = 1;
14a75d3e 4348 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4349 } else
4350 clear_bit(R5_WriteError, &dev->flags);
4351 }
1cc03eb9 4352 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4353 /* This flag does not apply to '.replacement'
4354 * only to .rdev, so make sure to check that*/
4355 struct md_rdev *rdev2 = rcu_dereference(
4356 conf->disks[i].rdev);
4357 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4358 s->handle_bad_blocks = 1;
14a75d3e 4359 atomic_inc(&rdev2->nr_pending);
b84db560
N
4360 } else
4361 clear_bit(R5_MadeGood, &dev->flags);
4362 }
977df362
N
4363 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4364 struct md_rdev *rdev2 = rcu_dereference(
4365 conf->disks[i].replacement);
4366 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4367 s->handle_bad_blocks = 1;
4368 atomic_inc(&rdev2->nr_pending);
4369 } else
4370 clear_bit(R5_MadeGoodRepl, &dev->flags);
4371 }
415e72d0 4372 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4373 /* The ReadError flag will just be confusing now */
4374 clear_bit(R5_ReadError, &dev->flags);
4375 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4376 }
415e72d0
N
4377 if (test_bit(R5_ReadError, &dev->flags))
4378 clear_bit(R5_Insync, &dev->flags);
4379 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4380 if (s->failed < 2)
4381 s->failed_num[s->failed] = i;
4382 s->failed++;
9a3e1101
N
4383 if (rdev && !test_bit(Faulty, &rdev->flags))
4384 do_recovery = 1;
415e72d0 4385 }
2ded3703
SL
4386
4387 if (test_bit(R5_InJournal, &dev->flags))
4388 s->injournal++;
1e6d690b
SL
4389 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4390 s->just_cached++;
1da177e4 4391 }
9a3e1101
N
4392 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4393 /* If there is a failed device being replaced,
4394 * we must be recovering.
4395 * else if we are after recovery_cp, we must be syncing
c6d2e084 4396 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4397 * else we can only be replacing
4398 * sync and recovery both need to read all devices, and so
4399 * use the same flag.
4400 */
4401 if (do_recovery ||
c6d2e084 4402 sh->sector >= conf->mddev->recovery_cp ||
4403 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4404 s->syncing = 1;
4405 else
4406 s->replacing = 1;
4407 }
1da177e4 4408 rcu_read_unlock();
cc94015a
N
4409}
4410
59fc630b 4411static int clear_batch_ready(struct stripe_head *sh)
4412{
b15a9dbd
N
4413 /* Return '1' if this is a member of batch, or
4414 * '0' if it is a lone stripe or a head which can now be
4415 * handled.
4416 */
59fc630b 4417 struct stripe_head *tmp;
4418 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4419 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4420 spin_lock(&sh->stripe_lock);
4421 if (!sh->batch_head) {
4422 spin_unlock(&sh->stripe_lock);
4423 return 0;
4424 }
4425
4426 /*
4427 * this stripe could be added to a batch list before we check
4428 * BATCH_READY, skips it
4429 */
4430 if (sh->batch_head != sh) {
4431 spin_unlock(&sh->stripe_lock);
4432 return 1;
4433 }
4434 spin_lock(&sh->batch_lock);
4435 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4436 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4437 spin_unlock(&sh->batch_lock);
4438 spin_unlock(&sh->stripe_lock);
4439
4440 /*
4441 * BATCH_READY is cleared, no new stripes can be added.
4442 * batch_list can be accessed without lock
4443 */
4444 return 0;
4445}
4446
3960ce79
N
4447static void break_stripe_batch_list(struct stripe_head *head_sh,
4448 unsigned long handle_flags)
72ac7330 4449{
4e3d62ff 4450 struct stripe_head *sh, *next;
72ac7330 4451 int i;
fb642b92 4452 int do_wakeup = 0;
72ac7330 4453
bb27051f
N
4454 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4455
72ac7330 4456 list_del_init(&sh->batch_list);
4457
fb3229d5 4458 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
1b956f7a
N
4459 (1 << STRIPE_SYNCING) |
4460 (1 << STRIPE_REPLACED) |
1b956f7a
N
4461 (1 << STRIPE_DELAYED) |
4462 (1 << STRIPE_BIT_DELAY) |
4463 (1 << STRIPE_FULL_WRITE) |
4464 (1 << STRIPE_BIOFILL_RUN) |
4465 (1 << STRIPE_COMPUTE_RUN) |
4466 (1 << STRIPE_OPS_REQ_PENDING) |
4467 (1 << STRIPE_DISCARD) |
4468 (1 << STRIPE_BATCH_READY) |
4469 (1 << STRIPE_BATCH_ERR) |
fb3229d5
SL
4470 (1 << STRIPE_BITMAP_PENDING)),
4471 "stripe state: %lx\n", sh->state);
4472 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4473 (1 << STRIPE_REPLACED)),
4474 "head stripe state: %lx\n", head_sh->state);
1b956f7a
N
4475
4476 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
550da24f 4477 (1 << STRIPE_PREREAD_ACTIVE) |
1b956f7a
N
4478 (1 << STRIPE_DEGRADED)),
4479 head_sh->state & (1 << STRIPE_INSYNC));
4480
72ac7330 4481 sh->check_state = head_sh->check_state;
4482 sh->reconstruct_state = head_sh->reconstruct_state;
fb642b92
N
4483 for (i = 0; i < sh->disks; i++) {
4484 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4485 do_wakeup = 1;
72ac7330 4486 sh->dev[i].flags = head_sh->dev[i].flags &
4487 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4488 }
72ac7330 4489 spin_lock_irq(&sh->stripe_lock);
4490 sh->batch_head = NULL;
4491 spin_unlock_irq(&sh->stripe_lock);
3960ce79
N
4492 if (handle_flags == 0 ||
4493 sh->state & handle_flags)
4494 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4495 raid5_release_stripe(sh);
72ac7330 4496 }
fb642b92
N
4497 spin_lock_irq(&head_sh->stripe_lock);
4498 head_sh->batch_head = NULL;
4499 spin_unlock_irq(&head_sh->stripe_lock);
4500 for (i = 0; i < head_sh->disks; i++)
4501 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4502 do_wakeup = 1;
3960ce79
N
4503 if (head_sh->state & handle_flags)
4504 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4505
4506 if (do_wakeup)
4507 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4508}
4509
cc94015a
N
4510static void handle_stripe(struct stripe_head *sh)
4511{
4512 struct stripe_head_state s;
d1688a6d 4513 struct r5conf *conf = sh->raid_conf;
3687c061 4514 int i;
84789554
N
4515 int prexor;
4516 int disks = sh->disks;
474af965 4517 struct r5dev *pdev, *qdev;
cc94015a
N
4518
4519 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4520 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4521 /* already being handled, ensure it gets handled
4522 * again when current action finishes */
4523 set_bit(STRIPE_HANDLE, &sh->state);
4524 return;
4525 }
4526
59fc630b 4527 if (clear_batch_ready(sh) ) {
4528 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4529 return;
4530 }
4531
4e3d62ff 4532 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4533 break_stripe_batch_list(sh, 0);
72ac7330 4534
dabc4ec6 4535 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd
N
4536 spin_lock(&sh->stripe_lock);
4537 /* Cannot process 'sync' concurrently with 'discard' */
4538 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4539 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4540 set_bit(STRIPE_SYNCING, &sh->state);
4541 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4542 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4543 }
4544 spin_unlock(&sh->stripe_lock);
cc94015a
N
4545 }
4546 clear_bit(STRIPE_DELAYED, &sh->state);
4547
4548 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4549 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4550 (unsigned long long)sh->sector, sh->state,
4551 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4552 sh->check_state, sh->reconstruct_state);
3687c061 4553
acfe726b 4554 analyse_stripe(sh, &s);
c5a31000 4555
b70abcb2
SL
4556 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4557 goto finish;
4558
bc2607f3
N
4559 if (s.handle_bad_blocks) {
4560 set_bit(STRIPE_HANDLE, &sh->state);
4561 goto finish;
4562 }
4563
474af965
N
4564 if (unlikely(s.blocked_rdev)) {
4565 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4566 s.replacing || s.to_write || s.written) {
474af965
N
4567 set_bit(STRIPE_HANDLE, &sh->state);
4568 goto finish;
4569 }
4570 /* There is nothing for the blocked_rdev to block */
4571 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4572 s.blocked_rdev = NULL;
4573 }
4574
4575 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4576 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4577 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4578 }
4579
4580 pr_debug("locked=%d uptodate=%d to_read=%d"
4581 " to_write=%d failed=%d failed_num=%d,%d\n",
4582 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4583 s.failed_num[0], s.failed_num[1]);
4584 /* check if the array has lost more than max_degraded devices and,
4585 * if so, some requests might need to be failed.
4586 */
6e74a9cf 4587 if (s.failed > conf->max_degraded || s.log_failed) {
9a3f530f
N
4588 sh->check_state = 0;
4589 sh->reconstruct_state = 0;
626f2092 4590 break_stripe_batch_list(sh, 0);
9a3f530f
N
4591 if (s.to_read+s.to_write+s.written)
4592 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 4593 if (s.syncing + s.replacing)
9a3f530f
N
4594 handle_failed_sync(conf, sh, &s);
4595 }
474af965 4596
84789554
N
4597 /* Now we check to see if any write operations have recently
4598 * completed
4599 */
4600 prexor = 0;
4601 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4602 prexor = 1;
4603 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4604 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4605 sh->reconstruct_state = reconstruct_state_idle;
4606
4607 /* All the 'written' buffers and the parity block are ready to
4608 * be written back to disk
4609 */
9e444768
SL
4610 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4611 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4612 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4613 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4614 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4615 for (i = disks; i--; ) {
4616 struct r5dev *dev = &sh->dev[i];
4617 if (test_bit(R5_LOCKED, &dev->flags) &&
4618 (i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b
SL
4619 dev->written || test_bit(R5_InJournal,
4620 &dev->flags))) {
84789554
N
4621 pr_debug("Writing block %d\n", i);
4622 set_bit(R5_Wantwrite, &dev->flags);
4623 if (prexor)
4624 continue;
9c4bdf69
N
4625 if (s.failed > 1)
4626 continue;
84789554
N
4627 if (!test_bit(R5_Insync, &dev->flags) ||
4628 ((i == sh->pd_idx || i == sh->qd_idx) &&
4629 s.failed == 0))
4630 set_bit(STRIPE_INSYNC, &sh->state);
4631 }
4632 }
4633 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4634 s.dec_preread_active = 1;
4635 }
4636
ef5b7c69
N
4637 /*
4638 * might be able to return some write requests if the parity blocks
4639 * are safe, or on a failed drive
4640 */
4641 pdev = &sh->dev[sh->pd_idx];
4642 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4643 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4644 qdev = &sh->dev[sh->qd_idx];
4645 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4646 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4647 || conf->level < 6;
4648
4649 if (s.written &&
4650 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4651 && !test_bit(R5_LOCKED, &pdev->flags)
4652 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4653 test_bit(R5_Discard, &pdev->flags))))) &&
4654 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4655 && !test_bit(R5_LOCKED, &qdev->flags)
4656 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4657 test_bit(R5_Discard, &qdev->flags))))))
4658 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4659
1e6d690b
SL
4660 if (s.just_cached)
4661 r5c_handle_cached_data_endio(conf, sh, disks, &s.return_bi);
4662 r5l_stripe_write_finished(sh);
4663
ef5b7c69
N
4664 /* Now we might consider reading some blocks, either to check/generate
4665 * parity, or to satisfy requests
4666 * or to load a block that is being partially written.
4667 */
4668 if (s.to_read || s.non_overwrite
4669 || (conf->level == 6 && s.to_write && s.failed)
4670 || (s.syncing && (s.uptodate + s.compute < disks))
4671 || s.replacing
4672 || s.expanding)
4673 handle_stripe_fill(sh, &s, disks);
4674
2ded3703
SL
4675 /*
4676 * When the stripe finishes full journal write cycle (write to journal
4677 * and raid disk), this is the clean up procedure so it is ready for
4678 * next operation.
4679 */
4680 r5c_finish_stripe_write_out(conf, sh, &s);
4681
4682 /*
4683 * Now to consider new write requests, cache write back and what else,
4684 * if anything should be read. We do not handle new writes when:
84789554
N
4685 * 1/ A 'write' operation (copy+xor) is already in flight.
4686 * 2/ A 'check' operation is in flight, as it may clobber the parity
4687 * block.
2ded3703 4688 * 3/ A r5c cache log write is in flight.
84789554 4689 */
2ded3703
SL
4690
4691 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4692 if (!r5c_is_writeback(conf->log)) {
4693 if (s.to_write)
4694 handle_stripe_dirtying(conf, sh, &s, disks);
4695 } else { /* write back cache */
4696 int ret = 0;
4697
4698 /* First, try handle writes in caching phase */
4699 if (s.to_write)
4700 ret = r5c_try_caching_write(conf, sh, &s,
4701 disks);
4702 /*
4703 * If caching phase failed: ret == -EAGAIN
4704 * OR
4705 * stripe under reclaim: !caching && injournal
4706 *
4707 * fall back to handle_stripe_dirtying()
4708 */
4709 if (ret == -EAGAIN ||
4710 /* stripe under reclaim: !caching && injournal */
4711 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
d7bd398e
SL
4712 s.injournal > 0)) {
4713 ret = handle_stripe_dirtying(conf, sh, &s,
4714 disks);
4715 if (ret == -EAGAIN)
4716 goto finish;
4717 }
2ded3703
SL
4718 }
4719 }
84789554
N
4720
4721 /* maybe we need to check and possibly fix the parity for this stripe
4722 * Any reads will already have been scheduled, so we just see if enough
4723 * data is available. The parity check is held off while parity
4724 * dependent operations are in flight.
4725 */
4726 if (sh->check_state ||
4727 (s.syncing && s.locked == 0 &&
4728 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4729 !test_bit(STRIPE_INSYNC, &sh->state))) {
4730 if (conf->level == 6)
4731 handle_parity_checks6(conf, sh, &s, disks);
4732 else
4733 handle_parity_checks5(conf, sh, &s, disks);
4734 }
c5a31000 4735
f94c0b66
N
4736 if ((s.replacing || s.syncing) && s.locked == 0
4737 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4738 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4739 /* Write out to replacement devices where possible */
4740 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4741 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4742 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4743 set_bit(R5_WantReplace, &sh->dev[i].flags);
4744 set_bit(R5_LOCKED, &sh->dev[i].flags);
4745 s.locked++;
4746 }
f94c0b66
N
4747 if (s.replacing)
4748 set_bit(STRIPE_INSYNC, &sh->state);
4749 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4750 }
4751 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4752 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4753 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4754 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4755 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4756 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4757 wake_up(&conf->wait_for_overlap);
c5a31000
N
4758 }
4759
4760 /* If the failed drives are just a ReadError, then we might need
4761 * to progress the repair/check process
4762 */
4763 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4764 for (i = 0; i < s.failed; i++) {
4765 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4766 if (test_bit(R5_ReadError, &dev->flags)
4767 && !test_bit(R5_LOCKED, &dev->flags)
4768 && test_bit(R5_UPTODATE, &dev->flags)
4769 ) {
4770 if (!test_bit(R5_ReWrite, &dev->flags)) {
4771 set_bit(R5_Wantwrite, &dev->flags);
4772 set_bit(R5_ReWrite, &dev->flags);
4773 set_bit(R5_LOCKED, &dev->flags);
4774 s.locked++;
4775 } else {
4776 /* let's read it back */
4777 set_bit(R5_Wantread, &dev->flags);
4778 set_bit(R5_LOCKED, &dev->flags);
4779 s.locked++;
4780 }
4781 }
4782 }
4783
3687c061
N
4784 /* Finish reconstruct operations initiated by the expansion process */
4785 if (sh->reconstruct_state == reconstruct_state_result) {
4786 struct stripe_head *sh_src
6d036f7d 4787 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
3687c061
N
4788 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4789 /* sh cannot be written until sh_src has been read.
4790 * so arrange for sh to be delayed a little
4791 */
4792 set_bit(STRIPE_DELAYED, &sh->state);
4793 set_bit(STRIPE_HANDLE, &sh->state);
4794 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4795 &sh_src->state))
4796 atomic_inc(&conf->preread_active_stripes);
6d036f7d 4797 raid5_release_stripe(sh_src);
3687c061
N
4798 goto finish;
4799 }
4800 if (sh_src)
6d036f7d 4801 raid5_release_stripe(sh_src);
3687c061
N
4802
4803 sh->reconstruct_state = reconstruct_state_idle;
4804 clear_bit(STRIPE_EXPANDING, &sh->state);
4805 for (i = conf->raid_disks; i--; ) {
4806 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4807 set_bit(R5_LOCKED, &sh->dev[i].flags);
4808 s.locked++;
4809 }
4810 }
f416885e 4811
3687c061
N
4812 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4813 !sh->reconstruct_state) {
4814 /* Need to write out all blocks after computing parity */
4815 sh->disks = conf->raid_disks;
4816 stripe_set_idx(sh->sector, conf, 0, sh);
4817 schedule_reconstruction(sh, &s, 1, 1);
4818 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4819 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4820 atomic_dec(&conf->reshape_stripes);
4821 wake_up(&conf->wait_for_overlap);
4822 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4823 }
4824
4825 if (s.expanding && s.locked == 0 &&
4826 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4827 handle_stripe_expansion(conf, sh);
16a53ecc 4828
3687c061 4829finish:
6bfe0b49 4830 /* wait for this device to become unblocked */
5f066c63
N
4831 if (unlikely(s.blocked_rdev)) {
4832 if (conf->mddev->external)
4833 md_wait_for_blocked_rdev(s.blocked_rdev,
4834 conf->mddev);
4835 else
4836 /* Internal metadata will immediately
4837 * be written by raid5d, so we don't
4838 * need to wait here.
4839 */
4840 rdev_dec_pending(s.blocked_rdev,
4841 conf->mddev);
4842 }
6bfe0b49 4843
bc2607f3
N
4844 if (s.handle_bad_blocks)
4845 for (i = disks; i--; ) {
3cb03002 4846 struct md_rdev *rdev;
bc2607f3
N
4847 struct r5dev *dev = &sh->dev[i];
4848 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4849 /* We own a safe reference to the rdev */
4850 rdev = conf->disks[i].rdev;
4851 if (!rdev_set_badblocks(rdev, sh->sector,
4852 STRIPE_SECTORS, 0))
4853 md_error(conf->mddev, rdev);
4854 rdev_dec_pending(rdev, conf->mddev);
4855 }
b84db560
N
4856 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4857 rdev = conf->disks[i].rdev;
4858 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4859 STRIPE_SECTORS, 0);
b84db560
N
4860 rdev_dec_pending(rdev, conf->mddev);
4861 }
977df362
N
4862 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4863 rdev = conf->disks[i].replacement;
dd054fce
N
4864 if (!rdev)
4865 /* rdev have been moved down */
4866 rdev = conf->disks[i].rdev;
977df362 4867 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4868 STRIPE_SECTORS, 0);
977df362
N
4869 rdev_dec_pending(rdev, conf->mddev);
4870 }
bc2607f3
N
4871 }
4872
6c0069c0
YT
4873 if (s.ops_request)
4874 raid_run_ops(sh, s.ops_request);
4875
f0e43bcd 4876 ops_run_io(sh, &s);
16a53ecc 4877
c5709ef6 4878 if (s.dec_preread_active) {
729a1866 4879 /* We delay this until after ops_run_io so that if make_request
e9c7469b 4880 * is waiting on a flush, it won't continue until the writes
729a1866
N
4881 * have actually been submitted.
4882 */
4883 atomic_dec(&conf->preread_active_stripes);
4884 if (atomic_read(&conf->preread_active_stripes) <
4885 IO_THRESHOLD)
4886 md_wakeup_thread(conf->mddev->thread);
4887 }
4888
c3cce6cd 4889 if (!bio_list_empty(&s.return_bi)) {
2953079c 4890 if (test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
c3cce6cd
N
4891 spin_lock_irq(&conf->device_lock);
4892 bio_list_merge(&conf->return_bi, &s.return_bi);
4893 spin_unlock_irq(&conf->device_lock);
4894 md_wakeup_thread(conf->mddev->thread);
4895 } else
4896 return_io(&s.return_bi);
4897 }
16a53ecc 4898
257a4b42 4899 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
4900}
4901
d1688a6d 4902static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
4903{
4904 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4905 while (!list_empty(&conf->delayed_list)) {
4906 struct list_head *l = conf->delayed_list.next;
4907 struct stripe_head *sh;
4908 sh = list_entry(l, struct stripe_head, lru);
4909 list_del_init(l);
4910 clear_bit(STRIPE_DELAYED, &sh->state);
4911 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4912 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 4913 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 4914 raid5_wakeup_stripe_thread(sh);
16a53ecc 4915 }
482c0834 4916 }
16a53ecc
N
4917}
4918
566c09c5
SL
4919static void activate_bit_delay(struct r5conf *conf,
4920 struct list_head *temp_inactive_list)
16a53ecc
N
4921{
4922 /* device_lock is held */
4923 struct list_head head;
4924 list_add(&head, &conf->bitmap_list);
4925 list_del_init(&conf->bitmap_list);
4926 while (!list_empty(&head)) {
4927 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 4928 int hash;
16a53ecc
N
4929 list_del_init(&sh->lru);
4930 atomic_inc(&sh->count);
566c09c5
SL
4931 hash = sh->hash_lock_index;
4932 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
4933 }
4934}
4935
5c675f83 4936static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 4937{
d1688a6d 4938 struct r5conf *conf = mddev->private;
f022b2fd
N
4939
4940 /* No difference between reads and writes. Just check
4941 * how busy the stripe_cache is
4942 */
3fa841d7 4943
5423399a 4944 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd 4945 return 1;
a39f7afd
SL
4946
4947 /* Also checks whether there is pressure on r5cache log space */
4948 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
4949 return 1;
f022b2fd
N
4950 if (conf->quiesce)
4951 return 1;
4bda556a 4952 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
4953 return 1;
4954
4955 return 0;
4956}
4957
fd01b88c 4958static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 4959{
3cb5edf4 4960 struct r5conf *conf = mddev->private;
4f024f37 4961 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
3cb5edf4 4962 unsigned int chunk_sectors;
aa8b57aa 4963 unsigned int bio_sectors = bio_sectors(bio);
f679623f 4964
3cb5edf4 4965 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
4966 return chunk_sectors >=
4967 ((sector & (chunk_sectors - 1)) + bio_sectors);
4968}
4969
46031f9a
RBJ
4970/*
4971 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4972 * later sampled by raid5d.
4973 */
d1688a6d 4974static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
4975{
4976 unsigned long flags;
4977
4978 spin_lock_irqsave(&conf->device_lock, flags);
4979
4980 bi->bi_next = conf->retry_read_aligned_list;
4981 conf->retry_read_aligned_list = bi;
4982
4983 spin_unlock_irqrestore(&conf->device_lock, flags);
4984 md_wakeup_thread(conf->mddev->thread);
4985}
4986
d1688a6d 4987static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
4988{
4989 struct bio *bi;
4990
4991 bi = conf->retry_read_aligned;
4992 if (bi) {
4993 conf->retry_read_aligned = NULL;
4994 return bi;
4995 }
4996 bi = conf->retry_read_aligned_list;
4997 if(bi) {
387bb173 4998 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 4999 bi->bi_next = NULL;
960e739d
JA
5000 /*
5001 * this sets the active strip count to 1 and the processed
5002 * strip count to zero (upper 8 bits)
5003 */
e7836bd6 5004 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
5005 }
5006
5007 return bi;
5008}
5009
f679623f
RBJ
5010/*
5011 * The "raid5_align_endio" should check if the read succeeded and if it
5012 * did, call bio_endio on the original bio (having bio_put the new bio
5013 * first).
5014 * If the read failed..
5015 */
4246a0b6 5016static void raid5_align_endio(struct bio *bi)
f679623f
RBJ
5017{
5018 struct bio* raid_bi = bi->bi_private;
fd01b88c 5019 struct mddev *mddev;
d1688a6d 5020 struct r5conf *conf;
3cb03002 5021 struct md_rdev *rdev;
9b81c842 5022 int error = bi->bi_error;
46031f9a 5023
f679623f 5024 bio_put(bi);
46031f9a 5025
46031f9a
RBJ
5026 rdev = (void*)raid_bi->bi_next;
5027 raid_bi->bi_next = NULL;
2b7f2228
N
5028 mddev = rdev->mddev;
5029 conf = mddev->private;
46031f9a
RBJ
5030
5031 rdev_dec_pending(rdev, conf->mddev);
5032
9b81c842 5033 if (!error) {
4246a0b6 5034 bio_endio(raid_bi);
46031f9a 5035 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5036 wake_up(&conf->wait_for_quiescent);
6712ecf8 5037 return;
46031f9a
RBJ
5038 }
5039
45b4233c 5040 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
5041
5042 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
5043}
5044
7ef6b12a 5045static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 5046{
d1688a6d 5047 struct r5conf *conf = mddev->private;
8553fe7e 5048 int dd_idx;
f679623f 5049 struct bio* align_bi;
3cb03002 5050 struct md_rdev *rdev;
671488cc 5051 sector_t end_sector;
f679623f
RBJ
5052
5053 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 5054 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
5055 return 0;
5056 }
5057 /*
d7a10308 5058 * use bio_clone_fast to make a copy of the bio
f679623f 5059 */
d7a10308 5060 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
f679623f
RBJ
5061 if (!align_bi)
5062 return 0;
5063 /*
5064 * set bi_end_io to a new function, and set bi_private to the
5065 * original bio.
5066 */
5067 align_bi->bi_end_io = raid5_align_endio;
5068 align_bi->bi_private = raid_bio;
5069 /*
5070 * compute position
5071 */
4f024f37
KO
5072 align_bi->bi_iter.bi_sector =
5073 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5074 0, &dd_idx, NULL);
f679623f 5075
f73a1c7d 5076 end_sector = bio_end_sector(align_bi);
f679623f 5077 rcu_read_lock();
671488cc
N
5078 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5079 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5080 rdev->recovery_offset < end_sector) {
5081 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5082 if (rdev &&
5083 (test_bit(Faulty, &rdev->flags) ||
5084 !(test_bit(In_sync, &rdev->flags) ||
5085 rdev->recovery_offset >= end_sector)))
5086 rdev = NULL;
5087 }
03b047f4
SL
5088
5089 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5090 rcu_read_unlock();
5091 bio_put(align_bi);
5092 return 0;
5093 }
5094
671488cc 5095 if (rdev) {
31c176ec
N
5096 sector_t first_bad;
5097 int bad_sectors;
5098
f679623f
RBJ
5099 atomic_inc(&rdev->nr_pending);
5100 rcu_read_unlock();
46031f9a
RBJ
5101 raid_bio->bi_next = (void*)rdev;
5102 align_bi->bi_bdev = rdev->bdev;
b7c44ed9 5103 bio_clear_flag(align_bi, BIO_SEG_VALID);
46031f9a 5104
7140aafc 5105 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4f024f37 5106 bio_sectors(align_bi),
31c176ec 5107 &first_bad, &bad_sectors)) {
387bb173
NB
5108 bio_put(align_bi);
5109 rdev_dec_pending(rdev, mddev);
5110 return 0;
5111 }
5112
6c0544e2 5113 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 5114 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 5115
46031f9a 5116 spin_lock_irq(&conf->device_lock);
b1b46486 5117 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 5118 conf->quiesce == 0,
eed8c02e 5119 conf->device_lock);
46031f9a
RBJ
5120 atomic_inc(&conf->active_aligned_reads);
5121 spin_unlock_irq(&conf->device_lock);
5122
e3620a3a
JB
5123 if (mddev->gendisk)
5124 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5125 align_bi, disk_devt(mddev->gendisk),
4f024f37 5126 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
5127 generic_make_request(align_bi);
5128 return 1;
5129 } else {
5130 rcu_read_unlock();
46031f9a 5131 bio_put(align_bi);
f679623f
RBJ
5132 return 0;
5133 }
5134}
5135
7ef6b12a
ML
5136static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5137{
5138 struct bio *split;
5139
5140 do {
5141 sector_t sector = raid_bio->bi_iter.bi_sector;
5142 unsigned chunk_sects = mddev->chunk_sectors;
5143 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5144
5145 if (sectors < bio_sectors(raid_bio)) {
5146 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
5147 bio_chain(split, raid_bio);
5148 } else
5149 split = raid_bio;
5150
5151 if (!raid5_read_one_chunk(mddev, split)) {
5152 if (split != raid_bio)
5153 generic_make_request(raid_bio);
5154 return split;
5155 }
5156 } while (split != raid_bio);
5157
5158 return NULL;
5159}
5160
8b3e6cdc
DW
5161/* __get_priority_stripe - get the next stripe to process
5162 *
5163 * Full stripe writes are allowed to pass preread active stripes up until
5164 * the bypass_threshold is exceeded. In general the bypass_count
5165 * increments when the handle_list is handled before the hold_list; however, it
5166 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5167 * stripe with in flight i/o. The bypass_count will be reset when the
5168 * head of the hold_list has changed, i.e. the head was promoted to the
5169 * handle_list.
5170 */
851c30c9 5171static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 5172{
851c30c9
SL
5173 struct stripe_head *sh = NULL, *tmp;
5174 struct list_head *handle_list = NULL;
bfc90cb0 5175 struct r5worker_group *wg = NULL;
851c30c9
SL
5176
5177 if (conf->worker_cnt_per_group == 0) {
5178 handle_list = &conf->handle_list;
5179 } else if (group != ANY_GROUP) {
5180 handle_list = &conf->worker_groups[group].handle_list;
bfc90cb0 5181 wg = &conf->worker_groups[group];
851c30c9
SL
5182 } else {
5183 int i;
5184 for (i = 0; i < conf->group_cnt; i++) {
5185 handle_list = &conf->worker_groups[i].handle_list;
bfc90cb0 5186 wg = &conf->worker_groups[i];
851c30c9
SL
5187 if (!list_empty(handle_list))
5188 break;
5189 }
5190 }
8b3e6cdc
DW
5191
5192 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5193 __func__,
851c30c9 5194 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
5195 list_empty(&conf->hold_list) ? "empty" : "busy",
5196 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5197
851c30c9
SL
5198 if (!list_empty(handle_list)) {
5199 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
5200
5201 if (list_empty(&conf->hold_list))
5202 conf->bypass_count = 0;
5203 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5204 if (conf->hold_list.next == conf->last_hold)
5205 conf->bypass_count++;
5206 else {
5207 conf->last_hold = conf->hold_list.next;
5208 conf->bypass_count -= conf->bypass_threshold;
5209 if (conf->bypass_count < 0)
5210 conf->bypass_count = 0;
5211 }
5212 }
5213 } else if (!list_empty(&conf->hold_list) &&
5214 ((conf->bypass_threshold &&
5215 conf->bypass_count > conf->bypass_threshold) ||
5216 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
5217
5218 list_for_each_entry(tmp, &conf->hold_list, lru) {
5219 if (conf->worker_cnt_per_group == 0 ||
5220 group == ANY_GROUP ||
5221 !cpu_online(tmp->cpu) ||
5222 cpu_to_group(tmp->cpu) == group) {
5223 sh = tmp;
5224 break;
5225 }
5226 }
5227
5228 if (sh) {
5229 conf->bypass_count -= conf->bypass_threshold;
5230 if (conf->bypass_count < 0)
5231 conf->bypass_count = 0;
5232 }
bfc90cb0 5233 wg = NULL;
851c30c9
SL
5234 }
5235
5236 if (!sh)
8b3e6cdc
DW
5237 return NULL;
5238
bfc90cb0
SL
5239 if (wg) {
5240 wg->stripes_cnt--;
5241 sh->group = NULL;
5242 }
8b3e6cdc 5243 list_del_init(&sh->lru);
c7a6d35e 5244 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
5245 return sh;
5246}
f679623f 5247
8811b596
SL
5248struct raid5_plug_cb {
5249 struct blk_plug_cb cb;
5250 struct list_head list;
566c09c5 5251 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
5252};
5253
5254static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5255{
5256 struct raid5_plug_cb *cb = container_of(
5257 blk_cb, struct raid5_plug_cb, cb);
5258 struct stripe_head *sh;
5259 struct mddev *mddev = cb->cb.data;
5260 struct r5conf *conf = mddev->private;
a9add5d9 5261 int cnt = 0;
566c09c5 5262 int hash;
8811b596
SL
5263
5264 if (cb->list.next && !list_empty(&cb->list)) {
5265 spin_lock_irq(&conf->device_lock);
5266 while (!list_empty(&cb->list)) {
5267 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5268 list_del_init(&sh->lru);
5269 /*
5270 * avoid race release_stripe_plug() sees
5271 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5272 * is still in our list
5273 */
4e857c58 5274 smp_mb__before_atomic();
8811b596 5275 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
5276 /*
5277 * STRIPE_ON_RELEASE_LIST could be set here. In that
5278 * case, the count is always > 1 here
5279 */
566c09c5
SL
5280 hash = sh->hash_lock_index;
5281 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5282 cnt++;
8811b596
SL
5283 }
5284 spin_unlock_irq(&conf->device_lock);
5285 }
566c09c5
SL
5286 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5287 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5288 if (mddev->queue)
5289 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5290 kfree(cb);
5291}
5292
5293static void release_stripe_plug(struct mddev *mddev,
5294 struct stripe_head *sh)
5295{
5296 struct blk_plug_cb *blk_cb = blk_check_plugged(
5297 raid5_unplug, mddev,
5298 sizeof(struct raid5_plug_cb));
5299 struct raid5_plug_cb *cb;
5300
5301 if (!blk_cb) {
6d036f7d 5302 raid5_release_stripe(sh);
8811b596
SL
5303 return;
5304 }
5305
5306 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5307
566c09c5
SL
5308 if (cb->list.next == NULL) {
5309 int i;
8811b596 5310 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5311 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5312 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5313 }
8811b596
SL
5314
5315 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5316 list_add_tail(&sh->lru, &cb->list);
5317 else
6d036f7d 5318 raid5_release_stripe(sh);
8811b596
SL
5319}
5320
620125f2
SL
5321static void make_discard_request(struct mddev *mddev, struct bio *bi)
5322{
5323 struct r5conf *conf = mddev->private;
5324 sector_t logical_sector, last_sector;
5325 struct stripe_head *sh;
5326 int remaining;
5327 int stripe_sectors;
5328
5329 if (mddev->reshape_position != MaxSector)
5330 /* Skip discard while reshape is happening */
5331 return;
5332
4f024f37
KO
5333 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5334 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5335
5336 bi->bi_next = NULL;
5337 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5338
5339 stripe_sectors = conf->chunk_sectors *
5340 (conf->raid_disks - conf->max_degraded);
5341 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5342 stripe_sectors);
5343 sector_div(last_sector, stripe_sectors);
5344
5345 logical_sector *= conf->chunk_sectors;
5346 last_sector *= conf->chunk_sectors;
5347
5348 for (; logical_sector < last_sector;
5349 logical_sector += STRIPE_SECTORS) {
5350 DEFINE_WAIT(w);
5351 int d;
5352 again:
6d036f7d 5353 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
620125f2
SL
5354 prepare_to_wait(&conf->wait_for_overlap, &w,
5355 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5356 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5357 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5358 raid5_release_stripe(sh);
f8dfcffd
N
5359 schedule();
5360 goto again;
5361 }
5362 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5363 spin_lock_irq(&sh->stripe_lock);
5364 for (d = 0; d < conf->raid_disks; d++) {
5365 if (d == sh->pd_idx || d == sh->qd_idx)
5366 continue;
5367 if (sh->dev[d].towrite || sh->dev[d].toread) {
5368 set_bit(R5_Overlap, &sh->dev[d].flags);
5369 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5370 raid5_release_stripe(sh);
620125f2
SL
5371 schedule();
5372 goto again;
5373 }
5374 }
f8dfcffd 5375 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5376 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5377 sh->overwrite_disks = 0;
620125f2
SL
5378 for (d = 0; d < conf->raid_disks; d++) {
5379 if (d == sh->pd_idx || d == sh->qd_idx)
5380 continue;
5381 sh->dev[d].towrite = bi;
5382 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5383 raid5_inc_bi_active_stripes(bi);
7a87f434 5384 sh->overwrite_disks++;
620125f2
SL
5385 }
5386 spin_unlock_irq(&sh->stripe_lock);
5387 if (conf->mddev->bitmap) {
5388 for (d = 0;
5389 d < conf->raid_disks - conf->max_degraded;
5390 d++)
5391 bitmap_startwrite(mddev->bitmap,
5392 sh->sector,
5393 STRIPE_SECTORS,
5394 0);
5395 sh->bm_seq = conf->seq_flush + 1;
5396 set_bit(STRIPE_BIT_DELAY, &sh->state);
5397 }
5398
5399 set_bit(STRIPE_HANDLE, &sh->state);
5400 clear_bit(STRIPE_DELAYED, &sh->state);
5401 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5402 atomic_inc(&conf->preread_active_stripes);
5403 release_stripe_plug(mddev, sh);
5404 }
5405
5406 remaining = raid5_dec_bi_active_stripes(bi);
5407 if (remaining == 0) {
5408 md_write_end(mddev);
4246a0b6 5409 bio_endio(bi);
620125f2
SL
5410 }
5411}
5412
849674e4 5413static void raid5_make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5414{
d1688a6d 5415 struct r5conf *conf = mddev->private;
911d4ee8 5416 int dd_idx;
1da177e4
LT
5417 sector_t new_sector;
5418 sector_t logical_sector, last_sector;
5419 struct stripe_head *sh;
a362357b 5420 const int rw = bio_data_dir(bi);
49077326 5421 int remaining;
27c0f68f
SL
5422 DEFINE_WAIT(w);
5423 bool do_prepare;
3bddb7f8 5424 bool do_flush = false;
1da177e4 5425
1eff9d32 5426 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
828cbe98
SL
5427 int ret = r5l_handle_flush_request(conf->log, bi);
5428
5429 if (ret == 0)
5430 return;
5431 if (ret == -ENODEV) {
5432 md_flush_request(mddev, bi);
5433 return;
5434 }
5435 /* ret == -EAGAIN, fallback */
3bddb7f8
SL
5436 /*
5437 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5438 * we need to flush journal device
5439 */
5440 do_flush = bi->bi_opf & REQ_PREFLUSH;
e5dcdd80
N
5441 }
5442
3d310eb7 5443 md_write_start(mddev, bi);
06d91a5f 5444
9ffc8f7c
EM
5445 /*
5446 * If array is degraded, better not do chunk aligned read because
5447 * later we might have to read it again in order to reconstruct
5448 * data on failed drives.
5449 */
5450 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
5451 mddev->reshape_position == MaxSector) {
5452 bi = chunk_aligned_read(mddev, bi);
5453 if (!bi)
5454 return;
5455 }
52488615 5456
796a5cf0 5457 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
620125f2
SL
5458 make_discard_request(mddev, bi);
5459 return;
5460 }
5461
4f024f37 5462 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5463 last_sector = bio_end_sector(bi);
1da177e4
LT
5464 bi->bi_next = NULL;
5465 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 5466
27c0f68f 5467 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5468 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5469 int previous;
c46501b2 5470 int seq;
b578d55f 5471
27c0f68f 5472 do_prepare = false;
7ecaa1e6 5473 retry:
c46501b2 5474 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5475 previous = 0;
27c0f68f
SL
5476 if (do_prepare)
5477 prepare_to_wait(&conf->wait_for_overlap, &w,
5478 TASK_UNINTERRUPTIBLE);
b0f9ec04 5479 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5480 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5481 * 64bit on a 32bit platform, and so it might be
5482 * possible to see a half-updated value
aeb878b0 5483 * Of course reshape_progress could change after
df8e7f76
N
5484 * the lock is dropped, so once we get a reference
5485 * to the stripe that we think it is, we will have
5486 * to check again.
5487 */
7ecaa1e6 5488 spin_lock_irq(&conf->device_lock);
2c810cdd 5489 if (mddev->reshape_backwards
fef9c61f
N
5490 ? logical_sector < conf->reshape_progress
5491 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5492 previous = 1;
5493 } else {
2c810cdd 5494 if (mddev->reshape_backwards
fef9c61f
N
5495 ? logical_sector < conf->reshape_safe
5496 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5497 spin_unlock_irq(&conf->device_lock);
5498 schedule();
27c0f68f 5499 do_prepare = true;
b578d55f
N
5500 goto retry;
5501 }
5502 }
7ecaa1e6
N
5503 spin_unlock_irq(&conf->device_lock);
5504 }
16a53ecc 5505
112bf897
N
5506 new_sector = raid5_compute_sector(conf, logical_sector,
5507 previous,
911d4ee8 5508 &dd_idx, NULL);
849674e4 5509 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
c46501b2 5510 (unsigned long long)new_sector,
1da177e4
LT
5511 (unsigned long long)logical_sector);
5512
6d036f7d 5513 sh = raid5_get_active_stripe(conf, new_sector, previous,
1eff9d32 5514 (bi->bi_opf & REQ_RAHEAD), 0);
1da177e4 5515 if (sh) {
b0f9ec04 5516 if (unlikely(previous)) {
7ecaa1e6 5517 /* expansion might have moved on while waiting for a
df8e7f76
N
5518 * stripe, so we must do the range check again.
5519 * Expansion could still move past after this
5520 * test, but as we are holding a reference to
5521 * 'sh', we know that if that happens,
5522 * STRIPE_EXPANDING will get set and the expansion
5523 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5524 */
5525 int must_retry = 0;
5526 spin_lock_irq(&conf->device_lock);
2c810cdd 5527 if (mddev->reshape_backwards
b0f9ec04
N
5528 ? logical_sector >= conf->reshape_progress
5529 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5530 /* mismatch, need to try again */
5531 must_retry = 1;
5532 spin_unlock_irq(&conf->device_lock);
5533 if (must_retry) {
6d036f7d 5534 raid5_release_stripe(sh);
7a3ab908 5535 schedule();
27c0f68f 5536 do_prepare = true;
7ecaa1e6
N
5537 goto retry;
5538 }
5539 }
c46501b2
N
5540 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5541 /* Might have got the wrong stripe_head
5542 * by accident
5543 */
6d036f7d 5544 raid5_release_stripe(sh);
c46501b2
N
5545 goto retry;
5546 }
e62e58a5 5547
ffd96e35 5548 if (rw == WRITE &&
a5c308d4 5549 logical_sector >= mddev->suspend_lo &&
e464eafd 5550 logical_sector < mddev->suspend_hi) {
6d036f7d 5551 raid5_release_stripe(sh);
e62e58a5
N
5552 /* As the suspend_* range is controlled by
5553 * userspace, we want an interruptible
5554 * wait.
5555 */
5556 flush_signals(current);
5557 prepare_to_wait(&conf->wait_for_overlap,
5558 &w, TASK_INTERRUPTIBLE);
5559 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5560 logical_sector < mddev->suspend_hi) {
e62e58a5 5561 schedule();
27c0f68f
SL
5562 do_prepare = true;
5563 }
e464eafd
N
5564 goto retry;
5565 }
7ecaa1e6
N
5566
5567 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5568 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5569 /* Stripe is busy expanding or
5570 * add failed due to overlap. Flush everything
1da177e4
LT
5571 * and wait a while
5572 */
482c0834 5573 md_wakeup_thread(mddev->thread);
6d036f7d 5574 raid5_release_stripe(sh);
1da177e4 5575 schedule();
27c0f68f 5576 do_prepare = true;
1da177e4
LT
5577 goto retry;
5578 }
3bddb7f8
SL
5579 if (do_flush) {
5580 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5581 /* we only need flush for one stripe */
5582 do_flush = false;
5583 }
5584
6ed3003c
N
5585 set_bit(STRIPE_HANDLE, &sh->state);
5586 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5587 if ((!sh->batch_head || sh == sh->batch_head) &&
1eff9d32 5588 (bi->bi_opf & REQ_SYNC) &&
729a1866
N
5589 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5590 atomic_inc(&conf->preread_active_stripes);
8811b596 5591 release_stripe_plug(mddev, sh);
1da177e4
LT
5592 } else {
5593 /* cannot get stripe for read-ahead, just give-up */
4246a0b6 5594 bi->bi_error = -EIO;
1da177e4
LT
5595 break;
5596 }
1da177e4 5597 }
27c0f68f 5598 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5599
e7836bd6 5600 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 5601 if (remaining == 0) {
1da177e4 5602
16a53ecc 5603 if ( rw == WRITE )
1da177e4 5604 md_write_end(mddev);
6712ecf8 5605
0a82a8d1
LT
5606 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5607 bi, 0);
4246a0b6 5608 bio_endio(bi);
1da177e4 5609 }
1da177e4
LT
5610}
5611
fd01b88c 5612static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5613
fd01b88c 5614static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5615{
52c03291
N
5616 /* reshaping is quite different to recovery/resync so it is
5617 * handled quite separately ... here.
5618 *
5619 * On each call to sync_request, we gather one chunk worth of
5620 * destination stripes and flag them as expanding.
5621 * Then we find all the source stripes and request reads.
5622 * As the reads complete, handle_stripe will copy the data
5623 * into the destination stripe and release that stripe.
5624 */
d1688a6d 5625 struct r5conf *conf = mddev->private;
1da177e4 5626 struct stripe_head *sh;
ccfcc3c1 5627 sector_t first_sector, last_sector;
f416885e
N
5628 int raid_disks = conf->previous_raid_disks;
5629 int data_disks = raid_disks - conf->max_degraded;
5630 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5631 int i;
5632 int dd_idx;
c8f517c4 5633 sector_t writepos, readpos, safepos;
ec32a2bd 5634 sector_t stripe_addr;
7a661381 5635 int reshape_sectors;
ab69ae12 5636 struct list_head stripes;
92140480 5637 sector_t retn;
52c03291 5638
fef9c61f
N
5639 if (sector_nr == 0) {
5640 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5641 if (mddev->reshape_backwards &&
fef9c61f
N
5642 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5643 sector_nr = raid5_size(mddev, 0, 0)
5644 - conf->reshape_progress;
6cbd8148
N
5645 } else if (mddev->reshape_backwards &&
5646 conf->reshape_progress == MaxSector) {
5647 /* shouldn't happen, but just in case, finish up.*/
5648 sector_nr = MaxSector;
2c810cdd 5649 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5650 conf->reshape_progress > 0)
5651 sector_nr = conf->reshape_progress;
f416885e 5652 sector_div(sector_nr, new_data_disks);
fef9c61f 5653 if (sector_nr) {
8dee7211
N
5654 mddev->curr_resync_completed = sector_nr;
5655 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f 5656 *skipped = 1;
92140480
N
5657 retn = sector_nr;
5658 goto finish;
fef9c61f 5659 }
52c03291
N
5660 }
5661
7a661381
N
5662 /* We need to process a full chunk at a time.
5663 * If old and new chunk sizes differ, we need to process the
5664 * largest of these
5665 */
3cb5edf4
N
5666
5667 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 5668
b5254dd5
N
5669 /* We update the metadata at least every 10 seconds, or when
5670 * the data about to be copied would over-write the source of
5671 * the data at the front of the range. i.e. one new_stripe
5672 * along from reshape_progress new_maps to after where
5673 * reshape_safe old_maps to
52c03291 5674 */
fef9c61f 5675 writepos = conf->reshape_progress;
f416885e 5676 sector_div(writepos, new_data_disks);
c8f517c4
N
5677 readpos = conf->reshape_progress;
5678 sector_div(readpos, data_disks);
fef9c61f 5679 safepos = conf->reshape_safe;
f416885e 5680 sector_div(safepos, data_disks);
2c810cdd 5681 if (mddev->reshape_backwards) {
c74c0d76
N
5682 BUG_ON(writepos < reshape_sectors);
5683 writepos -= reshape_sectors;
c8f517c4 5684 readpos += reshape_sectors;
7a661381 5685 safepos += reshape_sectors;
fef9c61f 5686 } else {
7a661381 5687 writepos += reshape_sectors;
c74c0d76
N
5688 /* readpos and safepos are worst-case calculations.
5689 * A negative number is overly pessimistic, and causes
5690 * obvious problems for unsigned storage. So clip to 0.
5691 */
ed37d83e
N
5692 readpos -= min_t(sector_t, reshape_sectors, readpos);
5693 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5694 }
52c03291 5695
b5254dd5
N
5696 /* Having calculated the 'writepos' possibly use it
5697 * to set 'stripe_addr' which is where we will write to.
5698 */
5699 if (mddev->reshape_backwards) {
5700 BUG_ON(conf->reshape_progress == 0);
5701 stripe_addr = writepos;
5702 BUG_ON((mddev->dev_sectors &
5703 ~((sector_t)reshape_sectors - 1))
5704 - reshape_sectors - stripe_addr
5705 != sector_nr);
5706 } else {
5707 BUG_ON(writepos != sector_nr + reshape_sectors);
5708 stripe_addr = sector_nr;
5709 }
5710
c8f517c4
N
5711 /* 'writepos' is the most advanced device address we might write.
5712 * 'readpos' is the least advanced device address we might read.
5713 * 'safepos' is the least address recorded in the metadata as having
5714 * been reshaped.
b5254dd5
N
5715 * If there is a min_offset_diff, these are adjusted either by
5716 * increasing the safepos/readpos if diff is negative, or
5717 * increasing writepos if diff is positive.
5718 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5719 * ensure safety in the face of a crash - that must be done by userspace
5720 * making a backup of the data. So in that case there is no particular
5721 * rush to update metadata.
5722 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5723 * update the metadata to advance 'safepos' to match 'readpos' so that
5724 * we can be safe in the event of a crash.
5725 * So we insist on updating metadata if safepos is behind writepos and
5726 * readpos is beyond writepos.
5727 * In any case, update the metadata every 10 seconds.
5728 * Maybe that number should be configurable, but I'm not sure it is
5729 * worth it.... maybe it could be a multiple of safemode_delay???
5730 */
b5254dd5
N
5731 if (conf->min_offset_diff < 0) {
5732 safepos += -conf->min_offset_diff;
5733 readpos += -conf->min_offset_diff;
5734 } else
5735 writepos += conf->min_offset_diff;
5736
2c810cdd 5737 if ((mddev->reshape_backwards
c8f517c4
N
5738 ? (safepos > writepos && readpos < writepos)
5739 : (safepos < writepos && readpos > writepos)) ||
5740 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5741 /* Cannot proceed until we've updated the superblock... */
5742 wait_event(conf->wait_for_overlap,
c91abf5a
N
5743 atomic_read(&conf->reshape_stripes)==0
5744 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5745 if (atomic_read(&conf->reshape_stripes) != 0)
5746 return 0;
fef9c61f 5747 mddev->reshape_position = conf->reshape_progress;
75d3da43 5748 mddev->curr_resync_completed = sector_nr;
c8f517c4 5749 conf->reshape_checkpoint = jiffies;
2953079c 5750 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
52c03291 5751 md_wakeup_thread(mddev->thread);
2953079c 5752 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
5753 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5754 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5755 return 0;
52c03291 5756 spin_lock_irq(&conf->device_lock);
fef9c61f 5757 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5758 spin_unlock_irq(&conf->device_lock);
5759 wake_up(&conf->wait_for_overlap);
acb180b0 5760 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5761 }
5762
ab69ae12 5763 INIT_LIST_HEAD(&stripes);
7a661381 5764 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5765 int j;
a9f326eb 5766 int skipped_disk = 0;
6d036f7d 5767 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5768 set_bit(STRIPE_EXPANDING, &sh->state);
5769 atomic_inc(&conf->reshape_stripes);
5770 /* If any of this stripe is beyond the end of the old
5771 * array, then we need to zero those blocks
5772 */
5773 for (j=sh->disks; j--;) {
5774 sector_t s;
5775 if (j == sh->pd_idx)
5776 continue;
f416885e 5777 if (conf->level == 6 &&
d0dabf7e 5778 j == sh->qd_idx)
f416885e 5779 continue;
6d036f7d 5780 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 5781 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5782 skipped_disk = 1;
52c03291
N
5783 continue;
5784 }
5785 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5786 set_bit(R5_Expanded, &sh->dev[j].flags);
5787 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5788 }
a9f326eb 5789 if (!skipped_disk) {
52c03291
N
5790 set_bit(STRIPE_EXPAND_READY, &sh->state);
5791 set_bit(STRIPE_HANDLE, &sh->state);
5792 }
ab69ae12 5793 list_add(&sh->lru, &stripes);
52c03291
N
5794 }
5795 spin_lock_irq(&conf->device_lock);
2c810cdd 5796 if (mddev->reshape_backwards)
7a661381 5797 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5798 else
7a661381 5799 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5800 spin_unlock_irq(&conf->device_lock);
5801 /* Ok, those stripe are ready. We can start scheduling
5802 * reads on the source stripes.
5803 * The source stripes are determined by mapping the first and last
5804 * block on the destination stripes.
5805 */
52c03291 5806 first_sector =
ec32a2bd 5807 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5808 1, &dd_idx, NULL);
52c03291 5809 last_sector =
0e6e0271 5810 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5811 * new_data_disks - 1),
911d4ee8 5812 1, &dd_idx, NULL);
58c0fed4
AN
5813 if (last_sector >= mddev->dev_sectors)
5814 last_sector = mddev->dev_sectors - 1;
52c03291 5815 while (first_sector <= last_sector) {
6d036f7d 5816 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5817 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5818 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 5819 raid5_release_stripe(sh);
52c03291
N
5820 first_sector += STRIPE_SECTORS;
5821 }
ab69ae12
N
5822 /* Now that the sources are clearly marked, we can release
5823 * the destination stripes
5824 */
5825 while (!list_empty(&stripes)) {
5826 sh = list_entry(stripes.next, struct stripe_head, lru);
5827 list_del_init(&sh->lru);
6d036f7d 5828 raid5_release_stripe(sh);
ab69ae12 5829 }
c6207277
N
5830 /* If this takes us to the resync_max point where we have to pause,
5831 * then we need to write out the superblock.
5832 */
7a661381 5833 sector_nr += reshape_sectors;
92140480
N
5834 retn = reshape_sectors;
5835finish:
c5e19d90
N
5836 if (mddev->curr_resync_completed > mddev->resync_max ||
5837 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 5838 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5839 /* Cannot proceed until we've updated the superblock... */
5840 wait_event(conf->wait_for_overlap,
c91abf5a
N
5841 atomic_read(&conf->reshape_stripes) == 0
5842 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5843 if (atomic_read(&conf->reshape_stripes) != 0)
5844 goto ret;
fef9c61f 5845 mddev->reshape_position = conf->reshape_progress;
75d3da43 5846 mddev->curr_resync_completed = sector_nr;
c8f517c4 5847 conf->reshape_checkpoint = jiffies;
2953079c 5848 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
c6207277
N
5849 md_wakeup_thread(mddev->thread);
5850 wait_event(mddev->sb_wait,
2953079c 5851 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
c91abf5a
N
5852 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5853 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5854 goto ret;
c6207277 5855 spin_lock_irq(&conf->device_lock);
fef9c61f 5856 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5857 spin_unlock_irq(&conf->device_lock);
5858 wake_up(&conf->wait_for_overlap);
acb180b0 5859 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5860 }
c91abf5a 5861ret:
92140480 5862 return retn;
52c03291
N
5863}
5864
849674e4
SL
5865static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5866 int *skipped)
52c03291 5867{
d1688a6d 5868 struct r5conf *conf = mddev->private;
52c03291 5869 struct stripe_head *sh;
58c0fed4 5870 sector_t max_sector = mddev->dev_sectors;
57dab0bd 5871 sector_t sync_blocks;
16a53ecc
N
5872 int still_degraded = 0;
5873 int i;
1da177e4 5874
72626685 5875 if (sector_nr >= max_sector) {
1da177e4 5876 /* just being told to finish up .. nothing much to do */
cea9c228 5877
29269553
N
5878 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5879 end_reshape(conf);
5880 return 0;
5881 }
72626685
N
5882
5883 if (mddev->curr_resync < max_sector) /* aborted */
5884 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5885 &sync_blocks, 1);
16a53ecc 5886 else /* completed sync */
72626685
N
5887 conf->fullsync = 0;
5888 bitmap_close_sync(mddev->bitmap);
5889
1da177e4
LT
5890 return 0;
5891 }
ccfcc3c1 5892
64bd660b
N
5893 /* Allow raid5_quiesce to complete */
5894 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5895
52c03291
N
5896 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5897 return reshape_request(mddev, sector_nr, skipped);
f6705578 5898
c6207277
N
5899 /* No need to check resync_max as we never do more than one
5900 * stripe, and as resync_max will always be on a chunk boundary,
5901 * if the check in md_do_sync didn't fire, there is no chance
5902 * of overstepping resync_max here
5903 */
5904
16a53ecc 5905 /* if there is too many failed drives and we are trying
1da177e4
LT
5906 * to resync, then assert that we are finished, because there is
5907 * nothing we can do.
5908 */
3285edf1 5909 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 5910 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 5911 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 5912 *skipped = 1;
1da177e4
LT
5913 return rv;
5914 }
6f608040 5915 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5916 !conf->fullsync &&
5917 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5918 sync_blocks >= STRIPE_SECTORS) {
72626685
N
5919 /* we can skip this block, and probably more */
5920 sync_blocks /= STRIPE_SECTORS;
5921 *skipped = 1;
5922 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5923 }
1da177e4 5924
c40f341f 5925 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
b47490c9 5926
6d036f7d 5927 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 5928 if (sh == NULL) {
6d036f7d 5929 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 5930 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 5931 * is trying to get access
1da177e4 5932 */
66c006a5 5933 schedule_timeout_uninterruptible(1);
1da177e4 5934 }
16a53ecc 5935 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
5936 * Note in case of > 1 drive failures it's possible we're rebuilding
5937 * one drive while leaving another faulty drive in array.
16a53ecc 5938 */
16d9cfab
EM
5939 rcu_read_lock();
5940 for (i = 0; i < conf->raid_disks; i++) {
5941 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5942
5943 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 5944 still_degraded = 1;
16d9cfab
EM
5945 }
5946 rcu_read_unlock();
16a53ecc
N
5947
5948 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5949
83206d66 5950 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 5951 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 5952
6d036f7d 5953 raid5_release_stripe(sh);
1da177e4
LT
5954
5955 return STRIPE_SECTORS;
5956}
5957
d1688a6d 5958static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
5959{
5960 /* We may not be able to submit a whole bio at once as there
5961 * may not be enough stripe_heads available.
5962 * We cannot pre-allocate enough stripe_heads as we may need
5963 * more than exist in the cache (if we allow ever large chunks).
5964 * So we do one stripe head at a time and record in
5965 * ->bi_hw_segments how many have been done.
5966 *
5967 * We *know* that this entire raid_bio is in one chunk, so
5968 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5969 */
5970 struct stripe_head *sh;
911d4ee8 5971 int dd_idx;
46031f9a
RBJ
5972 sector_t sector, logical_sector, last_sector;
5973 int scnt = 0;
5974 int remaining;
5975 int handled = 0;
5976
4f024f37
KO
5977 logical_sector = raid_bio->bi_iter.bi_sector &
5978 ~((sector_t)STRIPE_SECTORS-1);
112bf897 5979 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 5980 0, &dd_idx, NULL);
f73a1c7d 5981 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
5982
5983 for (; logical_sector < last_sector;
387bb173
NB
5984 logical_sector += STRIPE_SECTORS,
5985 sector += STRIPE_SECTORS,
5986 scnt++) {
46031f9a 5987
e7836bd6 5988 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
5989 /* already done this stripe */
5990 continue;
5991
6d036f7d 5992 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
5993
5994 if (!sh) {
5995 /* failed to get a stripe - must wait */
e7836bd6 5996 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
5997 conf->retry_read_aligned = raid_bio;
5998 return handled;
5999 }
6000
da41ba65 6001 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 6002 raid5_release_stripe(sh);
e7836bd6 6003 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
6004 conf->retry_read_aligned = raid_bio;
6005 return handled;
6006 }
6007
3f9e7c14 6008 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 6009 handle_stripe(sh);
6d036f7d 6010 raid5_release_stripe(sh);
46031f9a
RBJ
6011 handled++;
6012 }
e7836bd6 6013 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
6014 if (remaining == 0) {
6015 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
6016 raid_bio, 0);
4246a0b6 6017 bio_endio(raid_bio);
0a82a8d1 6018 }
46031f9a 6019 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 6020 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
6021 return handled;
6022}
6023
bfc90cb0 6024static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
6025 struct r5worker *worker,
6026 struct list_head *temp_inactive_list)
46a06401
SL
6027{
6028 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
6029 int i, batch_size = 0, hash;
6030 bool release_inactive = false;
46a06401
SL
6031
6032 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 6033 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
6034 batch[batch_size++] = sh;
6035
566c09c5
SL
6036 if (batch_size == 0) {
6037 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6038 if (!list_empty(temp_inactive_list + i))
6039 break;
a8c34f91
SL
6040 if (i == NR_STRIPE_HASH_LOCKS) {
6041 spin_unlock_irq(&conf->device_lock);
6042 r5l_flush_stripe_to_raid(conf->log);
6043 spin_lock_irq(&conf->device_lock);
566c09c5 6044 return batch_size;
a8c34f91 6045 }
566c09c5
SL
6046 release_inactive = true;
6047 }
46a06401
SL
6048 spin_unlock_irq(&conf->device_lock);
6049
566c09c5
SL
6050 release_inactive_stripe_list(conf, temp_inactive_list,
6051 NR_STRIPE_HASH_LOCKS);
6052
a8c34f91 6053 r5l_flush_stripe_to_raid(conf->log);
566c09c5
SL
6054 if (release_inactive) {
6055 spin_lock_irq(&conf->device_lock);
6056 return 0;
6057 }
6058
46a06401
SL
6059 for (i = 0; i < batch_size; i++)
6060 handle_stripe(batch[i]);
f6bed0ef 6061 r5l_write_stripe_run(conf->log);
46a06401
SL
6062
6063 cond_resched();
6064
6065 spin_lock_irq(&conf->device_lock);
566c09c5
SL
6066 for (i = 0; i < batch_size; i++) {
6067 hash = batch[i]->hash_lock_index;
6068 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6069 }
46a06401
SL
6070 return batch_size;
6071}
46031f9a 6072
851c30c9
SL
6073static void raid5_do_work(struct work_struct *work)
6074{
6075 struct r5worker *worker = container_of(work, struct r5worker, work);
6076 struct r5worker_group *group = worker->group;
6077 struct r5conf *conf = group->conf;
6078 int group_id = group - conf->worker_groups;
6079 int handled;
6080 struct blk_plug plug;
6081
6082 pr_debug("+++ raid5worker active\n");
6083
6084 blk_start_plug(&plug);
6085 handled = 0;
6086 spin_lock_irq(&conf->device_lock);
6087 while (1) {
6088 int batch_size, released;
6089
566c09c5 6090 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 6091
566c09c5
SL
6092 batch_size = handle_active_stripes(conf, group_id, worker,
6093 worker->temp_inactive_list);
bfc90cb0 6094 worker->working = false;
851c30c9
SL
6095 if (!batch_size && !released)
6096 break;
6097 handled += batch_size;
6098 }
6099 pr_debug("%d stripes handled\n", handled);
6100
6101 spin_unlock_irq(&conf->device_lock);
6102 blk_finish_plug(&plug);
6103
6104 pr_debug("--- raid5worker inactive\n");
6105}
6106
1da177e4
LT
6107/*
6108 * This is our raid5 kernel thread.
6109 *
6110 * We scan the hash table for stripes which can be handled now.
6111 * During the scan, completed stripes are saved for us by the interrupt
6112 * handler, so that they will not have to wait for our next wakeup.
6113 */
4ed8731d 6114static void raid5d(struct md_thread *thread)
1da177e4 6115{
4ed8731d 6116 struct mddev *mddev = thread->mddev;
d1688a6d 6117 struct r5conf *conf = mddev->private;
1da177e4 6118 int handled;
e1dfa0a2 6119 struct blk_plug plug;
1da177e4 6120
45b4233c 6121 pr_debug("+++ raid5d active\n");
1da177e4
LT
6122
6123 md_check_recovery(mddev);
1da177e4 6124
c3cce6cd 6125 if (!bio_list_empty(&conf->return_bi) &&
2953079c 6126 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
c3cce6cd
N
6127 struct bio_list tmp = BIO_EMPTY_LIST;
6128 spin_lock_irq(&conf->device_lock);
2953079c 6129 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
c3cce6cd
N
6130 bio_list_merge(&tmp, &conf->return_bi);
6131 bio_list_init(&conf->return_bi);
6132 }
6133 spin_unlock_irq(&conf->device_lock);
6134 return_io(&tmp);
6135 }
6136
e1dfa0a2 6137 blk_start_plug(&plug);
1da177e4
LT
6138 handled = 0;
6139 spin_lock_irq(&conf->device_lock);
6140 while (1) {
46031f9a 6141 struct bio *bio;
773ca82f
SL
6142 int batch_size, released;
6143
566c09c5 6144 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
6145 if (released)
6146 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 6147
0021b7bc 6148 if (
7c13edc8
N
6149 !list_empty(&conf->bitmap_list)) {
6150 /* Now is a good time to flush some bitmap updates */
6151 conf->seq_flush++;
700e432d 6152 spin_unlock_irq(&conf->device_lock);
72626685 6153 bitmap_unplug(mddev->bitmap);
700e432d 6154 spin_lock_irq(&conf->device_lock);
7c13edc8 6155 conf->seq_write = conf->seq_flush;
566c09c5 6156 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 6157 }
0021b7bc 6158 raid5_activate_delayed(conf);
72626685 6159
46031f9a
RBJ
6160 while ((bio = remove_bio_from_retry(conf))) {
6161 int ok;
6162 spin_unlock_irq(&conf->device_lock);
6163 ok = retry_aligned_read(conf, bio);
6164 spin_lock_irq(&conf->device_lock);
6165 if (!ok)
6166 break;
6167 handled++;
6168 }
6169
566c09c5
SL
6170 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6171 conf->temp_inactive_list);
773ca82f 6172 if (!batch_size && !released)
1da177e4 6173 break;
46a06401 6174 handled += batch_size;
1da177e4 6175
2953079c 6176 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
46a06401 6177 spin_unlock_irq(&conf->device_lock);
de393cde 6178 md_check_recovery(mddev);
46a06401
SL
6179 spin_lock_irq(&conf->device_lock);
6180 }
1da177e4 6181 }
45b4233c 6182 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
6183
6184 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
6185 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6186 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
6187 grow_one_stripe(conf, __GFP_NOWARN);
6188 /* Set flag even if allocation failed. This helps
6189 * slow down allocation requests when mem is short
6190 */
6191 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 6192 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 6193 }
1da177e4 6194
765d704d
SL
6195 flush_deferred_bios(conf);
6196
0576b1c6
SL
6197 r5l_flush_stripe_to_raid(conf->log);
6198
c9f21aaf 6199 async_tx_issue_pending_all();
e1dfa0a2 6200 blk_finish_plug(&plug);
1da177e4 6201
45b4233c 6202 pr_debug("--- raid5d inactive\n");
1da177e4
LT
6203}
6204
3f294f4f 6205static ssize_t
fd01b88c 6206raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 6207{
7b1485ba
N
6208 struct r5conf *conf;
6209 int ret = 0;
6210 spin_lock(&mddev->lock);
6211 conf = mddev->private;
96de1e66 6212 if (conf)
edbe83ab 6213 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
6214 spin_unlock(&mddev->lock);
6215 return ret;
3f294f4f
N
6216}
6217
c41d4ac4 6218int
fd01b88c 6219raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 6220{
d1688a6d 6221 struct r5conf *conf = mddev->private;
b5470dc5
DW
6222 int err;
6223
c41d4ac4 6224 if (size <= 16 || size > 32768)
3f294f4f 6225 return -EINVAL;
486f0644 6226
edbe83ab 6227 conf->min_nr_stripes = size;
2d5b569b 6228 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6229 while (size < conf->max_nr_stripes &&
6230 drop_one_stripe(conf))
6231 ;
2d5b569b 6232 mutex_unlock(&conf->cache_size_mutex);
486f0644 6233
edbe83ab 6234
b5470dc5
DW
6235 err = md_allow_write(mddev);
6236 if (err)
6237 return err;
486f0644 6238
2d5b569b 6239 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6240 while (size > conf->max_nr_stripes)
6241 if (!grow_one_stripe(conf, GFP_KERNEL))
6242 break;
2d5b569b 6243 mutex_unlock(&conf->cache_size_mutex);
486f0644 6244
c41d4ac4
N
6245 return 0;
6246}
6247EXPORT_SYMBOL(raid5_set_cache_size);
6248
6249static ssize_t
fd01b88c 6250raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 6251{
6791875e 6252 struct r5conf *conf;
c41d4ac4
N
6253 unsigned long new;
6254 int err;
6255
6256 if (len >= PAGE_SIZE)
6257 return -EINVAL;
b29bebd6 6258 if (kstrtoul(page, 10, &new))
c41d4ac4 6259 return -EINVAL;
6791875e 6260 err = mddev_lock(mddev);
c41d4ac4
N
6261 if (err)
6262 return err;
6791875e
N
6263 conf = mddev->private;
6264 if (!conf)
6265 err = -ENODEV;
6266 else
6267 err = raid5_set_cache_size(mddev, new);
6268 mddev_unlock(mddev);
6269
6270 return err ?: len;
3f294f4f 6271}
007583c9 6272
96de1e66
N
6273static struct md_sysfs_entry
6274raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6275 raid5_show_stripe_cache_size,
6276 raid5_store_stripe_cache_size);
3f294f4f 6277
d06f191f
MS
6278static ssize_t
6279raid5_show_rmw_level(struct mddev *mddev, char *page)
6280{
6281 struct r5conf *conf = mddev->private;
6282 if (conf)
6283 return sprintf(page, "%d\n", conf->rmw_level);
6284 else
6285 return 0;
6286}
6287
6288static ssize_t
6289raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6290{
6291 struct r5conf *conf = mddev->private;
6292 unsigned long new;
6293
6294 if (!conf)
6295 return -ENODEV;
6296
6297 if (len >= PAGE_SIZE)
6298 return -EINVAL;
6299
6300 if (kstrtoul(page, 10, &new))
6301 return -EINVAL;
6302
6303 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6304 return -EINVAL;
6305
6306 if (new != PARITY_DISABLE_RMW &&
6307 new != PARITY_ENABLE_RMW &&
6308 new != PARITY_PREFER_RMW)
6309 return -EINVAL;
6310
6311 conf->rmw_level = new;
6312 return len;
6313}
6314
6315static struct md_sysfs_entry
6316raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6317 raid5_show_rmw_level,
6318 raid5_store_rmw_level);
6319
6320
8b3e6cdc 6321static ssize_t
fd01b88c 6322raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 6323{
7b1485ba
N
6324 struct r5conf *conf;
6325 int ret = 0;
6326 spin_lock(&mddev->lock);
6327 conf = mddev->private;
8b3e6cdc 6328 if (conf)
7b1485ba
N
6329 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6330 spin_unlock(&mddev->lock);
6331 return ret;
8b3e6cdc
DW
6332}
6333
6334static ssize_t
fd01b88c 6335raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6336{
6791875e 6337 struct r5conf *conf;
4ef197d8 6338 unsigned long new;
6791875e
N
6339 int err;
6340
8b3e6cdc
DW
6341 if (len >= PAGE_SIZE)
6342 return -EINVAL;
b29bebd6 6343 if (kstrtoul(page, 10, &new))
8b3e6cdc 6344 return -EINVAL;
6791875e
N
6345
6346 err = mddev_lock(mddev);
6347 if (err)
6348 return err;
6349 conf = mddev->private;
6350 if (!conf)
6351 err = -ENODEV;
edbe83ab 6352 else if (new > conf->min_nr_stripes)
6791875e
N
6353 err = -EINVAL;
6354 else
6355 conf->bypass_threshold = new;
6356 mddev_unlock(mddev);
6357 return err ?: len;
8b3e6cdc
DW
6358}
6359
6360static struct md_sysfs_entry
6361raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6362 S_IRUGO | S_IWUSR,
6363 raid5_show_preread_threshold,
6364 raid5_store_preread_threshold);
6365
d592a996
SL
6366static ssize_t
6367raid5_show_skip_copy(struct mddev *mddev, char *page)
6368{
7b1485ba
N
6369 struct r5conf *conf;
6370 int ret = 0;
6371 spin_lock(&mddev->lock);
6372 conf = mddev->private;
d592a996 6373 if (conf)
7b1485ba
N
6374 ret = sprintf(page, "%d\n", conf->skip_copy);
6375 spin_unlock(&mddev->lock);
6376 return ret;
d592a996
SL
6377}
6378
6379static ssize_t
6380raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6381{
6791875e 6382 struct r5conf *conf;
d592a996 6383 unsigned long new;
6791875e
N
6384 int err;
6385
d592a996
SL
6386 if (len >= PAGE_SIZE)
6387 return -EINVAL;
d592a996
SL
6388 if (kstrtoul(page, 10, &new))
6389 return -EINVAL;
6390 new = !!new;
6791875e
N
6391
6392 err = mddev_lock(mddev);
6393 if (err)
6394 return err;
6395 conf = mddev->private;
6396 if (!conf)
6397 err = -ENODEV;
6398 else if (new != conf->skip_copy) {
6399 mddev_suspend(mddev);
6400 conf->skip_copy = new;
6401 if (new)
dc3b17cc 6402 mddev->queue->backing_dev_info->capabilities |=
6791875e
N
6403 BDI_CAP_STABLE_WRITES;
6404 else
dc3b17cc 6405 mddev->queue->backing_dev_info->capabilities &=
6791875e
N
6406 ~BDI_CAP_STABLE_WRITES;
6407 mddev_resume(mddev);
6408 }
6409 mddev_unlock(mddev);
6410 return err ?: len;
d592a996
SL
6411}
6412
6413static struct md_sysfs_entry
6414raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6415 raid5_show_skip_copy,
6416 raid5_store_skip_copy);
6417
3f294f4f 6418static ssize_t
fd01b88c 6419stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6420{
d1688a6d 6421 struct r5conf *conf = mddev->private;
96de1e66
N
6422 if (conf)
6423 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6424 else
6425 return 0;
3f294f4f
N
6426}
6427
96de1e66
N
6428static struct md_sysfs_entry
6429raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6430
b721420e
SL
6431static ssize_t
6432raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6433{
7b1485ba
N
6434 struct r5conf *conf;
6435 int ret = 0;
6436 spin_lock(&mddev->lock);
6437 conf = mddev->private;
b721420e 6438 if (conf)
7b1485ba
N
6439 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6440 spin_unlock(&mddev->lock);
6441 return ret;
b721420e
SL
6442}
6443
60aaf933 6444static int alloc_thread_groups(struct r5conf *conf, int cnt,
6445 int *group_cnt,
6446 int *worker_cnt_per_group,
6447 struct r5worker_group **worker_groups);
b721420e
SL
6448static ssize_t
6449raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6450{
6791875e 6451 struct r5conf *conf;
b721420e
SL
6452 unsigned long new;
6453 int err;
60aaf933 6454 struct r5worker_group *new_groups, *old_groups;
6455 int group_cnt, worker_cnt_per_group;
b721420e
SL
6456
6457 if (len >= PAGE_SIZE)
6458 return -EINVAL;
b721420e
SL
6459 if (kstrtoul(page, 10, &new))
6460 return -EINVAL;
6461
6791875e
N
6462 err = mddev_lock(mddev);
6463 if (err)
6464 return err;
6465 conf = mddev->private;
6466 if (!conf)
6467 err = -ENODEV;
6468 else if (new != conf->worker_cnt_per_group) {
6469 mddev_suspend(mddev);
b721420e 6470
6791875e
N
6471 old_groups = conf->worker_groups;
6472 if (old_groups)
6473 flush_workqueue(raid5_wq);
d206dcfa 6474
6791875e
N
6475 err = alloc_thread_groups(conf, new,
6476 &group_cnt, &worker_cnt_per_group,
6477 &new_groups);
6478 if (!err) {
6479 spin_lock_irq(&conf->device_lock);
6480 conf->group_cnt = group_cnt;
6481 conf->worker_cnt_per_group = worker_cnt_per_group;
6482 conf->worker_groups = new_groups;
6483 spin_unlock_irq(&conf->device_lock);
b721420e 6484
6791875e
N
6485 if (old_groups)
6486 kfree(old_groups[0].workers);
6487 kfree(old_groups);
6488 }
6489 mddev_resume(mddev);
b721420e 6490 }
6791875e 6491 mddev_unlock(mddev);
b721420e 6492
6791875e 6493 return err ?: len;
b721420e
SL
6494}
6495
6496static struct md_sysfs_entry
6497raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6498 raid5_show_group_thread_cnt,
6499 raid5_store_group_thread_cnt);
6500
007583c9 6501static struct attribute *raid5_attrs[] = {
3f294f4f
N
6502 &raid5_stripecache_size.attr,
6503 &raid5_stripecache_active.attr,
8b3e6cdc 6504 &raid5_preread_bypass_threshold.attr,
b721420e 6505 &raid5_group_thread_cnt.attr,
d592a996 6506 &raid5_skip_copy.attr,
d06f191f 6507 &raid5_rmw_level.attr,
2c7da14b 6508 &r5c_journal_mode.attr,
3f294f4f
N
6509 NULL,
6510};
007583c9
N
6511static struct attribute_group raid5_attrs_group = {
6512 .name = NULL,
6513 .attrs = raid5_attrs,
3f294f4f
N
6514};
6515
60aaf933 6516static int alloc_thread_groups(struct r5conf *conf, int cnt,
6517 int *group_cnt,
6518 int *worker_cnt_per_group,
6519 struct r5worker_group **worker_groups)
851c30c9 6520{
566c09c5 6521 int i, j, k;
851c30c9
SL
6522 ssize_t size;
6523 struct r5worker *workers;
6524
60aaf933 6525 *worker_cnt_per_group = cnt;
851c30c9 6526 if (cnt == 0) {
60aaf933 6527 *group_cnt = 0;
6528 *worker_groups = NULL;
851c30c9
SL
6529 return 0;
6530 }
60aaf933 6531 *group_cnt = num_possible_nodes();
851c30c9 6532 size = sizeof(struct r5worker) * cnt;
60aaf933 6533 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6534 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6535 *group_cnt, GFP_NOIO);
6536 if (!*worker_groups || !workers) {
851c30c9 6537 kfree(workers);
60aaf933 6538 kfree(*worker_groups);
851c30c9
SL
6539 return -ENOMEM;
6540 }
6541
60aaf933 6542 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6543 struct r5worker_group *group;
6544
0c775d52 6545 group = &(*worker_groups)[i];
851c30c9
SL
6546 INIT_LIST_HEAD(&group->handle_list);
6547 group->conf = conf;
6548 group->workers = workers + i * cnt;
6549
6550 for (j = 0; j < cnt; j++) {
566c09c5
SL
6551 struct r5worker *worker = group->workers + j;
6552 worker->group = group;
6553 INIT_WORK(&worker->work, raid5_do_work);
6554
6555 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6556 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6557 }
6558 }
6559
6560 return 0;
6561}
6562
6563static void free_thread_groups(struct r5conf *conf)
6564{
6565 if (conf->worker_groups)
6566 kfree(conf->worker_groups[0].workers);
6567 kfree(conf->worker_groups);
6568 conf->worker_groups = NULL;
6569}
6570
80c3a6ce 6571static sector_t
fd01b88c 6572raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6573{
d1688a6d 6574 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6575
6576 if (!sectors)
6577 sectors = mddev->dev_sectors;
5e5e3e78 6578 if (!raid_disks)
7ec05478 6579 /* size is defined by the smallest of previous and new size */
5e5e3e78 6580 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6581
3cb5edf4
N
6582 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6583 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
6584 return sectors * (raid_disks - conf->max_degraded);
6585}
6586
789b5e03
ON
6587static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6588{
6589 safe_put_page(percpu->spare_page);
46d5b785 6590 if (percpu->scribble)
6591 flex_array_free(percpu->scribble);
789b5e03
ON
6592 percpu->spare_page = NULL;
6593 percpu->scribble = NULL;
6594}
6595
6596static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6597{
6598 if (conf->level == 6 && !percpu->spare_page)
6599 percpu->spare_page = alloc_page(GFP_KERNEL);
6600 if (!percpu->scribble)
46d5b785 6601 percpu->scribble = scribble_alloc(max(conf->raid_disks,
738a2738
N
6602 conf->previous_raid_disks),
6603 max(conf->chunk_sectors,
6604 conf->prev_chunk_sectors)
6605 / STRIPE_SECTORS,
6606 GFP_KERNEL);
789b5e03
ON
6607
6608 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6609 free_scratch_buffer(conf, percpu);
6610 return -ENOMEM;
6611 }
6612
6613 return 0;
6614}
6615
29c6d1bb 6616static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
36d1c647 6617{
29c6d1bb
SAS
6618 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6619
6620 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6621 return 0;
6622}
36d1c647 6623
29c6d1bb
SAS
6624static void raid5_free_percpu(struct r5conf *conf)
6625{
36d1c647
DW
6626 if (!conf->percpu)
6627 return;
6628
29c6d1bb 6629 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
36d1c647
DW
6630 free_percpu(conf->percpu);
6631}
6632
d1688a6d 6633static void free_conf(struct r5conf *conf)
95fc17aa 6634{
d7bd398e
SL
6635 int i;
6636
5c7e81c3
SL
6637 if (conf->log)
6638 r5l_exit_log(conf->log);
30c89465 6639 if (conf->shrinker.nr_deferred)
edbe83ab 6640 unregister_shrinker(&conf->shrinker);
5c7e81c3 6641
851c30c9 6642 free_thread_groups(conf);
95fc17aa 6643 shrink_stripes(conf);
36d1c647 6644 raid5_free_percpu(conf);
d7bd398e
SL
6645 for (i = 0; i < conf->pool_size; i++)
6646 if (conf->disks[i].extra_page)
6647 put_page(conf->disks[i].extra_page);
95fc17aa
DW
6648 kfree(conf->disks);
6649 kfree(conf->stripe_hashtbl);
6650 kfree(conf);
6651}
6652
29c6d1bb 6653static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
36d1c647 6654{
29c6d1bb 6655 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
36d1c647
DW
6656 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6657
29c6d1bb 6658 if (alloc_scratch_buffer(conf, percpu)) {
cc6167b4
N
6659 pr_warn("%s: failed memory allocation for cpu%u\n",
6660 __func__, cpu);
29c6d1bb 6661 return -ENOMEM;
36d1c647 6662 }
29c6d1bb 6663 return 0;
36d1c647 6664}
36d1c647 6665
d1688a6d 6666static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647 6667{
789b5e03 6668 int err = 0;
36d1c647 6669
789b5e03
ON
6670 conf->percpu = alloc_percpu(struct raid5_percpu);
6671 if (!conf->percpu)
36d1c647 6672 return -ENOMEM;
789b5e03 6673
29c6d1bb 6674 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
27a353c0
SL
6675 if (!err) {
6676 conf->scribble_disks = max(conf->raid_disks,
6677 conf->previous_raid_disks);
6678 conf->scribble_sectors = max(conf->chunk_sectors,
6679 conf->prev_chunk_sectors);
6680 }
36d1c647
DW
6681 return err;
6682}
6683
edbe83ab
N
6684static unsigned long raid5_cache_scan(struct shrinker *shrink,
6685 struct shrink_control *sc)
6686{
6687 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
6688 unsigned long ret = SHRINK_STOP;
6689
6690 if (mutex_trylock(&conf->cache_size_mutex)) {
6691 ret= 0;
49895bcc
N
6692 while (ret < sc->nr_to_scan &&
6693 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
6694 if (drop_one_stripe(conf) == 0) {
6695 ret = SHRINK_STOP;
6696 break;
6697 }
6698 ret++;
6699 }
6700 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
6701 }
6702 return ret;
6703}
6704
6705static unsigned long raid5_cache_count(struct shrinker *shrink,
6706 struct shrink_control *sc)
6707{
6708 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6709
6710 if (conf->max_nr_stripes < conf->min_nr_stripes)
6711 /* unlikely, but not impossible */
6712 return 0;
6713 return conf->max_nr_stripes - conf->min_nr_stripes;
6714}
6715
d1688a6d 6716static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6717{
d1688a6d 6718 struct r5conf *conf;
5e5e3e78 6719 int raid_disk, memory, max_disks;
3cb03002 6720 struct md_rdev *rdev;
1da177e4 6721 struct disk_info *disk;
0232605d 6722 char pers_name[6];
566c09c5 6723 int i;
60aaf933 6724 int group_cnt, worker_cnt_per_group;
6725 struct r5worker_group *new_group;
1da177e4 6726
91adb564
N
6727 if (mddev->new_level != 5
6728 && mddev->new_level != 4
6729 && mddev->new_level != 6) {
cc6167b4
N
6730 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6731 mdname(mddev), mddev->new_level);
91adb564 6732 return ERR_PTR(-EIO);
1da177e4 6733 }
91adb564
N
6734 if ((mddev->new_level == 5
6735 && !algorithm_valid_raid5(mddev->new_layout)) ||
6736 (mddev->new_level == 6
6737 && !algorithm_valid_raid6(mddev->new_layout))) {
cc6167b4
N
6738 pr_warn("md/raid:%s: layout %d not supported\n",
6739 mdname(mddev), mddev->new_layout);
91adb564 6740 return ERR_PTR(-EIO);
99c0fb5f 6741 }
91adb564 6742 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
cc6167b4
N
6743 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6744 mdname(mddev), mddev->raid_disks);
91adb564 6745 return ERR_PTR(-EINVAL);
4bbf3771
N
6746 }
6747
664e7c41
AN
6748 if (!mddev->new_chunk_sectors ||
6749 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6750 !is_power_of_2(mddev->new_chunk_sectors)) {
cc6167b4
N
6751 pr_warn("md/raid:%s: invalid chunk size %d\n",
6752 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6753 return ERR_PTR(-EINVAL);
f6705578
N
6754 }
6755
d1688a6d 6756 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6757 if (conf == NULL)
1da177e4 6758 goto abort;
851c30c9 6759 /* Don't enable multi-threading by default*/
60aaf933 6760 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6761 &new_group)) {
6762 conf->group_cnt = group_cnt;
6763 conf->worker_cnt_per_group = worker_cnt_per_group;
6764 conf->worker_groups = new_group;
6765 } else
851c30c9 6766 goto abort;
f5efd45a 6767 spin_lock_init(&conf->device_lock);
c46501b2 6768 seqcount_init(&conf->gen_lock);
2d5b569b 6769 mutex_init(&conf->cache_size_mutex);
b1b46486 6770 init_waitqueue_head(&conf->wait_for_quiescent);
6ab2a4b8 6771 init_waitqueue_head(&conf->wait_for_stripe);
f5efd45a
DW
6772 init_waitqueue_head(&conf->wait_for_overlap);
6773 INIT_LIST_HEAD(&conf->handle_list);
6774 INIT_LIST_HEAD(&conf->hold_list);
6775 INIT_LIST_HEAD(&conf->delayed_list);
6776 INIT_LIST_HEAD(&conf->bitmap_list);
c3cce6cd 6777 bio_list_init(&conf->return_bi);
773ca82f 6778 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6779 atomic_set(&conf->active_stripes, 0);
6780 atomic_set(&conf->preread_active_stripes, 0);
6781 atomic_set(&conf->active_aligned_reads, 0);
765d704d
SL
6782 bio_list_init(&conf->pending_bios);
6783 spin_lock_init(&conf->pending_bios_lock);
6784 conf->batch_bio_dispatch = true;
6785 rdev_for_each(rdev, mddev) {
6786 if (test_bit(Journal, &rdev->flags))
6787 continue;
6788 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6789 conf->batch_bio_dispatch = false;
6790 break;
6791 }
6792 }
6793
f5efd45a 6794 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6795 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6796
6797 conf->raid_disks = mddev->raid_disks;
6798 if (mddev->reshape_position == MaxSector)
6799 conf->previous_raid_disks = mddev->raid_disks;
6800 else
f6705578 6801 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6802 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6803
5e5e3e78 6804 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc 6805 GFP_KERNEL);
d7bd398e 6806
b55e6bfc
N
6807 if (!conf->disks)
6808 goto abort;
9ffae0cf 6809
d7bd398e
SL
6810 for (i = 0; i < max_disks; i++) {
6811 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6812 if (!conf->disks[i].extra_page)
6813 goto abort;
6814 }
6815
1da177e4
LT
6816 conf->mddev = mddev;
6817
fccddba0 6818 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6819 goto abort;
1da177e4 6820
566c09c5
SL
6821 /* We init hash_locks[0] separately to that it can be used
6822 * as the reference lock in the spin_lock_nest_lock() call
6823 * in lock_all_device_hash_locks_irq in order to convince
6824 * lockdep that we know what we are doing.
6825 */
6826 spin_lock_init(conf->hash_locks);
6827 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6828 spin_lock_init(conf->hash_locks + i);
6829
6830 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6831 INIT_LIST_HEAD(conf->inactive_list + i);
6832
6833 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6834 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6835
1e6d690b
SL
6836 atomic_set(&conf->r5c_cached_full_stripes, 0);
6837 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6838 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6839 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
e33fbb9c
SL
6840 atomic_set(&conf->r5c_flushing_full_stripes, 0);
6841 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
1e6d690b 6842
36d1c647 6843 conf->level = mddev->new_level;
46d5b785 6844 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6845 if (raid5_alloc_percpu(conf) != 0)
6846 goto abort;
6847
0c55e022 6848 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6849
dafb20fa 6850 rdev_for_each(rdev, mddev) {
1da177e4 6851 raid_disk = rdev->raid_disk;
5e5e3e78 6852 if (raid_disk >= max_disks
f2076e7d 6853 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
1da177e4
LT
6854 continue;
6855 disk = conf->disks + raid_disk;
6856
17045f52
N
6857 if (test_bit(Replacement, &rdev->flags)) {
6858 if (disk->replacement)
6859 goto abort;
6860 disk->replacement = rdev;
6861 } else {
6862 if (disk->rdev)
6863 goto abort;
6864 disk->rdev = rdev;
6865 }
1da177e4 6866
b2d444d7 6867 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 6868 char b[BDEVNAME_SIZE];
cc6167b4
N
6869 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
6870 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 6871 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
6872 /* Cannot rely on bitmap to complete recovery */
6873 conf->fullsync = 1;
1da177e4
LT
6874 }
6875
91adb564 6876 conf->level = mddev->new_level;
584acdd4 6877 if (conf->level == 6) {
16a53ecc 6878 conf->max_degraded = 2;
584acdd4
MS
6879 if (raid6_call.xor_syndrome)
6880 conf->rmw_level = PARITY_ENABLE_RMW;
6881 else
6882 conf->rmw_level = PARITY_DISABLE_RMW;
6883 } else {
16a53ecc 6884 conf->max_degraded = 1;
584acdd4
MS
6885 conf->rmw_level = PARITY_ENABLE_RMW;
6886 }
91adb564 6887 conf->algorithm = mddev->new_layout;
fef9c61f 6888 conf->reshape_progress = mddev->reshape_position;
e183eaed 6889 if (conf->reshape_progress != MaxSector) {
09c9e5fa 6890 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 6891 conf->prev_algo = mddev->layout;
5cac6bcb
N
6892 } else {
6893 conf->prev_chunk_sectors = conf->chunk_sectors;
6894 conf->prev_algo = conf->algorithm;
e183eaed 6895 }
1da177e4 6896
edbe83ab 6897 conf->min_nr_stripes = NR_STRIPES;
ad5b0f76
SL
6898 if (mddev->reshape_position != MaxSector) {
6899 int stripes = max_t(int,
6900 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
6901 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
6902 conf->min_nr_stripes = max(NR_STRIPES, stripes);
6903 if (conf->min_nr_stripes != NR_STRIPES)
cc6167b4 6904 pr_info("md/raid:%s: force stripe size %d for reshape\n",
ad5b0f76
SL
6905 mdname(mddev), conf->min_nr_stripes);
6906 }
edbe83ab 6907 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 6908 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 6909 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 6910 if (grow_stripes(conf, conf->min_nr_stripes)) {
cc6167b4
N
6911 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
6912 mdname(mddev), memory);
91adb564
N
6913 goto abort;
6914 } else
cc6167b4 6915 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
edbe83ab
N
6916 /*
6917 * Losing a stripe head costs more than the time to refill it,
6918 * it reduces the queue depth and so can hurt throughput.
6919 * So set it rather large, scaled by number of devices.
6920 */
6921 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6922 conf->shrinker.scan_objects = raid5_cache_scan;
6923 conf->shrinker.count_objects = raid5_cache_count;
6924 conf->shrinker.batch = 128;
6925 conf->shrinker.flags = 0;
6a0f53ff 6926 if (register_shrinker(&conf->shrinker)) {
cc6167b4
N
6927 pr_warn("md/raid:%s: couldn't register shrinker.\n",
6928 mdname(mddev));
6a0f53ff
CY
6929 goto abort;
6930 }
1da177e4 6931
0232605d
N
6932 sprintf(pers_name, "raid%d", mddev->new_level);
6933 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564 6934 if (!conf->thread) {
cc6167b4
N
6935 pr_warn("md/raid:%s: couldn't allocate thread.\n",
6936 mdname(mddev));
16a53ecc
N
6937 goto abort;
6938 }
91adb564
N
6939
6940 return conf;
6941
6942 abort:
6943 if (conf) {
95fc17aa 6944 free_conf(conf);
91adb564
N
6945 return ERR_PTR(-EIO);
6946 } else
6947 return ERR_PTR(-ENOMEM);
6948}
6949
c148ffdc
N
6950static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6951{
6952 switch (algo) {
6953 case ALGORITHM_PARITY_0:
6954 if (raid_disk < max_degraded)
6955 return 1;
6956 break;
6957 case ALGORITHM_PARITY_N:
6958 if (raid_disk >= raid_disks - max_degraded)
6959 return 1;
6960 break;
6961 case ALGORITHM_PARITY_0_6:
f72ffdd6 6962 if (raid_disk == 0 ||
c148ffdc
N
6963 raid_disk == raid_disks - 1)
6964 return 1;
6965 break;
6966 case ALGORITHM_LEFT_ASYMMETRIC_6:
6967 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6968 case ALGORITHM_LEFT_SYMMETRIC_6:
6969 case ALGORITHM_RIGHT_SYMMETRIC_6:
6970 if (raid_disk == raid_disks - 1)
6971 return 1;
6972 }
6973 return 0;
6974}
6975
849674e4 6976static int raid5_run(struct mddev *mddev)
91adb564 6977{
d1688a6d 6978 struct r5conf *conf;
9f7c2220 6979 int working_disks = 0;
c148ffdc 6980 int dirty_parity_disks = 0;
3cb03002 6981 struct md_rdev *rdev;
713cf5a6 6982 struct md_rdev *journal_dev = NULL;
c148ffdc 6983 sector_t reshape_offset = 0;
17045f52 6984 int i;
b5254dd5
N
6985 long long min_offset_diff = 0;
6986 int first = 1;
91adb564 6987
8c6ac868 6988 if (mddev->recovery_cp != MaxSector)
cc6167b4
N
6989 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
6990 mdname(mddev));
b5254dd5
N
6991
6992 rdev_for_each(rdev, mddev) {
6993 long long diff;
713cf5a6 6994
f2076e7d 6995 if (test_bit(Journal, &rdev->flags)) {
713cf5a6 6996 journal_dev = rdev;
f2076e7d
SL
6997 continue;
6998 }
b5254dd5
N
6999 if (rdev->raid_disk < 0)
7000 continue;
7001 diff = (rdev->new_data_offset - rdev->data_offset);
7002 if (first) {
7003 min_offset_diff = diff;
7004 first = 0;
7005 } else if (mddev->reshape_backwards &&
7006 diff < min_offset_diff)
7007 min_offset_diff = diff;
7008 else if (!mddev->reshape_backwards &&
7009 diff > min_offset_diff)
7010 min_offset_diff = diff;
7011 }
7012
91adb564
N
7013 if (mddev->reshape_position != MaxSector) {
7014 /* Check that we can continue the reshape.
b5254dd5
N
7015 * Difficulties arise if the stripe we would write to
7016 * next is at or after the stripe we would read from next.
7017 * For a reshape that changes the number of devices, this
7018 * is only possible for a very short time, and mdadm makes
7019 * sure that time appears to have past before assembling
7020 * the array. So we fail if that time hasn't passed.
7021 * For a reshape that keeps the number of devices the same
7022 * mdadm must be monitoring the reshape can keeping the
7023 * critical areas read-only and backed up. It will start
7024 * the array in read-only mode, so we check for that.
91adb564
N
7025 */
7026 sector_t here_new, here_old;
7027 int old_disks;
18b00334 7028 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
7029 int chunk_sectors;
7030 int new_data_disks;
91adb564 7031
713cf5a6 7032 if (journal_dev) {
cc6167b4
N
7033 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7034 mdname(mddev));
713cf5a6
SL
7035 return -EINVAL;
7036 }
7037
88ce4930 7038 if (mddev->new_level != mddev->level) {
cc6167b4
N
7039 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7040 mdname(mddev));
91adb564
N
7041 return -EINVAL;
7042 }
91adb564
N
7043 old_disks = mddev->raid_disks - mddev->delta_disks;
7044 /* reshape_position must be on a new-stripe boundary, and one
7045 * further up in new geometry must map after here in old
7046 * geometry.
05256d98
N
7047 * If the chunk sizes are different, then as we perform reshape
7048 * in units of the largest of the two, reshape_position needs
7049 * be a multiple of the largest chunk size times new data disks.
91adb564
N
7050 */
7051 here_new = mddev->reshape_position;
05256d98
N
7052 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7053 new_data_disks = mddev->raid_disks - max_degraded;
7054 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
cc6167b4
N
7055 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7056 mdname(mddev));
91adb564
N
7057 return -EINVAL;
7058 }
05256d98 7059 reshape_offset = here_new * chunk_sectors;
91adb564
N
7060 /* here_new is the stripe we will write to */
7061 here_old = mddev->reshape_position;
05256d98 7062 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
7063 /* here_old is the first stripe that we might need to read
7064 * from */
67ac6011
N
7065 if (mddev->delta_disks == 0) {
7066 /* We cannot be sure it is safe to start an in-place
b5254dd5 7067 * reshape. It is only safe if user-space is monitoring
67ac6011
N
7068 * and taking constant backups.
7069 * mdadm always starts a situation like this in
7070 * readonly mode so it can take control before
7071 * allowing any writes. So just check for that.
7072 */
b5254dd5
N
7073 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7074 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7075 /* not really in-place - so OK */;
7076 else if (mddev->ro == 0) {
cc6167b4
N
7077 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7078 mdname(mddev));
67ac6011
N
7079 return -EINVAL;
7080 }
2c810cdd 7081 } else if (mddev->reshape_backwards
05256d98
N
7082 ? (here_new * chunk_sectors + min_offset_diff <=
7083 here_old * chunk_sectors)
7084 : (here_new * chunk_sectors >=
7085 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 7086 /* Reading from the same stripe as writing to - bad */
cc6167b4
N
7087 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7088 mdname(mddev));
91adb564
N
7089 return -EINVAL;
7090 }
cc6167b4 7091 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
91adb564
N
7092 /* OK, we should be able to continue; */
7093 } else {
7094 BUG_ON(mddev->level != mddev->new_level);
7095 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 7096 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 7097 BUG_ON(mddev->delta_disks != 0);
1da177e4 7098 }
91adb564 7099
245f46c2
N
7100 if (mddev->private == NULL)
7101 conf = setup_conf(mddev);
7102 else
7103 conf = mddev->private;
7104
91adb564
N
7105 if (IS_ERR(conf))
7106 return PTR_ERR(conf);
7107
486b0f7b
SL
7108 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7109 if (!journal_dev) {
cc6167b4
N
7110 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7111 mdname(mddev));
486b0f7b
SL
7112 mddev->ro = 1;
7113 set_disk_ro(mddev->gendisk, 1);
7114 } else if (mddev->recovery_cp == MaxSector)
7115 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7dde2ad3
SL
7116 }
7117
b5254dd5 7118 conf->min_offset_diff = min_offset_diff;
91adb564
N
7119 mddev->thread = conf->thread;
7120 conf->thread = NULL;
7121 mddev->private = conf;
7122
17045f52
N
7123 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7124 i++) {
7125 rdev = conf->disks[i].rdev;
7126 if (!rdev && conf->disks[i].replacement) {
7127 /* The replacement is all we have yet */
7128 rdev = conf->disks[i].replacement;
7129 conf->disks[i].replacement = NULL;
7130 clear_bit(Replacement, &rdev->flags);
7131 conf->disks[i].rdev = rdev;
7132 }
7133 if (!rdev)
c148ffdc 7134 continue;
17045f52
N
7135 if (conf->disks[i].replacement &&
7136 conf->reshape_progress != MaxSector) {
7137 /* replacements and reshape simply do not mix. */
cc6167b4 7138 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
17045f52
N
7139 goto abort;
7140 }
2f115882 7141 if (test_bit(In_sync, &rdev->flags)) {
91adb564 7142 working_disks++;
2f115882
N
7143 continue;
7144 }
c148ffdc
N
7145 /* This disc is not fully in-sync. However if it
7146 * just stored parity (beyond the recovery_offset),
7147 * when we don't need to be concerned about the
7148 * array being dirty.
7149 * When reshape goes 'backwards', we never have
7150 * partially completed devices, so we only need
7151 * to worry about reshape going forwards.
7152 */
7153 /* Hack because v0.91 doesn't store recovery_offset properly. */
7154 if (mddev->major_version == 0 &&
7155 mddev->minor_version > 90)
7156 rdev->recovery_offset = reshape_offset;
5026d7a9 7157
c148ffdc
N
7158 if (rdev->recovery_offset < reshape_offset) {
7159 /* We need to check old and new layout */
7160 if (!only_parity(rdev->raid_disk,
7161 conf->algorithm,
7162 conf->raid_disks,
7163 conf->max_degraded))
7164 continue;
7165 }
7166 if (!only_parity(rdev->raid_disk,
7167 conf->prev_algo,
7168 conf->previous_raid_disks,
7169 conf->max_degraded))
7170 continue;
7171 dirty_parity_disks++;
7172 }
91adb564 7173
17045f52
N
7174 /*
7175 * 0 for a fully functional array, 1 or 2 for a degraded array.
7176 */
2e38a37f 7177 mddev->degraded = raid5_calc_degraded(conf);
91adb564 7178
674806d6 7179 if (has_failed(conf)) {
cc6167b4 7180 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
02c2de8c 7181 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
7182 goto abort;
7183 }
7184
91adb564 7185 /* device size must be a multiple of chunk size */
9d8f0363 7186 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
7187 mddev->resync_max_sectors = mddev->dev_sectors;
7188
c148ffdc 7189 if (mddev->degraded > dirty_parity_disks &&
1da177e4 7190 mddev->recovery_cp != MaxSector) {
6ff8d8ec 7191 if (mddev->ok_start_degraded)
cc6167b4
N
7192 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7193 mdname(mddev));
6ff8d8ec 7194 else {
cc6167b4
N
7195 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7196 mdname(mddev));
6ff8d8ec
N
7197 goto abort;
7198 }
1da177e4
LT
7199 }
7200
cc6167b4
N
7201 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7202 mdname(mddev), conf->level,
7203 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7204 mddev->new_layout);
1da177e4
LT
7205
7206 print_raid5_conf(conf);
7207
fef9c61f 7208 if (conf->reshape_progress != MaxSector) {
fef9c61f 7209 conf->reshape_safe = conf->reshape_progress;
f6705578
N
7210 atomic_set(&conf->reshape_stripes, 0);
7211 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7212 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7213 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7214 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7215 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7216 "reshape");
f6705578
N
7217 }
7218
1da177e4 7219 /* Ok, everything is just fine now */
a64c876f
N
7220 if (mddev->to_remove == &raid5_attrs_group)
7221 mddev->to_remove = NULL;
00bcb4ac
N
7222 else if (mddev->kobj.sd &&
7223 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
cc6167b4
N
7224 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7225 mdname(mddev));
4a5add49 7226 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 7227
4a5add49 7228 if (mddev->queue) {
9f7c2220 7229 int chunk_size;
620125f2 7230 bool discard_supported = true;
4a5add49
N
7231 /* read-ahead size must cover two whole stripes, which
7232 * is 2 * (datadisks) * chunksize where 'n' is the
7233 * number of raid devices
7234 */
7235 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7236 int stripe = data_disks *
7237 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
dc3b17cc
JK
7238 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7239 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
91adb564 7240
9f7c2220
N
7241 chunk_size = mddev->chunk_sectors << 9;
7242 blk_queue_io_min(mddev->queue, chunk_size);
7243 blk_queue_io_opt(mddev->queue, chunk_size *
7244 (conf->raid_disks - conf->max_degraded));
c78afc62 7245 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
7246 /*
7247 * We can only discard a whole stripe. It doesn't make sense to
7248 * discard data disk but write parity disk
7249 */
7250 stripe = stripe * PAGE_SIZE;
4ac6875e
N
7251 /* Round up to power of 2, as discard handling
7252 * currently assumes that */
7253 while ((stripe-1) & stripe)
7254 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
7255 mddev->queue->limits.discard_alignment = stripe;
7256 mddev->queue->limits.discard_granularity = stripe;
e8d7c332
KK
7257
7258 /*
7259 * We use 16-bit counter of active stripes in bi_phys_segments
7260 * (minus one for over-loaded initialization)
7261 */
7262 blk_queue_max_hw_sectors(mddev->queue, 0xfffe * STRIPE_SECTORS);
7263 blk_queue_max_discard_sectors(mddev->queue,
7264 0xfffe * STRIPE_SECTORS);
7265
620125f2
SL
7266 /*
7267 * unaligned part of discard request will be ignored, so can't
8e0e99ba 7268 * guarantee discard_zeroes_data
620125f2
SL
7269 */
7270 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 7271
5026d7a9
PA
7272 blk_queue_max_write_same_sectors(mddev->queue, 0);
7273
05616be5 7274 rdev_for_each(rdev, mddev) {
9f7c2220
N
7275 disk_stack_limits(mddev->gendisk, rdev->bdev,
7276 rdev->data_offset << 9);
05616be5
N
7277 disk_stack_limits(mddev->gendisk, rdev->bdev,
7278 rdev->new_data_offset << 9);
620125f2
SL
7279 /*
7280 * discard_zeroes_data is required, otherwise data
7281 * could be lost. Consider a scenario: discard a stripe
7282 * (the stripe could be inconsistent if
7283 * discard_zeroes_data is 0); write one disk of the
7284 * stripe (the stripe could be inconsistent again
7285 * depending on which disks are used to calculate
7286 * parity); the disk is broken; The stripe data of this
7287 * disk is lost.
7288 */
7289 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7290 !bdev_get_queue(rdev->bdev)->
7291 limits.discard_zeroes_data)
7292 discard_supported = false;
8e0e99ba
N
7293 /* Unfortunately, discard_zeroes_data is not currently
7294 * a guarantee - just a hint. So we only allow DISCARD
7295 * if the sysadmin has confirmed that only safe devices
7296 * are in use by setting a module parameter.
7297 */
7298 if (!devices_handle_discard_safely) {
7299 if (discard_supported) {
7300 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7301 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7302 }
7303 discard_supported = false;
7304 }
05616be5 7305 }
620125f2
SL
7306
7307 if (discard_supported &&
e7597e69
JS
7308 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7309 mddev->queue->limits.discard_granularity >= stripe)
620125f2
SL
7310 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7311 mddev->queue);
7312 else
7313 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7314 mddev->queue);
1dffdddd
SL
7315
7316 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
9f7c2220 7317 }
23032a0e 7318
5c7e81c3
SL
7319 if (journal_dev) {
7320 char b[BDEVNAME_SIZE];
7321
cc6167b4
N
7322 pr_debug("md/raid:%s: using device %s as journal\n",
7323 mdname(mddev), bdevname(journal_dev->bdev, b));
5aabf7c4
SL
7324 if (r5l_init_log(conf, journal_dev))
7325 goto abort;
5c7e81c3
SL
7326 }
7327
1da177e4
LT
7328 return 0;
7329abort:
01f96c0a 7330 md_unregister_thread(&mddev->thread);
e4f869d9
N
7331 print_raid5_conf(conf);
7332 free_conf(conf);
1da177e4 7333 mddev->private = NULL;
cc6167b4 7334 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
7335 return -EIO;
7336}
7337
afa0f557 7338static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 7339{
afa0f557 7340 struct r5conf *conf = priv;
1da177e4 7341
95fc17aa 7342 free_conf(conf);
a64c876f 7343 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
7344}
7345
849674e4 7346static void raid5_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 7347{
d1688a6d 7348 struct r5conf *conf = mddev->private;
1da177e4
LT
7349 int i;
7350
9d8f0363 7351 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 7352 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 7353 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5fd13351
N
7354 rcu_read_lock();
7355 for (i = 0; i < conf->raid_disks; i++) {
7356 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7357 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7358 }
7359 rcu_read_unlock();
1da177e4 7360 seq_printf (seq, "]");
1da177e4
LT
7361}
7362
d1688a6d 7363static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
7364{
7365 int i;
7366 struct disk_info *tmp;
7367
cc6167b4 7368 pr_debug("RAID conf printout:\n");
1da177e4 7369 if (!conf) {
cc6167b4 7370 pr_debug("(conf==NULL)\n");
1da177e4
LT
7371 return;
7372 }
cc6167b4 7373 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
0c55e022
N
7374 conf->raid_disks,
7375 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
7376
7377 for (i = 0; i < conf->raid_disks; i++) {
7378 char b[BDEVNAME_SIZE];
7379 tmp = conf->disks + i;
7380 if (tmp->rdev)
cc6167b4 7381 pr_debug(" disk %d, o:%d, dev:%s\n",
0c55e022
N
7382 i, !test_bit(Faulty, &tmp->rdev->flags),
7383 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7384 }
7385}
7386
fd01b88c 7387static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7388{
7389 int i;
d1688a6d 7390 struct r5conf *conf = mddev->private;
1da177e4 7391 struct disk_info *tmp;
6b965620
N
7392 int count = 0;
7393 unsigned long flags;
1da177e4
LT
7394
7395 for (i = 0; i < conf->raid_disks; i++) {
7396 tmp = conf->disks + i;
dd054fce
N
7397 if (tmp->replacement
7398 && tmp->replacement->recovery_offset == MaxSector
7399 && !test_bit(Faulty, &tmp->replacement->flags)
7400 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7401 /* Replacement has just become active. */
7402 if (!tmp->rdev
7403 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7404 count++;
7405 if (tmp->rdev) {
7406 /* Replaced device not technically faulty,
7407 * but we need to be sure it gets removed
7408 * and never re-added.
7409 */
7410 set_bit(Faulty, &tmp->rdev->flags);
7411 sysfs_notify_dirent_safe(
7412 tmp->rdev->sysfs_state);
7413 }
7414 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7415 } else if (tmp->rdev
70fffd0b 7416 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7417 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7418 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7419 count++;
43c73ca4 7420 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7421 }
7422 }
6b965620 7423 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7424 mddev->degraded = raid5_calc_degraded(conf);
6b965620 7425 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7426 print_raid5_conf(conf);
6b965620 7427 return count;
1da177e4
LT
7428}
7429
b8321b68 7430static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7431{
d1688a6d 7432 struct r5conf *conf = mddev->private;
1da177e4 7433 int err = 0;
b8321b68 7434 int number = rdev->raid_disk;
657e3e4d 7435 struct md_rdev **rdevp;
1da177e4
LT
7436 struct disk_info *p = conf->disks + number;
7437
7438 print_raid5_conf(conf);
f6b6ec5c
SL
7439 if (test_bit(Journal, &rdev->flags) && conf->log) {
7440 struct r5l_log *log;
c2bb6242 7441 /*
f6b6ec5c
SL
7442 * we can't wait pending write here, as this is called in
7443 * raid5d, wait will deadlock.
c2bb6242 7444 */
f6b6ec5c
SL
7445 if (atomic_read(&mddev->writes_pending))
7446 return -EBUSY;
7447 log = conf->log;
7448 conf->log = NULL;
7449 synchronize_rcu();
7450 r5l_exit_log(log);
7451 return 0;
c2bb6242 7452 }
657e3e4d
N
7453 if (rdev == p->rdev)
7454 rdevp = &p->rdev;
7455 else if (rdev == p->replacement)
7456 rdevp = &p->replacement;
7457 else
7458 return 0;
7459
7460 if (number >= conf->raid_disks &&
7461 conf->reshape_progress == MaxSector)
7462 clear_bit(In_sync, &rdev->flags);
7463
7464 if (test_bit(In_sync, &rdev->flags) ||
7465 atomic_read(&rdev->nr_pending)) {
7466 err = -EBUSY;
7467 goto abort;
7468 }
7469 /* Only remove non-faulty devices if recovery
7470 * isn't possible.
7471 */
7472 if (!test_bit(Faulty, &rdev->flags) &&
7473 mddev->recovery_disabled != conf->recovery_disabled &&
7474 !has_failed(conf) &&
dd054fce 7475 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7476 number < conf->raid_disks) {
7477 err = -EBUSY;
7478 goto abort;
7479 }
7480 *rdevp = NULL;
d787be40
N
7481 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7482 synchronize_rcu();
7483 if (atomic_read(&rdev->nr_pending)) {
7484 /* lost the race, try later */
7485 err = -EBUSY;
7486 *rdevp = rdev;
7487 }
7488 }
7489 if (p->replacement) {
dd054fce
N
7490 /* We must have just cleared 'rdev' */
7491 p->rdev = p->replacement;
7492 clear_bit(Replacement, &p->replacement->flags);
7493 smp_mb(); /* Make sure other CPUs may see both as identical
7494 * but will never see neither - if they are careful
7495 */
7496 p->replacement = NULL;
7497 clear_bit(WantReplacement, &rdev->flags);
7498 } else
7499 /* We might have just removed the Replacement as faulty-
7500 * clear the bit just in case
7501 */
7502 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7503abort:
7504
7505 print_raid5_conf(conf);
7506 return err;
7507}
7508
fd01b88c 7509static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7510{
d1688a6d 7511 struct r5conf *conf = mddev->private;
199050ea 7512 int err = -EEXIST;
1da177e4
LT
7513 int disk;
7514 struct disk_info *p;
6c2fce2e
NB
7515 int first = 0;
7516 int last = conf->raid_disks - 1;
1da177e4 7517
f6b6ec5c
SL
7518 if (test_bit(Journal, &rdev->flags)) {
7519 char b[BDEVNAME_SIZE];
7520 if (conf->log)
7521 return -EBUSY;
7522
7523 rdev->raid_disk = 0;
7524 /*
7525 * The array is in readonly mode if journal is missing, so no
7526 * write requests running. We should be safe
7527 */
7528 r5l_init_log(conf, rdev);
cc6167b4
N
7529 pr_debug("md/raid:%s: using device %s as journal\n",
7530 mdname(mddev), bdevname(rdev->bdev, b));
f6b6ec5c
SL
7531 return 0;
7532 }
7f0da59b
N
7533 if (mddev->recovery_disabled == conf->recovery_disabled)
7534 return -EBUSY;
7535
dc10c643 7536 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7537 /* no point adding a device */
199050ea 7538 return -EINVAL;
1da177e4 7539
6c2fce2e
NB
7540 if (rdev->raid_disk >= 0)
7541 first = last = rdev->raid_disk;
1da177e4
LT
7542
7543 /*
16a53ecc
N
7544 * find the disk ... but prefer rdev->saved_raid_disk
7545 * if possible.
1da177e4 7546 */
16a53ecc 7547 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7548 rdev->saved_raid_disk >= first &&
16a53ecc 7549 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7550 first = rdev->saved_raid_disk;
7551
7552 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7553 p = conf->disks + disk;
7554 if (p->rdev == NULL) {
b2d444d7 7555 clear_bit(In_sync, &rdev->flags);
1da177e4 7556 rdev->raid_disk = disk;
199050ea 7557 err = 0;
72626685
N
7558 if (rdev->saved_raid_disk != disk)
7559 conf->fullsync = 1;
d6065f7b 7560 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 7561 goto out;
1da177e4 7562 }
5cfb22a1
N
7563 }
7564 for (disk = first; disk <= last; disk++) {
7565 p = conf->disks + disk;
7bfec5f3
N
7566 if (test_bit(WantReplacement, &p->rdev->flags) &&
7567 p->replacement == NULL) {
7568 clear_bit(In_sync, &rdev->flags);
7569 set_bit(Replacement, &rdev->flags);
7570 rdev->raid_disk = disk;
7571 err = 0;
7572 conf->fullsync = 1;
7573 rcu_assign_pointer(p->replacement, rdev);
7574 break;
7575 }
7576 }
5cfb22a1 7577out:
1da177e4 7578 print_raid5_conf(conf);
199050ea 7579 return err;
1da177e4
LT
7580}
7581
fd01b88c 7582static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7583{
7584 /* no resync is happening, and there is enough space
7585 * on all devices, so we can resize.
7586 * We need to make sure resync covers any new space.
7587 * If the array is shrinking we should possibly wait until
7588 * any io in the removed space completes, but it hardly seems
7589 * worth it.
7590 */
a4a6125a 7591 sector_t newsize;
3cb5edf4
N
7592 struct r5conf *conf = mddev->private;
7593
713cf5a6
SL
7594 if (conf->log)
7595 return -EINVAL;
3cb5edf4 7596 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
7597 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7598 if (mddev->external_size &&
7599 mddev->array_sectors > newsize)
b522adcd 7600 return -EINVAL;
a4a6125a
N
7601 if (mddev->bitmap) {
7602 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7603 if (ret)
7604 return ret;
7605 }
7606 md_set_array_sectors(mddev, newsize);
b098636c
N
7607 if (sectors > mddev->dev_sectors &&
7608 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7609 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7610 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7611 }
58c0fed4 7612 mddev->dev_sectors = sectors;
4b5c7ae8 7613 mddev->resync_max_sectors = sectors;
1da177e4
LT
7614 return 0;
7615}
7616
fd01b88c 7617static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7618{
7619 /* Can only proceed if there are plenty of stripe_heads.
7620 * We need a minimum of one full stripe,, and for sensible progress
7621 * it is best to have about 4 times that.
7622 * If we require 4 times, then the default 256 4K stripe_heads will
7623 * allow for chunk sizes up to 256K, which is probably OK.
7624 * If the chunk size is greater, user-space should request more
7625 * stripe_heads first.
7626 */
d1688a6d 7627 struct r5conf *conf = mddev->private;
01ee22b4 7628 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7629 > conf->min_nr_stripes ||
01ee22b4 7630 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7631 > conf->min_nr_stripes) {
cc6167b4
N
7632 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7633 mdname(mddev),
7634 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7635 / STRIPE_SIZE)*4);
01ee22b4
N
7636 return 0;
7637 }
7638 return 1;
7639}
7640
fd01b88c 7641static int check_reshape(struct mddev *mddev)
29269553 7642{
d1688a6d 7643 struct r5conf *conf = mddev->private;
29269553 7644
713cf5a6
SL
7645 if (conf->log)
7646 return -EINVAL;
88ce4930
N
7647 if (mddev->delta_disks == 0 &&
7648 mddev->new_layout == mddev->layout &&
664e7c41 7649 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7650 return 0; /* nothing to do */
674806d6 7651 if (has_failed(conf))
ec32a2bd 7652 return -EINVAL;
fdcfbbb6 7653 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7654 /* We might be able to shrink, but the devices must
7655 * be made bigger first.
7656 * For raid6, 4 is the minimum size.
7657 * Otherwise 2 is the minimum
7658 */
7659 int min = 2;
7660 if (mddev->level == 6)
7661 min = 4;
7662 if (mddev->raid_disks + mddev->delta_disks < min)
7663 return -EINVAL;
7664 }
29269553 7665
01ee22b4 7666 if (!check_stripe_cache(mddev))
29269553 7667 return -ENOSPC;
29269553 7668
738a2738
N
7669 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7670 mddev->delta_disks > 0)
7671 if (resize_chunks(conf,
7672 conf->previous_raid_disks
7673 + max(0, mddev->delta_disks),
7674 max(mddev->new_chunk_sectors,
7675 mddev->chunk_sectors)
7676 ) < 0)
7677 return -ENOMEM;
e56108d6
N
7678 return resize_stripes(conf, (conf->previous_raid_disks
7679 + mddev->delta_disks));
63c70c4f
N
7680}
7681
fd01b88c 7682static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7683{
d1688a6d 7684 struct r5conf *conf = mddev->private;
3cb03002 7685 struct md_rdev *rdev;
63c70c4f 7686 int spares = 0;
c04be0aa 7687 unsigned long flags;
63c70c4f 7688
f416885e 7689 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7690 return -EBUSY;
7691
01ee22b4
N
7692 if (!check_stripe_cache(mddev))
7693 return -ENOSPC;
7694
30b67645
N
7695 if (has_failed(conf))
7696 return -EINVAL;
7697
c6563a8c 7698 rdev_for_each(rdev, mddev) {
469518a3
N
7699 if (!test_bit(In_sync, &rdev->flags)
7700 && !test_bit(Faulty, &rdev->flags))
29269553 7701 spares++;
c6563a8c 7702 }
63c70c4f 7703
f416885e 7704 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7705 /* Not enough devices even to make a degraded array
7706 * of that size
7707 */
7708 return -EINVAL;
7709
ec32a2bd
N
7710 /* Refuse to reduce size of the array. Any reductions in
7711 * array size must be through explicit setting of array_size
7712 * attribute.
7713 */
7714 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7715 < mddev->array_sectors) {
cc6167b4
N
7716 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7717 mdname(mddev));
ec32a2bd
N
7718 return -EINVAL;
7719 }
7720
f6705578 7721 atomic_set(&conf->reshape_stripes, 0);
29269553 7722 spin_lock_irq(&conf->device_lock);
c46501b2 7723 write_seqcount_begin(&conf->gen_lock);
29269553 7724 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7725 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7726 conf->prev_chunk_sectors = conf->chunk_sectors;
7727 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7728 conf->prev_algo = conf->algorithm;
7729 conf->algorithm = mddev->new_layout;
05616be5
N
7730 conf->generation++;
7731 /* Code that selects data_offset needs to see the generation update
7732 * if reshape_progress has been set - so a memory barrier needed.
7733 */
7734 smp_mb();
2c810cdd 7735 if (mddev->reshape_backwards)
fef9c61f
N
7736 conf->reshape_progress = raid5_size(mddev, 0, 0);
7737 else
7738 conf->reshape_progress = 0;
7739 conf->reshape_safe = conf->reshape_progress;
c46501b2 7740 write_seqcount_end(&conf->gen_lock);
29269553
N
7741 spin_unlock_irq(&conf->device_lock);
7742
4d77e3ba
N
7743 /* Now make sure any requests that proceeded on the assumption
7744 * the reshape wasn't running - like Discard or Read - have
7745 * completed.
7746 */
7747 mddev_suspend(mddev);
7748 mddev_resume(mddev);
7749
29269553
N
7750 /* Add some new drives, as many as will fit.
7751 * We know there are enough to make the newly sized array work.
3424bf6a
N
7752 * Don't add devices if we are reducing the number of
7753 * devices in the array. This is because it is not possible
7754 * to correctly record the "partially reconstructed" state of
7755 * such devices during the reshape and confusion could result.
29269553 7756 */
87a8dec9 7757 if (mddev->delta_disks >= 0) {
dafb20fa 7758 rdev_for_each(rdev, mddev)
87a8dec9
N
7759 if (rdev->raid_disk < 0 &&
7760 !test_bit(Faulty, &rdev->flags)) {
7761 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7762 if (rdev->raid_disk
9d4c7d87 7763 >= conf->previous_raid_disks)
87a8dec9 7764 set_bit(In_sync, &rdev->flags);
9d4c7d87 7765 else
87a8dec9 7766 rdev->recovery_offset = 0;
36fad858
NK
7767
7768 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7769 /* Failure here is OK */;
50da0840 7770 }
87a8dec9
N
7771 } else if (rdev->raid_disk >= conf->previous_raid_disks
7772 && !test_bit(Faulty, &rdev->flags)) {
7773 /* This is a spare that was manually added */
7774 set_bit(In_sync, &rdev->flags);
87a8dec9 7775 }
29269553 7776
87a8dec9
N
7777 /* When a reshape changes the number of devices,
7778 * ->degraded is measured against the larger of the
7779 * pre and post number of devices.
7780 */
ec32a2bd 7781 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7782 mddev->degraded = raid5_calc_degraded(conf);
ec32a2bd
N
7783 spin_unlock_irqrestore(&conf->device_lock, flags);
7784 }
63c70c4f 7785 mddev->raid_disks = conf->raid_disks;
e516402c 7786 mddev->reshape_position = conf->reshape_progress;
2953079c 7787 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
f6705578 7788
29269553
N
7789 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7790 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 7791 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
7792 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7793 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7794 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7795 "reshape");
29269553
N
7796 if (!mddev->sync_thread) {
7797 mddev->recovery = 0;
7798 spin_lock_irq(&conf->device_lock);
ba8805b9 7799 write_seqcount_begin(&conf->gen_lock);
29269553 7800 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7801 mddev->new_chunk_sectors =
7802 conf->chunk_sectors = conf->prev_chunk_sectors;
7803 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7804 rdev_for_each(rdev, mddev)
7805 rdev->new_data_offset = rdev->data_offset;
7806 smp_wmb();
ba8805b9 7807 conf->generation --;
fef9c61f 7808 conf->reshape_progress = MaxSector;
1e3fa9bd 7809 mddev->reshape_position = MaxSector;
ba8805b9 7810 write_seqcount_end(&conf->gen_lock);
29269553
N
7811 spin_unlock_irq(&conf->device_lock);
7812 return -EAGAIN;
7813 }
c8f517c4 7814 conf->reshape_checkpoint = jiffies;
29269553
N
7815 md_wakeup_thread(mddev->sync_thread);
7816 md_new_event(mddev);
7817 return 0;
7818}
29269553 7819
ec32a2bd
N
7820/* This is called from the reshape thread and should make any
7821 * changes needed in 'conf'
7822 */
d1688a6d 7823static void end_reshape(struct r5conf *conf)
29269553 7824{
29269553 7825
f6705578 7826 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 7827 struct md_rdev *rdev;
f6705578 7828
f6705578 7829 spin_lock_irq(&conf->device_lock);
cea9c228 7830 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
7831 rdev_for_each(rdev, conf->mddev)
7832 rdev->data_offset = rdev->new_data_offset;
7833 smp_wmb();
fef9c61f 7834 conf->reshape_progress = MaxSector;
6cbd8148 7835 conf->mddev->reshape_position = MaxSector;
f6705578 7836 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7837 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7838
7839 /* read-ahead size must cover two whole stripes, which is
7840 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7841 */
4a5add49 7842 if (conf->mddev->queue) {
cea9c228 7843 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7844 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7845 / PAGE_SIZE);
dc3b17cc
JK
7846 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7847 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
16a53ecc 7848 }
29269553 7849 }
29269553
N
7850}
7851
ec32a2bd
N
7852/* This is called from the raid5d thread with mddev_lock held.
7853 * It makes config changes to the device.
7854 */
fd01b88c 7855static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7856{
d1688a6d 7857 struct r5conf *conf = mddev->private;
cea9c228
N
7858
7859 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7860
ec32a2bd
N
7861 if (mddev->delta_disks > 0) {
7862 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
fe67d19a
HM
7863 if (mddev->queue) {
7864 set_capacity(mddev->gendisk, mddev->array_sectors);
7865 revalidate_disk(mddev->gendisk);
7866 }
ec32a2bd
N
7867 } else {
7868 int d;
908f4fbd 7869 spin_lock_irq(&conf->device_lock);
2e38a37f 7870 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd 7871 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
7872 for (d = conf->raid_disks ;
7873 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 7874 d++) {
3cb03002 7875 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
7876 if (rdev)
7877 clear_bit(In_sync, &rdev->flags);
7878 rdev = conf->disks[d].replacement;
7879 if (rdev)
7880 clear_bit(In_sync, &rdev->flags);
1a67dde0 7881 }
cea9c228 7882 }
88ce4930 7883 mddev->layout = conf->algorithm;
09c9e5fa 7884 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
7885 mddev->reshape_position = MaxSector;
7886 mddev->delta_disks = 0;
2c810cdd 7887 mddev->reshape_backwards = 0;
cea9c228
N
7888 }
7889}
7890
fd01b88c 7891static void raid5_quiesce(struct mddev *mddev, int state)
72626685 7892{
d1688a6d 7893 struct r5conf *conf = mddev->private;
72626685
N
7894
7895 switch(state) {
e464eafd
N
7896 case 2: /* resume for a suspend */
7897 wake_up(&conf->wait_for_overlap);
7898 break;
7899
72626685 7900 case 1: /* stop all writes */
566c09c5 7901 lock_all_device_hash_locks_irq(conf);
64bd660b
N
7902 /* '2' tells resync/reshape to pause so that all
7903 * active stripes can drain
7904 */
a39f7afd 7905 r5c_flush_cache(conf, INT_MAX);
64bd660b 7906 conf->quiesce = 2;
b1b46486 7907 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
7908 atomic_read(&conf->active_stripes) == 0 &&
7909 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
7910 unlock_all_device_hash_locks_irq(conf),
7911 lock_all_device_hash_locks_irq(conf));
64bd660b 7912 conf->quiesce = 1;
566c09c5 7913 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
7914 /* allow reshape to continue */
7915 wake_up(&conf->wait_for_overlap);
72626685
N
7916 break;
7917
7918 case 0: /* re-enable writes */
566c09c5 7919 lock_all_device_hash_locks_irq(conf);
72626685 7920 conf->quiesce = 0;
b1b46486 7921 wake_up(&conf->wait_for_quiescent);
e464eafd 7922 wake_up(&conf->wait_for_overlap);
566c09c5 7923 unlock_all_device_hash_locks_irq(conf);
72626685
N
7924 break;
7925 }
e6c033f7 7926 r5l_quiesce(conf->log, state);
72626685 7927}
b15c2e57 7928
fd01b88c 7929static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 7930{
e373ab10 7931 struct r0conf *raid0_conf = mddev->private;
d76c8420 7932 sector_t sectors;
54071b38 7933
f1b29bca 7934 /* for raid0 takeover only one zone is supported */
e373ab10 7935 if (raid0_conf->nr_strip_zones > 1) {
cc6167b4
N
7936 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7937 mdname(mddev));
f1b29bca
DW
7938 return ERR_PTR(-EINVAL);
7939 }
7940
e373ab10
N
7941 sectors = raid0_conf->strip_zone[0].zone_end;
7942 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 7943 mddev->dev_sectors = sectors;
f1b29bca 7944 mddev->new_level = level;
54071b38
TM
7945 mddev->new_layout = ALGORITHM_PARITY_N;
7946 mddev->new_chunk_sectors = mddev->chunk_sectors;
7947 mddev->raid_disks += 1;
7948 mddev->delta_disks = 1;
7949 /* make sure it will be not marked as dirty */
7950 mddev->recovery_cp = MaxSector;
7951
7952 return setup_conf(mddev);
7953}
7954
fd01b88c 7955static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
7956{
7957 int chunksect;
6995f0b2 7958 void *ret;
d562b0c4
N
7959
7960 if (mddev->raid_disks != 2 ||
7961 mddev->degraded > 1)
7962 return ERR_PTR(-EINVAL);
7963
7964 /* Should check if there are write-behind devices? */
7965
7966 chunksect = 64*2; /* 64K by default */
7967
7968 /* The array must be an exact multiple of chunksize */
7969 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7970 chunksect >>= 1;
7971
7972 if ((chunksect<<9) < STRIPE_SIZE)
7973 /* array size does not allow a suitable chunk size */
7974 return ERR_PTR(-EINVAL);
7975
7976 mddev->new_level = 5;
7977 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 7978 mddev->new_chunk_sectors = chunksect;
d562b0c4 7979
6995f0b2 7980 ret = setup_conf(mddev);
32cd7cbb 7981 if (!IS_ERR(ret))
394ed8e4
SL
7982 mddev_clear_unsupported_flags(mddev,
7983 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 7984 return ret;
d562b0c4
N
7985}
7986
fd01b88c 7987static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
7988{
7989 int new_layout;
7990
7991 switch (mddev->layout) {
7992 case ALGORITHM_LEFT_ASYMMETRIC_6:
7993 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7994 break;
7995 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7996 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7997 break;
7998 case ALGORITHM_LEFT_SYMMETRIC_6:
7999 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8000 break;
8001 case ALGORITHM_RIGHT_SYMMETRIC_6:
8002 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8003 break;
8004 case ALGORITHM_PARITY_0_6:
8005 new_layout = ALGORITHM_PARITY_0;
8006 break;
8007 case ALGORITHM_PARITY_N:
8008 new_layout = ALGORITHM_PARITY_N;
8009 break;
8010 default:
8011 return ERR_PTR(-EINVAL);
8012 }
8013 mddev->new_level = 5;
8014 mddev->new_layout = new_layout;
8015 mddev->delta_disks = -1;
8016 mddev->raid_disks -= 1;
8017 return setup_conf(mddev);
8018}
8019
fd01b88c 8020static int raid5_check_reshape(struct mddev *mddev)
b3546035 8021{
88ce4930
N
8022 /* For a 2-drive array, the layout and chunk size can be changed
8023 * immediately as not restriping is needed.
8024 * For larger arrays we record the new value - after validation
8025 * to be used by a reshape pass.
b3546035 8026 */
d1688a6d 8027 struct r5conf *conf = mddev->private;
597a711b 8028 int new_chunk = mddev->new_chunk_sectors;
b3546035 8029
597a711b 8030 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
8031 return -EINVAL;
8032 if (new_chunk > 0) {
0ba459d2 8033 if (!is_power_of_2(new_chunk))
b3546035 8034 return -EINVAL;
597a711b 8035 if (new_chunk < (PAGE_SIZE>>9))
b3546035 8036 return -EINVAL;
597a711b 8037 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
8038 /* not factor of array size */
8039 return -EINVAL;
8040 }
8041
8042 /* They look valid */
8043
88ce4930 8044 if (mddev->raid_disks == 2) {
597a711b
N
8045 /* can make the change immediately */
8046 if (mddev->new_layout >= 0) {
8047 conf->algorithm = mddev->new_layout;
8048 mddev->layout = mddev->new_layout;
88ce4930
N
8049 }
8050 if (new_chunk > 0) {
597a711b
N
8051 conf->chunk_sectors = new_chunk ;
8052 mddev->chunk_sectors = new_chunk;
88ce4930 8053 }
2953079c 8054 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
88ce4930 8055 md_wakeup_thread(mddev->thread);
b3546035 8056 }
50ac168a 8057 return check_reshape(mddev);
88ce4930
N
8058}
8059
fd01b88c 8060static int raid6_check_reshape(struct mddev *mddev)
88ce4930 8061{
597a711b 8062 int new_chunk = mddev->new_chunk_sectors;
50ac168a 8063
597a711b 8064 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 8065 return -EINVAL;
b3546035 8066 if (new_chunk > 0) {
0ba459d2 8067 if (!is_power_of_2(new_chunk))
88ce4930 8068 return -EINVAL;
597a711b 8069 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 8070 return -EINVAL;
597a711b 8071 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
8072 /* not factor of array size */
8073 return -EINVAL;
b3546035 8074 }
88ce4930
N
8075
8076 /* They look valid */
50ac168a 8077 return check_reshape(mddev);
b3546035
N
8078}
8079
fd01b88c 8080static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
8081{
8082 /* raid5 can take over:
f1b29bca 8083 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
8084 * raid1 - if there are two drives. We need to know the chunk size
8085 * raid4 - trivial - just use a raid4 layout.
8086 * raid6 - Providing it is a *_6 layout
d562b0c4 8087 */
f1b29bca
DW
8088 if (mddev->level == 0)
8089 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
8090 if (mddev->level == 1)
8091 return raid5_takeover_raid1(mddev);
e9d4758f
N
8092 if (mddev->level == 4) {
8093 mddev->new_layout = ALGORITHM_PARITY_N;
8094 mddev->new_level = 5;
8095 return setup_conf(mddev);
8096 }
fc9739c6
N
8097 if (mddev->level == 6)
8098 return raid5_takeover_raid6(mddev);
d562b0c4
N
8099
8100 return ERR_PTR(-EINVAL);
8101}
8102
fd01b88c 8103static void *raid4_takeover(struct mddev *mddev)
a78d38a1 8104{
f1b29bca
DW
8105 /* raid4 can take over:
8106 * raid0 - if there is only one strip zone
8107 * raid5 - if layout is right
a78d38a1 8108 */
f1b29bca
DW
8109 if (mddev->level == 0)
8110 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
8111 if (mddev->level == 5 &&
8112 mddev->layout == ALGORITHM_PARITY_N) {
8113 mddev->new_layout = 0;
8114 mddev->new_level = 4;
8115 return setup_conf(mddev);
8116 }
8117 return ERR_PTR(-EINVAL);
8118}
d562b0c4 8119
84fc4b56 8120static struct md_personality raid5_personality;
245f46c2 8121
fd01b88c 8122static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
8123{
8124 /* Currently can only take over a raid5. We map the
8125 * personality to an equivalent raid6 personality
8126 * with the Q block at the end.
8127 */
8128 int new_layout;
8129
8130 if (mddev->pers != &raid5_personality)
8131 return ERR_PTR(-EINVAL);
8132 if (mddev->degraded > 1)
8133 return ERR_PTR(-EINVAL);
8134 if (mddev->raid_disks > 253)
8135 return ERR_PTR(-EINVAL);
8136 if (mddev->raid_disks < 3)
8137 return ERR_PTR(-EINVAL);
8138
8139 switch (mddev->layout) {
8140 case ALGORITHM_LEFT_ASYMMETRIC:
8141 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8142 break;
8143 case ALGORITHM_RIGHT_ASYMMETRIC:
8144 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8145 break;
8146 case ALGORITHM_LEFT_SYMMETRIC:
8147 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8148 break;
8149 case ALGORITHM_RIGHT_SYMMETRIC:
8150 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8151 break;
8152 case ALGORITHM_PARITY_0:
8153 new_layout = ALGORITHM_PARITY_0_6;
8154 break;
8155 case ALGORITHM_PARITY_N:
8156 new_layout = ALGORITHM_PARITY_N;
8157 break;
8158 default:
8159 return ERR_PTR(-EINVAL);
8160 }
8161 mddev->new_level = 6;
8162 mddev->new_layout = new_layout;
8163 mddev->delta_disks = 1;
8164 mddev->raid_disks += 1;
8165 return setup_conf(mddev);
8166}
8167
84fc4b56 8168static struct md_personality raid6_personality =
16a53ecc
N
8169{
8170 .name = "raid6",
8171 .level = 6,
8172 .owner = THIS_MODULE,
849674e4
SL
8173 .make_request = raid5_make_request,
8174 .run = raid5_run,
afa0f557 8175 .free = raid5_free,
849674e4
SL
8176 .status = raid5_status,
8177 .error_handler = raid5_error,
16a53ecc
N
8178 .hot_add_disk = raid5_add_disk,
8179 .hot_remove_disk= raid5_remove_disk,
8180 .spare_active = raid5_spare_active,
849674e4 8181 .sync_request = raid5_sync_request,
16a53ecc 8182 .resize = raid5_resize,
80c3a6ce 8183 .size = raid5_size,
50ac168a 8184 .check_reshape = raid6_check_reshape,
f416885e 8185 .start_reshape = raid5_start_reshape,
cea9c228 8186 .finish_reshape = raid5_finish_reshape,
16a53ecc 8187 .quiesce = raid5_quiesce,
245f46c2 8188 .takeover = raid6_takeover,
5c675f83 8189 .congested = raid5_congested,
16a53ecc 8190};
84fc4b56 8191static struct md_personality raid5_personality =
1da177e4
LT
8192{
8193 .name = "raid5",
2604b703 8194 .level = 5,
1da177e4 8195 .owner = THIS_MODULE,
849674e4
SL
8196 .make_request = raid5_make_request,
8197 .run = raid5_run,
afa0f557 8198 .free = raid5_free,
849674e4
SL
8199 .status = raid5_status,
8200 .error_handler = raid5_error,
1da177e4
LT
8201 .hot_add_disk = raid5_add_disk,
8202 .hot_remove_disk= raid5_remove_disk,
8203 .spare_active = raid5_spare_active,
849674e4 8204 .sync_request = raid5_sync_request,
1da177e4 8205 .resize = raid5_resize,
80c3a6ce 8206 .size = raid5_size,
63c70c4f
N
8207 .check_reshape = raid5_check_reshape,
8208 .start_reshape = raid5_start_reshape,
cea9c228 8209 .finish_reshape = raid5_finish_reshape,
72626685 8210 .quiesce = raid5_quiesce,
d562b0c4 8211 .takeover = raid5_takeover,
5c675f83 8212 .congested = raid5_congested,
1da177e4
LT
8213};
8214
84fc4b56 8215static struct md_personality raid4_personality =
1da177e4 8216{
2604b703
N
8217 .name = "raid4",
8218 .level = 4,
8219 .owner = THIS_MODULE,
849674e4
SL
8220 .make_request = raid5_make_request,
8221 .run = raid5_run,
afa0f557 8222 .free = raid5_free,
849674e4
SL
8223 .status = raid5_status,
8224 .error_handler = raid5_error,
2604b703
N
8225 .hot_add_disk = raid5_add_disk,
8226 .hot_remove_disk= raid5_remove_disk,
8227 .spare_active = raid5_spare_active,
849674e4 8228 .sync_request = raid5_sync_request,
2604b703 8229 .resize = raid5_resize,
80c3a6ce 8230 .size = raid5_size,
3d37890b
N
8231 .check_reshape = raid5_check_reshape,
8232 .start_reshape = raid5_start_reshape,
cea9c228 8233 .finish_reshape = raid5_finish_reshape,
2604b703 8234 .quiesce = raid5_quiesce,
a78d38a1 8235 .takeover = raid4_takeover,
5c675f83 8236 .congested = raid5_congested,
2604b703
N
8237};
8238
8239static int __init raid5_init(void)
8240{
29c6d1bb
SAS
8241 int ret;
8242
851c30c9
SL
8243 raid5_wq = alloc_workqueue("raid5wq",
8244 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8245 if (!raid5_wq)
8246 return -ENOMEM;
29c6d1bb
SAS
8247
8248 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8249 "md/raid5:prepare",
8250 raid456_cpu_up_prepare,
8251 raid456_cpu_dead);
8252 if (ret) {
8253 destroy_workqueue(raid5_wq);
8254 return ret;
8255 }
16a53ecc 8256 register_md_personality(&raid6_personality);
2604b703
N
8257 register_md_personality(&raid5_personality);
8258 register_md_personality(&raid4_personality);
8259 return 0;
1da177e4
LT
8260}
8261
2604b703 8262static void raid5_exit(void)
1da177e4 8263{
16a53ecc 8264 unregister_md_personality(&raid6_personality);
2604b703
N
8265 unregister_md_personality(&raid5_personality);
8266 unregister_md_personality(&raid4_personality);
29c6d1bb 8267 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
851c30c9 8268 destroy_workqueue(raid5_wq);
1da177e4
LT
8269}
8270
8271module_init(raid5_init);
8272module_exit(raid5_exit);
8273MODULE_LICENSE("GPL");
0efb9e61 8274MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 8275MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
8276MODULE_ALIAS("md-raid5");
8277MODULE_ALIAS("md-raid4");
2604b703
N
8278MODULE_ALIAS("md-level-5");
8279MODULE_ALIAS("md-level-4");
16a53ecc
N
8280MODULE_ALIAS("md-personality-8"); /* RAID6 */
8281MODULE_ALIAS("md-raid6");
8282MODULE_ALIAS("md-level-6");
8283
8284/* This used to be two separate modules, they were: */
8285MODULE_ALIAS("raid5");
8286MODULE_ALIAS("raid6");