]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/media/dvb/frontends/cx24123.c
V4L/DVB (4027): Fixes after dvb_tuner_ops-conversion
[mirror_ubuntu-hirsute-kernel.git] / drivers / media / dvb / frontends / cx24123.c
CommitLineData
b79cb653
ST
1/*
2 Conexant cx24123/cx24109 - DVB QPSK Satellite demod/tuner driver
3
4 Copyright (C) 2005 Steven Toth <stoth@hauppauge.com>
5
1c956a3a
VC
6 Support for KWorld DVB-S 100 by Vadim Catana <skystar@moldova.cc>
7
b79cb653
ST
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21*/
22
23#include <linux/slab.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/moduleparam.h>
27#include <linux/init.h>
28
29#include "dvb_frontend.h"
30#include "cx24123.h"
31
a74b51fc
VC
32#define XTAL 10111000
33
70047f9c 34static int force_band;
b79cb653
ST
35static int debug;
36#define dprintk(args...) \
37 do { \
38 if (debug) printk (KERN_DEBUG "cx24123: " args); \
39 } while (0)
40
e3b152bc
JS
41struct cx24123_state
42{
b79cb653
ST
43 struct i2c_adapter* i2c;
44 struct dvb_frontend_ops ops;
45 const struct cx24123_config* config;
46
47 struct dvb_frontend frontend;
48
49 u32 lastber;
50 u16 snr;
b79cb653
ST
51
52 /* Some PLL specifics for tuning */
53 u32 VCAarg;
54 u32 VGAarg;
55 u32 bandselectarg;
56 u32 pllarg;
a74b51fc 57 u32 FILTune;
b79cb653
ST
58
59 /* The Demod/Tuner can't easily provide these, we cache them */
60 u32 currentfreq;
61 u32 currentsymbolrate;
62};
63
e3b152bc
JS
64/* Various tuner defaults need to be established for a given symbol rate Sps */
65static struct
66{
67 u32 symbolrate_low;
68 u32 symbolrate_high;
e3b152bc
JS
69 u32 VCAprogdata;
70 u32 VGAprogdata;
a74b51fc 71 u32 FILTune;
e3b152bc
JS
72} cx24123_AGC_vals[] =
73{
74 {
75 .symbolrate_low = 1000000,
76 .symbolrate_high = 4999999,
a74b51fc
VC
77 /* the specs recommend other values for VGA offsets,
78 but tests show they are wrong */
0e4558ab
YP
79 .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0,
80 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x07,
81 .FILTune = 0x27f /* 0.41 V */
e3b152bc
JS
82 },
83 {
84 .symbolrate_low = 5000000,
85 .symbolrate_high = 14999999,
0e4558ab
YP
86 .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0,
87 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x1f,
a74b51fc 88 .FILTune = 0x317 /* 0.90 V */
e3b152bc
JS
89 },
90 {
91 .symbolrate_low = 15000000,
92 .symbolrate_high = 45000000,
0e4558ab
YP
93 .VGAprogdata = (1 << 19) | (0x100 << 9) | 0x180,
94 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x3f,
95 .FILTune = 0x145 /* 2.70 V */
e3b152bc
JS
96 },
97};
98
99/*
100 * Various tuner defaults need to be established for a given frequency kHz.
101 * fixme: The bounds on the bands do not match the doc in real life.
102 * fixme: Some of them have been moved, other might need adjustment.
103 */
104static struct
105{
106 u32 freq_low;
107 u32 freq_high;
e3b152bc 108 u32 VCOdivider;
e3b152bc
JS
109 u32 progdata;
110} cx24123_bandselect_vals[] =
111{
70047f9c 112 /* band 1 */
e3b152bc
JS
113 {
114 .freq_low = 950000,
e3b152bc 115 .freq_high = 1074999,
e3b152bc 116 .VCOdivider = 4,
70047f9c 117 .progdata = (0 << 19) | (0 << 9) | 0x40,
e3b152bc 118 },
70047f9c
YP
119
120 /* band 2 */
e3b152bc
JS
121 {
122 .freq_low = 1075000,
70047f9c
YP
123 .freq_high = 1177999,
124 .VCOdivider = 4,
125 .progdata = (0 << 19) | (0 << 9) | 0x80,
e3b152bc 126 },
70047f9c
YP
127
128 /* band 3 */
e3b152bc 129 {
70047f9c
YP
130 .freq_low = 1178000,
131 .freq_high = 1295999,
e3b152bc 132 .VCOdivider = 2,
70047f9c 133 .progdata = (0 << 19) | (1 << 9) | 0x01,
e3b152bc 134 },
70047f9c
YP
135
136 /* band 4 */
e3b152bc 137 {
70047f9c
YP
138 .freq_low = 1296000,
139 .freq_high = 1431999,
e3b152bc 140 .VCOdivider = 2,
70047f9c 141 .progdata = (0 << 19) | (1 << 9) | 0x02,
e3b152bc 142 },
70047f9c
YP
143
144 /* band 5 */
e3b152bc 145 {
70047f9c
YP
146 .freq_low = 1432000,
147 .freq_high = 1575999,
e3b152bc 148 .VCOdivider = 2,
70047f9c 149 .progdata = (0 << 19) | (1 << 9) | 0x04,
e3b152bc 150 },
70047f9c
YP
151
152 /* band 6 */
e3b152bc 153 {
70047f9c 154 .freq_low = 1576000,
e3b152bc 155 .freq_high = 1717999,
e3b152bc 156 .VCOdivider = 2,
70047f9c 157 .progdata = (0 << 19) | (1 << 9) | 0x08,
e3b152bc 158 },
70047f9c
YP
159
160 /* band 7 */
e3b152bc
JS
161 {
162 .freq_low = 1718000,
163 .freq_high = 1855999,
e3b152bc 164 .VCOdivider = 2,
70047f9c 165 .progdata = (0 << 19) | (1 << 9) | 0x10,
e3b152bc 166 },
70047f9c
YP
167
168 /* band 8 */
e3b152bc
JS
169 {
170 .freq_low = 1856000,
171 .freq_high = 2035999,
e3b152bc 172 .VCOdivider = 2,
70047f9c 173 .progdata = (0 << 19) | (1 << 9) | 0x20,
e3b152bc 174 },
70047f9c
YP
175
176 /* band 9 */
e3b152bc
JS
177 {
178 .freq_low = 2036000,
70047f9c 179 .freq_high = 2150000,
e3b152bc 180 .VCOdivider = 2,
70047f9c 181 .progdata = (0 << 19) | (1 << 9) | 0x40,
e3b152bc
JS
182 },
183};
184
b79cb653
ST
185static struct {
186 u8 reg;
187 u8 data;
188} cx24123_regdata[] =
189{
190 {0x00, 0x03}, /* Reset system */
191 {0x00, 0x00}, /* Clear reset */
0e4558ab
YP
192 {0x03, 0x07}, /* QPSK, DVB, Auto Acquisition (default) */
193 {0x04, 0x10}, /* MPEG */
194 {0x05, 0x04}, /* MPEG */
195 {0x06, 0x31}, /* MPEG (default) */
196 {0x0b, 0x00}, /* Freq search start point (default) */
197 {0x0c, 0x00}, /* Demodulator sample gain (default) */
198 {0x0d, 0x02}, /* Frequency search range = Fsymbol / 4 (default) */
199 {0x0e, 0x03}, /* Default non-inverted, FEC 3/4 (default) */
200 {0x0f, 0xfe}, /* FEC search mask (all supported codes) */
201 {0x10, 0x01}, /* Default search inversion, no repeat (default) */
202 {0x16, 0x00}, /* Enable reading of frequency */
203 {0x17, 0x01}, /* Enable EsNO Ready Counter */
204 {0x1c, 0x80}, /* Enable error counter */
205 {0x20, 0x00}, /* Tuner burst clock rate = 500KHz */
206 {0x21, 0x15}, /* Tuner burst mode, word length = 0x15 */
207 {0x28, 0x00}, /* Enable FILTERV with positive pol., DiSEqC 2.x off */
208 {0x29, 0x00}, /* DiSEqC LNB_DC off */
209 {0x2a, 0xb0}, /* DiSEqC Parameters (default) */
210 {0x2b, 0x73}, /* DiSEqC Tone Frequency (default) */
211 {0x2c, 0x00}, /* DiSEqC Message (0x2c - 0x31) */
b79cb653
ST
212 {0x2d, 0x00},
213 {0x2e, 0x00},
214 {0x2f, 0x00},
215 {0x30, 0x00},
216 {0x31, 0x00},
0e4558ab
YP
217 {0x32, 0x8c}, /* DiSEqC Parameters (default) */
218 {0x33, 0x00}, /* Interrupts off (0x33 - 0x34) */
b79cb653 219 {0x34, 0x00},
0e4558ab
YP
220 {0x35, 0x03}, /* DiSEqC Tone Amplitude (default) */
221 {0x36, 0x02}, /* DiSEqC Parameters (default) */
222 {0x37, 0x3a}, /* DiSEqC Parameters (default) */
223 {0x3a, 0x00}, /* Enable AGC accumulator (for signal strength) */
224 {0x44, 0x00}, /* Constellation (default) */
225 {0x45, 0x00}, /* Symbol count (default) */
226 {0x46, 0x0d}, /* Symbol rate estimator on (default) */
227 {0x56, 0x41}, /* Various (default) */
228 {0x57, 0xff}, /* Error Counter Window (default) */
229 {0x67, 0x83}, /* Non-DCII symbol clock */
b79cb653
ST
230};
231
232static int cx24123_writereg(struct cx24123_state* state, int reg, int data)
233{
234 u8 buf[] = { reg, data };
235 struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
236 int err;
237
caf970e0
MCC
238 if (debug>1)
239 printk("cx24123: %s: write reg 0x%02x, value 0x%02x\n",
240 __FUNCTION__,reg, data);
241
b79cb653
ST
242 if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) {
243 printk("%s: writereg error(err == %i, reg == 0x%02x,"
244 " data == 0x%02x)\n", __FUNCTION__, err, reg, data);
245 return -EREMOTEIO;
246 }
247
248 return 0;
249}
250
b79cb653
ST
251static int cx24123_readreg(struct cx24123_state* state, u8 reg)
252{
253 int ret;
254 u8 b0[] = { reg };
255 u8 b1[] = { 0 };
256 struct i2c_msg msg[] = {
257 { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 },
258 { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 }
259 };
260
261 ret = i2c_transfer(state->i2c, msg, 2);
262
263 if (ret != 2) {
264 printk("%s: reg=0x%x (error=%d)\n", __FUNCTION__, reg, ret);
265 return ret;
266 }
267
caf970e0
MCC
268 if (debug>1)
269 printk("cx24123: read reg 0x%02x, value 0x%02x\n",reg, ret);
270
b79cb653
ST
271 return b1[0];
272}
273
b79cb653
ST
274static int cx24123_set_inversion(struct cx24123_state* state, fe_spectral_inversion_t inversion)
275{
0e4558ab
YP
276 u8 nom_reg = cx24123_readreg(state, 0x0e);
277 u8 auto_reg = cx24123_readreg(state, 0x10);
278
b79cb653
ST
279 switch (inversion) {
280 case INVERSION_OFF:
caf970e0 281 dprintk("%s: inversion off\n",__FUNCTION__);
0e4558ab
YP
282 cx24123_writereg(state, 0x0e, nom_reg & ~0x80);
283 cx24123_writereg(state, 0x10, auto_reg | 0x80);
b79cb653
ST
284 break;
285 case INVERSION_ON:
caf970e0 286 dprintk("%s: inversion on\n",__FUNCTION__);
0e4558ab
YP
287 cx24123_writereg(state, 0x0e, nom_reg | 0x80);
288 cx24123_writereg(state, 0x10, auto_reg | 0x80);
b79cb653
ST
289 break;
290 case INVERSION_AUTO:
caf970e0 291 dprintk("%s: inversion auto\n",__FUNCTION__);
0e4558ab 292 cx24123_writereg(state, 0x10, auto_reg & ~0x80);
b79cb653
ST
293 break;
294 default:
295 return -EINVAL;
296 }
297
298 return 0;
299}
300
301static int cx24123_get_inversion(struct cx24123_state* state, fe_spectral_inversion_t *inversion)
302{
303 u8 val;
304
305 val = cx24123_readreg(state, 0x1b) >> 7;
306
caf970e0
MCC
307 if (val == 0) {
308 dprintk("%s: read inversion off\n",__FUNCTION__);
e3b152bc 309 *inversion = INVERSION_OFF;
caf970e0
MCC
310 } else {
311 dprintk("%s: read inversion on\n",__FUNCTION__);
e3b152bc 312 *inversion = INVERSION_ON;
caf970e0 313 }
b79cb653
ST
314
315 return 0;
316}
317
318static int cx24123_set_fec(struct cx24123_state* state, fe_code_rate_t fec)
319{
0e4558ab
YP
320 u8 nom_reg = cx24123_readreg(state, 0x0e) & ~0x07;
321
b79cb653 322 if ( (fec < FEC_NONE) || (fec > FEC_AUTO) )
e3b152bc 323 fec = FEC_AUTO;
b79cb653 324
b79cb653 325 switch (fec) {
b79cb653 326 case FEC_1_2:
caf970e0 327 dprintk("%s: set FEC to 1/2\n",__FUNCTION__);
0e4558ab
YP
328 cx24123_writereg(state, 0x0e, nom_reg | 0x01);
329 cx24123_writereg(state, 0x0f, 0x02);
330 break;
b79cb653 331 case FEC_2_3:
caf970e0 332 dprintk("%s: set FEC to 2/3\n",__FUNCTION__);
0e4558ab
YP
333 cx24123_writereg(state, 0x0e, nom_reg | 0x02);
334 cx24123_writereg(state, 0x0f, 0x04);
335 break;
b79cb653 336 case FEC_3_4:
caf970e0 337 dprintk("%s: set FEC to 3/4\n",__FUNCTION__);
0e4558ab
YP
338 cx24123_writereg(state, 0x0e, nom_reg | 0x03);
339 cx24123_writereg(state, 0x0f, 0x08);
340 break;
341 case FEC_4_5:
caf970e0 342 dprintk("%s: set FEC to 4/5\n",__FUNCTION__);
0e4558ab
YP
343 cx24123_writereg(state, 0x0e, nom_reg | 0x04);
344 cx24123_writereg(state, 0x0f, 0x10);
345 break;
346 case FEC_5_6:
caf970e0 347 dprintk("%s: set FEC to 5/6\n",__FUNCTION__);
0e4558ab
YP
348 cx24123_writereg(state, 0x0e, nom_reg | 0x05);
349 cx24123_writereg(state, 0x0f, 0x20);
350 break;
351 case FEC_6_7:
352 dprintk("%s: set FEC to 6/7\n",__FUNCTION__);
353 cx24123_writereg(state, 0x0e, nom_reg | 0x06);
354 cx24123_writereg(state, 0x0f, 0x40);
355 break;
356 case FEC_7_8:
357 dprintk("%s: set FEC to 7/8\n",__FUNCTION__);
358 cx24123_writereg(state, 0x0e, nom_reg | 0x07);
359 cx24123_writereg(state, 0x0f, 0x80);
360 break;
b79cb653 361 case FEC_AUTO:
caf970e0 362 dprintk("%s: set FEC to auto\n",__FUNCTION__);
0e4558ab
YP
363 cx24123_writereg(state, 0x0f, 0xfe);
364 break;
b79cb653
ST
365 default:
366 return -EOPNOTSUPP;
367 }
0e4558ab
YP
368
369 return 0;
b79cb653
ST
370}
371
372static int cx24123_get_fec(struct cx24123_state* state, fe_code_rate_t *fec)
373{
e3b152bc 374 int ret;
b79cb653 375
e3b152bc
JS
376 ret = cx24123_readreg (state, 0x1b);
377 if (ret < 0)
378 return ret;
a74b51fc
VC
379 ret = ret & 0x07;
380
381 switch (ret) {
b79cb653 382 case 1:
e3b152bc
JS
383 *fec = FEC_1_2;
384 break;
a74b51fc 385 case 2:
e3b152bc
JS
386 *fec = FEC_2_3;
387 break;
a74b51fc 388 case 3:
e3b152bc
JS
389 *fec = FEC_3_4;
390 break;
a74b51fc 391 case 4:
e3b152bc
JS
392 *fec = FEC_4_5;
393 break;
a74b51fc 394 case 5:
e3b152bc
JS
395 *fec = FEC_5_6;
396 break;
a74b51fc
VC
397 case 6:
398 *fec = FEC_6_7;
399 break;
b79cb653 400 case 7:
e3b152bc
JS
401 *fec = FEC_7_8;
402 break;
b79cb653 403 default:
0e4558ab
YP
404 /* this can happen when there's no lock */
405 *fec = FEC_NONE;
b79cb653
ST
406 }
407
e3b152bc 408 return 0;
b79cb653
ST
409}
410
0e4558ab
YP
411/* Approximation of closest integer of log2(a/b). It actually gives the
412 lowest integer i such that 2^i >= round(a/b) */
413static u32 cx24123_int_log2(u32 a, u32 b)
414{
415 u32 exp, nearest = 0;
416 u32 div = a / b;
417 if(a % b >= b / 2) ++div;
418 if(div < (1 << 31))
419 {
420 for(exp = 1; div > exp; nearest++)
421 exp += exp;
422 }
423 return nearest;
424}
425
b79cb653
ST
426static int cx24123_set_symbolrate(struct cx24123_state* state, u32 srate)
427{
0e4558ab 428 u32 tmp, sample_rate, ratio, sample_gain;
a74b51fc
VC
429 u8 pll_mult;
430
431 /* check if symbol rate is within limits */
432 if ((srate > state->ops.info.symbol_rate_max) ||
433 (srate < state->ops.info.symbol_rate_min))
434 return -EOPNOTSUPP;;
435
436 /* choose the sampling rate high enough for the required operation,
437 while optimizing the power consumed by the demodulator */
438 if (srate < (XTAL*2)/2)
439 pll_mult = 2;
440 else if (srate < (XTAL*3)/2)
441 pll_mult = 3;
442 else if (srate < (XTAL*4)/2)
443 pll_mult = 4;
444 else if (srate < (XTAL*5)/2)
445 pll_mult = 5;
446 else if (srate < (XTAL*6)/2)
447 pll_mult = 6;
448 else if (srate < (XTAL*7)/2)
449 pll_mult = 7;
450 else if (srate < (XTAL*8)/2)
451 pll_mult = 8;
452 else
453 pll_mult = 9;
454
455
456 sample_rate = pll_mult * XTAL;
b79cb653 457
a74b51fc
VC
458 /*
459 SYSSymbolRate[21:0] = (srate << 23) / sample_rate
b79cb653 460
a74b51fc
VC
461 We have to use 32 bit unsigned arithmetic without precision loss.
462 The maximum srate is 45000000 or 0x02AEA540. This number has
463 only 6 clear bits on top, hence we can shift it left only 6 bits
464 at a time. Borrowed from cx24110.c
465 */
b79cb653 466
a74b51fc
VC
467 tmp = srate << 6;
468 ratio = tmp / sample_rate;
469
470 tmp = (tmp % sample_rate) << 6;
471 ratio = (ratio << 6) + (tmp / sample_rate);
472
473 tmp = (tmp % sample_rate) << 6;
474 ratio = (ratio << 6) + (tmp / sample_rate);
475
476 tmp = (tmp % sample_rate) << 5;
477 ratio = (ratio << 5) + (tmp / sample_rate);
478
479
480 cx24123_writereg(state, 0x01, pll_mult * 6);
481
482 cx24123_writereg(state, 0x08, (ratio >> 16) & 0x3f );
483 cx24123_writereg(state, 0x09, (ratio >> 8) & 0xff );
484 cx24123_writereg(state, 0x0a, (ratio ) & 0xff );
485
0e4558ab
YP
486 /* also set the demodulator sample gain */
487 sample_gain = cx24123_int_log2(sample_rate, srate);
488 tmp = cx24123_readreg(state, 0x0c) & ~0xe0;
489 cx24123_writereg(state, 0x0c, tmp | sample_gain << 5);
490
491 dprintk("%s: srate=%d, ratio=0x%08x, sample_rate=%i sample_gain=%d\n", __FUNCTION__, srate, ratio, sample_rate, sample_gain);
b79cb653
ST
492
493 return 0;
494}
495
496/*
497 * Based on the required frequency and symbolrate, the tuner AGC has to be configured
498 * and the correct band selected. Calculate those values
499 */
500static int cx24123_pll_calculate(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
501{
502 struct cx24123_state *state = fe->demodulator_priv;
e3b152bc
JS
503 u32 ndiv = 0, adiv = 0, vco_div = 0;
504 int i = 0;
a74b51fc 505 int pump = 2;
70047f9c
YP
506 int band = 0;
507 int num_bands = sizeof(cx24123_bandselect_vals) / sizeof(cx24123_bandselect_vals[0]);
b79cb653
ST
508
509 /* Defaults for low freq, low rate */
510 state->VCAarg = cx24123_AGC_vals[0].VCAprogdata;
511 state->VGAarg = cx24123_AGC_vals[0].VGAprogdata;
512 state->bandselectarg = cx24123_bandselect_vals[0].progdata;
513 vco_div = cx24123_bandselect_vals[0].VCOdivider;
514
a74b51fc 515 /* For the given symbol rate, determine the VCA, VGA and FILTUNE programming bits */
e3b152bc 516 for (i = 0; i < sizeof(cx24123_AGC_vals) / sizeof(cx24123_AGC_vals[0]); i++)
b79cb653
ST
517 {
518 if ((cx24123_AGC_vals[i].symbolrate_low <= p->u.qpsk.symbol_rate) &&
a74b51fc 519 (cx24123_AGC_vals[i].symbolrate_high >= p->u.qpsk.symbol_rate) ) {
b79cb653
ST
520 state->VCAarg = cx24123_AGC_vals[i].VCAprogdata;
521 state->VGAarg = cx24123_AGC_vals[i].VGAprogdata;
a74b51fc 522 state->FILTune = cx24123_AGC_vals[i].FILTune;
b79cb653
ST
523 }
524 }
525
70047f9c
YP
526 /* determine the band to use */
527 if(force_band < 1 || force_band > num_bands)
b79cb653 528 {
70047f9c
YP
529 for (i = 0; i < num_bands; i++)
530 {
531 if ((cx24123_bandselect_vals[i].freq_low <= p->frequency) &&
532 (cx24123_bandselect_vals[i].freq_high >= p->frequency) )
533 band = i;
b79cb653
ST
534 }
535 }
70047f9c
YP
536 else
537 band = force_band - 1;
538
539 state->bandselectarg = cx24123_bandselect_vals[band].progdata;
540 vco_div = cx24123_bandselect_vals[band].VCOdivider;
541
542 /* determine the charge pump current */
543 if ( p->frequency < (cx24123_bandselect_vals[band].freq_low + cx24123_bandselect_vals[band].freq_high)/2 )
544 pump = 0x01;
545 else
546 pump = 0x02;
b79cb653
ST
547
548 /* Determine the N/A dividers for the requested lband freq (in kHz). */
a74b51fc
VC
549 /* Note: the reference divider R=10, frequency is in KHz, XTAL is in Hz */
550 ndiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) / 32) & 0x1ff;
551 adiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) % 32) & 0x1f;
b79cb653
ST
552
553 if (adiv == 0)
a74b51fc 554 ndiv++;
b79cb653 555
a74b51fc
VC
556 /* control bits 11, refdiv 11, charge pump polarity 1, charge pump current, ndiv, adiv */
557 state->pllarg = (3 << 19) | (3 << 17) | (1 << 16) | (pump << 14) | (ndiv << 5) | adiv;
b79cb653
ST
558
559 return 0;
560}
561
562/*
563 * Tuner data is 21 bits long, must be left-aligned in data.
564 * Tuner cx24109 is written through a dedicated 3wire interface on the demod chip.
565 */
566static int cx24123_pll_writereg(struct dvb_frontend* fe, struct dvb_frontend_parameters *p, u32 data)
567{
568 struct cx24123_state *state = fe->demodulator_priv;
0144f314 569 unsigned long timeout;
b79cb653 570
caf970e0
MCC
571 dprintk("%s: pll writereg called, data=0x%08x\n",__FUNCTION__,data);
572
b79cb653
ST
573 /* align the 21 bytes into to bit23 boundary */
574 data = data << 3;
575
576 /* Reset the demod pll word length to 0x15 bits */
577 cx24123_writereg(state, 0x21, 0x15);
578
b79cb653 579 /* write the msb 8 bits, wait for the send to be completed */
0144f314 580 timeout = jiffies + msecs_to_jiffies(40);
e3b152bc 581 cx24123_writereg(state, 0x22, (data >> 16) & 0xff);
0144f314
ST
582 while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
583 if (time_after(jiffies, timeout)) {
584 printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
b79cb653
ST
585 return -EREMOTEIO;
586 }
0144f314 587 msleep(10);
b79cb653
ST
588 }
589
b79cb653 590 /* send another 8 bytes, wait for the send to be completed */
0144f314 591 timeout = jiffies + msecs_to_jiffies(40);
b79cb653 592 cx24123_writereg(state, 0x22, (data>>8) & 0xff );
0144f314
ST
593 while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
594 if (time_after(jiffies, timeout)) {
595 printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
b79cb653
ST
596 return -EREMOTEIO;
597 }
0144f314 598 msleep(10);
b79cb653
ST
599 }
600
b79cb653 601 /* send the lower 5 bits of this byte, padded with 3 LBB, wait for the send to be completed */
0144f314 602 timeout = jiffies + msecs_to_jiffies(40);
b79cb653 603 cx24123_writereg(state, 0x22, (data) & 0xff );
0144f314
ST
604 while ((cx24123_readreg(state, 0x20) & 0x80)) {
605 if (time_after(jiffies, timeout)) {
606 printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
b79cb653
ST
607 return -EREMOTEIO;
608 }
0144f314 609 msleep(10);
b79cb653
ST
610 }
611
612 /* Trigger the demod to configure the tuner */
613 cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) | 2);
614 cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) & 0xfd);
615
616 return 0;
617}
618
619static int cx24123_pll_tune(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
620{
621 struct cx24123_state *state = fe->demodulator_priv;
a74b51fc
VC
622 u8 val;
623
624 dprintk("frequency=%i\n", p->frequency);
b79cb653 625
e3b152bc 626 if (cx24123_pll_calculate(fe, p) != 0) {
b79cb653
ST
627 printk("%s: cx24123_pll_calcutate failed\n",__FUNCTION__);
628 return -EINVAL;
629 }
630
631 /* Write the new VCO/VGA */
632 cx24123_pll_writereg(fe, p, state->VCAarg);
633 cx24123_pll_writereg(fe, p, state->VGAarg);
634
635 /* Write the new bandselect and pll args */
636 cx24123_pll_writereg(fe, p, state->bandselectarg);
637 cx24123_pll_writereg(fe, p, state->pllarg);
638
a74b51fc
VC
639 /* set the FILTUNE voltage */
640 val = cx24123_readreg(state, 0x28) & ~0x3;
641 cx24123_writereg(state, 0x27, state->FILTune >> 2);
642 cx24123_writereg(state, 0x28, val | (state->FILTune & 0x3));
643
caf970e0
MCC
644 dprintk("%s: pll tune VCA=%d, band=%d, pll=%d\n",__FUNCTION__,state->VCAarg,
645 state->bandselectarg,state->pllarg);
646
b79cb653
ST
647 return 0;
648}
649
650static int cx24123_initfe(struct dvb_frontend* fe)
651{
652 struct cx24123_state *state = fe->demodulator_priv;
653 int i;
654
caf970e0
MCC
655 dprintk("%s: init frontend\n",__FUNCTION__);
656
b79cb653 657 /* Configure the demod to a good set of defaults */
e3b152bc 658 for (i = 0; i < sizeof(cx24123_regdata) / sizeof(cx24123_regdata[0]); i++)
b79cb653
ST
659 cx24123_writereg(state, cx24123_regdata[i].reg, cx24123_regdata[i].data);
660
b79cb653
ST
661 return 0;
662}
663
664static int cx24123_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage)
665{
666 struct cx24123_state *state = fe->demodulator_priv;
667 u8 val;
668
cd20ca9f 669 val = cx24123_readreg(state, 0x29) & ~0x40;
1c956a3a 670
cd20ca9f
AQ
671 switch (voltage) {
672 case SEC_VOLTAGE_13:
673 dprintk("%s: setting voltage 13V\n", __FUNCTION__);
674 return cx24123_writereg(state, 0x29, val | 0x80);
675 case SEC_VOLTAGE_18:
676 dprintk("%s: setting voltage 18V\n", __FUNCTION__);
677 return cx24123_writereg(state, 0x29, val & 0x7f);
678 default:
679 return -EINVAL;
680 };
1c956a3a
VC
681
682 return 0;
b79cb653
ST
683}
684
dce1dfc2
YP
685/* wait for diseqc queue to become ready (or timeout) */
686static void cx24123_wait_for_diseqc(struct cx24123_state *state)
687{
688 unsigned long timeout = jiffies + msecs_to_jiffies(200);
689 while (!(cx24123_readreg(state, 0x29) & 0x40)) {
690 if(time_after(jiffies, timeout)) {
691 printk("%s: diseqc queue not ready, command may be lost.\n", __FUNCTION__);
692 break;
693 }
694 msleep(10);
695 }
696}
697
a74b51fc 698static int cx24123_send_diseqc_msg(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd *cmd)
b79cb653 699{
a74b51fc 700 struct cx24123_state *state = fe->demodulator_priv;
cd20ca9f 701 int i, val, tone;
a74b51fc
VC
702
703 dprintk("%s:\n",__FUNCTION__);
b79cb653 704
cd20ca9f
AQ
705 /* stop continuous tone if enabled */
706 tone = cx24123_readreg(state, 0x29);
707 if (tone & 0x10)
708 cx24123_writereg(state, 0x29, tone & ~0x50);
a74b51fc 709
dce1dfc2
YP
710 /* wait for diseqc queue ready */
711 cx24123_wait_for_diseqc(state);
712
a74b51fc 713 /* select tone mode */
cd20ca9f 714 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb);
a74b51fc
VC
715
716 for (i = 0; i < cmd->msg_len; i++)
717 cx24123_writereg(state, 0x2C + i, cmd->msg[i]);
718
719 val = cx24123_readreg(state, 0x29);
720 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40) | ((cmd->msg_len-3) & 3));
721
dce1dfc2
YP
722 /* wait for diseqc message to finish sending */
723 cx24123_wait_for_diseqc(state);
a74b51fc 724
cd20ca9f
AQ
725 /* restart continuous tone if enabled */
726 if (tone & 0x10) {
727 cx24123_writereg(state, 0x29, tone & ~0x40);
728 }
729
a74b51fc
VC
730 return 0;
731}
732
733static int cx24123_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t burst)
734{
735 struct cx24123_state *state = fe->demodulator_priv;
cd20ca9f 736 int val, tone;
a74b51fc
VC
737
738 dprintk("%s:\n", __FUNCTION__);
739
cd20ca9f
AQ
740 /* stop continuous tone if enabled */
741 tone = cx24123_readreg(state, 0x29);
742 if (tone & 0x10)
743 cx24123_writereg(state, 0x29, tone & ~0x50);
a74b51fc 744
cd20ca9f 745 /* wait for diseqc queue ready */
dce1dfc2
YP
746 cx24123_wait_for_diseqc(state);
747
a74b51fc 748 /* select tone mode */
cd20ca9f
AQ
749 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) | 0x4);
750 msleep(30);
a74b51fc 751 val = cx24123_readreg(state, 0x29);
a74b51fc
VC
752 if (burst == SEC_MINI_A)
753 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x00));
754 else if (burst == SEC_MINI_B)
755 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x08));
756 else
757 return -EINVAL;
758
dce1dfc2 759 cx24123_wait_for_diseqc(state);
cd20ca9f 760 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb);
a74b51fc 761
cd20ca9f
AQ
762 /* restart continuous tone if enabled */
763 if (tone & 0x10) {
764 cx24123_writereg(state, 0x29, tone & ~0x40);
765 }
a74b51fc 766 return 0;
b79cb653
ST
767}
768
769static int cx24123_read_status(struct dvb_frontend* fe, fe_status_t* status)
770{
771 struct cx24123_state *state = fe->demodulator_priv;
772
773 int sync = cx24123_readreg(state, 0x14);
774 int lock = cx24123_readreg(state, 0x20);
775
776 *status = 0;
777 if (lock & 0x01)
a74b51fc
VC
778 *status |= FE_HAS_SIGNAL;
779 if (sync & 0x02)
780 *status |= FE_HAS_CARRIER;
b79cb653
ST
781 if (sync & 0x04)
782 *status |= FE_HAS_VITERBI;
783 if (sync & 0x08)
a74b51fc 784 *status |= FE_HAS_SYNC;
b79cb653 785 if (sync & 0x80)
a74b51fc 786 *status |= FE_HAS_LOCK;
b79cb653
ST
787
788 return 0;
789}
790
791/*
792 * Configured to return the measurement of errors in blocks, because no UCBLOCKS value
793 * is available, so this value doubles up to satisfy both measurements
794 */
795static int cx24123_read_ber(struct dvb_frontend* fe, u32* ber)
796{
797 struct cx24123_state *state = fe->demodulator_priv;
798
799 state->lastber =
800 ((cx24123_readreg(state, 0x1c) & 0x3f) << 16) |
801 (cx24123_readreg(state, 0x1d) << 8 |
802 cx24123_readreg(state, 0x1e));
803
804 /* Do the signal quality processing here, it's derived from the BER. */
805 /* Scale the BER from a 24bit to a SNR 16 bit where higher = better */
806 if (state->lastber < 5000)
807 state->snr = 655*100;
808 else if ( (state->lastber >= 5000) && (state->lastber < 55000) )
809 state->snr = 655*90;
810 else if ( (state->lastber >= 55000) && (state->lastber < 150000) )
811 state->snr = 655*80;
812 else if ( (state->lastber >= 150000) && (state->lastber < 250000) )
813 state->snr = 655*70;
814 else if ( (state->lastber >= 250000) && (state->lastber < 450000) )
815 state->snr = 655*65;
816 else
817 state->snr = 0;
818
caf970e0
MCC
819 dprintk("%s: BER = %d, S/N index = %d\n",__FUNCTION__,state->lastber, state->snr);
820
b79cb653
ST
821 *ber = state->lastber;
822
823 return 0;
824}
825
826static int cx24123_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
827{
828 struct cx24123_state *state = fe->demodulator_priv;
829 *signal_strength = cx24123_readreg(state, 0x3b) << 8; /* larger = better */
830
caf970e0
MCC
831 dprintk("%s: Signal strength = %d\n",__FUNCTION__,*signal_strength);
832
b79cb653
ST
833 return 0;
834}
835
836static int cx24123_read_snr(struct dvb_frontend* fe, u16* snr)
837{
838 struct cx24123_state *state = fe->demodulator_priv;
839 *snr = state->snr;
840
caf970e0
MCC
841 dprintk("%s: read S/N index = %d\n",__FUNCTION__,*snr);
842
b79cb653
ST
843 return 0;
844}
845
846static int cx24123_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
847{
848 struct cx24123_state *state = fe->demodulator_priv;
849 *ucblocks = state->lastber;
850
caf970e0
MCC
851 dprintk("%s: ucblocks (ber) = %d\n",__FUNCTION__,*ucblocks);
852
b79cb653
ST
853 return 0;
854}
855
856static int cx24123_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
857{
858 struct cx24123_state *state = fe->demodulator_priv;
859
caf970e0
MCC
860 dprintk("%s: set_frontend\n",__FUNCTION__);
861
b79cb653
ST
862 if (state->config->set_ts_params)
863 state->config->set_ts_params(fe, 0);
864
865 state->currentfreq=p->frequency;
e3b152bc 866 state->currentsymbolrate = p->u.qpsk.symbol_rate;
b79cb653
ST
867
868 cx24123_set_inversion(state, p->inversion);
869 cx24123_set_fec(state, p->u.qpsk.fec_inner);
870 cx24123_set_symbolrate(state, p->u.qpsk.symbol_rate);
871 cx24123_pll_tune(fe, p);
872
873 /* Enable automatic aquisition and reset cycle */
e3b152bc 874 cx24123_writereg(state, 0x03, (cx24123_readreg(state, 0x03) | 0x07));
b79cb653
ST
875 cx24123_writereg(state, 0x00, 0x10);
876 cx24123_writereg(state, 0x00, 0);
877
878 return 0;
879}
880
881static int cx24123_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
882{
883 struct cx24123_state *state = fe->demodulator_priv;
884
caf970e0
MCC
885 dprintk("%s: get_frontend\n",__FUNCTION__);
886
b79cb653
ST
887 if (cx24123_get_inversion(state, &p->inversion) != 0) {
888 printk("%s: Failed to get inversion status\n",__FUNCTION__);
889 return -EREMOTEIO;
890 }
891 if (cx24123_get_fec(state, &p->u.qpsk.fec_inner) != 0) {
892 printk("%s: Failed to get fec status\n",__FUNCTION__);
893 return -EREMOTEIO;
894 }
895 p->frequency = state->currentfreq;
896 p->u.qpsk.symbol_rate = state->currentsymbolrate;
897
898 return 0;
899}
900
901static int cx24123_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
902{
903 struct cx24123_state *state = fe->demodulator_priv;
904 u8 val;
905
cd20ca9f
AQ
906 /* wait for diseqc queue ready */
907 cx24123_wait_for_diseqc(state);
1c956a3a 908
cd20ca9f 909 val = cx24123_readreg(state, 0x29) & ~0x40;
1c956a3a 910
cd20ca9f
AQ
911 switch (tone) {
912 case SEC_TONE_ON:
913 dprintk("%s: setting tone on\n", __FUNCTION__);
914 return cx24123_writereg(state, 0x29, val | 0x10);
915 case SEC_TONE_OFF:
916 dprintk("%s: setting tone off\n",__FUNCTION__);
917 return cx24123_writereg(state, 0x29, val & 0xef);
918 default:
919 printk("%s: CASE reached default with tone=%d\n", __FUNCTION__, tone);
920 return -EINVAL;
b79cb653 921 }
1c956a3a
VC
922
923 return 0;
b79cb653
ST
924}
925
926static void cx24123_release(struct dvb_frontend* fe)
927{
928 struct cx24123_state* state = fe->demodulator_priv;
929 dprintk("%s\n",__FUNCTION__);
930 kfree(state);
931}
932
933static struct dvb_frontend_ops cx24123_ops;
934
e3b152bc
JS
935struct dvb_frontend* cx24123_attach(const struct cx24123_config* config,
936 struct i2c_adapter* i2c)
b79cb653
ST
937{
938 struct cx24123_state* state = NULL;
939 int ret;
940
941 dprintk("%s\n",__FUNCTION__);
942
943 /* allocate memory for the internal state */
944 state = kmalloc(sizeof(struct cx24123_state), GFP_KERNEL);
945 if (state == NULL) {
946 printk("Unable to kmalloc\n");
947 goto error;
948 }
949
950 /* setup the state */
951 state->config = config;
952 state->i2c = i2c;
953 memcpy(&state->ops, &cx24123_ops, sizeof(struct dvb_frontend_ops));
954 state->lastber = 0;
955 state->snr = 0;
b79cb653
ST
956 state->VCAarg = 0;
957 state->VGAarg = 0;
958 state->bandselectarg = 0;
959 state->pllarg = 0;
960 state->currentfreq = 0;
961 state->currentsymbolrate = 0;
962
963 /* check if the demod is there */
964 ret = cx24123_readreg(state, 0x00);
965 if ((ret != 0xd1) && (ret != 0xe1)) {
966 printk("Version != d1 or e1\n");
967 goto error;
968 }
969
970 /* create dvb_frontend */
971 state->frontend.ops = &state->ops;
972 state->frontend.demodulator_priv = state;
973 return &state->frontend;
974
975error:
976 kfree(state);
977
978 return NULL;
979}
980
981static struct dvb_frontend_ops cx24123_ops = {
982
983 .info = {
984 .name = "Conexant CX24123/CX24109",
985 .type = FE_QPSK,
986 .frequency_min = 950000,
987 .frequency_max = 2150000,
988 .frequency_stepsize = 1011, /* kHz for QPSK frontends */
0e4558ab 989 .frequency_tolerance = 5000,
b79cb653
ST
990 .symbol_rate_min = 1000000,
991 .symbol_rate_max = 45000000,
992 .caps = FE_CAN_INVERSION_AUTO |
993 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
0e4558ab
YP
994 FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
995 FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
b79cb653
ST
996 FE_CAN_QPSK | FE_CAN_RECOVER
997 },
998
999 .release = cx24123_release,
1000
1001 .init = cx24123_initfe,
1002 .set_frontend = cx24123_set_frontend,
1003 .get_frontend = cx24123_get_frontend,
1004 .read_status = cx24123_read_status,
1005 .read_ber = cx24123_read_ber,
1006 .read_signal_strength = cx24123_read_signal_strength,
1007 .read_snr = cx24123_read_snr,
1008 .read_ucblocks = cx24123_read_ucblocks,
1009 .diseqc_send_master_cmd = cx24123_send_diseqc_msg,
a74b51fc 1010 .diseqc_send_burst = cx24123_diseqc_send_burst,
b79cb653
ST
1011 .set_tone = cx24123_set_tone,
1012 .set_voltage = cx24123_set_voltage,
1013};
1014
1015module_param(debug, int, 0644);
caf970e0 1016MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");
b79cb653 1017
70047f9c
YP
1018module_param(force_band, int, 0644);
1019MODULE_PARM_DESC(force_band, "Force a specific band select (1-9, default:off).");
1020
b79cb653
ST
1021MODULE_DESCRIPTION("DVB Frontend module for Conexant cx24123/cx24109 hardware");
1022MODULE_AUTHOR("Steven Toth");
1023MODULE_LICENSE("GPL");
1024
1025EXPORT_SYMBOL(cx24123_attach);