]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/media/dvb/frontends/cx24123.c
V4L/DVB (4011): Fix PLL refactoring breakage to WinTV NOVA T USB 2 driver
[mirror_ubuntu-artful-kernel.git] / drivers / media / dvb / frontends / cx24123.c
CommitLineData
b79cb653
ST
1/*
2 Conexant cx24123/cx24109 - DVB QPSK Satellite demod/tuner driver
3
4 Copyright (C) 2005 Steven Toth <stoth@hauppauge.com>
5
1c956a3a
VC
6 Support for KWorld DVB-S 100 by Vadim Catana <skystar@moldova.cc>
7
b79cb653
ST
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21*/
22
23#include <linux/slab.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/moduleparam.h>
27#include <linux/init.h>
28
29#include "dvb_frontend.h"
30#include "cx24123.h"
31
a74b51fc
VC
32#define XTAL 10111000
33
70047f9c 34static int force_band;
b79cb653
ST
35static int debug;
36#define dprintk(args...) \
37 do { \
38 if (debug) printk (KERN_DEBUG "cx24123: " args); \
39 } while (0)
40
e3b152bc
JS
41struct cx24123_state
42{
b79cb653
ST
43 struct i2c_adapter* i2c;
44 struct dvb_frontend_ops ops;
45 const struct cx24123_config* config;
46
47 struct dvb_frontend frontend;
48
49 u32 lastber;
50 u16 snr;
51 u8 lnbreg;
52
53 /* Some PLL specifics for tuning */
54 u32 VCAarg;
55 u32 VGAarg;
56 u32 bandselectarg;
57 u32 pllarg;
a74b51fc 58 u32 FILTune;
b79cb653
ST
59
60 /* The Demod/Tuner can't easily provide these, we cache them */
61 u32 currentfreq;
62 u32 currentsymbolrate;
63};
64
e3b152bc
JS
65/* Various tuner defaults need to be established for a given symbol rate Sps */
66static struct
67{
68 u32 symbolrate_low;
69 u32 symbolrate_high;
e3b152bc
JS
70 u32 VCAprogdata;
71 u32 VGAprogdata;
a74b51fc 72 u32 FILTune;
e3b152bc
JS
73} cx24123_AGC_vals[] =
74{
75 {
76 .symbolrate_low = 1000000,
77 .symbolrate_high = 4999999,
a74b51fc
VC
78 /* the specs recommend other values for VGA offsets,
79 but tests show they are wrong */
0e4558ab
YP
80 .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0,
81 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x07,
82 .FILTune = 0x27f /* 0.41 V */
e3b152bc
JS
83 },
84 {
85 .symbolrate_low = 5000000,
86 .symbolrate_high = 14999999,
0e4558ab
YP
87 .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0,
88 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x1f,
a74b51fc 89 .FILTune = 0x317 /* 0.90 V */
e3b152bc
JS
90 },
91 {
92 .symbolrate_low = 15000000,
93 .symbolrate_high = 45000000,
0e4558ab
YP
94 .VGAprogdata = (1 << 19) | (0x100 << 9) | 0x180,
95 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x3f,
96 .FILTune = 0x145 /* 2.70 V */
e3b152bc
JS
97 },
98};
99
100/*
101 * Various tuner defaults need to be established for a given frequency kHz.
102 * fixme: The bounds on the bands do not match the doc in real life.
103 * fixme: Some of them have been moved, other might need adjustment.
104 */
105static struct
106{
107 u32 freq_low;
108 u32 freq_high;
e3b152bc 109 u32 VCOdivider;
e3b152bc
JS
110 u32 progdata;
111} cx24123_bandselect_vals[] =
112{
70047f9c 113 /* band 1 */
e3b152bc
JS
114 {
115 .freq_low = 950000,
e3b152bc 116 .freq_high = 1074999,
e3b152bc 117 .VCOdivider = 4,
70047f9c 118 .progdata = (0 << 19) | (0 << 9) | 0x40,
e3b152bc 119 },
70047f9c
YP
120
121 /* band 2 */
e3b152bc
JS
122 {
123 .freq_low = 1075000,
70047f9c
YP
124 .freq_high = 1177999,
125 .VCOdivider = 4,
126 .progdata = (0 << 19) | (0 << 9) | 0x80,
e3b152bc 127 },
70047f9c
YP
128
129 /* band 3 */
e3b152bc 130 {
70047f9c
YP
131 .freq_low = 1178000,
132 .freq_high = 1295999,
e3b152bc 133 .VCOdivider = 2,
70047f9c 134 .progdata = (0 << 19) | (1 << 9) | 0x01,
e3b152bc 135 },
70047f9c
YP
136
137 /* band 4 */
e3b152bc 138 {
70047f9c
YP
139 .freq_low = 1296000,
140 .freq_high = 1431999,
e3b152bc 141 .VCOdivider = 2,
70047f9c 142 .progdata = (0 << 19) | (1 << 9) | 0x02,
e3b152bc 143 },
70047f9c
YP
144
145 /* band 5 */
e3b152bc 146 {
70047f9c
YP
147 .freq_low = 1432000,
148 .freq_high = 1575999,
e3b152bc 149 .VCOdivider = 2,
70047f9c 150 .progdata = (0 << 19) | (1 << 9) | 0x04,
e3b152bc 151 },
70047f9c
YP
152
153 /* band 6 */
e3b152bc 154 {
70047f9c 155 .freq_low = 1576000,
e3b152bc 156 .freq_high = 1717999,
e3b152bc 157 .VCOdivider = 2,
70047f9c 158 .progdata = (0 << 19) | (1 << 9) | 0x08,
e3b152bc 159 },
70047f9c
YP
160
161 /* band 7 */
e3b152bc
JS
162 {
163 .freq_low = 1718000,
164 .freq_high = 1855999,
e3b152bc 165 .VCOdivider = 2,
70047f9c 166 .progdata = (0 << 19) | (1 << 9) | 0x10,
e3b152bc 167 },
70047f9c
YP
168
169 /* band 8 */
e3b152bc
JS
170 {
171 .freq_low = 1856000,
172 .freq_high = 2035999,
e3b152bc 173 .VCOdivider = 2,
70047f9c 174 .progdata = (0 << 19) | (1 << 9) | 0x20,
e3b152bc 175 },
70047f9c
YP
176
177 /* band 9 */
e3b152bc
JS
178 {
179 .freq_low = 2036000,
70047f9c 180 .freq_high = 2150000,
e3b152bc 181 .VCOdivider = 2,
70047f9c 182 .progdata = (0 << 19) | (1 << 9) | 0x40,
e3b152bc
JS
183 },
184};
185
b79cb653
ST
186static struct {
187 u8 reg;
188 u8 data;
189} cx24123_regdata[] =
190{
191 {0x00, 0x03}, /* Reset system */
192 {0x00, 0x00}, /* Clear reset */
0e4558ab
YP
193 {0x03, 0x07}, /* QPSK, DVB, Auto Acquisition (default) */
194 {0x04, 0x10}, /* MPEG */
195 {0x05, 0x04}, /* MPEG */
196 {0x06, 0x31}, /* MPEG (default) */
197 {0x0b, 0x00}, /* Freq search start point (default) */
198 {0x0c, 0x00}, /* Demodulator sample gain (default) */
199 {0x0d, 0x02}, /* Frequency search range = Fsymbol / 4 (default) */
200 {0x0e, 0x03}, /* Default non-inverted, FEC 3/4 (default) */
201 {0x0f, 0xfe}, /* FEC search mask (all supported codes) */
202 {0x10, 0x01}, /* Default search inversion, no repeat (default) */
203 {0x16, 0x00}, /* Enable reading of frequency */
204 {0x17, 0x01}, /* Enable EsNO Ready Counter */
205 {0x1c, 0x80}, /* Enable error counter */
206 {0x20, 0x00}, /* Tuner burst clock rate = 500KHz */
207 {0x21, 0x15}, /* Tuner burst mode, word length = 0x15 */
208 {0x28, 0x00}, /* Enable FILTERV with positive pol., DiSEqC 2.x off */
209 {0x29, 0x00}, /* DiSEqC LNB_DC off */
210 {0x2a, 0xb0}, /* DiSEqC Parameters (default) */
211 {0x2b, 0x73}, /* DiSEqC Tone Frequency (default) */
212 {0x2c, 0x00}, /* DiSEqC Message (0x2c - 0x31) */
b79cb653
ST
213 {0x2d, 0x00},
214 {0x2e, 0x00},
215 {0x2f, 0x00},
216 {0x30, 0x00},
217 {0x31, 0x00},
0e4558ab
YP
218 {0x32, 0x8c}, /* DiSEqC Parameters (default) */
219 {0x33, 0x00}, /* Interrupts off (0x33 - 0x34) */
b79cb653 220 {0x34, 0x00},
0e4558ab
YP
221 {0x35, 0x03}, /* DiSEqC Tone Amplitude (default) */
222 {0x36, 0x02}, /* DiSEqC Parameters (default) */
223 {0x37, 0x3a}, /* DiSEqC Parameters (default) */
224 {0x3a, 0x00}, /* Enable AGC accumulator (for signal strength) */
225 {0x44, 0x00}, /* Constellation (default) */
226 {0x45, 0x00}, /* Symbol count (default) */
227 {0x46, 0x0d}, /* Symbol rate estimator on (default) */
228 {0x56, 0x41}, /* Various (default) */
229 {0x57, 0xff}, /* Error Counter Window (default) */
230 {0x67, 0x83}, /* Non-DCII symbol clock */
b79cb653
ST
231};
232
233static int cx24123_writereg(struct cx24123_state* state, int reg, int data)
234{
235 u8 buf[] = { reg, data };
236 struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
237 int err;
238
caf970e0
MCC
239 if (debug>1)
240 printk("cx24123: %s: write reg 0x%02x, value 0x%02x\n",
241 __FUNCTION__,reg, data);
242
b79cb653
ST
243 if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) {
244 printk("%s: writereg error(err == %i, reg == 0x%02x,"
245 " data == 0x%02x)\n", __FUNCTION__, err, reg, data);
246 return -EREMOTEIO;
247 }
248
249 return 0;
250}
251
252static int cx24123_writelnbreg(struct cx24123_state* state, int reg, int data)
253{
254 u8 buf[] = { reg, data };
255 /* fixme: put the intersil addr int the config */
256 struct i2c_msg msg = { .addr = 0x08, .flags = 0, .buf = buf, .len = 2 };
257 int err;
258
caf970e0
MCC
259 if (debug>1)
260 printk("cx24123: %s: writeln addr=0x08, reg 0x%02x, value 0x%02x\n",
261 __FUNCTION__,reg, data);
262
b79cb653
ST
263 if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) {
264 printk("%s: writelnbreg error (err == %i, reg == 0x%02x,"
265 " data == 0x%02x)\n", __FUNCTION__, err, reg, data);
266 return -EREMOTEIO;
267 }
268
269 /* cache the write, no way to read back */
270 state->lnbreg = data;
271
272 return 0;
273}
274
275static int cx24123_readreg(struct cx24123_state* state, u8 reg)
276{
277 int ret;
278 u8 b0[] = { reg };
279 u8 b1[] = { 0 };
280 struct i2c_msg msg[] = {
281 { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 },
282 { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 }
283 };
284
285 ret = i2c_transfer(state->i2c, msg, 2);
286
287 if (ret != 2) {
288 printk("%s: reg=0x%x (error=%d)\n", __FUNCTION__, reg, ret);
289 return ret;
290 }
291
caf970e0
MCC
292 if (debug>1)
293 printk("cx24123: read reg 0x%02x, value 0x%02x\n",reg, ret);
294
b79cb653
ST
295 return b1[0];
296}
297
298static int cx24123_readlnbreg(struct cx24123_state* state, u8 reg)
299{
300 return state->lnbreg;
301}
302
303static int cx24123_set_inversion(struct cx24123_state* state, fe_spectral_inversion_t inversion)
304{
0e4558ab
YP
305 u8 nom_reg = cx24123_readreg(state, 0x0e);
306 u8 auto_reg = cx24123_readreg(state, 0x10);
307
b79cb653
ST
308 switch (inversion) {
309 case INVERSION_OFF:
caf970e0 310 dprintk("%s: inversion off\n",__FUNCTION__);
0e4558ab
YP
311 cx24123_writereg(state, 0x0e, nom_reg & ~0x80);
312 cx24123_writereg(state, 0x10, auto_reg | 0x80);
b79cb653
ST
313 break;
314 case INVERSION_ON:
caf970e0 315 dprintk("%s: inversion on\n",__FUNCTION__);
0e4558ab
YP
316 cx24123_writereg(state, 0x0e, nom_reg | 0x80);
317 cx24123_writereg(state, 0x10, auto_reg | 0x80);
b79cb653
ST
318 break;
319 case INVERSION_AUTO:
caf970e0 320 dprintk("%s: inversion auto\n",__FUNCTION__);
0e4558ab 321 cx24123_writereg(state, 0x10, auto_reg & ~0x80);
b79cb653
ST
322 break;
323 default:
324 return -EINVAL;
325 }
326
327 return 0;
328}
329
330static int cx24123_get_inversion(struct cx24123_state* state, fe_spectral_inversion_t *inversion)
331{
332 u8 val;
333
334 val = cx24123_readreg(state, 0x1b) >> 7;
335
caf970e0
MCC
336 if (val == 0) {
337 dprintk("%s: read inversion off\n",__FUNCTION__);
e3b152bc 338 *inversion = INVERSION_OFF;
caf970e0
MCC
339 } else {
340 dprintk("%s: read inversion on\n",__FUNCTION__);
e3b152bc 341 *inversion = INVERSION_ON;
caf970e0 342 }
b79cb653
ST
343
344 return 0;
345}
346
347static int cx24123_set_fec(struct cx24123_state* state, fe_code_rate_t fec)
348{
0e4558ab
YP
349 u8 nom_reg = cx24123_readreg(state, 0x0e) & ~0x07;
350
b79cb653 351 if ( (fec < FEC_NONE) || (fec > FEC_AUTO) )
e3b152bc 352 fec = FEC_AUTO;
b79cb653 353
b79cb653 354 switch (fec) {
b79cb653 355 case FEC_1_2:
caf970e0 356 dprintk("%s: set FEC to 1/2\n",__FUNCTION__);
0e4558ab
YP
357 cx24123_writereg(state, 0x0e, nom_reg | 0x01);
358 cx24123_writereg(state, 0x0f, 0x02);
359 break;
b79cb653 360 case FEC_2_3:
caf970e0 361 dprintk("%s: set FEC to 2/3\n",__FUNCTION__);
0e4558ab
YP
362 cx24123_writereg(state, 0x0e, nom_reg | 0x02);
363 cx24123_writereg(state, 0x0f, 0x04);
364 break;
b79cb653 365 case FEC_3_4:
caf970e0 366 dprintk("%s: set FEC to 3/4\n",__FUNCTION__);
0e4558ab
YP
367 cx24123_writereg(state, 0x0e, nom_reg | 0x03);
368 cx24123_writereg(state, 0x0f, 0x08);
369 break;
370 case FEC_4_5:
caf970e0 371 dprintk("%s: set FEC to 4/5\n",__FUNCTION__);
0e4558ab
YP
372 cx24123_writereg(state, 0x0e, nom_reg | 0x04);
373 cx24123_writereg(state, 0x0f, 0x10);
374 break;
375 case FEC_5_6:
caf970e0 376 dprintk("%s: set FEC to 5/6\n",__FUNCTION__);
0e4558ab
YP
377 cx24123_writereg(state, 0x0e, nom_reg | 0x05);
378 cx24123_writereg(state, 0x0f, 0x20);
379 break;
380 case FEC_6_7:
381 dprintk("%s: set FEC to 6/7\n",__FUNCTION__);
382 cx24123_writereg(state, 0x0e, nom_reg | 0x06);
383 cx24123_writereg(state, 0x0f, 0x40);
384 break;
385 case FEC_7_8:
386 dprintk("%s: set FEC to 7/8\n",__FUNCTION__);
387 cx24123_writereg(state, 0x0e, nom_reg | 0x07);
388 cx24123_writereg(state, 0x0f, 0x80);
389 break;
b79cb653 390 case FEC_AUTO:
caf970e0 391 dprintk("%s: set FEC to auto\n",__FUNCTION__);
0e4558ab
YP
392 cx24123_writereg(state, 0x0f, 0xfe);
393 break;
b79cb653
ST
394 default:
395 return -EOPNOTSUPP;
396 }
0e4558ab
YP
397
398 return 0;
b79cb653
ST
399}
400
401static int cx24123_get_fec(struct cx24123_state* state, fe_code_rate_t *fec)
402{
e3b152bc 403 int ret;
b79cb653 404
e3b152bc
JS
405 ret = cx24123_readreg (state, 0x1b);
406 if (ret < 0)
407 return ret;
a74b51fc
VC
408 ret = ret & 0x07;
409
410 switch (ret) {
b79cb653 411 case 1:
e3b152bc
JS
412 *fec = FEC_1_2;
413 break;
a74b51fc 414 case 2:
e3b152bc
JS
415 *fec = FEC_2_3;
416 break;
a74b51fc 417 case 3:
e3b152bc
JS
418 *fec = FEC_3_4;
419 break;
a74b51fc 420 case 4:
e3b152bc
JS
421 *fec = FEC_4_5;
422 break;
a74b51fc 423 case 5:
e3b152bc
JS
424 *fec = FEC_5_6;
425 break;
a74b51fc
VC
426 case 6:
427 *fec = FEC_6_7;
428 break;
b79cb653 429 case 7:
e3b152bc
JS
430 *fec = FEC_7_8;
431 break;
b79cb653 432 default:
0e4558ab
YP
433 /* this can happen when there's no lock */
434 *fec = FEC_NONE;
b79cb653
ST
435 }
436
e3b152bc 437 return 0;
b79cb653
ST
438}
439
0e4558ab
YP
440/* Approximation of closest integer of log2(a/b). It actually gives the
441 lowest integer i such that 2^i >= round(a/b) */
442static u32 cx24123_int_log2(u32 a, u32 b)
443{
444 u32 exp, nearest = 0;
445 u32 div = a / b;
446 if(a % b >= b / 2) ++div;
447 if(div < (1 << 31))
448 {
449 for(exp = 1; div > exp; nearest++)
450 exp += exp;
451 }
452 return nearest;
453}
454
b79cb653
ST
455static int cx24123_set_symbolrate(struct cx24123_state* state, u32 srate)
456{
0e4558ab 457 u32 tmp, sample_rate, ratio, sample_gain;
a74b51fc
VC
458 u8 pll_mult;
459
460 /* check if symbol rate is within limits */
461 if ((srate > state->ops.info.symbol_rate_max) ||
462 (srate < state->ops.info.symbol_rate_min))
463 return -EOPNOTSUPP;;
464
465 /* choose the sampling rate high enough for the required operation,
466 while optimizing the power consumed by the demodulator */
467 if (srate < (XTAL*2)/2)
468 pll_mult = 2;
469 else if (srate < (XTAL*3)/2)
470 pll_mult = 3;
471 else if (srate < (XTAL*4)/2)
472 pll_mult = 4;
473 else if (srate < (XTAL*5)/2)
474 pll_mult = 5;
475 else if (srate < (XTAL*6)/2)
476 pll_mult = 6;
477 else if (srate < (XTAL*7)/2)
478 pll_mult = 7;
479 else if (srate < (XTAL*8)/2)
480 pll_mult = 8;
481 else
482 pll_mult = 9;
483
484
485 sample_rate = pll_mult * XTAL;
b79cb653 486
a74b51fc
VC
487 /*
488 SYSSymbolRate[21:0] = (srate << 23) / sample_rate
b79cb653 489
a74b51fc
VC
490 We have to use 32 bit unsigned arithmetic without precision loss.
491 The maximum srate is 45000000 or 0x02AEA540. This number has
492 only 6 clear bits on top, hence we can shift it left only 6 bits
493 at a time. Borrowed from cx24110.c
494 */
b79cb653 495
a74b51fc
VC
496 tmp = srate << 6;
497 ratio = tmp / sample_rate;
498
499 tmp = (tmp % sample_rate) << 6;
500 ratio = (ratio << 6) + (tmp / sample_rate);
501
502 tmp = (tmp % sample_rate) << 6;
503 ratio = (ratio << 6) + (tmp / sample_rate);
504
505 tmp = (tmp % sample_rate) << 5;
506 ratio = (ratio << 5) + (tmp / sample_rate);
507
508
509 cx24123_writereg(state, 0x01, pll_mult * 6);
510
511 cx24123_writereg(state, 0x08, (ratio >> 16) & 0x3f );
512 cx24123_writereg(state, 0x09, (ratio >> 8) & 0xff );
513 cx24123_writereg(state, 0x0a, (ratio ) & 0xff );
514
0e4558ab
YP
515 /* also set the demodulator sample gain */
516 sample_gain = cx24123_int_log2(sample_rate, srate);
517 tmp = cx24123_readreg(state, 0x0c) & ~0xe0;
518 cx24123_writereg(state, 0x0c, tmp | sample_gain << 5);
519
520 dprintk("%s: srate=%d, ratio=0x%08x, sample_rate=%i sample_gain=%d\n", __FUNCTION__, srate, ratio, sample_rate, sample_gain);
b79cb653
ST
521
522 return 0;
523}
524
525/*
526 * Based on the required frequency and symbolrate, the tuner AGC has to be configured
527 * and the correct band selected. Calculate those values
528 */
529static int cx24123_pll_calculate(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
530{
531 struct cx24123_state *state = fe->demodulator_priv;
e3b152bc
JS
532 u32 ndiv = 0, adiv = 0, vco_div = 0;
533 int i = 0;
a74b51fc 534 int pump = 2;
70047f9c
YP
535 int band = 0;
536 int num_bands = sizeof(cx24123_bandselect_vals) / sizeof(cx24123_bandselect_vals[0]);
b79cb653
ST
537
538 /* Defaults for low freq, low rate */
539 state->VCAarg = cx24123_AGC_vals[0].VCAprogdata;
540 state->VGAarg = cx24123_AGC_vals[0].VGAprogdata;
541 state->bandselectarg = cx24123_bandselect_vals[0].progdata;
542 vco_div = cx24123_bandselect_vals[0].VCOdivider;
543
a74b51fc 544 /* For the given symbol rate, determine the VCA, VGA and FILTUNE programming bits */
e3b152bc 545 for (i = 0; i < sizeof(cx24123_AGC_vals) / sizeof(cx24123_AGC_vals[0]); i++)
b79cb653
ST
546 {
547 if ((cx24123_AGC_vals[i].symbolrate_low <= p->u.qpsk.symbol_rate) &&
a74b51fc 548 (cx24123_AGC_vals[i].symbolrate_high >= p->u.qpsk.symbol_rate) ) {
b79cb653
ST
549 state->VCAarg = cx24123_AGC_vals[i].VCAprogdata;
550 state->VGAarg = cx24123_AGC_vals[i].VGAprogdata;
a74b51fc 551 state->FILTune = cx24123_AGC_vals[i].FILTune;
b79cb653
ST
552 }
553 }
554
70047f9c
YP
555 /* determine the band to use */
556 if(force_band < 1 || force_band > num_bands)
b79cb653 557 {
70047f9c
YP
558 for (i = 0; i < num_bands; i++)
559 {
560 if ((cx24123_bandselect_vals[i].freq_low <= p->frequency) &&
561 (cx24123_bandselect_vals[i].freq_high >= p->frequency) )
562 band = i;
b79cb653
ST
563 }
564 }
70047f9c
YP
565 else
566 band = force_band - 1;
567
568 state->bandselectarg = cx24123_bandselect_vals[band].progdata;
569 vco_div = cx24123_bandselect_vals[band].VCOdivider;
570
571 /* determine the charge pump current */
572 if ( p->frequency < (cx24123_bandselect_vals[band].freq_low + cx24123_bandselect_vals[band].freq_high)/2 )
573 pump = 0x01;
574 else
575 pump = 0x02;
b79cb653
ST
576
577 /* Determine the N/A dividers for the requested lband freq (in kHz). */
a74b51fc
VC
578 /* Note: the reference divider R=10, frequency is in KHz, XTAL is in Hz */
579 ndiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) / 32) & 0x1ff;
580 adiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) % 32) & 0x1f;
b79cb653
ST
581
582 if (adiv == 0)
a74b51fc 583 ndiv++;
b79cb653 584
a74b51fc
VC
585 /* control bits 11, refdiv 11, charge pump polarity 1, charge pump current, ndiv, adiv */
586 state->pllarg = (3 << 19) | (3 << 17) | (1 << 16) | (pump << 14) | (ndiv << 5) | adiv;
b79cb653
ST
587
588 return 0;
589}
590
591/*
592 * Tuner data is 21 bits long, must be left-aligned in data.
593 * Tuner cx24109 is written through a dedicated 3wire interface on the demod chip.
594 */
595static int cx24123_pll_writereg(struct dvb_frontend* fe, struct dvb_frontend_parameters *p, u32 data)
596{
597 struct cx24123_state *state = fe->demodulator_priv;
0144f314 598 unsigned long timeout;
b79cb653 599
caf970e0
MCC
600 dprintk("%s: pll writereg called, data=0x%08x\n",__FUNCTION__,data);
601
b79cb653
ST
602 /* align the 21 bytes into to bit23 boundary */
603 data = data << 3;
604
605 /* Reset the demod pll word length to 0x15 bits */
606 cx24123_writereg(state, 0x21, 0x15);
607
b79cb653 608 /* write the msb 8 bits, wait for the send to be completed */
0144f314 609 timeout = jiffies + msecs_to_jiffies(40);
e3b152bc 610 cx24123_writereg(state, 0x22, (data >> 16) & 0xff);
0144f314
ST
611 while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
612 if (time_after(jiffies, timeout)) {
613 printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
b79cb653
ST
614 return -EREMOTEIO;
615 }
0144f314 616 msleep(10);
b79cb653
ST
617 }
618
b79cb653 619 /* send another 8 bytes, wait for the send to be completed */
0144f314 620 timeout = jiffies + msecs_to_jiffies(40);
b79cb653 621 cx24123_writereg(state, 0x22, (data>>8) & 0xff );
0144f314
ST
622 while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
623 if (time_after(jiffies, timeout)) {
624 printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
b79cb653
ST
625 return -EREMOTEIO;
626 }
0144f314 627 msleep(10);
b79cb653
ST
628 }
629
b79cb653 630 /* send the lower 5 bits of this byte, padded with 3 LBB, wait for the send to be completed */
0144f314 631 timeout = jiffies + msecs_to_jiffies(40);
b79cb653 632 cx24123_writereg(state, 0x22, (data) & 0xff );
0144f314
ST
633 while ((cx24123_readreg(state, 0x20) & 0x80)) {
634 if (time_after(jiffies, timeout)) {
635 printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
b79cb653
ST
636 return -EREMOTEIO;
637 }
0144f314 638 msleep(10);
b79cb653
ST
639 }
640
641 /* Trigger the demod to configure the tuner */
642 cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) | 2);
643 cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) & 0xfd);
644
645 return 0;
646}
647
648static int cx24123_pll_tune(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
649{
650 struct cx24123_state *state = fe->demodulator_priv;
a74b51fc
VC
651 u8 val;
652
653 dprintk("frequency=%i\n", p->frequency);
b79cb653 654
e3b152bc 655 if (cx24123_pll_calculate(fe, p) != 0) {
b79cb653
ST
656 printk("%s: cx24123_pll_calcutate failed\n",__FUNCTION__);
657 return -EINVAL;
658 }
659
660 /* Write the new VCO/VGA */
661 cx24123_pll_writereg(fe, p, state->VCAarg);
662 cx24123_pll_writereg(fe, p, state->VGAarg);
663
664 /* Write the new bandselect and pll args */
665 cx24123_pll_writereg(fe, p, state->bandselectarg);
666 cx24123_pll_writereg(fe, p, state->pllarg);
667
a74b51fc
VC
668 /* set the FILTUNE voltage */
669 val = cx24123_readreg(state, 0x28) & ~0x3;
670 cx24123_writereg(state, 0x27, state->FILTune >> 2);
671 cx24123_writereg(state, 0x28, val | (state->FILTune & 0x3));
672
caf970e0
MCC
673 dprintk("%s: pll tune VCA=%d, band=%d, pll=%d\n",__FUNCTION__,state->VCAarg,
674 state->bandselectarg,state->pllarg);
675
b79cb653
ST
676 return 0;
677}
678
679static int cx24123_initfe(struct dvb_frontend* fe)
680{
681 struct cx24123_state *state = fe->demodulator_priv;
682 int i;
683
caf970e0
MCC
684 dprintk("%s: init frontend\n",__FUNCTION__);
685
b79cb653 686 /* Configure the demod to a good set of defaults */
e3b152bc 687 for (i = 0; i < sizeof(cx24123_regdata) / sizeof(cx24123_regdata[0]); i++)
b79cb653
ST
688 cx24123_writereg(state, cx24123_regdata[i].reg, cx24123_regdata[i].data);
689
b79cb653 690 /* Configure the LNB for 14V */
1c956a3a
VC
691 if (state->config->use_isl6421)
692 cx24123_writelnbreg(state, 0x0, 0x2a);
b79cb653
ST
693
694 return 0;
695}
696
697static int cx24123_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage)
698{
699 struct cx24123_state *state = fe->demodulator_priv;
700 u8 val;
701
1c956a3a 702 switch (state->config->use_isl6421) {
b79cb653 703
1c956a3a
VC
704 case 1:
705
706 val = cx24123_readlnbreg(state, 0x0);
707
708 switch (voltage) {
709 case SEC_VOLTAGE_13:
caf970e0 710 dprintk("%s: isl6421 voltage = 13V\n",__FUNCTION__);
1c956a3a
VC
711 return cx24123_writelnbreg(state, 0x0, val & 0x32); /* V 13v */
712 case SEC_VOLTAGE_18:
caf970e0 713 dprintk("%s: isl6421 voltage = 18V\n",__FUNCTION__);
1c956a3a
VC
714 return cx24123_writelnbreg(state, 0x0, val | 0x04); /* H 18v */
715 case SEC_VOLTAGE_OFF:
caf970e0 716 dprintk("%s: isl5421 voltage off\n",__FUNCTION__);
1c956a3a
VC
717 return cx24123_writelnbreg(state, 0x0, val & 0x30);
718 default:
719 return -EINVAL;
720 };
721
722 case 0:
723
724 val = cx24123_readreg(state, 0x29);
725
726 switch (voltage) {
727 case SEC_VOLTAGE_13:
728 dprintk("%s: setting voltage 13V\n", __FUNCTION__);
729 if (state->config->enable_lnb_voltage)
730 state->config->enable_lnb_voltage(fe, 1);
731 return cx24123_writereg(state, 0x29, val | 0x80);
732 case SEC_VOLTAGE_18:
733 dprintk("%s: setting voltage 18V\n", __FUNCTION__);
734 if (state->config->enable_lnb_voltage)
735 state->config->enable_lnb_voltage(fe, 1);
736 return cx24123_writereg(state, 0x29, val & 0x7f);
737 case SEC_VOLTAGE_OFF:
738 dprintk("%s: setting voltage off\n", __FUNCTION__);
739 if (state->config->enable_lnb_voltage)
740 state->config->enable_lnb_voltage(fe, 0);
741 return 0;
742 default:
743 return -EINVAL;
744 };
745 }
746
747 return 0;
b79cb653
ST
748}
749
dce1dfc2
YP
750/* wait for diseqc queue to become ready (or timeout) */
751static void cx24123_wait_for_diseqc(struct cx24123_state *state)
752{
753 unsigned long timeout = jiffies + msecs_to_jiffies(200);
754 while (!(cx24123_readreg(state, 0x29) & 0x40)) {
755 if(time_after(jiffies, timeout)) {
756 printk("%s: diseqc queue not ready, command may be lost.\n", __FUNCTION__);
757 break;
758 }
759 msleep(10);
760 }
761}
762
a74b51fc 763static int cx24123_send_diseqc_msg(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd *cmd)
b79cb653 764{
a74b51fc
VC
765 struct cx24123_state *state = fe->demodulator_priv;
766 int i, val;
a74b51fc
VC
767
768 dprintk("%s:\n",__FUNCTION__);
b79cb653 769
dce1dfc2 770 /* check if continuous tone has been stopped */
a74b51fc
VC
771 if (state->config->use_isl6421)
772 val = cx24123_readlnbreg(state, 0x00) & 0x10;
773 else
774 val = cx24123_readreg(state, 0x29) & 0x10;
775
776
777 if (val) {
778 printk("%s: ERROR: attempt to send diseqc command before tone is off\n", __FUNCTION__);
779 return -ENOTSUPP;
780 }
781
dce1dfc2
YP
782 /* wait for diseqc queue ready */
783 cx24123_wait_for_diseqc(state);
784
a74b51fc
VC
785 /* select tone mode */
786 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xf8);
787
788 for (i = 0; i < cmd->msg_len; i++)
789 cx24123_writereg(state, 0x2C + i, cmd->msg[i]);
790
791 val = cx24123_readreg(state, 0x29);
792 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40) | ((cmd->msg_len-3) & 3));
793
dce1dfc2
YP
794 /* wait for diseqc message to finish sending */
795 cx24123_wait_for_diseqc(state);
a74b51fc
VC
796
797 return 0;
798}
799
800static int cx24123_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t burst)
801{
802 struct cx24123_state *state = fe->demodulator_priv;
803 int val;
a74b51fc
VC
804
805 dprintk("%s:\n", __FUNCTION__);
806
807 /* check if continuous tone has been stoped */
808 if (state->config->use_isl6421)
809 val = cx24123_readlnbreg(state, 0x00) & 0x10;
810 else
811 val = cx24123_readreg(state, 0x29) & 0x10;
812
813
814 if (val) {
815 printk("%s: ERROR: attempt to send diseqc command before tone is off\n", __FUNCTION__);
816 return -ENOTSUPP;
817 }
818
dce1dfc2
YP
819 cx24123_wait_for_diseqc(state);
820
a74b51fc
VC
821 /* select tone mode */
822 val = cx24123_readreg(state, 0x2a) & 0xf8;
823 cx24123_writereg(state, 0x2a, val | 0x04);
824
825 val = cx24123_readreg(state, 0x29);
826
827 if (burst == SEC_MINI_A)
828 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x00));
829 else if (burst == SEC_MINI_B)
830 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x08));
831 else
832 return -EINVAL;
833
dce1dfc2 834 cx24123_wait_for_diseqc(state);
a74b51fc
VC
835
836 return 0;
b79cb653
ST
837}
838
839static int cx24123_read_status(struct dvb_frontend* fe, fe_status_t* status)
840{
841 struct cx24123_state *state = fe->demodulator_priv;
842
843 int sync = cx24123_readreg(state, 0x14);
844 int lock = cx24123_readreg(state, 0x20);
845
846 *status = 0;
847 if (lock & 0x01)
a74b51fc
VC
848 *status |= FE_HAS_SIGNAL;
849 if (sync & 0x02)
850 *status |= FE_HAS_CARRIER;
b79cb653
ST
851 if (sync & 0x04)
852 *status |= FE_HAS_VITERBI;
853 if (sync & 0x08)
a74b51fc 854 *status |= FE_HAS_SYNC;
b79cb653 855 if (sync & 0x80)
a74b51fc 856 *status |= FE_HAS_LOCK;
b79cb653
ST
857
858 return 0;
859}
860
861/*
862 * Configured to return the measurement of errors in blocks, because no UCBLOCKS value
863 * is available, so this value doubles up to satisfy both measurements
864 */
865static int cx24123_read_ber(struct dvb_frontend* fe, u32* ber)
866{
867 struct cx24123_state *state = fe->demodulator_priv;
868
869 state->lastber =
870 ((cx24123_readreg(state, 0x1c) & 0x3f) << 16) |
871 (cx24123_readreg(state, 0x1d) << 8 |
872 cx24123_readreg(state, 0x1e));
873
874 /* Do the signal quality processing here, it's derived from the BER. */
875 /* Scale the BER from a 24bit to a SNR 16 bit where higher = better */
876 if (state->lastber < 5000)
877 state->snr = 655*100;
878 else if ( (state->lastber >= 5000) && (state->lastber < 55000) )
879 state->snr = 655*90;
880 else if ( (state->lastber >= 55000) && (state->lastber < 150000) )
881 state->snr = 655*80;
882 else if ( (state->lastber >= 150000) && (state->lastber < 250000) )
883 state->snr = 655*70;
884 else if ( (state->lastber >= 250000) && (state->lastber < 450000) )
885 state->snr = 655*65;
886 else
887 state->snr = 0;
888
caf970e0
MCC
889 dprintk("%s: BER = %d, S/N index = %d\n",__FUNCTION__,state->lastber, state->snr);
890
b79cb653
ST
891 *ber = state->lastber;
892
893 return 0;
894}
895
896static int cx24123_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
897{
898 struct cx24123_state *state = fe->demodulator_priv;
899 *signal_strength = cx24123_readreg(state, 0x3b) << 8; /* larger = better */
900
caf970e0
MCC
901 dprintk("%s: Signal strength = %d\n",__FUNCTION__,*signal_strength);
902
b79cb653
ST
903 return 0;
904}
905
906static int cx24123_read_snr(struct dvb_frontend* fe, u16* snr)
907{
908 struct cx24123_state *state = fe->demodulator_priv;
909 *snr = state->snr;
910
caf970e0
MCC
911 dprintk("%s: read S/N index = %d\n",__FUNCTION__,*snr);
912
b79cb653
ST
913 return 0;
914}
915
916static int cx24123_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
917{
918 struct cx24123_state *state = fe->demodulator_priv;
919 *ucblocks = state->lastber;
920
caf970e0
MCC
921 dprintk("%s: ucblocks (ber) = %d\n",__FUNCTION__,*ucblocks);
922
b79cb653
ST
923 return 0;
924}
925
926static int cx24123_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
927{
928 struct cx24123_state *state = fe->demodulator_priv;
929
caf970e0
MCC
930 dprintk("%s: set_frontend\n",__FUNCTION__);
931
b79cb653
ST
932 if (state->config->set_ts_params)
933 state->config->set_ts_params(fe, 0);
934
935 state->currentfreq=p->frequency;
e3b152bc 936 state->currentsymbolrate = p->u.qpsk.symbol_rate;
b79cb653
ST
937
938 cx24123_set_inversion(state, p->inversion);
939 cx24123_set_fec(state, p->u.qpsk.fec_inner);
940 cx24123_set_symbolrate(state, p->u.qpsk.symbol_rate);
941 cx24123_pll_tune(fe, p);
942
943 /* Enable automatic aquisition and reset cycle */
e3b152bc 944 cx24123_writereg(state, 0x03, (cx24123_readreg(state, 0x03) | 0x07));
b79cb653
ST
945 cx24123_writereg(state, 0x00, 0x10);
946 cx24123_writereg(state, 0x00, 0);
947
948 return 0;
949}
950
951static int cx24123_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
952{
953 struct cx24123_state *state = fe->demodulator_priv;
954
caf970e0
MCC
955 dprintk("%s: get_frontend\n",__FUNCTION__);
956
b79cb653
ST
957 if (cx24123_get_inversion(state, &p->inversion) != 0) {
958 printk("%s: Failed to get inversion status\n",__FUNCTION__);
959 return -EREMOTEIO;
960 }
961 if (cx24123_get_fec(state, &p->u.qpsk.fec_inner) != 0) {
962 printk("%s: Failed to get fec status\n",__FUNCTION__);
963 return -EREMOTEIO;
964 }
965 p->frequency = state->currentfreq;
966 p->u.qpsk.symbol_rate = state->currentsymbolrate;
967
968 return 0;
969}
970
971static int cx24123_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
972{
973 struct cx24123_state *state = fe->demodulator_priv;
974 u8 val;
975
1c956a3a
VC
976 switch (state->config->use_isl6421) {
977 case 1:
978
979 val = cx24123_readlnbreg(state, 0x0);
b79cb653 980
1c956a3a
VC
981 switch (tone) {
982 case SEC_TONE_ON:
caf970e0 983 dprintk("%s: isl6421 sec tone on\n",__FUNCTION__);
1c956a3a
VC
984 return cx24123_writelnbreg(state, 0x0, val | 0x10);
985 case SEC_TONE_OFF:
caf970e0 986 dprintk("%s: isl6421 sec tone off\n",__FUNCTION__);
1c956a3a
VC
987 return cx24123_writelnbreg(state, 0x0, val & 0x2f);
988 default:
989 printk("%s: CASE reached default with tone=%d\n", __FUNCTION__, tone);
990 return -EINVAL;
991 }
992
993 case 0:
994
995 val = cx24123_readreg(state, 0x29);
996
997 switch (tone) {
998 case SEC_TONE_ON:
999 dprintk("%s: setting tone on\n", __FUNCTION__);
1000 return cx24123_writereg(state, 0x29, val | 0x10);
1001 case SEC_TONE_OFF:
1002 dprintk("%s: setting tone off\n",__FUNCTION__);
1003 return cx24123_writereg(state, 0x29, val & 0xef);
1004 default:
1005 printk("%s: CASE reached default with tone=%d\n", __FUNCTION__, tone);
1006 return -EINVAL;
1007 }
b79cb653 1008 }
1c956a3a
VC
1009
1010 return 0;
b79cb653
ST
1011}
1012
1013static void cx24123_release(struct dvb_frontend* fe)
1014{
1015 struct cx24123_state* state = fe->demodulator_priv;
1016 dprintk("%s\n",__FUNCTION__);
1017 kfree(state);
1018}
1019
1020static struct dvb_frontend_ops cx24123_ops;
1021
e3b152bc
JS
1022struct dvb_frontend* cx24123_attach(const struct cx24123_config* config,
1023 struct i2c_adapter* i2c)
b79cb653
ST
1024{
1025 struct cx24123_state* state = NULL;
1026 int ret;
1027
1028 dprintk("%s\n",__FUNCTION__);
1029
1030 /* allocate memory for the internal state */
1031 state = kmalloc(sizeof(struct cx24123_state), GFP_KERNEL);
1032 if (state == NULL) {
1033 printk("Unable to kmalloc\n");
1034 goto error;
1035 }
1036
1037 /* setup the state */
1038 state->config = config;
1039 state->i2c = i2c;
1040 memcpy(&state->ops, &cx24123_ops, sizeof(struct dvb_frontend_ops));
1041 state->lastber = 0;
1042 state->snr = 0;
1043 state->lnbreg = 0;
1044 state->VCAarg = 0;
1045 state->VGAarg = 0;
1046 state->bandselectarg = 0;
1047 state->pllarg = 0;
1048 state->currentfreq = 0;
1049 state->currentsymbolrate = 0;
1050
1051 /* check if the demod is there */
1052 ret = cx24123_readreg(state, 0x00);
1053 if ((ret != 0xd1) && (ret != 0xe1)) {
1054 printk("Version != d1 or e1\n");
1055 goto error;
1056 }
1057
1058 /* create dvb_frontend */
1059 state->frontend.ops = &state->ops;
1060 state->frontend.demodulator_priv = state;
1061 return &state->frontend;
1062
1063error:
1064 kfree(state);
1065
1066 return NULL;
1067}
1068
1069static struct dvb_frontend_ops cx24123_ops = {
1070
1071 .info = {
1072 .name = "Conexant CX24123/CX24109",
1073 .type = FE_QPSK,
1074 .frequency_min = 950000,
1075 .frequency_max = 2150000,
1076 .frequency_stepsize = 1011, /* kHz for QPSK frontends */
0e4558ab 1077 .frequency_tolerance = 5000,
b79cb653
ST
1078 .symbol_rate_min = 1000000,
1079 .symbol_rate_max = 45000000,
1080 .caps = FE_CAN_INVERSION_AUTO |
1081 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
0e4558ab
YP
1082 FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
1083 FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
b79cb653
ST
1084 FE_CAN_QPSK | FE_CAN_RECOVER
1085 },
1086
1087 .release = cx24123_release,
1088
1089 .init = cx24123_initfe,
1090 .set_frontend = cx24123_set_frontend,
1091 .get_frontend = cx24123_get_frontend,
1092 .read_status = cx24123_read_status,
1093 .read_ber = cx24123_read_ber,
1094 .read_signal_strength = cx24123_read_signal_strength,
1095 .read_snr = cx24123_read_snr,
1096 .read_ucblocks = cx24123_read_ucblocks,
1097 .diseqc_send_master_cmd = cx24123_send_diseqc_msg,
a74b51fc 1098 .diseqc_send_burst = cx24123_diseqc_send_burst,
b79cb653
ST
1099 .set_tone = cx24123_set_tone,
1100 .set_voltage = cx24123_set_voltage,
1101};
1102
1103module_param(debug, int, 0644);
caf970e0 1104MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");
b79cb653 1105
70047f9c
YP
1106module_param(force_band, int, 0644);
1107MODULE_PARM_DESC(force_band, "Force a specific band select (1-9, default:off).");
1108
b79cb653
ST
1109MODULE_DESCRIPTION("DVB Frontend module for Conexant cx24123/cx24109 hardware");
1110MODULE_AUTHOR("Steven Toth");
1111MODULE_LICENSE("GPL");
1112
1113EXPORT_SYMBOL(cx24123_attach);