]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/media/dvb/frontends/cx24123.c
V4L/DVB (4433): Soft decision threshold
[mirror_ubuntu-hirsute-kernel.git] / drivers / media / dvb / frontends / cx24123.c
CommitLineData
b79cb653
ST
1/*
2 Conexant cx24123/cx24109 - DVB QPSK Satellite demod/tuner driver
3
4 Copyright (C) 2005 Steven Toth <stoth@hauppauge.com>
5
1c956a3a
VC
6 Support for KWorld DVB-S 100 by Vadim Catana <skystar@moldova.cc>
7
b79cb653
ST
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21*/
22
23#include <linux/slab.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/moduleparam.h>
27#include <linux/init.h>
28
29#include "dvb_frontend.h"
30#include "cx24123.h"
31
a74b51fc
VC
32#define XTAL 10111000
33
70047f9c 34static int force_band;
b79cb653
ST
35static int debug;
36#define dprintk(args...) \
37 do { \
38 if (debug) printk (KERN_DEBUG "cx24123: " args); \
39 } while (0)
40
e3b152bc
JS
41struct cx24123_state
42{
b79cb653 43 struct i2c_adapter* i2c;
b79cb653
ST
44 const struct cx24123_config* config;
45
46 struct dvb_frontend frontend;
47
48 u32 lastber;
49 u16 snr;
b79cb653
ST
50
51 /* Some PLL specifics for tuning */
52 u32 VCAarg;
53 u32 VGAarg;
54 u32 bandselectarg;
55 u32 pllarg;
a74b51fc 56 u32 FILTune;
b79cb653
ST
57
58 /* The Demod/Tuner can't easily provide these, we cache them */
59 u32 currentfreq;
60 u32 currentsymbolrate;
61};
62
e3b152bc
JS
63/* Various tuner defaults need to be established for a given symbol rate Sps */
64static struct
65{
66 u32 symbolrate_low;
67 u32 symbolrate_high;
e3b152bc
JS
68 u32 VCAprogdata;
69 u32 VGAprogdata;
a74b51fc 70 u32 FILTune;
e3b152bc
JS
71} cx24123_AGC_vals[] =
72{
73 {
74 .symbolrate_low = 1000000,
75 .symbolrate_high = 4999999,
a74b51fc
VC
76 /* the specs recommend other values for VGA offsets,
77 but tests show they are wrong */
0e4558ab
YP
78 .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0,
79 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x07,
80 .FILTune = 0x27f /* 0.41 V */
e3b152bc
JS
81 },
82 {
83 .symbolrate_low = 5000000,
84 .symbolrate_high = 14999999,
0e4558ab
YP
85 .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0,
86 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x1f,
a74b51fc 87 .FILTune = 0x317 /* 0.90 V */
e3b152bc
JS
88 },
89 {
90 .symbolrate_low = 15000000,
91 .symbolrate_high = 45000000,
0e4558ab
YP
92 .VGAprogdata = (1 << 19) | (0x100 << 9) | 0x180,
93 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x3f,
94 .FILTune = 0x145 /* 2.70 V */
e3b152bc
JS
95 },
96};
97
98/*
99 * Various tuner defaults need to be established for a given frequency kHz.
100 * fixme: The bounds on the bands do not match the doc in real life.
101 * fixme: Some of them have been moved, other might need adjustment.
102 */
103static struct
104{
105 u32 freq_low;
106 u32 freq_high;
e3b152bc 107 u32 VCOdivider;
e3b152bc
JS
108 u32 progdata;
109} cx24123_bandselect_vals[] =
110{
70047f9c 111 /* band 1 */
e3b152bc
JS
112 {
113 .freq_low = 950000,
e3b152bc 114 .freq_high = 1074999,
e3b152bc 115 .VCOdivider = 4,
70047f9c 116 .progdata = (0 << 19) | (0 << 9) | 0x40,
e3b152bc 117 },
70047f9c
YP
118
119 /* band 2 */
e3b152bc
JS
120 {
121 .freq_low = 1075000,
70047f9c
YP
122 .freq_high = 1177999,
123 .VCOdivider = 4,
124 .progdata = (0 << 19) | (0 << 9) | 0x80,
e3b152bc 125 },
70047f9c
YP
126
127 /* band 3 */
e3b152bc 128 {
70047f9c
YP
129 .freq_low = 1178000,
130 .freq_high = 1295999,
e3b152bc 131 .VCOdivider = 2,
70047f9c 132 .progdata = (0 << 19) | (1 << 9) | 0x01,
e3b152bc 133 },
70047f9c
YP
134
135 /* band 4 */
e3b152bc 136 {
70047f9c
YP
137 .freq_low = 1296000,
138 .freq_high = 1431999,
e3b152bc 139 .VCOdivider = 2,
70047f9c 140 .progdata = (0 << 19) | (1 << 9) | 0x02,
e3b152bc 141 },
70047f9c
YP
142
143 /* band 5 */
e3b152bc 144 {
70047f9c
YP
145 .freq_low = 1432000,
146 .freq_high = 1575999,
e3b152bc 147 .VCOdivider = 2,
70047f9c 148 .progdata = (0 << 19) | (1 << 9) | 0x04,
e3b152bc 149 },
70047f9c
YP
150
151 /* band 6 */
e3b152bc 152 {
70047f9c 153 .freq_low = 1576000,
e3b152bc 154 .freq_high = 1717999,
e3b152bc 155 .VCOdivider = 2,
70047f9c 156 .progdata = (0 << 19) | (1 << 9) | 0x08,
e3b152bc 157 },
70047f9c
YP
158
159 /* band 7 */
e3b152bc
JS
160 {
161 .freq_low = 1718000,
162 .freq_high = 1855999,
e3b152bc 163 .VCOdivider = 2,
70047f9c 164 .progdata = (0 << 19) | (1 << 9) | 0x10,
e3b152bc 165 },
70047f9c
YP
166
167 /* band 8 */
e3b152bc
JS
168 {
169 .freq_low = 1856000,
170 .freq_high = 2035999,
e3b152bc 171 .VCOdivider = 2,
70047f9c 172 .progdata = (0 << 19) | (1 << 9) | 0x20,
e3b152bc 173 },
70047f9c
YP
174
175 /* band 9 */
e3b152bc
JS
176 {
177 .freq_low = 2036000,
70047f9c 178 .freq_high = 2150000,
e3b152bc 179 .VCOdivider = 2,
70047f9c 180 .progdata = (0 << 19) | (1 << 9) | 0x40,
e3b152bc
JS
181 },
182};
183
b79cb653
ST
184static struct {
185 u8 reg;
186 u8 data;
187} cx24123_regdata[] =
188{
189 {0x00, 0x03}, /* Reset system */
190 {0x00, 0x00}, /* Clear reset */
0e4558ab
YP
191 {0x03, 0x07}, /* QPSK, DVB, Auto Acquisition (default) */
192 {0x04, 0x10}, /* MPEG */
193 {0x05, 0x04}, /* MPEG */
194 {0x06, 0x31}, /* MPEG (default) */
195 {0x0b, 0x00}, /* Freq search start point (default) */
196 {0x0c, 0x00}, /* Demodulator sample gain (default) */
197 {0x0d, 0x02}, /* Frequency search range = Fsymbol / 4 (default) */
198 {0x0e, 0x03}, /* Default non-inverted, FEC 3/4 (default) */
199 {0x0f, 0xfe}, /* FEC search mask (all supported codes) */
200 {0x10, 0x01}, /* Default search inversion, no repeat (default) */
201 {0x16, 0x00}, /* Enable reading of frequency */
202 {0x17, 0x01}, /* Enable EsNO Ready Counter */
203 {0x1c, 0x80}, /* Enable error counter */
204 {0x20, 0x00}, /* Tuner burst clock rate = 500KHz */
205 {0x21, 0x15}, /* Tuner burst mode, word length = 0x15 */
206 {0x28, 0x00}, /* Enable FILTERV with positive pol., DiSEqC 2.x off */
207 {0x29, 0x00}, /* DiSEqC LNB_DC off */
208 {0x2a, 0xb0}, /* DiSEqC Parameters (default) */
209 {0x2b, 0x73}, /* DiSEqC Tone Frequency (default) */
210 {0x2c, 0x00}, /* DiSEqC Message (0x2c - 0x31) */
b79cb653
ST
211 {0x2d, 0x00},
212 {0x2e, 0x00},
213 {0x2f, 0x00},
214 {0x30, 0x00},
215 {0x31, 0x00},
0e4558ab
YP
216 {0x32, 0x8c}, /* DiSEqC Parameters (default) */
217 {0x33, 0x00}, /* Interrupts off (0x33 - 0x34) */
b79cb653 218 {0x34, 0x00},
0e4558ab
YP
219 {0x35, 0x03}, /* DiSEqC Tone Amplitude (default) */
220 {0x36, 0x02}, /* DiSEqC Parameters (default) */
221 {0x37, 0x3a}, /* DiSEqC Parameters (default) */
222 {0x3a, 0x00}, /* Enable AGC accumulator (for signal strength) */
223 {0x44, 0x00}, /* Constellation (default) */
224 {0x45, 0x00}, /* Symbol count (default) */
225 {0x46, 0x0d}, /* Symbol rate estimator on (default) */
226 {0x56, 0x41}, /* Various (default) */
227 {0x57, 0xff}, /* Error Counter Window (default) */
228 {0x67, 0x83}, /* Non-DCII symbol clock */
b79cb653
ST
229};
230
231static int cx24123_writereg(struct cx24123_state* state, int reg, int data)
232{
233 u8 buf[] = { reg, data };
234 struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
235 int err;
236
caf970e0
MCC
237 if (debug>1)
238 printk("cx24123: %s: write reg 0x%02x, value 0x%02x\n",
239 __FUNCTION__,reg, data);
240
b79cb653
ST
241 if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) {
242 printk("%s: writereg error(err == %i, reg == 0x%02x,"
243 " data == 0x%02x)\n", __FUNCTION__, err, reg, data);
244 return -EREMOTEIO;
245 }
246
247 return 0;
248}
249
b79cb653
ST
250static int cx24123_readreg(struct cx24123_state* state, u8 reg)
251{
252 int ret;
253 u8 b0[] = { reg };
254 u8 b1[] = { 0 };
255 struct i2c_msg msg[] = {
256 { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 },
257 { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 }
258 };
259
260 ret = i2c_transfer(state->i2c, msg, 2);
261
262 if (ret != 2) {
263 printk("%s: reg=0x%x (error=%d)\n", __FUNCTION__, reg, ret);
264 return ret;
265 }
266
caf970e0
MCC
267 if (debug>1)
268 printk("cx24123: read reg 0x%02x, value 0x%02x\n",reg, ret);
269
b79cb653
ST
270 return b1[0];
271}
272
b79cb653
ST
273static int cx24123_set_inversion(struct cx24123_state* state, fe_spectral_inversion_t inversion)
274{
0e4558ab
YP
275 u8 nom_reg = cx24123_readreg(state, 0x0e);
276 u8 auto_reg = cx24123_readreg(state, 0x10);
277
b79cb653
ST
278 switch (inversion) {
279 case INVERSION_OFF:
caf970e0 280 dprintk("%s: inversion off\n",__FUNCTION__);
0e4558ab
YP
281 cx24123_writereg(state, 0x0e, nom_reg & ~0x80);
282 cx24123_writereg(state, 0x10, auto_reg | 0x80);
b79cb653
ST
283 break;
284 case INVERSION_ON:
caf970e0 285 dprintk("%s: inversion on\n",__FUNCTION__);
0e4558ab
YP
286 cx24123_writereg(state, 0x0e, nom_reg | 0x80);
287 cx24123_writereg(state, 0x10, auto_reg | 0x80);
b79cb653
ST
288 break;
289 case INVERSION_AUTO:
caf970e0 290 dprintk("%s: inversion auto\n",__FUNCTION__);
0e4558ab 291 cx24123_writereg(state, 0x10, auto_reg & ~0x80);
b79cb653
ST
292 break;
293 default:
294 return -EINVAL;
295 }
296
297 return 0;
298}
299
300static int cx24123_get_inversion(struct cx24123_state* state, fe_spectral_inversion_t *inversion)
301{
302 u8 val;
303
304 val = cx24123_readreg(state, 0x1b) >> 7;
305
caf970e0
MCC
306 if (val == 0) {
307 dprintk("%s: read inversion off\n",__FUNCTION__);
e3b152bc 308 *inversion = INVERSION_OFF;
caf970e0
MCC
309 } else {
310 dprintk("%s: read inversion on\n",__FUNCTION__);
e3b152bc 311 *inversion = INVERSION_ON;
caf970e0 312 }
b79cb653
ST
313
314 return 0;
315}
316
317static int cx24123_set_fec(struct cx24123_state* state, fe_code_rate_t fec)
318{
0e4558ab
YP
319 u8 nom_reg = cx24123_readreg(state, 0x0e) & ~0x07;
320
b79cb653 321 if ( (fec < FEC_NONE) || (fec > FEC_AUTO) )
e3b152bc 322 fec = FEC_AUTO;
b79cb653 323
d12a9b91
YP
324 /* Set the soft decision threshold */
325 if(fec == FEC_1_2)
326 cx24123_writereg(state, 0x43, cx24123_readreg(state, 0x43) | 0x01);
327 else
328 cx24123_writereg(state, 0x43, cx24123_readreg(state, 0x43) & ~0x01);
329
b79cb653 330 switch (fec) {
b79cb653 331 case FEC_1_2:
caf970e0 332 dprintk("%s: set FEC to 1/2\n",__FUNCTION__);
0e4558ab
YP
333 cx24123_writereg(state, 0x0e, nom_reg | 0x01);
334 cx24123_writereg(state, 0x0f, 0x02);
335 break;
b79cb653 336 case FEC_2_3:
caf970e0 337 dprintk("%s: set FEC to 2/3\n",__FUNCTION__);
0e4558ab
YP
338 cx24123_writereg(state, 0x0e, nom_reg | 0x02);
339 cx24123_writereg(state, 0x0f, 0x04);
340 break;
b79cb653 341 case FEC_3_4:
caf970e0 342 dprintk("%s: set FEC to 3/4\n",__FUNCTION__);
0e4558ab
YP
343 cx24123_writereg(state, 0x0e, nom_reg | 0x03);
344 cx24123_writereg(state, 0x0f, 0x08);
345 break;
346 case FEC_4_5:
caf970e0 347 dprintk("%s: set FEC to 4/5\n",__FUNCTION__);
0e4558ab
YP
348 cx24123_writereg(state, 0x0e, nom_reg | 0x04);
349 cx24123_writereg(state, 0x0f, 0x10);
350 break;
351 case FEC_5_6:
caf970e0 352 dprintk("%s: set FEC to 5/6\n",__FUNCTION__);
0e4558ab
YP
353 cx24123_writereg(state, 0x0e, nom_reg | 0x05);
354 cx24123_writereg(state, 0x0f, 0x20);
355 break;
356 case FEC_6_7:
357 dprintk("%s: set FEC to 6/7\n",__FUNCTION__);
358 cx24123_writereg(state, 0x0e, nom_reg | 0x06);
359 cx24123_writereg(state, 0x0f, 0x40);
360 break;
361 case FEC_7_8:
362 dprintk("%s: set FEC to 7/8\n",__FUNCTION__);
363 cx24123_writereg(state, 0x0e, nom_reg | 0x07);
364 cx24123_writereg(state, 0x0f, 0x80);
365 break;
b79cb653 366 case FEC_AUTO:
caf970e0 367 dprintk("%s: set FEC to auto\n",__FUNCTION__);
0e4558ab
YP
368 cx24123_writereg(state, 0x0f, 0xfe);
369 break;
b79cb653
ST
370 default:
371 return -EOPNOTSUPP;
372 }
0e4558ab
YP
373
374 return 0;
b79cb653
ST
375}
376
377static int cx24123_get_fec(struct cx24123_state* state, fe_code_rate_t *fec)
378{
e3b152bc 379 int ret;
b79cb653 380
e3b152bc
JS
381 ret = cx24123_readreg (state, 0x1b);
382 if (ret < 0)
383 return ret;
a74b51fc
VC
384 ret = ret & 0x07;
385
386 switch (ret) {
b79cb653 387 case 1:
e3b152bc
JS
388 *fec = FEC_1_2;
389 break;
a74b51fc 390 case 2:
e3b152bc
JS
391 *fec = FEC_2_3;
392 break;
a74b51fc 393 case 3:
e3b152bc
JS
394 *fec = FEC_3_4;
395 break;
a74b51fc 396 case 4:
e3b152bc
JS
397 *fec = FEC_4_5;
398 break;
a74b51fc 399 case 5:
e3b152bc
JS
400 *fec = FEC_5_6;
401 break;
a74b51fc
VC
402 case 6:
403 *fec = FEC_6_7;
404 break;
b79cb653 405 case 7:
e3b152bc
JS
406 *fec = FEC_7_8;
407 break;
b79cb653 408 default:
0e4558ab
YP
409 /* this can happen when there's no lock */
410 *fec = FEC_NONE;
b79cb653
ST
411 }
412
e3b152bc 413 return 0;
b79cb653
ST
414}
415
0e4558ab
YP
416/* Approximation of closest integer of log2(a/b). It actually gives the
417 lowest integer i such that 2^i >= round(a/b) */
418static u32 cx24123_int_log2(u32 a, u32 b)
419{
420 u32 exp, nearest = 0;
421 u32 div = a / b;
422 if(a % b >= b / 2) ++div;
423 if(div < (1 << 31))
424 {
425 for(exp = 1; div > exp; nearest++)
426 exp += exp;
427 }
428 return nearest;
429}
430
b79cb653
ST
431static int cx24123_set_symbolrate(struct cx24123_state* state, u32 srate)
432{
0e4558ab 433 u32 tmp, sample_rate, ratio, sample_gain;
a74b51fc
VC
434 u8 pll_mult;
435
436 /* check if symbol rate is within limits */
dea74869
PB
437 if ((srate > state->frontend.ops.info.symbol_rate_max) ||
438 (srate < state->frontend.ops.info.symbol_rate_min))
a74b51fc
VC
439 return -EOPNOTSUPP;;
440
441 /* choose the sampling rate high enough for the required operation,
442 while optimizing the power consumed by the demodulator */
443 if (srate < (XTAL*2)/2)
444 pll_mult = 2;
445 else if (srate < (XTAL*3)/2)
446 pll_mult = 3;
447 else if (srate < (XTAL*4)/2)
448 pll_mult = 4;
449 else if (srate < (XTAL*5)/2)
450 pll_mult = 5;
451 else if (srate < (XTAL*6)/2)
452 pll_mult = 6;
453 else if (srate < (XTAL*7)/2)
454 pll_mult = 7;
455 else if (srate < (XTAL*8)/2)
456 pll_mult = 8;
457 else
458 pll_mult = 9;
459
460
461 sample_rate = pll_mult * XTAL;
b79cb653 462
a74b51fc
VC
463 /*
464 SYSSymbolRate[21:0] = (srate << 23) / sample_rate
b79cb653 465
a74b51fc
VC
466 We have to use 32 bit unsigned arithmetic without precision loss.
467 The maximum srate is 45000000 or 0x02AEA540. This number has
468 only 6 clear bits on top, hence we can shift it left only 6 bits
469 at a time. Borrowed from cx24110.c
470 */
b79cb653 471
a74b51fc
VC
472 tmp = srate << 6;
473 ratio = tmp / sample_rate;
474
475 tmp = (tmp % sample_rate) << 6;
476 ratio = (ratio << 6) + (tmp / sample_rate);
477
478 tmp = (tmp % sample_rate) << 6;
479 ratio = (ratio << 6) + (tmp / sample_rate);
480
481 tmp = (tmp % sample_rate) << 5;
482 ratio = (ratio << 5) + (tmp / sample_rate);
483
484
485 cx24123_writereg(state, 0x01, pll_mult * 6);
486
487 cx24123_writereg(state, 0x08, (ratio >> 16) & 0x3f );
488 cx24123_writereg(state, 0x09, (ratio >> 8) & 0xff );
489 cx24123_writereg(state, 0x0a, (ratio ) & 0xff );
490
0e4558ab
YP
491 /* also set the demodulator sample gain */
492 sample_gain = cx24123_int_log2(sample_rate, srate);
493 tmp = cx24123_readreg(state, 0x0c) & ~0xe0;
494 cx24123_writereg(state, 0x0c, tmp | sample_gain << 5);
495
496 dprintk("%s: srate=%d, ratio=0x%08x, sample_rate=%i sample_gain=%d\n", __FUNCTION__, srate, ratio, sample_rate, sample_gain);
b79cb653
ST
497
498 return 0;
499}
500
501/*
502 * Based on the required frequency and symbolrate, the tuner AGC has to be configured
503 * and the correct band selected. Calculate those values
504 */
505static int cx24123_pll_calculate(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
506{
507 struct cx24123_state *state = fe->demodulator_priv;
e3b152bc
JS
508 u32 ndiv = 0, adiv = 0, vco_div = 0;
509 int i = 0;
a74b51fc 510 int pump = 2;
70047f9c
YP
511 int band = 0;
512 int num_bands = sizeof(cx24123_bandselect_vals) / sizeof(cx24123_bandselect_vals[0]);
b79cb653
ST
513
514 /* Defaults for low freq, low rate */
515 state->VCAarg = cx24123_AGC_vals[0].VCAprogdata;
516 state->VGAarg = cx24123_AGC_vals[0].VGAprogdata;
517 state->bandselectarg = cx24123_bandselect_vals[0].progdata;
518 vco_div = cx24123_bandselect_vals[0].VCOdivider;
519
a74b51fc 520 /* For the given symbol rate, determine the VCA, VGA and FILTUNE programming bits */
e3b152bc 521 for (i = 0; i < sizeof(cx24123_AGC_vals) / sizeof(cx24123_AGC_vals[0]); i++)
b79cb653
ST
522 {
523 if ((cx24123_AGC_vals[i].symbolrate_low <= p->u.qpsk.symbol_rate) &&
a74b51fc 524 (cx24123_AGC_vals[i].symbolrate_high >= p->u.qpsk.symbol_rate) ) {
b79cb653
ST
525 state->VCAarg = cx24123_AGC_vals[i].VCAprogdata;
526 state->VGAarg = cx24123_AGC_vals[i].VGAprogdata;
a74b51fc 527 state->FILTune = cx24123_AGC_vals[i].FILTune;
b79cb653
ST
528 }
529 }
530
70047f9c
YP
531 /* determine the band to use */
532 if(force_band < 1 || force_band > num_bands)
b79cb653 533 {
70047f9c
YP
534 for (i = 0; i < num_bands; i++)
535 {
536 if ((cx24123_bandselect_vals[i].freq_low <= p->frequency) &&
537 (cx24123_bandselect_vals[i].freq_high >= p->frequency) )
538 band = i;
b79cb653
ST
539 }
540 }
70047f9c
YP
541 else
542 band = force_band - 1;
543
544 state->bandselectarg = cx24123_bandselect_vals[band].progdata;
545 vco_div = cx24123_bandselect_vals[band].VCOdivider;
546
547 /* determine the charge pump current */
548 if ( p->frequency < (cx24123_bandselect_vals[band].freq_low + cx24123_bandselect_vals[band].freq_high)/2 )
549 pump = 0x01;
550 else
551 pump = 0x02;
b79cb653
ST
552
553 /* Determine the N/A dividers for the requested lband freq (in kHz). */
a74b51fc
VC
554 /* Note: the reference divider R=10, frequency is in KHz, XTAL is in Hz */
555 ndiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) / 32) & 0x1ff;
556 adiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) % 32) & 0x1f;
b79cb653
ST
557
558 if (adiv == 0)
a74b51fc 559 ndiv++;
b79cb653 560
a74b51fc
VC
561 /* control bits 11, refdiv 11, charge pump polarity 1, charge pump current, ndiv, adiv */
562 state->pllarg = (3 << 19) | (3 << 17) | (1 << 16) | (pump << 14) | (ndiv << 5) | adiv;
b79cb653
ST
563
564 return 0;
565}
566
567/*
568 * Tuner data is 21 bits long, must be left-aligned in data.
569 * Tuner cx24109 is written through a dedicated 3wire interface on the demod chip.
570 */
571static int cx24123_pll_writereg(struct dvb_frontend* fe, struct dvb_frontend_parameters *p, u32 data)
572{
573 struct cx24123_state *state = fe->demodulator_priv;
0144f314 574 unsigned long timeout;
b79cb653 575
caf970e0
MCC
576 dprintk("%s: pll writereg called, data=0x%08x\n",__FUNCTION__,data);
577
b79cb653
ST
578 /* align the 21 bytes into to bit23 boundary */
579 data = data << 3;
580
581 /* Reset the demod pll word length to 0x15 bits */
582 cx24123_writereg(state, 0x21, 0x15);
583
b79cb653 584 /* write the msb 8 bits, wait for the send to be completed */
0144f314 585 timeout = jiffies + msecs_to_jiffies(40);
e3b152bc 586 cx24123_writereg(state, 0x22, (data >> 16) & 0xff);
0144f314
ST
587 while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
588 if (time_after(jiffies, timeout)) {
589 printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
b79cb653
ST
590 return -EREMOTEIO;
591 }
0144f314 592 msleep(10);
b79cb653
ST
593 }
594
b79cb653 595 /* send another 8 bytes, wait for the send to be completed */
0144f314 596 timeout = jiffies + msecs_to_jiffies(40);
b79cb653 597 cx24123_writereg(state, 0x22, (data>>8) & 0xff );
0144f314
ST
598 while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
599 if (time_after(jiffies, timeout)) {
600 printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
b79cb653
ST
601 return -EREMOTEIO;
602 }
0144f314 603 msleep(10);
b79cb653
ST
604 }
605
b79cb653 606 /* send the lower 5 bits of this byte, padded with 3 LBB, wait for the send to be completed */
0144f314 607 timeout = jiffies + msecs_to_jiffies(40);
b79cb653 608 cx24123_writereg(state, 0x22, (data) & 0xff );
0144f314
ST
609 while ((cx24123_readreg(state, 0x20) & 0x80)) {
610 if (time_after(jiffies, timeout)) {
611 printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
b79cb653
ST
612 return -EREMOTEIO;
613 }
0144f314 614 msleep(10);
b79cb653
ST
615 }
616
617 /* Trigger the demod to configure the tuner */
618 cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) | 2);
619 cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) & 0xfd);
620
621 return 0;
622}
623
624static int cx24123_pll_tune(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
625{
626 struct cx24123_state *state = fe->demodulator_priv;
a74b51fc
VC
627 u8 val;
628
629 dprintk("frequency=%i\n", p->frequency);
b79cb653 630
e3b152bc 631 if (cx24123_pll_calculate(fe, p) != 0) {
b79cb653
ST
632 printk("%s: cx24123_pll_calcutate failed\n",__FUNCTION__);
633 return -EINVAL;
634 }
635
636 /* Write the new VCO/VGA */
637 cx24123_pll_writereg(fe, p, state->VCAarg);
638 cx24123_pll_writereg(fe, p, state->VGAarg);
639
640 /* Write the new bandselect and pll args */
641 cx24123_pll_writereg(fe, p, state->bandselectarg);
642 cx24123_pll_writereg(fe, p, state->pllarg);
643
a74b51fc
VC
644 /* set the FILTUNE voltage */
645 val = cx24123_readreg(state, 0x28) & ~0x3;
646 cx24123_writereg(state, 0x27, state->FILTune >> 2);
647 cx24123_writereg(state, 0x28, val | (state->FILTune & 0x3));
648
caf970e0
MCC
649 dprintk("%s: pll tune VCA=%d, band=%d, pll=%d\n",__FUNCTION__,state->VCAarg,
650 state->bandselectarg,state->pllarg);
651
b79cb653
ST
652 return 0;
653}
654
655static int cx24123_initfe(struct dvb_frontend* fe)
656{
657 struct cx24123_state *state = fe->demodulator_priv;
658 int i;
659
caf970e0
MCC
660 dprintk("%s: init frontend\n",__FUNCTION__);
661
b79cb653 662 /* Configure the demod to a good set of defaults */
e3b152bc 663 for (i = 0; i < sizeof(cx24123_regdata) / sizeof(cx24123_regdata[0]); i++)
b79cb653
ST
664 cx24123_writereg(state, cx24123_regdata[i].reg, cx24123_regdata[i].data);
665
b79cb653
ST
666 return 0;
667}
668
669static int cx24123_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage)
670{
671 struct cx24123_state *state = fe->demodulator_priv;
672 u8 val;
673
cd20ca9f 674 val = cx24123_readreg(state, 0x29) & ~0x40;
1c956a3a 675
cd20ca9f
AQ
676 switch (voltage) {
677 case SEC_VOLTAGE_13:
678 dprintk("%s: setting voltage 13V\n", __FUNCTION__);
ccd214b2 679 return cx24123_writereg(state, 0x29, val & 0x7f);
cd20ca9f
AQ
680 case SEC_VOLTAGE_18:
681 dprintk("%s: setting voltage 18V\n", __FUNCTION__);
ccd214b2 682 return cx24123_writereg(state, 0x29, val | 0x80);
cd20ca9f
AQ
683 default:
684 return -EINVAL;
685 };
1c956a3a
VC
686
687 return 0;
b79cb653
ST
688}
689
dce1dfc2
YP
690/* wait for diseqc queue to become ready (or timeout) */
691static void cx24123_wait_for_diseqc(struct cx24123_state *state)
692{
693 unsigned long timeout = jiffies + msecs_to_jiffies(200);
694 while (!(cx24123_readreg(state, 0x29) & 0x40)) {
695 if(time_after(jiffies, timeout)) {
696 printk("%s: diseqc queue not ready, command may be lost.\n", __FUNCTION__);
697 break;
698 }
699 msleep(10);
700 }
701}
702
a74b51fc 703static int cx24123_send_diseqc_msg(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd *cmd)
b79cb653 704{
a74b51fc 705 struct cx24123_state *state = fe->demodulator_priv;
cd20ca9f 706 int i, val, tone;
a74b51fc
VC
707
708 dprintk("%s:\n",__FUNCTION__);
b79cb653 709
cd20ca9f
AQ
710 /* stop continuous tone if enabled */
711 tone = cx24123_readreg(state, 0x29);
712 if (tone & 0x10)
713 cx24123_writereg(state, 0x29, tone & ~0x50);
a74b51fc 714
dce1dfc2
YP
715 /* wait for diseqc queue ready */
716 cx24123_wait_for_diseqc(state);
717
a74b51fc 718 /* select tone mode */
cd20ca9f 719 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb);
a74b51fc
VC
720
721 for (i = 0; i < cmd->msg_len; i++)
722 cx24123_writereg(state, 0x2C + i, cmd->msg[i]);
723
724 val = cx24123_readreg(state, 0x29);
725 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40) | ((cmd->msg_len-3) & 3));
726
dce1dfc2
YP
727 /* wait for diseqc message to finish sending */
728 cx24123_wait_for_diseqc(state);
a74b51fc 729
cd20ca9f
AQ
730 /* restart continuous tone if enabled */
731 if (tone & 0x10) {
732 cx24123_writereg(state, 0x29, tone & ~0x40);
733 }
734
a74b51fc
VC
735 return 0;
736}
737
738static int cx24123_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t burst)
739{
740 struct cx24123_state *state = fe->demodulator_priv;
cd20ca9f 741 int val, tone;
a74b51fc
VC
742
743 dprintk("%s:\n", __FUNCTION__);
744
cd20ca9f
AQ
745 /* stop continuous tone if enabled */
746 tone = cx24123_readreg(state, 0x29);
747 if (tone & 0x10)
748 cx24123_writereg(state, 0x29, tone & ~0x50);
a74b51fc 749
cd20ca9f 750 /* wait for diseqc queue ready */
dce1dfc2
YP
751 cx24123_wait_for_diseqc(state);
752
a74b51fc 753 /* select tone mode */
cd20ca9f
AQ
754 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) | 0x4);
755 msleep(30);
a74b51fc 756 val = cx24123_readreg(state, 0x29);
a74b51fc
VC
757 if (burst == SEC_MINI_A)
758 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x00));
759 else if (burst == SEC_MINI_B)
760 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x08));
761 else
762 return -EINVAL;
763
dce1dfc2 764 cx24123_wait_for_diseqc(state);
cd20ca9f 765 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb);
a74b51fc 766
cd20ca9f
AQ
767 /* restart continuous tone if enabled */
768 if (tone & 0x10) {
769 cx24123_writereg(state, 0x29, tone & ~0x40);
770 }
a74b51fc 771 return 0;
b79cb653
ST
772}
773
774static int cx24123_read_status(struct dvb_frontend* fe, fe_status_t* status)
775{
776 struct cx24123_state *state = fe->demodulator_priv;
777
778 int sync = cx24123_readreg(state, 0x14);
779 int lock = cx24123_readreg(state, 0x20);
780
781 *status = 0;
782 if (lock & 0x01)
a74b51fc
VC
783 *status |= FE_HAS_SIGNAL;
784 if (sync & 0x02)
785 *status |= FE_HAS_CARRIER;
b79cb653
ST
786 if (sync & 0x04)
787 *status |= FE_HAS_VITERBI;
788 if (sync & 0x08)
a74b51fc 789 *status |= FE_HAS_SYNC;
b79cb653 790 if (sync & 0x80)
a74b51fc 791 *status |= FE_HAS_LOCK;
b79cb653
ST
792
793 return 0;
794}
795
796/*
797 * Configured to return the measurement of errors in blocks, because no UCBLOCKS value
798 * is available, so this value doubles up to satisfy both measurements
799 */
800static int cx24123_read_ber(struct dvb_frontend* fe, u32* ber)
801{
802 struct cx24123_state *state = fe->demodulator_priv;
803
804 state->lastber =
805 ((cx24123_readreg(state, 0x1c) & 0x3f) << 16) |
806 (cx24123_readreg(state, 0x1d) << 8 |
807 cx24123_readreg(state, 0x1e));
808
809 /* Do the signal quality processing here, it's derived from the BER. */
810 /* Scale the BER from a 24bit to a SNR 16 bit where higher = better */
811 if (state->lastber < 5000)
812 state->snr = 655*100;
813 else if ( (state->lastber >= 5000) && (state->lastber < 55000) )
814 state->snr = 655*90;
815 else if ( (state->lastber >= 55000) && (state->lastber < 150000) )
816 state->snr = 655*80;
817 else if ( (state->lastber >= 150000) && (state->lastber < 250000) )
818 state->snr = 655*70;
819 else if ( (state->lastber >= 250000) && (state->lastber < 450000) )
820 state->snr = 655*65;
821 else
822 state->snr = 0;
823
caf970e0
MCC
824 dprintk("%s: BER = %d, S/N index = %d\n",__FUNCTION__,state->lastber, state->snr);
825
b79cb653
ST
826 *ber = state->lastber;
827
828 return 0;
829}
830
831static int cx24123_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
832{
833 struct cx24123_state *state = fe->demodulator_priv;
834 *signal_strength = cx24123_readreg(state, 0x3b) << 8; /* larger = better */
835
caf970e0
MCC
836 dprintk("%s: Signal strength = %d\n",__FUNCTION__,*signal_strength);
837
b79cb653
ST
838 return 0;
839}
840
841static int cx24123_read_snr(struct dvb_frontend* fe, u16* snr)
842{
843 struct cx24123_state *state = fe->demodulator_priv;
844 *snr = state->snr;
845
caf970e0
MCC
846 dprintk("%s: read S/N index = %d\n",__FUNCTION__,*snr);
847
b79cb653
ST
848 return 0;
849}
850
851static int cx24123_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
852{
853 struct cx24123_state *state = fe->demodulator_priv;
854 *ucblocks = state->lastber;
855
caf970e0
MCC
856 dprintk("%s: ucblocks (ber) = %d\n",__FUNCTION__,*ucblocks);
857
b79cb653
ST
858 return 0;
859}
860
861static int cx24123_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
862{
863 struct cx24123_state *state = fe->demodulator_priv;
864
caf970e0
MCC
865 dprintk("%s: set_frontend\n",__FUNCTION__);
866
b79cb653
ST
867 if (state->config->set_ts_params)
868 state->config->set_ts_params(fe, 0);
869
870 state->currentfreq=p->frequency;
e3b152bc 871 state->currentsymbolrate = p->u.qpsk.symbol_rate;
b79cb653
ST
872
873 cx24123_set_inversion(state, p->inversion);
874 cx24123_set_fec(state, p->u.qpsk.fec_inner);
875 cx24123_set_symbolrate(state, p->u.qpsk.symbol_rate);
876 cx24123_pll_tune(fe, p);
877
878 /* Enable automatic aquisition and reset cycle */
e3b152bc 879 cx24123_writereg(state, 0x03, (cx24123_readreg(state, 0x03) | 0x07));
b79cb653
ST
880 cx24123_writereg(state, 0x00, 0x10);
881 cx24123_writereg(state, 0x00, 0);
882
883 return 0;
884}
885
886static int cx24123_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
887{
888 struct cx24123_state *state = fe->demodulator_priv;
889
caf970e0
MCC
890 dprintk("%s: get_frontend\n",__FUNCTION__);
891
b79cb653
ST
892 if (cx24123_get_inversion(state, &p->inversion) != 0) {
893 printk("%s: Failed to get inversion status\n",__FUNCTION__);
894 return -EREMOTEIO;
895 }
896 if (cx24123_get_fec(state, &p->u.qpsk.fec_inner) != 0) {
897 printk("%s: Failed to get fec status\n",__FUNCTION__);
898 return -EREMOTEIO;
899 }
900 p->frequency = state->currentfreq;
901 p->u.qpsk.symbol_rate = state->currentsymbolrate;
902
903 return 0;
904}
905
906static int cx24123_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
907{
908 struct cx24123_state *state = fe->demodulator_priv;
909 u8 val;
910
cd20ca9f
AQ
911 /* wait for diseqc queue ready */
912 cx24123_wait_for_diseqc(state);
1c956a3a 913
cd20ca9f 914 val = cx24123_readreg(state, 0x29) & ~0x40;
1c956a3a 915
cd20ca9f
AQ
916 switch (tone) {
917 case SEC_TONE_ON:
918 dprintk("%s: setting tone on\n", __FUNCTION__);
919 return cx24123_writereg(state, 0x29, val | 0x10);
920 case SEC_TONE_OFF:
921 dprintk("%s: setting tone off\n",__FUNCTION__);
922 return cx24123_writereg(state, 0x29, val & 0xef);
923 default:
924 printk("%s: CASE reached default with tone=%d\n", __FUNCTION__, tone);
925 return -EINVAL;
b79cb653 926 }
1c956a3a
VC
927
928 return 0;
b79cb653
ST
929}
930
931static void cx24123_release(struct dvb_frontend* fe)
932{
933 struct cx24123_state* state = fe->demodulator_priv;
934 dprintk("%s\n",__FUNCTION__);
935 kfree(state);
936}
937
938static struct dvb_frontend_ops cx24123_ops;
939
e3b152bc
JS
940struct dvb_frontend* cx24123_attach(const struct cx24123_config* config,
941 struct i2c_adapter* i2c)
b79cb653
ST
942{
943 struct cx24123_state* state = NULL;
944 int ret;
945
946 dprintk("%s\n",__FUNCTION__);
947
948 /* allocate memory for the internal state */
949 state = kmalloc(sizeof(struct cx24123_state), GFP_KERNEL);
950 if (state == NULL) {
951 printk("Unable to kmalloc\n");
952 goto error;
953 }
954
955 /* setup the state */
956 state->config = config;
957 state->i2c = i2c;
b79cb653
ST
958 state->lastber = 0;
959 state->snr = 0;
b79cb653
ST
960 state->VCAarg = 0;
961 state->VGAarg = 0;
962 state->bandselectarg = 0;
963 state->pllarg = 0;
964 state->currentfreq = 0;
965 state->currentsymbolrate = 0;
966
967 /* check if the demod is there */
968 ret = cx24123_readreg(state, 0x00);
969 if ((ret != 0xd1) && (ret != 0xe1)) {
970 printk("Version != d1 or e1\n");
971 goto error;
972 }
973
974 /* create dvb_frontend */
dea74869 975 memcpy(&state->frontend.ops, &cx24123_ops, sizeof(struct dvb_frontend_ops));
b79cb653
ST
976 state->frontend.demodulator_priv = state;
977 return &state->frontend;
978
979error:
980 kfree(state);
981
982 return NULL;
983}
984
985static struct dvb_frontend_ops cx24123_ops = {
986
987 .info = {
988 .name = "Conexant CX24123/CX24109",
989 .type = FE_QPSK,
990 .frequency_min = 950000,
991 .frequency_max = 2150000,
992 .frequency_stepsize = 1011, /* kHz for QPSK frontends */
0e4558ab 993 .frequency_tolerance = 5000,
b79cb653
ST
994 .symbol_rate_min = 1000000,
995 .symbol_rate_max = 45000000,
996 .caps = FE_CAN_INVERSION_AUTO |
997 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
0e4558ab
YP
998 FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
999 FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
b79cb653
ST
1000 FE_CAN_QPSK | FE_CAN_RECOVER
1001 },
1002
1003 .release = cx24123_release,
1004
1005 .init = cx24123_initfe,
1006 .set_frontend = cx24123_set_frontend,
1007 .get_frontend = cx24123_get_frontend,
1008 .read_status = cx24123_read_status,
1009 .read_ber = cx24123_read_ber,
1010 .read_signal_strength = cx24123_read_signal_strength,
1011 .read_snr = cx24123_read_snr,
1012 .read_ucblocks = cx24123_read_ucblocks,
1013 .diseqc_send_master_cmd = cx24123_send_diseqc_msg,
a74b51fc 1014 .diseqc_send_burst = cx24123_diseqc_send_burst,
b79cb653
ST
1015 .set_tone = cx24123_set_tone,
1016 .set_voltage = cx24123_set_voltage,
1017};
1018
1019module_param(debug, int, 0644);
caf970e0 1020MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");
b79cb653 1021
70047f9c
YP
1022module_param(force_band, int, 0644);
1023MODULE_PARM_DESC(force_band, "Force a specific band select (1-9, default:off).");
1024
b79cb653
ST
1025MODULE_DESCRIPTION("DVB Frontend module for Conexant cx24123/cx24109 hardware");
1026MODULE_AUTHOR("Steven Toth");
1027MODULE_LICENSE("GPL");
1028
1029EXPORT_SYMBOL(cx24123_attach);