]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/media/dvb/frontends/cx24123.c
V4L/DVB (4028): Change dvb_frontend_ops to be a real field instead of a pointer field...
[mirror_ubuntu-artful-kernel.git] / drivers / media / dvb / frontends / cx24123.c
CommitLineData
b79cb653
ST
1/*
2 Conexant cx24123/cx24109 - DVB QPSK Satellite demod/tuner driver
3
4 Copyright (C) 2005 Steven Toth <stoth@hauppauge.com>
5
1c956a3a
VC
6 Support for KWorld DVB-S 100 by Vadim Catana <skystar@moldova.cc>
7
b79cb653
ST
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21*/
22
23#include <linux/slab.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/moduleparam.h>
27#include <linux/init.h>
28
29#include "dvb_frontend.h"
30#include "cx24123.h"
31
a74b51fc
VC
32#define XTAL 10111000
33
70047f9c 34static int force_band;
b79cb653
ST
35static int debug;
36#define dprintk(args...) \
37 do { \
38 if (debug) printk (KERN_DEBUG "cx24123: " args); \
39 } while (0)
40
e3b152bc
JS
41struct cx24123_state
42{
b79cb653 43 struct i2c_adapter* i2c;
b79cb653
ST
44 const struct cx24123_config* config;
45
46 struct dvb_frontend frontend;
47
48 u32 lastber;
49 u16 snr;
b79cb653
ST
50
51 /* Some PLL specifics for tuning */
52 u32 VCAarg;
53 u32 VGAarg;
54 u32 bandselectarg;
55 u32 pllarg;
a74b51fc 56 u32 FILTune;
b79cb653
ST
57
58 /* The Demod/Tuner can't easily provide these, we cache them */
59 u32 currentfreq;
60 u32 currentsymbolrate;
61};
62
e3b152bc
JS
63/* Various tuner defaults need to be established for a given symbol rate Sps */
64static struct
65{
66 u32 symbolrate_low;
67 u32 symbolrate_high;
e3b152bc
JS
68 u32 VCAprogdata;
69 u32 VGAprogdata;
a74b51fc 70 u32 FILTune;
e3b152bc
JS
71} cx24123_AGC_vals[] =
72{
73 {
74 .symbolrate_low = 1000000,
75 .symbolrate_high = 4999999,
a74b51fc
VC
76 /* the specs recommend other values for VGA offsets,
77 but tests show they are wrong */
0e4558ab
YP
78 .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0,
79 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x07,
80 .FILTune = 0x27f /* 0.41 V */
e3b152bc
JS
81 },
82 {
83 .symbolrate_low = 5000000,
84 .symbolrate_high = 14999999,
0e4558ab
YP
85 .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0,
86 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x1f,
a74b51fc 87 .FILTune = 0x317 /* 0.90 V */
e3b152bc
JS
88 },
89 {
90 .symbolrate_low = 15000000,
91 .symbolrate_high = 45000000,
0e4558ab
YP
92 .VGAprogdata = (1 << 19) | (0x100 << 9) | 0x180,
93 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x3f,
94 .FILTune = 0x145 /* 2.70 V */
e3b152bc
JS
95 },
96};
97
98/*
99 * Various tuner defaults need to be established for a given frequency kHz.
100 * fixme: The bounds on the bands do not match the doc in real life.
101 * fixme: Some of them have been moved, other might need adjustment.
102 */
103static struct
104{
105 u32 freq_low;
106 u32 freq_high;
e3b152bc 107 u32 VCOdivider;
e3b152bc
JS
108 u32 progdata;
109} cx24123_bandselect_vals[] =
110{
70047f9c 111 /* band 1 */
e3b152bc
JS
112 {
113 .freq_low = 950000,
e3b152bc 114 .freq_high = 1074999,
e3b152bc 115 .VCOdivider = 4,
70047f9c 116 .progdata = (0 << 19) | (0 << 9) | 0x40,
e3b152bc 117 },
70047f9c
YP
118
119 /* band 2 */
e3b152bc
JS
120 {
121 .freq_low = 1075000,
70047f9c
YP
122 .freq_high = 1177999,
123 .VCOdivider = 4,
124 .progdata = (0 << 19) | (0 << 9) | 0x80,
e3b152bc 125 },
70047f9c
YP
126
127 /* band 3 */
e3b152bc 128 {
70047f9c
YP
129 .freq_low = 1178000,
130 .freq_high = 1295999,
e3b152bc 131 .VCOdivider = 2,
70047f9c 132 .progdata = (0 << 19) | (1 << 9) | 0x01,
e3b152bc 133 },
70047f9c
YP
134
135 /* band 4 */
e3b152bc 136 {
70047f9c
YP
137 .freq_low = 1296000,
138 .freq_high = 1431999,
e3b152bc 139 .VCOdivider = 2,
70047f9c 140 .progdata = (0 << 19) | (1 << 9) | 0x02,
e3b152bc 141 },
70047f9c
YP
142
143 /* band 5 */
e3b152bc 144 {
70047f9c
YP
145 .freq_low = 1432000,
146 .freq_high = 1575999,
e3b152bc 147 .VCOdivider = 2,
70047f9c 148 .progdata = (0 << 19) | (1 << 9) | 0x04,
e3b152bc 149 },
70047f9c
YP
150
151 /* band 6 */
e3b152bc 152 {
70047f9c 153 .freq_low = 1576000,
e3b152bc 154 .freq_high = 1717999,
e3b152bc 155 .VCOdivider = 2,
70047f9c 156 .progdata = (0 << 19) | (1 << 9) | 0x08,
e3b152bc 157 },
70047f9c
YP
158
159 /* band 7 */
e3b152bc
JS
160 {
161 .freq_low = 1718000,
162 .freq_high = 1855999,
e3b152bc 163 .VCOdivider = 2,
70047f9c 164 .progdata = (0 << 19) | (1 << 9) | 0x10,
e3b152bc 165 },
70047f9c
YP
166
167 /* band 8 */
e3b152bc
JS
168 {
169 .freq_low = 1856000,
170 .freq_high = 2035999,
e3b152bc 171 .VCOdivider = 2,
70047f9c 172 .progdata = (0 << 19) | (1 << 9) | 0x20,
e3b152bc 173 },
70047f9c
YP
174
175 /* band 9 */
e3b152bc
JS
176 {
177 .freq_low = 2036000,
70047f9c 178 .freq_high = 2150000,
e3b152bc 179 .VCOdivider = 2,
70047f9c 180 .progdata = (0 << 19) | (1 << 9) | 0x40,
e3b152bc
JS
181 },
182};
183
b79cb653
ST
184static struct {
185 u8 reg;
186 u8 data;
187} cx24123_regdata[] =
188{
189 {0x00, 0x03}, /* Reset system */
190 {0x00, 0x00}, /* Clear reset */
0e4558ab
YP
191 {0x03, 0x07}, /* QPSK, DVB, Auto Acquisition (default) */
192 {0x04, 0x10}, /* MPEG */
193 {0x05, 0x04}, /* MPEG */
194 {0x06, 0x31}, /* MPEG (default) */
195 {0x0b, 0x00}, /* Freq search start point (default) */
196 {0x0c, 0x00}, /* Demodulator sample gain (default) */
197 {0x0d, 0x02}, /* Frequency search range = Fsymbol / 4 (default) */
198 {0x0e, 0x03}, /* Default non-inverted, FEC 3/4 (default) */
199 {0x0f, 0xfe}, /* FEC search mask (all supported codes) */
200 {0x10, 0x01}, /* Default search inversion, no repeat (default) */
201 {0x16, 0x00}, /* Enable reading of frequency */
202 {0x17, 0x01}, /* Enable EsNO Ready Counter */
203 {0x1c, 0x80}, /* Enable error counter */
204 {0x20, 0x00}, /* Tuner burst clock rate = 500KHz */
205 {0x21, 0x15}, /* Tuner burst mode, word length = 0x15 */
206 {0x28, 0x00}, /* Enable FILTERV with positive pol., DiSEqC 2.x off */
207 {0x29, 0x00}, /* DiSEqC LNB_DC off */
208 {0x2a, 0xb0}, /* DiSEqC Parameters (default) */
209 {0x2b, 0x73}, /* DiSEqC Tone Frequency (default) */
210 {0x2c, 0x00}, /* DiSEqC Message (0x2c - 0x31) */
b79cb653
ST
211 {0x2d, 0x00},
212 {0x2e, 0x00},
213 {0x2f, 0x00},
214 {0x30, 0x00},
215 {0x31, 0x00},
0e4558ab
YP
216 {0x32, 0x8c}, /* DiSEqC Parameters (default) */
217 {0x33, 0x00}, /* Interrupts off (0x33 - 0x34) */
b79cb653 218 {0x34, 0x00},
0e4558ab
YP
219 {0x35, 0x03}, /* DiSEqC Tone Amplitude (default) */
220 {0x36, 0x02}, /* DiSEqC Parameters (default) */
221 {0x37, 0x3a}, /* DiSEqC Parameters (default) */
222 {0x3a, 0x00}, /* Enable AGC accumulator (for signal strength) */
223 {0x44, 0x00}, /* Constellation (default) */
224 {0x45, 0x00}, /* Symbol count (default) */
225 {0x46, 0x0d}, /* Symbol rate estimator on (default) */
226 {0x56, 0x41}, /* Various (default) */
227 {0x57, 0xff}, /* Error Counter Window (default) */
228 {0x67, 0x83}, /* Non-DCII symbol clock */
b79cb653
ST
229};
230
231static int cx24123_writereg(struct cx24123_state* state, int reg, int data)
232{
233 u8 buf[] = { reg, data };
234 struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
235 int err;
236
caf970e0
MCC
237 if (debug>1)
238 printk("cx24123: %s: write reg 0x%02x, value 0x%02x\n",
239 __FUNCTION__,reg, data);
240
b79cb653
ST
241 if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) {
242 printk("%s: writereg error(err == %i, reg == 0x%02x,"
243 " data == 0x%02x)\n", __FUNCTION__, err, reg, data);
244 return -EREMOTEIO;
245 }
246
247 return 0;
248}
249
b79cb653
ST
250static int cx24123_readreg(struct cx24123_state* state, u8 reg)
251{
252 int ret;
253 u8 b0[] = { reg };
254 u8 b1[] = { 0 };
255 struct i2c_msg msg[] = {
256 { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 },
257 { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 }
258 };
259
260 ret = i2c_transfer(state->i2c, msg, 2);
261
262 if (ret != 2) {
263 printk("%s: reg=0x%x (error=%d)\n", __FUNCTION__, reg, ret);
264 return ret;
265 }
266
caf970e0
MCC
267 if (debug>1)
268 printk("cx24123: read reg 0x%02x, value 0x%02x\n",reg, ret);
269
b79cb653
ST
270 return b1[0];
271}
272
b79cb653
ST
273static int cx24123_set_inversion(struct cx24123_state* state, fe_spectral_inversion_t inversion)
274{
0e4558ab
YP
275 u8 nom_reg = cx24123_readreg(state, 0x0e);
276 u8 auto_reg = cx24123_readreg(state, 0x10);
277
b79cb653
ST
278 switch (inversion) {
279 case INVERSION_OFF:
caf970e0 280 dprintk("%s: inversion off\n",__FUNCTION__);
0e4558ab
YP
281 cx24123_writereg(state, 0x0e, nom_reg & ~0x80);
282 cx24123_writereg(state, 0x10, auto_reg | 0x80);
b79cb653
ST
283 break;
284 case INVERSION_ON:
caf970e0 285 dprintk("%s: inversion on\n",__FUNCTION__);
0e4558ab
YP
286 cx24123_writereg(state, 0x0e, nom_reg | 0x80);
287 cx24123_writereg(state, 0x10, auto_reg | 0x80);
b79cb653
ST
288 break;
289 case INVERSION_AUTO:
caf970e0 290 dprintk("%s: inversion auto\n",__FUNCTION__);
0e4558ab 291 cx24123_writereg(state, 0x10, auto_reg & ~0x80);
b79cb653
ST
292 break;
293 default:
294 return -EINVAL;
295 }
296
297 return 0;
298}
299
300static int cx24123_get_inversion(struct cx24123_state* state, fe_spectral_inversion_t *inversion)
301{
302 u8 val;
303
304 val = cx24123_readreg(state, 0x1b) >> 7;
305
caf970e0
MCC
306 if (val == 0) {
307 dprintk("%s: read inversion off\n",__FUNCTION__);
e3b152bc 308 *inversion = INVERSION_OFF;
caf970e0
MCC
309 } else {
310 dprintk("%s: read inversion on\n",__FUNCTION__);
e3b152bc 311 *inversion = INVERSION_ON;
caf970e0 312 }
b79cb653
ST
313
314 return 0;
315}
316
317static int cx24123_set_fec(struct cx24123_state* state, fe_code_rate_t fec)
318{
0e4558ab
YP
319 u8 nom_reg = cx24123_readreg(state, 0x0e) & ~0x07;
320
b79cb653 321 if ( (fec < FEC_NONE) || (fec > FEC_AUTO) )
e3b152bc 322 fec = FEC_AUTO;
b79cb653 323
b79cb653 324 switch (fec) {
b79cb653 325 case FEC_1_2:
caf970e0 326 dprintk("%s: set FEC to 1/2\n",__FUNCTION__);
0e4558ab
YP
327 cx24123_writereg(state, 0x0e, nom_reg | 0x01);
328 cx24123_writereg(state, 0x0f, 0x02);
329 break;
b79cb653 330 case FEC_2_3:
caf970e0 331 dprintk("%s: set FEC to 2/3\n",__FUNCTION__);
0e4558ab
YP
332 cx24123_writereg(state, 0x0e, nom_reg | 0x02);
333 cx24123_writereg(state, 0x0f, 0x04);
334 break;
b79cb653 335 case FEC_3_4:
caf970e0 336 dprintk("%s: set FEC to 3/4\n",__FUNCTION__);
0e4558ab
YP
337 cx24123_writereg(state, 0x0e, nom_reg | 0x03);
338 cx24123_writereg(state, 0x0f, 0x08);
339 break;
340 case FEC_4_5:
caf970e0 341 dprintk("%s: set FEC to 4/5\n",__FUNCTION__);
0e4558ab
YP
342 cx24123_writereg(state, 0x0e, nom_reg | 0x04);
343 cx24123_writereg(state, 0x0f, 0x10);
344 break;
345 case FEC_5_6:
caf970e0 346 dprintk("%s: set FEC to 5/6\n",__FUNCTION__);
0e4558ab
YP
347 cx24123_writereg(state, 0x0e, nom_reg | 0x05);
348 cx24123_writereg(state, 0x0f, 0x20);
349 break;
350 case FEC_6_7:
351 dprintk("%s: set FEC to 6/7\n",__FUNCTION__);
352 cx24123_writereg(state, 0x0e, nom_reg | 0x06);
353 cx24123_writereg(state, 0x0f, 0x40);
354 break;
355 case FEC_7_8:
356 dprintk("%s: set FEC to 7/8\n",__FUNCTION__);
357 cx24123_writereg(state, 0x0e, nom_reg | 0x07);
358 cx24123_writereg(state, 0x0f, 0x80);
359 break;
b79cb653 360 case FEC_AUTO:
caf970e0 361 dprintk("%s: set FEC to auto\n",__FUNCTION__);
0e4558ab
YP
362 cx24123_writereg(state, 0x0f, 0xfe);
363 break;
b79cb653
ST
364 default:
365 return -EOPNOTSUPP;
366 }
0e4558ab
YP
367
368 return 0;
b79cb653
ST
369}
370
371static int cx24123_get_fec(struct cx24123_state* state, fe_code_rate_t *fec)
372{
e3b152bc 373 int ret;
b79cb653 374
e3b152bc
JS
375 ret = cx24123_readreg (state, 0x1b);
376 if (ret < 0)
377 return ret;
a74b51fc
VC
378 ret = ret & 0x07;
379
380 switch (ret) {
b79cb653 381 case 1:
e3b152bc
JS
382 *fec = FEC_1_2;
383 break;
a74b51fc 384 case 2:
e3b152bc
JS
385 *fec = FEC_2_3;
386 break;
a74b51fc 387 case 3:
e3b152bc
JS
388 *fec = FEC_3_4;
389 break;
a74b51fc 390 case 4:
e3b152bc
JS
391 *fec = FEC_4_5;
392 break;
a74b51fc 393 case 5:
e3b152bc
JS
394 *fec = FEC_5_6;
395 break;
a74b51fc
VC
396 case 6:
397 *fec = FEC_6_7;
398 break;
b79cb653 399 case 7:
e3b152bc
JS
400 *fec = FEC_7_8;
401 break;
b79cb653 402 default:
0e4558ab
YP
403 /* this can happen when there's no lock */
404 *fec = FEC_NONE;
b79cb653
ST
405 }
406
e3b152bc 407 return 0;
b79cb653
ST
408}
409
0e4558ab
YP
410/* Approximation of closest integer of log2(a/b). It actually gives the
411 lowest integer i such that 2^i >= round(a/b) */
412static u32 cx24123_int_log2(u32 a, u32 b)
413{
414 u32 exp, nearest = 0;
415 u32 div = a / b;
416 if(a % b >= b / 2) ++div;
417 if(div < (1 << 31))
418 {
419 for(exp = 1; div > exp; nearest++)
420 exp += exp;
421 }
422 return nearest;
423}
424
b79cb653
ST
425static int cx24123_set_symbolrate(struct cx24123_state* state, u32 srate)
426{
0e4558ab 427 u32 tmp, sample_rate, ratio, sample_gain;
a74b51fc
VC
428 u8 pll_mult;
429
430 /* check if symbol rate is within limits */
dea74869
PB
431 if ((srate > state->frontend.ops.info.symbol_rate_max) ||
432 (srate < state->frontend.ops.info.symbol_rate_min))
a74b51fc
VC
433 return -EOPNOTSUPP;;
434
435 /* choose the sampling rate high enough for the required operation,
436 while optimizing the power consumed by the demodulator */
437 if (srate < (XTAL*2)/2)
438 pll_mult = 2;
439 else if (srate < (XTAL*3)/2)
440 pll_mult = 3;
441 else if (srate < (XTAL*4)/2)
442 pll_mult = 4;
443 else if (srate < (XTAL*5)/2)
444 pll_mult = 5;
445 else if (srate < (XTAL*6)/2)
446 pll_mult = 6;
447 else if (srate < (XTAL*7)/2)
448 pll_mult = 7;
449 else if (srate < (XTAL*8)/2)
450 pll_mult = 8;
451 else
452 pll_mult = 9;
453
454
455 sample_rate = pll_mult * XTAL;
b79cb653 456
a74b51fc
VC
457 /*
458 SYSSymbolRate[21:0] = (srate << 23) / sample_rate
b79cb653 459
a74b51fc
VC
460 We have to use 32 bit unsigned arithmetic without precision loss.
461 The maximum srate is 45000000 or 0x02AEA540. This number has
462 only 6 clear bits on top, hence we can shift it left only 6 bits
463 at a time. Borrowed from cx24110.c
464 */
b79cb653 465
a74b51fc
VC
466 tmp = srate << 6;
467 ratio = tmp / sample_rate;
468
469 tmp = (tmp % sample_rate) << 6;
470 ratio = (ratio << 6) + (tmp / sample_rate);
471
472 tmp = (tmp % sample_rate) << 6;
473 ratio = (ratio << 6) + (tmp / sample_rate);
474
475 tmp = (tmp % sample_rate) << 5;
476 ratio = (ratio << 5) + (tmp / sample_rate);
477
478
479 cx24123_writereg(state, 0x01, pll_mult * 6);
480
481 cx24123_writereg(state, 0x08, (ratio >> 16) & 0x3f );
482 cx24123_writereg(state, 0x09, (ratio >> 8) & 0xff );
483 cx24123_writereg(state, 0x0a, (ratio ) & 0xff );
484
0e4558ab
YP
485 /* also set the demodulator sample gain */
486 sample_gain = cx24123_int_log2(sample_rate, srate);
487 tmp = cx24123_readreg(state, 0x0c) & ~0xe0;
488 cx24123_writereg(state, 0x0c, tmp | sample_gain << 5);
489
490 dprintk("%s: srate=%d, ratio=0x%08x, sample_rate=%i sample_gain=%d\n", __FUNCTION__, srate, ratio, sample_rate, sample_gain);
b79cb653
ST
491
492 return 0;
493}
494
495/*
496 * Based on the required frequency and symbolrate, the tuner AGC has to be configured
497 * and the correct band selected. Calculate those values
498 */
499static int cx24123_pll_calculate(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
500{
501 struct cx24123_state *state = fe->demodulator_priv;
e3b152bc
JS
502 u32 ndiv = 0, adiv = 0, vco_div = 0;
503 int i = 0;
a74b51fc 504 int pump = 2;
70047f9c
YP
505 int band = 0;
506 int num_bands = sizeof(cx24123_bandselect_vals) / sizeof(cx24123_bandselect_vals[0]);
b79cb653
ST
507
508 /* Defaults for low freq, low rate */
509 state->VCAarg = cx24123_AGC_vals[0].VCAprogdata;
510 state->VGAarg = cx24123_AGC_vals[0].VGAprogdata;
511 state->bandselectarg = cx24123_bandselect_vals[0].progdata;
512 vco_div = cx24123_bandselect_vals[0].VCOdivider;
513
a74b51fc 514 /* For the given symbol rate, determine the VCA, VGA and FILTUNE programming bits */
e3b152bc 515 for (i = 0; i < sizeof(cx24123_AGC_vals) / sizeof(cx24123_AGC_vals[0]); i++)
b79cb653
ST
516 {
517 if ((cx24123_AGC_vals[i].symbolrate_low <= p->u.qpsk.symbol_rate) &&
a74b51fc 518 (cx24123_AGC_vals[i].symbolrate_high >= p->u.qpsk.symbol_rate) ) {
b79cb653
ST
519 state->VCAarg = cx24123_AGC_vals[i].VCAprogdata;
520 state->VGAarg = cx24123_AGC_vals[i].VGAprogdata;
a74b51fc 521 state->FILTune = cx24123_AGC_vals[i].FILTune;
b79cb653
ST
522 }
523 }
524
70047f9c
YP
525 /* determine the band to use */
526 if(force_band < 1 || force_band > num_bands)
b79cb653 527 {
70047f9c
YP
528 for (i = 0; i < num_bands; i++)
529 {
530 if ((cx24123_bandselect_vals[i].freq_low <= p->frequency) &&
531 (cx24123_bandselect_vals[i].freq_high >= p->frequency) )
532 band = i;
b79cb653
ST
533 }
534 }
70047f9c
YP
535 else
536 band = force_band - 1;
537
538 state->bandselectarg = cx24123_bandselect_vals[band].progdata;
539 vco_div = cx24123_bandselect_vals[band].VCOdivider;
540
541 /* determine the charge pump current */
542 if ( p->frequency < (cx24123_bandselect_vals[band].freq_low + cx24123_bandselect_vals[band].freq_high)/2 )
543 pump = 0x01;
544 else
545 pump = 0x02;
b79cb653
ST
546
547 /* Determine the N/A dividers for the requested lband freq (in kHz). */
a74b51fc
VC
548 /* Note: the reference divider R=10, frequency is in KHz, XTAL is in Hz */
549 ndiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) / 32) & 0x1ff;
550 adiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) % 32) & 0x1f;
b79cb653
ST
551
552 if (adiv == 0)
a74b51fc 553 ndiv++;
b79cb653 554
a74b51fc
VC
555 /* control bits 11, refdiv 11, charge pump polarity 1, charge pump current, ndiv, adiv */
556 state->pllarg = (3 << 19) | (3 << 17) | (1 << 16) | (pump << 14) | (ndiv << 5) | adiv;
b79cb653
ST
557
558 return 0;
559}
560
561/*
562 * Tuner data is 21 bits long, must be left-aligned in data.
563 * Tuner cx24109 is written through a dedicated 3wire interface on the demod chip.
564 */
565static int cx24123_pll_writereg(struct dvb_frontend* fe, struct dvb_frontend_parameters *p, u32 data)
566{
567 struct cx24123_state *state = fe->demodulator_priv;
0144f314 568 unsigned long timeout;
b79cb653 569
caf970e0
MCC
570 dprintk("%s: pll writereg called, data=0x%08x\n",__FUNCTION__,data);
571
b79cb653
ST
572 /* align the 21 bytes into to bit23 boundary */
573 data = data << 3;
574
575 /* Reset the demod pll word length to 0x15 bits */
576 cx24123_writereg(state, 0x21, 0x15);
577
b79cb653 578 /* write the msb 8 bits, wait for the send to be completed */
0144f314 579 timeout = jiffies + msecs_to_jiffies(40);
e3b152bc 580 cx24123_writereg(state, 0x22, (data >> 16) & 0xff);
0144f314
ST
581 while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
582 if (time_after(jiffies, timeout)) {
583 printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
b79cb653
ST
584 return -EREMOTEIO;
585 }
0144f314 586 msleep(10);
b79cb653
ST
587 }
588
b79cb653 589 /* send another 8 bytes, wait for the send to be completed */
0144f314 590 timeout = jiffies + msecs_to_jiffies(40);
b79cb653 591 cx24123_writereg(state, 0x22, (data>>8) & 0xff );
0144f314
ST
592 while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
593 if (time_after(jiffies, timeout)) {
594 printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
b79cb653
ST
595 return -EREMOTEIO;
596 }
0144f314 597 msleep(10);
b79cb653
ST
598 }
599
b79cb653 600 /* send the lower 5 bits of this byte, padded with 3 LBB, wait for the send to be completed */
0144f314 601 timeout = jiffies + msecs_to_jiffies(40);
b79cb653 602 cx24123_writereg(state, 0x22, (data) & 0xff );
0144f314
ST
603 while ((cx24123_readreg(state, 0x20) & 0x80)) {
604 if (time_after(jiffies, timeout)) {
605 printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
b79cb653
ST
606 return -EREMOTEIO;
607 }
0144f314 608 msleep(10);
b79cb653
ST
609 }
610
611 /* Trigger the demod to configure the tuner */
612 cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) | 2);
613 cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) & 0xfd);
614
615 return 0;
616}
617
618static int cx24123_pll_tune(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
619{
620 struct cx24123_state *state = fe->demodulator_priv;
a74b51fc
VC
621 u8 val;
622
623 dprintk("frequency=%i\n", p->frequency);
b79cb653 624
e3b152bc 625 if (cx24123_pll_calculate(fe, p) != 0) {
b79cb653
ST
626 printk("%s: cx24123_pll_calcutate failed\n",__FUNCTION__);
627 return -EINVAL;
628 }
629
630 /* Write the new VCO/VGA */
631 cx24123_pll_writereg(fe, p, state->VCAarg);
632 cx24123_pll_writereg(fe, p, state->VGAarg);
633
634 /* Write the new bandselect and pll args */
635 cx24123_pll_writereg(fe, p, state->bandselectarg);
636 cx24123_pll_writereg(fe, p, state->pllarg);
637
a74b51fc
VC
638 /* set the FILTUNE voltage */
639 val = cx24123_readreg(state, 0x28) & ~0x3;
640 cx24123_writereg(state, 0x27, state->FILTune >> 2);
641 cx24123_writereg(state, 0x28, val | (state->FILTune & 0x3));
642
caf970e0
MCC
643 dprintk("%s: pll tune VCA=%d, band=%d, pll=%d\n",__FUNCTION__,state->VCAarg,
644 state->bandselectarg,state->pllarg);
645
b79cb653
ST
646 return 0;
647}
648
649static int cx24123_initfe(struct dvb_frontend* fe)
650{
651 struct cx24123_state *state = fe->demodulator_priv;
652 int i;
653
caf970e0
MCC
654 dprintk("%s: init frontend\n",__FUNCTION__);
655
b79cb653 656 /* Configure the demod to a good set of defaults */
e3b152bc 657 for (i = 0; i < sizeof(cx24123_regdata) / sizeof(cx24123_regdata[0]); i++)
b79cb653
ST
658 cx24123_writereg(state, cx24123_regdata[i].reg, cx24123_regdata[i].data);
659
b79cb653
ST
660 return 0;
661}
662
663static int cx24123_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage)
664{
665 struct cx24123_state *state = fe->demodulator_priv;
666 u8 val;
667
cd20ca9f 668 val = cx24123_readreg(state, 0x29) & ~0x40;
1c956a3a 669
cd20ca9f
AQ
670 switch (voltage) {
671 case SEC_VOLTAGE_13:
672 dprintk("%s: setting voltage 13V\n", __FUNCTION__);
673 return cx24123_writereg(state, 0x29, val | 0x80);
674 case SEC_VOLTAGE_18:
675 dprintk("%s: setting voltage 18V\n", __FUNCTION__);
676 return cx24123_writereg(state, 0x29, val & 0x7f);
677 default:
678 return -EINVAL;
679 };
1c956a3a
VC
680
681 return 0;
b79cb653
ST
682}
683
dce1dfc2
YP
684/* wait for diseqc queue to become ready (or timeout) */
685static void cx24123_wait_for_diseqc(struct cx24123_state *state)
686{
687 unsigned long timeout = jiffies + msecs_to_jiffies(200);
688 while (!(cx24123_readreg(state, 0x29) & 0x40)) {
689 if(time_after(jiffies, timeout)) {
690 printk("%s: diseqc queue not ready, command may be lost.\n", __FUNCTION__);
691 break;
692 }
693 msleep(10);
694 }
695}
696
a74b51fc 697static int cx24123_send_diseqc_msg(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd *cmd)
b79cb653 698{
a74b51fc 699 struct cx24123_state *state = fe->demodulator_priv;
cd20ca9f 700 int i, val, tone;
a74b51fc
VC
701
702 dprintk("%s:\n",__FUNCTION__);
b79cb653 703
cd20ca9f
AQ
704 /* stop continuous tone if enabled */
705 tone = cx24123_readreg(state, 0x29);
706 if (tone & 0x10)
707 cx24123_writereg(state, 0x29, tone & ~0x50);
a74b51fc 708
dce1dfc2
YP
709 /* wait for diseqc queue ready */
710 cx24123_wait_for_diseqc(state);
711
a74b51fc 712 /* select tone mode */
cd20ca9f 713 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb);
a74b51fc
VC
714
715 for (i = 0; i < cmd->msg_len; i++)
716 cx24123_writereg(state, 0x2C + i, cmd->msg[i]);
717
718 val = cx24123_readreg(state, 0x29);
719 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40) | ((cmd->msg_len-3) & 3));
720
dce1dfc2
YP
721 /* wait for diseqc message to finish sending */
722 cx24123_wait_for_diseqc(state);
a74b51fc 723
cd20ca9f
AQ
724 /* restart continuous tone if enabled */
725 if (tone & 0x10) {
726 cx24123_writereg(state, 0x29, tone & ~0x40);
727 }
728
a74b51fc
VC
729 return 0;
730}
731
732static int cx24123_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t burst)
733{
734 struct cx24123_state *state = fe->demodulator_priv;
cd20ca9f 735 int val, tone;
a74b51fc
VC
736
737 dprintk("%s:\n", __FUNCTION__);
738
cd20ca9f
AQ
739 /* stop continuous tone if enabled */
740 tone = cx24123_readreg(state, 0x29);
741 if (tone & 0x10)
742 cx24123_writereg(state, 0x29, tone & ~0x50);
a74b51fc 743
cd20ca9f 744 /* wait for diseqc queue ready */
dce1dfc2
YP
745 cx24123_wait_for_diseqc(state);
746
a74b51fc 747 /* select tone mode */
cd20ca9f
AQ
748 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) | 0x4);
749 msleep(30);
a74b51fc 750 val = cx24123_readreg(state, 0x29);
a74b51fc
VC
751 if (burst == SEC_MINI_A)
752 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x00));
753 else if (burst == SEC_MINI_B)
754 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x08));
755 else
756 return -EINVAL;
757
dce1dfc2 758 cx24123_wait_for_diseqc(state);
cd20ca9f 759 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb);
a74b51fc 760
cd20ca9f
AQ
761 /* restart continuous tone if enabled */
762 if (tone & 0x10) {
763 cx24123_writereg(state, 0x29, tone & ~0x40);
764 }
a74b51fc 765 return 0;
b79cb653
ST
766}
767
768static int cx24123_read_status(struct dvb_frontend* fe, fe_status_t* status)
769{
770 struct cx24123_state *state = fe->demodulator_priv;
771
772 int sync = cx24123_readreg(state, 0x14);
773 int lock = cx24123_readreg(state, 0x20);
774
775 *status = 0;
776 if (lock & 0x01)
a74b51fc
VC
777 *status |= FE_HAS_SIGNAL;
778 if (sync & 0x02)
779 *status |= FE_HAS_CARRIER;
b79cb653
ST
780 if (sync & 0x04)
781 *status |= FE_HAS_VITERBI;
782 if (sync & 0x08)
a74b51fc 783 *status |= FE_HAS_SYNC;
b79cb653 784 if (sync & 0x80)
a74b51fc 785 *status |= FE_HAS_LOCK;
b79cb653
ST
786
787 return 0;
788}
789
790/*
791 * Configured to return the measurement of errors in blocks, because no UCBLOCKS value
792 * is available, so this value doubles up to satisfy both measurements
793 */
794static int cx24123_read_ber(struct dvb_frontend* fe, u32* ber)
795{
796 struct cx24123_state *state = fe->demodulator_priv;
797
798 state->lastber =
799 ((cx24123_readreg(state, 0x1c) & 0x3f) << 16) |
800 (cx24123_readreg(state, 0x1d) << 8 |
801 cx24123_readreg(state, 0x1e));
802
803 /* Do the signal quality processing here, it's derived from the BER. */
804 /* Scale the BER from a 24bit to a SNR 16 bit where higher = better */
805 if (state->lastber < 5000)
806 state->snr = 655*100;
807 else if ( (state->lastber >= 5000) && (state->lastber < 55000) )
808 state->snr = 655*90;
809 else if ( (state->lastber >= 55000) && (state->lastber < 150000) )
810 state->snr = 655*80;
811 else if ( (state->lastber >= 150000) && (state->lastber < 250000) )
812 state->snr = 655*70;
813 else if ( (state->lastber >= 250000) && (state->lastber < 450000) )
814 state->snr = 655*65;
815 else
816 state->snr = 0;
817
caf970e0
MCC
818 dprintk("%s: BER = %d, S/N index = %d\n",__FUNCTION__,state->lastber, state->snr);
819
b79cb653
ST
820 *ber = state->lastber;
821
822 return 0;
823}
824
825static int cx24123_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
826{
827 struct cx24123_state *state = fe->demodulator_priv;
828 *signal_strength = cx24123_readreg(state, 0x3b) << 8; /* larger = better */
829
caf970e0
MCC
830 dprintk("%s: Signal strength = %d\n",__FUNCTION__,*signal_strength);
831
b79cb653
ST
832 return 0;
833}
834
835static int cx24123_read_snr(struct dvb_frontend* fe, u16* snr)
836{
837 struct cx24123_state *state = fe->demodulator_priv;
838 *snr = state->snr;
839
caf970e0
MCC
840 dprintk("%s: read S/N index = %d\n",__FUNCTION__,*snr);
841
b79cb653
ST
842 return 0;
843}
844
845static int cx24123_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
846{
847 struct cx24123_state *state = fe->demodulator_priv;
848 *ucblocks = state->lastber;
849
caf970e0
MCC
850 dprintk("%s: ucblocks (ber) = %d\n",__FUNCTION__,*ucblocks);
851
b79cb653
ST
852 return 0;
853}
854
855static int cx24123_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
856{
857 struct cx24123_state *state = fe->demodulator_priv;
858
caf970e0
MCC
859 dprintk("%s: set_frontend\n",__FUNCTION__);
860
b79cb653
ST
861 if (state->config->set_ts_params)
862 state->config->set_ts_params(fe, 0);
863
864 state->currentfreq=p->frequency;
e3b152bc 865 state->currentsymbolrate = p->u.qpsk.symbol_rate;
b79cb653
ST
866
867 cx24123_set_inversion(state, p->inversion);
868 cx24123_set_fec(state, p->u.qpsk.fec_inner);
869 cx24123_set_symbolrate(state, p->u.qpsk.symbol_rate);
870 cx24123_pll_tune(fe, p);
871
872 /* Enable automatic aquisition and reset cycle */
e3b152bc 873 cx24123_writereg(state, 0x03, (cx24123_readreg(state, 0x03) | 0x07));
b79cb653
ST
874 cx24123_writereg(state, 0x00, 0x10);
875 cx24123_writereg(state, 0x00, 0);
876
877 return 0;
878}
879
880static int cx24123_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
881{
882 struct cx24123_state *state = fe->demodulator_priv;
883
caf970e0
MCC
884 dprintk("%s: get_frontend\n",__FUNCTION__);
885
b79cb653
ST
886 if (cx24123_get_inversion(state, &p->inversion) != 0) {
887 printk("%s: Failed to get inversion status\n",__FUNCTION__);
888 return -EREMOTEIO;
889 }
890 if (cx24123_get_fec(state, &p->u.qpsk.fec_inner) != 0) {
891 printk("%s: Failed to get fec status\n",__FUNCTION__);
892 return -EREMOTEIO;
893 }
894 p->frequency = state->currentfreq;
895 p->u.qpsk.symbol_rate = state->currentsymbolrate;
896
897 return 0;
898}
899
900static int cx24123_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
901{
902 struct cx24123_state *state = fe->demodulator_priv;
903 u8 val;
904
cd20ca9f
AQ
905 /* wait for diseqc queue ready */
906 cx24123_wait_for_diseqc(state);
1c956a3a 907
cd20ca9f 908 val = cx24123_readreg(state, 0x29) & ~0x40;
1c956a3a 909
cd20ca9f
AQ
910 switch (tone) {
911 case SEC_TONE_ON:
912 dprintk("%s: setting tone on\n", __FUNCTION__);
913 return cx24123_writereg(state, 0x29, val | 0x10);
914 case SEC_TONE_OFF:
915 dprintk("%s: setting tone off\n",__FUNCTION__);
916 return cx24123_writereg(state, 0x29, val & 0xef);
917 default:
918 printk("%s: CASE reached default with tone=%d\n", __FUNCTION__, tone);
919 return -EINVAL;
b79cb653 920 }
1c956a3a
VC
921
922 return 0;
b79cb653
ST
923}
924
925static void cx24123_release(struct dvb_frontend* fe)
926{
927 struct cx24123_state* state = fe->demodulator_priv;
928 dprintk("%s\n",__FUNCTION__);
929 kfree(state);
930}
931
932static struct dvb_frontend_ops cx24123_ops;
933
e3b152bc
JS
934struct dvb_frontend* cx24123_attach(const struct cx24123_config* config,
935 struct i2c_adapter* i2c)
b79cb653
ST
936{
937 struct cx24123_state* state = NULL;
938 int ret;
939
940 dprintk("%s\n",__FUNCTION__);
941
942 /* allocate memory for the internal state */
943 state = kmalloc(sizeof(struct cx24123_state), GFP_KERNEL);
944 if (state == NULL) {
945 printk("Unable to kmalloc\n");
946 goto error;
947 }
948
949 /* setup the state */
950 state->config = config;
951 state->i2c = i2c;
b79cb653
ST
952 state->lastber = 0;
953 state->snr = 0;
b79cb653
ST
954 state->VCAarg = 0;
955 state->VGAarg = 0;
956 state->bandselectarg = 0;
957 state->pllarg = 0;
958 state->currentfreq = 0;
959 state->currentsymbolrate = 0;
960
961 /* check if the demod is there */
962 ret = cx24123_readreg(state, 0x00);
963 if ((ret != 0xd1) && (ret != 0xe1)) {
964 printk("Version != d1 or e1\n");
965 goto error;
966 }
967
968 /* create dvb_frontend */
dea74869 969 memcpy(&state->frontend.ops, &cx24123_ops, sizeof(struct dvb_frontend_ops));
b79cb653
ST
970 state->frontend.demodulator_priv = state;
971 return &state->frontend;
972
973error:
974 kfree(state);
975
976 return NULL;
977}
978
979static struct dvb_frontend_ops cx24123_ops = {
980
981 .info = {
982 .name = "Conexant CX24123/CX24109",
983 .type = FE_QPSK,
984 .frequency_min = 950000,
985 .frequency_max = 2150000,
986 .frequency_stepsize = 1011, /* kHz for QPSK frontends */
0e4558ab 987 .frequency_tolerance = 5000,
b79cb653
ST
988 .symbol_rate_min = 1000000,
989 .symbol_rate_max = 45000000,
990 .caps = FE_CAN_INVERSION_AUTO |
991 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
0e4558ab
YP
992 FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
993 FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
b79cb653
ST
994 FE_CAN_QPSK | FE_CAN_RECOVER
995 },
996
997 .release = cx24123_release,
998
999 .init = cx24123_initfe,
1000 .set_frontend = cx24123_set_frontend,
1001 .get_frontend = cx24123_get_frontend,
1002 .read_status = cx24123_read_status,
1003 .read_ber = cx24123_read_ber,
1004 .read_signal_strength = cx24123_read_signal_strength,
1005 .read_snr = cx24123_read_snr,
1006 .read_ucblocks = cx24123_read_ucblocks,
1007 .diseqc_send_master_cmd = cx24123_send_diseqc_msg,
a74b51fc 1008 .diseqc_send_burst = cx24123_diseqc_send_burst,
b79cb653
ST
1009 .set_tone = cx24123_set_tone,
1010 .set_voltage = cx24123_set_voltage,
1011};
1012
1013module_param(debug, int, 0644);
caf970e0 1014MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");
b79cb653 1015
70047f9c
YP
1016module_param(force_band, int, 0644);
1017MODULE_PARM_DESC(force_band, "Force a specific band select (1-9, default:off).");
1018
b79cb653
ST
1019MODULE_DESCRIPTION("DVB Frontend module for Conexant cx24123/cx24109 hardware");
1020MODULE_AUTHOR("Steven Toth");
1021MODULE_LICENSE("GPL");
1022
1023EXPORT_SYMBOL(cx24123_attach);