]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/media/i2c/ov7670.c
[media] media: ov7670: add support for ov7675
[mirror_ubuntu-artful-kernel.git] / drivers / media / i2c / ov7670.c
CommitLineData
111f3356
JC
1/*
2 * A V4L2 driver for OmniVision OV7670 cameras.
3 *
4 * Copyright 2006 One Laptop Per Child Association, Inc. Written
5 * by Jonathan Corbet with substantial inspiration from Mark
6 * McClelland's ovcamchip code.
7 *
77d5140f
JC
8 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
9 *
111f3356
JC
10 * This file may be distributed under the terms of the GNU General
11 * Public License, version 2.
12 */
13#include <linux/init.h>
14#include <linux/module.h>
5a0e3ad6 15#include <linux/slab.h>
14386c2b 16#include <linux/i2c.h>
111f3356 17#include <linux/delay.h>
7e0a16f6 18#include <linux/videodev2.h>
14386c2b 19#include <media/v4l2-device.h>
3434eb7e 20#include <media/v4l2-chip-ident.h>
959f3bda 21#include <media/v4l2-mediabus.h>
f8fc7298 22#include <media/ov7670.h>
111f3356 23
5e614475 24MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
111f3356
JC
25MODULE_DESCRIPTION("A low-level driver for OmniVision ov7670 sensors");
26MODULE_LICENSE("GPL");
27
90ab5ee9 28static bool debug;
14386c2b
HV
29module_param(debug, bool, 0644);
30MODULE_PARM_DESC(debug, "Debug level (0-1)");
31
111f3356
JC
32/*
33 * Basic window sizes. These probably belong somewhere more globally
34 * useful.
35 */
36#define VGA_WIDTH 640
37#define VGA_HEIGHT 480
38#define QVGA_WIDTH 320
39#define QVGA_HEIGHT 240
40#define CIF_WIDTH 352
41#define CIF_HEIGHT 288
42#define QCIF_WIDTH 176
43#define QCIF_HEIGHT 144
44
45/*
46 * The 7670 sits on i2c with ID 0x42
47 */
48#define OV7670_I2C_ADDR 0x42
49
50/* Registers */
51#define REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
52#define REG_BLUE 0x01 /* blue gain */
53#define REG_RED 0x02 /* red gain */
54#define REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
55#define REG_COM1 0x04 /* Control 1 */
56#define COM1_CCIR656 0x40 /* CCIR656 enable */
57#define REG_BAVE 0x05 /* U/B Average level */
58#define REG_GbAVE 0x06 /* Y/Gb Average level */
59#define REG_AECHH 0x07 /* AEC MS 5 bits */
60#define REG_RAVE 0x08 /* V/R Average level */
61#define REG_COM2 0x09 /* Control 2 */
62#define COM2_SSLEEP 0x10 /* Soft sleep mode */
63#define REG_PID 0x0a /* Product ID MSB */
64#define REG_VER 0x0b /* Product ID LSB */
65#define REG_COM3 0x0c /* Control 3 */
66#define COM3_SWAP 0x40 /* Byte swap */
67#define COM3_SCALEEN 0x08 /* Enable scaling */
68#define COM3_DCWEN 0x04 /* Enable downsamp/crop/window */
69#define REG_COM4 0x0d /* Control 4 */
70#define REG_COM5 0x0e /* All "reserved" */
71#define REG_COM6 0x0f /* Control 6 */
72#define REG_AECH 0x10 /* More bits of AEC value */
73#define REG_CLKRC 0x11 /* Clocl control */
74#define CLK_EXT 0x40 /* Use external clock directly */
75#define CLK_SCALE 0x3f /* Mask for internal clock scale */
76#define REG_COM7 0x12 /* Control 7 */
77#define COM7_RESET 0x80 /* Register reset */
78#define COM7_FMT_MASK 0x38
79#define COM7_FMT_VGA 0x00
80#define COM7_FMT_CIF 0x20 /* CIF format */
81#define COM7_FMT_QVGA 0x10 /* QVGA format */
82#define COM7_FMT_QCIF 0x08 /* QCIF format */
83#define COM7_RGB 0x04 /* bits 0 and 2 - RGB format */
84#define COM7_YUV 0x00 /* YUV */
85#define COM7_BAYER 0x01 /* Bayer format */
86#define COM7_PBAYER 0x05 /* "Processed bayer" */
87#define REG_COM8 0x13 /* Control 8 */
88#define COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
89#define COM8_AECSTEP 0x40 /* Unlimited AEC step size */
90#define COM8_BFILT 0x20 /* Band filter enable */
91#define COM8_AGC 0x04 /* Auto gain enable */
92#define COM8_AWB 0x02 /* White balance enable */
93#define COM8_AEC 0x01 /* Auto exposure enable */
94#define REG_COM9 0x14 /* Control 9 - gain ceiling */
95#define REG_COM10 0x15 /* Control 10 */
96#define COM10_HSYNC 0x40 /* HSYNC instead of HREF */
97#define COM10_PCLK_HB 0x20 /* Suppress PCLK on horiz blank */
98#define COM10_HREF_REV 0x08 /* Reverse HREF */
99#define COM10_VS_LEAD 0x04 /* VSYNC on clock leading edge */
100#define COM10_VS_NEG 0x02 /* VSYNC negative */
101#define COM10_HS_NEG 0x01 /* HSYNC negative */
102#define REG_HSTART 0x17 /* Horiz start high bits */
103#define REG_HSTOP 0x18 /* Horiz stop high bits */
104#define REG_VSTART 0x19 /* Vert start high bits */
105#define REG_VSTOP 0x1a /* Vert stop high bits */
106#define REG_PSHFT 0x1b /* Pixel delay after HREF */
107#define REG_MIDH 0x1c /* Manuf. ID high */
108#define REG_MIDL 0x1d /* Manuf. ID low */
109#define REG_MVFP 0x1e /* Mirror / vflip */
110#define MVFP_MIRROR 0x20 /* Mirror image */
111#define MVFP_FLIP 0x10 /* Vertical flip */
112
113#define REG_AEW 0x24 /* AGC upper limit */
114#define REG_AEB 0x25 /* AGC lower limit */
115#define REG_VPT 0x26 /* AGC/AEC fast mode op region */
116#define REG_HSYST 0x30 /* HSYNC rising edge delay */
117#define REG_HSYEN 0x31 /* HSYNC falling edge delay */
118#define REG_HREF 0x32 /* HREF pieces */
119#define REG_TSLB 0x3a /* lots of stuff */
120#define TSLB_YLAST 0x04 /* UYVY or VYUY - see com13 */
121#define REG_COM11 0x3b /* Control 11 */
122#define COM11_NIGHT 0x80 /* NIght mode enable */
123#define COM11_NMFR 0x60 /* Two bit NM frame rate */
124#define COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
125#define COM11_50HZ 0x08 /* Manual 50Hz select */
126#define COM11_EXP 0x02
127#define REG_COM12 0x3c /* Control 12 */
128#define COM12_HREF 0x80 /* HREF always */
129#define REG_COM13 0x3d /* Control 13 */
130#define COM13_GAMMA 0x80 /* Gamma enable */
131#define COM13_UVSAT 0x40 /* UV saturation auto adjustment */
132#define COM13_UVSWAP 0x01 /* V before U - w/TSLB */
133#define REG_COM14 0x3e /* Control 14 */
134#define COM14_DCWEN 0x10 /* DCW/PCLK-scale enable */
135#define REG_EDGE 0x3f /* Edge enhancement factor */
136#define REG_COM15 0x40 /* Control 15 */
137#define COM15_R10F0 0x00 /* Data range 10 to F0 */
138#define COM15_R01FE 0x80 /* 01 to FE */
139#define COM15_R00FF 0xc0 /* 00 to FF */
140#define COM15_RGB565 0x10 /* RGB565 output */
141#define COM15_RGB555 0x30 /* RGB555 output */
142#define REG_COM16 0x41 /* Control 16 */
143#define COM16_AWBGAIN 0x08 /* AWB gain enable */
144#define REG_COM17 0x42 /* Control 17 */
145#define COM17_AECWIN 0xc0 /* AEC window - must match COM4 */
146#define COM17_CBAR 0x08 /* DSP Color bar */
147
f9a76156
JC
148/*
149 * This matrix defines how the colors are generated, must be
150 * tweaked to adjust hue and saturation.
151 *
152 * Order: v-red, v-green, v-blue, u-red, u-green, u-blue
153 *
154 * They are nine-bit signed quantities, with the sign bit
155 * stored in 0x58. Sign for v-red is bit 0, and up from there.
156 */
157#define REG_CMATRIX_BASE 0x4f
158#define CMATRIX_LEN 6
159#define REG_CMATRIX_SIGN 0x58
160
161
111f3356
JC
162#define REG_BRIGHT 0x55 /* Brightness */
163#define REG_CONTRAS 0x56 /* Contrast control */
164
165#define REG_GFIX 0x69 /* Fix gain control */
166
585553ec
JC
167#define REG_REG76 0x76 /* OV's name */
168#define R76_BLKPCOR 0x80 /* Black pixel correction enable */
169#define R76_WHTPCOR 0x40 /* White pixel correction enable */
170
111f3356
JC
171#define REG_RGB444 0x8c /* RGB 444 control */
172#define R444_ENABLE 0x02 /* Turn on RGB444, overrides 5x5 */
173#define R444_RGBX 0x01 /* Empty nibble at end */
174
175#define REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */
176#define REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
177
178#define REG_BD50MAX 0xa5 /* 50hz banding step limit */
179#define REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
180#define REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
181#define REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
182#define REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
183#define REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */
184#define REG_BD60MAX 0xab /* 60hz banding step limit */
185
d058e237
JM
186enum ov7670_model {
187 MODEL_OV7670 = 0,
188 MODEL_OV7675,
189};
190
191struct ov7670_win_size {
192 int width;
193 int height;
194 unsigned char com7_bit;
195 int hstart; /* Start/stop values for the camera. Note */
196 int hstop; /* that they do not always make complete */
197 int vstart; /* sense to humans, but evidently the sensor */
198 int vstop; /* will do the right thing... */
199 struct regval_list *regs; /* Regs to tweak */
200};
201
202struct ov7670_devtype {
203 /* formats supported for each model */
204 struct ov7670_win_size *win_sizes;
205 unsigned int n_win_sizes;
206};
111f3356 207
f9a76156
JC
208/*
209 * Information we maintain about a known sensor.
210 */
211struct ov7670_format_struct; /* coming later */
212struct ov7670_info {
14386c2b 213 struct v4l2_subdev sd;
f9a76156
JC
214 struct ov7670_format_struct *fmt; /* Current format */
215 unsigned char sat; /* Saturation value */
216 int hue; /* Hue value */
75e2bdad
DD
217 int min_width; /* Filter out smaller sizes */
218 int min_height; /* Filter out smaller sizes */
219 int clock_speed; /* External clock speed (MHz) */
d8d20155 220 u8 clkrc; /* Clock divider value */
75e2bdad 221 bool use_smbus; /* Use smbus I/O instead of I2C */
d058e237 222 const struct ov7670_devtype *devtype; /* Device specifics */
f9a76156
JC
223};
224
14386c2b
HV
225static inline struct ov7670_info *to_state(struct v4l2_subdev *sd)
226{
227 return container_of(sd, struct ov7670_info, sd);
228}
f9a76156
JC
229
230
231
111f3356
JC
232/*
233 * The default register settings, as obtained from OmniVision. There
234 * is really no making sense of most of these - lots of "reserved" values
235 * and such.
236 *
237 * These settings give VGA YUYV.
238 */
239
240struct regval_list {
241 unsigned char reg_num;
242 unsigned char value;
243};
244
245static struct regval_list ov7670_default_regs[] = {
246 { REG_COM7, COM7_RESET },
247/*
248 * Clock scale: 3 = 15fps
249 * 2 = 20fps
250 * 1 = 30fps
251 */
f9a76156 252 { REG_CLKRC, 0x1 }, /* OV: clock scale (30 fps) */
111f3356
JC
253 { REG_TSLB, 0x04 }, /* OV */
254 { REG_COM7, 0 }, /* VGA */
255 /*
256 * Set the hardware window. These values from OV don't entirely
257 * make sense - hstop is less than hstart. But they work...
258 */
259 { REG_HSTART, 0x13 }, { REG_HSTOP, 0x01 },
260 { REG_HREF, 0xb6 }, { REG_VSTART, 0x02 },
261 { REG_VSTOP, 0x7a }, { REG_VREF, 0x0a },
262
263 { REG_COM3, 0 }, { REG_COM14, 0 },
264 /* Mystery scaling numbers */
265 { 0x70, 0x3a }, { 0x71, 0x35 },
266 { 0x72, 0x11 }, { 0x73, 0xf0 },
267 { 0xa2, 0x02 }, { REG_COM10, 0x0 },
268
269 /* Gamma curve values */
270 { 0x7a, 0x20 }, { 0x7b, 0x10 },
271 { 0x7c, 0x1e }, { 0x7d, 0x35 },
272 { 0x7e, 0x5a }, { 0x7f, 0x69 },
273 { 0x80, 0x76 }, { 0x81, 0x80 },
274 { 0x82, 0x88 }, { 0x83, 0x8f },
275 { 0x84, 0x96 }, { 0x85, 0xa3 },
276 { 0x86, 0xaf }, { 0x87, 0xc4 },
277 { 0x88, 0xd7 }, { 0x89, 0xe8 },
278
279 /* AGC and AEC parameters. Note we start by disabling those features,
280 then turn them only after tweaking the values. */
281 { REG_COM8, COM8_FASTAEC | COM8_AECSTEP | COM8_BFILT },
282 { REG_GAIN, 0 }, { REG_AECH, 0 },
283 { REG_COM4, 0x40 }, /* magic reserved bit */
284 { REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
285 { REG_BD50MAX, 0x05 }, { REG_BD60MAX, 0x07 },
286 { REG_AEW, 0x95 }, { REG_AEB, 0x33 },
287 { REG_VPT, 0xe3 }, { REG_HAECC1, 0x78 },
288 { REG_HAECC2, 0x68 }, { 0xa1, 0x03 }, /* magic */
289 { REG_HAECC3, 0xd8 }, { REG_HAECC4, 0xd8 },
290 { REG_HAECC5, 0xf0 }, { REG_HAECC6, 0x90 },
291 { REG_HAECC7, 0x94 },
292 { REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC },
293
294 /* Almost all of these are magic "reserved" values. */
295 { REG_COM5, 0x61 }, { REG_COM6, 0x4b },
7f7b12f0 296 { 0x16, 0x02 }, { REG_MVFP, 0x07 },
111f3356
JC
297 { 0x21, 0x02 }, { 0x22, 0x91 },
298 { 0x29, 0x07 }, { 0x33, 0x0b },
299 { 0x35, 0x0b }, { 0x37, 0x1d },
300 { 0x38, 0x71 }, { 0x39, 0x2a },
301 { REG_COM12, 0x78 }, { 0x4d, 0x40 },
302 { 0x4e, 0x20 }, { REG_GFIX, 0 },
303 { 0x6b, 0x4a }, { 0x74, 0x10 },
304 { 0x8d, 0x4f }, { 0x8e, 0 },
305 { 0x8f, 0 }, { 0x90, 0 },
306 { 0x91, 0 }, { 0x96, 0 },
307 { 0x9a, 0 }, { 0xb0, 0x84 },
308 { 0xb1, 0x0c }, { 0xb2, 0x0e },
309 { 0xb3, 0x82 }, { 0xb8, 0x0a },
310
311 /* More reserved magic, some of which tweaks white balance */
312 { 0x43, 0x0a }, { 0x44, 0xf0 },
313 { 0x45, 0x34 }, { 0x46, 0x58 },
314 { 0x47, 0x28 }, { 0x48, 0x3a },
315 { 0x59, 0x88 }, { 0x5a, 0x88 },
316 { 0x5b, 0x44 }, { 0x5c, 0x67 },
317 { 0x5d, 0x49 }, { 0x5e, 0x0e },
318 { 0x6c, 0x0a }, { 0x6d, 0x55 },
319 { 0x6e, 0x11 }, { 0x6f, 0x9f }, /* "9e for advance AWB" */
320 { 0x6a, 0x40 }, { REG_BLUE, 0x40 },
321 { REG_RED, 0x60 },
322 { REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC|COM8_AWB },
323
324 /* Matrix coefficients */
325 { 0x4f, 0x80 }, { 0x50, 0x80 },
326 { 0x51, 0 }, { 0x52, 0x22 },
327 { 0x53, 0x5e }, { 0x54, 0x80 },
328 { 0x58, 0x9e },
329
330 { REG_COM16, COM16_AWBGAIN }, { REG_EDGE, 0 },
331 { 0x75, 0x05 }, { 0x76, 0xe1 },
332 { 0x4c, 0 }, { 0x77, 0x01 },
333 { REG_COM13, 0xc3 }, { 0x4b, 0x09 },
334 { 0xc9, 0x60 }, { REG_COM16, 0x38 },
335 { 0x56, 0x40 },
336
c8f5b2f5 337 { 0x34, 0x11 }, { REG_COM11, COM11_EXP|COM11_HZAUTO },
111f3356
JC
338 { 0xa4, 0x88 }, { 0x96, 0 },
339 { 0x97, 0x30 }, { 0x98, 0x20 },
340 { 0x99, 0x30 }, { 0x9a, 0x84 },
341 { 0x9b, 0x29 }, { 0x9c, 0x03 },
342 { 0x9d, 0x4c }, { 0x9e, 0x3f },
343 { 0x78, 0x04 },
344
345 /* Extra-weird stuff. Some sort of multiplexor register */
346 { 0x79, 0x01 }, { 0xc8, 0xf0 },
347 { 0x79, 0x0f }, { 0xc8, 0x00 },
348 { 0x79, 0x10 }, { 0xc8, 0x7e },
349 { 0x79, 0x0a }, { 0xc8, 0x80 },
350 { 0x79, 0x0b }, { 0xc8, 0x01 },
351 { 0x79, 0x0c }, { 0xc8, 0x0f },
352 { 0x79, 0x0d }, { 0xc8, 0x20 },
353 { 0x79, 0x09 }, { 0xc8, 0x80 },
354 { 0x79, 0x02 }, { 0xc8, 0xc0 },
355 { 0x79, 0x03 }, { 0xc8, 0x40 },
356 { 0x79, 0x05 }, { 0xc8, 0x30 },
357 { 0x79, 0x26 },
358
111f3356
JC
359 { 0xff, 0xff }, /* END MARKER */
360};
361
362
363/*
364 * Here we'll try to encapsulate the changes for just the output
365 * video format.
366 *
367 * RGB656 and YUV422 come from OV; RGB444 is homebrewed.
368 *
369 * IMPORTANT RULE: the first entry must be for COM7, see ov7670_s_fmt for why.
370 */
371
372
373static struct regval_list ov7670_fmt_yuv422[] = {
374 { REG_COM7, 0x0 }, /* Selects YUV mode */
375 { REG_RGB444, 0 }, /* No RGB444 please */
97693f91 376 { REG_COM1, 0 }, /* CCIR601 */
111f3356 377 { REG_COM15, COM15_R00FF },
c01b7429 378 { REG_COM9, 0x48 }, /* 32x gain ceiling; 0x8 is reserved bit */
111f3356
JC
379 { 0x4f, 0x80 }, /* "matrix coefficient 1" */
380 { 0x50, 0x80 }, /* "matrix coefficient 2" */
f9a76156 381 { 0x51, 0 }, /* vb */
111f3356
JC
382 { 0x52, 0x22 }, /* "matrix coefficient 4" */
383 { 0x53, 0x5e }, /* "matrix coefficient 5" */
384 { 0x54, 0x80 }, /* "matrix coefficient 6" */
385 { REG_COM13, COM13_GAMMA|COM13_UVSAT },
386 { 0xff, 0xff },
387};
388
389static struct regval_list ov7670_fmt_rgb565[] = {
390 { REG_COM7, COM7_RGB }, /* Selects RGB mode */
391 { REG_RGB444, 0 }, /* No RGB444 please */
97693f91 392 { REG_COM1, 0x0 }, /* CCIR601 */
111f3356
JC
393 { REG_COM15, COM15_RGB565 },
394 { REG_COM9, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */
395 { 0x4f, 0xb3 }, /* "matrix coefficient 1" */
396 { 0x50, 0xb3 }, /* "matrix coefficient 2" */
f9a76156 397 { 0x51, 0 }, /* vb */
111f3356
JC
398 { 0x52, 0x3d }, /* "matrix coefficient 4" */
399 { 0x53, 0xa7 }, /* "matrix coefficient 5" */
400 { 0x54, 0xe4 }, /* "matrix coefficient 6" */
401 { REG_COM13, COM13_GAMMA|COM13_UVSAT },
402 { 0xff, 0xff },
403};
404
405static struct regval_list ov7670_fmt_rgb444[] = {
406 { REG_COM7, COM7_RGB }, /* Selects RGB mode */
407 { REG_RGB444, R444_ENABLE }, /* Enable xxxxrrrr ggggbbbb */
97693f91 408 { REG_COM1, 0x0 }, /* CCIR601 */
111f3356
JC
409 { REG_COM15, COM15_R01FE|COM15_RGB565 }, /* Data range needed? */
410 { REG_COM9, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */
411 { 0x4f, 0xb3 }, /* "matrix coefficient 1" */
412 { 0x50, 0xb3 }, /* "matrix coefficient 2" */
f9a76156 413 { 0x51, 0 }, /* vb */
111f3356
JC
414 { 0x52, 0x3d }, /* "matrix coefficient 4" */
415 { 0x53, 0xa7 }, /* "matrix coefficient 5" */
416 { 0x54, 0xe4 }, /* "matrix coefficient 6" */
417 { REG_COM13, COM13_GAMMA|COM13_UVSAT|0x2 }, /* Magic rsvd bit */
418 { 0xff, 0xff },
419};
420
585553ec
JC
421static struct regval_list ov7670_fmt_raw[] = {
422 { REG_COM7, COM7_BAYER },
423 { REG_COM13, 0x08 }, /* No gamma, magic rsvd bit */
424 { REG_COM16, 0x3d }, /* Edge enhancement, denoise */
425 { REG_REG76, 0xe1 }, /* Pix correction, magic rsvd */
426 { 0xff, 0xff },
427};
111f3356
JC
428
429
430
431/*
432 * Low-level register I/O.
46714209
JC
433 *
434 * Note that there are two versions of these. On the XO 1, the
435 * i2c controller only does SMBUS, so that's what we use. The
436 * ov7670 is not really an SMBUS device, though, so the communication
437 * is not always entirely reliable.
438 */
75e2bdad 439static int ov7670_read_smbus(struct v4l2_subdev *sd, unsigned char reg,
46714209
JC
440 unsigned char *value)
441{
442 struct i2c_client *client = v4l2_get_subdevdata(sd);
443 int ret;
444
445 ret = i2c_smbus_read_byte_data(client, reg);
446 if (ret >= 0) {
447 *value = (unsigned char)ret;
448 ret = 0;
449 }
450 return ret;
451}
452
453
75e2bdad 454static int ov7670_write_smbus(struct v4l2_subdev *sd, unsigned char reg,
46714209
JC
455 unsigned char value)
456{
457 struct i2c_client *client = v4l2_get_subdevdata(sd);
458 int ret = i2c_smbus_write_byte_data(client, reg, value);
459
460 if (reg == REG_COM7 && (value & COM7_RESET))
461 msleep(5); /* Wait for reset to run */
462 return ret;
463}
464
46714209
JC
465/*
466 * On most platforms, we'd rather do straight i2c I/O.
111f3356 467 */
75e2bdad 468static int ov7670_read_i2c(struct v4l2_subdev *sd, unsigned char reg,
111f3356
JC
469 unsigned char *value)
470{
14386c2b 471 struct i2c_client *client = v4l2_get_subdevdata(sd);
2bf7de48
JC
472 u8 data = reg;
473 struct i2c_msg msg;
111f3356
JC
474 int ret;
475
2bf7de48
JC
476 /*
477 * Send out the register address...
478 */
479 msg.addr = client->addr;
480 msg.flags = 0;
481 msg.len = 1;
482 msg.buf = &data;
483 ret = i2c_transfer(client->adapter, &msg, 1);
484 if (ret < 0) {
485 printk(KERN_ERR "Error %d on register write\n", ret);
486 return ret;
487 }
488 /*
489 * ...then read back the result.
490 */
491 msg.flags = I2C_M_RD;
492 ret = i2c_transfer(client->adapter, &msg, 1);
bca5c2c5 493 if (ret >= 0) {
2bf7de48 494 *value = data;
bca5c2c5
AS
495 ret = 0;
496 }
111f3356
JC
497 return ret;
498}
499
500
75e2bdad 501static int ov7670_write_i2c(struct v4l2_subdev *sd, unsigned char reg,
111f3356
JC
502 unsigned char value)
503{
14386c2b 504 struct i2c_client *client = v4l2_get_subdevdata(sd);
2bf7de48
JC
505 struct i2c_msg msg;
506 unsigned char data[2] = { reg, value };
507 int ret;
14386c2b 508
2bf7de48
JC
509 msg.addr = client->addr;
510 msg.flags = 0;
511 msg.len = 2;
512 msg.buf = data;
513 ret = i2c_transfer(client->adapter, &msg, 1);
514 if (ret > 0)
515 ret = 0;
6d77444a 516 if (reg == REG_COM7 && (value & COM7_RESET))
97693f91 517 msleep(5); /* Wait for reset to run */
6d77444a 518 return ret;
111f3356
JC
519}
520
75e2bdad
DD
521static int ov7670_read(struct v4l2_subdev *sd, unsigned char reg,
522 unsigned char *value)
523{
524 struct ov7670_info *info = to_state(sd);
525 if (info->use_smbus)
526 return ov7670_read_smbus(sd, reg, value);
527 else
528 return ov7670_read_i2c(sd, reg, value);
529}
530
531static int ov7670_write(struct v4l2_subdev *sd, unsigned char reg,
532 unsigned char value)
533{
534 struct ov7670_info *info = to_state(sd);
535 if (info->use_smbus)
536 return ov7670_write_smbus(sd, reg, value);
537 else
538 return ov7670_write_i2c(sd, reg, value);
539}
111f3356
JC
540
541/*
542 * Write a list of register settings; ff/ff stops the process.
543 */
14386c2b 544static int ov7670_write_array(struct v4l2_subdev *sd, struct regval_list *vals)
111f3356
JC
545{
546 while (vals->reg_num != 0xff || vals->value != 0xff) {
14386c2b 547 int ret = ov7670_write(sd, vals->reg_num, vals->value);
111f3356
JC
548 if (ret < 0)
549 return ret;
550 vals++;
551 }
552 return 0;
553}
554
555
556/*
557 * Stuff that knows about the sensor.
558 */
14386c2b 559static int ov7670_reset(struct v4l2_subdev *sd, u32 val)
111f3356 560{
14386c2b 561 ov7670_write(sd, REG_COM7, COM7_RESET);
111f3356 562 msleep(1);
14386c2b 563 return 0;
111f3356
JC
564}
565
566
14386c2b 567static int ov7670_init(struct v4l2_subdev *sd, u32 val)
111f3356 568{
14386c2b 569 return ov7670_write_array(sd, ov7670_default_regs);
111f3356
JC
570}
571
572
573
14386c2b 574static int ov7670_detect(struct v4l2_subdev *sd)
111f3356
JC
575{
576 unsigned char v;
577 int ret;
578
14386c2b 579 ret = ov7670_init(sd, 0);
111f3356
JC
580 if (ret < 0)
581 return ret;
14386c2b 582 ret = ov7670_read(sd, REG_MIDH, &v);
111f3356
JC
583 if (ret < 0)
584 return ret;
585 if (v != 0x7f) /* OV manuf. id. */
586 return -ENODEV;
14386c2b 587 ret = ov7670_read(sd, REG_MIDL, &v);
111f3356
JC
588 if (ret < 0)
589 return ret;
590 if (v != 0xa2)
591 return -ENODEV;
592 /*
593 * OK, we know we have an OmniVision chip...but which one?
594 */
14386c2b 595 ret = ov7670_read(sd, REG_PID, &v);
111f3356
JC
596 if (ret < 0)
597 return ret;
598 if (v != 0x76) /* PID + VER = 0x76 / 0x73 */
599 return -ENODEV;
14386c2b 600 ret = ov7670_read(sd, REG_VER, &v);
111f3356
JC
601 if (ret < 0)
602 return ret;
603 if (v != 0x73) /* PID + VER = 0x76 / 0x73 */
604 return -ENODEV;
605 return 0;
606}
607
608
f9a76156
JC
609/*
610 * Store information about the video data format. The color matrix
611 * is deeply tied into the format, so keep the relevant values here.
959f3bda 612 * The magic matrix numbers come from OmniVision.
f9a76156 613 */
111f3356 614static struct ov7670_format_struct {
959f3bda
HV
615 enum v4l2_mbus_pixelcode mbus_code;
616 enum v4l2_colorspace colorspace;
111f3356 617 struct regval_list *regs;
f9a76156 618 int cmatrix[CMATRIX_LEN];
111f3356
JC
619} ov7670_formats[] = {
620 {
959f3bda
HV
621 .mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
622 .colorspace = V4L2_COLORSPACE_JPEG,
111f3356 623 .regs = ov7670_fmt_yuv422,
f9a76156 624 .cmatrix = { 128, -128, 0, -34, -94, 128 },
111f3356
JC
625 },
626 {
959f3bda
HV
627 .mbus_code = V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE,
628 .colorspace = V4L2_COLORSPACE_SRGB,
111f3356 629 .regs = ov7670_fmt_rgb444,
f9a76156 630 .cmatrix = { 179, -179, 0, -61, -176, 228 },
111f3356
JC
631 },
632 {
959f3bda
HV
633 .mbus_code = V4L2_MBUS_FMT_RGB565_2X8_LE,
634 .colorspace = V4L2_COLORSPACE_SRGB,
111f3356 635 .regs = ov7670_fmt_rgb565,
f9a76156 636 .cmatrix = { 179, -179, 0, -61, -176, 228 },
585553ec
JC
637 },
638 {
959f3bda
HV
639 .mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8,
640 .colorspace = V4L2_COLORSPACE_SRGB,
585553ec
JC
641 .regs = ov7670_fmt_raw,
642 .cmatrix = { 0, 0, 0, 0, 0, 0 },
111f3356 643 },
111f3356 644};
585553ec 645#define N_OV7670_FMTS ARRAY_SIZE(ov7670_formats)
111f3356 646
111f3356
JC
647
648/*
649 * Then there is the issue of window sizes. Try to capture the info here.
650 */
f9a76156
JC
651
652/*
653 * QCIF mode is done (by OV) in a very strange way - it actually looks like
654 * VGA with weird scaling options - they do *not* use the canned QCIF mode
655 * which is allegedly provided by the sensor. So here's the weird register
656 * settings.
657 */
658static struct regval_list ov7670_qcif_regs[] = {
659 { REG_COM3, COM3_SCALEEN|COM3_DCWEN },
660 { REG_COM3, COM3_DCWEN },
661 { REG_COM14, COM14_DCWEN | 0x01},
662 { 0x73, 0xf1 },
663 { 0xa2, 0x52 },
664 { 0x7b, 0x1c },
665 { 0x7c, 0x28 },
666 { 0x7d, 0x3c },
667 { 0x7f, 0x69 },
668 { REG_COM9, 0x38 },
669 { 0xa1, 0x0b },
670 { 0x74, 0x19 },
671 { 0x9a, 0x80 },
672 { 0x43, 0x14 },
673 { REG_COM13, 0xc0 },
674 { 0xff, 0xff },
675};
676
d058e237 677static struct ov7670_win_size ov7670_win_sizes[] = {
111f3356
JC
678 /* VGA */
679 {
680 .width = VGA_WIDTH,
681 .height = VGA_HEIGHT,
682 .com7_bit = COM7_FMT_VGA,
d058e237
JM
683 .hstart = 158, /* These values from */
684 .hstop = 14, /* Omnivision */
111f3356
JC
685 .vstart = 10,
686 .vstop = 490,
d058e237 687 .regs = NULL,
111f3356
JC
688 },
689 /* CIF */
690 {
691 .width = CIF_WIDTH,
692 .height = CIF_HEIGHT,
693 .com7_bit = COM7_FMT_CIF,
d058e237 694 .hstart = 170, /* Empirically determined */
111f3356
JC
695 .hstop = 90,
696 .vstart = 14,
697 .vstop = 494,
d058e237 698 .regs = NULL,
111f3356
JC
699 },
700 /* QVGA */
701 {
702 .width = QVGA_WIDTH,
703 .height = QVGA_HEIGHT,
704 .com7_bit = COM7_FMT_QVGA,
d058e237 705 .hstart = 168, /* Empirically determined */
dc4589c8
DD
706 .hstop = 24,
707 .vstart = 12,
708 .vstop = 492,
d058e237 709 .regs = NULL,
f9a76156
JC
710 },
711 /* QCIF */
712 {
713 .width = QCIF_WIDTH,
714 .height = QCIF_HEIGHT,
715 .com7_bit = COM7_FMT_VGA, /* see comment above */
d058e237 716 .hstart = 456, /* Empirically determined */
f9a76156
JC
717 .hstop = 24,
718 .vstart = 14,
719 .vstop = 494,
d058e237
JM
720 .regs = ov7670_qcif_regs,
721 }
111f3356
JC
722};
723
d058e237
JM
724static struct ov7670_win_size ov7675_win_sizes[] = {
725 /*
726 * Currently, only VGA is supported. Theoretically it could be possible
727 * to support CIF, QVGA and QCIF too. Taking values for ov7670 as a
728 * base and tweak them empirically could be required.
729 */
730 {
731 .width = VGA_WIDTH,
732 .height = VGA_HEIGHT,
733 .com7_bit = COM7_FMT_VGA,
734 .hstart = 158, /* These values from */
735 .hstop = 14, /* Omnivision */
736 .vstart = 14, /* Empirically determined */
737 .vstop = 494,
738 .regs = NULL,
739 }
740};
111f3356
JC
741
742/*
743 * Store a set of start/stop values into the camera.
744 */
14386c2b 745static int ov7670_set_hw(struct v4l2_subdev *sd, int hstart, int hstop,
111f3356
JC
746 int vstart, int vstop)
747{
748 int ret;
749 unsigned char v;
750/*
751 * Horizontal: 11 bits, top 8 live in hstart and hstop. Bottom 3 of
752 * hstart are in href[2:0], bottom 3 of hstop in href[5:3]. There is
753 * a mystery "edge offset" value in the top two bits of href.
754 */
14386c2b
HV
755 ret = ov7670_write(sd, REG_HSTART, (hstart >> 3) & 0xff);
756 ret += ov7670_write(sd, REG_HSTOP, (hstop >> 3) & 0xff);
757 ret += ov7670_read(sd, REG_HREF, &v);
111f3356
JC
758 v = (v & 0xc0) | ((hstop & 0x7) << 3) | (hstart & 0x7);
759 msleep(10);
14386c2b 760 ret += ov7670_write(sd, REG_HREF, v);
111f3356
JC
761/*
762 * Vertical: similar arrangement, but only 10 bits.
763 */
14386c2b
HV
764 ret += ov7670_write(sd, REG_VSTART, (vstart >> 2) & 0xff);
765 ret += ov7670_write(sd, REG_VSTOP, (vstop >> 2) & 0xff);
766 ret += ov7670_read(sd, REG_VREF, &v);
111f3356
JC
767 v = (v & 0xf0) | ((vstop & 0x3) << 2) | (vstart & 0x3);
768 msleep(10);
14386c2b 769 ret += ov7670_write(sd, REG_VREF, v);
111f3356
JC
770 return ret;
771}
772
773
959f3bda
HV
774static int ov7670_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned index,
775 enum v4l2_mbus_pixelcode *code)
776{
777 if (index >= N_OV7670_FMTS)
778 return -EINVAL;
779
780 *code = ov7670_formats[index].mbus_code;
781 return 0;
782}
111f3356 783
14386c2b 784static int ov7670_try_fmt_internal(struct v4l2_subdev *sd,
959f3bda 785 struct v4l2_mbus_framefmt *fmt,
111f3356
JC
786 struct ov7670_format_struct **ret_fmt,
787 struct ov7670_win_size **ret_wsize)
788{
789 int index;
790 struct ov7670_win_size *wsize;
d058e237
JM
791 struct ov7670_info *info = to_state(sd);
792 unsigned int n_win_sizes = info->devtype->n_win_sizes;
111f3356
JC
793
794 for (index = 0; index < N_OV7670_FMTS; index++)
959f3bda 795 if (ov7670_formats[index].mbus_code == fmt->code)
111f3356 796 break;
cd257a6f
DD
797 if (index >= N_OV7670_FMTS) {
798 /* default to first format */
799 index = 0;
959f3bda 800 fmt->code = ov7670_formats[0].mbus_code;
cd257a6f 801 }
111f3356
JC
802 if (ret_fmt != NULL)
803 *ret_fmt = ov7670_formats + index;
804 /*
805 * Fields: the OV devices claim to be progressive.
806 */
959f3bda 807 fmt->field = V4L2_FIELD_NONE;
111f3356
JC
808 /*
809 * Round requested image size down to the nearest
810 * we support, but not below the smallest.
811 */
d058e237
JM
812 for (wsize = info->devtype->win_sizes;
813 wsize < info->devtype->win_sizes + n_win_sizes; wsize++)
959f3bda 814 if (fmt->width >= wsize->width && fmt->height >= wsize->height)
111f3356 815 break;
d058e237 816 if (wsize >= info->devtype->win_sizes + n_win_sizes)
111f3356
JC
817 wsize--; /* Take the smallest one */
818 if (ret_wsize != NULL)
819 *ret_wsize = wsize;
820 /*
821 * Note the size we'll actually handle.
822 */
959f3bda
HV
823 fmt->width = wsize->width;
824 fmt->height = wsize->height;
825 fmt->colorspace = ov7670_formats[index].colorspace;
111f3356 826 return 0;
111f3356
JC
827}
828
959f3bda
HV
829static int ov7670_try_mbus_fmt(struct v4l2_subdev *sd,
830 struct v4l2_mbus_framefmt *fmt)
14386c2b
HV
831{
832 return ov7670_try_fmt_internal(sd, fmt, NULL, NULL);
833}
834
111f3356
JC
835/*
836 * Set a format.
837 */
959f3bda
HV
838static int ov7670_s_mbus_fmt(struct v4l2_subdev *sd,
839 struct v4l2_mbus_framefmt *fmt)
111f3356 840{
111f3356
JC
841 struct ov7670_format_struct *ovfmt;
842 struct ov7670_win_size *wsize;
14386c2b 843 struct ov7670_info *info = to_state(sd);
d8d20155 844 unsigned char com7;
959f3bda 845 int ret;
111f3356 846
14386c2b 847 ret = ov7670_try_fmt_internal(sd, fmt, &ovfmt, &wsize);
959f3bda 848
111f3356
JC
849 if (ret)
850 return ret;
851 /*
852 * COM7 is a pain in the ass, it doesn't like to be read then
853 * quickly written afterward. But we have everything we need
854 * to set it absolutely here, as long as the format-specific
855 * register sets list it first.
856 */
857 com7 = ovfmt->regs[0].value;
858 com7 |= wsize->com7_bit;
14386c2b 859 ov7670_write(sd, REG_COM7, com7);
111f3356
JC
860 /*
861 * Now write the rest of the array. Also store start/stops
862 */
14386c2b
HV
863 ov7670_write_array(sd, ovfmt->regs + 1);
864 ov7670_set_hw(sd, wsize->hstart, wsize->hstop, wsize->vstart,
111f3356 865 wsize->vstop);
f9a76156
JC
866 ret = 0;
867 if (wsize->regs)
14386c2b 868 ret = ov7670_write_array(sd, wsize->regs);
f9a76156 869 info->fmt = ovfmt;
edd75ede 870
d8d20155
JC
871 /*
872 * If we're running RGB565, we must rewrite clkrc after setting
873 * the other parameters or the image looks poor. If we're *not*
874 * doing RGB565, we must not rewrite clkrc or the image looks
875 * *really* poor.
a8e68c37
JC
876 *
877 * (Update) Now that we retain clkrc state, we should be able
878 * to write it unconditionally, and that will make the frame
879 * rate persistent too.
d8d20155 880 */
a8e68c37 881 if (ret == 0)
d8d20155 882 ret = ov7670_write(sd, REG_CLKRC, info->clkrc);
959f3bda
HV
883 return 0;
884}
885
c8f5b2f5
JC
886/*
887 * Implement G/S_PARM. There is a "high quality" mode we could try
888 * to do someday; for now, we just do the frame rate tweak.
889 */
14386c2b 890static int ov7670_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
c8f5b2f5
JC
891{
892 struct v4l2_captureparm *cp = &parms->parm.capture;
d8d20155 893 struct ov7670_info *info = to_state(sd);
c8f5b2f5
JC
894
895 if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
896 return -EINVAL;
d8d20155 897
c8f5b2f5
JC
898 memset(cp, 0, sizeof(struct v4l2_captureparm));
899 cp->capability = V4L2_CAP_TIMEPERFRAME;
900 cp->timeperframe.numerator = 1;
75e2bdad 901 cp->timeperframe.denominator = info->clock_speed;
d8d20155
JC
902 if ((info->clkrc & CLK_EXT) == 0 && (info->clkrc & CLK_SCALE) > 1)
903 cp->timeperframe.denominator /= (info->clkrc & CLK_SCALE);
c8f5b2f5
JC
904 return 0;
905}
906
14386c2b 907static int ov7670_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
c8f5b2f5
JC
908{
909 struct v4l2_captureparm *cp = &parms->parm.capture;
910 struct v4l2_fract *tpf = &cp->timeperframe;
d8d20155 911 struct ov7670_info *info = to_state(sd);
380de498 912 int div;
c8f5b2f5
JC
913
914 if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
915 return -EINVAL;
916 if (cp->extendedmode != 0)
917 return -EINVAL;
d8d20155 918
c8f5b2f5
JC
919 if (tpf->numerator == 0 || tpf->denominator == 0)
920 div = 1; /* Reset to full rate */
921 else
75e2bdad 922 div = (tpf->numerator * info->clock_speed) / tpf->denominator;
c8f5b2f5
JC
923 if (div == 0)
924 div = 1;
925 else if (div > CLK_SCALE)
926 div = CLK_SCALE;
d8d20155 927 info->clkrc = (info->clkrc & 0x80) | div;
c8f5b2f5 928 tpf->numerator = 1;
75e2bdad 929 tpf->denominator = info->clock_speed / div;
d8d20155 930 return ov7670_write(sd, REG_CLKRC, info->clkrc);
c8f5b2f5
JC
931}
932
933
111f3356 934/*
e99dfcf7
JC
935 * Frame intervals. Since frame rates are controlled with the clock
936 * divider, we can only do 30/n for integer n values. So no continuous
937 * or stepwise options. Here we just pick a handful of logical values.
111f3356
JC
938 */
939
e99dfcf7 940static int ov7670_frame_rates[] = { 30, 15, 10, 5, 1 };
f9a76156 941
e99dfcf7
JC
942static int ov7670_enum_frameintervals(struct v4l2_subdev *sd,
943 struct v4l2_frmivalenum *interval)
944{
945 if (interval->index >= ARRAY_SIZE(ov7670_frame_rates))
946 return -EINVAL;
947 interval->type = V4L2_FRMIVAL_TYPE_DISCRETE;
948 interval->discrete.numerator = 1;
949 interval->discrete.denominator = ov7670_frame_rates[interval->index];
950 return 0;
951}
f9a76156 952
b0326b7f
DD
953/*
954 * Frame size enumeration
955 */
956static int ov7670_enum_framesizes(struct v4l2_subdev *sd,
957 struct v4l2_frmsizeenum *fsize)
958{
75e2bdad
DD
959 struct ov7670_info *info = to_state(sd);
960 int i;
961 int num_valid = -1;
b0326b7f 962 __u32 index = fsize->index;
d058e237 963 unsigned int n_win_sizes = info->devtype->n_win_sizes;
b0326b7f 964
75e2bdad
DD
965 /*
966 * If a minimum width/height was requested, filter out the capture
967 * windows that fall outside that.
968 */
d058e237
JM
969 for (i = 0; i < n_win_sizes; i++) {
970 struct ov7670_win_size *win = &info->devtype->win_sizes[index];
75e2bdad
DD
971 if (info->min_width && win->width < info->min_width)
972 continue;
973 if (info->min_height && win->height < info->min_height)
974 continue;
975 if (index == ++num_valid) {
976 fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
977 fsize->discrete.width = win->width;
978 fsize->discrete.height = win->height;
979 return 0;
980 }
981 }
982
983 return -EINVAL;
b0326b7f
DD
984}
985
e99dfcf7
JC
986/*
987 * Code for dealing with controls.
988 */
f9a76156 989
14386c2b 990static int ov7670_store_cmatrix(struct v4l2_subdev *sd,
f9a76156
JC
991 int matrix[CMATRIX_LEN])
992{
993 int i, ret;
e3bf20de 994 unsigned char signbits = 0;
f9a76156
JC
995
996 /*
997 * Weird crap seems to exist in the upper part of
998 * the sign bits register, so let's preserve it.
999 */
14386c2b 1000 ret = ov7670_read(sd, REG_CMATRIX_SIGN, &signbits);
f9a76156
JC
1001 signbits &= 0xc0;
1002
1003 for (i = 0; i < CMATRIX_LEN; i++) {
1004 unsigned char raw;
1005
1006 if (matrix[i] < 0) {
1007 signbits |= (1 << i);
1008 if (matrix[i] < -255)
1009 raw = 0xff;
1010 else
1011 raw = (-1 * matrix[i]) & 0xff;
1012 }
1013 else {
1014 if (matrix[i] > 255)
1015 raw = 0xff;
1016 else
1017 raw = matrix[i] & 0xff;
1018 }
14386c2b 1019 ret += ov7670_write(sd, REG_CMATRIX_BASE + i, raw);
f9a76156 1020 }
14386c2b 1021 ret += ov7670_write(sd, REG_CMATRIX_SIGN, signbits);
f9a76156
JC
1022 return ret;
1023}
1024
1025
1026/*
1027 * Hue also requires messing with the color matrix. It also requires
1028 * trig functions, which tend not to be well supported in the kernel.
1029 * So here is a simple table of sine values, 0-90 degrees, in steps
1030 * of five degrees. Values are multiplied by 1000.
1031 *
1032 * The following naive approximate trig functions require an argument
1033 * carefully limited to -180 <= theta <= 180.
1034 */
1035#define SIN_STEP 5
1036static const int ov7670_sin_table[] = {
1037 0, 87, 173, 258, 342, 422,
1038 499, 573, 642, 707, 766, 819,
1039 866, 906, 939, 965, 984, 996,
1040 1000
1041};
1042
1043static int ov7670_sine(int theta)
1044{
1045 int chs = 1;
1046 int sine;
1047
1048 if (theta < 0) {
1049 theta = -theta;
1050 chs = -1;
1051 }
1052 if (theta <= 90)
1053 sine = ov7670_sin_table[theta/SIN_STEP];
1054 else {
1055 theta -= 90;
1056 sine = 1000 - ov7670_sin_table[theta/SIN_STEP];
1057 }
1058 return sine*chs;
1059}
1060
1061static int ov7670_cosine(int theta)
1062{
1063 theta = 90 - theta;
1064 if (theta > 180)
1065 theta -= 360;
1066 else if (theta < -180)
1067 theta += 360;
1068 return ov7670_sine(theta);
1069}
1070
1071
1072
1073
1074static void ov7670_calc_cmatrix(struct ov7670_info *info,
1075 int matrix[CMATRIX_LEN])
1076{
1077 int i;
1078 /*
1079 * Apply the current saturation setting first.
1080 */
1081 for (i = 0; i < CMATRIX_LEN; i++)
1082 matrix[i] = (info->fmt->cmatrix[i]*info->sat) >> 7;
1083 /*
1084 * Then, if need be, rotate the hue value.
1085 */
1086 if (info->hue != 0) {
1087 int sinth, costh, tmpmatrix[CMATRIX_LEN];
1088
1089 memcpy(tmpmatrix, matrix, CMATRIX_LEN*sizeof(int));
1090 sinth = ov7670_sine(info->hue);
1091 costh = ov7670_cosine(info->hue);
1092
1093 matrix[0] = (matrix[3]*sinth + matrix[0]*costh)/1000;
1094 matrix[1] = (matrix[4]*sinth + matrix[1]*costh)/1000;
1095 matrix[2] = (matrix[5]*sinth + matrix[2]*costh)/1000;
1096 matrix[3] = (matrix[3]*costh - matrix[0]*sinth)/1000;
1097 matrix[4] = (matrix[4]*costh - matrix[1]*sinth)/1000;
1098 matrix[5] = (matrix[5]*costh - matrix[2]*sinth)/1000;
1099 }
1100}
1101
1102
1103
ca07561a 1104static int ov7670_s_sat(struct v4l2_subdev *sd, int value)
f9a76156 1105{
14386c2b 1106 struct ov7670_info *info = to_state(sd);
f9a76156
JC
1107 int matrix[CMATRIX_LEN];
1108 int ret;
1109
1110 info->sat = value;
1111 ov7670_calc_cmatrix(info, matrix);
14386c2b 1112 ret = ov7670_store_cmatrix(sd, matrix);
f9a76156
JC
1113 return ret;
1114}
1115
ca07561a 1116static int ov7670_g_sat(struct v4l2_subdev *sd, __s32 *value)
f9a76156 1117{
14386c2b 1118 struct ov7670_info *info = to_state(sd);
f9a76156
JC
1119
1120 *value = info->sat;
1121 return 0;
1122}
1123
ca07561a 1124static int ov7670_s_hue(struct v4l2_subdev *sd, int value)
f9a76156 1125{
14386c2b 1126 struct ov7670_info *info = to_state(sd);
f9a76156
JC
1127 int matrix[CMATRIX_LEN];
1128 int ret;
1129
1130 if (value < -180 || value > 180)
1131 return -EINVAL;
1132 info->hue = value;
1133 ov7670_calc_cmatrix(info, matrix);
14386c2b 1134 ret = ov7670_store_cmatrix(sd, matrix);
f9a76156
JC
1135 return ret;
1136}
1137
1138
ca07561a 1139static int ov7670_g_hue(struct v4l2_subdev *sd, __s32 *value)
f9a76156 1140{
14386c2b 1141 struct ov7670_info *info = to_state(sd);
f9a76156
JC
1142
1143 *value = info->hue;
1144 return 0;
1145}
1146
1147
111f3356
JC
1148/*
1149 * Some weird registers seem to store values in a sign/magnitude format!
1150 */
1151static unsigned char ov7670_sm_to_abs(unsigned char v)
1152{
1153 if ((v & 0x80) == 0)
1154 return v + 128;
14386c2b 1155 return 128 - (v & 0x7f);
111f3356
JC
1156}
1157
1158
1159static unsigned char ov7670_abs_to_sm(unsigned char v)
1160{
1161 if (v > 127)
1162 return v & 0x7f;
14386c2b 1163 return (128 - v) | 0x80;
111f3356
JC
1164}
1165
ca07561a 1166static int ov7670_s_brightness(struct v4l2_subdev *sd, int value)
111f3356 1167{
e3bf20de 1168 unsigned char com8 = 0, v;
111f3356
JC
1169 int ret;
1170
14386c2b 1171 ov7670_read(sd, REG_COM8, &com8);
111f3356 1172 com8 &= ~COM8_AEC;
14386c2b 1173 ov7670_write(sd, REG_COM8, com8);
f9a76156 1174 v = ov7670_abs_to_sm(value);
14386c2b 1175 ret = ov7670_write(sd, REG_BRIGHT, v);
111f3356
JC
1176 return ret;
1177}
1178
ca07561a 1179static int ov7670_g_brightness(struct v4l2_subdev *sd, __s32 *value)
111f3356 1180{
e3bf20de 1181 unsigned char v = 0;
14386c2b 1182 int ret = ov7670_read(sd, REG_BRIGHT, &v);
f9a76156
JC
1183
1184 *value = ov7670_sm_to_abs(v);
111f3356
JC
1185 return ret;
1186}
1187
ca07561a 1188static int ov7670_s_contrast(struct v4l2_subdev *sd, int value)
111f3356 1189{
14386c2b 1190 return ov7670_write(sd, REG_CONTRAS, (unsigned char) value);
111f3356
JC
1191}
1192
ca07561a 1193static int ov7670_g_contrast(struct v4l2_subdev *sd, __s32 *value)
111f3356 1194{
e3bf20de 1195 unsigned char v = 0;
14386c2b 1196 int ret = ov7670_read(sd, REG_CONTRAS, &v);
f9a76156
JC
1197
1198 *value = v;
1199 return ret;
111f3356
JC
1200}
1201
ca07561a 1202static int ov7670_g_hflip(struct v4l2_subdev *sd, __s32 *value)
111f3356
JC
1203{
1204 int ret;
e3bf20de 1205 unsigned char v = 0;
111f3356 1206
14386c2b 1207 ret = ov7670_read(sd, REG_MVFP, &v);
111f3356
JC
1208 *value = (v & MVFP_MIRROR) == MVFP_MIRROR;
1209 return ret;
1210}
1211
1212
ca07561a 1213static int ov7670_s_hflip(struct v4l2_subdev *sd, int value)
111f3356 1214{
e3bf20de 1215 unsigned char v = 0;
111f3356
JC
1216 int ret;
1217
14386c2b 1218 ret = ov7670_read(sd, REG_MVFP, &v);
111f3356
JC
1219 if (value)
1220 v |= MVFP_MIRROR;
1221 else
1222 v &= ~MVFP_MIRROR;
1223 msleep(10); /* FIXME */
14386c2b 1224 ret += ov7670_write(sd, REG_MVFP, v);
111f3356
JC
1225 return ret;
1226}
1227
1228
1229
ca07561a 1230static int ov7670_g_vflip(struct v4l2_subdev *sd, __s32 *value)
111f3356
JC
1231{
1232 int ret;
e3bf20de 1233 unsigned char v = 0;
111f3356 1234
14386c2b 1235 ret = ov7670_read(sd, REG_MVFP, &v);
111f3356
JC
1236 *value = (v & MVFP_FLIP) == MVFP_FLIP;
1237 return ret;
1238}
1239
1240
ca07561a 1241static int ov7670_s_vflip(struct v4l2_subdev *sd, int value)
111f3356 1242{
e3bf20de 1243 unsigned char v = 0;
111f3356
JC
1244 int ret;
1245
14386c2b 1246 ret = ov7670_read(sd, REG_MVFP, &v);
111f3356
JC
1247 if (value)
1248 v |= MVFP_FLIP;
1249 else
1250 v &= ~MVFP_FLIP;
1251 msleep(10); /* FIXME */
14386c2b 1252 ret += ov7670_write(sd, REG_MVFP, v);
111f3356
JC
1253 return ret;
1254}
1255
81898671
JC
1256/*
1257 * GAIN is split between REG_GAIN and REG_VREF[7:6]. If one believes
1258 * the data sheet, the VREF parts should be the most significant, but
1259 * experience shows otherwise. There seems to be little value in
1260 * messing with the VREF bits, so we leave them alone.
1261 */
1262static int ov7670_g_gain(struct v4l2_subdev *sd, __s32 *value)
1263{
1264 int ret;
1265 unsigned char gain;
1266
1267 ret = ov7670_read(sd, REG_GAIN, &gain);
1268 *value = gain;
1269 return ret;
1270}
1271
1272static int ov7670_s_gain(struct v4l2_subdev *sd, int value)
1273{
1274 int ret;
1275 unsigned char com8;
1276
1277 ret = ov7670_write(sd, REG_GAIN, value & 0xff);
1278 /* Have to turn off AGC as well */
1279 if (ret == 0) {
1280 ret = ov7670_read(sd, REG_COM8, &com8);
1281 ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AGC);
1282 }
1283 return ret;
1284}
1285
1286/*
1287 * Tweak autogain.
1288 */
1289static int ov7670_g_autogain(struct v4l2_subdev *sd, __s32 *value)
1290{
1291 int ret;
1292 unsigned char com8;
1293
1294 ret = ov7670_read(sd, REG_COM8, &com8);
1295 *value = (com8 & COM8_AGC) != 0;
1296 return ret;
1297}
1298
1299static int ov7670_s_autogain(struct v4l2_subdev *sd, int value)
1300{
1301 int ret;
1302 unsigned char com8;
1303
1304 ret = ov7670_read(sd, REG_COM8, &com8);
1305 if (ret == 0) {
1306 if (value)
1307 com8 |= COM8_AGC;
1308 else
1309 com8 &= ~COM8_AGC;
1310 ret = ov7670_write(sd, REG_COM8, com8);
1311 }
1312 return ret;
1313}
1314
364e9337
JC
1315/*
1316 * Exposure is spread all over the place: top 6 bits in AECHH, middle
1317 * 8 in AECH, and two stashed in COM1 just for the hell of it.
1318 */
1319static int ov7670_g_exp(struct v4l2_subdev *sd, __s32 *value)
1320{
1321 int ret;
1322 unsigned char com1, aech, aechh;
1323
1324 ret = ov7670_read(sd, REG_COM1, &com1) +
1325 ov7670_read(sd, REG_AECH, &aech) +
1326 ov7670_read(sd, REG_AECHH, &aechh);
1327 *value = ((aechh & 0x3f) << 10) | (aech << 2) | (com1 & 0x03);
1328 return ret;
1329}
1330
1331static int ov7670_s_exp(struct v4l2_subdev *sd, int value)
1332{
1333 int ret;
1334 unsigned char com1, com8, aech, aechh;
1335
1336 ret = ov7670_read(sd, REG_COM1, &com1) +
1337 ov7670_read(sd, REG_COM8, &com8);
1338 ov7670_read(sd, REG_AECHH, &aechh);
1339 if (ret)
1340 return ret;
1341
1342 com1 = (com1 & 0xfc) | (value & 0x03);
1343 aech = (value >> 2) & 0xff;
1344 aechh = (aechh & 0xc0) | ((value >> 10) & 0x3f);
1345 ret = ov7670_write(sd, REG_COM1, com1) +
1346 ov7670_write(sd, REG_AECH, aech) +
1347 ov7670_write(sd, REG_AECHH, aechh);
1348 /* Have to turn off AEC as well */
1349 if (ret == 0)
1350 ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AEC);
1351 return ret;
1352}
1353
1354/*
1355 * Tweak autoexposure.
1356 */
1357static int ov7670_g_autoexp(struct v4l2_subdev *sd, __s32 *value)
1358{
1359 int ret;
1360 unsigned char com8;
1361 enum v4l2_exposure_auto_type *atype = (enum v4l2_exposure_auto_type *) value;
1362
1363 ret = ov7670_read(sd, REG_COM8, &com8);
1364 if (com8 & COM8_AEC)
380de498 1365 *atype = V4L2_EXPOSURE_AUTO;
364e9337 1366 else
380de498 1367 *atype = V4L2_EXPOSURE_MANUAL;
364e9337
JC
1368 return ret;
1369}
1370
1371static int ov7670_s_autoexp(struct v4l2_subdev *sd,
1372 enum v4l2_exposure_auto_type value)
1373{
1374 int ret;
1375 unsigned char com8;
1376
1377 ret = ov7670_read(sd, REG_COM8, &com8);
1378 if (ret == 0) {
1379 if (value == V4L2_EXPOSURE_AUTO)
1380 com8 |= COM8_AEC;
1381 else
1382 com8 &= ~COM8_AEC;
1383 ret = ov7670_write(sd, REG_COM8, com8);
1384 }
1385 return ret;
1386}
1387
81898671
JC
1388
1389
14386c2b 1390static int ov7670_queryctrl(struct v4l2_subdev *sd,
111f3356
JC
1391 struct v4l2_queryctrl *qc)
1392{
ca07561a
HV
1393 /* Fill in min, max, step and default value for these controls. */
1394 switch (qc->id) {
1395 case V4L2_CID_BRIGHTNESS:
1396 return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128);
1397 case V4L2_CID_CONTRAST:
1398 return v4l2_ctrl_query_fill(qc, 0, 127, 1, 64);
1399 case V4L2_CID_VFLIP:
1400 case V4L2_CID_HFLIP:
1401 return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
1402 case V4L2_CID_SATURATION:
1403 return v4l2_ctrl_query_fill(qc, 0, 256, 1, 128);
1404 case V4L2_CID_HUE:
1405 return v4l2_ctrl_query_fill(qc, -180, 180, 5, 0);
81898671
JC
1406 case V4L2_CID_GAIN:
1407 return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128);
1408 case V4L2_CID_AUTOGAIN:
1409 return v4l2_ctrl_query_fill(qc, 0, 1, 1, 1);
364e9337
JC
1410 case V4L2_CID_EXPOSURE:
1411 return v4l2_ctrl_query_fill(qc, 0, 65535, 1, 500);
1412 case V4L2_CID_EXPOSURE_AUTO:
1413 return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
ca07561a
HV
1414 }
1415 return -EINVAL;
111f3356
JC
1416}
1417
14386c2b 1418static int ov7670_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
111f3356 1419{
ca07561a
HV
1420 switch (ctrl->id) {
1421 case V4L2_CID_BRIGHTNESS:
1422 return ov7670_g_brightness(sd, &ctrl->value);
1423 case V4L2_CID_CONTRAST:
1424 return ov7670_g_contrast(sd, &ctrl->value);
1425 case V4L2_CID_SATURATION:
1426 return ov7670_g_sat(sd, &ctrl->value);
1427 case V4L2_CID_HUE:
1428 return ov7670_g_hue(sd, &ctrl->value);
1429 case V4L2_CID_VFLIP:
1430 return ov7670_g_vflip(sd, &ctrl->value);
1431 case V4L2_CID_HFLIP:
1432 return ov7670_g_hflip(sd, &ctrl->value);
81898671
JC
1433 case V4L2_CID_GAIN:
1434 return ov7670_g_gain(sd, &ctrl->value);
1435 case V4L2_CID_AUTOGAIN:
1436 return ov7670_g_autogain(sd, &ctrl->value);
364e9337
JC
1437 case V4L2_CID_EXPOSURE:
1438 return ov7670_g_exp(sd, &ctrl->value);
1439 case V4L2_CID_EXPOSURE_AUTO:
1440 return ov7670_g_autoexp(sd, &ctrl->value);
ca07561a
HV
1441 }
1442 return -EINVAL;
111f3356
JC
1443}
1444
14386c2b 1445static int ov7670_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
111f3356 1446{
ca07561a
HV
1447 switch (ctrl->id) {
1448 case V4L2_CID_BRIGHTNESS:
1449 return ov7670_s_brightness(sd, ctrl->value);
1450 case V4L2_CID_CONTRAST:
1451 return ov7670_s_contrast(sd, ctrl->value);
1452 case V4L2_CID_SATURATION:
1453 return ov7670_s_sat(sd, ctrl->value);
1454 case V4L2_CID_HUE:
1455 return ov7670_s_hue(sd, ctrl->value);
1456 case V4L2_CID_VFLIP:
1457 return ov7670_s_vflip(sd, ctrl->value);
1458 case V4L2_CID_HFLIP:
1459 return ov7670_s_hflip(sd, ctrl->value);
81898671
JC
1460 case V4L2_CID_GAIN:
1461 return ov7670_s_gain(sd, ctrl->value);
1462 case V4L2_CID_AUTOGAIN:
1463 return ov7670_s_autogain(sd, ctrl->value);
364e9337
JC
1464 case V4L2_CID_EXPOSURE:
1465 return ov7670_s_exp(sd, ctrl->value);
1466 case V4L2_CID_EXPOSURE_AUTO:
1467 return ov7670_s_autoexp(sd,
1468 (enum v4l2_exposure_auto_type) ctrl->value);
ca07561a
HV
1469 }
1470 return -EINVAL;
111f3356
JC
1471}
1472
14386c2b
HV
1473static int ov7670_g_chip_ident(struct v4l2_subdev *sd,
1474 struct v4l2_dbg_chip_ident *chip)
1475{
1476 struct i2c_client *client = v4l2_get_subdevdata(sd);
1477
1478 return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_OV7670, 0);
1479}
1480
b794aabf
HV
1481#ifdef CONFIG_VIDEO_ADV_DEBUG
1482static int ov7670_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
1483{
1484 struct i2c_client *client = v4l2_get_subdevdata(sd);
1485 unsigned char val = 0;
1486 int ret;
1487
1488 if (!v4l2_chip_match_i2c_client(client, &reg->match))
1489 return -EINVAL;
1490 if (!capable(CAP_SYS_ADMIN))
1491 return -EPERM;
1492 ret = ov7670_read(sd, reg->reg & 0xff, &val);
1493 reg->val = val;
1494 reg->size = 1;
1495 return ret;
1496}
1497
1498static int ov7670_s_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
1499{
1500 struct i2c_client *client = v4l2_get_subdevdata(sd);
1501
1502 if (!v4l2_chip_match_i2c_client(client, &reg->match))
1503 return -EINVAL;
1504 if (!capable(CAP_SYS_ADMIN))
1505 return -EPERM;
1506 ov7670_write(sd, reg->reg & 0xff, reg->val & 0xff);
1507 return 0;
1508}
1509#endif
1510
14386c2b 1511/* ----------------------------------------------------------------------- */
111f3356 1512
14386c2b
HV
1513static const struct v4l2_subdev_core_ops ov7670_core_ops = {
1514 .g_chip_ident = ov7670_g_chip_ident,
1515 .g_ctrl = ov7670_g_ctrl,
1516 .s_ctrl = ov7670_s_ctrl,
1517 .queryctrl = ov7670_queryctrl,
1518 .reset = ov7670_reset,
1519 .init = ov7670_init,
b794aabf
HV
1520#ifdef CONFIG_VIDEO_ADV_DEBUG
1521 .g_register = ov7670_g_register,
1522 .s_register = ov7670_s_register,
1523#endif
14386c2b 1524};
111f3356 1525
14386c2b 1526static const struct v4l2_subdev_video_ops ov7670_video_ops = {
959f3bda
HV
1527 .enum_mbus_fmt = ov7670_enum_mbus_fmt,
1528 .try_mbus_fmt = ov7670_try_mbus_fmt,
1529 .s_mbus_fmt = ov7670_s_mbus_fmt,
14386c2b
HV
1530 .s_parm = ov7670_s_parm,
1531 .g_parm = ov7670_g_parm,
e99dfcf7 1532 .enum_frameintervals = ov7670_enum_frameintervals,
b0326b7f 1533 .enum_framesizes = ov7670_enum_framesizes,
14386c2b 1534};
111f3356 1535
14386c2b
HV
1536static const struct v4l2_subdev_ops ov7670_ops = {
1537 .core = &ov7670_core_ops,
1538 .video = &ov7670_video_ops,
1539};
111f3356 1540
14386c2b 1541/* ----------------------------------------------------------------------- */
111f3356 1542
d058e237
JM
1543static const struct ov7670_devtype ov7670_devdata[] = {
1544 [MODEL_OV7670] = {
1545 .win_sizes = ov7670_win_sizes,
1546 .n_win_sizes = ARRAY_SIZE(ov7670_win_sizes),
1547 },
1548 [MODEL_OV7675] = {
1549 .win_sizes = ov7675_win_sizes,
1550 .n_win_sizes = ARRAY_SIZE(ov7675_win_sizes),
1551 },
1552};
1553
14386c2b
HV
1554static int ov7670_probe(struct i2c_client *client,
1555 const struct i2c_device_id *id)
111f3356 1556{
14386c2b 1557 struct v4l2_subdev *sd;
f9a76156 1558 struct ov7670_info *info;
3c7c9370 1559 int ret;
111f3356 1560
14386c2b
HV
1561 info = kzalloc(sizeof(struct ov7670_info), GFP_KERNEL);
1562 if (info == NULL)
111f3356 1563 return -ENOMEM;
14386c2b
HV
1564 sd = &info->sd;
1565 v4l2_i2c_subdev_init(sd, client, &ov7670_ops);
1566
3c7c9370
HV
1567 info->clock_speed = 30; /* default: a guess */
1568 if (client->dev.platform_data) {
1569 struct ov7670_config *config = client->dev.platform_data;
1570
1571 /*
1572 * Must apply configuration before initializing device, because it
1573 * selects I/O method.
1574 */
1575 info->min_width = config->min_width;
1576 info->min_height = config->min_height;
1577 info->use_smbus = config->use_smbus;
1578
1579 if (config->clock_speed)
1580 info->clock_speed = config->clock_speed;
1581 }
1582
1583 /* Make sure it's an ov7670 */
1584 ret = ov7670_detect(sd);
1585 if (ret) {
1586 v4l_dbg(1, debug, client,
1587 "chip found @ 0x%x (%s) is not an ov7670 chip.\n",
1588 client->addr << 1, client->adapter->name);
1589 kfree(info);
1590 return ret;
1591 }
1592 v4l_info(client, "chip found @ 0x%02x (%s)\n",
1593 client->addr << 1, client->adapter->name);
1594
d058e237 1595 info->devtype = &ov7670_devdata[id->driver_data];
3c7c9370
HV
1596 info->fmt = &ov7670_formats[0];
1597 info->sat = 128; /* Review this */
1598 info->clkrc = info->clock_speed / 30;
111f3356 1599 return 0;
111f3356
JC
1600}
1601
1602
14386c2b 1603static int ov7670_remove(struct i2c_client *client)
111f3356 1604{
14386c2b 1605 struct v4l2_subdev *sd = i2c_get_clientdata(client);
111f3356 1606
14386c2b
HV
1607 v4l2_device_unregister_subdev(sd);
1608 kfree(to_state(sd));
1609 return 0;
111f3356
JC
1610}
1611
14386c2b 1612static const struct i2c_device_id ov7670_id[] = {
d058e237
JM
1613 { "ov7670", MODEL_OV7670 },
1614 { "ov7675", MODEL_OV7675 },
14386c2b
HV
1615 { }
1616};
1617MODULE_DEVICE_TABLE(i2c, ov7670_id);
1618
ef2ac770
HV
1619static struct i2c_driver ov7670_driver = {
1620 .driver = {
1621 .owner = THIS_MODULE,
1622 .name = "ov7670",
1623 },
1624 .probe = ov7670_probe,
1625 .remove = ov7670_remove,
1626 .id_table = ov7670_id,
111f3356 1627};
ef2ac770 1628
c6e8d86f 1629module_i2c_driver(ov7670_driver);