]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/media/rc/rc-main.c
[media] lirc: fix transmit-only read features
[mirror_ubuntu-jammy-kernel.git] / drivers / media / rc / rc-main.c
CommitLineData
829ba9fe 1/* rc-main.c - Remote Controller core module
ef53a115 2 *
37e59f87 3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
446e4a64
MCC
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
ef53a115
MCC
13 */
14
d3d96820
MCC
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
6bda9644 17#include <media/rc-core.h>
078600f5 18#include <linux/atomic.h>
631493ec
MCC
19#include <linux/spinlock.h>
20#include <linux/delay.h>
882ead32 21#include <linux/input.h>
153a60bb 22#include <linux/leds.h>
5a0e3ad6 23#include <linux/slab.h>
fcb13097 24#include <linux/idr.h>
bc2a6c57 25#include <linux/device.h>
7a707b89 26#include <linux/module.h>
f62de675 27#include "rc-core-priv.h"
ef53a115 28
b3074c0a
DH
29/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
30#define IR_TAB_MIN_SIZE 256
31#define IR_TAB_MAX_SIZE 8192
fcb13097 32#define RC_DEV_MAX 256
f6fc5049 33
a374fef4
DH
34/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
35#define IR_KEYPRESS_TIMEOUT 250
36
4c7b355d 37/* Used to keep track of known keymaps */
631493ec
MCC
38static LIST_HEAD(rc_map_list);
39static DEFINE_SPINLOCK(rc_map_lock);
153a60bb 40static struct led_trigger *led_feedback;
631493ec 41
fcb13097
DH
42/* Used to keep track of rc devices */
43static DEFINE_IDA(rc_ida);
44
d100e659 45static struct rc_map_list *seek_rc_map(const char *name)
631493ec 46{
d100e659 47 struct rc_map_list *map = NULL;
631493ec
MCC
48
49 spin_lock(&rc_map_lock);
50 list_for_each_entry(map, &rc_map_list, list) {
51 if (!strcmp(name, map->map.name)) {
52 spin_unlock(&rc_map_lock);
53 return map;
54 }
55 }
56 spin_unlock(&rc_map_lock);
57
58 return NULL;
59}
60
d100e659 61struct rc_map *rc_map_get(const char *name)
631493ec
MCC
62{
63
d100e659 64 struct rc_map_list *map;
631493ec
MCC
65
66 map = seek_rc_map(name);
2ff56fad 67#ifdef CONFIG_MODULES
631493ec 68 if (!map) {
8ea5488a 69 int rc = request_module("%s", name);
631493ec 70 if (rc < 0) {
d3d96820 71 pr_err("Couldn't load IR keymap %s\n", name);
631493ec
MCC
72 return NULL;
73 }
74 msleep(20); /* Give some time for IR to register */
75
76 map = seek_rc_map(name);
77 }
78#endif
79 if (!map) {
d3d96820 80 pr_err("IR keymap %s not found\n", name);
631493ec
MCC
81 return NULL;
82 }
83
84 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
85
86 return &map->map;
87}
d100e659 88EXPORT_SYMBOL_GPL(rc_map_get);
631493ec 89
d100e659 90int rc_map_register(struct rc_map_list *map)
631493ec
MCC
91{
92 spin_lock(&rc_map_lock);
93 list_add_tail(&map->list, &rc_map_list);
94 spin_unlock(&rc_map_lock);
95 return 0;
96}
d100e659 97EXPORT_SYMBOL_GPL(rc_map_register);
631493ec 98
d100e659 99void rc_map_unregister(struct rc_map_list *map)
631493ec
MCC
100{
101 spin_lock(&rc_map_lock);
102 list_del(&map->list);
103 spin_unlock(&rc_map_lock);
104}
d100e659 105EXPORT_SYMBOL_GPL(rc_map_unregister);
631493ec
MCC
106
107
2f4f58d6 108static struct rc_map_table empty[] = {
631493ec
MCC
109 { 0x2a, KEY_COFFEE },
110};
111
d100e659 112static struct rc_map_list empty_map = {
631493ec
MCC
113 .map = {
114 .scan = empty,
115 .size = ARRAY_SIZE(empty),
52b66144 116 .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */
631493ec
MCC
117 .name = RC_MAP_EMPTY,
118 }
119};
120
9f470095
DT
121/**
122 * ir_create_table() - initializes a scancode table
b088ba65 123 * @rc_map: the rc_map to initialize
9f470095 124 * @name: name to assign to the table
52b66144 125 * @rc_type: ir type to assign to the new table
9f470095
DT
126 * @size: initial size of the table
127 * @return: zero on success or a negative error code
128 *
b088ba65 129 * This routine will initialize the rc_map and will allocate
d8b4b582 130 * memory to hold at least the specified number of elements.
9f470095 131 */
b088ba65 132static int ir_create_table(struct rc_map *rc_map,
52b66144 133 const char *name, u64 rc_type, size_t size)
9f470095 134{
d54fc3bb
HV
135 rc_map->name = kstrdup(name, GFP_KERNEL);
136 if (!rc_map->name)
137 return -ENOMEM;
b088ba65 138 rc_map->rc_type = rc_type;
2f4f58d6
MCC
139 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
140 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
b088ba65 141 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
d54fc3bb
HV
142 if (!rc_map->scan) {
143 kfree(rc_map->name);
144 rc_map->name = NULL;
9f470095 145 return -ENOMEM;
d54fc3bb 146 }
9f470095
DT
147
148 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
b088ba65 149 rc_map->size, rc_map->alloc);
9f470095
DT
150 return 0;
151}
152
153/**
154 * ir_free_table() - frees memory allocated by a scancode table
b088ba65 155 * @rc_map: the table whose mappings need to be freed
9f470095
DT
156 *
157 * This routine will free memory alloctaed for key mappings used by given
158 * scancode table.
159 */
b088ba65 160static void ir_free_table(struct rc_map *rc_map)
9f470095 161{
b088ba65 162 rc_map->size = 0;
d54fc3bb 163 kfree(rc_map->name);
c183d358 164 rc_map->name = NULL;
b088ba65
MCC
165 kfree(rc_map->scan);
166 rc_map->scan = NULL;
9f470095
DT
167}
168
7fee03e4 169/**
b3074c0a 170 * ir_resize_table() - resizes a scancode table if necessary
b088ba65 171 * @rc_map: the rc_map to resize
9f470095 172 * @gfp_flags: gfp flags to use when allocating memory
b3074c0a 173 * @return: zero on success or a negative error code
7fee03e4 174 *
b088ba65 175 * This routine will shrink the rc_map if it has lots of
b3074c0a 176 * unused entries and grow it if it is full.
7fee03e4 177 */
b088ba65 178static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
7fee03e4 179{
b088ba65 180 unsigned int oldalloc = rc_map->alloc;
b3074c0a 181 unsigned int newalloc = oldalloc;
2f4f58d6
MCC
182 struct rc_map_table *oldscan = rc_map->scan;
183 struct rc_map_table *newscan;
b3074c0a 184
b088ba65 185 if (rc_map->size == rc_map->len) {
b3074c0a 186 /* All entries in use -> grow keytable */
b088ba65 187 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
b3074c0a 188 return -ENOMEM;
7fee03e4 189
b3074c0a
DH
190 newalloc *= 2;
191 IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
192 }
7fee03e4 193
b088ba65 194 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
b3074c0a
DH
195 /* Less than 1/3 of entries in use -> shrink keytable */
196 newalloc /= 2;
197 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
198 }
7fee03e4 199
b3074c0a
DH
200 if (newalloc == oldalloc)
201 return 0;
7fee03e4 202
9f470095 203 newscan = kmalloc(newalloc, gfp_flags);
b3074c0a
DH
204 if (!newscan) {
205 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
206 return -ENOMEM;
207 }
7fee03e4 208
2f4f58d6 209 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
b088ba65
MCC
210 rc_map->scan = newscan;
211 rc_map->alloc = newalloc;
2f4f58d6 212 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
b3074c0a
DH
213 kfree(oldscan);
214 return 0;
7fee03e4
MCC
215}
216
f6fc5049 217/**
9f470095 218 * ir_update_mapping() - set a keycode in the scancode->keycode table
d8b4b582 219 * @dev: the struct rc_dev device descriptor
b088ba65 220 * @rc_map: scancode table to be adjusted
9f470095
DT
221 * @index: index of the mapping that needs to be updated
222 * @keycode: the desired keycode
223 * @return: previous keycode assigned to the mapping
224 *
d8b4b582 225 * This routine is used to update scancode->keycode mapping at given
9f470095
DT
226 * position.
227 */
d8b4b582 228static unsigned int ir_update_mapping(struct rc_dev *dev,
b088ba65 229 struct rc_map *rc_map,
9f470095
DT
230 unsigned int index,
231 unsigned int new_keycode)
232{
b088ba65 233 int old_keycode = rc_map->scan[index].keycode;
9f470095
DT
234 int i;
235
236 /* Did the user wish to remove the mapping? */
237 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
238 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
b088ba65
MCC
239 index, rc_map->scan[index].scancode);
240 rc_map->len--;
241 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
2f4f58d6 242 (rc_map->len - index) * sizeof(struct rc_map_table));
9f470095
DT
243 } else {
244 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
245 index,
246 old_keycode == KEY_RESERVED ? "New" : "Replacing",
b088ba65
MCC
247 rc_map->scan[index].scancode, new_keycode);
248 rc_map->scan[index].keycode = new_keycode;
d8b4b582 249 __set_bit(new_keycode, dev->input_dev->keybit);
9f470095
DT
250 }
251
252 if (old_keycode != KEY_RESERVED) {
253 /* A previous mapping was updated... */
d8b4b582 254 __clear_bit(old_keycode, dev->input_dev->keybit);
9f470095 255 /* ... but another scancode might use the same keycode */
b088ba65
MCC
256 for (i = 0; i < rc_map->len; i++) {
257 if (rc_map->scan[i].keycode == old_keycode) {
d8b4b582 258 __set_bit(old_keycode, dev->input_dev->keybit);
9f470095
DT
259 break;
260 }
261 }
262
263 /* Possibly shrink the keytable, failure is not a problem */
b088ba65 264 ir_resize_table(rc_map, GFP_ATOMIC);
9f470095
DT
265 }
266
267 return old_keycode;
268}
269
270/**
4c7b355d 271 * ir_establish_scancode() - set a keycode in the scancode->keycode table
d8b4b582 272 * @dev: the struct rc_dev device descriptor
b088ba65 273 * @rc_map: scancode table to be searched
9f470095
DT
274 * @scancode: the desired scancode
275 * @resize: controls whether we allowed to resize the table to
25985edc 276 * accommodate not yet present scancodes
9f470095
DT
277 * @return: index of the mapping containing scancode in question
278 * or -1U in case of failure.
f6fc5049 279 *
b088ba65 280 * This routine is used to locate given scancode in rc_map.
9f470095
DT
281 * If scancode is not yet present the routine will allocate a new slot
282 * for it.
f6fc5049 283 */
d8b4b582 284static unsigned int ir_establish_scancode(struct rc_dev *dev,
b088ba65 285 struct rc_map *rc_map,
9f470095
DT
286 unsigned int scancode,
287 bool resize)
f6fc5049 288{
b3074c0a 289 unsigned int i;
9dfe4e83
MCC
290
291 /*
292 * Unfortunately, some hardware-based IR decoders don't provide
293 * all bits for the complete IR code. In general, they provide only
294 * the command part of the IR code. Yet, as it is possible to replace
295 * the provided IR with another one, it is needed to allow loading
d8b4b582
DH
296 * IR tables from other remotes. So, we support specifying a mask to
297 * indicate the valid bits of the scancodes.
9dfe4e83 298 */
9d2f1d3c
DH
299 if (dev->scancode_mask)
300 scancode &= dev->scancode_mask;
b3074c0a
DH
301
302 /* First check if we already have a mapping for this ir command */
b088ba65
MCC
303 for (i = 0; i < rc_map->len; i++) {
304 if (rc_map->scan[i].scancode == scancode)
9f470095
DT
305 return i;
306
b3074c0a 307 /* Keytable is sorted from lowest to highest scancode */
b088ba65 308 if (rc_map->scan[i].scancode >= scancode)
b3074c0a 309 break;
b3074c0a 310 }
f6fc5049 311
9f470095 312 /* No previous mapping found, we might need to grow the table */
b088ba65
MCC
313 if (rc_map->size == rc_map->len) {
314 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
9f470095
DT
315 return -1U;
316 }
35438946 317
9f470095 318 /* i is the proper index to insert our new keycode */
b088ba65
MCC
319 if (i < rc_map->len)
320 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
2f4f58d6 321 (rc_map->len - i) * sizeof(struct rc_map_table));
b088ba65
MCC
322 rc_map->scan[i].scancode = scancode;
323 rc_map->scan[i].keycode = KEY_RESERVED;
324 rc_map->len++;
f6fc5049 325
9f470095 326 return i;
f6fc5049
MCC
327}
328
ef53a115 329/**
b3074c0a 330 * ir_setkeycode() - set a keycode in the scancode->keycode table
d8b4b582 331 * @idev: the struct input_dev device descriptor
ef53a115 332 * @scancode: the desired scancode
b3074c0a
DH
333 * @keycode: result
334 * @return: -EINVAL if the keycode could not be inserted, otherwise zero.
ef53a115 335 *
b3074c0a 336 * This routine is used to handle evdev EVIOCSKEY ioctl.
ef53a115 337 */
d8b4b582 338static int ir_setkeycode(struct input_dev *idev,
9f470095
DT
339 const struct input_keymap_entry *ke,
340 unsigned int *old_keycode)
ef53a115 341{
d8b4b582 342 struct rc_dev *rdev = input_get_drvdata(idev);
b088ba65 343 struct rc_map *rc_map = &rdev->rc_map;
9f470095
DT
344 unsigned int index;
345 unsigned int scancode;
dea8a39f 346 int retval = 0;
9f470095 347 unsigned long flags;
ef53a115 348
b088ba65 349 spin_lock_irqsave(&rc_map->lock, flags);
9f470095
DT
350
351 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
352 index = ke->index;
b088ba65 353 if (index >= rc_map->len) {
9f470095
DT
354 retval = -EINVAL;
355 goto out;
356 }
357 } else {
358 retval = input_scancode_to_scalar(ke, &scancode);
359 if (retval)
360 goto out;
361
b088ba65
MCC
362 index = ir_establish_scancode(rdev, rc_map, scancode, true);
363 if (index >= rc_map->len) {
9f470095
DT
364 retval = -ENOMEM;
365 goto out;
366 }
367 }
368
b088ba65 369 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
9f470095
DT
370
371out:
b088ba65 372 spin_unlock_irqrestore(&rc_map->lock, flags);
9f470095 373 return retval;
e97f4677
MCC
374}
375
376/**
b3074c0a 377 * ir_setkeytable() - sets several entries in the scancode->keycode table
d8b4b582 378 * @dev: the struct rc_dev device descriptor
b088ba65
MCC
379 * @to: the struct rc_map to copy entries to
380 * @from: the struct rc_map to copy entries from
9f470095 381 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
e97f4677 382 *
b3074c0a 383 * This routine is used to handle table initialization.
e97f4677 384 */
d8b4b582 385static int ir_setkeytable(struct rc_dev *dev,
b088ba65 386 const struct rc_map *from)
e97f4677 387{
b088ba65 388 struct rc_map *rc_map = &dev->rc_map;
9f470095
DT
389 unsigned int i, index;
390 int rc;
391
b088ba65 392 rc = ir_create_table(rc_map, from->name,
52b66144 393 from->rc_type, from->size);
9f470095
DT
394 if (rc)
395 return rc;
396
397 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
b088ba65 398 rc_map->size, rc_map->alloc);
e97f4677 399
b3074c0a 400 for (i = 0; i < from->size; i++) {
b088ba65 401 index = ir_establish_scancode(dev, rc_map,
9f470095 402 from->scan[i].scancode, false);
b088ba65 403 if (index >= rc_map->len) {
9f470095 404 rc = -ENOMEM;
b3074c0a 405 break;
9f470095
DT
406 }
407
b088ba65 408 ir_update_mapping(dev, rc_map, index,
9f470095 409 from->scan[i].keycode);
e97f4677 410 }
9f470095
DT
411
412 if (rc)
b088ba65 413 ir_free_table(rc_map);
9f470095 414
b3074c0a 415 return rc;
ef53a115
MCC
416}
417
9f470095
DT
418/**
419 * ir_lookup_by_scancode() - locate mapping by scancode
b088ba65 420 * @rc_map: the struct rc_map to search
9f470095
DT
421 * @scancode: scancode to look for in the table
422 * @return: index in the table, -1U if not found
423 *
424 * This routine performs binary search in RC keykeymap table for
425 * given scancode.
426 */
b088ba65 427static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
9f470095
DT
428 unsigned int scancode)
429{
0d07025e 430 int start = 0;
b088ba65 431 int end = rc_map->len - 1;
0d07025e 432 int mid;
9f470095
DT
433
434 while (start <= end) {
435 mid = (start + end) / 2;
b088ba65 436 if (rc_map->scan[mid].scancode < scancode)
9f470095 437 start = mid + 1;
b088ba65 438 else if (rc_map->scan[mid].scancode > scancode)
9f470095
DT
439 end = mid - 1;
440 else
441 return mid;
442 }
443
444 return -1U;
445}
446
ef53a115 447/**
b3074c0a 448 * ir_getkeycode() - get a keycode from the scancode->keycode table
d8b4b582 449 * @idev: the struct input_dev device descriptor
ef53a115 450 * @scancode: the desired scancode
b3074c0a
DH
451 * @keycode: used to return the keycode, if found, or KEY_RESERVED
452 * @return: always returns zero.
ef53a115 453 *
b3074c0a 454 * This routine is used to handle evdev EVIOCGKEY ioctl.
ef53a115 455 */
d8b4b582 456static int ir_getkeycode(struct input_dev *idev,
9f470095 457 struct input_keymap_entry *ke)
ef53a115 458{
d8b4b582 459 struct rc_dev *rdev = input_get_drvdata(idev);
b088ba65 460 struct rc_map *rc_map = &rdev->rc_map;
2f4f58d6 461 struct rc_map_table *entry;
9f470095
DT
462 unsigned long flags;
463 unsigned int index;
464 unsigned int scancode;
465 int retval;
ef53a115 466
b088ba65 467 spin_lock_irqsave(&rc_map->lock, flags);
9f470095
DT
468
469 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
470 index = ke->index;
471 } else {
472 retval = input_scancode_to_scalar(ke, &scancode);
473 if (retval)
474 goto out;
475
b088ba65 476 index = ir_lookup_by_scancode(rc_map, scancode);
9f470095
DT
477 }
478
54e74b87
DT
479 if (index < rc_map->len) {
480 entry = &rc_map->scan[index];
481
482 ke->index = index;
483 ke->keycode = entry->keycode;
484 ke->len = sizeof(entry->scancode);
485 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
486
487 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
488 /*
489 * We do not really know the valid range of scancodes
490 * so let's respond with KEY_RESERVED to anything we
491 * do not have mapping for [yet].
492 */
493 ke->index = index;
494 ke->keycode = KEY_RESERVED;
495 } else {
9f470095
DT
496 retval = -EINVAL;
497 goto out;
e97f4677
MCC
498 }
499
47c5ba53
DT
500 retval = 0;
501
9f470095 502out:
b088ba65 503 spin_unlock_irqrestore(&rc_map->lock, flags);
9f470095 504 return retval;
ef53a115
MCC
505}
506
507/**
ca86674b 508 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
d8b4b582
DH
509 * @dev: the struct rc_dev descriptor of the device
510 * @scancode: the scancode to look for
511 * @return: the corresponding keycode, or KEY_RESERVED
ef53a115 512 *
d8b4b582
DH
513 * This routine is used by drivers which need to convert a scancode to a
514 * keycode. Normally it should not be used since drivers should have no
515 * interest in keycodes.
ef53a115 516 */
ca86674b 517u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
ef53a115 518{
b088ba65 519 struct rc_map *rc_map = &dev->rc_map;
9f470095
DT
520 unsigned int keycode;
521 unsigned int index;
522 unsigned long flags;
523
b088ba65 524 spin_lock_irqsave(&rc_map->lock, flags);
9f470095 525
b088ba65
MCC
526 index = ir_lookup_by_scancode(rc_map, scancode);
527 keycode = index < rc_map->len ?
528 rc_map->scan[index].keycode : KEY_RESERVED;
9f470095 529
b088ba65 530 spin_unlock_irqrestore(&rc_map->lock, flags);
ef53a115 531
35438946
MCC
532 if (keycode != KEY_RESERVED)
533 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
d8b4b582 534 dev->input_name, scancode, keycode);
9f470095 535
b3074c0a 536 return keycode;
ef53a115 537}
ca86674b 538EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
ef53a115 539
6660de56 540/**
62c65031 541 * ir_do_keyup() - internal function to signal the release of a keypress
d8b4b582 542 * @dev: the struct rc_dev descriptor of the device
98c32bcd 543 * @sync: whether or not to call input_sync
6660de56 544 *
62c65031
DH
545 * This function is used internally to release a keypress, it must be
546 * called with keylock held.
a374fef4 547 */
98c32bcd 548static void ir_do_keyup(struct rc_dev *dev, bool sync)
a374fef4 549{
d8b4b582 550 if (!dev->keypressed)
a374fef4
DH
551 return;
552
d8b4b582
DH
553 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
554 input_report_key(dev->input_dev, dev->last_keycode, 0);
153a60bb 555 led_trigger_event(led_feedback, LED_OFF);
98c32bcd
JW
556 if (sync)
557 input_sync(dev->input_dev);
d8b4b582 558 dev->keypressed = false;
a374fef4 559}
62c65031
DH
560
561/**
ca86674b 562 * rc_keyup() - signals the release of a keypress
d8b4b582 563 * @dev: the struct rc_dev descriptor of the device
62c65031
DH
564 *
565 * This routine is used to signal that a key has been released on the
566 * remote control.
567 */
ca86674b 568void rc_keyup(struct rc_dev *dev)
62c65031
DH
569{
570 unsigned long flags;
62c65031 571
d8b4b582 572 spin_lock_irqsave(&dev->keylock, flags);
98c32bcd 573 ir_do_keyup(dev, true);
d8b4b582 574 spin_unlock_irqrestore(&dev->keylock, flags);
62c65031 575}
ca86674b 576EXPORT_SYMBOL_GPL(rc_keyup);
a374fef4
DH
577
578/**
579 * ir_timer_keyup() - generates a keyup event after a timeout
d8b4b582 580 * @cookie: a pointer to the struct rc_dev for the device
a374fef4
DH
581 *
582 * This routine will generate a keyup event some time after a keydown event
583 * is generated when no further activity has been detected.
6660de56 584 */
a374fef4 585static void ir_timer_keyup(unsigned long cookie)
6660de56 586{
d8b4b582 587 struct rc_dev *dev = (struct rc_dev *)cookie;
a374fef4
DH
588 unsigned long flags;
589
590 /*
591 * ir->keyup_jiffies is used to prevent a race condition if a
592 * hardware interrupt occurs at this point and the keyup timer
593 * event is moved further into the future as a result.
594 *
595 * The timer will then be reactivated and this function called
596 * again in the future. We need to exit gracefully in that case
597 * to allow the input subsystem to do its auto-repeat magic or
598 * a keyup event might follow immediately after the keydown.
599 */
d8b4b582
DH
600 spin_lock_irqsave(&dev->keylock, flags);
601 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
98c32bcd 602 ir_do_keyup(dev, true);
d8b4b582 603 spin_unlock_irqrestore(&dev->keylock, flags);
a374fef4
DH
604}
605
606/**
ca86674b 607 * rc_repeat() - signals that a key is still pressed
d8b4b582 608 * @dev: the struct rc_dev descriptor of the device
a374fef4
DH
609 *
610 * This routine is used by IR decoders when a repeat message which does
611 * not include the necessary bits to reproduce the scancode has been
612 * received.
613 */
ca86674b 614void rc_repeat(struct rc_dev *dev)
a374fef4
DH
615{
616 unsigned long flags;
6660de56 617
d8b4b582 618 spin_lock_irqsave(&dev->keylock, flags);
a374fef4 619
d8b4b582 620 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
98c32bcd 621 input_sync(dev->input_dev);
ed4d3876 622
d8b4b582 623 if (!dev->keypressed)
a374fef4 624 goto out;
6660de56 625
d8b4b582
DH
626 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
627 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
a374fef4
DH
628
629out:
d8b4b582 630 spin_unlock_irqrestore(&dev->keylock, flags);
6660de56 631}
ca86674b 632EXPORT_SYMBOL_GPL(rc_repeat);
6660de56
MCC
633
634/**
62c65031 635 * ir_do_keydown() - internal function to process a keypress
d8b4b582 636 * @dev: the struct rc_dev descriptor of the device
120703f9 637 * @protocol: the protocol of the keypress
62c65031
DH
638 * @scancode: the scancode of the keypress
639 * @keycode: the keycode of the keypress
640 * @toggle: the toggle value of the keypress
6660de56 641 *
62c65031
DH
642 * This function is used internally to register a keypress, it must be
643 * called with keylock held.
6660de56 644 */
120703f9
DH
645static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
646 u32 scancode, u32 keycode, u8 toggle)
6660de56 647{
99b0f3c9 648 bool new_event = (!dev->keypressed ||
120703f9 649 dev->last_protocol != protocol ||
99b0f3c9 650 dev->last_scancode != scancode ||
120703f9 651 dev->last_toggle != toggle);
6660de56 652
98c32bcd
JW
653 if (new_event && dev->keypressed)
654 ir_do_keyup(dev, false);
6660de56 655
98c32bcd 656 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
a374fef4 657
98c32bcd
JW
658 if (new_event && keycode != KEY_RESERVED) {
659 /* Register a keypress */
660 dev->keypressed = true;
120703f9 661 dev->last_protocol = protocol;
98c32bcd
JW
662 dev->last_scancode = scancode;
663 dev->last_toggle = toggle;
664 dev->last_keycode = keycode;
665
25ec587c 666 IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
120703f9 667 dev->input_name, keycode, protocol, scancode);
98c32bcd 668 input_report_key(dev->input_dev, keycode, 1);
70a2f912
JH
669
670 led_trigger_event(led_feedback, LED_FULL);
98c32bcd 671 }
ed4d3876 672
d8b4b582 673 input_sync(dev->input_dev);
62c65031 674}
6660de56 675
62c65031 676/**
ca86674b 677 * rc_keydown() - generates input event for a key press
d8b4b582 678 * @dev: the struct rc_dev descriptor of the device
120703f9
DH
679 * @protocol: the protocol for the keypress
680 * @scancode: the scancode for the keypress
62c65031
DH
681 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
682 * support toggle values, this should be set to zero)
683 *
d8b4b582
DH
684 * This routine is used to signal that a key has been pressed on the
685 * remote control.
62c65031 686 */
120703f9 687void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
62c65031
DH
688{
689 unsigned long flags;
ca86674b 690 u32 keycode = rc_g_keycode_from_table(dev, scancode);
62c65031 691
d8b4b582 692 spin_lock_irqsave(&dev->keylock, flags);
120703f9 693 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
62c65031 694
d8b4b582
DH
695 if (dev->keypressed) {
696 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
697 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
62c65031 698 }
d8b4b582 699 spin_unlock_irqrestore(&dev->keylock, flags);
6660de56 700}
ca86674b 701EXPORT_SYMBOL_GPL(rc_keydown);
6660de56 702
62c65031 703/**
ca86674b 704 * rc_keydown_notimeout() - generates input event for a key press without
62c65031 705 * an automatic keyup event at a later time
d8b4b582 706 * @dev: the struct rc_dev descriptor of the device
120703f9
DH
707 * @protocol: the protocol for the keypress
708 * @scancode: the scancode for the keypress
62c65031
DH
709 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
710 * support toggle values, this should be set to zero)
711 *
d8b4b582 712 * This routine is used to signal that a key has been pressed on the
ca86674b 713 * remote control. The driver must manually call rc_keyup() at a later stage.
62c65031 714 */
120703f9
DH
715void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
716 u32 scancode, u8 toggle)
62c65031
DH
717{
718 unsigned long flags;
ca86674b 719 u32 keycode = rc_g_keycode_from_table(dev, scancode);
62c65031 720
d8b4b582 721 spin_lock_irqsave(&dev->keylock, flags);
120703f9 722 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
d8b4b582 723 spin_unlock_irqrestore(&dev->keylock, flags);
62c65031 724}
ca86674b 725EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
62c65031 726
b590c0bf
SY
727/**
728 * rc_validate_filter() - checks that the scancode and mask are valid and
729 * provides sensible defaults
f423ccc1 730 * @dev: the struct rc_dev descriptor of the device
b590c0bf
SY
731 * @filter: the scancode and mask
732 * @return: 0 or -EINVAL if the filter is not valid
733 */
f423ccc1 734static int rc_validate_filter(struct rc_dev *dev,
b590c0bf
SY
735 struct rc_scancode_filter *filter)
736{
737 static u32 masks[] = {
738 [RC_TYPE_RC5] = 0x1f7f,
739 [RC_TYPE_RC5X_20] = 0x1f7f3f,
740 [RC_TYPE_RC5_SZ] = 0x2fff,
741 [RC_TYPE_SONY12] = 0x1f007f,
742 [RC_TYPE_SONY15] = 0xff007f,
743 [RC_TYPE_SONY20] = 0x1fff7f,
744 [RC_TYPE_JVC] = 0xffff,
745 [RC_TYPE_NEC] = 0xffff,
746 [RC_TYPE_NECX] = 0xffffff,
747 [RC_TYPE_NEC32] = 0xffffffff,
748 [RC_TYPE_SANYO] = 0x1fffff,
749 [RC_TYPE_RC6_0] = 0xffff,
750 [RC_TYPE_RC6_6A_20] = 0xfffff,
751 [RC_TYPE_RC6_6A_24] = 0xffffff,
752 [RC_TYPE_RC6_6A_32] = 0xffffffff,
753 [RC_TYPE_RC6_MCE] = 0xffff7fff,
754 [RC_TYPE_SHARP] = 0x1fff,
755 };
756 u32 s = filter->data;
f423ccc1 757 enum rc_type protocol = dev->wakeup_protocol;
b590c0bf
SY
758
759 switch (protocol) {
760 case RC_TYPE_NECX:
761 if ((((s >> 16) ^ ~(s >> 8)) & 0xff) == 0)
762 return -EINVAL;
763 break;
764 case RC_TYPE_NEC32:
765 if ((((s >> 24) ^ ~(s >> 16)) & 0xff) == 0)
766 return -EINVAL;
767 break;
768 case RC_TYPE_RC6_MCE:
769 if ((s & 0xffff0000) != 0x800f0000)
770 return -EINVAL;
771 break;
772 case RC_TYPE_RC6_6A_32:
773 if ((s & 0xffff0000) == 0x800f0000)
774 return -EINVAL;
775 break;
776 default:
777 break;
778 }
779
780 filter->data &= masks[protocol];
781 filter->mask &= masks[protocol];
782
f423ccc1
JH
783 /*
784 * If we have to raw encode the IR for wakeup, we cannot have a mask
785 */
786 if (dev->encode_wakeup &&
787 filter->mask != 0 && filter->mask != masks[protocol])
788 return -EINVAL;
789
b590c0bf
SY
790 return 0;
791}
792
8b2ff320
SK
793int rc_open(struct rc_dev *rdev)
794{
795 int rval = 0;
796
797 if (!rdev)
798 return -EINVAL;
799
800 mutex_lock(&rdev->lock);
c73bbaa4 801
f02dcdd1 802 if (!rdev->users++ && rdev->open != NULL)
8b2ff320
SK
803 rval = rdev->open(rdev);
804
805 if (rval)
806 rdev->users--;
807
808 mutex_unlock(&rdev->lock);
809
810 return rval;
811}
812EXPORT_SYMBOL_GPL(rc_open);
813
d8b4b582 814static int ir_open(struct input_dev *idev)
ef53a115 815{
d8b4b582 816 struct rc_dev *rdev = input_get_drvdata(idev);
75543cce 817
8b2ff320
SK
818 return rc_open(rdev);
819}
820
821void rc_close(struct rc_dev *rdev)
822{
823 if (rdev) {
824 mutex_lock(&rdev->lock);
825
81b7d14e 826 if (!--rdev->users && rdev->close != NULL)
8b2ff320
SK
827 rdev->close(rdev);
828
829 mutex_unlock(&rdev->lock);
830 }
ef53a115 831}
8b2ff320 832EXPORT_SYMBOL_GPL(rc_close);
d4b778d3 833
d8b4b582 834static void ir_close(struct input_dev *idev)
f6fc5049 835{
d8b4b582 836 struct rc_dev *rdev = input_get_drvdata(idev);
8b2ff320 837 rc_close(rdev);
f6fc5049 838}
f6fc5049 839
bc2a6c57 840/* class for /sys/class/rc */
40fc5325 841static char *rc_devnode(struct device *dev, umode_t *mode)
bc2a6c57
MCC
842{
843 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
844}
845
40fc5325 846static struct class rc_class = {
bc2a6c57 847 .name = "rc",
40fc5325 848 .devnode = rc_devnode,
bc2a6c57
MCC
849};
850
c003ab1b
DH
851/*
852 * These are the protocol textual descriptions that are
853 * used by the sysfs protocols file. Note that the order
854 * of the entries is relevant.
855 */
53df8777 856static const struct {
bc2a6c57 857 u64 type;
53df8777 858 const char *name;
9f0bf366 859 const char *module_name;
bc2a6c57 860} proto_names[] = {
9f0bf366
HK
861 { RC_BIT_NONE, "none", NULL },
862 { RC_BIT_OTHER, "other", NULL },
863 { RC_BIT_UNKNOWN, "unknown", NULL },
c003ab1b 864 { RC_BIT_RC5 |
0fcd3f0a 865 RC_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" },
2ceeca04
SY
866 { RC_BIT_NEC |
867 RC_BIT_NECX |
868 RC_BIT_NEC32, "nec", "ir-nec-decoder" },
c003ab1b
DH
869 { RC_BIT_RC6_0 |
870 RC_BIT_RC6_6A_20 |
871 RC_BIT_RC6_6A_24 |
872 RC_BIT_RC6_6A_32 |
9f0bf366
HK
873 RC_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" },
874 { RC_BIT_JVC, "jvc", "ir-jvc-decoder" },
c003ab1b
DH
875 { RC_BIT_SONY12 |
876 RC_BIT_SONY15 |
9f0bf366
HK
877 RC_BIT_SONY20, "sony", "ir-sony-decoder" },
878 { RC_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" },
879 { RC_BIT_SANYO, "sanyo", "ir-sanyo-decoder" },
880 { RC_BIT_SHARP, "sharp", "ir-sharp-decoder" },
881 { RC_BIT_MCE_KBD, "mce_kbd", "ir-mce_kbd-decoder" },
882 { RC_BIT_XMP, "xmp", "ir-xmp-decoder" },
ff42c8aa 883 { RC_BIT_CEC, "cec", NULL },
bc2a6c57
MCC
884};
885
bc2a6c57 886/**
ab88c66d
JH
887 * struct rc_filter_attribute - Device attribute relating to a filter type.
888 * @attr: Device attribute.
889 * @type: Filter type.
890 * @mask: false for filter value, true for filter mask.
891 */
892struct rc_filter_attribute {
893 struct device_attribute attr;
894 enum rc_filter_type type;
895 bool mask;
896};
897#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
898
ab88c66d
JH
899#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
900 struct rc_filter_attribute dev_attr_##_name = { \
901 .attr = __ATTR(_name, _mode, _show, _store), \
902 .type = (_type), \
903 .mask = (_mask), \
904 }
905
dd6ff6a0
DH
906static bool lirc_is_present(void)
907{
908#if defined(CONFIG_LIRC_MODULE)
909 struct module *lirc;
910
911 mutex_lock(&module_mutex);
912 lirc = find_module("lirc_dev");
913 mutex_unlock(&module_mutex);
914
915 return lirc ? true : false;
916#elif defined(CONFIG_LIRC)
917 return true;
918#else
919 return false;
920#endif
921}
922
ab88c66d 923/**
0751d33c 924 * show_protocols() - shows the current IR protocol(s)
d8b4b582 925 * @device: the device descriptor
da6e162d 926 * @mattr: the device attribute struct
bc2a6c57
MCC
927 * @buf: a pointer to the output buffer
928 *
929 * This routine is a callback routine for input read the IR protocol type(s).
0751d33c 930 * it is trigged by reading /sys/class/rc/rc?/protocols.
bc2a6c57
MCC
931 * It returns the protocol names of supported protocols.
932 * Enabled protocols are printed in brackets.
08aeb7c9
JW
933 *
934 * dev->lock is taken to guard against races between device
935 * registration, store_protocols and show_protocols.
bc2a6c57 936 */
d8b4b582 937static ssize_t show_protocols(struct device *device,
bc2a6c57
MCC
938 struct device_attribute *mattr, char *buf)
939{
d8b4b582 940 struct rc_dev *dev = to_rc_dev(device);
bc2a6c57
MCC
941 u64 allowed, enabled;
942 char *tmp = buf;
943 int i;
944
945 /* Device is being removed */
d8b4b582 946 if (!dev)
bc2a6c57
MCC
947 return -EINVAL;
948
078600f5
MCC
949 if (!atomic_read(&dev->initialized))
950 return -ERESTARTSYS;
951
08aeb7c9
JW
952 mutex_lock(&dev->lock);
953
0751d33c
SY
954 enabled = dev->enabled_protocols;
955 allowed = dev->allowed_protocols;
956 if (dev->raw && !allowed)
957 allowed = ir_raw_get_allowed_protocols();
bc2a6c57 958
da6e162d
DH
959 mutex_unlock(&dev->lock);
960
961 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
962 __func__, (long long)allowed, (long long)enabled);
bc2a6c57
MCC
963
964 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
965 if (allowed & enabled & proto_names[i].type)
966 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
967 else if (allowed & proto_names[i].type)
968 tmp += sprintf(tmp, "%s ", proto_names[i].name);
c003ab1b
DH
969
970 if (allowed & proto_names[i].type)
971 allowed &= ~proto_names[i].type;
bc2a6c57
MCC
972 }
973
dd6ff6a0 974 if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
275ddb40
DH
975 tmp += sprintf(tmp, "[lirc] ");
976
bc2a6c57
MCC
977 if (tmp != buf)
978 tmp--;
979 *tmp = '\n';
08aeb7c9 980
bc2a6c57
MCC
981 return tmp + 1 - buf;
982}
983
984/**
da6e162d
DH
985 * parse_protocol_change() - parses a protocol change request
986 * @protocols: pointer to the bitmask of current protocols
987 * @buf: pointer to the buffer with a list of changes
bc2a6c57 988 *
da6e162d
DH
989 * Writing "+proto" will add a protocol to the protocol mask.
990 * Writing "-proto" will remove a protocol from protocol mask.
bc2a6c57
MCC
991 * Writing "proto" will enable only "proto".
992 * Writing "none" will disable all protocols.
da6e162d 993 * Returns the number of changes performed or a negative error code.
bc2a6c57 994 */
da6e162d 995static int parse_protocol_change(u64 *protocols, const char *buf)
bc2a6c57 996{
bc2a6c57 997 const char *tmp;
da6e162d
DH
998 unsigned count = 0;
999 bool enable, disable;
bc2a6c57 1000 u64 mask;
da6e162d 1001 int i;
bc2a6c57 1002
da6e162d 1003 while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
bc2a6c57
MCC
1004 if (!*tmp)
1005 break;
1006
1007 if (*tmp == '+') {
1008 enable = true;
1009 disable = false;
1010 tmp++;
1011 } else if (*tmp == '-') {
1012 enable = false;
1013 disable = true;
1014 tmp++;
1015 } else {
1016 enable = false;
1017 disable = false;
1018 }
1019
c003ab1b
DH
1020 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1021 if (!strcasecmp(tmp, proto_names[i].name)) {
1022 mask = proto_names[i].type;
1023 break;
bc2a6c57 1024 }
bc2a6c57
MCC
1025 }
1026
c003ab1b 1027 if (i == ARRAY_SIZE(proto_names)) {
275ddb40
DH
1028 if (!strcasecmp(tmp, "lirc"))
1029 mask = 0;
1030 else {
1031 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
1032 return -EINVAL;
1033 }
c003ab1b
DH
1034 }
1035
1036 count++;
1037
bc2a6c57 1038 if (enable)
da6e162d 1039 *protocols |= mask;
bc2a6c57 1040 else if (disable)
da6e162d 1041 *protocols &= ~mask;
bc2a6c57 1042 else
da6e162d 1043 *protocols = mask;
bc2a6c57
MCC
1044 }
1045
1046 if (!count) {
1047 IR_dprintk(1, "Protocol not specified\n");
da6e162d
DH
1048 return -EINVAL;
1049 }
1050
1051 return count;
1052}
1053
9f0bf366 1054static void ir_raw_load_modules(u64 *protocols)
9f0bf366
HK
1055{
1056 u64 available;
1057 int i, ret;
1058
1059 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1060 if (proto_names[i].type == RC_BIT_NONE ||
1061 proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
1062 continue;
1063
1064 available = ir_raw_get_allowed_protocols();
1065 if (!(*protocols & proto_names[i].type & ~available))
1066 continue;
1067
1068 if (!proto_names[i].module_name) {
1069 pr_err("Can't enable IR protocol %s\n",
1070 proto_names[i].name);
1071 *protocols &= ~proto_names[i].type;
1072 continue;
1073 }
1074
1075 ret = request_module("%s", proto_names[i].module_name);
1076 if (ret < 0) {
1077 pr_err("Couldn't load IR protocol module %s\n",
1078 proto_names[i].module_name);
1079 *protocols &= ~proto_names[i].type;
1080 continue;
1081 }
1082 msleep(20);
1083 available = ir_raw_get_allowed_protocols();
1084 if (!(*protocols & proto_names[i].type & ~available))
1085 continue;
1086
1087 pr_err("Loaded IR protocol module %s, \
1088 but protocol %s still not available\n",
1089 proto_names[i].module_name,
1090 proto_names[i].name);
1091 *protocols &= ~proto_names[i].type;
1092 }
1093}
1094
da6e162d
DH
1095/**
1096 * store_protocols() - changes the current/wakeup IR protocol(s)
1097 * @device: the device descriptor
1098 * @mattr: the device attribute struct
1099 * @buf: a pointer to the input buffer
1100 * @len: length of the input buffer
1101 *
1102 * This routine is for changing the IR protocol type.
1103 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1104 * See parse_protocol_change() for the valid commands.
1105 * Returns @len on success or a negative error code.
1106 *
1107 * dev->lock is taken to guard against races between device
1108 * registration, store_protocols and show_protocols.
1109 */
1110static ssize_t store_protocols(struct device *device,
1111 struct device_attribute *mattr,
1112 const char *buf, size_t len)
1113{
1114 struct rc_dev *dev = to_rc_dev(device);
da6e162d 1115 u64 *current_protocols;
da6e162d 1116 struct rc_scancode_filter *filter;
da6e162d
DH
1117 u64 old_protocols, new_protocols;
1118 ssize_t rc;
1119
1120 /* Device is being removed */
1121 if (!dev)
1122 return -EINVAL;
1123
078600f5
MCC
1124 if (!atomic_read(&dev->initialized))
1125 return -ERESTARTSYS;
1126
0751d33c
SY
1127 IR_dprintk(1, "Normal protocol change requested\n");
1128 current_protocols = &dev->enabled_protocols;
1129 filter = &dev->scancode_filter;
da6e162d 1130
0751d33c 1131 if (!dev->change_protocol) {
da6e162d
DH
1132 IR_dprintk(1, "Protocol switching not supported\n");
1133 return -EINVAL;
1134 }
1135
1136 mutex_lock(&dev->lock);
1137
1138 old_protocols = *current_protocols;
1139 new_protocols = old_protocols;
1140 rc = parse_protocol_change(&new_protocols, buf);
1141 if (rc < 0)
1142 goto out;
1143
0751d33c 1144 rc = dev->change_protocol(dev, &new_protocols);
da6e162d
DH
1145 if (rc < 0) {
1146 IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1147 (long long)new_protocols);
08aeb7c9 1148 goto out;
bc2a6c57
MCC
1149 }
1150
9f0bf366
HK
1151 if (dev->driver_type == RC_DRIVER_IR_RAW)
1152 ir_raw_load_modules(&new_protocols);
1153
983c5bd2
JH
1154 if (new_protocols != old_protocols) {
1155 *current_protocols = new_protocols;
1156 IR_dprintk(1, "Protocols changed to 0x%llx\n",
1157 (long long)new_protocols);
bc2a6c57
MCC
1158 }
1159
6bea25af 1160 /*
983c5bd2
JH
1161 * If a protocol change was attempted the filter may need updating, even
1162 * if the actual protocol mask hasn't changed (since the driver may have
1163 * cleared the filter).
6bea25af
JH
1164 * Try setting the same filter with the new protocol (if any).
1165 * Fall back to clearing the filter.
1166 */
0751d33c 1167 if (dev->s_filter && filter->mask) {
da6e162d 1168 if (new_protocols)
0751d33c 1169 rc = dev->s_filter(dev, filter);
da6e162d
DH
1170 else
1171 rc = -1;
6bea25af 1172
da6e162d
DH
1173 if (rc < 0) {
1174 filter->data = 0;
1175 filter->mask = 0;
0751d33c 1176 dev->s_filter(dev, filter);
da6e162d 1177 }
6bea25af
JH
1178 }
1179
da6e162d 1180 rc = len;
08aeb7c9
JW
1181
1182out:
1183 mutex_unlock(&dev->lock);
da6e162d 1184 return rc;
bc2a6c57
MCC
1185}
1186
00942d1a
JH
1187/**
1188 * show_filter() - shows the current scancode filter value or mask
1189 * @device: the device descriptor
1190 * @attr: the device attribute struct
1191 * @buf: a pointer to the output buffer
1192 *
1193 * This routine is a callback routine to read a scancode filter value or mask.
1194 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1195 * It prints the current scancode filter value or mask of the appropriate filter
1196 * type in hexadecimal into @buf and returns the size of the buffer.
1197 *
1198 * Bits of the filter value corresponding to set bits in the filter mask are
1199 * compared against input scancodes and non-matching scancodes are discarded.
1200 *
1201 * dev->lock is taken to guard against races between device registration,
1202 * store_filter and show_filter.
1203 */
1204static ssize_t show_filter(struct device *device,
1205 struct device_attribute *attr,
1206 char *buf)
1207{
1208 struct rc_dev *dev = to_rc_dev(device);
1209 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
da6e162d 1210 struct rc_scancode_filter *filter;
00942d1a
JH
1211 u32 val;
1212
1213 /* Device is being removed */
1214 if (!dev)
1215 return -EINVAL;
1216
078600f5
MCC
1217 if (!atomic_read(&dev->initialized))
1218 return -ERESTARTSYS;
1219
c73bbaa4 1220 mutex_lock(&dev->lock);
c73bbaa4 1221
da6e162d 1222 if (fattr->type == RC_FILTER_NORMAL)
c5540fbb 1223 filter = &dev->scancode_filter;
da6e162d 1224 else
c5540fbb 1225 filter = &dev->scancode_wakeup_filter;
da6e162d 1226
da6e162d
DH
1227 if (fattr->mask)
1228 val = filter->mask;
00942d1a 1229 else
da6e162d 1230 val = filter->data;
00942d1a
JH
1231 mutex_unlock(&dev->lock);
1232
1233 return sprintf(buf, "%#x\n", val);
1234}
1235
1236/**
1237 * store_filter() - changes the scancode filter value
1238 * @device: the device descriptor
1239 * @attr: the device attribute struct
1240 * @buf: a pointer to the input buffer
1241 * @len: length of the input buffer
1242 *
1243 * This routine is for changing a scancode filter value or mask.
1244 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1245 * Returns -EINVAL if an invalid filter value for the current protocol was
1246 * specified or if scancode filtering is not supported by the driver, otherwise
1247 * returns @len.
1248 *
1249 * Bits of the filter value corresponding to set bits in the filter mask are
1250 * compared against input scancodes and non-matching scancodes are discarded.
1251 *
1252 * dev->lock is taken to guard against races between device registration,
1253 * store_filter and show_filter.
1254 */
1255static ssize_t store_filter(struct device *device,
1256 struct device_attribute *attr,
da6e162d 1257 const char *buf, size_t len)
00942d1a
JH
1258{
1259 struct rc_dev *dev = to_rc_dev(device);
1260 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
da6e162d 1261 struct rc_scancode_filter new_filter, *filter;
00942d1a
JH
1262 int ret;
1263 unsigned long val;
23c843b5 1264 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
00942d1a
JH
1265
1266 /* Device is being removed */
1267 if (!dev)
1268 return -EINVAL;
1269
078600f5
MCC
1270 if (!atomic_read(&dev->initialized))
1271 return -ERESTARTSYS;
1272
00942d1a
JH
1273 ret = kstrtoul(buf, 0, &val);
1274 if (ret < 0)
1275 return ret;
1276
da6e162d
DH
1277 if (fattr->type == RC_FILTER_NORMAL) {
1278 set_filter = dev->s_filter;
c5540fbb 1279 filter = &dev->scancode_filter;
da6e162d
DH
1280 } else {
1281 set_filter = dev->s_wakeup_filter;
c5540fbb 1282 filter = &dev->scancode_wakeup_filter;
da6e162d
DH
1283 }
1284
99b0f3c9
DH
1285 if (!set_filter)
1286 return -EINVAL;
00942d1a
JH
1287
1288 mutex_lock(&dev->lock);
1289
da6e162d 1290 new_filter = *filter;
00942d1a 1291 if (fattr->mask)
da6e162d 1292 new_filter.mask = val;
00942d1a 1293 else
da6e162d 1294 new_filter.data = val;
23c843b5 1295
0751d33c 1296 if (fattr->type == RC_FILTER_WAKEUP) {
b590c0bf
SY
1297 /*
1298 * Refuse to set a filter unless a protocol is enabled
1299 * and the filter is valid for that protocol
1300 */
1301 if (dev->wakeup_protocol != RC_TYPE_UNKNOWN)
f423ccc1 1302 ret = rc_validate_filter(dev, &new_filter);
b590c0bf 1303 else
0751d33c 1304 ret = -EINVAL;
b590c0bf
SY
1305
1306 if (ret != 0)
0751d33c 1307 goto unlock;
0751d33c
SY
1308 }
1309
1310 if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1311 val) {
6bea25af
JH
1312 /* refuse to set a filter unless a protocol is enabled */
1313 ret = -EINVAL;
1314 goto unlock;
1315 }
23c843b5 1316
da6e162d 1317 ret = set_filter(dev, &new_filter);
99b0f3c9
DH
1318 if (ret < 0)
1319 goto unlock;
00942d1a 1320
da6e162d 1321 *filter = new_filter;
00942d1a
JH
1322
1323unlock:
1324 mutex_unlock(&dev->lock);
da6e162d 1325 return (ret < 0) ? ret : len;
00942d1a
JH
1326}
1327
0751d33c
SY
1328/*
1329 * This is the list of all variants of all protocols, which is used by
1330 * the wakeup_protocols sysfs entry. In the protocols sysfs entry some
1331 * some protocols are grouped together (e.g. nec = nec + necx + nec32).
1332 *
1333 * For wakeup we need to know the exact protocol variant so the hardware
1334 * can be programmed exactly what to expect.
1335 */
1336static const char * const proto_variant_names[] = {
1337 [RC_TYPE_UNKNOWN] = "unknown",
1338 [RC_TYPE_OTHER] = "other",
1339 [RC_TYPE_RC5] = "rc-5",
1340 [RC_TYPE_RC5X_20] = "rc-5x-20",
1341 [RC_TYPE_RC5_SZ] = "rc-5-sz",
1342 [RC_TYPE_JVC] = "jvc",
1343 [RC_TYPE_SONY12] = "sony-12",
1344 [RC_TYPE_SONY15] = "sony-15",
1345 [RC_TYPE_SONY20] = "sony-20",
1346 [RC_TYPE_NEC] = "nec",
1347 [RC_TYPE_NECX] = "nec-x",
1348 [RC_TYPE_NEC32] = "nec-32",
1349 [RC_TYPE_SANYO] = "sanyo",
1350 [RC_TYPE_MCE_KBD] = "mce_kbd",
1351 [RC_TYPE_RC6_0] = "rc-6-0",
1352 [RC_TYPE_RC6_6A_20] = "rc-6-6a-20",
1353 [RC_TYPE_RC6_6A_24] = "rc-6-6a-24",
1354 [RC_TYPE_RC6_6A_32] = "rc-6-6a-32",
1355 [RC_TYPE_RC6_MCE] = "rc-6-mce",
1356 [RC_TYPE_SHARP] = "sharp",
1357 [RC_TYPE_XMP] = "xmp",
1358 [RC_TYPE_CEC] = "cec",
1359};
1360
1361/**
1362 * show_wakeup_protocols() - shows the wakeup IR protocol
1363 * @device: the device descriptor
1364 * @mattr: the device attribute struct
1365 * @buf: a pointer to the output buffer
1366 *
1367 * This routine is a callback routine for input read the IR protocol type(s).
1368 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1369 * It returns the protocol names of supported protocols.
1370 * The enabled protocols are printed in brackets.
1371 *
1372 * dev->lock is taken to guard against races between device
1373 * registration, store_protocols and show_protocols.
1374 */
1375static ssize_t show_wakeup_protocols(struct device *device,
1376 struct device_attribute *mattr,
1377 char *buf)
1378{
1379 struct rc_dev *dev = to_rc_dev(device);
1380 u64 allowed;
1381 enum rc_type enabled;
1382 char *tmp = buf;
1383 int i;
1384
1385 /* Device is being removed */
1386 if (!dev)
1387 return -EINVAL;
1388
1389 if (!atomic_read(&dev->initialized))
1390 return -ERESTARTSYS;
1391
1392 mutex_lock(&dev->lock);
1393
1394 allowed = dev->allowed_wakeup_protocols;
1395 enabled = dev->wakeup_protocol;
1396
1397 mutex_unlock(&dev->lock);
1398
1399 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n",
1400 __func__, (long long)allowed, enabled);
1401
1402 for (i = 0; i < ARRAY_SIZE(proto_variant_names); i++) {
1403 if (allowed & (1ULL << i)) {
1404 if (i == enabled)
1405 tmp += sprintf(tmp, "[%s] ",
1406 proto_variant_names[i]);
1407 else
1408 tmp += sprintf(tmp, "%s ",
1409 proto_variant_names[i]);
1410 }
1411 }
1412
1413 if (tmp != buf)
1414 tmp--;
1415 *tmp = '\n';
1416
1417 return tmp + 1 - buf;
1418}
1419
1420/**
1421 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1422 * @device: the device descriptor
1423 * @mattr: the device attribute struct
1424 * @buf: a pointer to the input buffer
1425 * @len: length of the input buffer
1426 *
1427 * This routine is for changing the IR protocol type.
1428 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1429 * Returns @len on success or a negative error code.
1430 *
1431 * dev->lock is taken to guard against races between device
1432 * registration, store_protocols and show_protocols.
1433 */
1434static ssize_t store_wakeup_protocols(struct device *device,
1435 struct device_attribute *mattr,
1436 const char *buf, size_t len)
1437{
1438 struct rc_dev *dev = to_rc_dev(device);
1439 enum rc_type protocol;
1440 ssize_t rc;
1441 u64 allowed;
1442 int i;
1443
1444 /* Device is being removed */
1445 if (!dev)
1446 return -EINVAL;
1447
1448 if (!atomic_read(&dev->initialized))
1449 return -ERESTARTSYS;
1450
1451 mutex_lock(&dev->lock);
1452
1453 allowed = dev->allowed_wakeup_protocols;
1454
1455 if (sysfs_streq(buf, "none")) {
1456 protocol = RC_TYPE_UNKNOWN;
1457 } else {
1458 for (i = 0; i < ARRAY_SIZE(proto_variant_names); i++) {
1459 if ((allowed & (1ULL << i)) &&
1460 sysfs_streq(buf, proto_variant_names[i])) {
1461 protocol = i;
1462 break;
1463 }
1464 }
1465
1466 if (i == ARRAY_SIZE(proto_variant_names)) {
1467 rc = -EINVAL;
1468 goto out;
1469 }
f423ccc1
JH
1470
1471 if (dev->encode_wakeup) {
1472 u64 mask = 1ULL << protocol;
1473
1474 ir_raw_load_modules(&mask);
1475 if (!mask) {
1476 rc = -EINVAL;
1477 goto out;
1478 }
1479 }
0751d33c
SY
1480 }
1481
1482 if (dev->wakeup_protocol != protocol) {
1483 dev->wakeup_protocol = protocol;
1484 IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol);
1485
1486 if (protocol == RC_TYPE_RC6_MCE)
1487 dev->scancode_wakeup_filter.data = 0x800f0000;
1488 else
1489 dev->scancode_wakeup_filter.data = 0;
1490 dev->scancode_wakeup_filter.mask = 0;
1491
1492 rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1493 if (rc == 0)
1494 rc = len;
1495 } else {
1496 rc = len;
1497 }
1498
1499out:
1500 mutex_unlock(&dev->lock);
1501 return rc;
1502}
1503
d8b4b582
DH
1504static void rc_dev_release(struct device *device)
1505{
47cae1e1
MK
1506 struct rc_dev *dev = to_rc_dev(device);
1507
1508 kfree(dev);
d8b4b582
DH
1509}
1510
bc2a6c57
MCC
1511#define ADD_HOTPLUG_VAR(fmt, val...) \
1512 do { \
1513 int err = add_uevent_var(env, fmt, val); \
1514 if (err) \
1515 return err; \
1516 } while (0)
1517
1518static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1519{
d8b4b582 1520 struct rc_dev *dev = to_rc_dev(device);
bc2a6c57 1521
b088ba65
MCC
1522 if (dev->rc_map.name)
1523 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
d8b4b582
DH
1524 if (dev->driver_name)
1525 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
bc2a6c57
MCC
1526
1527 return 0;
1528}
1529
1530/*
1531 * Static device attribute struct with the sysfs attributes for IR's
1532 */
0751d33c
SY
1533static DEVICE_ATTR(protocols, 0644, show_protocols, store_protocols);
1534static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1535 store_wakeup_protocols);
00942d1a
JH
1536static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1537 show_filter, store_filter, RC_FILTER_NORMAL, false);
1538static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1539 show_filter, store_filter, RC_FILTER_NORMAL, true);
1540static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1541 show_filter, store_filter, RC_FILTER_WAKEUP, false);
1542static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1543 show_filter, store_filter, RC_FILTER_WAKEUP, true);
bc2a6c57 1544
99b0f3c9 1545static struct attribute *rc_dev_protocol_attrs[] = {
0751d33c 1546 &dev_attr_protocols.attr,
99b0f3c9
DH
1547 NULL,
1548};
1549
1550static struct attribute_group rc_dev_protocol_attr_grp = {
1551 .attrs = rc_dev_protocol_attrs,
1552};
1553
99b0f3c9 1554static struct attribute *rc_dev_filter_attrs[] = {
00942d1a
JH
1555 &dev_attr_filter.attr.attr,
1556 &dev_attr_filter_mask.attr.attr,
bc2a6c57
MCC
1557 NULL,
1558};
1559
99b0f3c9
DH
1560static struct attribute_group rc_dev_filter_attr_grp = {
1561 .attrs = rc_dev_filter_attrs,
bc2a6c57
MCC
1562};
1563
99b0f3c9
DH
1564static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1565 &dev_attr_wakeup_filter.attr.attr,
1566 &dev_attr_wakeup_filter_mask.attr.attr,
0751d33c 1567 &dev_attr_wakeup_protocols.attr,
99b0f3c9
DH
1568 NULL,
1569};
1570
1571static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1572 .attrs = rc_dev_wakeup_filter_attrs,
bc2a6c57
MCC
1573};
1574
1575static struct device_type rc_dev_type = {
d8b4b582 1576 .release = rc_dev_release,
bc2a6c57
MCC
1577 .uevent = rc_dev_uevent,
1578};
1579
0f7499fd 1580struct rc_dev *rc_allocate_device(enum rc_driver_type type)
bc2a6c57 1581{
d8b4b582 1582 struct rc_dev *dev;
bc2a6c57 1583
d8b4b582
DH
1584 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1585 if (!dev)
1586 return NULL;
1587
d34aee10
AS
1588 if (type != RC_DRIVER_IR_RAW_TX) {
1589 dev->input_dev = input_allocate_device();
1590 if (!dev->input_dev) {
1591 kfree(dev);
1592 return NULL;
1593 }
1594
1595 dev->input_dev->getkeycode = ir_getkeycode;
1596 dev->input_dev->setkeycode = ir_setkeycode;
1597 input_set_drvdata(dev->input_dev, dev);
d8b4b582 1598
d34aee10
AS
1599 setup_timer(&dev->timer_keyup, ir_timer_keyup,
1600 (unsigned long)dev);
d8b4b582 1601
d34aee10
AS
1602 spin_lock_init(&dev->rc_map.lock);
1603 spin_lock_init(&dev->keylock);
1604 }
08aeb7c9 1605 mutex_init(&dev->lock);
bc2a6c57 1606
d8b4b582 1607 dev->dev.type = &rc_dev_type;
40fc5325 1608 dev->dev.class = &rc_class;
d8b4b582
DH
1609 device_initialize(&dev->dev);
1610
0f7499fd
AS
1611 dev->driver_type = type;
1612
d8b4b582
DH
1613 __module_get(THIS_MODULE);
1614 return dev;
1615}
1616EXPORT_SYMBOL_GPL(rc_allocate_device);
1617
1618void rc_free_device(struct rc_dev *dev)
bc2a6c57 1619{
b05681b9
MCC
1620 if (!dev)
1621 return;
1622
3dd94f00 1623 input_free_device(dev->input_dev);
b05681b9
MCC
1624
1625 put_device(&dev->dev);
1626
47cae1e1
MK
1627 /* kfree(dev) will be called by the callback function
1628 rc_dev_release() */
1629
b05681b9 1630 module_put(THIS_MODULE);
d8b4b582
DH
1631}
1632EXPORT_SYMBOL_GPL(rc_free_device);
1633
ddbf7d5a
HK
1634static void devm_rc_alloc_release(struct device *dev, void *res)
1635{
1636 rc_free_device(*(struct rc_dev **)res);
1637}
1638
0f7499fd
AS
1639struct rc_dev *devm_rc_allocate_device(struct device *dev,
1640 enum rc_driver_type type)
ddbf7d5a
HK
1641{
1642 struct rc_dev **dr, *rc;
1643
1644 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1645 if (!dr)
1646 return NULL;
1647
0f7499fd 1648 rc = rc_allocate_device(type);
ddbf7d5a
HK
1649 if (!rc) {
1650 devres_free(dr);
1651 return NULL;
1652 }
1653
1654 rc->dev.parent = dev;
1655 rc->managed_alloc = true;
1656 *dr = rc;
1657 devres_add(dev, dr);
1658
1659 return rc;
1660}
1661EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1662
7ff2c2bc 1663static int rc_setup_rx_device(struct rc_dev *dev)
d8b4b582 1664{
fcb13097 1665 int rc;
7ff2c2bc 1666 struct rc_map *rc_map;
bc2a6c57 1667
7ff2c2bc 1668 if (!dev->map_name)
d8b4b582 1669 return -EINVAL;
bc2a6c57 1670
d100e659 1671 rc_map = rc_map_get(dev->map_name);
b088ba65 1672 if (!rc_map)
d100e659 1673 rc_map = rc_map_get(RC_MAP_EMPTY);
b088ba65 1674 if (!rc_map || !rc_map->scan || rc_map->size == 0)
d8b4b582
DH
1675 return -EINVAL;
1676
7ff2c2bc
AS
1677 rc = ir_setkeytable(dev, rc_map);
1678 if (rc)
1679 return rc;
1680
1681 if (dev->change_protocol) {
1682 u64 rc_type = (1ll << rc_map->rc_type);
1683
1684 rc = dev->change_protocol(dev, &rc_type);
1685 if (rc < 0)
1686 goto out_table;
1687 dev->enabled_protocols = rc_type;
1688 }
1689
d8b4b582
DH
1690 set_bit(EV_KEY, dev->input_dev->evbit);
1691 set_bit(EV_REP, dev->input_dev->evbit);
1692 set_bit(EV_MSC, dev->input_dev->evbit);
1693 set_bit(MSC_SCAN, dev->input_dev->mscbit);
1694 if (dev->open)
1695 dev->input_dev->open = ir_open;
1696 if (dev->close)
1697 dev->input_dev->close = ir_close;
1698
7ff2c2bc
AS
1699 /*
1700 * Default delay of 250ms is too short for some protocols, especially
1701 * since the timeout is currently set to 250ms. Increase it to 500ms,
1702 * to avoid wrong repetition of the keycodes. Note that this must be
1703 * set after the call to input_register_device().
1704 */
1705 dev->input_dev->rep[REP_DELAY] = 500;
1706
1707 /*
1708 * As a repeat event on protocols like RC-5 and NEC take as long as
1709 * 110/114ms, using 33ms as a repeat period is not the right thing
1710 * to do.
1711 */
1712 dev->input_dev->rep[REP_PERIOD] = 125;
1713
1714 dev->input_dev->dev.parent = &dev->dev;
1715 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1716 dev->input_dev->phys = dev->input_phys;
1717 dev->input_dev->name = dev->input_name;
1718
1719 /* rc_open will be called here */
1720 rc = input_register_device(dev->input_dev);
1721 if (rc)
1722 goto out_table;
1723
1724 return 0;
1725
1726out_table:
1727 ir_free_table(&dev->rc_map);
1728
1729 return rc;
1730}
1731
1732static void rc_free_rx_device(struct rc_dev *dev)
1733{
d34aee10 1734 if (!dev || dev->driver_type == RC_DRIVER_IR_RAW_TX)
7ff2c2bc
AS
1735 return;
1736
1737 ir_free_table(&dev->rc_map);
1738
1739 input_unregister_device(dev->input_dev);
1740 dev->input_dev = NULL;
1741}
1742
1743int rc_register_device(struct rc_dev *dev)
1744{
1745 static bool raw_init; /* 'false' default value, raw decoders loaded? */
1746 const char *path;
1747 int attr = 0;
1748 int minor;
1749 int rc;
1750
1751 if (!dev)
1752 return -EINVAL;
1753
fcb13097
DH
1754 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1755 if (minor < 0)
1756 return minor;
1757
1758 dev->minor = minor;
1759 dev_set_name(&dev->dev, "rc%u", dev->minor);
1760 dev_set_drvdata(&dev->dev, dev);
078600f5 1761 atomic_set(&dev->initialized, 0);
587d1b06 1762
99b0f3c9 1763 dev->dev.groups = dev->sysfs_groups;
d34aee10
AS
1764 if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1765 dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
99b0f3c9 1766 if (dev->s_filter)
120703f9 1767 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
99b0f3c9
DH
1768 if (dev->s_wakeup_filter)
1769 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
99b0f3c9
DH
1770 dev->sysfs_groups[attr++] = NULL;
1771
d8b4b582
DH
1772 rc = device_add(&dev->dev);
1773 if (rc)
08aeb7c9 1774 goto out_unlock;
bc2a6c57 1775
d8b4b582 1776 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
4dc0e908
HK
1777 dev_info(&dev->dev, "%s as %s\n",
1778 dev->input_name ?: "Unspecified device", path ?: "N/A");
bc2a6c57
MCC
1779 kfree(path);
1780
d34aee10
AS
1781 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1782 rc = rc_setup_rx_device(dev);
1783 if (rc)
1784 goto out_dev;
1785 }
7ff2c2bc 1786
d34aee10
AS
1787 if (dev->driver_type == RC_DRIVER_IR_RAW ||
1788 dev->driver_type == RC_DRIVER_IR_RAW_TX) {
5da6e984 1789 if (!raw_init) {
c1500ba0 1790 request_module_nowait("ir-lirc-codec");
5da6e984
EG
1791 raw_init = true;
1792 }
d8b4b582
DH
1793 rc = ir_raw_event_register(dev);
1794 if (rc < 0)
7ff2c2bc 1795 goto out_rx;
d8b4b582
DH
1796 }
1797
078600f5 1798 /* Allow the RC sysfs nodes to be accessible */
078600f5 1799 atomic_set(&dev->initialized, 1);
0528f354 1800
7ff2c2bc 1801 IR_dprintk(1, "Registered rc%u (driver: %s)\n",
fcb13097 1802 dev->minor,
7ff2c2bc 1803 dev->driver_name ? dev->driver_name : "unknown");
d8b4b582 1804
bc2a6c57 1805 return 0;
d8b4b582 1806
7ff2c2bc
AS
1807out_rx:
1808 rc_free_rx_device(dev);
d8b4b582
DH
1809out_dev:
1810 device_del(&dev->dev);
08aeb7c9 1811out_unlock:
fcb13097 1812 ida_simple_remove(&rc_ida, minor);
d8b4b582 1813 return rc;
bc2a6c57 1814}
d8b4b582 1815EXPORT_SYMBOL_GPL(rc_register_device);
bc2a6c57 1816
ddbf7d5a
HK
1817static void devm_rc_release(struct device *dev, void *res)
1818{
1819 rc_unregister_device(*(struct rc_dev **)res);
1820}
1821
1822int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1823{
1824 struct rc_dev **dr;
1825 int ret;
1826
1827 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1828 if (!dr)
1829 return -ENOMEM;
1830
1831 ret = rc_register_device(dev);
1832 if (ret) {
1833 devres_free(dr);
1834 return ret;
1835 }
1836
1837 *dr = dev;
1838 devres_add(parent, dr);
1839
1840 return 0;
1841}
1842EXPORT_SYMBOL_GPL(devm_rc_register_device);
1843
d8b4b582 1844void rc_unregister_device(struct rc_dev *dev)
bc2a6c57 1845{
d8b4b582
DH
1846 if (!dev)
1847 return;
bc2a6c57 1848
d8b4b582 1849 del_timer_sync(&dev->timer_keyup);
bc2a6c57 1850
d8b4b582
DH
1851 if (dev->driver_type == RC_DRIVER_IR_RAW)
1852 ir_raw_event_unregister(dev);
1853
7ff2c2bc 1854 rc_free_rx_device(dev);
d8b4b582 1855
b05681b9 1856 device_del(&dev->dev);
d8b4b582 1857
fcb13097
DH
1858 ida_simple_remove(&rc_ida, dev->minor);
1859
ddbf7d5a
HK
1860 if (!dev->managed_alloc)
1861 rc_free_device(dev);
bc2a6c57 1862}
b05681b9 1863
d8b4b582 1864EXPORT_SYMBOL_GPL(rc_unregister_device);
bc2a6c57
MCC
1865
1866/*
1867 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1868 */
1869
6bda9644 1870static int __init rc_core_init(void)
bc2a6c57 1871{
40fc5325 1872 int rc = class_register(&rc_class);
bc2a6c57 1873 if (rc) {
d3d96820 1874 pr_err("rc_core: unable to register rc class\n");
bc2a6c57
MCC
1875 return rc;
1876 }
1877
153a60bb 1878 led_trigger_register_simple("rc-feedback", &led_feedback);
d100e659 1879 rc_map_register(&empty_map);
bc2a6c57
MCC
1880
1881 return 0;
1882}
1883
6bda9644 1884static void __exit rc_core_exit(void)
bc2a6c57 1885{
40fc5325 1886 class_unregister(&rc_class);
153a60bb 1887 led_trigger_unregister_simple(led_feedback);
d100e659 1888 rc_map_unregister(&empty_map);
bc2a6c57
MCC
1889}
1890
e76d4ce4 1891subsys_initcall(rc_core_init);
6bda9644 1892module_exit(rc_core_exit);
bc2a6c57 1893
6bda9644
MCC
1894int rc_core_debug; /* ir_debug level (0,1,2) */
1895EXPORT_SYMBOL_GPL(rc_core_debug);
1896module_param_named(debug, rc_core_debug, int, 0644);
446e4a64 1897
37e59f87 1898MODULE_AUTHOR("Mauro Carvalho Chehab");
446e4a64 1899MODULE_LICENSE("GPL");