]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/media/video/cx25840/cx25840-ir.c
V4L/DVB: cx25840: Add support for CX2388[57] A/V core integrated IR controllers
[mirror_ubuntu-hirsute-kernel.git] / drivers / media / video / cx25840 / cx25840-ir.c
CommitLineData
52fd3dda
AW
1/*
2 * Driver for the Conexant CX2584x Audio/Video decoder chip and related cores
3 *
4 * Integrated Consumer Infrared Controller
5 *
6 * Copyright (C) 2010 Andy Walls <awalls@md.metrocast.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 */
23
24#include <linux/slab.h>
25#include <linux/kfifo.h>
26#include <media/cx25840.h>
27
28#include "cx25840-core.h"
29
30static unsigned int ir_debug;
31module_param(ir_debug, int, 0644);
32MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages");
33
34#define CX25840_IR_REG_BASE 0x200
35
36#define CX25840_IR_CNTRL_REG 0x200
37#define CNTRL_WIN_3_3 0x00000000
38#define CNTRL_WIN_4_3 0x00000001
39#define CNTRL_WIN_3_4 0x00000002
40#define CNTRL_WIN_4_4 0x00000003
41#define CNTRL_WIN 0x00000003
42#define CNTRL_EDG_NONE 0x00000000
43#define CNTRL_EDG_FALL 0x00000004
44#define CNTRL_EDG_RISE 0x00000008
45#define CNTRL_EDG_BOTH 0x0000000C
46#define CNTRL_EDG 0x0000000C
47#define CNTRL_DMD 0x00000010
48#define CNTRL_MOD 0x00000020
49#define CNTRL_RFE 0x00000040
50#define CNTRL_TFE 0x00000080
51#define CNTRL_RXE 0x00000100
52#define CNTRL_TXE 0x00000200
53#define CNTRL_RIC 0x00000400
54#define CNTRL_TIC 0x00000800
55#define CNTRL_CPL 0x00001000
56#define CNTRL_LBM 0x00002000
57#define CNTRL_R 0x00004000
58
59#define CX25840_IR_TXCLK_REG 0x204
60#define TXCLK_TCD 0x0000FFFF
61
62#define CX25840_IR_RXCLK_REG 0x208
63#define RXCLK_RCD 0x0000FFFF
64
65#define CX25840_IR_CDUTY_REG 0x20C
66#define CDUTY_CDC 0x0000000F
67
68#define CX25840_IR_STATS_REG 0x210
69#define STATS_RTO 0x00000001
70#define STATS_ROR 0x00000002
71#define STATS_RBY 0x00000004
72#define STATS_TBY 0x00000008
73#define STATS_RSR 0x00000010
74#define STATS_TSR 0x00000020
75
76#define CX25840_IR_IRQEN_REG 0x214
77#define IRQEN_RTE 0x00000001
78#define IRQEN_ROE 0x00000002
79#define IRQEN_RSE 0x00000010
80#define IRQEN_TSE 0x00000020
81#define IRQEN_MSK 0x00000033
82
83#define CX25840_IR_FILTR_REG 0x218
84#define FILTR_LPF 0x0000FFFF
85
86#define CX25840_IR_FIFO_REG 0x23C
87#define FIFO_RXTX 0x0000FFFF
88#define FIFO_RXTX_LVL 0x00010000
89#define FIFO_RXTX_RTO 0x0001FFFF
90#define FIFO_RX_NDV 0x00020000
91#define FIFO_RX_DEPTH 8
92#define FIFO_TX_DEPTH 8
93
94#define CX25840_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
95#define CX25840_IR_REFCLK_FREQ (CX25840_VIDCLK_FREQ / 2)
96
97#define CX25840_IR_RX_KFIFO_SIZE (512 * sizeof(u32))
98#define CX25840_IR_TX_KFIFO_SIZE (512 * sizeof(u32))
99
100struct cx25840_ir_state {
101 struct i2c_client *c;
102
103 struct v4l2_subdev_ir_parameters rx_params;
104 struct mutex rx_params_lock; /* protects Rx parameter settings cache */
105 atomic_t rxclk_divider;
106 atomic_t rx_invert;
107
108 struct kfifo rx_kfifo;
109 spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */
110
111 struct v4l2_subdev_ir_parameters tx_params;
112 struct mutex tx_params_lock; /* protects Tx parameter settings cache */
113 atomic_t txclk_divider;
114};
115
116static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd)
117{
118 struct cx25840_state *state = to_state(sd);
119 return state ? state->ir_state : NULL;
120}
121
122
123/*
124 * Rx and Tx Clock Divider register computations
125 *
126 * Note the largest clock divider value of 0xffff corresponds to:
127 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
128 * which fits in 21 bits, so we'll use unsigned int for time arguments.
129 */
130static inline u16 count_to_clock_divider(unsigned int d)
131{
132 if (d > RXCLK_RCD + 1)
133 d = RXCLK_RCD;
134 else if (d < 2)
135 d = 1;
136 else
137 d--;
138 return (u16) d;
139}
140
141static inline u16 ns_to_clock_divider(unsigned int ns)
142{
143 return count_to_clock_divider(
144 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
145}
146
147static inline unsigned int clock_divider_to_ns(unsigned int divider)
148{
149 /* Period of the Rx or Tx clock in ns */
150 return DIV_ROUND_CLOSEST((divider + 1) * 1000,
151 CX25840_IR_REFCLK_FREQ / 1000000);
152}
153
154static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
155{
156 return count_to_clock_divider(
157 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16));
158}
159
160static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
161{
162 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16);
163}
164
165static inline u16 freq_to_clock_divider(unsigned int freq,
166 unsigned int rollovers)
167{
168 return count_to_clock_divider(
169 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers));
170}
171
172static inline unsigned int clock_divider_to_freq(unsigned int divider,
173 unsigned int rollovers)
174{
175 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ,
176 (divider + 1) * rollovers);
177}
178
179/*
180 * Low Pass Filter register calculations
181 *
182 * Note the largest count value of 0xffff corresponds to:
183 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
184 * which fits in 21 bits, so we'll use unsigned int for time arguments.
185 */
186static inline u16 count_to_lpf_count(unsigned int d)
187{
188 if (d > FILTR_LPF)
189 d = FILTR_LPF;
190 else if (d < 4)
191 d = 0;
192 return (u16) d;
193}
194
195static inline u16 ns_to_lpf_count(unsigned int ns)
196{
197 return count_to_lpf_count(
198 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
199}
200
201static inline unsigned int lpf_count_to_ns(unsigned int count)
202{
203 /* Duration of the Low Pass Filter rejection window in ns */
204 return DIV_ROUND_CLOSEST(count * 1000,
205 CX25840_IR_REFCLK_FREQ / 1000000);
206}
207
208static inline unsigned int lpf_count_to_us(unsigned int count)
209{
210 /* Duration of the Low Pass Filter rejection window in us */
211 return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000);
212}
213
214/*
215 * FIFO register pulse width count compuations
216 */
217static u32 clock_divider_to_resolution(u16 divider)
218{
219 /*
220 * Resolution is the duration of 1 tick of the readable portion of
221 * of the pulse width counter as read from the FIFO. The two lsb's are
222 * not readable, hence the << 2. This function returns ns.
223 */
224 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
225 CX25840_IR_REFCLK_FREQ / 1000000);
226}
227
228static u64 pulse_width_count_to_ns(u16 count, u16 divider)
229{
230 u64 n;
231 u32 rem;
232
233 /*
234 * The 2 lsb's of the pulse width timer count are not readable, hence
235 * the (count << 2) | 0x3
236 */
237 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
238 rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
239 if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
240 n++;
241 return n;
242}
243
244#if 0
245/* Keep as we will need this for Transmit functionality */
246static u16 ns_to_pulse_width_count(u32 ns, u16 divider)
247{
248 u64 n;
249 u32 d;
250 u32 rem;
251
252 /*
253 * The 2 lsb's of the pulse width timer count are not accessable, hence
254 * the (1 << 2)
255 */
256 n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */
257 d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */
258 rem = do_div(n, d);
259 if (rem >= d / 2)
260 n++;
261
262 if (n > FIFO_RXTX)
263 n = FIFO_RXTX;
264 else if (n == 0)
265 n = 1;
266 return (u16) n;
267}
268
269#endif
270static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
271{
272 u64 n;
273 u32 rem;
274
275 /*
276 * The 2 lsb's of the pulse width timer count are not readable, hence
277 * the (count << 2) | 0x3
278 */
279 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
280 rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
281 if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
282 n++;
283 return (unsigned int) n;
284}
285
286/*
287 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
288 *
289 * The total pulse clock count is an 18 bit pulse width timer count as the most
290 * significant part and (up to) 16 bit clock divider count as a modulus.
291 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
292 * width timer count's least significant bit.
293 */
294static u64 ns_to_pulse_clocks(u32 ns)
295{
296 u64 clocks;
297 u32 rem;
298 clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
299 rem = do_div(clocks, 1000); /* /1000 = cycles */
300 if (rem >= 1000 / 2)
301 clocks++;
302 return clocks;
303}
304
305static u16 pulse_clocks_to_clock_divider(u64 count)
306{
307 u32 rem;
308
309 rem = do_div(count, (FIFO_RXTX << 2) | 0x3);
310
311 /* net result needs to be rounded down and decremented by 1 */
312 if (count > RXCLK_RCD + 1)
313 count = RXCLK_RCD;
314 else if (count < 2)
315 count = 1;
316 else
317 count--;
318 return (u16) count;
319}
320
321/*
322 * IR Control Register helpers
323 */
324enum tx_fifo_watermark {
325 TX_FIFO_HALF_EMPTY = 0,
326 TX_FIFO_EMPTY = CNTRL_TIC,
327};
328
329enum rx_fifo_watermark {
330 RX_FIFO_HALF_FULL = 0,
331 RX_FIFO_NOT_EMPTY = CNTRL_RIC,
332};
333
334static inline void control_tx_irq_watermark(struct i2c_client *c,
335 enum tx_fifo_watermark level)
336{
337 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level);
338}
339
340static inline void control_rx_irq_watermark(struct i2c_client *c,
341 enum rx_fifo_watermark level)
342{
343 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level);
344}
345
346static inline void control_tx_enable(struct i2c_client *c, bool enable)
347{
348 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
349 enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
350}
351
352static inline void control_rx_enable(struct i2c_client *c, bool enable)
353{
354 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
355 enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
356}
357
358static inline void control_tx_modulation_enable(struct i2c_client *c,
359 bool enable)
360{
361 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD,
362 enable ? CNTRL_MOD : 0);
363}
364
365static inline void control_rx_demodulation_enable(struct i2c_client *c,
366 bool enable)
367{
368 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD,
369 enable ? CNTRL_DMD : 0);
370}
371
372static inline void control_rx_s_edge_detection(struct i2c_client *c,
373 u32 edge_types)
374{
375 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
376 edge_types & CNTRL_EDG_BOTH);
377}
378
379static void control_rx_s_carrier_window(struct i2c_client *c,
380 unsigned int carrier,
381 unsigned int *carrier_range_low,
382 unsigned int *carrier_range_high)
383{
384 u32 v;
385 unsigned int c16 = carrier * 16;
386
387 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
388 v = CNTRL_WIN_3_4;
389 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
390 } else {
391 v = CNTRL_WIN_3_3;
392 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
393 }
394
395 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
396 v |= CNTRL_WIN_4_3;
397 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
398 } else {
399 v |= CNTRL_WIN_3_3;
400 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
401 }
402 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v);
403}
404
405static inline void control_tx_polarity_invert(struct i2c_client *c,
406 bool invert)
407{
408 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL,
409 invert ? CNTRL_CPL : 0);
410}
411
412/*
413 * IR Rx & Tx Clock Register helpers
414 */
415static unsigned int txclk_tx_s_carrier(struct i2c_client *c,
416 unsigned int freq,
417 u16 *divider)
418{
419 *divider = carrier_freq_to_clock_divider(freq);
420 cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
421 return clock_divider_to_carrier_freq(*divider);
422}
423
424static unsigned int rxclk_rx_s_carrier(struct i2c_client *c,
425 unsigned int freq,
426 u16 *divider)
427{
428 *divider = carrier_freq_to_clock_divider(freq);
429 cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
430 return clock_divider_to_carrier_freq(*divider);
431}
432
433static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns,
434 u16 *divider)
435{
436 u64 pulse_clocks;
437
438 if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
439 ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS;
440 pulse_clocks = ns_to_pulse_clocks(ns);
441 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
442 cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
443 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
444}
445
446static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns,
447 u16 *divider)
448{
449 u64 pulse_clocks;
450
451 if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
452 ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS;
453 pulse_clocks = ns_to_pulse_clocks(ns);
454 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
455 cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
456 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
457}
458
459/*
460 * IR Tx Carrier Duty Cycle register helpers
461 */
462static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c,
463 unsigned int duty_cycle)
464{
465 u32 n;
466 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
467 if (n != 0)
468 n--;
469 if (n > 15)
470 n = 15;
471 cx25840_write4(c, CX25840_IR_CDUTY_REG, n);
472 return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
473}
474
475/*
476 * IR Filter Register helpers
477 */
478static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns)
479{
480 u32 count = ns_to_lpf_count(min_width_ns);
481 cx25840_write4(c, CX25840_IR_FILTR_REG, count);
482 return lpf_count_to_ns(count);
483}
484
485/*
486 * IR IRQ Enable Register helpers
487 */
488static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask)
489{
490 struct cx25840_state *state = to_state(sd);
491
492 if (is_cx23885(state) || is_cx23887(state))
493 mask ^= IRQEN_MSK;
494 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
495 cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG,
496 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
497}
498
499static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask)
500{
501 struct cx25840_state *state = to_state(sd);
502
503 if (is_cx23885(state) || is_cx23887(state))
504 mask ^= IRQEN_MSK;
505 mask &= IRQEN_TSE;
506 cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask);
507}
508
509/*
510 * V4L2 Subdevice IR Ops
511 */
512int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled)
513{
514 struct cx25840_state *state = to_state(sd);
515 struct cx25840_ir_state *ir_state = to_ir_state(sd);
516 struct i2c_client *c = NULL;
517 unsigned long flags;
518
519 u32 rx_data[FIFO_RX_DEPTH];
520 int i, j, k;
521 u32 events, v;
522 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
523 u32 cntrl, irqen, stats;
524
525 *handled = false;
526 if (ir_state == NULL)
527 return -ENODEV;
528
529 c = ir_state->c;
530
531 /* Only support the IR controller for the CX2388[57] AV Core for now */
532 if (!(is_cx23885(state) || is_cx23887(state)))
533 return -ENODEV;
534
535 cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
536 irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
537 if (is_cx23885(state) || is_cx23887(state))
538 irqen ^= IRQEN_MSK;
539 stats = cx25840_read4(c, CX25840_IR_STATS_REG);
540
541 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
542 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
543 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
544 ror = stats & STATS_ROR; /* Rx FIFO Over Run */
545
546 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
547 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
548 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
549 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
550
551 v4l2_dbg(2, ir_debug, sd, "IR IRQ Status: %s %s %s %s %s %s\n",
552 tsr ? "tsr" : " ", rsr ? "rsr" : " ",
553 rto ? "rto" : " ", ror ? "ror" : " ",
554 stats & STATS_TBY ? "tby" : " ",
555 stats & STATS_RBY ? "rby" : " ");
556
557 v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n",
558 tse ? "tse" : " ", rse ? "rse" : " ",
559 rte ? "rte" : " ", roe ? "roe" : " ");
560
561 /*
562 * Transmitter interrupt service
563 */
564 if (tse && tsr) {
565 /*
566 * TODO:
567 * Check the watermark threshold setting
568 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
569 * Push the data to the hardware FIFO.
570 * If there was nothing more to send in the tx_kfifo, disable
571 * the TSR IRQ and notify the v4l2_device.
572 * If there was something in the tx_kfifo, check the tx_kfifo
573 * level and notify the v4l2_device, if it is low.
574 */
575 /* For now, inhibit TSR interrupt until Tx is implemented */
576 irqenable_tx(sd, 0);
577 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
578 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
579 *handled = true;
580 }
581
582 /*
583 * Receiver interrupt service
584 */
585 kror = 0;
586 if ((rse && rsr) || (rte && rto)) {
587 /*
588 * Receive data on RSR to clear the STATS_RSR.
589 * Receive data on RTO, since we may not have yet hit the RSR
590 * watermark when we receive the RTO.
591 */
592 for (i = 0, v = FIFO_RX_NDV;
593 (v & FIFO_RX_NDV) && !kror; i = 0) {
594 for (j = 0;
595 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
596 v = cx25840_read4(c, CX25840_IR_FIFO_REG);
597 rx_data[i++] = v & ~FIFO_RX_NDV;
598 }
599 if (i == 0)
600 break;
601 j = i * sizeof(u32);
602 k = kfifo_in_locked(&ir_state->rx_kfifo,
603 (unsigned char *) rx_data, j,
604 &ir_state->rx_kfifo_lock);
605 if (k != j)
606 kror++; /* rx_kfifo over run */
607 }
608 *handled = true;
609 }
610
611 events = 0;
612 v = 0;
613 if (kror) {
614 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
615 v4l2_err(sd, "IR receiver software FIFO overrun\n");
616 }
617 if (roe && ror) {
618 /*
619 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
620 * the Rx FIFO Over Run status (STATS_ROR)
621 */
622 v |= CNTRL_RFE;
623 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
624 v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
625 }
626 if (rte && rto) {
627 /*
628 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
629 * the Rx Pulse Width Timer Time Out (STATS_RTO)
630 */
631 v |= CNTRL_RXE;
632 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
633 }
634 if (v) {
635 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
636 cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v);
637 cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl);
638 *handled = true;
639 }
640 spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
641 if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2)
642 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
643 spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
644
645 if (events)
646 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
647 return 0;
648}
649
650/* Receiver */
651static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
652 ssize_t *num)
653{
654 struct cx25840_ir_state *ir_state = to_ir_state(sd);
655 bool invert;
656 u16 divider;
657 unsigned int i, n;
658 u32 *p;
659 u32 u, v;
660
661 if (ir_state == NULL)
662 return -ENODEV;
663
664 invert = (bool) atomic_read(&ir_state->rx_invert);
665 divider = (u16) atomic_read(&ir_state->rxclk_divider);
666
667 n = count / sizeof(u32) * sizeof(u32);
668 if (n == 0) {
669 *num = 0;
670 return 0;
671 }
672
673 n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n,
674 &ir_state->rx_kfifo_lock);
675
676 n /= sizeof(u32);
677 *num = n * sizeof(u32);
678
679 for (p = (u32 *) buf, i = 0; i < n; p++, i++) {
680 if ((*p & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
681 *p = V4L2_SUBDEV_IR_PULSE_RX_SEQ_END;
682 v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n");
683 continue;
684 }
685
686 u = (*p & FIFO_RXTX_LVL) ? V4L2_SUBDEV_IR_PULSE_LEVEL_MASK : 0;
687 if (invert)
688 u = u ? 0 : V4L2_SUBDEV_IR_PULSE_LEVEL_MASK;
689
690 v = (u32) pulse_width_count_to_ns((u16) (*p & FIFO_RXTX),
691 divider);
692 if (v >= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
693 v = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS - 1;
694
695 *p = u | v;
696
697 v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns %s\n",
698 v, u ? "mark" : "space");
699 }
700 return 0;
701}
702
703static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd,
704 struct v4l2_subdev_ir_parameters *p)
705{
706 struct cx25840_ir_state *ir_state = to_ir_state(sd);
707
708 if (ir_state == NULL)
709 return -ENODEV;
710
711 mutex_lock(&ir_state->rx_params_lock);
712 memcpy(p, &ir_state->rx_params,
713 sizeof(struct v4l2_subdev_ir_parameters));
714 mutex_unlock(&ir_state->rx_params_lock);
715 return 0;
716}
717
718static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd)
719{
720 struct cx25840_ir_state *ir_state = to_ir_state(sd);
721 struct i2c_client *c;
722
723 if (ir_state == NULL)
724 return -ENODEV;
725
726 c = ir_state->c;
727 mutex_lock(&ir_state->rx_params_lock);
728
729 /* Disable or slow down all IR Rx circuits and counters */
730 irqenable_rx(sd, 0);
731 control_rx_enable(c, false);
732 control_rx_demodulation_enable(c, false);
733 control_rx_s_edge_detection(c, CNTRL_EDG_NONE);
734 filter_rx_s_min_width(c, 0);
735 cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD);
736
737 ir_state->rx_params.shutdown = true;
738
739 mutex_unlock(&ir_state->rx_params_lock);
740 return 0;
741}
742
743static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd,
744 struct v4l2_subdev_ir_parameters *p)
745{
746 struct cx25840_ir_state *ir_state = to_ir_state(sd);
747 struct i2c_client *c;
748 struct v4l2_subdev_ir_parameters *o;
749 u16 rxclk_divider;
750
751 if (ir_state == NULL)
752 return -ENODEV;
753
754 if (p->shutdown)
755 return cx25840_ir_rx_shutdown(sd);
756
757 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
758 return -ENOSYS;
759
760 c = ir_state->c;
761 o = &ir_state->rx_params;
762
763 mutex_lock(&ir_state->rx_params_lock);
764
765 o->shutdown = p->shutdown;
766
767 p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
768 o->mode = p->mode;
769
770 p->bytes_per_data_element = sizeof(u32);
771 o->bytes_per_data_element = p->bytes_per_data_element;
772
773 /* Before we tweak the hardware, we have to disable the receiver */
774 irqenable_rx(sd, 0);
775 control_rx_enable(c, false);
776
777 control_rx_demodulation_enable(c, p->modulation);
778 o->modulation = p->modulation;
779
780 if (p->modulation) {
781 p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq,
782 &rxclk_divider);
783
784 o->carrier_freq = p->carrier_freq;
785
786 p->duty_cycle = 50;
787 o->duty_cycle = p->duty_cycle;
788
789 control_rx_s_carrier_window(c, p->carrier_freq,
790 &p->carrier_range_lower,
791 &p->carrier_range_upper);
792 o->carrier_range_lower = p->carrier_range_lower;
793 o->carrier_range_upper = p->carrier_range_upper;
794 } else {
795 p->max_pulse_width =
796 rxclk_rx_s_max_pulse_width(c, p->max_pulse_width,
797 &rxclk_divider);
798 o->max_pulse_width = p->max_pulse_width;
799 }
800 atomic_set(&ir_state->rxclk_divider, rxclk_divider);
801
802 p->noise_filter_min_width =
803 filter_rx_s_min_width(c, p->noise_filter_min_width);
804 o->noise_filter_min_width = p->noise_filter_min_width;
805
806 p->resolution = clock_divider_to_resolution(rxclk_divider);
807 o->resolution = p->resolution;
808
809 /* FIXME - make this dependent on resolution for better performance */
810 control_rx_irq_watermark(c, RX_FIFO_HALF_FULL);
811
812 control_rx_s_edge_detection(c, CNTRL_EDG_BOTH);
813
814 o->invert_level = p->invert_level;
815 atomic_set(&ir_state->rx_invert, p->invert_level);
816
817 o->interrupt_enable = p->interrupt_enable;
818 o->enable = p->enable;
819 if (p->enable) {
820 unsigned long flags;
821
822 spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
823 kfifo_reset(&ir_state->rx_kfifo);
824 spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
825 if (p->interrupt_enable)
826 irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
827 control_rx_enable(c, p->enable);
828 }
829
830 mutex_unlock(&ir_state->rx_params_lock);
831 return 0;
832}
833
834/* Transmitter */
835static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
836 ssize_t *num)
837{
838 struct cx25840_ir_state *ir_state = to_ir_state(sd);
839 struct i2c_client *c;
840
841 if (ir_state == NULL)
842 return -ENODEV;
843
844 c = ir_state->c;
845#if 0
846 /*
847 * FIXME - the code below is an incomplete and untested sketch of what
848 * may need to be done. The critical part is to get 4 (or 8) pulses
849 * from the tx_kfifo, or converted from ns to the proper units from the
850 * input, and push them off to the hardware Tx FIFO right away, if the
851 * HW TX fifo needs service. The rest can be pushed to the tx_kfifo in
852 * a less critical timeframe. Also watch out for overruning the
853 * tx_kfifo - don't let it happen and let the caller know not all his
854 * pulses were written.
855 */
856 u32 *ns_pulse = (u32 *) buf;
857 unsigned int n;
858 u32 fifo_pulse[FIFO_TX_DEPTH];
859 u32 mark;
860
861 /* Compute how much we can fit in the tx kfifo */
862 n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo);
863 n = min(n, (unsigned int) count);
864 n /= sizeof(u32);
865
866 /* FIXME - turn on Tx Fifo service interrupt
867 * check hardware fifo level, and other stuff
868 */
869 for (i = 0; i < n; ) {
870 for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) {
871 mark = ns_pulse[i] & V4L2_SUBDEV_IR_PULSE_LEVEL_MASK;
872 fifo_pulse[j] = ns_to_pulse_width_count(
873 ns_pulse[i] &
874 ~V4L2_SUBDEV_IR_PULSE_LEVEL_MASK,
875 ir_state->txclk_divider);
876 if (mark)
877 fifo_pulse[j] &= FIFO_RXTX_LVL;
878 i++;
879 }
880 kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse,
881 j * sizeof(u32));
882 }
883 *num = n * sizeof(u32);
884#else
885 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
886 irqenable_tx(sd, IRQEN_TSE);
887 *num = count;
888#endif
889 return 0;
890}
891
892static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd,
893 struct v4l2_subdev_ir_parameters *p)
894{
895 struct cx25840_ir_state *ir_state = to_ir_state(sd);
896
897 if (ir_state == NULL)
898 return -ENODEV;
899
900 mutex_lock(&ir_state->tx_params_lock);
901 memcpy(p, &ir_state->tx_params,
902 sizeof(struct v4l2_subdev_ir_parameters));
903 mutex_unlock(&ir_state->tx_params_lock);
904 return 0;
905}
906
907static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd)
908{
909 struct cx25840_ir_state *ir_state = to_ir_state(sd);
910 struct i2c_client *c;
911
912 if (ir_state == NULL)
913 return -ENODEV;
914
915 c = ir_state->c;
916 mutex_lock(&ir_state->tx_params_lock);
917
918 /* Disable or slow down all IR Tx circuits and counters */
919 irqenable_tx(sd, 0);
920 control_tx_enable(c, false);
921 control_tx_modulation_enable(c, false);
922 cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD);
923
924 ir_state->tx_params.shutdown = true;
925
926 mutex_unlock(&ir_state->tx_params_lock);
927 return 0;
928}
929
930static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd,
931 struct v4l2_subdev_ir_parameters *p)
932{
933 struct cx25840_ir_state *ir_state = to_ir_state(sd);
934 struct i2c_client *c;
935 struct v4l2_subdev_ir_parameters *o;
936 u16 txclk_divider;
937
938 if (ir_state == NULL)
939 return -ENODEV;
940
941 if (p->shutdown)
942 return cx25840_ir_tx_shutdown(sd);
943
944 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
945 return -ENOSYS;
946
947 c = ir_state->c;
948 o = &ir_state->tx_params;
949 mutex_lock(&ir_state->tx_params_lock);
950
951 o->shutdown = p->shutdown;
952
953 p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
954 o->mode = p->mode;
955
956 p->bytes_per_data_element = sizeof(u32);
957 o->bytes_per_data_element = p->bytes_per_data_element;
958
959 /* Before we tweak the hardware, we have to disable the transmitter */
960 irqenable_tx(sd, 0);
961 control_tx_enable(c, false);
962
963 control_tx_modulation_enable(c, p->modulation);
964 o->modulation = p->modulation;
965
966 if (p->modulation) {
967 p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq,
968 &txclk_divider);
969 o->carrier_freq = p->carrier_freq;
970
971 p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle);
972 o->duty_cycle = p->duty_cycle;
973 } else {
974 p->max_pulse_width =
975 txclk_tx_s_max_pulse_width(c, p->max_pulse_width,
976 &txclk_divider);
977 o->max_pulse_width = p->max_pulse_width;
978 }
979 atomic_set(&ir_state->txclk_divider, txclk_divider);
980
981 p->resolution = clock_divider_to_resolution(txclk_divider);
982 o->resolution = p->resolution;
983
984 /* FIXME - make this dependent on resolution for better performance */
985 control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY);
986
987 control_tx_polarity_invert(c, p->invert_carrier_sense);
988 o->invert_carrier_sense = p->invert_carrier_sense;
989
990 /*
991 * FIXME: we don't have hardware help for IO pin level inversion
992 * here like we have on the CX23888.
993 * Act on this with some mix of logical inversion of data levels,
994 * carrier polarity, and carrier duty cycle.
995 */
996 o->invert_level = p->invert_level;
997
998 o->interrupt_enable = p->interrupt_enable;
999 o->enable = p->enable;
1000 if (p->enable) {
1001 /* reset tx_fifo here */
1002 if (p->interrupt_enable)
1003 irqenable_tx(sd, IRQEN_TSE);
1004 control_tx_enable(c, p->enable);
1005 }
1006
1007 mutex_unlock(&ir_state->tx_params_lock);
1008 return 0;
1009}
1010
1011
1012/*
1013 * V4L2 Subdevice Core Ops support
1014 */
1015int cx25840_ir_log_status(struct v4l2_subdev *sd)
1016{
1017 struct cx25840_state *state = to_state(sd);
1018 struct i2c_client *c = state->c;
1019 char *s;
1020 int i, j;
1021 u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr;
1022
1023 /* The CX23888 chip doesn't have an IR controller on the A/V core */
1024 if (is_cx23888(state))
1025 return 0;
1026
1027 cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
1028 txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD;
1029 rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD;
1030 cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC;
1031 stats = cx25840_read4(c, CX25840_IR_STATS_REG);
1032 irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
1033 if (is_cx23885(state) || is_cx23887(state))
1034 irqen ^= IRQEN_MSK;
1035 filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF;
1036
1037 v4l2_info(sd, "IR Receiver:\n");
1038 v4l2_info(sd, "\tEnabled: %s\n",
1039 cntrl & CNTRL_RXE ? "yes" : "no");
1040 v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
1041 cntrl & CNTRL_DMD ? "enabled" : "disabled");
1042 v4l2_info(sd, "\tFIFO: %s\n",
1043 cntrl & CNTRL_RFE ? "enabled" : "disabled");
1044 switch (cntrl & CNTRL_EDG) {
1045 case CNTRL_EDG_NONE:
1046 s = "disabled";
1047 break;
1048 case CNTRL_EDG_FALL:
1049 s = "falling edge";
1050 break;
1051 case CNTRL_EDG_RISE:
1052 s = "rising edge";
1053 break;
1054 case CNTRL_EDG_BOTH:
1055 s = "rising & falling edges";
1056 break;
1057 default:
1058 s = "??? edge";
1059 break;
1060 }
1061 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
1062 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
1063 cntrl & CNTRL_R ? "not loaded" : "overflow marker");
1064 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1065 cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
1066 v4l2_info(sd, "\tLoopback mode: %s\n",
1067 cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
1068 if (cntrl & CNTRL_DMD) {
1069 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
1070 clock_divider_to_carrier_freq(rxclk));
1071 switch (cntrl & CNTRL_WIN) {
1072 case CNTRL_WIN_3_3:
1073 i = 3;
1074 j = 3;
1075 break;
1076 case CNTRL_WIN_4_3:
1077 i = 4;
1078 j = 3;
1079 break;
1080 case CNTRL_WIN_3_4:
1081 i = 3;
1082 j = 4;
1083 break;
1084 case CNTRL_WIN_4_4:
1085 i = 4;
1086 j = 4;
1087 break;
1088 default:
1089 i = 0;
1090 j = 0;
1091 break;
1092 }
1093 v4l2_info(sd, "\tNext carrier edge window: 16 clocks "
1094 "-%1d/+%1d, %u to %u Hz\n", i, j,
1095 clock_divider_to_freq(rxclk, 16 + j),
1096 clock_divider_to_freq(rxclk, 16 - i));
1097 } else {
1098 v4l2_info(sd, "\tMax measurable pulse width: %u us, "
1099 "%llu ns\n",
1100 pulse_width_count_to_us(FIFO_RXTX, rxclk),
1101 pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1102 }
1103 v4l2_info(sd, "\tLow pass filter: %s\n",
1104 filtr ? "enabled" : "disabled");
1105 if (filtr)
1106 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, "
1107 "%u ns\n",
1108 lpf_count_to_us(filtr),
1109 lpf_count_to_ns(filtr));
1110 v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
1111 stats & STATS_RTO ? "yes" : "no");
1112 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
1113 irqen & IRQEN_RTE ? "enabled" : "disabled");
1114 v4l2_info(sd, "\tFIFO overrun: %s\n",
1115 stats & STATS_ROR ? "yes" : "no");
1116 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
1117 irqen & IRQEN_ROE ? "enabled" : "disabled");
1118 v4l2_info(sd, "\tBusy: %s\n",
1119 stats & STATS_RBY ? "yes" : "no");
1120 v4l2_info(sd, "\tFIFO service requested: %s\n",
1121 stats & STATS_RSR ? "yes" : "no");
1122 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1123 irqen & IRQEN_RSE ? "enabled" : "disabled");
1124
1125 v4l2_info(sd, "IR Transmitter:\n");
1126 v4l2_info(sd, "\tEnabled: %s\n",
1127 cntrl & CNTRL_TXE ? "yes" : "no");
1128 v4l2_info(sd, "\tModulation onto a carrier: %s\n",
1129 cntrl & CNTRL_MOD ? "enabled" : "disabled");
1130 v4l2_info(sd, "\tFIFO: %s\n",
1131 cntrl & CNTRL_TFE ? "enabled" : "disabled");
1132 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1133 cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1134 v4l2_info(sd, "\tCarrier polarity: %s\n",
1135 cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1136 : "space:noburst mark:burst");
1137 if (cntrl & CNTRL_MOD) {
1138 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
1139 clock_divider_to_carrier_freq(txclk));
1140 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
1141 cduty + 1);
1142 } else {
1143 v4l2_info(sd, "\tMax pulse width: %u us, "
1144 "%llu ns\n",
1145 pulse_width_count_to_us(FIFO_RXTX, txclk),
1146 pulse_width_count_to_ns(FIFO_RXTX, txclk));
1147 }
1148 v4l2_info(sd, "\tBusy: %s\n",
1149 stats & STATS_TBY ? "yes" : "no");
1150 v4l2_info(sd, "\tFIFO service requested: %s\n",
1151 stats & STATS_TSR ? "yes" : "no");
1152 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1153 irqen & IRQEN_TSE ? "enabled" : "disabled");
1154
1155 return 0;
1156}
1157
1158
1159const struct v4l2_subdev_ir_ops cx25840_ir_ops = {
1160 .rx_read = cx25840_ir_rx_read,
1161 .rx_g_parameters = cx25840_ir_rx_g_parameters,
1162 .rx_s_parameters = cx25840_ir_rx_s_parameters,
1163
1164 .tx_write = cx25840_ir_tx_write,
1165 .tx_g_parameters = cx25840_ir_tx_g_parameters,
1166 .tx_s_parameters = cx25840_ir_tx_s_parameters,
1167};
1168
1169
1170static const struct v4l2_subdev_ir_parameters default_rx_params = {
1171 .bytes_per_data_element = sizeof(u32),
1172 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1173
1174 .enable = false,
1175 .interrupt_enable = false,
1176 .shutdown = true,
1177
1178 .modulation = true,
1179 .carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */
1180
1181 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1182 /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1183 .noise_filter_min_width = 333333, /* ns */
1184 .carrier_range_lower = 35000,
1185 .carrier_range_upper = 37000,
1186 .invert_level = false,
1187};
1188
1189static const struct v4l2_subdev_ir_parameters default_tx_params = {
1190 .bytes_per_data_element = sizeof(u32),
1191 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1192
1193 .enable = false,
1194 .interrupt_enable = false,
1195 .shutdown = true,
1196
1197 .modulation = true,
1198 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1199 .duty_cycle = 25, /* 25 % - RC-5 carrier */
1200 .invert_level = false,
1201 .invert_carrier_sense = false,
1202};
1203
1204int cx25840_ir_probe(struct v4l2_subdev *sd)
1205{
1206 struct cx25840_state *state = to_state(sd);
1207 struct cx25840_ir_state *ir_state;
1208 struct v4l2_subdev_ir_parameters default_params;
1209
1210 /* Only init the IR controller for the CX2388[57] AV Core for now */
1211 if (!(is_cx23885(state) || is_cx23887(state)))
1212 return 0;
1213
1214 ir_state = kzalloc(sizeof(struct cx25840_ir_state), GFP_KERNEL);
1215 if (ir_state == NULL)
1216 return -ENOMEM;
1217
1218 spin_lock_init(&ir_state->rx_kfifo_lock);
1219 if (kfifo_alloc(&ir_state->rx_kfifo,
1220 CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL)) {
1221 kfree(ir_state);
1222 return -ENOMEM;
1223 }
1224
1225 ir_state->c = state->c;
1226 state->ir_state = ir_state;
1227
1228 /* Ensure no interrupts arrive yet */
1229 if (is_cx23885(state) || is_cx23887(state))
1230 cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK);
1231 else
1232 cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0);
1233
1234 mutex_init(&ir_state->rx_params_lock);
1235 memcpy(&default_params, &default_rx_params,
1236 sizeof(struct v4l2_subdev_ir_parameters));
1237 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1238
1239 mutex_init(&ir_state->tx_params_lock);
1240 memcpy(&default_params, &default_tx_params,
1241 sizeof(struct v4l2_subdev_ir_parameters));
1242 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1243
1244 return 0;
1245}
1246
1247int cx25840_ir_remove(struct v4l2_subdev *sd)
1248{
1249 struct cx25840_state *state = to_state(sd);
1250 struct cx25840_ir_state *ir_state = to_ir_state(sd);
1251
1252 if (ir_state == NULL)
1253 return -ENODEV;
1254
1255 cx25840_ir_rx_shutdown(sd);
1256 cx25840_ir_tx_shutdown(sd);
1257
1258 kfifo_free(&ir_state->rx_kfifo);
1259 kfree(ir_state);
1260 state->ir_state = NULL;
1261 return 0;
1262}