]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/media/video/gspca/sonixb.c
Fix common misspellings
[mirror_ubuntu-zesty-kernel.git] / drivers / media / video / gspca / sonixb.c
CommitLineData
6a7eba24
JFM
1/*
2 * sonix sn9c102 (bayer) library
6a7eba24 3 *
75b79ffc
JFM
4 * Copyright (C) 2009-2011 Jean-François Moine <http://moinejf.free.fr>
5 * Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr
6 * Add Pas106 Stefano Mozzi (C) 2004
6a7eba24
JFM
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
93627736
HG
23/* Some documentation on known sonixb registers:
24
25Reg Use
0a76cb8c 26sn9c101 / sn9c102:
93627736
HG
270x10 high nibble red gain low nibble blue gain
280x11 low nibble green gain
0a76cb8c
HG
29sn9c103:
300x05 red gain 0-127
310x06 blue gain 0-127
320x07 green gain 0-127
33all:
340x08-0x0f i2c / 3wire registers
93627736
HG
350x12 hstart
360x13 vstart
370x15 hsize (hsize = register-value * 16)
380x16 vsize (vsize = register-value * 16)
390x17 bit 0 toggle compression quality (according to sn9c102 driver)
400x18 bit 7 enables compression, bit 4-5 set image down scaling:
41 00 scale 1, 01 scale 1/2, 10, scale 1/4
420x19 high-nibble is sensor clock divider, changes exposure on sensors which
43 use a clock generated by the bridge. Some sensors have their own clock.
440x1c auto_exposure area (for avg_lum) startx (startx = register-value * 32)
450x1d auto_exposure area (for avg_lum) starty (starty = register-value * 32)
460x1e auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32)
470x1f auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32)
48*/
49
6a7eba24
JFM
50#define MODULE_NAME "sonixb"
51
f65e93d6 52#include <linux/input.h>
6a7eba24
JFM
53#include "gspca.h"
54
75b79ffc 55MODULE_AUTHOR("Jean-François Moine <http://moinejf.free.fr>");
6a7eba24
JFM
56MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver");
57MODULE_LICENSE("GPL");
58
f51a8caa
JFM
59/* controls */
60enum e_ctrl {
61 BRIGHTNESS,
62 GAIN,
63 EXPOSURE,
64 AUTOGAIN,
65 FREQ,
66 NCTRLS /* number of controls */
67};
68
6a7eba24
JFM
69/* specific webcam descriptor */
70struct sd {
71 struct gspca_dev gspca_dev; /* !! must be the first item */
f51a8caa
JFM
72
73 struct gspca_ctrl ctrls[NCTRLS];
74
dcef3237 75 atomic_t avg_lum;
bf2a2202 76 int prev_avg_lum;
26984b09
HG
77 int exp_too_low_cnt;
78 int exp_too_high_cnt;
2b3e284a
HG
79 int header_read;
80 u8 header[12]; /* Header without sof marker */
dcef3237 81
dcef3237 82 unsigned char autogain_ignore_frames;
6af492e5 83 unsigned char frames_to_drop;
6a7eba24 84
f45f06b6
HG
85 __u8 bridge; /* Type of bridge */
86#define BRIDGE_101 0
87#define BRIDGE_102 0 /* We make no difference between 101 and 102 */
88#define BRIDGE_103 1
89
90 __u8 sensor; /* Type of image sensor chip */
00765f16
HG
91#define SENSOR_HV7131D 0
92#define SENSOR_HV7131R 1
93#define SENSOR_OV6650 2
94#define SENSOR_OV7630 3
95#define SENSOR_PAS106 4
96#define SENSOR_PAS202 5
97#define SENSOR_TAS5110C 6
98#define SENSOR_TAS5110D 7
99#define SENSOR_TAS5130CXX 8
6af492e5 100 __u8 reg11;
6a7eba24
JFM
101};
102
f45f06b6
HG
103typedef const __u8 sensor_init_t[8];
104
105struct sensor_data {
0a76cb8c 106 const __u8 *bridge_init;
f45f06b6
HG
107 sensor_init_t *sensor_init;
108 int sensor_init_size;
f45f06b6
HG
109 int flags;
110 unsigned ctrl_dis;
111 __u8 sensor_addr;
112};
113
114/* sensor_data flags */
5da162e7 115#define F_GAIN 0x01 /* has gain */
e2ad2a54 116#define F_SIF 0x02 /* sif or vga */
26984b09 117#define F_COARSE_EXPO 0x04 /* exposure control is coarse */
c437d657
HG
118
119/* priv field of struct v4l2_pix_format flags (do not use low nibble!) */
120#define MODE_RAW 0x10 /* raw bayer mode */
93627736 121#define MODE_REDUCED_SIF 0x20 /* vga mode (320x240 / 160x120) on sif cam */
f45f06b6
HG
122
123/* ctrl_dis helper macros */
f51a8caa
JFM
124#define NO_EXPO ((1 << EXPOSURE) | (1 << AUTOGAIN))
125#define NO_FREQ (1 << FREQ)
126#define NO_BRIGHTNESS (1 << BRIGHTNESS)
5da162e7 127
6a7eba24
JFM
128#define COMP 0xc7 /* 0x87 //0x07 */
129#define COMP1 0xc9 /* 0x89 //0x09 */
130
131#define MCK_INIT 0x63
132#define MCK_INIT1 0x20 /*fixme: Bayer - 0x50 for JPEG ??*/
133
134#define SYS_CLK 0x04
135
0a76cb8c 136#define SENS(bridge, sensor, _flags, _ctrl_dis, _sensor_addr) \
f45f06b6 137{ \
0a76cb8c 138 .bridge_init = bridge, \
f45f06b6
HG
139 .sensor_init = sensor, \
140 .sensor_init_size = sizeof(sensor), \
f45f06b6
HG
141 .flags = _flags, .ctrl_dis = _ctrl_dis, .sensor_addr = _sensor_addr \
142}
143
dcef3237 144/* We calculate the autogain at the end of the transfer of a frame, at this
26984b09
HG
145 moment a frame with the old settings is being captured and transmitted. So
146 if we adjust the gain or exposure we must ignore atleast the next frame for
147 the new settings to come into effect before doing any other adjustments. */
148#define AUTOGAIN_IGNORE_FRAMES 1
dcef3237 149
6a7eba24 150/* V4L2 controls supported by the driver */
f51a8caa
JFM
151static void setbrightness(struct gspca_dev *gspca_dev);
152static void setgain(struct gspca_dev *gspca_dev);
153static void setexposure(struct gspca_dev *gspca_dev);
dcef3237 154static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val);
f51a8caa 155static void setfreq(struct gspca_dev *gspca_dev);
6a7eba24 156
f51a8caa
JFM
157static const struct ctrl sd_ctrls[NCTRLS] = {
158[BRIGHTNESS] = {
6a7eba24
JFM
159 {
160 .id = V4L2_CID_BRIGHTNESS,
161 .type = V4L2_CTRL_TYPE_INTEGER,
162 .name = "Brightness",
163 .minimum = 0,
164 .maximum = 255,
165 .step = 1,
f51a8caa 166 .default_value = 127,
6a7eba24 167 },
f51a8caa 168 .set_control = setbrightness
6a7eba24 169 },
f51a8caa 170[GAIN] = {
6a7eba24 171 {
dcef3237 172 .id = V4L2_CID_GAIN,
6a7eba24 173 .type = V4L2_CTRL_TYPE_INTEGER,
dcef3237 174 .name = "Gain",
6a7eba24 175 .minimum = 0,
ad5ef80d 176 .maximum = 255,
6a7eba24 177 .step = 1,
82e839c9 178#define GAIN_KNEE 230
f51a8caa 179 .default_value = 127,
6a7eba24 180 },
f51a8caa 181 .set_control = setgain
dcef3237 182 },
f51a8caa 183[EXPOSURE] = {
dcef3237
HG
184 {
185 .id = V4L2_CID_EXPOSURE,
186 .type = V4L2_CTRL_TYPE_INTEGER,
187 .name = "Exposure",
dcef3237 188 .minimum = 0,
82e839c9 189 .maximum = 1023,
dcef3237 190 .step = 1,
f51a8caa
JFM
191 .default_value = 66,
192 /* 33 ms / 30 fps (except on PASXXX) */
193#define EXPOSURE_KNEE 200 /* 100 ms / 10 fps (except on PASXXX) */
dcef3237
HG
194 .flags = 0,
195 },
f51a8caa 196 .set_control = setexposure
dcef3237 197 },
f51a8caa
JFM
198/* for coarse exposure */
199#define COARSE_EXPOSURE_MIN 2
200#define COARSE_EXPOSURE_MAX 15
26984b09 201#define COARSE_EXPOSURE_DEF 2 /* 30 fps */
f51a8caa 202[AUTOGAIN] = {
dcef3237
HG
203 {
204 .id = V4L2_CID_AUTOGAIN,
205 .type = V4L2_CTRL_TYPE_BOOLEAN,
206 .name = "Automatic Gain (and Exposure)",
207 .minimum = 0,
208 .maximum = 1,
209 .step = 1,
51fc8e3b
AZ
210#define AUTOGAIN_DEF 1
211 .default_value = AUTOGAIN_DEF,
f0baad86 212 .flags = V4L2_CTRL_FLAG_UPDATE
dcef3237
HG
213 },
214 .set = sd_setautogain,
6a7eba24 215 },
f51a8caa 216[FREQ] = {
66f35821
HG
217 {
218 .id = V4L2_CID_POWER_LINE_FREQUENCY,
219 .type = V4L2_CTRL_TYPE_MENU,
220 .name = "Light frequency filter",
221 .minimum = 0,
222 .maximum = 2, /* 0: 0, 1: 50Hz, 2:60Hz */
223 .step = 1,
606f8428 224#define FREQ_DEF 0
66f35821
HG
225 .default_value = FREQ_DEF,
226 },
f51a8caa 227 .set_control = setfreq
66f35821 228 },
6a7eba24
JFM
229};
230
cc611b8a 231static const struct v4l2_pix_format vga_mode[] = {
c437d657
HG
232 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
233 .bytesperline = 160,
2389b360 234 .sizeimage = 160 * 120,
c437d657
HG
235 .colorspace = V4L2_COLORSPACE_SRGB,
236 .priv = 2 | MODE_RAW},
c2446b3e
JFM
237 {160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
238 .bytesperline = 160,
5c51518d 239 .sizeimage = 160 * 120 * 5 / 4,
c2446b3e
JFM
240 .colorspace = V4L2_COLORSPACE_SRGB,
241 .priv = 2},
242 {320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
243 .bytesperline = 320,
5c51518d 244 .sizeimage = 320 * 240 * 5 / 4,
c2446b3e
JFM
245 .colorspace = V4L2_COLORSPACE_SRGB,
246 .priv = 1},
247 {640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
248 .bytesperline = 640,
5c51518d 249 .sizeimage = 640 * 480 * 5 / 4,
c2446b3e
JFM
250 .colorspace = V4L2_COLORSPACE_SRGB,
251 .priv = 0},
6a7eba24 252};
cc611b8a 253static const struct v4l2_pix_format sif_mode[] = {
93627736
HG
254 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
255 .bytesperline = 160,
256 .sizeimage = 160 * 120,
257 .colorspace = V4L2_COLORSPACE_SRGB,
258 .priv = 1 | MODE_RAW | MODE_REDUCED_SIF},
259 {160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
260 .bytesperline = 160,
261 .sizeimage = 160 * 120 * 5 / 4,
262 .colorspace = V4L2_COLORSPACE_SRGB,
263 .priv = 1 | MODE_REDUCED_SIF},
c437d657
HG
264 {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
265 .bytesperline = 176,
2389b360 266 .sizeimage = 176 * 144,
c437d657
HG
267 .colorspace = V4L2_COLORSPACE_SRGB,
268 .priv = 1 | MODE_RAW},
c2446b3e
JFM
269 {176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
270 .bytesperline = 176,
5c51518d 271 .sizeimage = 176 * 144 * 5 / 4,
c2446b3e
JFM
272 .colorspace = V4L2_COLORSPACE_SRGB,
273 .priv = 1},
93627736
HG
274 {320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
275 .bytesperline = 320,
276 .sizeimage = 320 * 240 * 5 / 4,
277 .colorspace = V4L2_COLORSPACE_SRGB,
278 .priv = 0 | MODE_REDUCED_SIF},
c2446b3e
JFM
279 {352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
280 .bytesperline = 352,
5c51518d 281 .sizeimage = 352 * 288 * 5 / 4,
c2446b3e
JFM
282 .colorspace = V4L2_COLORSPACE_SRGB,
283 .priv = 0},
6a7eba24
JFM
284};
285
00765f16
HG
286static const __u8 initHv7131d[] = {
287 0x04, 0x03, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
288 0x00, 0x00,
289 0x00, 0x00, 0x00, 0x02, 0x02, 0x00,
290 0x28, 0x1e, 0x60, 0x8e, 0x42,
00765f16
HG
291};
292static const __u8 hv7131d_sensor_init[][8] = {
293 {0xa0, 0x11, 0x01, 0x04, 0x00, 0x00, 0x00, 0x17},
294 {0xa0, 0x11, 0x02, 0x00, 0x00, 0x00, 0x00, 0x17},
295 {0xa0, 0x11, 0x28, 0x00, 0x00, 0x00, 0x00, 0x17},
296 {0xa0, 0x11, 0x30, 0x30, 0x00, 0x00, 0x00, 0x17}, /* reset level */
297 {0xa0, 0x11, 0x34, 0x02, 0x00, 0x00, 0x00, 0x17}, /* pixel bias volt */
298};
299
300static const __u8 initHv7131r[] = {
6a7eba24
JFM
301 0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
302 0x00, 0x00,
c437d657 303 0x00, 0x00, 0x00, 0x02, 0x01, 0x00,
6a7eba24 304 0x28, 0x1e, 0x60, 0x8a, 0x20,
6a7eba24 305};
00765f16 306static const __u8 hv7131r_sensor_init[][8] = {
6a7eba24
JFM
307 {0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10},
308 {0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10},
309 {0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10},
310 {0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16},
311 {0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15},
312};
313static const __u8 initOv6650[] = {
314 0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
315 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
c437d657 316 0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b,
0a76cb8c 317 0x10,
6a7eba24 318};
780e3121 319static const __u8 ov6650_sensor_init[][8] = {
af901ca1 320 /* Bright, contrast, etc are set through SCBB interface.
780e3121 321 * AVCAP on win2 do not send any data on this controls. */
6a7eba24 322 /* Anyway, some registers appears to alter bright and constrat */
dcef3237
HG
323
324 /* Reset sensor */
6a7eba24 325 {0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
dcef3237 326 /* Set clock register 0x11 low nibble is clock divider */
6a7eba24 327 {0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10},
dcef3237 328 /* Next some unknown stuff */
6a7eba24
JFM
329 {0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10},
330/* {0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10},
331 * THIS SET GREEN SCREEN
332 * (pixels could be innverted in decode kind of "brg",
333 * but blue wont be there. Avoid this data ... */
334 {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */
335 {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10},
1d00d6c1 336 {0xa0, 0x60, 0x30, 0x3d, 0x0a, 0xd8, 0xa4, 0x10},
722103e3
HG
337 /* Enable rgb brightness control */
338 {0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10},
339 /* HDG: Note windows uses the line below, which sets both register 0x60
340 and 0x61 I believe these registers of the ov6650 are identical as
341 those of the ov7630, because if this is true the windows settings
342 add a bit additional red gain and a lot additional blue gain, which
343 matches my findings that the windows settings make blue much too
344 blue and red a little too red.
345 {0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */
dcef3237 346 /* Some more unknown stuff */
6a7eba24
JFM
347 {0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10},
348 {0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */
6a7eba24 349};
dcef3237 350
6a7eba24
JFM
351static const __u8 initOv7630[] = {
352 0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, /* r01 .. r08 */
353 0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* r09 .. r10 */
c437d657 354 0x00, 0x01, 0x01, 0x0a, /* r11 .. r14 */
6a7eba24 355 0x28, 0x1e, /* H & V sizes r15 .. r16 */
51fc8e3b 356 0x68, 0x8f, MCK_INIT1, /* r17 .. r19 */
6a7eba24 357};
6af492e5 358static const __u8 ov7630_sensor_init[][8] = {
6a7eba24
JFM
359 {0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
360 {0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10},
361/* {0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10}, jfm */
4c775902 362 {0xd0, 0x21, 0x12, 0x5c, 0x00, 0x80, 0x34, 0x10}, /* jfm */
6a7eba24
JFM
363 {0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10},
364 {0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10},
365 {0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10},
366 {0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10},
367 {0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10},
368 {0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10},
369 {0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10},
794af52a
AZ
370 {0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10},
371/* {0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10}, * jfm */
6a7eba24
JFM
372 {0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10},
373 {0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10},
374 {0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10},
375 {0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10},
376 {0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10},
377 {0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10},
378};
6a7eba24
JFM
379
380static const __u8 initPas106[] = {
381 0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00,
382 0x00, 0x00,
c437d657 383 0x00, 0x00, 0x00, 0x04, 0x01, 0x00,
f45f06b6 384 0x16, 0x12, 0x24, COMP1, MCK_INIT1,
6a7eba24
JFM
385};
386/* compression 0x86 mckinit1 0x2b */
421763e7
HG
387
388/* "Known" PAS106B registers:
389 0x02 clock divider
390 0x03 Variable framerate bits 4-11
391 0x04 Var framerate bits 0-3, one must leave the 4 msb's at 0 !!
392 The variable framerate control must never be set lower then 300,
393 which sets the framerate at 90 / reg02, otherwise vsync is lost.
394 0x05 Shutter Time Line Offset, this can be used as an exposure control:
395 0 = use full frame time, 255 = no exposure at all
396 Note this may never be larger then "var-framerate control" / 2 - 2.
397 When var-framerate control is < 514, no exposure is reached at the max
398 allowed value for the framerate control value, rather then at 255.
399 0x06 Shutter Time Pixel Offset, like reg05 this influences exposure, but
400 only a very little bit, leave at 0xcd
401 0x07 offset sign bit (bit0 1 > negative offset)
402 0x08 offset
403 0x09 Blue Gain
404 0x0a Green1 Gain
405 0x0b Green2 Gain
406 0x0c Red Gain
407 0x0e Global gain
408 0x13 Write 1 to commit settings to sensor
409*/
410
f45f06b6
HG
411static const __u8 pas106_sensor_init[][8] = {
412 /* Pixel Clock Divider 6 */
413 { 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 },
414 /* Frame Time MSB (also seen as 0x12) */
415 { 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 },
416 /* Frame Time LSB (also seen as 0x05) */
417 { 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 },
418 /* Shutter Time Line Offset (also seen as 0x6d) */
419 { 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 },
420 /* Shutter Time Pixel Offset (also seen as 0xb1) */
421 { 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 },
422 /* Black Level Subtract Sign (also seen 0x00) */
423 { 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 },
424 /* Black Level Subtract Level (also seen 0x01) */
425 { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
426 { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
427 /* Color Gain B Pixel 5 a */
428 { 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 },
429 /* Color Gain G1 Pixel 1 5 */
430 { 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 },
431 /* Color Gain G2 Pixel 1 0 5 */
432 { 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 },
433 /* Color Gain R Pixel 3 1 */
434 { 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 },
435 /* Color GainH Pixel */
436 { 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 },
437 /* Global Gain */
438 { 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 },
439 /* Contrast */
440 { 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 },
441 /* H&V synchro polarity */
442 { 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 },
443 /* ?default */
444 { 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 },
445 /* DAC scale */
446 { 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 },
447 /* ?default */
448 { 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 },
449 /* Validate Settings */
450 { 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 },
6a7eba24 451};
f45f06b6 452
6a7eba24
JFM
453static const __u8 initPas202[] = {
454 0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00,
455 0x00, 0x00,
c437d657 456 0x00, 0x00, 0x00, 0x06, 0x03, 0x0a,
82e839c9 457 0x28, 0x1e, 0x20, 0x89, 0x20,
6a7eba24 458};
82e839c9
HG
459
460/* "Known" PAS202BCB registers:
461 0x02 clock divider
462 0x04 Variable framerate bits 6-11 (*)
463 0x05 Var framerate bits 0-5, one must leave the 2 msb's at 0 !!
464 0x07 Blue Gain
465 0x08 Green Gain
466 0x09 Red Gain
467 0x0b offset sign bit (bit0 1 > negative offset)
468 0x0c offset
469 0x0e Unknown image is slightly brighter when bit 0 is 0, if reg0f is 0 too,
470 leave at 1 otherwise we get a jump in our exposure control
471 0x0f Exposure 0-255, 0 = use full frame time, 255 = no exposure at all
472 0x10 Master gain 0 - 31
473 0x11 write 1 to apply changes
474 (*) The variable framerate control must never be set lower then 500
475 which sets the framerate at 30 / reg02, otherwise vsync is lost.
476*/
6a7eba24 477static const __u8 pas202_sensor_init[][8] = {
82e839c9
HG
478 /* Set the clock divider to 4 -> 30 / 4 = 7.5 fps, we would like
479 to set it lower, but for some reason the bridge starts missing
480 vsync's then */
481 {0xa0, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x10},
6a7eba24
JFM
482 {0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10},
483 {0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10},
1d00d6c1 484 {0xd0, 0x40, 0x0c, 0x00, 0x0c, 0x01, 0x32, 0x10},
6a7eba24
JFM
485 {0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10},
486 {0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10},
487 {0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10},
488 {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
489 {0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10},
490 {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
6a7eba24
JFM
491};
492
b10af3f7 493static const __u8 initTas5110c[] = {
6a7eba24
JFM
494 0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
495 0x00, 0x00,
4efcfa0a 496 0x00, 0x00, 0x00, 0x45, 0x09, 0x0a,
6a7eba24 497 0x16, 0x12, 0x60, 0x86, 0x2b,
6a7eba24 498};
b10af3f7
HG
499/* Same as above, except a different hstart */
500static const __u8 initTas5110d[] = {
501 0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
502 0x00, 0x00,
4efcfa0a 503 0x00, 0x00, 0x00, 0x41, 0x09, 0x0a,
b10af3f7 504 0x16, 0x12, 0x60, 0x86, 0x2b,
b10af3f7 505};
0d0d7ef7
HG
506/* tas5110c is 3 wire, tas5110d is 2 wire (regular i2c) */
507static const __u8 tas5110c_sensor_init[][8] = {
6a7eba24
JFM
508 {0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10},
509 {0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10},
0d0d7ef7
HG
510};
511/* Known TAS5110D registers
512 * reg02: gain, bit order reversed!! 0 == max gain, 255 == min gain
513 * reg03: bit3: vflip, bit4: ~hflip, bit7: ~gainboost (~ == inverted)
514 * Note: writing reg03 seems to only work when written together with 02
515 */
516static const __u8 tas5110d_sensor_init[][8] = {
517 {0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17}, /* reset */
6a7eba24
JFM
518};
519
520static const __u8 initTas5130[] = {
521 0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
522 0x00, 0x00,
4efcfa0a 523 0x00, 0x00, 0x00, 0x68, 0x0c, 0x0a,
6a7eba24 524 0x28, 0x1e, 0x60, COMP, MCK_INIT,
6a7eba24
JFM
525};
526static const __u8 tas5130_sensor_init[][8] = {
780e3121 527/* {0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10},
6a7eba24
JFM
528 * shutter 0x47 short exposure? */
529 {0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10},
530 /* shutter 0x01 long exposure */
531 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10},
532};
533
75b79ffc 534static const struct sensor_data sensor_data[] = {
0a76cb8c
HG
535SENS(initHv7131d, hv7131d_sensor_init, F_GAIN, NO_BRIGHTNESS|NO_FREQ, 0),
536SENS(initHv7131r, hv7131r_sensor_init, 0, NO_BRIGHTNESS|NO_EXPO|NO_FREQ, 0),
537SENS(initOv6650, ov6650_sensor_init, F_GAIN|F_SIF, 0, 0x60),
538SENS(initOv7630, ov7630_sensor_init, F_GAIN, 0, 0x21),
539SENS(initPas106, pas106_sensor_init, F_GAIN|F_SIF, NO_FREQ, 0),
540SENS(initPas202, pas202_sensor_init, F_GAIN, NO_FREQ, 0),
0d0d7ef7 541SENS(initTas5110c, tas5110c_sensor_init, F_GAIN|F_SIF|F_COARSE_EXPO,
0a76cb8c 542 NO_BRIGHTNESS|NO_FREQ, 0),
0d0d7ef7 543SENS(initTas5110d, tas5110d_sensor_init, F_GAIN|F_SIF|F_COARSE_EXPO,
0a76cb8c 544 NO_BRIGHTNESS|NO_FREQ, 0),
4e17cd2e
HG
545SENS(initTas5130, tas5130_sensor_init, F_GAIN,
546 NO_BRIGHTNESS|NO_EXPO|NO_FREQ, 0),
f45f06b6
HG
547};
548
739570bb
JFM
549/* get one byte in gspca_dev->usb_buf */
550static void reg_r(struct gspca_dev *gspca_dev,
551 __u16 value)
6a7eba24 552{
739570bb
JFM
553 usb_control_msg(gspca_dev->dev,
554 usb_rcvctrlpipe(gspca_dev->dev, 0),
6a7eba24
JFM
555 0, /* request */
556 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
557 value,
558 0, /* index */
739570bb 559 gspca_dev->usb_buf, 1,
6a7eba24
JFM
560 500);
561}
562
739570bb
JFM
563static void reg_w(struct gspca_dev *gspca_dev,
564 __u16 value,
565 const __u8 *buffer,
566 int len)
6a7eba24 567{
335b3f88 568#ifdef GSPCA_DEBUG
8295d99e 569 if (len > USB_BUF_SZ) {
0d2a722d
HG
570 PDEBUG(D_ERR|D_PACK, "reg_w: buffer overflow");
571 return;
572 }
573#endif
739570bb
JFM
574 memcpy(gspca_dev->usb_buf, buffer, len);
575 usb_control_msg(gspca_dev->dev,
576 usb_sndctrlpipe(gspca_dev->dev, 0),
577 0x08, /* request */
578 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
579 value,
580 0, /* index */
581 gspca_dev->usb_buf, len,
582 500);
583}
584
739570bb 585static int i2c_w(struct gspca_dev *gspca_dev, const __u8 *buffer)
6a7eba24
JFM
586{
587 int retry = 60;
6a7eba24
JFM
588
589 /* is i2c ready */
739570bb 590 reg_w(gspca_dev, 0x08, buffer, 8);
6a7eba24
JFM
591 while (retry--) {
592 msleep(10);
739570bb 593 reg_r(gspca_dev, 0x08);
b7474cf9
AZ
594 if (gspca_dev->usb_buf[0] & 0x04) {
595 if (gspca_dev->usb_buf[0] & 0x08)
596 return -1;
6a7eba24 597 return 0;
b7474cf9 598 }
6a7eba24
JFM
599 }
600 return -1;
601}
602
739570bb 603static void i2c_w_vector(struct gspca_dev *gspca_dev,
6a7eba24
JFM
604 const __u8 buffer[][8], int len)
605{
606 for (;;) {
739570bb 607 reg_w(gspca_dev, 0x08, *buffer, 8);
6a7eba24
JFM
608 len -= 8;
609 if (len <= 0)
610 break;
611 buffer++;
612 }
613}
614
615static void setbrightness(struct gspca_dev *gspca_dev)
616{
617 struct sd *sd = (struct sd *) gspca_dev;
6a7eba24
JFM
618
619 switch (sd->sensor) {
a975a527 620 case SENSOR_OV6650:
6a7eba24
JFM
621 case SENSOR_OV7630: {
622 __u8 i2cOV[] =
a975a527 623 {0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10};
6a7eba24
JFM
624
625 /* change reg 0x06 */
f45f06b6 626 i2cOV[1] = sensor_data[sd->sensor].sensor_addr;
f51a8caa 627 i2cOV[3] = sd->ctrls[BRIGHTNESS].val;
739570bb 628 if (i2c_w(gspca_dev, i2cOV) < 0)
6a7eba24
JFM
629 goto err;
630 break;
631 }
421763e7 632 case SENSOR_PAS106:
6a7eba24 633 case SENSOR_PAS202: {
82e839c9
HG
634 __u8 i2cpbright[] =
635 {0xb0, 0x40, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x16};
421763e7 636 __u8 i2cpdoit[] =
82e839c9
HG
637 {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
638
421763e7
HG
639 /* PAS106 uses reg 7 and 8 instead of b and c */
640 if (sd->sensor == SENSOR_PAS106) {
641 i2cpbright[2] = 7;
642 i2cpdoit[2] = 0x13;
643 }
644
f51a8caa 645 if (sd->ctrls[BRIGHTNESS].val < 127) {
82e839c9
HG
646 /* change reg 0x0b, signreg */
647 i2cpbright[3] = 0x01;
648 /* set reg 0x0c, offset */
f51a8caa 649 i2cpbright[4] = 127 - sd->ctrls[BRIGHTNESS].val;
82e839c9 650 } else
f51a8caa 651 i2cpbright[4] = sd->ctrls[BRIGHTNESS].val - 127;
82e839c9
HG
652
653 if (i2c_w(gspca_dev, i2cpbright) < 0)
6a7eba24 654 goto err;
739570bb 655 if (i2c_w(gspca_dev, i2cpdoit) < 0)
6a7eba24
JFM
656 goto err;
657 break;
658 }
6a7eba24
JFM
659 }
660 return;
661err:
662 PDEBUG(D_ERR, "i2c error brightness");
663}
dcef3237
HG
664
665static void setsensorgain(struct gspca_dev *gspca_dev)
666{
667 struct sd *sd = (struct sd *) gspca_dev;
f51a8caa 668 u8 gain = sd->ctrls[GAIN].val;
dcef3237
HG
669
670 switch (sd->sensor) {
00765f16
HG
671 case SENSOR_HV7131D: {
672 __u8 i2c[] =
673 {0xc0, 0x11, 0x31, 0x00, 0x00, 0x00, 0x00, 0x17};
674
f51a8caa
JFM
675 i2c[3] = 0x3f - (gain / 4);
676 i2c[4] = 0x3f - (gain / 4);
677 i2c[5] = 0x3f - (gain / 4);
dcef3237 678
00765f16
HG
679 if (i2c_w(gspca_dev, i2c) < 0)
680 goto err;
681 break;
682 }
4e17cd2e
HG
683 case SENSOR_TAS5110C:
684 case SENSOR_TAS5130CXX: {
dcef3237
HG
685 __u8 i2c[] =
686 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};
687
a975a527 688 i2c[4] = 255 - gain;
739570bb 689 if (i2c_w(gspca_dev, i2c) < 0)
dcef3237 690 goto err;
51fc8e3b
AZ
691 break;
692 }
0d0d7ef7
HG
693 case SENSOR_TAS5110D: {
694 __u8 i2c[] = {
695 0xb0, 0x61, 0x02, 0x00, 0x10, 0x00, 0x00, 0x17 };
696 gain = 255 - gain;
697 /* The bits in the register are the wrong way around!! */
698 i2c[3] |= (gain & 0x80) >> 7;
699 i2c[3] |= (gain & 0x40) >> 5;
700 i2c[3] |= (gain & 0x20) >> 3;
701 i2c[3] |= (gain & 0x10) >> 1;
702 i2c[3] |= (gain & 0x08) << 1;
703 i2c[3] |= (gain & 0x04) << 3;
704 i2c[3] |= (gain & 0x02) << 5;
705 i2c[3] |= (gain & 0x01) << 7;
706 if (i2c_w(gspca_dev, i2c) < 0)
707 goto err;
708 break;
709 }
ad5ef80d 710
a975a527
HG
711 case SENSOR_OV6650:
712 gain >>= 1;
713 /* fall thru */
6af492e5 714 case SENSOR_OV7630: {
a975a527 715 __u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
794af52a 716
f45f06b6 717 i2c[1] = sensor_data[sd->sensor].sensor_addr;
a975a527 718 i2c[3] = gain >> 2;
794af52a
AZ
719 if (i2c_w(gspca_dev, i2c) < 0)
720 goto err;
721 break;
722 }
421763e7 723 case SENSOR_PAS106:
82e839c9
HG
724 case SENSOR_PAS202: {
725 __u8 i2cpgain[] =
421763e7 726 {0xa0, 0x40, 0x10, 0x00, 0x00, 0x00, 0x00, 0x15};
82e839c9
HG
727 __u8 i2cpcolorgain[] =
728 {0xc0, 0x40, 0x07, 0x00, 0x00, 0x00, 0x00, 0x15};
421763e7
HG
729 __u8 i2cpdoit[] =
730 {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
731
732 /* PAS106 uses different regs (and has split green gains) */
733 if (sd->sensor == SENSOR_PAS106) {
734 i2cpgain[2] = 0x0e;
735 i2cpcolorgain[0] = 0xd0;
736 i2cpcolorgain[2] = 0x09;
737 i2cpdoit[2] = 0x13;
738 }
82e839c9 739
f51a8caa
JFM
740 i2cpgain[3] = gain >> 3;
741 i2cpcolorgain[3] = gain >> 4;
742 i2cpcolorgain[4] = gain >> 4;
743 i2cpcolorgain[5] = gain >> 4;
744 i2cpcolorgain[6] = gain >> 4;
82e839c9
HG
745
746 if (i2c_w(gspca_dev, i2cpgain) < 0)
747 goto err;
748 if (i2c_w(gspca_dev, i2cpcolorgain) < 0)
749 goto err;
750 if (i2c_w(gspca_dev, i2cpdoit) < 0)
751 goto err;
752 break;
753 }
dcef3237
HG
754 }
755 return;
756err:
757 PDEBUG(D_ERR, "i2c error gain");
758}
759
760static void setgain(struct gspca_dev *gspca_dev)
6a7eba24
JFM
761{
762 struct sd *sd = (struct sd *) gspca_dev;
763 __u8 gain;
0a76cb8c 764 __u8 buf[3] = { 0, 0, 0 };
4efcfa0a
HG
765
766 if (sensor_data[sd->sensor].flags & F_GAIN) {
767 /* Use the sensor gain to do the actual gain */
768 setsensorgain(gspca_dev);
769 return;
770 }
6a7eba24 771
0a76cb8c 772 if (sd->bridge == BRIDGE_103) {
f51a8caa 773 gain = sd->ctrls[GAIN].val >> 1;
0a76cb8c
HG
774 buf[0] = gain; /* Red */
775 buf[1] = gain; /* Green */
776 buf[2] = gain; /* Blue */
777 reg_w(gspca_dev, 0x05, buf, 3);
778 } else {
f51a8caa 779 gain = sd->ctrls[GAIN].val >> 4;
0a76cb8c
HG
780 buf[0] = gain << 4 | gain; /* Red and blue */
781 buf[1] = gain; /* Green */
782 reg_w(gspca_dev, 0x10, buf, 2);
783 }
dcef3237
HG
784}
785
786static void setexposure(struct gspca_dev *gspca_dev)
787{
788 struct sd *sd = (struct sd *) gspca_dev;
dcef3237
HG
789
790 switch (sd->sensor) {
00765f16
HG
791 case SENSOR_HV7131D: {
792 /* Note the datasheet wrongly says line mode exposure uses reg
793 0x26 and 0x27, testing has shown 0x25 + 0x26 */
794 __u8 i2c[] = {0xc0, 0x11, 0x25, 0x00, 0x00, 0x00, 0x00, 0x17};
795 /* The HV7131D's exposure goes from 0 - 65535, we scale our
796 exposure of 0-1023 to 0-6138. There are 2 reasons for this:
797 1) This puts our exposure knee of 200 at approx the point
798 where the framerate starts dropping
799 2) At 6138 the framerate has already dropped to 2 fps,
800 going any lower makes little sense */
f51a8caa
JFM
801 u16 reg = sd->ctrls[EXPOSURE].val * 6;
802
00765f16
HG
803 i2c[3] = reg >> 8;
804 i2c[4] = reg & 0xff;
805 if (i2c_w(gspca_dev, i2c) != 0)
806 goto err;
807 break;
808 }
b10af3f7
HG
809 case SENSOR_TAS5110C:
810 case SENSOR_TAS5110D: {
dcef3237
HG
811 /* register 19's high nibble contains the sn9c10x clock divider
812 The high nibble configures the no fps according to the
813 formula: 60 / high_nibble. With a maximum of 30 fps */
f51a8caa
JFM
814 u8 reg = sd->ctrls[EXPOSURE].val;
815
dcef3237 816 reg = (reg << 4) | 0x0b;
739570bb 817 reg_w(gspca_dev, 0x19, &reg, 1);
51fc8e3b
AZ
818 break;
819 }
a975a527 820 case SENSOR_OV6650:
6af492e5 821 case SENSOR_OV7630: {
a975a527
HG
822 /* The ov6650 / ov7630 have 2 registers which both influence
823 exposure, register 11, whose low nibble sets the nr off fps
f4d52025
HG
824 according to: fps = 30 / (low_nibble + 1)
825
826 The fps configures the maximum exposure setting, but it is
827 possible to use less exposure then what the fps maximum
828 allows by setting register 10. register 10 configures the
829 actual exposure as quotient of the full exposure, with 0
25985edc 830 being no exposure at all (not very useful) and reg10_max
f4d52025
HG
831 being max exposure possible at that framerate.
832
833 The code maps our 0 - 510 ms exposure ctrl to these 2
834 registers, trying to keep fps as high as possible.
835 */
6af492e5
HG
836 __u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10};
837 int reg10, reg11, reg10_max;
838
66f35821
HG
839 /* ov6645 datasheet says reg10_max is 9a, but that uses
840 tline * 2 * reg10 as formula for calculating texpo, the
841 ov6650 probably uses the same formula as the 7730 which uses
842 tline * 4 * reg10, which explains why the reg10max we've
843 found experimentally for the ov6650 is exactly half that of
a975a527 844 the ov6645. The ov7630 datasheet says the max is 0x41. */
6af492e5
HG
845 if (sd->sensor == SENSOR_OV6650) {
846 reg10_max = 0x4d;
847 i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */
848 } else
849 reg10_max = 0x41;
f4d52025 850
f51a8caa 851 reg11 = (15 * sd->ctrls[EXPOSURE].val + 999) / 1000;
794af52a
AZ
852 if (reg11 < 1)
853 reg11 = 1;
854 else if (reg11 > 16)
855 reg11 = 16;
856
10bb7530
HG
857 /* In 640x480, if the reg11 has less than 4, the image is
858 unstable (the bridge goes into a higher compression mode
859 which we have not reverse engineered yet). */
860 if (gspca_dev->width == 640 && reg11 < 4)
861 reg11 = 4;
e2ad2a54 862
794af52a 863 /* frame exposure time in ms = 1000 * reg11 / 30 ->
f51a8caa
JFM
864 reg10 = (sd->ctrls[EXPOSURE].val / 2) * reg10_max
865 / (1000 * reg11 / 30) */
866 reg10 = (sd->ctrls[EXPOSURE].val * 15 * reg10_max)
867 / (1000 * reg11);
794af52a 868
a975a527
HG
869 /* Don't allow this to get below 10 when using autogain, the
870 steps become very large (relatively) when below 10 causing
871 the image to oscilate from much too dark, to much too bright
872 and back again. */
f51a8caa 873 if (sd->ctrls[AUTOGAIN].val && reg10 < 10)
a975a527 874 reg10 = 10;
f4d52025
HG
875 else if (reg10 > reg10_max)
876 reg10 = reg10_max;
877
878 /* Write reg 10 and reg11 low nibble */
f45f06b6 879 i2c[1] = sensor_data[sd->sensor].sensor_addr;
f4d52025
HG
880 i2c[3] = reg10;
881 i2c[4] |= reg11 - 1;
6af492e5
HG
882
883 /* If register 11 didn't change, don't change it */
780e3121 884 if (sd->reg11 == reg11)
6af492e5
HG
885 i2c[0] = 0xa0;
886
887 if (i2c_w(gspca_dev, i2c) == 0)
888 sd->reg11 = reg11;
889 else
82e839c9
HG
890 goto err;
891 break;
892 }
893 case SENSOR_PAS202: {
894 __u8 i2cpframerate[] =
895 {0xb0, 0x40, 0x04, 0x00, 0x00, 0x00, 0x00, 0x16};
896 __u8 i2cpexpo[] =
897 {0xa0, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x16};
898 const __u8 i2cpdoit[] =
899 {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
900 int framerate_ctrl;
901
902 /* The exposure knee for the autogain algorithm is 200
903 (100 ms / 10 fps on other sensors), for values below this
904 use the control for setting the partial frame expose time,
905 above that use variable framerate. This way we run at max
906 framerate (640x480@7.5 fps, 320x240@10fps) until the knee
907 is reached. Using the variable framerate control above 200
908 is better then playing around with both clockdiv + partial
909 frame exposure times (like we are doing with the ov chips),
910 as that sometimes leads to jumps in the exposure control,
911 which are bad for auto exposure. */
f51a8caa
JFM
912 if (sd->ctrls[EXPOSURE].val < 200) {
913 i2cpexpo[3] = 255 - (sd->ctrls[EXPOSURE].val * 255)
914 / 200;
82e839c9
HG
915 framerate_ctrl = 500;
916 } else {
917 /* The PAS202's exposure control goes from 0 - 4095,
918 but anything below 500 causes vsync issues, so scale
919 our 200-1023 to 500-4095 */
f51a8caa
JFM
920 framerate_ctrl = (sd->ctrls[EXPOSURE].val - 200)
921 * 1000 / 229 + 500;
82e839c9
HG
922 }
923
924 i2cpframerate[3] = framerate_ctrl >> 6;
925 i2cpframerate[4] = framerate_ctrl & 0x3f;
926 if (i2c_w(gspca_dev, i2cpframerate) < 0)
927 goto err;
928 if (i2c_w(gspca_dev, i2cpexpo) < 0)
929 goto err;
930 if (i2c_w(gspca_dev, i2cpdoit) < 0)
931 goto err;
51fc8e3b
AZ
932 break;
933 }
421763e7
HG
934 case SENSOR_PAS106: {
935 __u8 i2cpframerate[] =
936 {0xb1, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00, 0x14};
937 __u8 i2cpexpo[] =
938 {0xa1, 0x40, 0x05, 0x00, 0x00, 0x00, 0x00, 0x14};
939 const __u8 i2cpdoit[] =
940 {0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14};
941 int framerate_ctrl;
942
943 /* For values below 150 use partial frame exposure, above
944 that use framerate ctrl */
f51a8caa
JFM
945 if (sd->ctrls[EXPOSURE].val < 150) {
946 i2cpexpo[3] = 150 - sd->ctrls[EXPOSURE].val;
421763e7
HG
947 framerate_ctrl = 300;
948 } else {
949 /* The PAS106's exposure control goes from 0 - 4095,
950 but anything below 300 causes vsync issues, so scale
951 our 150-1023 to 300-4095 */
f51a8caa
JFM
952 framerate_ctrl = (sd->ctrls[EXPOSURE].val - 150)
953 * 1000 / 230 + 300;
421763e7
HG
954 }
955
956 i2cpframerate[3] = framerate_ctrl >> 4;
957 i2cpframerate[4] = framerate_ctrl & 0x0f;
958 if (i2c_w(gspca_dev, i2cpframerate) < 0)
959 goto err;
960 if (i2c_w(gspca_dev, i2cpexpo) < 0)
961 goto err;
962 if (i2c_w(gspca_dev, i2cpdoit) < 0)
963 goto err;
964 break;
965 }
dcef3237 966 }
82e839c9
HG
967 return;
968err:
969 PDEBUG(D_ERR, "i2c error exposure");
dcef3237
HG
970}
971
66f35821
HG
972static void setfreq(struct gspca_dev *gspca_dev)
973{
974 struct sd *sd = (struct sd *) gspca_dev;
975
976 switch (sd->sensor) {
d87616f5 977 case SENSOR_OV6650:
6af492e5 978 case SENSOR_OV7630: {
66f35821 979 /* Framerate adjust register for artificial light 50 hz flicker
6af492e5
HG
980 compensation, for the ov6650 this is identical to ov6630
981 0x2b register, see ov6630 datasheet.
982 0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */
d87616f5 983 __u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10};
f51a8caa 984 switch (sd->ctrls[FREQ].val) {
66f35821
HG
985 default:
986/* case 0: * no filter*/
987/* case 2: * 60 hz */
988 i2c[3] = 0;
989 break;
990 case 1: /* 50 hz */
722103e3
HG
991 i2c[3] = (sd->sensor == SENSOR_OV6650)
992 ? 0x4f : 0x8a;
66f35821
HG
993 break;
994 }
f45f06b6 995 i2c[1] = sensor_data[sd->sensor].sensor_addr;
66f35821
HG
996 if (i2c_w(gspca_dev, i2c) < 0)
997 PDEBUG(D_ERR, "i2c error setfreq");
998 break;
999 }
1000 }
1001}
1002
f51a8caa 1003#include "autogain_functions.h"
26984b09 1004
dcef3237
HG
1005static void do_autogain(struct gspca_dev *gspca_dev)
1006{
26984b09 1007 int deadzone, desired_avg_lum, result;
dcef3237
HG
1008 struct sd *sd = (struct sd *) gspca_dev;
1009 int avg_lum = atomic_read(&sd->avg_lum);
1010
f0baad86
HG
1011 if ((gspca_dev->ctrl_dis & (1 << AUTOGAIN)) ||
1012 avg_lum == -1 || !sd->ctrls[AUTOGAIN].val)
26984b09
HG
1013 return;
1014
1015 if (sd->autogain_ignore_frames > 0) {
1016 sd->autogain_ignore_frames--;
dcef3237 1017 return;
26984b09 1018 }
dcef3237 1019
5017c7bd
HG
1020 /* SIF / VGA sensors have a different autoexposure area and thus
1021 different avg_lum values for the same picture brightness */
1022 if (sensor_data[sd->sensor].flags & F_SIF) {
26984b09
HG
1023 deadzone = 500;
1024 /* SIF sensors tend to overexpose, so keep this small */
1025 desired_avg_lum = 5000;
5017c7bd 1026 } else {
26984b09 1027 deadzone = 1500;
f913c001 1028 desired_avg_lum = 13000;
5017c7bd
HG
1029 }
1030
26984b09 1031 if (sensor_data[sd->sensor].flags & F_COARSE_EXPO)
f51a8caa
JFM
1032 result = coarse_grained_expo_autogain(gspca_dev, avg_lum,
1033 sd->ctrls[BRIGHTNESS].val
1034 * desired_avg_lum / 127,
26984b09
HG
1035 deadzone);
1036 else
f51a8caa
JFM
1037 result = auto_gain_n_exposure(gspca_dev, avg_lum,
1038 sd->ctrls[BRIGHTNESS].val
1039 * desired_avg_lum / 127,
26984b09
HG
1040 deadzone, GAIN_KNEE, EXPOSURE_KNEE);
1041
1042 if (result) {
1c44d81d 1043 PDEBUG(D_FRAM, "autogain: gain changed: gain: %d expo: %d",
f51a8caa
JFM
1044 (int) sd->ctrls[GAIN].val,
1045 (int) sd->ctrls[EXPOSURE].val);
dcef3237 1046 sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
a975a527 1047 }
6a7eba24
JFM
1048}
1049
1050/* this function is called at probe time */
1051static int sd_config(struct gspca_dev *gspca_dev,
1052 const struct usb_device_id *id)
1053{
1054 struct sd *sd = (struct sd *) gspca_dev;
1055 struct cam *cam;
65f33396
HG
1056
1057 reg_r(gspca_dev, 0x00);
1058 if (gspca_dev->usb_buf[0] != 0x10)
1059 return -ENODEV;
6a7eba24 1060
5da162e7 1061 /* copy the webcam info from the device id */
f45f06b6
HG
1062 sd->sensor = id->driver_info >> 8;
1063 sd->bridge = id->driver_info & 0xff;
f51a8caa 1064
f45f06b6 1065 gspca_dev->ctrl_dis = sensor_data[sd->sensor].ctrl_dis;
f0baad86
HG
1066#if AUTOGAIN_DEF
1067 if (!(gspca_dev->ctrl_dis & (1 << AUTOGAIN)))
1068 gspca_dev->ctrl_inac = (1 << GAIN) | (1 << EXPOSURE);
1069#endif
6a7eba24
JFM
1070
1071 cam = &gspca_dev->cam;
f51a8caa 1072 cam->ctrls = sd->ctrls;
f45f06b6 1073 if (!(sensor_data[sd->sensor].flags & F_SIF)) {
6a7eba24 1074 cam->cam_mode = vga_mode;
51fc8e3b 1075 cam->nmodes = ARRAY_SIZE(vga_mode);
6a7eba24
JFM
1076 } else {
1077 cam->cam_mode = sif_mode;
51fc8e3b 1078 cam->nmodes = ARRAY_SIZE(sif_mode);
6a7eba24 1079 }
49cb6b04
JFM
1080 cam->npkt = 36; /* 36 packets per ISOC message */
1081
26984b09 1082 if (sensor_data[sd->sensor].flags & F_COARSE_EXPO) {
f51a8caa
JFM
1083 sd->ctrls[EXPOSURE].min = COARSE_EXPOSURE_MIN;
1084 sd->ctrls[EXPOSURE].max = COARSE_EXPOSURE_MAX;
1085 sd->ctrls[EXPOSURE].def = COARSE_EXPOSURE_DEF;
26984b09 1086 }
6af492e5 1087
6a7eba24
JFM
1088 return 0;
1089}
1090
012d6b02
JFM
1091/* this function is called at probe and resume time */
1092static int sd_init(struct gspca_dev *gspca_dev)
6a7eba24 1093{
271315a9
HG
1094 const __u8 stop = 0x09; /* Disable stream turn of LED */
1095
1096 reg_w(gspca_dev, 0x01, &stop, 1);
1097
6a7eba24
JFM
1098 return 0;
1099}
1100
6a7eba24 1101/* -- start the camera -- */
72ab97ce 1102static int sd_start(struct gspca_dev *gspca_dev)
6a7eba24
JFM
1103{
1104 struct sd *sd = (struct sd *) gspca_dev;
93627736 1105 struct cam *cam = &gspca_dev->cam;
0a76cb8c
HG
1106 int i, mode;
1107 __u8 regs[0x31];
6a7eba24 1108
93627736 1109 mode = cam->cam_mode[gspca_dev->curr_mode].priv & 0x07;
0a76cb8c
HG
1110 /* Copy registers 0x01 - 0x19 from the template */
1111 memcpy(&regs[0x01], sensor_data[sd->sensor].bridge_init, 0x19);
1112 /* Set the mode */
1113 regs[0x18] |= mode << 4;
1114
1115 /* Set bridge gain to 1.0 */
1116 if (sd->bridge == BRIDGE_103) {
1117 regs[0x05] = 0x20; /* Red */
1118 regs[0x06] = 0x20; /* Green */
1119 regs[0x07] = 0x20; /* Blue */
1120 } else {
1121 regs[0x10] = 0x00; /* Red and blue */
1122 regs[0x11] = 0x00; /* Green */
1123 }
1124
1125 /* Setup pixel numbers and auto exposure window */
1126 if (sensor_data[sd->sensor].flags & F_SIF) {
1127 regs[0x1a] = 0x14; /* HO_SIZE 640, makes no sense */
1128 regs[0x1b] = 0x0a; /* VO_SIZE 320, makes no sense */
1129 regs[0x1c] = 0x02; /* AE H-start 64 */
1130 regs[0x1d] = 0x02; /* AE V-start 64 */
1131 regs[0x1e] = 0x09; /* AE H-end 288 */
1132 regs[0x1f] = 0x07; /* AE V-end 224 */
1133 } else {
1134 regs[0x1a] = 0x1d; /* HO_SIZE 960, makes no sense */
1135 regs[0x1b] = 0x10; /* VO_SIZE 512, makes no sense */
f913c001 1136 regs[0x1c] = 0x05; /* AE H-start 160 */
0a76cb8c
HG
1137 regs[0x1d] = 0x03; /* AE V-start 96 */
1138 regs[0x1e] = 0x0f; /* AE H-end 480 */
1139 regs[0x1f] = 0x0c; /* AE V-end 384 */
1140 }
1141
1142 /* Setup the gamma table (only used with the sn9c103 bridge) */
1143 for (i = 0; i < 16; i++)
1144 regs[0x20 + i] = i * 16;
1145 regs[0x20 + i] = 255;
1146
1147 /* Special cases where some regs depend on mode or bridge */
6a7eba24 1148 switch (sd->sensor) {
f45f06b6 1149 case SENSOR_TAS5130CXX:
0a76cb8c
HG
1150 /* FIXME / TESTME
1151 probably not mode specific at all most likely the upper
f45f06b6
HG
1152 nibble of 0x19 is exposure (clock divider) just as with
1153 the tas5110, we need someone to test this. */
0a76cb8c 1154 regs[0x19] = mode ? 0x23 : 0x43;
6a7eba24 1155 break;
0a76cb8c
HG
1156 case SENSOR_OV7630:
1157 /* FIXME / TESTME for some reason with the 101/102 bridge the
1158 clock is set to 12 Mhz (reg1 == 0x04), rather then 24.
1159 Also the hstart needs to go from 1 to 2 when using a 103,
1160 which is likely related. This does not seem right. */
1161 if (sd->bridge == BRIDGE_103) {
1162 regs[0x01] = 0x44; /* Select 24 Mhz clock */
1163 regs[0x12] = 0x02; /* Set hstart to 2 */
1164 }
6a7eba24 1165 }
c437d657 1166 /* Disable compression when the raw bayer format has been selected */
93627736 1167 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW)
0a76cb8c 1168 regs[0x18] &= ~0x80;
93627736
HG
1169
1170 /* Vga mode emulation on SIF sensor? */
1171 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_REDUCED_SIF) {
0a76cb8c
HG
1172 regs[0x12] += 16; /* hstart adjust */
1173 regs[0x13] += 24; /* vstart adjust */
1174 regs[0x15] = 320 / 16; /* hsize */
1175 regs[0x16] = 240 / 16; /* vsize */
93627736 1176 }
6af492e5 1177
6a7eba24 1178 /* reg 0x01 bit 2 video transfert on */
0a76cb8c 1179 reg_w(gspca_dev, 0x01, &regs[0x01], 1);
6a7eba24 1180 /* reg 0x17 SensorClk enable inv Clk 0x60 */
0a76cb8c 1181 reg_w(gspca_dev, 0x17, &regs[0x17], 1);
6a7eba24 1182 /* Set the registers from the template */
0a76cb8c
HG
1183 reg_w(gspca_dev, 0x01, &regs[0x01],
1184 (sd->bridge == BRIDGE_103) ? 0x30 : 0x1f);
f45f06b6
HG
1185
1186 /* Init the sensor */
1187 i2c_w_vector(gspca_dev, sensor_data[sd->sensor].sensor_init,
1188 sensor_data[sd->sensor].sensor_init_size);
f45f06b6 1189
0a76cb8c 1190 /* Mode / bridge specific sensor setup */
82e839c9
HG
1191 switch (sd->sensor) {
1192 case SENSOR_PAS202: {
1193 const __u8 i2cpclockdiv[] =
1194 {0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10};
1195 /* clockdiv from 4 to 3 (7.5 -> 10 fps) when in low res mode */
1196 if (mode)
1197 i2c_w(gspca_dev, i2cpclockdiv);
0a76cb8c 1198 break;
82e839c9 1199 }
0a76cb8c
HG
1200 case SENSOR_OV7630:
1201 /* FIXME / TESTME We should be able to handle this identical
1202 for the 101/102 and the 103 case */
1203 if (sd->bridge == BRIDGE_103) {
1204 const __u8 i2c[] = { 0xa0, 0x21, 0x13,
1205 0x80, 0x00, 0x00, 0x00, 0x10 };
1206 i2c_w(gspca_dev, i2c);
1207 }
1208 break;
82e839c9 1209 }
3647fea8 1210 /* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */
0a76cb8c 1211 reg_w(gspca_dev, 0x15, &regs[0x15], 2);
6a7eba24 1212 /* compression register */
0a76cb8c 1213 reg_w(gspca_dev, 0x18, &regs[0x18], 1);
794af52a 1214 /* H_start */
0a76cb8c 1215 reg_w(gspca_dev, 0x12, &regs[0x12], 1);
794af52a 1216 /* V_START */
0a76cb8c 1217 reg_w(gspca_dev, 0x13, &regs[0x13], 1);
6a7eba24
JFM
1218 /* reset 0x17 SensorClk enable inv Clk 0x60 */
1219 /*fixme: ov7630 [17]=68 8f (+20 if 102)*/
0a76cb8c 1220 reg_w(gspca_dev, 0x17, &regs[0x17], 1);
6a7eba24 1221 /*MCKSIZE ->3 */ /*fixme: not ov7630*/
0a76cb8c 1222 reg_w(gspca_dev, 0x19, &regs[0x19], 1);
6a7eba24 1223 /* AE_STRX AE_STRY AE_ENDX AE_ENDY */
0a76cb8c 1224 reg_w(gspca_dev, 0x1c, &regs[0x1c], 4);
6a7eba24 1225 /* Enable video transfert */
0a76cb8c 1226 reg_w(gspca_dev, 0x01, &regs[0x01], 1);
6a7eba24 1227 /* Compression */
0a76cb8c 1228 reg_w(gspca_dev, 0x18, &regs[0x18], 2);
6a7eba24
JFM
1229 msleep(20);
1230
6af492e5
HG
1231 sd->reg11 = -1;
1232
dcef3237 1233 setgain(gspca_dev);
6a7eba24 1234 setbrightness(gspca_dev);
dcef3237 1235 setexposure(gspca_dev);
66f35821 1236 setfreq(gspca_dev);
dcef3237 1237
6af492e5 1238 sd->frames_to_drop = 0;
dcef3237 1239 sd->autogain_ignore_frames = 0;
26984b09
HG
1240 sd->exp_too_high_cnt = 0;
1241 sd->exp_too_low_cnt = 0;
dcef3237 1242 atomic_set(&sd->avg_lum, -1);
72ab97ce 1243 return 0;
6a7eba24
JFM
1244}
1245
1246static void sd_stopN(struct gspca_dev *gspca_dev)
1247{
f45f06b6 1248 sd_init(gspca_dev);
6a7eba24
JFM
1249}
1250
2b3e284a 1251static u8* find_sof(struct gspca_dev *gspca_dev, u8 *data, int len)
6a7eba24 1252{
dcef3237 1253 struct sd *sd = (struct sd *) gspca_dev;
2b3e284a 1254 int i, header_size = (sd->bridge == BRIDGE_103) ? 18 : 12;
6a7eba24 1255
c36260ee
HG
1256 /* frames start with:
1257 * ff ff 00 c4 c4 96 synchro
1258 * 00 (unknown)
1259 * xx (frame sequence / size / compression)
1260 * (xx) (idem - extra byte for sn9c103)
1261 * ll mm brightness sum inside auto exposure
1262 * ll mm brightness sum outside auto exposure
1263 * (xx xx xx xx xx) audio values for snc103
1264 */
2b3e284a
HG
1265 for (i = 0; i < len; i++) {
1266 switch (sd->header_read) {
1267 case 0:
1268 if (data[i] == 0xff)
1269 sd->header_read++;
1270 break;
1271 case 1:
1272 if (data[i] == 0xff)
1273 sd->header_read++;
1274 else
1275 sd->header_read = 0;
1276 break;
1277 case 2:
1278 if (data[i] == 0x00)
1279 sd->header_read++;
1280 else if (data[i] != 0xff)
1281 sd->header_read = 0;
1282 break;
1283 case 3:
1284 if (data[i] == 0xc4)
1285 sd->header_read++;
1286 else if (data[i] == 0xff)
1287 sd->header_read = 1;
1288 else
1289 sd->header_read = 0;
1290 break;
1291 case 4:
1292 if (data[i] == 0xc4)
1293 sd->header_read++;
1294 else if (data[i] == 0xff)
1295 sd->header_read = 1;
1296 else
1297 sd->header_read = 0;
1298 break;
1299 case 5:
1300 if (data[i] == 0x96)
1301 sd->header_read++;
1302 else if (data[i] == 0xff)
1303 sd->header_read = 1;
1304 else
1305 sd->header_read = 0;
1306 break;
1307 default:
1308 sd->header[sd->header_read - 6] = data[i];
1309 sd->header_read++;
1310 if (sd->header_read == header_size) {
1311 sd->header_read = 0;
1312 return data + i + 1;
6a7eba24
JFM
1313 }
1314 }
1315 }
2b3e284a
HG
1316 return NULL;
1317}
1318
1319static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1320 u8 *data, /* isoc packet */
1321 int len) /* iso packet length */
1322{
1323 int fr_h_sz = 0, lum_offset = 0, len_after_sof = 0;
1324 struct sd *sd = (struct sd *) gspca_dev;
1325 struct cam *cam = &gspca_dev->cam;
1326 u8 *sof;
1327
1328 sof = find_sof(gspca_dev, data, len);
1329 if (sof) {
1330 if (sd->bridge == BRIDGE_103) {
1331 fr_h_sz = 18;
1332 lum_offset = 3;
1333 } else {
1334 fr_h_sz = 12;
1335 lum_offset = 2;
1336 }
1337
1338 len_after_sof = len - (sof - data);
1339 len = (sof - data) - fr_h_sz;
1340 if (len < 0)
1341 len = 0;
1342 }
c437d657
HG
1343
1344 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) {
1345 /* In raw mode we sometimes get some garbage after the frame
1346 ignore this */
76dd272b 1347 int used;
c437d657
HG
1348 int size = cam->cam_mode[gspca_dev->curr_mode].sizeimage;
1349
b192ca98 1350 used = gspca_dev->image_len;
c437d657
HG
1351 if (used + len > size)
1352 len = size - used;
1353 }
1354
76dd272b 1355 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
2b3e284a
HG
1356
1357 if (sof) {
1358 int lum = sd->header[lum_offset] +
1359 (sd->header[lum_offset + 1] << 8);
1360
1361 /* When exposure changes midway a frame we
1362 get a lum of 0 in this case drop 2 frames
1363 as the frames directly after an exposure
1364 change have an unstable image. Sometimes lum
1365 *really* is 0 (cam used in low light with
1366 low exposure setting), so do not drop frames
1367 if the previous lum was 0 too. */
1368 if (lum == 0 && sd->prev_avg_lum != 0) {
1369 lum = -1;
1370 sd->frames_to_drop = 2;
1371 sd->prev_avg_lum = 0;
1372 } else
1373 sd->prev_avg_lum = lum;
1374 atomic_set(&sd->avg_lum, lum);
1375
1376 if (sd->frames_to_drop)
1377 sd->frames_to_drop--;
1378 else
1379 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
1380
1381 gspca_frame_add(gspca_dev, FIRST_PACKET, sof, len_after_sof);
1382 }
6a7eba24
JFM
1383}
1384
dcef3237
HG
1385static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val)
1386{
1387 struct sd *sd = (struct sd *) gspca_dev;
1388
f51a8caa 1389 sd->ctrls[AUTOGAIN].val = val;
26984b09
HG
1390 sd->exp_too_high_cnt = 0;
1391 sd->exp_too_low_cnt = 0;
1392
dcef3237
HG
1393 /* when switching to autogain set defaults to make sure
1394 we are on a valid point of the autogain gain /
1395 exposure knee graph, and give this change time to
1396 take effect before doing autogain. */
f51a8caa
JFM
1397 if (sd->ctrls[AUTOGAIN].val
1398 && !(sensor_data[sd->sensor].flags & F_COARSE_EXPO)) {
1399 sd->ctrls[EXPOSURE].val = sd->ctrls[EXPOSURE].def;
1400 sd->ctrls[GAIN].val = sd->ctrls[GAIN].def;
dcef3237
HG
1401 if (gspca_dev->streaming) {
1402 sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
1403 setexposure(gspca_dev);
1404 setgain(gspca_dev);
1405 }
1406 }
1407
f0baad86
HG
1408 if (sd->ctrls[AUTOGAIN].val)
1409 gspca_dev->ctrl_inac = (1 << GAIN) | (1 << EXPOSURE);
1410 else
1411 gspca_dev->ctrl_inac = 0;
1412
6a7eba24
JFM
1413 return 0;
1414}
1415
66f35821
HG
1416static int sd_querymenu(struct gspca_dev *gspca_dev,
1417 struct v4l2_querymenu *menu)
1418{
1419 switch (menu->id) {
1420 case V4L2_CID_POWER_LINE_FREQUENCY:
1421 switch (menu->index) {
1422 case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
1423 strcpy((char *) menu->name, "NoFliker");
1424 return 0;
1425 case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
1426 strcpy((char *) menu->name, "50 Hz");
1427 return 0;
1428 case 2: /* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
1429 strcpy((char *) menu->name, "60 Hz");
1430 return 0;
1431 }
1432 break;
1433 }
1434 return -EINVAL;
1435}
1436
2856643e 1437#if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
f65e93d6
HG
1438static int sd_int_pkt_scan(struct gspca_dev *gspca_dev,
1439 u8 *data, /* interrupt packet data */
1440 int len) /* interrupt packet length */
1441{
1442 int ret = -EINVAL;
1443
1444 if (len == 1 && data[0] == 1) {
1445 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 1);
1446 input_sync(gspca_dev->input_dev);
1447 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
1448 input_sync(gspca_dev->input_dev);
1449 ret = 0;
1450 }
1451
1452 return ret;
1453}
1454#endif
1455
6a7eba24 1456/* sub-driver description */
dcef3237 1457static const struct sd_desc sd_desc = {
6a7eba24
JFM
1458 .name = MODULE_NAME,
1459 .ctrls = sd_ctrls,
1460 .nctrls = ARRAY_SIZE(sd_ctrls),
1461 .config = sd_config,
012d6b02 1462 .init = sd_init,
6a7eba24
JFM
1463 .start = sd_start,
1464 .stopN = sd_stopN,
6a7eba24 1465 .pkt_scan = sd_pkt_scan,
66f35821 1466 .querymenu = sd_querymenu,
e2ad2a54 1467 .dq_callback = do_autogain,
2856643e 1468#if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
f65e93d6
HG
1469 .int_pkt_scan = sd_int_pkt_scan,
1470#endif
6a7eba24
JFM
1471};
1472
1473/* -- module initialisation -- */
f45f06b6
HG
1474#define SB(sensor, bridge) \
1475 .driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge
1476
e2ad2a54 1477
95c967c1 1478static const struct usb_device_id device_table[] = {
b10af3f7
HG
1479 {USB_DEVICE(0x0c45, 0x6001), SB(TAS5110C, 102)}, /* TAS5110C1B */
1480 {USB_DEVICE(0x0c45, 0x6005), SB(TAS5110C, 101)}, /* TAS5110C1B */
b10af3f7 1481 {USB_DEVICE(0x0c45, 0x6007), SB(TAS5110D, 101)}, /* TAS5110D */
f45f06b6
HG
1482 {USB_DEVICE(0x0c45, 0x6009), SB(PAS106, 101)},
1483 {USB_DEVICE(0x0c45, 0x600d), SB(PAS106, 101)},
f45f06b6 1484 {USB_DEVICE(0x0c45, 0x6011), SB(OV6650, 101)},
f45f06b6 1485 {USB_DEVICE(0x0c45, 0x6019), SB(OV7630, 101)},
69ffd254 1486#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
f45f06b6
HG
1487 {USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX, 102)},
1488 {USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX, 102)},
0e4b91c3 1489#endif
f45f06b6
HG
1490 {USB_DEVICE(0x0c45, 0x6028), SB(PAS202, 102)},
1491 {USB_DEVICE(0x0c45, 0x6029), SB(PAS106, 102)},
00765f16
HG
1492 {USB_DEVICE(0x0c45, 0x602a), SB(HV7131D, 102)},
1493 /* {USB_DEVICE(0x0c45, 0x602b), SB(MI0343, 102)}, */
29fbdf3d 1494 {USB_DEVICE(0x0c45, 0x602c), SB(OV7630, 102)},
f45f06b6 1495 {USB_DEVICE(0x0c45, 0x602d), SB(HV7131R, 102)},
f45f06b6 1496 {USB_DEVICE(0x0c45, 0x602e), SB(OV7630, 102)},
69ffd254
HG
1497 /* {USB_DEVICE(0x0c45, 0x6030), SB(MI03XX, 102)}, */ /* MI0343 MI0360 MI0330 */
1498 /* {USB_DEVICE(0x0c45, 0x6082), SB(MI03XX, 103)}, */ /* MI0343 MI0360 */
1499 {USB_DEVICE(0x0c45, 0x6083), SB(HV7131D, 103)},
1500 {USB_DEVICE(0x0c45, 0x608c), SB(HV7131R, 103)},
1501 /* {USB_DEVICE(0x0c45, 0x608e), SB(CISVF10, 103)}, */
f45f06b6 1502 {USB_DEVICE(0x0c45, 0x608f), SB(OV7630, 103)},
69ffd254
HG
1503 {USB_DEVICE(0x0c45, 0x60a8), SB(PAS106, 103)},
1504 {USB_DEVICE(0x0c45, 0x60aa), SB(TAS5130CXX, 103)},
f45f06b6 1505 {USB_DEVICE(0x0c45, 0x60af), SB(PAS202, 103)},
4cce1655 1506 {USB_DEVICE(0x0c45, 0x60b0), SB(OV7630, 103)},
6a7eba24
JFM
1507 {}
1508};
1509MODULE_DEVICE_TABLE(usb, device_table);
1510
1511/* -- device connect -- */
95c967c1 1512static int sd_probe(struct usb_interface *intf,
6a7eba24
JFM
1513 const struct usb_device_id *id)
1514{
1515 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1516 THIS_MODULE);
1517}
1518
1519static struct usb_driver sd_driver = {
1520 .name = MODULE_NAME,
1521 .id_table = device_table,
1522 .probe = sd_probe,
1523 .disconnect = gspca_disconnect,
6a709749
JFM
1524#ifdef CONFIG_PM
1525 .suspend = gspca_suspend,
1526 .resume = gspca_resume,
1527#endif
6a7eba24
JFM
1528};
1529
1530/* -- module insert / remove -- */
1531static int __init sd_mod_init(void)
1532{
54826437 1533 return usb_register(&sd_driver);
6a7eba24
JFM
1534}
1535static void __exit sd_mod_exit(void)
1536{
1537 usb_deregister(&sd_driver);
6a7eba24
JFM
1538}
1539
1540module_init(sd_mod_init);
1541module_exit(sd_mod_exit);