]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/misc/echo/echo.c
PCI: PM: Skip devices in D0 for suspend-to-idle
[mirror_ubuntu-bionic-kernel.git] / drivers / misc / echo / echo.c
CommitLineData
10602db8
DR
1/*
2 * SpanDSP - a series of DSP components for telephony
3 *
4 * echo.c - A line echo canceller. This code is being developed
5 * against and partially complies with G168.
6 *
7 * Written by Steve Underwood <steveu@coppice.org>
8 * and David Rowe <david_at_rowetel_dot_com>
9 *
10 * Copyright (C) 2001, 2003 Steve Underwood, 2007 David Rowe
11 *
12 * Based on a bit from here, a bit from there, eye of toad, ear of
13 * bat, 15 years of failed attempts by David and a few fried brain
14 * cells.
15 *
16 * All rights reserved.
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2, as
20 * published by the Free Software Foundation.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 *
27 * You should have received a copy of the GNU General Public License
28 * along with this program; if not, write to the Free Software
29 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
10602db8
DR
30 */
31
32/*! \file */
33
34/* Implementation Notes
35 David Rowe
36 April 2007
37
38 This code started life as Steve's NLMS algorithm with a tap
39 rotation algorithm to handle divergence during double talk. I
40 added a Geigel Double Talk Detector (DTD) [2] and performed some
41 G168 tests. However I had trouble meeting the G168 requirements,
42 especially for double talk - there were always cases where my DTD
43 failed, for example where near end speech was under the 6dB
44 threshold required for declaring double talk.
45
46 So I tried a two path algorithm [1], which has so far given better
47 results. The original tap rotation/Geigel algorithm is available
48 in SVN http://svn.rowetel.com/software/oslec/tags/before_16bit.
49 It's probably possible to make it work if some one wants to put some
50 serious work into it.
51
52 At present no special treatment is provided for tones, which
53 generally cause NLMS algorithms to diverge. Initial runs of a
54 subset of the G168 tests for tones (e.g ./echo_test 6) show the
55 current algorithm is passing OK, which is kind of surprising. The
56 full set of tests needs to be performed to confirm this result.
57
58 One other interesting change is that I have managed to get the NLMS
59 code to work with 16 bit coefficients, rather than the original 32
60 bit coefficents. This reduces the MIPs and storage required.
61 I evaulated the 16 bit port using g168_tests.sh and listening tests
62 on 4 real-world samples.
63
64 I also attempted the implementation of a block based NLMS update
65 [2] but although this passes g168_tests.sh it didn't converge well
66 on the real-world samples. I have no idea why, perhaps a scaling
67 problem. The block based code is also available in SVN
68 http://svn.rowetel.com/software/oslec/tags/before_16bit. If this
69 code can be debugged, it will lead to further reduction in MIPS, as
70 the block update code maps nicely onto DSP instruction sets (it's a
71 dot product) compared to the current sample-by-sample update.
72
73 Steve also has some nice notes on echo cancellers in echo.h
74
10602db8
DR
75 References:
76
77 [1] Ochiai, Areseki, and Ogihara, "Echo Canceller with Two Echo
78 Path Models", IEEE Transactions on communications, COM-25,
79 No. 6, June
80 1977.
81 http://www.rowetel.com/images/echo/dual_path_paper.pdf
82
83 [2] The classic, very useful paper that tells you how to
84 actually build a real world echo canceller:
49bb9e6d
GKH
85 Messerschmitt, Hedberg, Cole, Haoui, Winship, "Digital Voice
86 Echo Canceller with a TMS320020,
87 http://www.rowetel.com/images/echo/spra129.pdf
10602db8
DR
88
89 [3] I have written a series of blog posts on this work, here is
90 Part 1: http://www.rowetel.com/blog/?p=18
91
92 [4] The source code http://svn.rowetel.com/software/oslec/
93
94 [5] A nice reference on LMS filters:
49bb9e6d 95 http://en.wikipedia.org/wiki/Least_mean_squares_filter
10602db8
DR
96
97 Credits:
98
99 Thanks to Steve Underwood, Jean-Marc Valin, and Ramakrishnan
100 Muthukrishnan for their suggestions and email discussions. Thanks
101 also to those people who collected echo samples for me such as
102 Mark, Pawel, and Pavel.
103*/
104
49bb9e6d 105#include <linux/kernel.h>
10602db8 106#include <linux/module.h>
10602db8 107#include <linux/slab.h>
10602db8 108
10602db8
DR
109#include "echo.h"
110
49bb9e6d
GKH
111#define MIN_TX_POWER_FOR_ADAPTION 64
112#define MIN_RX_POWER_FOR_ADAPTION 64
113#define DTD_HANGOVER 600 /* 600 samples, or 75ms */
114#define DC_LOG2BETA 3 /* log2() of DC filter Beta */
10602db8 115
10602db8
DR
116/* adapting coeffs using the traditional stochastic descent (N)LMS algorithm */
117
f55ccbf6 118#ifdef __bfin__
7a9aea51 119static inline void lms_adapt_bg(struct oslec_state *ec, int clean, int shift)
10602db8 120{
3ec50be5 121 int i;
4460a860
M
122 int offset1;
123 int offset2;
124 int factor;
125 int exp;
126 int16_t *phist;
127 int n;
128
129 if (shift > 0)
130 factor = clean << shift;
131 else
132 factor = clean >> -shift;
133
134 /* Update the FIR taps */
135
136 offset2 = ec->curr_pos;
137 offset1 = ec->taps - offset2;
138 phist = &ec->fir_state_bg.history[offset2];
139
140 /* st: and en: help us locate the assembler in echo.s */
141
dc57a3ea 142 /* asm("st:"); */
4460a860 143 n = ec->taps;
c020a7a4 144 for (i = 0; i < n; i++) {
4460a860
M
145 exp = *phist++ * factor;
146 ec->fir_taps16[1][i] += (int16_t) ((exp + (1 << 14)) >> 15);
147 }
dc57a3ea 148 /* asm("en:"); */
4460a860
M
149
150 /* Note the asm for the inner loop above generated by Blackfin gcc
151 4.1.1 is pretty good (note even parallel instructions used):
152
153 R0 = W [P0++] (X);
154 R0 *= R2;
155 R0 = R0 + R3 (NS) ||
156 R1 = W [P1] (X) ||
157 nop;
158 R0 >>>= 15;
159 R0 = R0 + R1;
160 W [P1++] = R0;
161
162 A block based update algorithm would be much faster but the
163 above can't be improved on much. Every instruction saved in
164 the loop above is 2 MIPs/ch! The for loop above is where the
165 Blackfin spends most of it's time - about 17 MIPs/ch measured
166 with speedtest.c with 256 taps (32ms). Write-back and
167 Write-through cache gave about the same performance.
168 */
10602db8
DR
169}
170
171/*
172 IDEAS for further optimisation of lms_adapt_bg():
173
174 1/ The rounding is quite costly. Could we keep as 32 bit coeffs
175 then make filter pluck the MS 16-bits of the coeffs when filtering?
176 However this would lower potential optimisation of filter, as I
177 think the dual-MAC architecture requires packed 16 bit coeffs.
178
179 2/ Block based update would be more efficient, as per comments above,
180 could use dual MAC architecture.
181
182 3/ Look for same sample Blackfin LMS code, see if we can get dual-MAC
183 packing.
184
185 4/ Execute the whole e/c in a block of say 20ms rather than sample
186 by sample. Processing a few samples every ms is inefficient.
187*/
188
189#else
7a9aea51 190static inline void lms_adapt_bg(struct oslec_state *ec, int clean, int shift)
10602db8 191{
4460a860
M
192 int i;
193
194 int offset1;
195 int offset2;
196 int factor;
197 int exp;
198
199 if (shift > 0)
200 factor = clean << shift;
201 else
202 factor = clean >> -shift;
203
204 /* Update the FIR taps */
205
206 offset2 = ec->curr_pos;
207 offset1 = ec->taps - offset2;
208
209 for (i = ec->taps - 1; i >= offset1; i--) {
210 exp = (ec->fir_state_bg.history[i - offset1] * factor);
211 ec->fir_taps16[1][i] += (int16_t) ((exp + (1 << 14)) >> 15);
212 }
213 for (; i >= 0; i--) {
214 exp = (ec->fir_state_bg.history[i + offset2] * factor);
215 ec->fir_taps16[1][i] += (int16_t) ((exp + (1 << 14)) >> 15);
216 }
10602db8
DR
217}
218#endif
219
56791f0a 220static inline int top_bit(unsigned int bits)
196e76e8
DR
221{
222 if (bits == 0)
56791f0a
GKH
223 return -1;
224 else
7a9aea51 225 return (int)fls((int32_t) bits) - 1;
196e76e8
DR
226}
227
9d8f2d5d 228struct oslec_state *oslec_create(int len, int adaption_mode)
10602db8 229{
4460a860
M
230 struct oslec_state *ec;
231 int i;
09024688 232 const int16_t *history;
4460a860
M
233
234 ec = kzalloc(sizeof(*ec), GFP_KERNEL);
235 if (!ec)
236 return NULL;
237
238 ec->taps = len;
239 ec->log2taps = top_bit(len);
240 ec->curr_pos = ec->taps - 1;
241
09024688
CD
242 ec->fir_taps16[0] =
243 kcalloc(ec->taps, sizeof(int16_t), GFP_KERNEL);
244 if (!ec->fir_taps16[0])
245 goto error_oom_0;
246
247 ec->fir_taps16[1] =
248 kcalloc(ec->taps, sizeof(int16_t), GFP_KERNEL);
249 if (!ec->fir_taps16[1])
250 goto error_oom_1;
4460a860 251
09024688
CD
252 history = fir16_create(&ec->fir_state, ec->fir_taps16[0], ec->taps);
253 if (!history)
254 goto error_state;
255 history = fir16_create(&ec->fir_state_bg, ec->fir_taps16[1], ec->taps);
256 if (!history)
257 goto error_state_bg;
4460a860 258
dc57a3ea 259 for (i = 0; i < 5; i++)
4460a860 260 ec->xvtx[i] = ec->yvtx[i] = ec->xvrx[i] = ec->yvrx[i] = 0;
4460a860
M
261
262 ec->cng_level = 1000;
263 oslec_adaption_mode(ec, adaption_mode);
264
265 ec->snapshot = kcalloc(ec->taps, sizeof(int16_t), GFP_KERNEL);
266 if (!ec->snapshot)
09024688 267 goto error_snap;
4460a860
M
268
269 ec->cond_met = 0;
0c474826
LN
270 ec->pstates = 0;
271 ec->ltxacc = ec->lrxacc = ec->lcleanacc = ec->lclean_bgacc = 0;
272 ec->ltx = ec->lrx = ec->lclean = ec->lclean_bg = 0;
4460a860 273 ec->tx_1 = ec->tx_2 = ec->rx_1 = ec->rx_2 = 0;
0c474826
LN
274 ec->lbgn = ec->lbgn_acc = 0;
275 ec->lbgn_upper = 200;
276 ec->lbgn_upper_acc = ec->lbgn_upper << 13;
4460a860
M
277
278 return ec;
279
09024688
CD
280error_snap:
281 fir16_free(&ec->fir_state_bg);
282error_state_bg:
283 fir16_free(&ec->fir_state);
284error_state:
285 kfree(ec->fir_taps16[1]);
286error_oom_1:
287 kfree(ec->fir_taps16[0]);
288error_oom_0:
4460a860
M
289 kfree(ec);
290 return NULL;
10602db8 291}
9d8f2d5d 292EXPORT_SYMBOL_GPL(oslec_create);
10602db8 293
9d8f2d5d 294void oslec_free(struct oslec_state *ec)
10602db8
DR
295{
296 int i;
297
298 fir16_free(&ec->fir_state);
299 fir16_free(&ec->fir_state_bg);
4460a860 300 for (i = 0; i < 2; i++)
10602db8
DR
301 kfree(ec->fir_taps16[i]);
302 kfree(ec->snapshot);
303 kfree(ec);
304}
9d8f2d5d 305EXPORT_SYMBOL_GPL(oslec_free);
10602db8 306
9d8f2d5d 307void oslec_adaption_mode(struct oslec_state *ec, int adaption_mode)
10602db8 308{
4460a860 309 ec->adaption_mode = adaption_mode;
10602db8 310}
9d8f2d5d 311EXPORT_SYMBOL_GPL(oslec_adaption_mode);
10602db8 312
9d8f2d5d 313void oslec_flush(struct oslec_state *ec)
10602db8 314{
4460a860 315 int i;
10602db8 316
0c474826
LN
317 ec->ltxacc = ec->lrxacc = ec->lcleanacc = ec->lclean_bgacc = 0;
318 ec->ltx = ec->lrx = ec->lclean = ec->lclean_bg = 0;
4460a860 319 ec->tx_1 = ec->tx_2 = ec->rx_1 = ec->rx_2 = 0;
10602db8 320
0c474826
LN
321 ec->lbgn = ec->lbgn_acc = 0;
322 ec->lbgn_upper = 200;
323 ec->lbgn_upper_acc = ec->lbgn_upper << 13;
10602db8 324
4460a860 325 ec->nonupdate_dwell = 0;
10602db8 326
4460a860
M
327 fir16_flush(&ec->fir_state);
328 fir16_flush(&ec->fir_state_bg);
329 ec->fir_state.curr_pos = ec->taps - 1;
330 ec->fir_state_bg.curr_pos = ec->taps - 1;
331 for (i = 0; i < 2; i++)
332 memset(ec->fir_taps16[i], 0, ec->taps * sizeof(int16_t));
10602db8 333
4460a860 334 ec->curr_pos = ec->taps - 1;
0c474826 335 ec->pstates = 0;
10602db8 336}
9d8f2d5d 337EXPORT_SYMBOL_GPL(oslec_flush);
10602db8 338
4460a860
M
339void oslec_snapshot(struct oslec_state *ec)
340{
341 memcpy(ec->snapshot, ec->fir_taps16[0], ec->taps * sizeof(int16_t));
10602db8 342}
9d8f2d5d 343EXPORT_SYMBOL_GPL(oslec_snapshot);
10602db8 344
49bb9e6d 345/* Dual Path Echo Canceller */
10602db8 346
9d8f2d5d 347int16_t oslec_update(struct oslec_state *ec, int16_t tx, int16_t rx)
10602db8 348{
4460a860
M
349 int32_t echo_value;
350 int clean_bg;
3ec50be5
JJ
351 int tmp;
352 int tmp1;
4460a860 353
49bb9e6d
GKH
354 /*
355 * Input scaling was found be required to prevent problems when tx
356 * starts clipping. Another possible way to handle this would be the
357 * filter coefficent scaling.
358 */
4460a860
M
359
360 ec->tx = tx;
361 ec->rx = rx;
362 tx >>= 1;
363 rx >>= 1;
364
365 /*
49bb9e6d
GKH
366 * Filter DC, 3dB point is 160Hz (I think), note 32 bit precision
367 * required otherwise values do not track down to 0. Zero at DC, Pole
196e76e8 368 * at (1-Beta) on real axis. Some chip sets (like Si labs) don't
49bb9e6d
GKH
369 * need this, but something like a $10 X100P card does. Any DC really
370 * slows down convergence.
371 *
372 * Note: removes some low frequency from the signal, this reduces the
373 * speech quality when listening to samples through headphones but may
374 * not be obvious through a telephone handset.
375 *
376 * Note that the 3dB frequency in radians is approx Beta, e.g. for Beta
377 * = 2^(-3) = 0.125, 3dB freq is 0.125 rads = 159Hz.
4460a860
M
378 */
379
380 if (ec->adaption_mode & ECHO_CAN_USE_RX_HPF) {
381 tmp = rx << 15;
196e76e8 382
49bb9e6d
GKH
383 /*
384 * Make sure the gain of the HPF is 1.0. This can still
385 * saturate a little under impulse conditions, and it might
386 * roll to 32768 and need clipping on sustained peak level
387 * signals. However, the scale of such clipping is small, and
388 * the error due to any saturation should not markedly affect
389 * the downstream processing.
390 */
4460a860 391 tmp -= (tmp >> 4);
196e76e8 392
4460a860
M
393 ec->rx_1 += -(ec->rx_1 >> DC_LOG2BETA) + tmp - ec->rx_2;
394
49bb9e6d
GKH
395 /*
396 * hard limit filter to prevent clipping. Note that at this
397 * stage rx should be limited to +/- 16383 due to right shift
398 * above
399 */
4460a860
M
400 tmp1 = ec->rx_1 >> 15;
401 if (tmp1 > 16383)
402 tmp1 = 16383;
403 if (tmp1 < -16383)
404 tmp1 = -16383;
405 rx = tmp1;
406 ec->rx_2 = tmp;
407 }
10602db8 408
4460a860
M
409 /* Block average of power in the filter states. Used for
410 adaption power calculation. */
10602db8 411
4460a860
M
412 {
413 int new, old;
414
415 /* efficient "out with the old and in with the new" algorithm so
416 we don't have to recalculate over the whole block of
417 samples. */
30c5007e 418 new = (int)tx * (int)tx;
4460a860
M
419 old = (int)ec->fir_state.history[ec->fir_state.curr_pos] *
420 (int)ec->fir_state.history[ec->fir_state.curr_pos];
0c474826 421 ec->pstates +=
7a9aea51 422 ((new - old) + (1 << (ec->log2taps - 1))) >> ec->log2taps;
0c474826
LN
423 if (ec->pstates < 0)
424 ec->pstates = 0;
4460a860 425 }
10602db8 426
4460a860 427 /* Calculate short term average levels using simple single pole IIRs */
10602db8 428
0c474826
LN
429 ec->ltxacc += abs(tx) - ec->ltx;
430 ec->ltx = (ec->ltxacc + (1 << 4)) >> 5;
431 ec->lrxacc += abs(rx) - ec->lrx;
432 ec->lrx = (ec->lrxacc + (1 << 4)) >> 5;
10602db8 433
49bb9e6d 434 /* Foreground filter */
10602db8 435
4460a860
M
436 ec->fir_state.coeffs = ec->fir_taps16[0];
437 echo_value = fir16(&ec->fir_state, tx);
438 ec->clean = rx - echo_value;
0c474826
LN
439 ec->lcleanacc += abs(ec->clean) - ec->lclean;
440 ec->lclean = (ec->lcleanacc + (1 << 4)) >> 5;
10602db8 441
49bb9e6d 442 /* Background filter */
10602db8 443
4460a860
M
444 echo_value = fir16(&ec->fir_state_bg, tx);
445 clean_bg = rx - echo_value;
0c474826
LN
446 ec->lclean_bgacc += abs(clean_bg) - ec->lclean_bg;
447 ec->lclean_bg = (ec->lclean_bgacc + (1 << 4)) >> 5;
10602db8 448
49bb9e6d 449 /* Background Filter adaption */
10602db8 450
4460a860
M
451 /* Almost always adap bg filter, just simple DT and energy
452 detection to minimise adaption in cases of strong double talk.
453 However this is not critical for the dual path algorithm.
454 */
455 ec->factor = 0;
456 ec->shift = 0;
457 if ((ec->nonupdate_dwell == 0)) {
0c474826 458 int p, logp, shift;
4460a860
M
459
460 /* Determine:
461
462 f = Beta * clean_bg_rx/P ------ (1)
463
464 where P is the total power in the filter states.
465
466 The Boffins have shown that if we obey (1) we converge
467 quickly and avoid instability.
468
469 The correct factor f must be in Q30, as this is the fixed
470 point format required by the lms_adapt_bg() function,
471 therefore the scaled version of (1) is:
472
473 (2^30) * f = (2^30) * Beta * clean_bg_rx/P
196e76e8 474 factor = (2^30) * Beta * clean_bg_rx/P ----- (2)
4460a860
M
475
476 We have chosen Beta = 0.25 by experiment, so:
477
196e76e8 478 factor = (2^30) * (2^-2) * clean_bg_rx/P
4460a860 479
7a9aea51 480 (30 - 2 - log2(P))
196e76e8 481 factor = clean_bg_rx 2 ----- (3)
4460a860
M
482
483 To avoid a divide we approximate log2(P) as top_bit(P),
484 which returns the position of the highest non-zero bit in
485 P. This approximation introduces an error as large as a
486 factor of 2, but the algorithm seems to handle it OK.
487
488 Come to think of it a divide may not be a big deal on a
489 modern DSP, so its probably worth checking out the cycles
490 for a divide versus a top_bit() implementation.
491 */
492
0c474826
LN
493 p = MIN_TX_POWER_FOR_ADAPTION + ec->pstates;
494 logp = top_bit(p) + ec->log2taps;
495 shift = 30 - 2 - logp;
4460a860
M
496 ec->shift = shift;
497
498 lms_adapt_bg(ec, clean_bg, shift);
10602db8 499 }
4460a860
M
500
501 /* very simple DTD to make sure we dont try and adapt with strong
502 near end speech */
503
504 ec->adapt = 0;
0c474826 505 if ((ec->lrx > MIN_RX_POWER_FOR_ADAPTION) && (ec->lrx > ec->ltx))
4460a860
M
506 ec->nonupdate_dwell = DTD_HANGOVER;
507 if (ec->nonupdate_dwell)
508 ec->nonupdate_dwell--;
509
49bb9e6d 510 /* Transfer logic */
4460a860
M
511
512 /* These conditions are from the dual path paper [1], I messed with
513 them a bit to improve performance. */
514
515 if ((ec->adaption_mode & ECHO_CAN_USE_ADAPTION) &&
516 (ec->nonupdate_dwell == 0) &&
dc57a3ea 517 /* (ec->Lclean_bg < 0.875*ec->Lclean) */
0c474826 518 (8 * ec->lclean_bg < 7 * ec->lclean) &&
dc57a3ea 519 /* (ec->Lclean_bg < 0.125*ec->Ltx) */
0c474826 520 (8 * ec->lclean_bg < ec->ltx)) {
4460a860 521 if (ec->cond_met == 6) {
49bb9e6d
GKH
522 /*
523 * BG filter has had better results for 6 consecutive
524 * samples
525 */
4460a860
M
526 ec->adapt = 1;
527 memcpy(ec->fir_taps16[0], ec->fir_taps16[1],
7a9aea51 528 ec->taps * sizeof(int16_t));
4460a860
M
529 } else
530 ec->cond_met++;
531 } else
532 ec->cond_met = 0;
533
49bb9e6d 534 /* Non-Linear Processing */
4460a860
M
535
536 ec->clean_nlp = ec->clean;
537 if (ec->adaption_mode & ECHO_CAN_USE_NLP) {
49bb9e6d
GKH
538 /*
539 * Non-linear processor - a fancy way to say "zap small
540 * signals, to avoid residual echo due to (uLaw/ALaw)
541 * non-linearity in the channel.".
542 */
4460a860 543
0c474826 544 if ((16 * ec->lclean < ec->ltx)) {
49bb9e6d
GKH
545 /*
546 * Our e/c has improved echo by at least 24 dB (each
547 * factor of 2 is 6dB, so 2*2*2*2=16 is the same as
548 * 6+6+6+6=24dB)
549 */
4460a860 550 if (ec->adaption_mode & ECHO_CAN_USE_CNG) {
0c474826 551 ec->cng_level = ec->lbgn;
4460a860 552
49bb9e6d
GKH
553 /*
554 * Very elementary comfort noise generation.
555 * Just random numbers rolled off very vaguely
556 * Hoth-like. DR: This noise doesn't sound
557 * quite right to me - I suspect there are some
83aa3c7b 558 * overflow issues in the filtering as it's too
49bb9e6d
GKH
559 * "crackly".
560 * TODO: debug this, maybe just play noise at
561 * high level or look at spectrum.
4460a860
M
562 */
563
564 ec->cng_rndnum =
565 1664525U * ec->cng_rndnum + 1013904223U;
566 ec->cng_filter =
567 ((ec->cng_rndnum & 0xFFFF) - 32768 +
568 5 * ec->cng_filter) >> 3;
569 ec->clean_nlp =
570 (ec->cng_filter * ec->cng_level * 8) >> 14;
571
572 } else if (ec->adaption_mode & ECHO_CAN_USE_CLIP) {
573 /* This sounds much better than CNG */
0c474826
LN
574 if (ec->clean_nlp > ec->lbgn)
575 ec->clean_nlp = ec->lbgn;
576 if (ec->clean_nlp < -ec->lbgn)
577 ec->clean_nlp = -ec->lbgn;
4460a860 578 } else {
49bb9e6d
GKH
579 /*
580 * just mute the residual, doesn't sound very
581 * good, used mainly in G168 tests
582 */
4460a860
M
583 ec->clean_nlp = 0;
584 }
585 } else {
49bb9e6d
GKH
586 /*
587 * Background noise estimator. I tried a few
588 * algorithms here without much luck. This very simple
589 * one seems to work best, we just average the level
590 * using a slow (1 sec time const) filter if the
591 * current level is less than a (experimentally
592 * derived) constant. This means we dont include high
593 * level signals like near end speech. When combined
594 * with CNG or especially CLIP seems to work OK.
4460a860 595 */
0c474826
LN
596 if (ec->lclean < 40) {
597 ec->lbgn_acc += abs(ec->clean) - ec->lbgn;
598 ec->lbgn = (ec->lbgn_acc + (1 << 11)) >> 12;
4460a860
M
599 }
600 }
601 }
602
603 /* Roll around the taps buffer */
604 if (ec->curr_pos <= 0)
605 ec->curr_pos = ec->taps;
606 ec->curr_pos--;
607
608 if (ec->adaption_mode & ECHO_CAN_DISABLE)
609 ec->clean_nlp = rx;
610
611 /* Output scaled back up again to match input scaling */
612
613 return (int16_t) ec->clean_nlp << 1;
10602db8 614}
9d8f2d5d 615EXPORT_SYMBOL_GPL(oslec_update);
10602db8 616
935e99fb 617/* This function is separated from the echo canceller is it is usually called
10602db8
DR
618 as part of the tx process. See rx HP (DC blocking) filter above, it's
619 the same design.
620
621 Some soft phones send speech signals with a lot of low frequency
622 energy, e.g. down to 20Hz. This can make the hybrid non-linear
623 which causes the echo canceller to fall over. This filter can help
624 by removing any low frequency before it gets to the tx port of the
625 hybrid.
626
627 It can also help by removing and DC in the tx signal. DC is bad
628 for LMS algorithms.
629
49bb9e6d
GKH
630 This is one of the classic DC removal filters, adjusted to provide
631 sufficient bass rolloff to meet the above requirement to protect hybrids
632 from things that upset them. The difference between successive samples
633 produces a lousy HPF, and then a suitably placed pole flattens things out.
634 The final result is a nicely rolled off bass end. The filtering is
635 implemented with extended fractional precision, which noise shapes things,
636 giving very clean DC removal.
10602db8
DR
637*/
638
30c5007e 639int16_t oslec_hpf_tx(struct oslec_state *ec, int16_t tx)
4460a860 640{
3ec50be5
JJ
641 int tmp;
642 int tmp1;
10602db8 643
4460a860
M
644 if (ec->adaption_mode & ECHO_CAN_USE_TX_HPF) {
645 tmp = tx << 15;
196e76e8 646
49bb9e6d
GKH
647 /*
648 * Make sure the gain of the HPF is 1.0. The first can still
649 * saturate a little under impulse conditions, and it might
650 * roll to 32768 and need clipping on sustained peak level
651 * signals. However, the scale of such clipping is small, and
652 * the error due to any saturation should not markedly affect
653 * the downstream processing.
654 */
4460a860 655 tmp -= (tmp >> 4);
196e76e8 656
4460a860
M
657 ec->tx_1 += -(ec->tx_1 >> DC_LOG2BETA) + tmp - ec->tx_2;
658 tmp1 = ec->tx_1 >> 15;
659 if (tmp1 > 32767)
660 tmp1 = 32767;
661 if (tmp1 < -32767)
662 tmp1 = -32767;
663 tx = tmp1;
664 ec->tx_2 = tmp;
665 }
666
667 return tx;
10602db8 668}
9d8f2d5d 669EXPORT_SYMBOL_GPL(oslec_hpf_tx);
68b8d9f6
TC
670
671MODULE_LICENSE("GPL");
672MODULE_AUTHOR("David Rowe");
673MODULE_DESCRIPTION("Open Source Line Echo Canceller");
674MODULE_VERSION("0.3.0");