]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/misc/genwqe/card_utils.c
Merge tag 'powerpc-5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-hirsute-kernel.git] / drivers / misc / genwqe / card_utils.c
CommitLineData
67f4addb
FH
1/**
2 * IBM Accelerator Family 'GenWQE'
3 *
4 * (C) Copyright IBM Corp. 2013
5 *
6 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
7 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
26d8f6f1 8 * Author: Michael Jung <mijung@gmx.net>
67f4addb
FH
9 * Author: Michael Ruettger <michael@ibmra.de>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License (version 2 only)
13 * as published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 */
20
21/*
22 * Miscelanous functionality used in the other GenWQE driver parts.
23 */
24
25#include <linux/kernel.h>
67f4addb
FH
26#include <linux/sched.h>
27#include <linux/vmalloc.h>
28#include <linux/page-flags.h>
29#include <linux/scatterlist.h>
30#include <linux/hugetlb.h>
31#include <linux/iommu.h>
67f4addb
FH
32#include <linux/pci.h>
33#include <linux/dma-mapping.h>
34#include <linux/ctype.h>
35#include <linux/module.h>
36#include <linux/platform_device.h>
37#include <linux/delay.h>
38#include <asm/pgtable.h>
39
40#include "genwqe_driver.h"
41#include "card_base.h"
42#include "card_ddcb.h"
43
44/**
45 * __genwqe_writeq() - Write 64-bit register
46 * @cd: genwqe device descriptor
47 * @byte_offs: byte offset within BAR
48 * @val: 64-bit value
49 *
50 * Return: 0 if success; < 0 if error
51 */
52int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
53{
fb145456
KSS
54 struct pci_dev *pci_dev = cd->pci_dev;
55
67f4addb
FH
56 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
57 return -EIO;
58
59 if (cd->mmio == NULL)
60 return -EIO;
61
fb145456
KSS
62 if (pci_channel_offline(pci_dev))
63 return -EIO;
64
a45a0258 65 __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
67f4addb
FH
66 return 0;
67}
68
69/**
70 * __genwqe_readq() - Read 64-bit register
71 * @cd: genwqe device descriptor
72 * @byte_offs: offset within BAR
73 *
74 * Return: value from register
75 */
76u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
77{
67f4addb
FH
78 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
79 return 0xffffffffffffffffull;
80
81 if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
82 (byte_offs == IO_SLC_CFGREG_GFIR))
83 return 0x000000000000ffffull;
84
85 if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
86 (byte_offs == IO_SLC_CFGREG_GFIR))
87 return 0x00000000ffff0000ull;
88
89 if (cd->mmio == NULL)
90 return 0xffffffffffffffffull;
91
58d66ce7 92 return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
67f4addb
FH
93}
94
95/**
96 * __genwqe_writel() - Write 32-bit register
97 * @cd: genwqe device descriptor
98 * @byte_offs: byte offset within BAR
99 * @val: 32-bit value
100 *
101 * Return: 0 if success; < 0 if error
102 */
103int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
104{
fb145456
KSS
105 struct pci_dev *pci_dev = cd->pci_dev;
106
67f4addb
FH
107 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
108 return -EIO;
109
110 if (cd->mmio == NULL)
111 return -EIO;
112
fb145456
KSS
113 if (pci_channel_offline(pci_dev))
114 return -EIO;
115
58d66ce7 116 __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
67f4addb
FH
117 return 0;
118}
119
120/**
121 * __genwqe_readl() - Read 32-bit register
122 * @cd: genwqe device descriptor
123 * @byte_offs: offset within BAR
124 *
125 * Return: Value from register
126 */
127u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
128{
129 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
130 return 0xffffffff;
131
132 if (cd->mmio == NULL)
133 return 0xffffffff;
134
58d66ce7 135 return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
67f4addb
FH
136}
137
138/**
139 * genwqe_read_app_id() - Extract app_id
140 *
141 * app_unitcfg need to be filled with valid data first
142 */
143int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
144{
145 int i, j;
146 u32 app_id = (u32)cd->app_unitcfg;
147
148 memset(app_name, 0, len);
149 for (i = 0, j = 0; j < min(len, 4); j++) {
150 char ch = (char)((app_id >> (24 - j*8)) & 0xff);
d9c11d45 151
67f4addb
FH
152 if (ch == ' ')
153 continue;
154 app_name[i++] = isprint(ch) ? ch : 'X';
155 }
156 return i;
157}
158
159/**
160 * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
161 *
162 * Existing kernel functions seem to use a different polynom,
163 * therefore we could not use them here.
164 *
165 * Genwqe's Polynomial = 0x20044009
166 */
167#define CRC32_POLYNOMIAL 0x20044009
168static u32 crc32_tab[256]; /* crc32 lookup table */
169
170void genwqe_init_crc32(void)
171{
172 int i, j;
173 u32 crc;
174
175 for (i = 0; i < 256; i++) {
176 crc = i << 24;
177 for (j = 0; j < 8; j++) {
178 if (crc & 0x80000000)
179 crc = (crc << 1) ^ CRC32_POLYNOMIAL;
180 else
181 crc = (crc << 1);
182 }
183 crc32_tab[i] = crc;
184 }
185}
186
187/**
188 * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
189 * @buff: pointer to data buffer
190 * @len: length of data for calculation
191 * @init: initial crc (0xffffffff at start)
192 *
193 * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
194
195 * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
196 * result in a crc32 of 0xf33cb7d3.
197 *
198 * The existing kernel crc functions did not cover this polynom yet.
199 *
200 * Return: crc32 checksum.
201 */
202u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
203{
204 int i;
205 u32 crc;
206
207 crc = init;
208 while (len--) {
209 i = ((crc >> 24) ^ *buff++) & 0xFF;
210 crc = (crc << 8) ^ crc32_tab[i];
211 }
212 return crc;
213}
214
215void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
216 dma_addr_t *dma_handle)
217{
fdd66968 218 if (get_order(size) >= MAX_ORDER)
67f4addb
FH
219 return NULL;
220
750afb08
LC
221 return dma_alloc_coherent(&cd->pci_dev->dev, size, dma_handle,
222 GFP_KERNEL);
67f4addb
FH
223}
224
225void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
226 void *vaddr, dma_addr_t dma_handle)
227{
228 if (vaddr == NULL)
229 return;
230
19f7767e 231 dma_free_coherent(&cd->pci_dev->dev, size, vaddr, dma_handle);
67f4addb
FH
232}
233
234static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
235 int num_pages)
236{
237 int i;
238 struct pci_dev *pci_dev = cd->pci_dev;
239
240 for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
241 pci_unmap_page(pci_dev, dma_list[i],
242 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
243 dma_list[i] = 0x0;
244 }
245}
246
247static int genwqe_map_pages(struct genwqe_dev *cd,
248 struct page **page_list, int num_pages,
249 dma_addr_t *dma_list)
250{
251 int i;
252 struct pci_dev *pci_dev = cd->pci_dev;
253
254 /* establish DMA mapping for requested pages */
255 for (i = 0; i < num_pages; i++) {
256 dma_addr_t daddr;
257
258 dma_list[i] = 0x0;
259 daddr = pci_map_page(pci_dev, page_list[i],
260 0, /* map_offs */
261 PAGE_SIZE,
262 PCI_DMA_BIDIRECTIONAL); /* FIXME rd/rw */
263
264 if (pci_dma_mapping_error(pci_dev, daddr)) {
265 dev_err(&pci_dev->dev,
266 "[%s] err: no dma addr daddr=%016llx!\n",
267 __func__, (long long)daddr);
268 goto err;
269 }
270
271 dma_list[i] = daddr;
272 }
273 return 0;
274
275 err:
276 genwqe_unmap_pages(cd, dma_list, num_pages);
277 return -EIO;
278}
279
280static int genwqe_sgl_size(int num_pages)
281{
282 int len, num_tlb = num_pages / 7;
283
284 len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
285 return roundup(len, PAGE_SIZE);
286}
287
718f762e
FH
288/**
289 * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
290 *
291 * Allocates memory for sgl and overlapping pages. Pages which might
292 * overlap other user-space memory blocks are being cached for DMAs,
293 * such that we do not run into syncronization issues. Data is copied
294 * from user-space into the cached pages.
295 */
296int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
de4ce2d1 297 void __user *user_addr, size_t user_size, int write)
67f4addb 298{
02241995 299 int ret = -ENOMEM;
67f4addb 300 struct pci_dev *pci_dev = cd->pci_dev;
67f4addb 301
718f762e
FH
302 sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
303 sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
304 sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
305 sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
306
d9c11d45 307 dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
718f762e
FH
308 __func__, user_addr, user_size, sgl->nr_pages,
309 sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
310
311 sgl->user_addr = user_addr;
312 sgl->user_size = user_size;
de4ce2d1 313 sgl->write = write;
718f762e
FH
314 sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
315
316 if (get_order(sgl->sgl_size) > MAX_ORDER) {
67f4addb
FH
317 dev_err(&pci_dev->dev,
318 "[%s] err: too much memory requested!\n", __func__);
02241995 319 return ret;
67f4addb
FH
320 }
321
718f762e
FH
322 sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
323 &sgl->sgl_dma_addr);
324 if (sgl->sgl == NULL) {
67f4addb
FH
325 dev_err(&pci_dev->dev,
326 "[%s] err: no memory available!\n", __func__);
02241995 327 return ret;
67f4addb
FH
328 }
329
718f762e
FH
330 /* Only use buffering on incomplete pages */
331 if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
332 sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
333 &sgl->fpage_dma_addr);
334 if (sgl->fpage == NULL)
335 goto err_out;
336
337 /* Sync with user memory */
338 if (copy_from_user(sgl->fpage + sgl->fpage_offs,
339 user_addr, sgl->fpage_size)) {
02241995 340 ret = -EFAULT;
718f762e
FH
341 goto err_out;
342 }
343 }
344 if (sgl->lpage_size != 0) {
345 sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
346 &sgl->lpage_dma_addr);
347 if (sgl->lpage == NULL)
348 goto err_out1;
349
350 /* Sync with user memory */
351 if (copy_from_user(sgl->lpage, user_addr + user_size -
352 sgl->lpage_size, sgl->lpage_size)) {
02241995 353 ret = -EFAULT;
a7a7aeef 354 goto err_out2;
718f762e
FH
355 }
356 }
357 return 0;
358
a7a7aeef
GS
359 err_out2:
360 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
361 sgl->lpage_dma_addr);
362 sgl->lpage = NULL;
363 sgl->lpage_dma_addr = 0;
718f762e
FH
364 err_out1:
365 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
366 sgl->fpage_dma_addr);
a7a7aeef
GS
367 sgl->fpage = NULL;
368 sgl->fpage_dma_addr = 0;
718f762e
FH
369 err_out:
370 __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
371 sgl->sgl_dma_addr);
a7a7aeef
GS
372 sgl->sgl = NULL;
373 sgl->sgl_dma_addr = 0;
374 sgl->sgl_size = 0;
02241995 375
376 return ret;
67f4addb
FH
377}
378
718f762e
FH
379int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
380 dma_addr_t *dma_list)
67f4addb
FH
381{
382 int i = 0, j = 0, p;
383 unsigned long dma_offs, map_offs;
67f4addb
FH
384 dma_addr_t prev_daddr = 0;
385 struct sg_entry *s, *last_s = NULL;
718f762e 386 size_t size = sgl->user_size;
67f4addb
FH
387
388 dma_offs = 128; /* next block if needed/dma_offset */
718f762e 389 map_offs = sgl->fpage_offs; /* offset in first page */
67f4addb 390
718f762e 391 s = &sgl->sgl[0]; /* first set of 8 entries */
67f4addb 392 p = 0; /* page */
718f762e 393 while (p < sgl->nr_pages) {
67f4addb
FH
394 dma_addr_t daddr;
395 unsigned int size_to_map;
396
397 /* always write the chaining entry, cleanup is done later */
398 j = 0;
718f762e 399 s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
67f4addb
FH
400 s[j].len = cpu_to_be32(128);
401 s[j].flags = cpu_to_be32(SG_CHAINED);
402 j++;
403
404 while (j < 8) {
405 /* DMA mapping for requested page, offs, size */
406 size_to_map = min(size, PAGE_SIZE - map_offs);
718f762e
FH
407
408 if ((p == 0) && (sgl->fpage != NULL)) {
409 daddr = sgl->fpage_dma_addr + map_offs;
410
411 } else if ((p == sgl->nr_pages - 1) &&
412 (sgl->lpage != NULL)) {
413 daddr = sgl->lpage_dma_addr;
414 } else {
415 daddr = dma_list[p] + map_offs;
416 }
417
67f4addb
FH
418 size -= size_to_map;
419 map_offs = 0;
420
421 if (prev_daddr == daddr) {
422 u32 prev_len = be32_to_cpu(last_s->len);
423
424 /* pr_info("daddr combining: "
425 "%016llx/%08x -> %016llx\n",
426 prev_daddr, prev_len, daddr); */
427
428 last_s->len = cpu_to_be32(prev_len +
429 size_to_map);
430
431 p++; /* process next page */
718f762e 432 if (p == sgl->nr_pages)
67f4addb
FH
433 goto fixup; /* nothing to do */
434
435 prev_daddr = daddr + size_to_map;
436 continue;
437 }
438
439 /* start new entry */
440 s[j].target_addr = cpu_to_be64(daddr);
441 s[j].len = cpu_to_be32(size_to_map);
442 s[j].flags = cpu_to_be32(SG_DATA);
443 prev_daddr = daddr + size_to_map;
444 last_s = &s[j];
445 j++;
446
447 p++; /* process next page */
718f762e 448 if (p == sgl->nr_pages)
67f4addb
FH
449 goto fixup; /* nothing to do */
450 }
451 dma_offs += 128;
452 s += 8; /* continue 8 elements further */
453 }
454 fixup:
2f097267 455 if (j == 1) { /* combining happened on last entry! */
67f4addb
FH
456 s -= 8; /* full shift needed on previous sgl block */
457 j = 7; /* shift all elements */
458 }
459
460 for (i = 0; i < j; i++) /* move elements 1 up */
461 s[i] = s[i + 1];
462
463 s[i].target_addr = cpu_to_be64(0);
464 s[i].len = cpu_to_be32(0);
465 s[i].flags = cpu_to_be32(SG_END_LIST);
466 return 0;
467}
468
718f762e
FH
469/**
470 * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
471 *
472 * After the DMA transfer has been completed we free the memory for
2f097267 473 * the sgl and the cached pages. Data is being transferred from cached
718f762e
FH
474 * pages into user-space buffers.
475 */
476int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
67f4addb 477{
63fa80cd 478 int rc = 0;
de4ce2d1
GP
479 size_t offset;
480 unsigned long res;
718f762e
FH
481 struct pci_dev *pci_dev = cd->pci_dev;
482
483 if (sgl->fpage) {
de4ce2d1
GP
484 if (sgl->write) {
485 res = copy_to_user(sgl->user_addr,
486 sgl->fpage + sgl->fpage_offs, sgl->fpage_size);
487 if (res) {
488 dev_err(&pci_dev->dev,
489 "[%s] err: copying fpage! (res=%lu)\n",
490 __func__, res);
491 rc = -EFAULT;
492 }
718f762e
FH
493 }
494 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
495 sgl->fpage_dma_addr);
496 sgl->fpage = NULL;
497 sgl->fpage_dma_addr = 0;
498 }
499 if (sgl->lpage) {
de4ce2d1
GP
500 if (sgl->write) {
501 offset = sgl->user_size - sgl->lpage_size;
502 res = copy_to_user(sgl->user_addr + offset, sgl->lpage,
503 sgl->lpage_size);
504 if (res) {
505 dev_err(&pci_dev->dev,
506 "[%s] err: copying lpage! (res=%lu)\n",
507 __func__, res);
508 rc = -EFAULT;
509 }
718f762e
FH
510 }
511 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
512 sgl->lpage_dma_addr);
513 sgl->lpage = NULL;
514 sgl->lpage_dma_addr = 0;
515 }
516 __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
517 sgl->sgl_dma_addr);
518
519 sgl->sgl = NULL;
520 sgl->sgl_dma_addr = 0x0;
521 sgl->sgl_size = 0;
522 return rc;
67f4addb
FH
523}
524
525/**
07864a17 526 * genwqe_free_user_pages() - Give pinned pages back
67f4addb 527 *
07864a17 528 * Documentation of get_user_pages is in mm/gup.c:
67f4addb
FH
529 *
530 * If the page is written to, set_page_dirty (or set_page_dirty_lock,
531 * as appropriate) must be called after the page is finished with, and
532 * before put_page is called.
67f4addb 533 */
07864a17
GP
534static int genwqe_free_user_pages(struct page **page_list,
535 unsigned int nr_pages, int dirty)
67f4addb
FH
536{
537 unsigned int i;
538
539 for (i = 0; i < nr_pages; i++) {
540 if (page_list[i] != NULL) {
541 if (dirty)
542 set_page_dirty_lock(page_list[i]);
543 put_page(page_list[i]);
544 }
545 }
546 return 0;
547}
548
549/**
550 * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
551 * @cd: pointer to genwqe device
552 * @m: mapping params
553 * @uaddr: user virtual address
554 * @size: size of memory to be mapped
555 *
556 * We need to think about how we could speed this up. Of course it is
557 * not a good idea to do this over and over again, like we are
558 * currently doing it. Nevertheless, I am curious where on the path
559 * the performance is spend. Most probably within the memory
560 * allocation functions, but maybe also in the DMA mapping code.
561 *
562 * Restrictions: The maximum size of the possible mapping currently depends
563 * on the amount of memory we can get using kzalloc() for the
564 * page_list and pci_alloc_consistent for the sg_list.
565 * The sg_list is currently itself not scattered, which could
566 * be fixed with some effort. The page_list must be split into
567 * PAGE_SIZE chunks too. All that will make the complicated
568 * code more complicated.
569 *
570 * Return: 0 if success
571 */
572int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
658a494a 573 unsigned long size)
67f4addb
FH
574{
575 int rc = -EINVAL;
576 unsigned long data, offs;
577 struct pci_dev *pci_dev = cd->pci_dev;
578
579 if ((uaddr == NULL) || (size == 0)) {
580 m->size = 0; /* mark unused and not added */
581 return -EINVAL;
582 }
583 m->u_vaddr = uaddr;
584 m->size = size;
585
586 /* determine space needed for page_list. */
587 data = (unsigned long)uaddr;
588 offs = offset_in_page(data);
589 m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
590
591 m->page_list = kcalloc(m->nr_pages,
592 sizeof(struct page *) + sizeof(dma_addr_t),
593 GFP_KERNEL);
594 if (!m->page_list) {
595 dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
596 m->nr_pages = 0;
597 m->u_vaddr = NULL;
598 m->size = 0; /* mark unused and not added */
599 return -ENOMEM;
600 }
601 m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
602
603 /* pin user pages in memory */
604 rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
605 m->nr_pages,
73b0140b 606 m->write ? FOLL_WRITE : 0, /* readable/writable */
67f4addb 607 m->page_list); /* ptrs to pages */
cf35d6e0
IA
608 if (rc < 0)
609 goto fail_get_user_pages;
67f4addb
FH
610
611 /* assumption: get_user_pages can be killed by signals. */
612 if (rc < m->nr_pages) {
07864a17 613 genwqe_free_user_pages(m->page_list, rc, m->write);
67f4addb
FH
614 rc = -EFAULT;
615 goto fail_get_user_pages;
616 }
617
618 rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
619 if (rc != 0)
620 goto fail_free_user_pages;
621
622 return 0;
623
624 fail_free_user_pages:
07864a17 625 genwqe_free_user_pages(m->page_list, m->nr_pages, m->write);
67f4addb
FH
626
627 fail_get_user_pages:
628 kfree(m->page_list);
629 m->page_list = NULL;
630 m->dma_list = NULL;
631 m->nr_pages = 0;
632 m->u_vaddr = NULL;
633 m->size = 0; /* mark unused and not added */
634 return rc;
635}
636
637/**
638 * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
639 * memory
640 * @cd: pointer to genwqe device
641 * @m: mapping params
642 */
658a494a 643int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m)
67f4addb
FH
644{
645 struct pci_dev *pci_dev = cd->pci_dev;
646
647 if (!dma_mapping_used(m)) {
648 dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
649 __func__, m);
650 return -EINVAL;
651 }
652
653 if (m->dma_list)
654 genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
655
656 if (m->page_list) {
07864a17 657 genwqe_free_user_pages(m->page_list, m->nr_pages, m->write);
67f4addb
FH
658
659 kfree(m->page_list);
660 m->page_list = NULL;
661 m->dma_list = NULL;
662 m->nr_pages = 0;
663 }
664
665 m->u_vaddr = NULL;
666 m->size = 0; /* mark as unused and not added */
667 return 0;
668}
669
670/**
671 * genwqe_card_type() - Get chip type SLU Configuration Register
672 * @cd: pointer to the genwqe device descriptor
673 * Return: 0: Altera Stratix-IV 230
674 * 1: Altera Stratix-IV 530
675 * 2: Altera Stratix-V A4
676 * 3: Altera Stratix-V A7
677 */
678u8 genwqe_card_type(struct genwqe_dev *cd)
679{
680 u64 card_type = cd->slu_unitcfg;
d9c11d45 681
67f4addb
FH
682 return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
683}
684
685/**
686 * genwqe_card_reset() - Reset the card
687 * @cd: pointer to the genwqe device descriptor
688 */
689int genwqe_card_reset(struct genwqe_dev *cd)
690{
691 u64 softrst;
692 struct pci_dev *pci_dev = cd->pci_dev;
693
694 if (!genwqe_is_privileged(cd))
695 return -ENODEV;
696
697 /* new SL */
698 __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
699 msleep(1000);
700 __genwqe_readq(cd, IO_HSU_FIR_CLR);
701 __genwqe_readq(cd, IO_APP_FIR_CLR);
702 __genwqe_readq(cd, IO_SLU_FIR_CLR);
703
704 /*
705 * Read-modify-write to preserve the stealth bits
706 *
707 * For SL >= 039, Stealth WE bit allows removing
708 * the read-modify-wrote.
709 * r-m-w may require a mask 0x3C to avoid hitting hard
710 * reset again for error reset (should be 0, chicken).
711 */
712 softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
713 __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
714
715 /* give ERRORRESET some time to finish */
716 msleep(50);
717
718 if (genwqe_need_err_masking(cd)) {
719 dev_info(&pci_dev->dev,
720 "[%s] masking errors for old bitstreams\n", __func__);
721 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
722 }
723 return 0;
724}
725
726int genwqe_read_softreset(struct genwqe_dev *cd)
727{
728 u64 bitstream;
729
730 if (!genwqe_is_privileged(cd))
731 return -ENODEV;
732
733 bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
734 cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
735 return 0;
736}
737
738/**
739 * genwqe_set_interrupt_capability() - Configure MSI capability structure
740 * @cd: pointer to the device
741 * Return: 0 if no error
742 */
743int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
744{
745 int rc;
67f4addb 746
d3f45647 747 rc = pci_alloc_irq_vectors(cd->pci_dev, 1, count, PCI_IRQ_MSI);
7276883f
SO
748 if (rc < 0)
749 return rc;
7276883f 750 return 0;
67f4addb
FH
751}
752
753/**
754 * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
755 * @cd: pointer to the device
756 */
757void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
758{
d3f45647 759 pci_free_irq_vectors(cd->pci_dev);
67f4addb
FH
760}
761
762/**
763 * set_reg_idx() - Fill array with data. Ignore illegal offsets.
764 * @cd: card device
765 * @r: debug register array
766 * @i: index to desired entry
767 * @m: maximum possible entries
768 * @addr: addr which is read
769 * @index: index in debug array
770 * @val: read value
771 */
772static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
773 unsigned int *i, unsigned int m, u32 addr, u32 idx,
774 u64 val)
775{
776 if (WARN_ON_ONCE(*i >= m))
777 return -EFAULT;
778
779 r[*i].addr = addr;
780 r[*i].idx = idx;
781 r[*i].val = val;
782 ++*i;
783 return 0;
784}
785
786static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
787 unsigned int *i, unsigned int m, u32 addr, u64 val)
788{
789 return set_reg_idx(cd, r, i, m, addr, 0, val);
790}
791
792int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
793 unsigned int max_regs, int all)
794{
795 unsigned int i, j, idx = 0;
796 u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
797 u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
798
799 /* Global FIR */
800 gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
801 set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
802
803 /* UnitCfg for SLU */
804 sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
805 set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
806
807 /* UnitCfg for APP */
808 appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
809 set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
810
811 /* Check all chip Units */
812 for (i = 0; i < GENWQE_MAX_UNITS; i++) {
813
814 /* Unit FIR */
815 ufir_addr = (i << 24) | 0x008;
816 ufir = __genwqe_readq(cd, ufir_addr);
817 set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
818
819 /* Unit FEC */
820 ufec_addr = (i << 24) | 0x018;
821 ufec = __genwqe_readq(cd, ufec_addr);
822 set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
823
824 for (j = 0; j < 64; j++) {
825 /* wherever there is a primary 1, read the 2ndary */
826 if (!all && (!(ufir & (1ull << j))))
827 continue;
828
829 sfir_addr = (i << 24) | (0x100 + 8 * j);
830 sfir = __genwqe_readq(cd, sfir_addr);
831 set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
832
833 sfec_addr = (i << 24) | (0x300 + 8 * j);
834 sfec = __genwqe_readq(cd, sfec_addr);
835 set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
836 }
837 }
838
839 /* fill with invalid data until end */
840 for (i = idx; i < max_regs; i++) {
841 regs[i].addr = 0xffffffff;
842 regs[i].val = 0xffffffffffffffffull;
843 }
844 return idx;
845}
846
847/**
848 * genwqe_ffdc_buff_size() - Calculates the number of dump registers
849 */
850int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
851{
852 int entries = 0, ring, traps, traces, trace_entries;
853 u32 eevptr_addr, l_addr, d_len, d_type;
854 u64 eevptr, val, addr;
855
856 eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
857 eevptr = __genwqe_readq(cd, eevptr_addr);
858
859 if ((eevptr != 0x0) && (eevptr != -1ull)) {
860 l_addr = GENWQE_UID_OFFS(uid) | eevptr;
861
862 while (1) {
863 val = __genwqe_readq(cd, l_addr);
864
865 if ((val == 0x0) || (val == -1ull))
866 break;
867
868 /* 38:24 */
869 d_len = (val & 0x0000007fff000000ull) >> 24;
870
871 /* 39 */
872 d_type = (val & 0x0000008000000000ull) >> 36;
873
874 if (d_type) { /* repeat */
875 entries += d_len;
876 } else { /* size in bytes! */
877 entries += d_len >> 3;
878 }
879
880 l_addr += 8;
881 }
882 }
883
884 for (ring = 0; ring < 8; ring++) {
885 addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
886 val = __genwqe_readq(cd, addr);
887
888 if ((val == 0x0ull) || (val == -1ull))
889 continue;
890
891 traps = (val >> 24) & 0xff;
892 traces = (val >> 16) & 0xff;
893 trace_entries = val & 0xffff;
894
895 entries += traps + (traces * trace_entries);
896 }
897 return entries;
898}
899
900/**
901 * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
902 */
903int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
904 struct genwqe_reg *regs, unsigned int max_regs)
905{
906 int i, traps, traces, trace, trace_entries, trace_entry, ring;
907 unsigned int idx = 0;
908 u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
909 u64 eevptr, e, val, addr;
910
911 eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
912 eevptr = __genwqe_readq(cd, eevptr_addr);
913
914 if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
915 l_addr = GENWQE_UID_OFFS(uid) | eevptr;
916 while (1) {
917 e = __genwqe_readq(cd, l_addr);
918 if ((e == 0x0) || (e == 0xffffffffffffffffull))
919 break;
920
921 d_addr = (e & 0x0000000000ffffffull); /* 23:0 */
922 d_len = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
923 d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
924 d_addr |= GENWQE_UID_OFFS(uid);
925
926 if (d_type) {
927 for (i = 0; i < (int)d_len; i++) {
928 val = __genwqe_readq(cd, d_addr);
929 set_reg_idx(cd, regs, &idx, max_regs,
930 d_addr, i, val);
931 }
932 } else {
933 d_len >>= 3; /* Size in bytes! */
934 for (i = 0; i < (int)d_len; i++, d_addr += 8) {
935 val = __genwqe_readq(cd, d_addr);
936 set_reg_idx(cd, regs, &idx, max_regs,
937 d_addr, 0, val);
938 }
939 }
940 l_addr += 8;
941 }
942 }
943
944 /*
945 * To save time, there are only 6 traces poplulated on Uid=2,
946 * Ring=1. each with iters=512.
947 */
948 for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
949 2...7 are ASI rings */
950 addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
951 val = __genwqe_readq(cd, addr);
952
953 if ((val == 0x0ull) || (val == -1ull))
954 continue;
955
956 traps = (val >> 24) & 0xff; /* Number of Traps */
957 traces = (val >> 16) & 0xff; /* Number of Traces */
958 trace_entries = val & 0xffff; /* Entries per trace */
959
960 /* Note: This is a combined loop that dumps both the traps */
961 /* (for the trace == 0 case) as well as the traces 1 to */
962 /* 'traces'. */
963 for (trace = 0; trace <= traces; trace++) {
964 u32 diag_sel =
965 GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
966
967 addr = (GENWQE_UID_OFFS(uid) |
968 IO_EXTENDED_DIAG_SELECTOR);
969 __genwqe_writeq(cd, addr, diag_sel);
970
971 for (trace_entry = 0;
972 trace_entry < (trace ? trace_entries : traps);
973 trace_entry++) {
974 addr = (GENWQE_UID_OFFS(uid) |
975 IO_EXTENDED_DIAG_READ_MBX);
976 val = __genwqe_readq(cd, addr);
977 set_reg_idx(cd, regs, &idx, max_regs, addr,
978 (diag_sel<<16) | trace_entry, val);
979 }
980 }
981 }
982 return 0;
983}
984
985/**
986 * genwqe_write_vreg() - Write register in virtual window
987 *
988 * Note, these registers are only accessible to the PF through the
989 * VF-window. It is not intended for the VF to access.
990 */
991int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
992{
993 __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
994 __genwqe_writeq(cd, reg, val);
995 return 0;
996}
997
998/**
999 * genwqe_read_vreg() - Read register in virtual window
1000 *
1001 * Note, these registers are only accessible to the PF through the
1002 * VF-window. It is not intended for the VF to access.
1003 */
1004u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
1005{
1006 __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
1007 return __genwqe_readq(cd, reg);
1008}
1009
1010/**
1011 * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
1012 *
1013 * Note: From a design perspective it turned out to be a bad idea to
1014 * use codes here to specifiy the frequency/speed values. An old
1015 * driver cannot understand new codes and is therefore always a
1016 * problem. Better is to measure out the value or put the
1017 * speed/frequency directly into a register which is always a valid
1018 * value for old as well as for new software.
1019 *
1020 * Return: Card clock in MHz
1021 */
1022int genwqe_base_clock_frequency(struct genwqe_dev *cd)
1023{
1024 u16 speed; /* MHz MHz MHz MHz */
1025 static const int speed_grade[] = { 250, 200, 166, 175 };
1026
1027 speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
1028 if (speed >= ARRAY_SIZE(speed_grade))
1029 return 0; /* illegal value */
1030
1031 return speed_grade[speed];
1032}
1033
1034/**
1035 * genwqe_stop_traps() - Stop traps
1036 *
1037 * Before reading out the analysis data, we need to stop the traps.
1038 */
1039void genwqe_stop_traps(struct genwqe_dev *cd)
1040{
1041 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
1042}
1043
1044/**
1045 * genwqe_start_traps() - Start traps
1046 *
1047 * After having read the data, we can/must enable the traps again.
1048 */
1049void genwqe_start_traps(struct genwqe_dev *cd)
1050{
1051 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
1052
1053 if (genwqe_need_err_masking(cd))
1054 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
1055}