]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/misc/pti.c
pti: double-free security PTI fix
[mirror_ubuntu-zesty-kernel.git] / drivers / misc / pti.c
CommitLineData
0b61d2ac
F
1/*
2 * pti.c - PTI driver for cJTAG data extration
3 *
4 * Copyright (C) Intel 2010
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16 *
17 * The PTI (Parallel Trace Interface) driver directs trace data routed from
18 * various parts in the system out through the Intel Penwell PTI port and
19 * out of the mobile device for analysis with a debugging tool
20 * (Lauterbach, Fido). This is part of a solution for the MIPI P1149.7,
21 * compact JTAG, standard.
22 */
23
24#include <linux/init.h>
25#include <linux/sched.h>
26#include <linux/interrupt.h>
27#include <linux/console.h>
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/tty.h>
31#include <linux/tty_driver.h>
32#include <linux/pci.h>
33#include <linux/mutex.h>
34#include <linux/miscdevice.h>
35#include <linux/pti.h>
36
37#define DRIVERNAME "pti"
38#define PCINAME "pciPTI"
39#define TTYNAME "ttyPTI"
40#define CHARNAME "pti"
41#define PTITTY_MINOR_START 0
42#define PTITTY_MINOR_NUM 2
43#define MAX_APP_IDS 16 /* 128 channel ids / u8 bit size */
44#define MAX_OS_IDS 16 /* 128 channel ids / u8 bit size */
45#define MAX_MODEM_IDS 16 /* 128 channel ids / u8 bit size */
46#define MODEM_BASE_ID 71 /* modem master ID address */
47#define CONTROL_ID 72 /* control master ID address */
48#define CONSOLE_ID 73 /* console master ID address */
49#define OS_BASE_ID 74 /* base OS master ID address */
50#define APP_BASE_ID 80 /* base App master ID address */
51#define CONTROL_FRAME_LEN 32 /* PTI control frame maximum size */
52#define USER_COPY_SIZE 8192 /* 8Kb buffer for user space copy */
53#define APERTURE_14 0x3800000 /* offset to first OS write addr */
54#define APERTURE_LEN 0x400000 /* address length */
55
56struct pti_tty {
57 struct pti_masterchannel *mc;
58};
59
60struct pti_dev {
61 struct tty_port port;
62 unsigned long pti_addr;
63 unsigned long aperture_base;
64 void __iomem *pti_ioaddr;
65 u8 ia_app[MAX_APP_IDS];
66 u8 ia_os[MAX_OS_IDS];
67 u8 ia_modem[MAX_MODEM_IDS];
68};
69
70/*
71 * This protects access to ia_app, ia_os, and ia_modem,
72 * which keeps track of channels allocated in
73 * an aperture write id.
74 */
75static DEFINE_MUTEX(alloclock);
76
77static struct pci_device_id pci_ids[] __devinitconst = {
78 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x82B)},
79 {0}
80};
81
82static struct tty_driver *pti_tty_driver;
83static struct pti_dev *drv_data;
84
85static unsigned int pti_console_channel;
86static unsigned int pti_control_channel;
87
88/**
89 * pti_write_to_aperture()- The private write function to PTI HW.
90 *
91 * @mc: The 'aperture'. It's part of a write address that holds
92 * a master and channel ID.
93 * @buf: Data being written to the HW that will ultimately be seen
94 * in a debugging tool (Fido, Lauterbach).
95 * @len: Size of buffer.
96 *
97 * Since each aperture is specified by a unique
98 * master/channel ID, no two processes will be writing
99 * to the same aperture at the same time so no lock is required. The
100 * PTI-Output agent will send these out in the order that they arrived, and
101 * thus, it will intermix these messages. The debug tool can then later
102 * regroup the appropriate message segments together reconstituting each
103 * message.
104 */
105static void pti_write_to_aperture(struct pti_masterchannel *mc,
106 u8 *buf,
107 int len)
108{
109 int dwordcnt;
110 int final;
111 int i;
112 u32 ptiword;
113 u32 __iomem *aperture;
114 u8 *p = buf;
115
116 /*
117 * calculate the aperture offset from the base using the master and
118 * channel id's.
119 */
120 aperture = drv_data->pti_ioaddr + (mc->master << 15)
121 + (mc->channel << 8);
122
123 dwordcnt = len >> 2;
124 final = len - (dwordcnt << 2); /* final = trailing bytes */
125 if (final == 0 && dwordcnt != 0) { /* always need a final dword */
126 final += 4;
127 dwordcnt--;
128 }
129
130 for (i = 0; i < dwordcnt; i++) {
131 ptiword = be32_to_cpu(*(u32 *)p);
132 p += 4;
133 iowrite32(ptiword, aperture);
134 }
135
136 aperture += PTI_LASTDWORD_DTS; /* adding DTS signals that is EOM */
137
138 ptiword = 0;
139 for (i = 0; i < final; i++)
140 ptiword |= *p++ << (24-(8*i));
141
142 iowrite32(ptiword, aperture);
143 return;
144}
145
146/**
147 * pti_control_frame_built_and_sent()- control frame build and send function.
148 *
149 * @mc: The master / channel structure on which the function
150 * built a control frame.
151 *
152 * To be able to post process the PTI contents on host side, a control frame
153 * is added before sending any PTI content. So the host side knows on
154 * each PTI frame the name of the thread using a dedicated master / channel.
155 * The thread name is retrieved from the 'current' global variable.
156 * This function builds this frame and sends it to a master ID CONTROL_ID.
157 * The overhead is only 32 bytes since the driver only writes to HW
158 * in 32 byte chunks.
159 */
160
161static void pti_control_frame_built_and_sent(struct pti_masterchannel *mc)
162{
163 struct pti_masterchannel mccontrol = {.master = CONTROL_ID,
164 .channel = 0};
165 const char *control_format = "%3d %3d %s";
166 u8 control_frame[CONTROL_FRAME_LEN];
167
168 /*
169 * Since we access the comm member in current's task_struct,
170 * we only need to be as large as what 'comm' in that
171 * structure is.
172 */
173 char comm[TASK_COMM_LEN];
174
175 if (!in_interrupt())
176 get_task_comm(comm, current);
177 else
178 strncpy(comm, "Interrupt", TASK_COMM_LEN);
179
180 /* Absolutely ensure our buffer is zero terminated. */
181 comm[TASK_COMM_LEN-1] = 0;
182
183 mccontrol.channel = pti_control_channel;
184 pti_control_channel = (pti_control_channel + 1) & 0x7f;
185
186 snprintf(control_frame, CONTROL_FRAME_LEN, control_format, mc->master,
187 mc->channel, comm);
188 pti_write_to_aperture(&mccontrol, control_frame, strlen(control_frame));
189}
190
191/**
192 * pti_write_full_frame_to_aperture()- high level function to
193 * write to PTI.
194 *
195 * @mc: The 'aperture'. It's part of a write address that holds
196 * a master and channel ID.
197 * @buf: Data being written to the HW that will ultimately be seen
198 * in a debugging tool (Fido, Lauterbach).
199 * @len: Size of buffer.
200 *
201 * All threads sending data (either console, user space application, ...)
202 * are calling the high level function to write to PTI meaning that it is
203 * possible to add a control frame before sending the content.
204 */
205static void pti_write_full_frame_to_aperture(struct pti_masterchannel *mc,
206 const unsigned char *buf,
207 int len)
208{
209 pti_control_frame_built_and_sent(mc);
210 pti_write_to_aperture(mc, (u8 *)buf, len);
211}
212
213/**
214 * get_id()- Allocate a master and channel ID.
215 *
216 * @id_array: an array of bits representing what channel
217 * id's are allocated for writing.
218 * @max_ids: The max amount of available write IDs to use.
219 * @base_id: The starting SW channel ID, based on the Intel
220 * PTI arch.
221 *
222 * Returns:
223 * pti_masterchannel struct with master, channel ID address
224 * 0 for error
225 *
226 * Each bit in the arrays ia_app and ia_os correspond to a master and
227 * channel id. The bit is one if the id is taken and 0 if free. For
228 * every master there are 128 channel id's.
229 */
230static struct pti_masterchannel *get_id(u8 *id_array, int max_ids, int base_id)
231{
232 struct pti_masterchannel *mc;
233 int i, j, mask;
234
235 mc = kmalloc(sizeof(struct pti_masterchannel), GFP_KERNEL);
236 if (mc == NULL)
237 return NULL;
238
239 /* look for a byte with a free bit */
240 for (i = 0; i < max_ids; i++)
241 if (id_array[i] != 0xff)
242 break;
243 if (i == max_ids) {
244 kfree(mc);
245 return NULL;
246 }
247 /* find the bit in the 128 possible channel opportunities */
248 mask = 0x80;
249 for (j = 0; j < 8; j++) {
250 if ((id_array[i] & mask) == 0)
251 break;
252 mask >>= 1;
253 }
254
255 /* grab it */
256 id_array[i] |= mask;
257 mc->master = base_id;
258 mc->channel = ((i & 0xf)<<3) + j;
259 /* write new master Id / channel Id allocation to channel control */
260 pti_control_frame_built_and_sent(mc);
261 return mc;
262}
263
264/*
265 * The following three functions:
266 * pti_request_mastercahannel(), mipi_release_masterchannel()
267 * and pti_writedata() are an API for other kernel drivers to
268 * access PTI.
269 */
270
271/**
272 * pti_request_masterchannel()- Kernel API function used to allocate
273 * a master, channel ID address
274 * to write to PTI HW.
275 *
276 * @type: 0- request Application master, channel aperture ID write address.
277 * 1- request OS master, channel aperture ID write
278 * address.
279 * 2- request Modem master, channel aperture ID
280 * write address.
281 * Other values, error.
282 *
283 * Returns:
284 * pti_masterchannel struct
285 * 0 for error
286 */
287struct pti_masterchannel *pti_request_masterchannel(u8 type)
288{
289 struct pti_masterchannel *mc;
290
291 mutex_lock(&alloclock);
292
293 switch (type) {
294
295 case 0:
296 mc = get_id(drv_data->ia_app, MAX_APP_IDS, APP_BASE_ID);
297 break;
298
299 case 1:
300 mc = get_id(drv_data->ia_os, MAX_OS_IDS, OS_BASE_ID);
301 break;
302
303 case 2:
304 mc = get_id(drv_data->ia_modem, MAX_MODEM_IDS, MODEM_BASE_ID);
305 break;
306 default:
307 mc = NULL;
308 }
309
310 mutex_unlock(&alloclock);
311 return mc;
312}
313EXPORT_SYMBOL_GPL(pti_request_masterchannel);
314
315/**
316 * pti_release_masterchannel()- Kernel API function used to release
317 * a master, channel ID address
318 * used to write to PTI HW.
319 *
29021bcc
F
320 * @mc: master, channel apeture ID address to be released. This
321 * will de-allocate the structure via kfree().
0b61d2ac
F
322 */
323void pti_release_masterchannel(struct pti_masterchannel *mc)
324{
325 u8 master, channel, i;
326
327 mutex_lock(&alloclock);
328
329 if (mc) {
330 master = mc->master;
331 channel = mc->channel;
332
333 if (master == APP_BASE_ID) {
334 i = channel >> 3;
335 drv_data->ia_app[i] &= ~(0x80>>(channel & 0x7));
336 } else if (master == OS_BASE_ID) {
337 i = channel >> 3;
338 drv_data->ia_os[i] &= ~(0x80>>(channel & 0x7));
339 } else {
340 i = channel >> 3;
341 drv_data->ia_modem[i] &= ~(0x80>>(channel & 0x7));
342 }
343
344 kfree(mc);
345 }
346
347 mutex_unlock(&alloclock);
348}
349EXPORT_SYMBOL_GPL(pti_release_masterchannel);
350
351/**
352 * pti_writedata()- Kernel API function used to write trace
353 * debugging data to PTI HW.
354 *
355 * @mc: Master, channel aperture ID address to write to.
356 * Null value will return with no write occurring.
357 * @buf: Trace debuging data to write to the PTI HW.
358 * Null value will return with no write occurring.
359 * @count: Size of buf. Value of 0 or a negative number will
360 * return with no write occuring.
361 */
362void pti_writedata(struct pti_masterchannel *mc, u8 *buf, int count)
363{
364 /*
365 * since this function is exported, this is treated like an
366 * API function, thus, all parameters should
367 * be checked for validity.
368 */
369 if ((mc != NULL) && (buf != NULL) && (count > 0))
370 pti_write_to_aperture(mc, buf, count);
371 return;
372}
373EXPORT_SYMBOL_GPL(pti_writedata);
374
375/**
376 * pti_pci_remove()- Driver exit method to remove PTI from
377 * PCI bus.
378 * @pdev: variable containing pci info of PTI.
379 */
380static void __devexit pti_pci_remove(struct pci_dev *pdev)
381{
382 struct pti_dev *drv_data;
383
384 drv_data = pci_get_drvdata(pdev);
385 if (drv_data != NULL) {
386 pci_iounmap(pdev, drv_data->pti_ioaddr);
387 pci_set_drvdata(pdev, NULL);
388 kfree(drv_data);
389 pci_release_region(pdev, 1);
390 pci_disable_device(pdev);
391 }
392}
393
394/*
395 * for the tty_driver_*() basic function descriptions, see tty_driver.h.
396 * Specific header comments made for PTI-related specifics.
397 */
398
399/**
400 * pti_tty_driver_open()- Open an Application master, channel aperture
401 * ID to the PTI device via tty device.
402 *
403 * @tty: tty interface.
404 * @filp: filp interface pased to tty_port_open() call.
405 *
406 * Returns:
407 * int, 0 for success
408 * otherwise, fail value
409 *
410 * The main purpose of using the tty device interface is for
411 * each tty port to have a unique PTI write aperture. In an
412 * example use case, ttyPTI0 gets syslogd and an APP aperture
413 * ID and ttyPTI1 is where the n_tracesink ldisc hooks to route
414 * modem messages into PTI. Modem trace data does not have to
415 * go to ttyPTI1, but ttyPTI0 and ttyPTI1 do need to be distinct
416 * master IDs. These messages go through the PTI HW and out of
417 * the handheld platform and to the Fido/Lauterbach device.
418 */
419static int pti_tty_driver_open(struct tty_struct *tty, struct file *filp)
420{
421 /*
422 * we actually want to allocate a new channel per open, per
423 * system arch. HW gives more than plenty channels for a single
424 * system task to have its own channel to write trace data. This
425 * also removes a locking requirement for the actual write
426 * procedure.
427 */
428 return tty_port_open(&drv_data->port, tty, filp);
429}
430
431/**
432 * pti_tty_driver_close()- close tty device and release Application
433 * master, channel aperture ID to the PTI device via tty device.
434 *
435 * @tty: tty interface.
436 * @filp: filp interface pased to tty_port_close() call.
437 *
438 * The main purpose of using the tty device interface is to route
439 * syslog daemon messages to the PTI HW and out of the handheld platform
440 * and to the Fido/Lauterbach device.
441 */
442static void pti_tty_driver_close(struct tty_struct *tty, struct file *filp)
443{
444 tty_port_close(&drv_data->port, tty, filp);
445}
446
447/**
448 * pti_tty_intstall()- Used to set up specific master-channels
449 * to tty ports for organizational purposes when
450 * tracing viewed from debuging tools.
451 *
452 * @driver: tty driver information.
453 * @tty: tty struct containing pti information.
454 *
455 * Returns:
456 * 0 for success
457 * otherwise, error
458 */
459static int pti_tty_install(struct tty_driver *driver, struct tty_struct *tty)
460{
461 int idx = tty->index;
462 struct pti_tty *pti_tty_data;
463 int ret = tty_init_termios(tty);
464
465 if (ret == 0) {
466 tty_driver_kref_get(driver);
467 tty->count++;
468 driver->ttys[idx] = tty;
469
470 pti_tty_data = kmalloc(sizeof(struct pti_tty), GFP_KERNEL);
471 if (pti_tty_data == NULL)
472 return -ENOMEM;
473
474 if (idx == PTITTY_MINOR_START)
475 pti_tty_data->mc = pti_request_masterchannel(0);
476 else
477 pti_tty_data->mc = pti_request_masterchannel(2);
478
479 if (pti_tty_data->mc == NULL)
480 return -ENXIO;
481 tty->driver_data = pti_tty_data;
482 }
483
484 return ret;
485}
486
487/**
488 * pti_tty_cleanup()- Used to de-allocate master-channel resources
489 * tied to tty's of this driver.
490 *
491 * @tty: tty struct containing pti information.
492 */
493static void pti_tty_cleanup(struct tty_struct *tty)
494{
495 struct pti_tty *pti_tty_data = tty->driver_data;
496 if (pti_tty_data == NULL)
497 return;
498 pti_release_masterchannel(pti_tty_data->mc);
499 kfree(tty->driver_data);
500 tty->driver_data = NULL;
501}
502
503/**
504 * pti_tty_driver_write()- Write trace debugging data through the char
505 * interface to the PTI HW. Part of the misc device implementation.
506 *
507 * @filp: Contains private data which is used to obtain
508 * master, channel write ID.
509 * @data: trace data to be written.
510 * @len: # of byte to write.
511 *
512 * Returns:
513 * int, # of bytes written
514 * otherwise, error
515 */
516static int pti_tty_driver_write(struct tty_struct *tty,
517 const unsigned char *buf, int len)
518{
519 struct pti_tty *pti_tty_data = tty->driver_data;
520 if ((pti_tty_data != NULL) && (pti_tty_data->mc != NULL)) {
521 pti_write_to_aperture(pti_tty_data->mc, (u8 *)buf, len);
522 return len;
523 }
524 /*
525 * we can't write to the pti hardware if the private driver_data
526 * and the mc address is not there.
527 */
528 else
529 return -EFAULT;
530}
531
532/**
533 * pti_tty_write_room()- Always returns 2048.
534 *
535 * @tty: contains tty info of the pti driver.
536 */
537static int pti_tty_write_room(struct tty_struct *tty)
538{
539 return 2048;
540}
541
542/**
543 * pti_char_open()- Open an Application master, channel aperture
544 * ID to the PTI device. Part of the misc device implementation.
545 *
546 * @inode: not used.
547 * @filp: Output- will have a masterchannel struct set containing
548 * the allocated application PTI aperture write address.
549 *
550 * Returns:
551 * int, 0 for success
552 * otherwise, a fail value
553 */
554static int pti_char_open(struct inode *inode, struct file *filp)
555{
556 struct pti_masterchannel *mc;
557
558 /*
559 * We really do want to fail immediately if
560 * pti_request_masterchannel() fails,
561 * before assigning the value to filp->private_data.
562 * Slightly easier to debug if this driver needs debugging.
563 */
564 mc = pti_request_masterchannel(0);
565 if (mc == NULL)
566 return -ENOMEM;
567 filp->private_data = mc;
568 return 0;
569}
570
571/**
572 * pti_char_release()- Close a char channel to the PTI device. Part
573 * of the misc device implementation.
574 *
575 * @inode: Not used in this implementaiton.
576 * @filp: Contains private_data that contains the master, channel
577 * ID to be released by the PTI device.
578 *
579 * Returns:
580 * always 0
581 */
582static int pti_char_release(struct inode *inode, struct file *filp)
583{
584 pti_release_masterchannel(filp->private_data);
29021bcc 585 filp->private_data = NULL;
0b61d2ac
F
586 return 0;
587}
588
589/**
590 * pti_char_write()- Write trace debugging data through the char
591 * interface to the PTI HW. Part of the misc device implementation.
592 *
593 * @filp: Contains private data which is used to obtain
594 * master, channel write ID.
595 * @data: trace data to be written.
596 * @len: # of byte to write.
597 * @ppose: Not used in this function implementation.
598 *
599 * Returns:
600 * int, # of bytes written
601 * otherwise, error value
602 *
603 * Notes: From side discussions with Alan Cox and experimenting
604 * with PTI debug HW like Nokia's Fido box and Lauterbach
605 * devices, 8192 byte write buffer used by USER_COPY_SIZE was
606 * deemed an appropriate size for this type of usage with
607 * debugging HW.
608 */
609static ssize_t pti_char_write(struct file *filp, const char __user *data,
610 size_t len, loff_t *ppose)
611{
612 struct pti_masterchannel *mc;
613 void *kbuf;
614 const char __user *tmp;
615 size_t size = USER_COPY_SIZE;
616 size_t n = 0;
617
618 tmp = data;
619 mc = filp->private_data;
620
621 kbuf = kmalloc(size, GFP_KERNEL);
622 if (kbuf == NULL) {
623 pr_err("%s(%d): buf allocation failed\n",
624 __func__, __LINE__);
625 return -ENOMEM;
626 }
627
628 do {
629 if (len - n > USER_COPY_SIZE)
630 size = USER_COPY_SIZE;
631 else
632 size = len - n;
633
634 if (copy_from_user(kbuf, tmp, size)) {
635 kfree(kbuf);
636 return n ? n : -EFAULT;
637 }
638
639 pti_write_to_aperture(mc, kbuf, size);
640 n += size;
641 tmp += size;
642
643 } while (len > n);
644
645 kfree(kbuf);
646 return len;
647}
648
649static const struct tty_operations pti_tty_driver_ops = {
650 .open = pti_tty_driver_open,
651 .close = pti_tty_driver_close,
652 .write = pti_tty_driver_write,
653 .write_room = pti_tty_write_room,
654 .install = pti_tty_install,
655 .cleanup = pti_tty_cleanup
656};
657
658static const struct file_operations pti_char_driver_ops = {
659 .owner = THIS_MODULE,
660 .write = pti_char_write,
661 .open = pti_char_open,
662 .release = pti_char_release,
663};
664
665static struct miscdevice pti_char_driver = {
666 .minor = MISC_DYNAMIC_MINOR,
667 .name = CHARNAME,
668 .fops = &pti_char_driver_ops
669};
670
671/**
672 * pti_console_write()- Write to the console that has been acquired.
673 *
674 * @c: Not used in this implementaiton.
675 * @buf: Data to be written.
676 * @len: Length of buf.
677 */
678static void pti_console_write(struct console *c, const char *buf, unsigned len)
679{
680 static struct pti_masterchannel mc = {.master = CONSOLE_ID,
681 .channel = 0};
682
683 mc.channel = pti_console_channel;
684 pti_console_channel = (pti_console_channel + 1) & 0x7f;
685
686 pti_write_full_frame_to_aperture(&mc, buf, len);
687}
688
689/**
690 * pti_console_device()- Return the driver tty structure and set the
691 * associated index implementation.
692 *
693 * @c: Console device of the driver.
694 * @index: index associated with c.
695 *
696 * Returns:
697 * always value of pti_tty_driver structure when this function
698 * is called.
699 */
700static struct tty_driver *pti_console_device(struct console *c, int *index)
701{
702 *index = c->index;
703 return pti_tty_driver;
704}
705
706/**
707 * pti_console_setup()- Initialize console variables used by the driver.
708 *
709 * @c: Not used.
710 * @opts: Not used.
711 *
712 * Returns:
713 * always 0.
714 */
715static int pti_console_setup(struct console *c, char *opts)
716{
717 pti_console_channel = 0;
718 pti_control_channel = 0;
719 return 0;
720}
721
722/*
723 * pti_console struct, used to capture OS printk()'s and shift
724 * out to the PTI device for debugging. This cannot be
725 * enabled upon boot because of the possibility of eating
726 * any serial console printk's (race condition discovered).
727 * The console should be enabled upon when the tty port is
728 * used for the first time. Since the primary purpose for
729 * the tty port is to hook up syslog to it, the tty port
730 * will be open for a really long time.
731 */
732static struct console pti_console = {
733 .name = TTYNAME,
734 .write = pti_console_write,
735 .device = pti_console_device,
736 .setup = pti_console_setup,
737 .flags = CON_PRINTBUFFER,
738 .index = 0,
739};
740
741/**
742 * pti_port_activate()- Used to start/initialize any items upon
743 * first opening of tty_port().
744 *
745 * @port- The tty port number of the PTI device.
746 * @tty- The tty struct associated with this device.
747 *
748 * Returns:
749 * always returns 0
750 *
751 * Notes: The primary purpose of the PTI tty port 0 is to hook
752 * the syslog daemon to it; thus this port will be open for a
753 * very long time.
754 */
755static int pti_port_activate(struct tty_port *port, struct tty_struct *tty)
756{
757 if (port->tty->index == PTITTY_MINOR_START)
758 console_start(&pti_console);
759 return 0;
760}
761
762/**
763 * pti_port_shutdown()- Used to stop/shutdown any items upon the
764 * last tty port close.
765 *
766 * @port- The tty port number of the PTI device.
767 *
768 * Notes: The primary purpose of the PTI tty port 0 is to hook
769 * the syslog daemon to it; thus this port will be open for a
770 * very long time.
771 */
772static void pti_port_shutdown(struct tty_port *port)
773{
774 if (port->tty->index == PTITTY_MINOR_START)
775 console_stop(&pti_console);
776}
777
778static const struct tty_port_operations tty_port_ops = {
779 .activate = pti_port_activate,
780 .shutdown = pti_port_shutdown,
781};
782
783/*
784 * Note the _probe() call sets everything up and ties the char and tty
785 * to successfully detecting the PTI device on the pci bus.
786 */
787
788/**
789 * pti_pci_probe()- Used to detect pti on the pci bus and set
790 * things up in the driver.
791 *
792 * @pdev- pci_dev struct values for pti.
793 * @ent- pci_device_id struct for pti driver.
794 *
795 * Returns:
796 * 0 for success
797 * otherwise, error
798 */
799static int __devinit pti_pci_probe(struct pci_dev *pdev,
800 const struct pci_device_id *ent)
801{
802 int retval = -EINVAL;
803 int pci_bar = 1;
804
805 dev_dbg(&pdev->dev, "%s %s(%d): PTI PCI ID %04x:%04x\n", __FILE__,
806 __func__, __LINE__, pdev->vendor, pdev->device);
807
808 retval = misc_register(&pti_char_driver);
809 if (retval) {
810 pr_err("%s(%d): CHAR registration failed of pti driver\n",
811 __func__, __LINE__);
812 pr_err("%s(%d): Error value returned: %d\n",
813 __func__, __LINE__, retval);
814 return retval;
815 }
816
817 retval = pci_enable_device(pdev);
818 if (retval != 0) {
819 dev_err(&pdev->dev,
820 "%s: pci_enable_device() returned error %d\n",
821 __func__, retval);
822 return retval;
823 }
824
825 drv_data = kzalloc(sizeof(*drv_data), GFP_KERNEL);
826
827 if (drv_data == NULL) {
828 retval = -ENOMEM;
829 dev_err(&pdev->dev,
830 "%s(%d): kmalloc() returned NULL memory.\n",
831 __func__, __LINE__);
832 return retval;
833 }
834 drv_data->pti_addr = pci_resource_start(pdev, pci_bar);
835
836 retval = pci_request_region(pdev, pci_bar, dev_name(&pdev->dev));
837 if (retval != 0) {
838 dev_err(&pdev->dev,
839 "%s(%d): pci_request_region() returned error %d\n",
840 __func__, __LINE__, retval);
841 kfree(drv_data);
842 return retval;
843 }
844 drv_data->aperture_base = drv_data->pti_addr+APERTURE_14;
845 drv_data->pti_ioaddr =
846 ioremap_nocache((u32)drv_data->aperture_base,
847 APERTURE_LEN);
848 if (!drv_data->pti_ioaddr) {
849 pci_release_region(pdev, pci_bar);
850 retval = -ENOMEM;
851 kfree(drv_data);
852 return retval;
853 }
854
855 pci_set_drvdata(pdev, drv_data);
856
857 tty_port_init(&drv_data->port);
858 drv_data->port.ops = &tty_port_ops;
859
860 tty_register_device(pti_tty_driver, 0, &pdev->dev);
861 tty_register_device(pti_tty_driver, 1, &pdev->dev);
862
863 register_console(&pti_console);
864
865 return retval;
866}
867
868static struct pci_driver pti_pci_driver = {
869 .name = PCINAME,
870 .id_table = pci_ids,
871 .probe = pti_pci_probe,
872 .remove = pti_pci_remove,
873};
874
875/**
876 *
877 * pti_init()- Overall entry/init call to the pti driver.
878 * It starts the registration process with the kernel.
879 *
880 * Returns:
881 * int __init, 0 for success
882 * otherwise value is an error
883 *
884 */
885static int __init pti_init(void)
886{
887 int retval = -EINVAL;
888
889 /* First register module as tty device */
890
891 pti_tty_driver = alloc_tty_driver(1);
892 if (pti_tty_driver == NULL) {
893 pr_err("%s(%d): Memory allocation failed for ptiTTY driver\n",
894 __func__, __LINE__);
895 return -ENOMEM;
896 }
897
898 pti_tty_driver->owner = THIS_MODULE;
899 pti_tty_driver->magic = TTY_DRIVER_MAGIC;
900 pti_tty_driver->driver_name = DRIVERNAME;
901 pti_tty_driver->name = TTYNAME;
902 pti_tty_driver->major = 0;
903 pti_tty_driver->minor_start = PTITTY_MINOR_START;
904 pti_tty_driver->minor_num = PTITTY_MINOR_NUM;
905 pti_tty_driver->num = PTITTY_MINOR_NUM;
906 pti_tty_driver->type = TTY_DRIVER_TYPE_SYSTEM;
907 pti_tty_driver->subtype = SYSTEM_TYPE_SYSCONS;
908 pti_tty_driver->flags = TTY_DRIVER_REAL_RAW |
909 TTY_DRIVER_DYNAMIC_DEV;
910 pti_tty_driver->init_termios = tty_std_termios;
911
912 tty_set_operations(pti_tty_driver, &pti_tty_driver_ops);
913
914 retval = tty_register_driver(pti_tty_driver);
915 if (retval) {
916 pr_err("%s(%d): TTY registration failed of pti driver\n",
917 __func__, __LINE__);
918 pr_err("%s(%d): Error value returned: %d\n",
919 __func__, __LINE__, retval);
920
921 pti_tty_driver = NULL;
922 return retval;
923 }
924
925 retval = pci_register_driver(&pti_pci_driver);
926
927 if (retval) {
928 pr_err("%s(%d): PCI registration failed of pti driver\n",
929 __func__, __LINE__);
930 pr_err("%s(%d): Error value returned: %d\n",
931 __func__, __LINE__, retval);
932
933 tty_unregister_driver(pti_tty_driver);
934 pr_err("%s(%d): Unregistering TTY part of pti driver\n",
935 __func__, __LINE__);
936 pti_tty_driver = NULL;
937 return retval;
938 }
939
940 return retval;
941}
942
943/**
944 * pti_exit()- Unregisters this module as a tty and pci driver.
945 */
946static void __exit pti_exit(void)
947{
948 int retval;
949
950 tty_unregister_device(pti_tty_driver, 0);
951 tty_unregister_device(pti_tty_driver, 1);
952
953 retval = tty_unregister_driver(pti_tty_driver);
954 if (retval) {
955 pr_err("%s(%d): TTY unregistration failed of pti driver\n",
956 __func__, __LINE__);
957 pr_err("%s(%d): Error value returned: %d\n",
958 __func__, __LINE__, retval);
959 }
960
961 pci_unregister_driver(&pti_pci_driver);
962
963 retval = misc_deregister(&pti_char_driver);
964 if (retval) {
965 pr_err("%s(%d): CHAR unregistration failed of pti driver\n",
966 __func__, __LINE__);
967 pr_err("%s(%d): Error value returned: %d\n",
968 __func__, __LINE__, retval);
969 }
970
971 unregister_console(&pti_console);
972 return;
973}
974
975module_init(pti_init);
976module_exit(pti_exit);
977
978MODULE_LICENSE("GPL");
979MODULE_AUTHOR("Ken Mills, Jay Freyensee");
980MODULE_DESCRIPTION("PTI Driver");
981