]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/mmc/core/core.c
Merge branch 'for-2.6.39' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
[mirror_ubuntu-bionic-kernel.git] / drivers / mmc / core / core.c
CommitLineData
1da177e4 1/*
aaac1b47 2 * linux/drivers/mmc/core/core.c
1da177e4
LT
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5b4fd9ae 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
ad3868b2 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
bce40a36 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
1da177e4
LT
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
1da177e4
LT
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
af8350c7 21#include <linux/leds.h>
b57c43ad 22#include <linux/scatterlist.h>
86e8286a 23#include <linux/log2.h>
5c13941a 24#include <linux/regulator/consumer.h>
e594573d 25#include <linux/pm_runtime.h>
1da177e4
LT
26
27#include <linux/mmc/card.h>
28#include <linux/mmc/host.h>
da7fbe58
PO
29#include <linux/mmc/mmc.h>
30#include <linux/mmc/sd.h>
1da177e4 31
aaac1b47 32#include "core.h"
ffce2e7e
PO
33#include "bus.h"
34#include "host.h"
e29a7d73 35#include "sdio_bus.h"
da7fbe58
PO
36
37#include "mmc_ops.h"
38#include "sd_ops.h"
5c4e6f13 39#include "sdio_ops.h"
1da177e4 40
ffce2e7e
PO
41static struct workqueue_struct *workqueue;
42
af517150
DB
43/*
44 * Enabling software CRCs on the data blocks can be a significant (30%)
45 * performance cost, and for other reasons may not always be desired.
46 * So we allow it it to be disabled.
47 */
48int use_spi_crc = 1;
49module_param(use_spi_crc, bool, 0);
50
bd68e083
BH
51/*
52 * We normally treat cards as removed during suspend if they are not
53 * known to be on a non-removable bus, to avoid the risk of writing
54 * back data to a different card after resume. Allow this to be
55 * overridden if necessary.
56 */
57#ifdef CONFIG_MMC_UNSAFE_RESUME
58int mmc_assume_removable;
59#else
60int mmc_assume_removable = 1;
61#endif
71d7d3d1 62EXPORT_SYMBOL(mmc_assume_removable);
bd68e083
BH
63module_param_named(removable, mmc_assume_removable, bool, 0644);
64MODULE_PARM_DESC(
65 removable,
66 "MMC/SD cards are removable and may be removed during suspend");
67
ffce2e7e
PO
68/*
69 * Internal function. Schedule delayed work in the MMC work queue.
70 */
71static int mmc_schedule_delayed_work(struct delayed_work *work,
72 unsigned long delay)
73{
74 return queue_delayed_work(workqueue, work, delay);
75}
76
77/*
78 * Internal function. Flush all scheduled work from the MMC work queue.
79 */
80static void mmc_flush_scheduled_work(void)
81{
82 flush_workqueue(workqueue);
83}
84
1da177e4 85/**
fe10c6ab
RK
86 * mmc_request_done - finish processing an MMC request
87 * @host: MMC host which completed request
88 * @mrq: MMC request which request
1da177e4
LT
89 *
90 * MMC drivers should call this function when they have completed
fe10c6ab 91 * their processing of a request.
1da177e4
LT
92 */
93void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
94{
95 struct mmc_command *cmd = mrq->cmd;
920e70c5
RK
96 int err = cmd->error;
97
af517150
DB
98 if (err && cmd->retries && mmc_host_is_spi(host)) {
99 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
100 cmd->retries = 0;
101 }
102
1da177e4 103 if (err && cmd->retries) {
e4d21708
PO
104 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
105 mmc_hostname(host), cmd->opcode, err);
106
1da177e4
LT
107 cmd->retries--;
108 cmd->error = 0;
109 host->ops->request(host, mrq);
e4d21708 110 } else {
af8350c7
PO
111 led_trigger_event(host->led, LED_OFF);
112
e4d21708
PO
113 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
114 mmc_hostname(host), cmd->opcode, err,
115 cmd->resp[0], cmd->resp[1],
116 cmd->resp[2], cmd->resp[3]);
117
118 if (mrq->data) {
119 pr_debug("%s: %d bytes transferred: %d\n",
120 mmc_hostname(host),
121 mrq->data->bytes_xfered, mrq->data->error);
122 }
123
124 if (mrq->stop) {
125 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
126 mmc_hostname(host), mrq->stop->opcode,
127 mrq->stop->error,
128 mrq->stop->resp[0], mrq->stop->resp[1],
129 mrq->stop->resp[2], mrq->stop->resp[3]);
130 }
131
132 if (mrq->done)
133 mrq->done(mrq);
04566831
LW
134
135 mmc_host_clk_gate(host);
1da177e4
LT
136 }
137}
138
139EXPORT_SYMBOL(mmc_request_done);
140
39361851 141static void
1da177e4
LT
142mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
143{
976d9276
PO
144#ifdef CONFIG_MMC_DEBUG
145 unsigned int i, sz;
a84756c5 146 struct scatterlist *sg;
976d9276
PO
147#endif
148
920e70c5
RK
149 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
150 mmc_hostname(host), mrq->cmd->opcode,
151 mrq->cmd->arg, mrq->cmd->flags);
1da177e4 152
e4d21708
PO
153 if (mrq->data) {
154 pr_debug("%s: blksz %d blocks %d flags %08x "
155 "tsac %d ms nsac %d\n",
156 mmc_hostname(host), mrq->data->blksz,
157 mrq->data->blocks, mrq->data->flags,
ce252edd 158 mrq->data->timeout_ns / 1000000,
e4d21708
PO
159 mrq->data->timeout_clks);
160 }
161
162 if (mrq->stop) {
163 pr_debug("%s: CMD%u arg %08x flags %08x\n",
164 mmc_hostname(host), mrq->stop->opcode,
165 mrq->stop->arg, mrq->stop->flags);
166 }
167
f22ee4ed 168 WARN_ON(!host->claimed);
1da177e4 169
af8350c7
PO
170 led_trigger_event(host->led, LED_FULL);
171
1da177e4
LT
172 mrq->cmd->error = 0;
173 mrq->cmd->mrq = mrq;
174 if (mrq->data) {
fe4a3c7a 175 BUG_ON(mrq->data->blksz > host->max_blk_size);
55db890a
PO
176 BUG_ON(mrq->data->blocks > host->max_blk_count);
177 BUG_ON(mrq->data->blocks * mrq->data->blksz >
178 host->max_req_size);
fe4a3c7a 179
976d9276
PO
180#ifdef CONFIG_MMC_DEBUG
181 sz = 0;
a84756c5
PO
182 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
183 sz += sg->length;
976d9276
PO
184 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
185#endif
186
1da177e4
LT
187 mrq->cmd->data = mrq->data;
188 mrq->data->error = 0;
189 mrq->data->mrq = mrq;
190 if (mrq->stop) {
191 mrq->data->stop = mrq->stop;
192 mrq->stop->error = 0;
193 mrq->stop->mrq = mrq;
194 }
195 }
04566831 196 mmc_host_clk_ungate(host);
1da177e4
LT
197 host->ops->request(host, mrq);
198}
199
1da177e4
LT
200static void mmc_wait_done(struct mmc_request *mrq)
201{
202 complete(mrq->done_data);
203}
204
67a61c48
PO
205/**
206 * mmc_wait_for_req - start a request and wait for completion
207 * @host: MMC host to start command
208 * @mrq: MMC request to start
209 *
210 * Start a new MMC custom command request for a host, and wait
211 * for the command to complete. Does not attempt to parse the
212 * response.
213 */
214void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
1da177e4 215{
0afffc72 216 DECLARE_COMPLETION_ONSTACK(complete);
1da177e4
LT
217
218 mrq->done_data = &complete;
219 mrq->done = mmc_wait_done;
220
221 mmc_start_request(host, mrq);
222
223 wait_for_completion(&complete);
1da177e4
LT
224}
225
226EXPORT_SYMBOL(mmc_wait_for_req);
227
228/**
229 * mmc_wait_for_cmd - start a command and wait for completion
230 * @host: MMC host to start command
231 * @cmd: MMC command to start
232 * @retries: maximum number of retries
233 *
234 * Start a new MMC command for a host, and wait for the command
235 * to complete. Return any error that occurred while the command
236 * was executing. Do not attempt to parse the response.
237 */
238int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
239{
240 struct mmc_request mrq;
241
d84075c8 242 WARN_ON(!host->claimed);
1da177e4
LT
243
244 memset(&mrq, 0, sizeof(struct mmc_request));
245
246 memset(cmd->resp, 0, sizeof(cmd->resp));
247 cmd->retries = retries;
248
249 mrq.cmd = cmd;
250 cmd->data = NULL;
251
252 mmc_wait_for_req(host, &mrq);
253
254 return cmd->error;
255}
256
257EXPORT_SYMBOL(mmc_wait_for_cmd);
258
d773d725
RK
259/**
260 * mmc_set_data_timeout - set the timeout for a data command
261 * @data: data phase for command
262 * @card: the MMC card associated with the data transfer
67a61c48
PO
263 *
264 * Computes the data timeout parameters according to the
265 * correct algorithm given the card type.
d773d725 266 */
b146d26a 267void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
d773d725
RK
268{
269 unsigned int mult;
270
e6f918bf
PO
271 /*
272 * SDIO cards only define an upper 1 s limit on access.
273 */
274 if (mmc_card_sdio(card)) {
275 data->timeout_ns = 1000000000;
276 data->timeout_clks = 0;
277 return;
278 }
279
d773d725
RK
280 /*
281 * SD cards use a 100 multiplier rather than 10
282 */
283 mult = mmc_card_sd(card) ? 100 : 10;
284
285 /*
286 * Scale up the multiplier (and therefore the timeout) by
287 * the r2w factor for writes.
288 */
b146d26a 289 if (data->flags & MMC_DATA_WRITE)
d773d725
RK
290 mult <<= card->csd.r2w_factor;
291
292 data->timeout_ns = card->csd.tacc_ns * mult;
293 data->timeout_clks = card->csd.tacc_clks * mult;
294
295 /*
296 * SD cards also have an upper limit on the timeout.
297 */
298 if (mmc_card_sd(card)) {
299 unsigned int timeout_us, limit_us;
300
301 timeout_us = data->timeout_ns / 1000;
e9b86841
LW
302 if (mmc_host_clk_rate(card->host))
303 timeout_us += data->timeout_clks * 1000 /
304 (mmc_host_clk_rate(card->host) / 1000);
d773d725 305
b146d26a 306 if (data->flags & MMC_DATA_WRITE)
493890e7
PO
307 /*
308 * The limit is really 250 ms, but that is
309 * insufficient for some crappy cards.
310 */
311 limit_us = 300000;
d773d725
RK
312 else
313 limit_us = 100000;
314
fba68bd2
PL
315 /*
316 * SDHC cards always use these fixed values.
317 */
318 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
d773d725
RK
319 data->timeout_ns = limit_us * 1000;
320 data->timeout_clks = 0;
321 }
322 }
c0c88871
WM
323 /*
324 * Some cards need very high timeouts if driven in SPI mode.
325 * The worst observed timeout was 900ms after writing a
326 * continuous stream of data until the internal logic
327 * overflowed.
328 */
329 if (mmc_host_is_spi(card->host)) {
330 if (data->flags & MMC_DATA_WRITE) {
331 if (data->timeout_ns < 1000000000)
332 data->timeout_ns = 1000000000; /* 1s */
333 } else {
334 if (data->timeout_ns < 100000000)
335 data->timeout_ns = 100000000; /* 100ms */
336 }
337 }
d773d725
RK
338}
339EXPORT_SYMBOL(mmc_set_data_timeout);
340
ad3868b2
PO
341/**
342 * mmc_align_data_size - pads a transfer size to a more optimal value
343 * @card: the MMC card associated with the data transfer
344 * @sz: original transfer size
345 *
346 * Pads the original data size with a number of extra bytes in
347 * order to avoid controller bugs and/or performance hits
348 * (e.g. some controllers revert to PIO for certain sizes).
349 *
350 * Returns the improved size, which might be unmodified.
351 *
352 * Note that this function is only relevant when issuing a
353 * single scatter gather entry.
354 */
355unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
356{
357 /*
358 * FIXME: We don't have a system for the controller to tell
359 * the core about its problems yet, so for now we just 32-bit
360 * align the size.
361 */
362 sz = ((sz + 3) / 4) * 4;
363
364 return sz;
365}
366EXPORT_SYMBOL(mmc_align_data_size);
367
8ea926b2
AH
368/**
369 * mmc_host_enable - enable a host.
370 * @host: mmc host to enable
371 *
372 * Hosts that support power saving can use the 'enable' and 'disable'
373 * methods to exit and enter power saving states. For more information
374 * see comments for struct mmc_host_ops.
375 */
376int mmc_host_enable(struct mmc_host *host)
377{
378 if (!(host->caps & MMC_CAP_DISABLE))
379 return 0;
380
381 if (host->en_dis_recurs)
382 return 0;
383
384 if (host->nesting_cnt++)
385 return 0;
386
387 cancel_delayed_work_sync(&host->disable);
388
389 if (host->enabled)
390 return 0;
391
392 if (host->ops->enable) {
393 int err;
394
395 host->en_dis_recurs = 1;
396 err = host->ops->enable(host);
397 host->en_dis_recurs = 0;
398
399 if (err) {
400 pr_debug("%s: enable error %d\n",
401 mmc_hostname(host), err);
402 return err;
403 }
404 }
405 host->enabled = 1;
406 return 0;
407}
408EXPORT_SYMBOL(mmc_host_enable);
409
410static int mmc_host_do_disable(struct mmc_host *host, int lazy)
411{
412 if (host->ops->disable) {
413 int err;
414
415 host->en_dis_recurs = 1;
416 err = host->ops->disable(host, lazy);
417 host->en_dis_recurs = 0;
418
419 if (err < 0) {
420 pr_debug("%s: disable error %d\n",
421 mmc_hostname(host), err);
422 return err;
423 }
424 if (err > 0) {
425 unsigned long delay = msecs_to_jiffies(err);
426
427 mmc_schedule_delayed_work(&host->disable, delay);
428 }
429 }
430 host->enabled = 0;
431 return 0;
432}
433
434/**
435 * mmc_host_disable - disable a host.
436 * @host: mmc host to disable
437 *
438 * Hosts that support power saving can use the 'enable' and 'disable'
439 * methods to exit and enter power saving states. For more information
440 * see comments for struct mmc_host_ops.
441 */
442int mmc_host_disable(struct mmc_host *host)
443{
444 int err;
445
446 if (!(host->caps & MMC_CAP_DISABLE))
447 return 0;
448
449 if (host->en_dis_recurs)
450 return 0;
451
452 if (--host->nesting_cnt)
453 return 0;
454
455 if (!host->enabled)
456 return 0;
457
458 err = mmc_host_do_disable(host, 0);
459 return err;
460}
461EXPORT_SYMBOL(mmc_host_disable);
462
1da177e4 463/**
2342f332 464 * __mmc_claim_host - exclusively claim a host
1da177e4 465 * @host: mmc host to claim
2342f332 466 * @abort: whether or not the operation should be aborted
1da177e4 467 *
2342f332
NP
468 * Claim a host for a set of operations. If @abort is non null and
469 * dereference a non-zero value then this will return prematurely with
470 * that non-zero value without acquiring the lock. Returns zero
471 * with the lock held otherwise.
1da177e4 472 */
2342f332 473int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
1da177e4
LT
474{
475 DECLARE_WAITQUEUE(wait, current);
476 unsigned long flags;
2342f332 477 int stop;
1da177e4 478
cf795bfb
PO
479 might_sleep();
480
1da177e4
LT
481 add_wait_queue(&host->wq, &wait);
482 spin_lock_irqsave(&host->lock, flags);
483 while (1) {
484 set_current_state(TASK_UNINTERRUPTIBLE);
2342f332 485 stop = abort ? atomic_read(abort) : 0;
319a3f14 486 if (stop || !host->claimed || host->claimer == current)
1da177e4
LT
487 break;
488 spin_unlock_irqrestore(&host->lock, flags);
489 schedule();
490 spin_lock_irqsave(&host->lock, flags);
491 }
492 set_current_state(TASK_RUNNING);
319a3f14 493 if (!stop) {
2342f332 494 host->claimed = 1;
319a3f14
AH
495 host->claimer = current;
496 host->claim_cnt += 1;
497 } else
2342f332 498 wake_up(&host->wq);
1da177e4
LT
499 spin_unlock_irqrestore(&host->lock, flags);
500 remove_wait_queue(&host->wq, &wait);
8ea926b2
AH
501 if (!stop)
502 mmc_host_enable(host);
2342f332 503 return stop;
1da177e4
LT
504}
505
2342f332 506EXPORT_SYMBOL(__mmc_claim_host);
1da177e4 507
319a3f14
AH
508/**
509 * mmc_try_claim_host - try exclusively to claim a host
510 * @host: mmc host to claim
511 *
512 * Returns %1 if the host is claimed, %0 otherwise.
513 */
514int mmc_try_claim_host(struct mmc_host *host)
8ea926b2
AH
515{
516 int claimed_host = 0;
517 unsigned long flags;
518
519 spin_lock_irqsave(&host->lock, flags);
319a3f14 520 if (!host->claimed || host->claimer == current) {
8ea926b2 521 host->claimed = 1;
319a3f14
AH
522 host->claimer = current;
523 host->claim_cnt += 1;
8ea926b2
AH
524 claimed_host = 1;
525 }
526 spin_unlock_irqrestore(&host->lock, flags);
527 return claimed_host;
528}
319a3f14 529EXPORT_SYMBOL(mmc_try_claim_host);
8ea926b2
AH
530
531static void mmc_do_release_host(struct mmc_host *host)
532{
533 unsigned long flags;
534
535 spin_lock_irqsave(&host->lock, flags);
319a3f14
AH
536 if (--host->claim_cnt) {
537 /* Release for nested claim */
538 spin_unlock_irqrestore(&host->lock, flags);
539 } else {
540 host->claimed = 0;
541 host->claimer = NULL;
542 spin_unlock_irqrestore(&host->lock, flags);
543 wake_up(&host->wq);
544 }
8ea926b2
AH
545}
546
547void mmc_host_deeper_disable(struct work_struct *work)
548{
549 struct mmc_host *host =
550 container_of(work, struct mmc_host, disable.work);
551
552 /* If the host is claimed then we do not want to disable it anymore */
553 if (!mmc_try_claim_host(host))
554 return;
555 mmc_host_do_disable(host, 1);
556 mmc_do_release_host(host);
557}
558
559/**
560 * mmc_host_lazy_disable - lazily disable a host.
561 * @host: mmc host to disable
562 *
563 * Hosts that support power saving can use the 'enable' and 'disable'
564 * methods to exit and enter power saving states. For more information
565 * see comments for struct mmc_host_ops.
566 */
567int mmc_host_lazy_disable(struct mmc_host *host)
568{
569 if (!(host->caps & MMC_CAP_DISABLE))
570 return 0;
571
572 if (host->en_dis_recurs)
573 return 0;
574
575 if (--host->nesting_cnt)
576 return 0;
577
578 if (!host->enabled)
579 return 0;
580
581 if (host->disable_delay) {
582 mmc_schedule_delayed_work(&host->disable,
583 msecs_to_jiffies(host->disable_delay));
584 return 0;
585 } else
586 return mmc_host_do_disable(host, 1);
587}
588EXPORT_SYMBOL(mmc_host_lazy_disable);
589
1da177e4
LT
590/**
591 * mmc_release_host - release a host
592 * @host: mmc host to release
593 *
594 * Release a MMC host, allowing others to claim the host
595 * for their operations.
596 */
597void mmc_release_host(struct mmc_host *host)
598{
d84075c8 599 WARN_ON(!host->claimed);
1da177e4 600
8ea926b2 601 mmc_host_lazy_disable(host);
1da177e4 602
8ea926b2 603 mmc_do_release_host(host);
1da177e4
LT
604}
605
606EXPORT_SYMBOL(mmc_release_host);
607
7ea239d9
PO
608/*
609 * Internal function that does the actual ios call to the host driver,
610 * optionally printing some debug output.
611 */
920e70c5
RK
612static inline void mmc_set_ios(struct mmc_host *host)
613{
614 struct mmc_ios *ios = &host->ios;
615
cd9277c0
PO
616 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
617 "width %u timing %u\n",
920e70c5
RK
618 mmc_hostname(host), ios->clock, ios->bus_mode,
619 ios->power_mode, ios->chip_select, ios->vdd,
cd9277c0 620 ios->bus_width, ios->timing);
fba68bd2 621
04566831
LW
622 if (ios->clock > 0)
623 mmc_set_ungated(host);
920e70c5
RK
624 host->ops->set_ios(host, ios);
625}
626
7ea239d9
PO
627/*
628 * Control chip select pin on a host.
629 */
da7fbe58 630void mmc_set_chip_select(struct mmc_host *host, int mode)
1da177e4 631{
da7fbe58
PO
632 host->ios.chip_select = mode;
633 mmc_set_ios(host);
1da177e4
LT
634}
635
7ea239d9
PO
636/*
637 * Sets the host clock to the highest possible frequency that
638 * is below "hz".
639 */
640void mmc_set_clock(struct mmc_host *host, unsigned int hz)
641{
642 WARN_ON(hz < host->f_min);
643
644 if (hz > host->f_max)
645 hz = host->f_max;
646
647 host->ios.clock = hz;
648 mmc_set_ios(host);
649}
650
04566831
LW
651#ifdef CONFIG_MMC_CLKGATE
652/*
653 * This gates the clock by setting it to 0 Hz.
654 */
655void mmc_gate_clock(struct mmc_host *host)
656{
657 unsigned long flags;
658
659 spin_lock_irqsave(&host->clk_lock, flags);
660 host->clk_old = host->ios.clock;
661 host->ios.clock = 0;
662 host->clk_gated = true;
663 spin_unlock_irqrestore(&host->clk_lock, flags);
664 mmc_set_ios(host);
665}
666
667/*
668 * This restores the clock from gating by using the cached
669 * clock value.
670 */
671void mmc_ungate_clock(struct mmc_host *host)
672{
673 /*
674 * We should previously have gated the clock, so the clock shall
675 * be 0 here! The clock may however be 0 during initialization,
676 * when some request operations are performed before setting
677 * the frequency. When ungate is requested in that situation
678 * we just ignore the call.
679 */
680 if (host->clk_old) {
681 BUG_ON(host->ios.clock);
682 /* This call will also set host->clk_gated to false */
683 mmc_set_clock(host, host->clk_old);
684 }
685}
686
687void mmc_set_ungated(struct mmc_host *host)
688{
689 unsigned long flags;
690
691 /*
692 * We've been given a new frequency while the clock is gated,
693 * so make sure we regard this as ungating it.
694 */
695 spin_lock_irqsave(&host->clk_lock, flags);
696 host->clk_gated = false;
697 spin_unlock_irqrestore(&host->clk_lock, flags);
698}
699
700#else
701void mmc_set_ungated(struct mmc_host *host)
702{
703}
704#endif
705
7ea239d9
PO
706/*
707 * Change the bus mode (open drain/push-pull) of a host.
708 */
709void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
710{
711 host->ios.bus_mode = mode;
712 mmc_set_ios(host);
713}
714
715/*
0f8d8ea6 716 * Change data bus width and DDR mode of a host.
7ea239d9 717 */
49e3b5a4
AH
718void mmc_set_bus_width_ddr(struct mmc_host *host, unsigned int width,
719 unsigned int ddr)
7ea239d9
PO
720{
721 host->ios.bus_width = width;
49e3b5a4 722 host->ios.ddr = ddr;
7ea239d9
PO
723 mmc_set_ios(host);
724}
725
0f8d8ea6
AH
726/*
727 * Change data bus width of a host.
728 */
729void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
730{
49e3b5a4 731 mmc_set_bus_width_ddr(host, width, MMC_SDR_MODE);
0f8d8ea6
AH
732}
733
86e8286a
AV
734/**
735 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
736 * @vdd: voltage (mV)
737 * @low_bits: prefer low bits in boundary cases
738 *
739 * This function returns the OCR bit number according to the provided @vdd
740 * value. If conversion is not possible a negative errno value returned.
741 *
742 * Depending on the @low_bits flag the function prefers low or high OCR bits
743 * on boundary voltages. For example,
744 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
745 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
746 *
747 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
748 */
749static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
750{
751 const int max_bit = ilog2(MMC_VDD_35_36);
752 int bit;
753
754 if (vdd < 1650 || vdd > 3600)
755 return -EINVAL;
756
757 if (vdd >= 1650 && vdd <= 1950)
758 return ilog2(MMC_VDD_165_195);
759
760 if (low_bits)
761 vdd -= 1;
762
763 /* Base 2000 mV, step 100 mV, bit's base 8. */
764 bit = (vdd - 2000) / 100 + 8;
765 if (bit > max_bit)
766 return max_bit;
767 return bit;
768}
769
770/**
771 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
772 * @vdd_min: minimum voltage value (mV)
773 * @vdd_max: maximum voltage value (mV)
774 *
775 * This function returns the OCR mask bits according to the provided @vdd_min
776 * and @vdd_max values. If conversion is not possible the function returns 0.
777 *
778 * Notes wrt boundary cases:
779 * This function sets the OCR bits for all boundary voltages, for example
780 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
781 * MMC_VDD_34_35 mask.
782 */
783u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
784{
785 u32 mask = 0;
786
787 if (vdd_max < vdd_min)
788 return 0;
789
790 /* Prefer high bits for the boundary vdd_max values. */
791 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
792 if (vdd_max < 0)
793 return 0;
794
795 /* Prefer low bits for the boundary vdd_min values. */
796 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
797 if (vdd_min < 0)
798 return 0;
799
800 /* Fill the mask, from max bit to min bit. */
801 while (vdd_max >= vdd_min)
802 mask |= 1 << vdd_max--;
803
804 return mask;
805}
806EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
807
5c13941a
DB
808#ifdef CONFIG_REGULATOR
809
810/**
811 * mmc_regulator_get_ocrmask - return mask of supported voltages
812 * @supply: regulator to use
813 *
814 * This returns either a negative errno, or a mask of voltages that
815 * can be provided to MMC/SD/SDIO devices using the specified voltage
816 * regulator. This would normally be called before registering the
817 * MMC host adapter.
818 */
819int mmc_regulator_get_ocrmask(struct regulator *supply)
820{
821 int result = 0;
822 int count;
823 int i;
824
825 count = regulator_count_voltages(supply);
826 if (count < 0)
827 return count;
828
829 for (i = 0; i < count; i++) {
830 int vdd_uV;
831 int vdd_mV;
832
833 vdd_uV = regulator_list_voltage(supply, i);
834 if (vdd_uV <= 0)
835 continue;
836
837 vdd_mV = vdd_uV / 1000;
838 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
839 }
840
841 return result;
842}
843EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
844
845/**
846 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
99fc5131 847 * @mmc: the host to regulate
5c13941a 848 * @supply: regulator to use
99fc5131 849 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
5c13941a
DB
850 *
851 * Returns zero on success, else negative errno.
852 *
853 * MMC host drivers may use this to enable or disable a regulator using
854 * a particular supply voltage. This would normally be called from the
855 * set_ios() method.
856 */
99fc5131
LW
857int mmc_regulator_set_ocr(struct mmc_host *mmc,
858 struct regulator *supply,
859 unsigned short vdd_bit)
5c13941a
DB
860{
861 int result = 0;
862 int min_uV, max_uV;
5c13941a
DB
863
864 if (vdd_bit) {
865 int tmp;
866 int voltage;
867
868 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
869 * bits this regulator doesn't quite support ... don't
870 * be too picky, most cards and regulators are OK with
871 * a 0.1V range goof (it's a small error percentage).
872 */
873 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
874 if (tmp == 0) {
875 min_uV = 1650 * 1000;
876 max_uV = 1950 * 1000;
877 } else {
878 min_uV = 1900 * 1000 + tmp * 100 * 1000;
879 max_uV = min_uV + 100 * 1000;
880 }
881
882 /* avoid needless changes to this voltage; the regulator
883 * might not allow this operation
884 */
885 voltage = regulator_get_voltage(supply);
886 if (voltage < 0)
887 result = voltage;
888 else if (voltage < min_uV || voltage > max_uV)
889 result = regulator_set_voltage(supply, min_uV, max_uV);
890 else
891 result = 0;
892
99fc5131 893 if (result == 0 && !mmc->regulator_enabled) {
5c13941a 894 result = regulator_enable(supply);
99fc5131
LW
895 if (!result)
896 mmc->regulator_enabled = true;
897 }
898 } else if (mmc->regulator_enabled) {
5c13941a 899 result = regulator_disable(supply);
99fc5131
LW
900 if (result == 0)
901 mmc->regulator_enabled = false;
5c13941a
DB
902 }
903
99fc5131
LW
904 if (result)
905 dev_err(mmc_dev(mmc),
906 "could not set regulator OCR (%d)\n", result);
5c13941a
DB
907 return result;
908}
909EXPORT_SYMBOL(mmc_regulator_set_ocr);
910
99fc5131 911#endif /* CONFIG_REGULATOR */
5c13941a 912
1da177e4
LT
913/*
914 * Mask off any voltages we don't support and select
915 * the lowest voltage
916 */
7ea239d9 917u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1da177e4
LT
918{
919 int bit;
920
921 ocr &= host->ocr_avail;
922
923 bit = ffs(ocr);
924 if (bit) {
925 bit -= 1;
926
63ef731a 927 ocr &= 3 << bit;
1da177e4
LT
928
929 host->ios.vdd = bit;
920e70c5 930 mmc_set_ios(host);
1da177e4 931 } else {
f6e10b86
DB
932 pr_warning("%s: host doesn't support card's voltages\n",
933 mmc_hostname(host));
1da177e4
LT
934 ocr = 0;
935 }
936
937 return ocr;
938}
939
b57c43ad 940/*
7ea239d9 941 * Select timing parameters for host.
b57c43ad 942 */
7ea239d9 943void mmc_set_timing(struct mmc_host *host, unsigned int timing)
b57c43ad 944{
7ea239d9
PO
945 host->ios.timing = timing;
946 mmc_set_ios(host);
b57c43ad
PO
947}
948
1da177e4 949/*
45f8245b
RK
950 * Apply power to the MMC stack. This is a two-stage process.
951 * First, we enable power to the card without the clock running.
952 * We then wait a bit for the power to stabilise. Finally,
953 * enable the bus drivers and clock to the card.
954 *
955 * We must _NOT_ enable the clock prior to power stablising.
956 *
957 * If a host does all the power sequencing itself, ignore the
958 * initial MMC_POWER_UP stage.
1da177e4
LT
959 */
960static void mmc_power_up(struct mmc_host *host)
961{
500f3564
BR
962 int bit;
963
964 /* If ocr is set, we use it */
965 if (host->ocr)
966 bit = ffs(host->ocr) - 1;
967 else
968 bit = fls(host->ocr_avail) - 1;
1da177e4
LT
969
970 host->ios.vdd = bit;
af517150
DB
971 if (mmc_host_is_spi(host)) {
972 host->ios.chip_select = MMC_CS_HIGH;
973 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
974 } else {
975 host->ios.chip_select = MMC_CS_DONTCARE;
976 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
977 }
1da177e4 978 host->ios.power_mode = MMC_POWER_UP;
f218278a 979 host->ios.bus_width = MMC_BUS_WIDTH_1;
cd9277c0 980 host->ios.timing = MMC_TIMING_LEGACY;
920e70c5 981 mmc_set_ios(host);
1da177e4 982
f9996aee
PO
983 /*
984 * This delay should be sufficient to allow the power supply
985 * to reach the minimum voltage.
986 */
79bccc5a 987 mmc_delay(10);
1da177e4 988
88ae8b86 989 host->ios.clock = host->f_init;
8dfd0374 990
1da177e4 991 host->ios.power_mode = MMC_POWER_ON;
920e70c5 992 mmc_set_ios(host);
1da177e4 993
f9996aee
PO
994 /*
995 * This delay must be at least 74 clock sizes, or 1 ms, or the
996 * time required to reach a stable voltage.
997 */
79bccc5a 998 mmc_delay(10);
1da177e4
LT
999}
1000
1001static void mmc_power_off(struct mmc_host *host)
1002{
1003 host->ios.clock = 0;
1004 host->ios.vdd = 0;
af517150
DB
1005 if (!mmc_host_is_spi(host)) {
1006 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1007 host->ios.chip_select = MMC_CS_DONTCARE;
1008 }
1da177e4 1009 host->ios.power_mode = MMC_POWER_OFF;
f218278a 1010 host->ios.bus_width = MMC_BUS_WIDTH_1;
cd9277c0 1011 host->ios.timing = MMC_TIMING_LEGACY;
920e70c5 1012 mmc_set_ios(host);
1da177e4
LT
1013}
1014
39361851
AB
1015/*
1016 * Cleanup when the last reference to the bus operator is dropped.
1017 */
261172fd 1018static void __mmc_release_bus(struct mmc_host *host)
39361851
AB
1019{
1020 BUG_ON(!host);
1021 BUG_ON(host->bus_refs);
1022 BUG_ON(!host->bus_dead);
1023
1024 host->bus_ops = NULL;
1025}
1026
1027/*
1028 * Increase reference count of bus operator
1029 */
1030static inline void mmc_bus_get(struct mmc_host *host)
1031{
1032 unsigned long flags;
1033
1034 spin_lock_irqsave(&host->lock, flags);
1035 host->bus_refs++;
1036 spin_unlock_irqrestore(&host->lock, flags);
1037}
1038
1039/*
1040 * Decrease reference count of bus operator and free it if
1041 * it is the last reference.
1042 */
1043static inline void mmc_bus_put(struct mmc_host *host)
1044{
1045 unsigned long flags;
1046
1047 spin_lock_irqsave(&host->lock, flags);
1048 host->bus_refs--;
1049 if ((host->bus_refs == 0) && host->bus_ops)
1050 __mmc_release_bus(host);
1051 spin_unlock_irqrestore(&host->lock, flags);
1052}
1053
1da177e4 1054/*
7ea239d9
PO
1055 * Assign a mmc bus handler to a host. Only one bus handler may control a
1056 * host at any given time.
1da177e4 1057 */
7ea239d9 1058void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1da177e4 1059{
7ea239d9 1060 unsigned long flags;
e45a1bd2 1061
7ea239d9
PO
1062 BUG_ON(!host);
1063 BUG_ON(!ops);
b855885e 1064
d84075c8 1065 WARN_ON(!host->claimed);
bce40a36 1066
7ea239d9 1067 spin_lock_irqsave(&host->lock, flags);
bce40a36 1068
7ea239d9
PO
1069 BUG_ON(host->bus_ops);
1070 BUG_ON(host->bus_refs);
b57c43ad 1071
7ea239d9
PO
1072 host->bus_ops = ops;
1073 host->bus_refs = 1;
1074 host->bus_dead = 0;
b57c43ad 1075
7ea239d9 1076 spin_unlock_irqrestore(&host->lock, flags);
b57c43ad
PO
1077}
1078
7ea239d9
PO
1079/*
1080 * Remove the current bus handler from a host. Assumes that there are
1081 * no interesting cards left, so the bus is powered down.
1082 */
1083void mmc_detach_bus(struct mmc_host *host)
7ccd266e 1084{
7ea239d9 1085 unsigned long flags;
7ccd266e 1086
7ea239d9 1087 BUG_ON(!host);
7ccd266e 1088
d84075c8
PO
1089 WARN_ON(!host->claimed);
1090 WARN_ON(!host->bus_ops);
cd9277c0 1091
7ea239d9 1092 spin_lock_irqsave(&host->lock, flags);
7ccd266e 1093
7ea239d9 1094 host->bus_dead = 1;
7ccd266e 1095
7ea239d9 1096 spin_unlock_irqrestore(&host->lock, flags);
1da177e4 1097
7ea239d9 1098 mmc_power_off(host);
1da177e4 1099
7ea239d9 1100 mmc_bus_put(host);
1da177e4
LT
1101}
1102
1da177e4
LT
1103/**
1104 * mmc_detect_change - process change of state on a MMC socket
1105 * @host: host which changed state.
8dc00335 1106 * @delay: optional delay to wait before detection (jiffies)
1da177e4 1107 *
67a61c48
PO
1108 * MMC drivers should call this when they detect a card has been
1109 * inserted or removed. The MMC layer will confirm that any
1110 * present card is still functional, and initialize any newly
1111 * inserted.
1da177e4 1112 */
8dc00335 1113void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1da177e4 1114{
3b91e550 1115#ifdef CONFIG_MMC_DEBUG
1efd48b3 1116 unsigned long flags;
01f41ec7 1117 spin_lock_irqsave(&host->lock, flags);
d84075c8 1118 WARN_ON(host->removed);
01f41ec7 1119 spin_unlock_irqrestore(&host->lock, flags);
3b91e550
PO
1120#endif
1121
c4028958 1122 mmc_schedule_delayed_work(&host->detect, delay);
1da177e4
LT
1123}
1124
1125EXPORT_SYMBOL(mmc_detect_change);
1126
dfe86cba
AH
1127void mmc_init_erase(struct mmc_card *card)
1128{
1129 unsigned int sz;
1130
1131 if (is_power_of_2(card->erase_size))
1132 card->erase_shift = ffs(card->erase_size) - 1;
1133 else
1134 card->erase_shift = 0;
1135
1136 /*
1137 * It is possible to erase an arbitrarily large area of an SD or MMC
1138 * card. That is not desirable because it can take a long time
1139 * (minutes) potentially delaying more important I/O, and also the
1140 * timeout calculations become increasingly hugely over-estimated.
1141 * Consequently, 'pref_erase' is defined as a guide to limit erases
1142 * to that size and alignment.
1143 *
1144 * For SD cards that define Allocation Unit size, limit erases to one
1145 * Allocation Unit at a time. For MMC cards that define High Capacity
1146 * Erase Size, whether it is switched on or not, limit to that size.
1147 * Otherwise just have a stab at a good value. For modern cards it
1148 * will end up being 4MiB. Note that if the value is too small, it
1149 * can end up taking longer to erase.
1150 */
1151 if (mmc_card_sd(card) && card->ssr.au) {
1152 card->pref_erase = card->ssr.au;
1153 card->erase_shift = ffs(card->ssr.au) - 1;
1154 } else if (card->ext_csd.hc_erase_size) {
1155 card->pref_erase = card->ext_csd.hc_erase_size;
1156 } else {
1157 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1158 if (sz < 128)
1159 card->pref_erase = 512 * 1024 / 512;
1160 else if (sz < 512)
1161 card->pref_erase = 1024 * 1024 / 512;
1162 else if (sz < 1024)
1163 card->pref_erase = 2 * 1024 * 1024 / 512;
1164 else
1165 card->pref_erase = 4 * 1024 * 1024 / 512;
1166 if (card->pref_erase < card->erase_size)
1167 card->pref_erase = card->erase_size;
1168 else {
1169 sz = card->pref_erase % card->erase_size;
1170 if (sz)
1171 card->pref_erase += card->erase_size - sz;
1172 }
1173 }
1174}
1175
1176static void mmc_set_mmc_erase_timeout(struct mmc_card *card,
1177 struct mmc_command *cmd,
1178 unsigned int arg, unsigned int qty)
1179{
1180 unsigned int erase_timeout;
1181
1182 if (card->ext_csd.erase_group_def & 1) {
1183 /* High Capacity Erase Group Size uses HC timeouts */
1184 if (arg == MMC_TRIM_ARG)
1185 erase_timeout = card->ext_csd.trim_timeout;
1186 else
1187 erase_timeout = card->ext_csd.hc_erase_timeout;
1188 } else {
1189 /* CSD Erase Group Size uses write timeout */
1190 unsigned int mult = (10 << card->csd.r2w_factor);
1191 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1192 unsigned int timeout_us;
1193
1194 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1195 if (card->csd.tacc_ns < 1000000)
1196 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1197 else
1198 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1199
1200 /*
1201 * ios.clock is only a target. The real clock rate might be
1202 * less but not that much less, so fudge it by multiplying by 2.
1203 */
1204 timeout_clks <<= 1;
1205 timeout_us += (timeout_clks * 1000) /
1206 (card->host->ios.clock / 1000);
1207
1208 erase_timeout = timeout_us / 1000;
1209
1210 /*
1211 * Theoretically, the calculation could underflow so round up
1212 * to 1ms in that case.
1213 */
1214 if (!erase_timeout)
1215 erase_timeout = 1;
1216 }
1217
1218 /* Multiplier for secure operations */
1219 if (arg & MMC_SECURE_ARGS) {
1220 if (arg == MMC_SECURE_ERASE_ARG)
1221 erase_timeout *= card->ext_csd.sec_erase_mult;
1222 else
1223 erase_timeout *= card->ext_csd.sec_trim_mult;
1224 }
1225
1226 erase_timeout *= qty;
1227
1228 /*
1229 * Ensure at least a 1 second timeout for SPI as per
1230 * 'mmc_set_data_timeout()'
1231 */
1232 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1233 erase_timeout = 1000;
1234
1235 cmd->erase_timeout = erase_timeout;
1236}
1237
1238static void mmc_set_sd_erase_timeout(struct mmc_card *card,
1239 struct mmc_command *cmd, unsigned int arg,
1240 unsigned int qty)
1241{
1242 if (card->ssr.erase_timeout) {
1243 /* Erase timeout specified in SD Status Register (SSR) */
1244 cmd->erase_timeout = card->ssr.erase_timeout * qty +
1245 card->ssr.erase_offset;
1246 } else {
1247 /*
1248 * Erase timeout not specified in SD Status Register (SSR) so
1249 * use 250ms per write block.
1250 */
1251 cmd->erase_timeout = 250 * qty;
1252 }
1253
1254 /* Must not be less than 1 second */
1255 if (cmd->erase_timeout < 1000)
1256 cmd->erase_timeout = 1000;
1257}
1258
1259static void mmc_set_erase_timeout(struct mmc_card *card,
1260 struct mmc_command *cmd, unsigned int arg,
1261 unsigned int qty)
1262{
1263 if (mmc_card_sd(card))
1264 mmc_set_sd_erase_timeout(card, cmd, arg, qty);
1265 else
1266 mmc_set_mmc_erase_timeout(card, cmd, arg, qty);
1267}
1268
1269static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1270 unsigned int to, unsigned int arg)
1271{
1272 struct mmc_command cmd;
1273 unsigned int qty = 0;
1274 int err;
1275
1276 /*
1277 * qty is used to calculate the erase timeout which depends on how many
1278 * erase groups (or allocation units in SD terminology) are affected.
1279 * We count erasing part of an erase group as one erase group.
1280 * For SD, the allocation units are always a power of 2. For MMC, the
1281 * erase group size is almost certainly also power of 2, but it does not
1282 * seem to insist on that in the JEDEC standard, so we fall back to
1283 * division in that case. SD may not specify an allocation unit size,
1284 * in which case the timeout is based on the number of write blocks.
1285 *
1286 * Note that the timeout for secure trim 2 will only be correct if the
1287 * number of erase groups specified is the same as the total of all
1288 * preceding secure trim 1 commands. Since the power may have been
1289 * lost since the secure trim 1 commands occurred, it is generally
1290 * impossible to calculate the secure trim 2 timeout correctly.
1291 */
1292 if (card->erase_shift)
1293 qty += ((to >> card->erase_shift) -
1294 (from >> card->erase_shift)) + 1;
1295 else if (mmc_card_sd(card))
1296 qty += to - from + 1;
1297 else
1298 qty += ((to / card->erase_size) -
1299 (from / card->erase_size)) + 1;
1300
1301 if (!mmc_card_blockaddr(card)) {
1302 from <<= 9;
1303 to <<= 9;
1304 }
1305
1306 memset(&cmd, 0, sizeof(struct mmc_command));
1307 if (mmc_card_sd(card))
1308 cmd.opcode = SD_ERASE_WR_BLK_START;
1309 else
1310 cmd.opcode = MMC_ERASE_GROUP_START;
1311 cmd.arg = from;
1312 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1313 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1314 if (err) {
1315 printk(KERN_ERR "mmc_erase: group start error %d, "
1316 "status %#x\n", err, cmd.resp[0]);
1317 err = -EINVAL;
1318 goto out;
1319 }
1320
1321 memset(&cmd, 0, sizeof(struct mmc_command));
1322 if (mmc_card_sd(card))
1323 cmd.opcode = SD_ERASE_WR_BLK_END;
1324 else
1325 cmd.opcode = MMC_ERASE_GROUP_END;
1326 cmd.arg = to;
1327 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1328 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1329 if (err) {
1330 printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1331 err, cmd.resp[0]);
1332 err = -EINVAL;
1333 goto out;
1334 }
1335
1336 memset(&cmd, 0, sizeof(struct mmc_command));
1337 cmd.opcode = MMC_ERASE;
1338 cmd.arg = arg;
1339 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1340 mmc_set_erase_timeout(card, &cmd, arg, qty);
1341 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1342 if (err) {
1343 printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1344 err, cmd.resp[0]);
1345 err = -EIO;
1346 goto out;
1347 }
1348
1349 if (mmc_host_is_spi(card->host))
1350 goto out;
1351
1352 do {
1353 memset(&cmd, 0, sizeof(struct mmc_command));
1354 cmd.opcode = MMC_SEND_STATUS;
1355 cmd.arg = card->rca << 16;
1356 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1357 /* Do not retry else we can't see errors */
1358 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1359 if (err || (cmd.resp[0] & 0xFDF92000)) {
1360 printk(KERN_ERR "error %d requesting status %#x\n",
1361 err, cmd.resp[0]);
1362 err = -EIO;
1363 goto out;
1364 }
1365 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1366 R1_CURRENT_STATE(cmd.resp[0]) == 7);
1367out:
1368 return err;
1369}
1370
1371/**
1372 * mmc_erase - erase sectors.
1373 * @card: card to erase
1374 * @from: first sector to erase
1375 * @nr: number of sectors to erase
1376 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1377 *
1378 * Caller must claim host before calling this function.
1379 */
1380int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1381 unsigned int arg)
1382{
1383 unsigned int rem, to = from + nr;
1384
1385 if (!(card->host->caps & MMC_CAP_ERASE) ||
1386 !(card->csd.cmdclass & CCC_ERASE))
1387 return -EOPNOTSUPP;
1388
1389 if (!card->erase_size)
1390 return -EOPNOTSUPP;
1391
1392 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1393 return -EOPNOTSUPP;
1394
1395 if ((arg & MMC_SECURE_ARGS) &&
1396 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1397 return -EOPNOTSUPP;
1398
1399 if ((arg & MMC_TRIM_ARGS) &&
1400 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1401 return -EOPNOTSUPP;
1402
1403 if (arg == MMC_SECURE_ERASE_ARG) {
1404 if (from % card->erase_size || nr % card->erase_size)
1405 return -EINVAL;
1406 }
1407
1408 if (arg == MMC_ERASE_ARG) {
1409 rem = from % card->erase_size;
1410 if (rem) {
1411 rem = card->erase_size - rem;
1412 from += rem;
1413 if (nr > rem)
1414 nr -= rem;
1415 else
1416 return 0;
1417 }
1418 rem = nr % card->erase_size;
1419 if (rem)
1420 nr -= rem;
1421 }
1422
1423 if (nr == 0)
1424 return 0;
1425
1426 to = from + nr;
1427
1428 if (to <= from)
1429 return -EINVAL;
1430
1431 /* 'from' and 'to' are inclusive */
1432 to -= 1;
1433
1434 return mmc_do_erase(card, from, to, arg);
1435}
1436EXPORT_SYMBOL(mmc_erase);
1437
1438int mmc_can_erase(struct mmc_card *card)
1439{
1440 if ((card->host->caps & MMC_CAP_ERASE) &&
1441 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1442 return 1;
1443 return 0;
1444}
1445EXPORT_SYMBOL(mmc_can_erase);
1446
1447int mmc_can_trim(struct mmc_card *card)
1448{
1449 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1450 return 1;
1451 return 0;
1452}
1453EXPORT_SYMBOL(mmc_can_trim);
1454
1455int mmc_can_secure_erase_trim(struct mmc_card *card)
1456{
1457 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1458 return 1;
1459 return 0;
1460}
1461EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1462
1463int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1464 unsigned int nr)
1465{
1466 if (!card->erase_size)
1467 return 0;
1468 if (from % card->erase_size || nr % card->erase_size)
1469 return 0;
1470 return 1;
1471}
1472EXPORT_SYMBOL(mmc_erase_group_aligned);
1da177e4 1473
0f8d8ea6
AH
1474int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1475{
1476 struct mmc_command cmd;
1477
1478 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1479 return 0;
1480
1481 memset(&cmd, 0, sizeof(struct mmc_command));
1482 cmd.opcode = MMC_SET_BLOCKLEN;
1483 cmd.arg = blocklen;
1484 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1485 return mmc_wait_for_cmd(card->host, &cmd, 5);
1486}
1487EXPORT_SYMBOL(mmc_set_blocklen);
1488
807e8e40
AR
1489static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1490{
1491 host->f_init = freq;
1492
1493#ifdef CONFIG_MMC_DEBUG
1494 pr_info("%s: %s: trying to init card at %u Hz\n",
1495 mmc_hostname(host), __func__, host->f_init);
1496#endif
1497 mmc_power_up(host);
1498 sdio_reset(host);
1499 mmc_go_idle(host);
1500
1501 mmc_send_if_cond(host, host->ocr_avail);
1502
1503 /* Order's important: probe SDIO, then SD, then MMC */
1504 if (!mmc_attach_sdio(host))
1505 return 0;
1506 if (!mmc_attach_sd(host))
1507 return 0;
1508 if (!mmc_attach_mmc(host))
1509 return 0;
1510
1511 mmc_power_off(host);
1512 return -EIO;
1513}
1514
b93931a6 1515void mmc_rescan(struct work_struct *work)
1da177e4 1516{
807e8e40 1517 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
c4028958
DH
1518 struct mmc_host *host =
1519 container_of(work, struct mmc_host, detect.work);
88ae8b86 1520 int i;
4c2ef25f 1521
807e8e40 1522 if (host->rescan_disable)
4c2ef25f 1523 return;
1da177e4 1524
7ea239d9 1525 mmc_bus_get(host);
b855885e 1526
30201e7f
OBC
1527 /*
1528 * if there is a _removable_ card registered, check whether it is
1529 * still present
1530 */
1531 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
bad3baba 1532 && !(host->caps & MMC_CAP_NONREMOVABLE))
94d89efb
JS
1533 host->bus_ops->detect(host);
1534
c5841798
CB
1535 /*
1536 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1537 * the card is no longer present.
1538 */
94d89efb 1539 mmc_bus_put(host);
94d89efb
JS
1540 mmc_bus_get(host);
1541
1542 /* if there still is a card present, stop here */
1543 if (host->bus_ops != NULL) {
7ea239d9 1544 mmc_bus_put(host);
94d89efb
JS
1545 goto out;
1546 }
1da177e4 1547
94d89efb
JS
1548 /*
1549 * Only we can add a new handler, so it's safe to
1550 * release the lock here.
1551 */
1552 mmc_bus_put(host);
1da177e4 1553
94d89efb
JS
1554 if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1555 goto out;
1da177e4 1556
807e8e40 1557 mmc_claim_host(host);
88ae8b86 1558 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
807e8e40
AR
1559 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1560 break;
1561 if (freqs[i] < host->f_min)
1562 break;
88ae8b86 1563 }
807e8e40
AR
1564 mmc_release_host(host);
1565
1566 out:
28f52482
AV
1567 if (host->caps & MMC_CAP_NEEDS_POLL)
1568 mmc_schedule_delayed_work(&host->detect, HZ);
1da177e4
LT
1569}
1570
b93931a6 1571void mmc_start_host(struct mmc_host *host)
1da177e4 1572{
b93931a6
PO
1573 mmc_power_off(host);
1574 mmc_detect_change(host, 0);
1da177e4
LT
1575}
1576
b93931a6 1577void mmc_stop_host(struct mmc_host *host)
1da177e4 1578{
3b91e550 1579#ifdef CONFIG_MMC_DEBUG
1efd48b3
PO
1580 unsigned long flags;
1581 spin_lock_irqsave(&host->lock, flags);
3b91e550 1582 host->removed = 1;
1efd48b3 1583 spin_unlock_irqrestore(&host->lock, flags);
3b91e550
PO
1584#endif
1585
8ea926b2
AH
1586 if (host->caps & MMC_CAP_DISABLE)
1587 cancel_delayed_work(&host->disable);
d9bcbf34 1588 cancel_delayed_work_sync(&host->detect);
3b91e550
PO
1589 mmc_flush_scheduled_work();
1590
da68c4eb
NP
1591 /* clear pm flags now and let card drivers set them as needed */
1592 host->pm_flags = 0;
1593
7ea239d9
PO
1594 mmc_bus_get(host);
1595 if (host->bus_ops && !host->bus_dead) {
1596 if (host->bus_ops->remove)
1597 host->bus_ops->remove(host);
1598
1599 mmc_claim_host(host);
1600 mmc_detach_bus(host);
1601 mmc_release_host(host);
53509f0f
DK
1602 mmc_bus_put(host);
1603 return;
1da177e4 1604 }
7ea239d9
PO
1605 mmc_bus_put(host);
1606
1607 BUG_ON(host->card);
1da177e4
LT
1608
1609 mmc_power_off(host);
1610}
1611
12ae637f 1612int mmc_power_save_host(struct mmc_host *host)
eae1aeee 1613{
12ae637f
OBC
1614 int ret = 0;
1615
eae1aeee
AH
1616 mmc_bus_get(host);
1617
1618 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1619 mmc_bus_put(host);
12ae637f 1620 return -EINVAL;
eae1aeee
AH
1621 }
1622
1623 if (host->bus_ops->power_save)
12ae637f 1624 ret = host->bus_ops->power_save(host);
eae1aeee
AH
1625
1626 mmc_bus_put(host);
1627
1628 mmc_power_off(host);
12ae637f
OBC
1629
1630 return ret;
eae1aeee
AH
1631}
1632EXPORT_SYMBOL(mmc_power_save_host);
1633
12ae637f 1634int mmc_power_restore_host(struct mmc_host *host)
eae1aeee 1635{
12ae637f
OBC
1636 int ret;
1637
eae1aeee
AH
1638 mmc_bus_get(host);
1639
1640 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1641 mmc_bus_put(host);
12ae637f 1642 return -EINVAL;
eae1aeee
AH
1643 }
1644
1645 mmc_power_up(host);
12ae637f 1646 ret = host->bus_ops->power_restore(host);
eae1aeee
AH
1647
1648 mmc_bus_put(host);
12ae637f
OBC
1649
1650 return ret;
eae1aeee
AH
1651}
1652EXPORT_SYMBOL(mmc_power_restore_host);
1653
b1ebe384
JL
1654int mmc_card_awake(struct mmc_host *host)
1655{
1656 int err = -ENOSYS;
1657
1658 mmc_bus_get(host);
1659
1660 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1661 err = host->bus_ops->awake(host);
1662
1663 mmc_bus_put(host);
1664
1665 return err;
1666}
1667EXPORT_SYMBOL(mmc_card_awake);
1668
1669int mmc_card_sleep(struct mmc_host *host)
1670{
1671 int err = -ENOSYS;
1672
1673 mmc_bus_get(host);
1674
1675 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1676 err = host->bus_ops->sleep(host);
1677
1678 mmc_bus_put(host);
1679
1680 return err;
1681}
1682EXPORT_SYMBOL(mmc_card_sleep);
1683
1684int mmc_card_can_sleep(struct mmc_host *host)
1685{
1686 struct mmc_card *card = host->card;
1687
1688 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1689 return 1;
1690 return 0;
1691}
1692EXPORT_SYMBOL(mmc_card_can_sleep);
1693
1da177e4
LT
1694#ifdef CONFIG_PM
1695
1696/**
1697 * mmc_suspend_host - suspend a host
1698 * @host: mmc host
1da177e4 1699 */
1a13f8fa 1700int mmc_suspend_host(struct mmc_host *host)
1da177e4 1701{
95cdfb72
NP
1702 int err = 0;
1703
8ea926b2
AH
1704 if (host->caps & MMC_CAP_DISABLE)
1705 cancel_delayed_work(&host->disable);
7de427d0 1706 cancel_delayed_work(&host->detect);
b5af25be
PO
1707 mmc_flush_scheduled_work();
1708
7ea239d9
PO
1709 mmc_bus_get(host);
1710 if (host->bus_ops && !host->bus_dead) {
6abaa0c9 1711 if (host->bus_ops->suspend)
95cdfb72 1712 err = host->bus_ops->suspend(host);
1c8cf9c9
OBC
1713 if (err == -ENOSYS || !host->bus_ops->resume) {
1714 /*
1715 * We simply "remove" the card in this case.
1716 * It will be redetected on resume.
1717 */
1718 if (host->bus_ops->remove)
1719 host->bus_ops->remove(host);
1720 mmc_claim_host(host);
1721 mmc_detach_bus(host);
1722 mmc_release_host(host);
1723 host->pm_flags = 0;
1724 err = 0;
1725 }
b5af25be 1726 }
7ea239d9
PO
1727 mmc_bus_put(host);
1728
da68c4eb 1729 if (!err && !(host->pm_flags & MMC_PM_KEEP_POWER))
95cdfb72 1730 mmc_power_off(host);
1da177e4 1731
95cdfb72 1732 return err;
1da177e4
LT
1733}
1734
1735EXPORT_SYMBOL(mmc_suspend_host);
1736
1737/**
1738 * mmc_resume_host - resume a previously suspended host
1739 * @host: mmc host
1740 */
1741int mmc_resume_host(struct mmc_host *host)
1742{
95cdfb72
NP
1743 int err = 0;
1744
6abaa0c9
PO
1745 mmc_bus_get(host);
1746 if (host->bus_ops && !host->bus_dead) {
da68c4eb
NP
1747 if (!(host->pm_flags & MMC_PM_KEEP_POWER)) {
1748 mmc_power_up(host);
1749 mmc_select_voltage(host, host->ocr);
e594573d
OBC
1750 /*
1751 * Tell runtime PM core we just powered up the card,
1752 * since it still believes the card is powered off.
1753 * Note that currently runtime PM is only enabled
1754 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
1755 */
1756 if (mmc_card_sdio(host->card) &&
1757 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
1758 pm_runtime_disable(&host->card->dev);
1759 pm_runtime_set_active(&host->card->dev);
1760 pm_runtime_enable(&host->card->dev);
1761 }
da68c4eb 1762 }
6abaa0c9 1763 BUG_ON(!host->bus_ops->resume);
95cdfb72
NP
1764 err = host->bus_ops->resume(host);
1765 if (err) {
1766 printk(KERN_WARNING "%s: error %d during resume "
1767 "(card was removed?)\n",
1768 mmc_hostname(host), err);
95cdfb72
NP
1769 err = 0;
1770 }
6abaa0c9
PO
1771 }
1772 mmc_bus_put(host);
1773
95cdfb72 1774 return err;
1da177e4 1775}
1da177e4
LT
1776EXPORT_SYMBOL(mmc_resume_host);
1777
4c2ef25f
ML
1778/* Do the card removal on suspend if card is assumed removeable
1779 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
1780 to sync the card.
1781*/
1782int mmc_pm_notify(struct notifier_block *notify_block,
1783 unsigned long mode, void *unused)
1784{
1785 struct mmc_host *host = container_of(
1786 notify_block, struct mmc_host, pm_notify);
1787 unsigned long flags;
1788
1789
1790 switch (mode) {
1791 case PM_HIBERNATION_PREPARE:
1792 case PM_SUSPEND_PREPARE:
1793
1794 spin_lock_irqsave(&host->lock, flags);
1795 host->rescan_disable = 1;
1796 spin_unlock_irqrestore(&host->lock, flags);
1797 cancel_delayed_work_sync(&host->detect);
1798
1799 if (!host->bus_ops || host->bus_ops->suspend)
1800 break;
1801
1802 mmc_claim_host(host);
1803
1804 if (host->bus_ops->remove)
1805 host->bus_ops->remove(host);
1806
1807 mmc_detach_bus(host);
1808 mmc_release_host(host);
1809 host->pm_flags = 0;
1810 break;
1811
1812 case PM_POST_SUSPEND:
1813 case PM_POST_HIBERNATION:
274476f8 1814 case PM_POST_RESTORE:
4c2ef25f
ML
1815
1816 spin_lock_irqsave(&host->lock, flags);
1817 host->rescan_disable = 0;
1818 spin_unlock_irqrestore(&host->lock, flags);
1819 mmc_detect_change(host, 0);
1820
1821 }
1822
1823 return 0;
1824}
1da177e4
LT
1825#endif
1826
ffce2e7e
PO
1827static int __init mmc_init(void)
1828{
1829 int ret;
1830
0d9ee5b2 1831 workqueue = alloc_ordered_workqueue("kmmcd", 0);
ffce2e7e
PO
1832 if (!workqueue)
1833 return -ENOMEM;
1834
1835 ret = mmc_register_bus();
e29a7d73
PO
1836 if (ret)
1837 goto destroy_workqueue;
1838
1839 ret = mmc_register_host_class();
1840 if (ret)
1841 goto unregister_bus;
1842
1843 ret = sdio_register_bus();
1844 if (ret)
1845 goto unregister_host_class;
1846
1847 return 0;
1848
1849unregister_host_class:
1850 mmc_unregister_host_class();
1851unregister_bus:
1852 mmc_unregister_bus();
1853destroy_workqueue:
1854 destroy_workqueue(workqueue);
1855
ffce2e7e
PO
1856 return ret;
1857}
1858
1859static void __exit mmc_exit(void)
1860{
e29a7d73 1861 sdio_unregister_bus();
ffce2e7e
PO
1862 mmc_unregister_host_class();
1863 mmc_unregister_bus();
1864 destroy_workqueue(workqueue);
1865}
1866
26074962 1867subsys_initcall(mmc_init);
ffce2e7e
PO
1868module_exit(mmc_exit);
1869
1da177e4 1870MODULE_LICENSE("GPL");