]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/mtd/chips/cfi_cmdset_0001.c
Merge remote-tracking branches 'asoc/topic/tas2552', 'asoc/topic/tegra', 'asoc/topic...
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / chips / cfi_cmdset_0001.c
CommitLineData
1da177e4
LT
1/*
2 * Common Flash Interface support:
3 * Intel Extended Vendor Command Set (ID 0x0001)
4 *
5 * (C) 2000 Red Hat. GPL'd
6 *
1da177e4 7 *
2f82af08 8 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
1da177e4
LT
9 * - completely revamped method functions so they are aware and
10 * independent of the flash geometry (buswidth, interleave, etc.)
11 * - scalability vs code size is completely set at compile-time
12 * (see include/linux/mtd/cfi.h for selection)
13 * - optimized write buffer method
14 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
15 * - reworked lock/unlock/erase support for var size flash
0ecbc81a
RG
16 * 21/03/2007 Rodolfo Giometti <giometti@linux.it>
17 * - auto unlock sectors on resume for auto locking flash on power up
1da177e4
LT
18 */
19
20#include <linux/module.h>
21#include <linux/types.h>
22#include <linux/kernel.h>
23#include <linux/sched.h>
1da177e4
LT
24#include <asm/io.h>
25#include <asm/byteorder.h>
26
27#include <linux/errno.h>
28#include <linux/slab.h>
29#include <linux/delay.h>
30#include <linux/interrupt.h>
963a6fb0 31#include <linux/reboot.h>
0ecbc81a 32#include <linux/bitmap.h>
1da177e4
LT
33#include <linux/mtd/xip.h>
34#include <linux/mtd/map.h>
35#include <linux/mtd/mtd.h>
1da177e4
LT
36#include <linux/mtd/cfi.h>
37
38/* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
39/* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
40
41// debugging, turns off buffer write mode if set to 1
42#define FORCE_WORD_WRITE 0
43
b2ef1a2b 44/* Intel chips */
1da177e4
LT
45#define I82802AB 0x00ad
46#define I82802AC 0x00ac
ec2d0d84 47#define PF38F4476 0x881c
b2ef1a2b 48/* STMicroelectronics chips */
1da177e4 49#define M50LPW080 0x002F
deb1a5f1
NC
50#define M50FLW080A 0x0080
51#define M50FLW080B 0x0081
8dbaea4b 52/* Atmel chips */
d10a39d1 53#define AT49BV640D 0x02de
8dbaea4b 54#define AT49BV640DT 0x02db
812c5fa8
AA
55/* Sharp chips */
56#define LH28F640BFHE_PTTL90 0x00b0
57#define LH28F640BFHE_PBTL90 0x00b1
58#define LH28F640BFHE_PTTL70A 0x00b2
59#define LH28F640BFHE_PBTL70A 0x00b3
1da177e4
LT
60
61static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
1da177e4
LT
62static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
63static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
e102d54a 64static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
1da177e4
LT
65static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
66static void cfi_intelext_sync (struct mtd_info *);
69423d99
AH
67static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
68static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
9938424f
RC
69static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
70 uint64_t len);
8048d2fc 71#ifdef CONFIG_MTD_OTP
f77814dd
NP
72static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
73static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
74static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
75static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
4b78fc42
CR
76static int cfi_intelext_get_fact_prot_info(struct mtd_info *, size_t,
77 size_t *, struct otp_info *);
78static int cfi_intelext_get_user_prot_info(struct mtd_info *, size_t,
79 size_t *, struct otp_info *);
8048d2fc 80#endif
1da177e4
LT
81static int cfi_intelext_suspend (struct mtd_info *);
82static void cfi_intelext_resume (struct mtd_info *);
963a6fb0 83static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
1da177e4
LT
84
85static void cfi_intelext_destroy(struct mtd_info *);
86
87struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
88
89static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
90static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
91
92static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
a98889f3 93 size_t *retlen, void **virt, resource_size_t *phys);
5e4e6e3f 94static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
1da177e4 95
5a37cf19 96static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
1da177e4
LT
97static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
98static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
99#include "fwh_lock.h"
100
101
102
103/*
104 * *********** SETUP AND PROBE BITS ***********
105 */
106
107static struct mtd_chip_driver cfi_intelext_chipdrv = {
108 .probe = NULL, /* Not usable directly */
109 .destroy = cfi_intelext_destroy,
110 .name = "cfi_cmdset_0001",
111 .module = THIS_MODULE
112};
113
114/* #define DEBUG_LOCK_BITS */
115/* #define DEBUG_CFI_FEATURES */
116
117#ifdef DEBUG_CFI_FEATURES
118static void cfi_tell_features(struct cfi_pri_intelext *extp)
119{
120 int i;
638d9838 121 printk(" Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
1da177e4
LT
122 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
123 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
124 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
125 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
126 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
127 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
128 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
129 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
130 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
131 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
132 printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
638d9838
NP
133 printk(" - Extended Flash Array: %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
134 for (i=11; i<32; i++) {
1f948b43 135 if (extp->FeatureSupport & (1<<i))
1da177e4
LT
136 printk(" - Unknown Bit %X: supported\n", i);
137 }
1f948b43 138
1da177e4
LT
139 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
140 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
141 for (i=1; i<8; i++) {
142 if (extp->SuspendCmdSupport & (1<<i))
143 printk(" - Unknown Bit %X: supported\n", i);
144 }
1f948b43 145
1da177e4
LT
146 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
147 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
638d9838
NP
148 printk(" - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
149 for (i=2; i<3; i++) {
1da177e4
LT
150 if (extp->BlkStatusRegMask & (1<<i))
151 printk(" - Unknown Bit %X Active: yes\n",i);
152 }
638d9838
NP
153 printk(" - EFA Lock Bit: %s\n", extp->BlkStatusRegMask&16?"yes":"no");
154 printk(" - EFA Lock-Down Bit: %s\n", extp->BlkStatusRegMask&32?"yes":"no");
155 for (i=6; i<16; i++) {
156 if (extp->BlkStatusRegMask & (1<<i))
157 printk(" - Unknown Bit %X Active: yes\n",i);
158 }
159
1f948b43 160 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
1da177e4
LT
161 extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
162 if (extp->VppOptimal)
1f948b43 163 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
1da177e4
LT
164 extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
165}
166#endif
167
d10a39d1 168/* Atmel chips don't use the same PRI format as Intel chips */
cc318222 169static void fixup_convert_atmel_pri(struct mtd_info *mtd)
d10a39d1
HCE
170{
171 struct map_info *map = mtd->priv;
172 struct cfi_private *cfi = map->fldrv_priv;
173 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
174 struct cfi_pri_atmel atmel_pri;
175 uint32_t features = 0;
176
177 /* Reverse byteswapping */
178 extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport);
179 extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask);
180 extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr);
181
182 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
183 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
184
185 printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features);
186
187 if (atmel_pri.Features & 0x01) /* chip erase supported */
188 features |= (1<<0);
189 if (atmel_pri.Features & 0x02) /* erase suspend supported */
190 features |= (1<<1);
191 if (atmel_pri.Features & 0x04) /* program suspend supported */
192 features |= (1<<2);
193 if (atmel_pri.Features & 0x08) /* simultaneous operations supported */
194 features |= (1<<9);
195 if (atmel_pri.Features & 0x20) /* page mode read supported */
196 features |= (1<<7);
197 if (atmel_pri.Features & 0x40) /* queued erase supported */
198 features |= (1<<4);
199 if (atmel_pri.Features & 0x80) /* Protection bits supported */
200 features |= (1<<6);
201
202 extp->FeatureSupport = features;
203
204 /* burst write mode not supported */
205 cfi->cfiq->BufWriteTimeoutTyp = 0;
206 cfi->cfiq->BufWriteTimeoutMax = 0;
207}
208
cc318222 209static void fixup_at49bv640dx_lock(struct mtd_info *mtd)
8dbaea4b
HCE
210{
211 struct map_info *map = mtd->priv;
212 struct cfi_private *cfi = map->fldrv_priv;
213 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
214
215 cfip->FeatureSupport |= (1 << 5);
216 mtd->flags |= MTD_POWERUP_LOCK;
217}
218
1da177e4 219#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
1f948b43 220/* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
cc318222 221static void fixup_intel_strataflash(struct mtd_info *mtd)
1da177e4
LT
222{
223 struct map_info *map = mtd->priv;
224 struct cfi_private *cfi = map->fldrv_priv;
91949d64 225 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
1da177e4
LT
226
227 printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
228 "erase on write disabled.\n");
229 extp->SuspendCmdSupport &= ~1;
230}
231#endif
232
233#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
cc318222 234static void fixup_no_write_suspend(struct mtd_info *mtd)
1da177e4
LT
235{
236 struct map_info *map = mtd->priv;
237 struct cfi_private *cfi = map->fldrv_priv;
238 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
239
240 if (cfip && (cfip->FeatureSupport&4)) {
241 cfip->FeatureSupport &= ~4;
242 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
243 }
244}
245#endif
246
cc318222 247static void fixup_st_m28w320ct(struct mtd_info *mtd)
1da177e4
LT
248{
249 struct map_info *map = mtd->priv;
250 struct cfi_private *cfi = map->fldrv_priv;
1f948b43 251
1da177e4
LT
252 cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */
253 cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */
254}
255
cc318222 256static void fixup_st_m28w320cb(struct mtd_info *mtd)
1da177e4
LT
257{
258 struct map_info *map = mtd->priv;
259 struct cfi_private *cfi = map->fldrv_priv;
1f948b43 260
1da177e4
LT
261 /* Note this is done after the region info is endian swapped */
262 cfi->cfiq->EraseRegionInfo[1] =
263 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
264};
265
812c5fa8
AA
266static int is_LH28F640BF(struct cfi_private *cfi)
267{
268 /* Sharp LH28F640BF Family */
269 if (cfi->mfr == CFI_MFR_SHARP && (
270 cfi->id == LH28F640BFHE_PTTL90 || cfi->id == LH28F640BFHE_PBTL90 ||
271 cfi->id == LH28F640BFHE_PTTL70A || cfi->id == LH28F640BFHE_PBTL70A))
272 return 1;
273 return 0;
274}
275
276static void fixup_LH28F640BF(struct mtd_info *mtd)
277{
278 struct map_info *map = mtd->priv;
279 struct cfi_private *cfi = map->fldrv_priv;
280 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
281
282 /* Reset the Partition Configuration Register on LH28F640BF
283 * to a single partition (PCR = 0x000): PCR is embedded into A0-A15. */
284 if (is_LH28F640BF(cfi)) {
285 printk(KERN_INFO "Reset Partition Config. Register: 1 Partition of 4 planes\n");
286 map_write(map, CMD(0x60), 0);
287 map_write(map, CMD(0x04), 0);
288
289 /* We have set one single partition thus
290 * Simultaneous Operations are not allowed */
291 printk(KERN_INFO "cfi_cmdset_0001: Simultaneous Operations disabled\n");
292 extp->FeatureSupport &= ~512;
293 }
294}
295
cc318222 296static void fixup_use_point(struct mtd_info *mtd)
1da177e4
LT
297{
298 struct map_info *map = mtd->priv;
3c3c10bb
AB
299 if (!mtd->_point && map_is_linear(map)) {
300 mtd->_point = cfi_intelext_point;
301 mtd->_unpoint = cfi_intelext_unpoint;
1da177e4
LT
302 }
303}
304
cc318222 305static void fixup_use_write_buffers(struct mtd_info *mtd)
1da177e4
LT
306{
307 struct map_info *map = mtd->priv;
308 struct cfi_private *cfi = map->fldrv_priv;
309 if (cfi->cfiq->BufWriteTimeoutTyp) {
310 printk(KERN_INFO "Using buffer write method\n" );
3c3c10bb
AB
311 mtd->_write = cfi_intelext_write_buffers;
312 mtd->_writev = cfi_intelext_writev;
1da177e4
LT
313 }
314}
315
0ecbc81a
RG
316/*
317 * Some chips power-up with all sectors locked by default.
318 */
cc318222 319static void fixup_unlock_powerup_lock(struct mtd_info *mtd)
0ecbc81a 320{
e619a75f
JT
321 struct map_info *map = mtd->priv;
322 struct cfi_private *cfi = map->fldrv_priv;
323 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
324
325 if (cfip->FeatureSupport&32) {
326 printk(KERN_INFO "Using auto-unlock on power-up/resume\n" );
327 mtd->flags |= MTD_POWERUP_LOCK;
328 }
0ecbc81a
RG
329}
330
1da177e4 331static struct cfi_fixup cfi_fixup_table[] = {
cc318222
GL
332 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
333 { CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock },
334 { CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock },
1da177e4 335#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
cc318222 336 { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash },
1da177e4
LT
337#endif
338#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
cc318222 339 { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend },
1da177e4
LT
340#endif
341#if !FORCE_WORD_WRITE
cc318222 342 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
1da177e4 343#endif
cc318222
GL
344 { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct },
345 { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb },
346 { CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock },
812c5fa8
AA
347 { CFI_MFR_SHARP, CFI_ID_ANY, fixup_unlock_powerup_lock },
348 { CFI_MFR_SHARP, CFI_ID_ANY, fixup_LH28F640BF },
cc318222 349 { 0, 0, NULL }
1da177e4
LT
350};
351
352static struct cfi_fixup jedec_fixup_table[] = {
cc318222
GL
353 { CFI_MFR_INTEL, I82802AB, fixup_use_fwh_lock },
354 { CFI_MFR_INTEL, I82802AC, fixup_use_fwh_lock },
355 { CFI_MFR_ST, M50LPW080, fixup_use_fwh_lock },
356 { CFI_MFR_ST, M50FLW080A, fixup_use_fwh_lock },
357 { CFI_MFR_ST, M50FLW080B, fixup_use_fwh_lock },
358 { 0, 0, NULL }
1da177e4
LT
359};
360static struct cfi_fixup fixup_table[] = {
361 /* The CFI vendor ids and the JEDEC vendor IDs appear
362 * to be common. It is like the devices id's are as
363 * well. This table is to pick all cases where
364 * we know that is the case.
365 */
cc318222
GL
366 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point },
367 { 0, 0, NULL }
1da177e4
LT
368};
369
ec2d0d84
DR
370static void cfi_fixup_major_minor(struct cfi_private *cfi,
371 struct cfi_pri_intelext *extp)
372{
b2ef1a2b 373 if (cfi->mfr == CFI_MFR_INTEL &&
ec2d0d84
DR
374 cfi->id == PF38F4476 && extp->MinorVersion == '3')
375 extp->MinorVersion = '1';
376}
377
1da177e4
LT
378static inline struct cfi_pri_intelext *
379read_pri_intelext(struct map_info *map, __u16 adr)
380{
ec2d0d84 381 struct cfi_private *cfi = map->fldrv_priv;
1da177e4 382 struct cfi_pri_intelext *extp;
e1b158ab 383 unsigned int extra_size = 0;
1da177e4
LT
384 unsigned int extp_size = sizeof(*extp);
385
386 again:
387 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
388 if (!extp)
389 return NULL;
390
ec2d0d84
DR
391 cfi_fixup_major_minor(cfi, extp);
392
d88f977b 393 if (extp->MajorVersion != '1' ||
b1c9c9be 394 (extp->MinorVersion < '0' || extp->MinorVersion > '5')) {
d88f977b
TP
395 printk(KERN_ERR " Unknown Intel/Sharp Extended Query "
396 "version %c.%c.\n", extp->MajorVersion,
397 extp->MinorVersion);
398 kfree(extp);
399 return NULL;
400 }
401
1da177e4
LT
402 /* Do some byteswapping if necessary */
403 extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
404 extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
405 extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
406
e1b158ab
DR
407 if (extp->MinorVersion >= '0') {
408 extra_size = 0;
1da177e4
LT
409
410 /* Protection Register info */
72b56a2d
NP
411 extra_size += (extp->NumProtectionFields - 1) *
412 sizeof(struct cfi_intelext_otpinfo);
e1b158ab 413 }
1da177e4 414
e1b158ab 415 if (extp->MinorVersion >= '1') {
1da177e4 416 /* Burst Read info */
6f6ed056
NP
417 extra_size += 2;
418 if (extp_size < sizeof(*extp) + extra_size)
419 goto need_more;
e1b158ab
DR
420 extra_size += extp->extra[extra_size - 1];
421 }
422
423 if (extp->MinorVersion >= '3') {
424 int nb_parts, i;
1da177e4
LT
425
426 /* Number of hardware-partitions */
427 extra_size += 1;
428 if (extp_size < sizeof(*extp) + extra_size)
429 goto need_more;
430 nb_parts = extp->extra[extra_size - 1];
431
638d9838
NP
432 /* skip the sizeof(partregion) field in CFI 1.4 */
433 if (extp->MinorVersion >= '4')
434 extra_size += 2;
435
1da177e4
LT
436 for (i = 0; i < nb_parts; i++) {
437 struct cfi_intelext_regioninfo *rinfo;
438 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
439 extra_size += sizeof(*rinfo);
440 if (extp_size < sizeof(*extp) + extra_size)
441 goto need_more;
442 rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
443 extra_size += (rinfo->NumBlockTypes - 1)
444 * sizeof(struct cfi_intelext_blockinfo);
445 }
446
638d9838
NP
447 if (extp->MinorVersion >= '4')
448 extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
449
1da177e4
LT
450 if (extp_size < sizeof(*extp) + extra_size) {
451 need_more:
452 extp_size = sizeof(*extp) + extra_size;
453 kfree(extp);
454 if (extp_size > 4096) {
455 printk(KERN_ERR
456 "%s: cfi_pri_intelext is too fat\n",
cb53b3b9 457 __func__);
1da177e4
LT
458 return NULL;
459 }
460 goto again;
461 }
462 }
1f948b43 463
1da177e4
LT
464 return extp;
465}
466
1da177e4
LT
467struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
468{
469 struct cfi_private *cfi = map->fldrv_priv;
470 struct mtd_info *mtd;
471 int i;
472
95b93a0c 473 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
5c8b1fbb 474 if (!mtd)
1da177e4 475 return NULL;
1da177e4
LT
476 mtd->priv = map;
477 mtd->type = MTD_NORFLASH;
478
479 /* Fill in the default mtd operations */
3c3c10bb
AB
480 mtd->_erase = cfi_intelext_erase_varsize;
481 mtd->_read = cfi_intelext_read;
482 mtd->_write = cfi_intelext_write_words;
483 mtd->_sync = cfi_intelext_sync;
484 mtd->_lock = cfi_intelext_lock;
485 mtd->_unlock = cfi_intelext_unlock;
486 mtd->_is_locked = cfi_intelext_is_locked;
487 mtd->_suspend = cfi_intelext_suspend;
488 mtd->_resume = cfi_intelext_resume;
1da177e4
LT
489 mtd->flags = MTD_CAP_NORFLASH;
490 mtd->name = map->name;
17ffc7ba 491 mtd->writesize = 1;
13ce77f4 492 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
963a6fb0
NP
493
494 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
495
1da177e4 496 if (cfi->cfi_mode == CFI_MODE_CFI) {
1f948b43 497 /*
1da177e4
LT
498 * It's a real CFI chip, not one for which the probe
499 * routine faked a CFI structure. So we read the feature
500 * table from it.
501 */
502 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
503 struct cfi_pri_intelext *extp;
504
505 extp = read_pri_intelext(map, adr);
506 if (!extp) {
507 kfree(mtd);
508 return NULL;
509 }
510
511 /* Install our own private info structure */
1f948b43 512 cfi->cmdset_priv = extp;
1da177e4
LT
513
514 cfi_fixup(mtd, cfi_fixup_table);
515
516#ifdef DEBUG_CFI_FEATURES
517 /* Tell the user about it in lots of lovely detail */
518 cfi_tell_features(extp);
1f948b43 519#endif
1da177e4
LT
520
521 if(extp->SuspendCmdSupport & 1) {
522 printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
523 }
524 }
525 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
526 /* Apply jedec specific fixups */
527 cfi_fixup(mtd, jedec_fixup_table);
528 }
529 /* Apply generic fixups */
530 cfi_fixup(mtd, fixup_table);
531
532 for (i=0; i< cfi->numchips; i++) {
2a5bd596
DW
533 if (cfi->cfiq->WordWriteTimeoutTyp)
534 cfi->chips[i].word_write_time =
535 1<<cfi->cfiq->WordWriteTimeoutTyp;
536 else
537 cfi->chips[i].word_write_time = 50000;
538
539 if (cfi->cfiq->BufWriteTimeoutTyp)
540 cfi->chips[i].buffer_write_time =
541 1<<cfi->cfiq->BufWriteTimeoutTyp;
542 /* No default; if it isn't specified, we won't use it */
543
544 if (cfi->cfiq->BlockEraseTimeoutTyp)
545 cfi->chips[i].erase_time =
546 1000<<cfi->cfiq->BlockEraseTimeoutTyp;
547 else
548 cfi->chips[i].erase_time = 2000000;
549
e93cafe4
AG
550 if (cfi->cfiq->WordWriteTimeoutTyp &&
551 cfi->cfiq->WordWriteTimeoutMax)
552 cfi->chips[i].word_write_time_max =
553 1<<(cfi->cfiq->WordWriteTimeoutTyp +
554 cfi->cfiq->WordWriteTimeoutMax);
555 else
556 cfi->chips[i].word_write_time_max = 50000 * 8;
557
558 if (cfi->cfiq->BufWriteTimeoutTyp &&
559 cfi->cfiq->BufWriteTimeoutMax)
560 cfi->chips[i].buffer_write_time_max =
561 1<<(cfi->cfiq->BufWriteTimeoutTyp +
562 cfi->cfiq->BufWriteTimeoutMax);
563
564 if (cfi->cfiq->BlockEraseTimeoutTyp &&
565 cfi->cfiq->BlockEraseTimeoutMax)
566 cfi->chips[i].erase_time_max =
567 1000<<(cfi->cfiq->BlockEraseTimeoutTyp +
568 cfi->cfiq->BlockEraseTimeoutMax);
569 else
570 cfi->chips[i].erase_time_max = 2000000 * 8;
571
1da177e4 572 cfi->chips[i].ref_point_counter = 0;
c314b6f1 573 init_waitqueue_head(&(cfi->chips[i].wq));
1f948b43 574 }
1da177e4
LT
575
576 map->fldrv = &cfi_intelext_chipdrv;
1f948b43 577
1da177e4
LT
578 return cfi_intelext_setup(mtd);
579}
a15bdeef
DW
580struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
581struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
582EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
583EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
584EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
1da177e4
LT
585
586static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
587{
588 struct map_info *map = mtd->priv;
589 struct cfi_private *cfi = map->fldrv_priv;
590 unsigned long offset = 0;
591 int i,j;
592 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
593
594 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
595
596 mtd->size = devsize * cfi->numchips;
597
598 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
1f948b43 599 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
1da177e4 600 * mtd->numeraseregions, GFP_KERNEL);
5c8b1fbb 601 if (!mtd->eraseregions)
1da177e4 602 goto setup_err;
1f948b43 603
1da177e4
LT
604 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
605 unsigned long ernum, ersize;
606 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
607 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
608
609 if (mtd->erasesize < ersize) {
610 mtd->erasesize = ersize;
611 }
612 for (j=0; j<cfi->numchips; j++) {
613 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
614 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
615 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
0ecbc81a 616 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL);
1da177e4
LT
617 }
618 offset += (ersize * ernum);
619 }
620
621 if (offset != devsize) {
622 /* Argh */
623 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
624 goto setup_err;
625 }
626
627 for (i=0; i<mtd->numeraseregions;i++){
69423d99
AH
628 printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n",
629 i,(unsigned long long)mtd->eraseregions[i].offset,
1da177e4
LT
630 mtd->eraseregions[i].erasesize,
631 mtd->eraseregions[i].numblocks);
632 }
633
f77814dd 634#ifdef CONFIG_MTD_OTP
3c3c10bb
AB
635 mtd->_read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
636 mtd->_read_user_prot_reg = cfi_intelext_read_user_prot_reg;
637 mtd->_write_user_prot_reg = cfi_intelext_write_user_prot_reg;
638 mtd->_lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
639 mtd->_get_fact_prot_info = cfi_intelext_get_fact_prot_info;
640 mtd->_get_user_prot_info = cfi_intelext_get_user_prot_info;
1da177e4
LT
641#endif
642
643 /* This function has the potential to distort the reality
644 a bit and therefore should be called last. */
645 if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
646 goto setup_err;
647
648 __module_get(THIS_MODULE);
963a6fb0 649 register_reboot_notifier(&mtd->reboot_notifier);
1da177e4
LT
650 return mtd;
651
652 setup_err:
17fabf15
JS
653 kfree(mtd->eraseregions);
654 kfree(mtd);
1da177e4
LT
655 kfree(cfi->cmdset_priv);
656 return NULL;
657}
658
659static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
660 struct cfi_private **pcfi)
661{
662 struct map_info *map = mtd->priv;
663 struct cfi_private *cfi = *pcfi;
664 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
665
666 /*
8f1a866f 667 * Probing of multi-partition flash chips.
1da177e4
LT
668 *
669 * To support multiple partitions when available, we simply arrange
670 * for each of them to have their own flchip structure even if they
671 * are on the same physical chip. This means completely recreating
672 * a new cfi_private structure right here which is a blatent code
673 * layering violation, but this is still the least intrusive
674 * arrangement at this point. This can be rearranged in the future
675 * if someone feels motivated enough. --nico
676 */
638d9838 677 if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
1da177e4
LT
678 && extp->FeatureSupport & (1 << 9)) {
679 struct cfi_private *newcfi;
680 struct flchip *chip;
681 struct flchip_shared *shared;
682 int offs, numregions, numparts, partshift, numvirtchips, i, j;
683
684 /* Protection Register info */
72b56a2d
NP
685 offs = (extp->NumProtectionFields - 1) *
686 sizeof(struct cfi_intelext_otpinfo);
1da177e4
LT
687
688 /* Burst Read info */
6f6ed056 689 offs += extp->extra[offs+1]+2;
1da177e4
LT
690
691 /* Number of partition regions */
692 numregions = extp->extra[offs];
693 offs += 1;
694
638d9838
NP
695 /* skip the sizeof(partregion) field in CFI 1.4 */
696 if (extp->MinorVersion >= '4')
697 offs += 2;
698
1da177e4
LT
699 /* Number of hardware partitions */
700 numparts = 0;
701 for (i = 0; i < numregions; i++) {
702 struct cfi_intelext_regioninfo *rinfo;
703 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
704 numparts += rinfo->NumIdentPartitions;
705 offs += sizeof(*rinfo)
706 + (rinfo->NumBlockTypes - 1) *
707 sizeof(struct cfi_intelext_blockinfo);
708 }
709
fe224668
TK
710 if (!numparts)
711 numparts = 1;
712
638d9838
NP
713 /* Programming Region info */
714 if (extp->MinorVersion >= '4') {
715 struct cfi_intelext_programming_regioninfo *prinfo;
716 prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
28318776 717 mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
5fa43394 718 mtd->flags &= ~MTD_BIT_WRITEABLE;
638d9838 719 printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
28318776 720 map->name, mtd->writesize,
d4160855
AB
721 cfi->interleave * prinfo->ControlValid,
722 cfi->interleave * prinfo->ControlInvalid);
638d9838
NP
723 }
724
1da177e4
LT
725 /*
726 * All functions below currently rely on all chips having
727 * the same geometry so we'll just assume that all hardware
728 * partitions are of the same size too.
729 */
730 partshift = cfi->chipshift - __ffs(numparts);
731
732 if ((1 << partshift) < mtd->erasesize) {
733 printk( KERN_ERR
734 "%s: bad number of hw partitions (%d)\n",
cb53b3b9 735 __func__, numparts);
1da177e4
LT
736 return -EINVAL;
737 }
738
739 numvirtchips = cfi->numchips * numparts;
740 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
741 if (!newcfi)
742 return -ENOMEM;
743 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
744 if (!shared) {
745 kfree(newcfi);
746 return -ENOMEM;
747 }
748 memcpy(newcfi, cfi, sizeof(struct cfi_private));
749 newcfi->numchips = numvirtchips;
750 newcfi->chipshift = partshift;
751
752 chip = &newcfi->chips[0];
753 for (i = 0; i < cfi->numchips; i++) {
754 shared[i].writing = shared[i].erasing = NULL;
8ae66418 755 mutex_init(&shared[i].lock);
1da177e4
LT
756 for (j = 0; j < numparts; j++) {
757 *chip = cfi->chips[i];
758 chip->start += j << partshift;
759 chip->priv = &shared[i];
760 /* those should be reset too since
761 they create memory references. */
762 init_waitqueue_head(&chip->wq);
c4e77376 763 mutex_init(&chip->mutex);
1da177e4
LT
764 chip++;
765 }
766 }
767
768 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
769 "--> %d partitions of %d KiB\n",
770 map->name, cfi->numchips, cfi->interleave,
771 newcfi->numchips, 1<<(newcfi->chipshift-10));
772
773 map->fldrv_priv = newcfi;
774 *pcfi = newcfi;
775 kfree(cfi);
776 }
777
778 return 0;
779}
780
781/*
782 * *********** CHIP ACCESS FUNCTIONS ***********
783 */
5a37cf19 784static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
1da177e4
LT
785{
786 DECLARE_WAITQUEUE(wait, current);
787 struct cfi_private *cfi = map->fldrv_priv;
788 map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
1da177e4 789 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
5a37cf19 790 unsigned long timeo = jiffies + HZ;
1da177e4 791
3afe7eb3
AB
792 /* Prevent setting state FL_SYNCING for chip in suspended state. */
793 if (mode == FL_SYNCING && chip->oldstate != FL_READY)
794 goto sleep;
795
1da177e4
LT
796 switch (chip->state) {
797
798 case FL_STATUS:
799 for (;;) {
800 status = map_read(map, adr);
801 if (map_word_andequal(map, status, status_OK, status_OK))
802 break;
803
804 /* At this point we're fine with write operations
805 in other partitions as they don't conflict. */
806 if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
807 break;
808
c4e77376 809 mutex_unlock(&chip->mutex);
1da177e4 810 cfi_udelay(1);
c4e77376 811 mutex_lock(&chip->mutex);
1da177e4 812 /* Someone else might have been playing with it. */
5a37cf19 813 return -EAGAIN;
1da177e4 814 }
fb6d080c 815 /* Fall through */
1da177e4
LT
816 case FL_READY:
817 case FL_CFI_QUERY:
818 case FL_JEDEC_QUERY:
819 return 0;
820
821 case FL_ERASING:
822 if (!cfip ||
823 !(cfip->FeatureSupport & 2) ||
824 !(mode == FL_READY || mode == FL_POINT ||
825 (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
826 goto sleep;
827
828
829 /* Erase suspend */
830 map_write(map, CMD(0xB0), adr);
831
832 /* If the flash has finished erasing, then 'erase suspend'
833 * appears to make some (28F320) flash devices switch to
834 * 'read' mode. Make sure that we switch to 'read status'
835 * mode so we get the right data. --rmk
836 */
837 map_write(map, CMD(0x70), adr);
838 chip->oldstate = FL_ERASING;
839 chip->state = FL_ERASE_SUSPENDING;
840 chip->erase_suspended = 1;
841 for (;;) {
842 status = map_read(map, adr);
843 if (map_word_andequal(map, status, status_OK, status_OK))
844 break;
845
846 if (time_after(jiffies, timeo)) {
100f2341
TA
847 /* Urgh. Resume and pretend we weren't here.
848 * Make sure we're in 'read status' mode if it had finished */
849 put_chip(map, chip, adr);
4843653c
NP
850 printk(KERN_ERR "%s: Chip not ready after erase "
851 "suspended: status = 0x%lx\n", map->name, status.x[0]);
1da177e4
LT
852 return -EIO;
853 }
854
c4e77376 855 mutex_unlock(&chip->mutex);
1da177e4 856 cfi_udelay(1);
c4e77376 857 mutex_lock(&chip->mutex);
1da177e4
LT
858 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
859 So we can just loop here. */
860 }
861 chip->state = FL_STATUS;
862 return 0;
863
864 case FL_XIP_WHILE_ERASING:
865 if (mode != FL_READY && mode != FL_POINT &&
866 (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
867 goto sleep;
868 chip->oldstate = chip->state;
869 chip->state = FL_READY;
870 return 0;
871
fb6d080c
AK
872 case FL_SHUTDOWN:
873 /* The machine is rebooting now,so no one can get chip anymore */
874 return -EIO;
1da177e4
LT
875 case FL_POINT:
876 /* Only if there's no operation suspended... */
877 if (mode == FL_READY && chip->oldstate == FL_READY)
878 return 0;
fb6d080c 879 /* Fall through */
1da177e4
LT
880 default:
881 sleep:
882 set_current_state(TASK_UNINTERRUPTIBLE);
883 add_wait_queue(&chip->wq, &wait);
c4e77376 884 mutex_unlock(&chip->mutex);
1da177e4
LT
885 schedule();
886 remove_wait_queue(&chip->wq, &wait);
c4e77376 887 mutex_lock(&chip->mutex);
5a37cf19
AK
888 return -EAGAIN;
889 }
890}
891
892static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
893{
894 int ret;
6c24e416 895 DECLARE_WAITQUEUE(wait, current);
5a37cf19
AK
896
897 retry:
3afe7eb3
AB
898 if (chip->priv &&
899 (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE
900 || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) {
5a37cf19
AK
901 /*
902 * OK. We have possibility for contention on the write/erase
903 * operations which are global to the real chip and not per
904 * partition. So let's fight it over in the partition which
905 * currently has authority on the operation.
906 *
907 * The rules are as follows:
908 *
909 * - any write operation must own shared->writing.
910 *
911 * - any erase operation must own _both_ shared->writing and
912 * shared->erasing.
913 *
914 * - contention arbitration is handled in the owner's context.
915 *
916 * The 'shared' struct can be read and/or written only when
917 * its lock is taken.
918 */
919 struct flchip_shared *shared = chip->priv;
920 struct flchip *contender;
8ae66418 921 mutex_lock(&shared->lock);
5a37cf19
AK
922 contender = shared->writing;
923 if (contender && contender != chip) {
924 /*
925 * The engine to perform desired operation on this
926 * partition is already in use by someone else.
927 * Let's fight over it in the context of the chip
928 * currently using it. If it is possible to suspend,
929 * that other partition will do just that, otherwise
930 * it'll happily send us to sleep. In any case, when
931 * get_chip returns success we're clear to go ahead.
932 */
c4e77376 933 ret = mutex_trylock(&contender->mutex);
8ae66418 934 mutex_unlock(&shared->lock);
5a37cf19
AK
935 if (!ret)
936 goto retry;
c4e77376 937 mutex_unlock(&chip->mutex);
5a37cf19 938 ret = chip_ready(map, contender, contender->start, mode);
c4e77376 939 mutex_lock(&chip->mutex);
5a37cf19
AK
940
941 if (ret == -EAGAIN) {
c4e77376 942 mutex_unlock(&contender->mutex);
5a37cf19
AK
943 goto retry;
944 }
945 if (ret) {
c4e77376 946 mutex_unlock(&contender->mutex);
5a37cf19
AK
947 return ret;
948 }
8ae66418 949 mutex_lock(&shared->lock);
3afe7eb3
AB
950
951 /* We should not own chip if it is already
952 * in FL_SYNCING state. Put contender and retry. */
953 if (chip->state == FL_SYNCING) {
954 put_chip(map, contender, contender->start);
c4e77376 955 mutex_unlock(&contender->mutex);
3afe7eb3
AB
956 goto retry;
957 }
c4e77376 958 mutex_unlock(&contender->mutex);
5a37cf19
AK
959 }
960
6c24e416
AB
961 /* Check if we already have suspended erase
962 * on this chip. Sleep. */
963 if (mode == FL_ERASING && shared->erasing
964 && shared->erasing->oldstate == FL_ERASING) {
8ae66418 965 mutex_unlock(&shared->lock);
6c24e416
AB
966 set_current_state(TASK_UNINTERRUPTIBLE);
967 add_wait_queue(&chip->wq, &wait);
c4e77376 968 mutex_unlock(&chip->mutex);
6c24e416
AB
969 schedule();
970 remove_wait_queue(&chip->wq, &wait);
c4e77376 971 mutex_lock(&chip->mutex);
6c24e416
AB
972 goto retry;
973 }
974
5a37cf19
AK
975 /* We now own it */
976 shared->writing = chip;
977 if (mode == FL_ERASING)
978 shared->erasing = chip;
8ae66418 979 mutex_unlock(&shared->lock);
1da177e4 980 }
5a37cf19
AK
981 ret = chip_ready(map, chip, adr, mode);
982 if (ret == -EAGAIN)
983 goto retry;
984
985 return ret;
1da177e4
LT
986}
987
988static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
989{
990 struct cfi_private *cfi = map->fldrv_priv;
991
992 if (chip->priv) {
993 struct flchip_shared *shared = chip->priv;
8ae66418 994 mutex_lock(&shared->lock);
1da177e4
LT
995 if (shared->writing == chip && chip->oldstate == FL_READY) {
996 /* We own the ability to write, but we're done */
997 shared->writing = shared->erasing;
998 if (shared->writing && shared->writing != chip) {
999 /* give back ownership to who we loaned it from */
1000 struct flchip *loaner = shared->writing;
c4e77376 1001 mutex_lock(&loaner->mutex);
8ae66418 1002 mutex_unlock(&shared->lock);
c4e77376 1003 mutex_unlock(&chip->mutex);
1da177e4 1004 put_chip(map, loaner, loaner->start);
c4e77376
SS
1005 mutex_lock(&chip->mutex);
1006 mutex_unlock(&loaner->mutex);
1da177e4
LT
1007 wake_up(&chip->wq);
1008 return;
1009 }
1010 shared->erasing = NULL;
1011 shared->writing = NULL;
1012 } else if (shared->erasing == chip && shared->writing != chip) {
1013 /*
1014 * We own the ability to erase without the ability
1015 * to write, which means the erase was suspended
1016 * and some other partition is currently writing.
1017 * Don't let the switch below mess things up since
1018 * we don't have ownership to resume anything.
1019 */
8ae66418 1020 mutex_unlock(&shared->lock);
1da177e4
LT
1021 wake_up(&chip->wq);
1022 return;
1023 }
8ae66418 1024 mutex_unlock(&shared->lock);
1da177e4
LT
1025 }
1026
1027 switch(chip->oldstate) {
1028 case FL_ERASING:
1f948b43 1029 /* What if one interleaved chip has finished and the
1da177e4 1030 other hasn't? The old code would leave the finished
1f948b43 1031 one in READY mode. That's bad, and caused -EROFS
1da177e4
LT
1032 errors to be returned from do_erase_oneblock because
1033 that's the only bit it checked for at the time.
1f948b43 1034 As the state machine appears to explicitly allow
1da177e4 1035 sending the 0x70 (Read Status) command to an erasing
1f948b43 1036 chip and expecting it to be ignored, that's what we
1da177e4
LT
1037 do. */
1038 map_write(map, CMD(0xd0), adr);
1039 map_write(map, CMD(0x70), adr);
1040 chip->oldstate = FL_READY;
1041 chip->state = FL_ERASING;
1042 break;
1043
1044 case FL_XIP_WHILE_ERASING:
1045 chip->state = chip->oldstate;
1046 chip->oldstate = FL_READY;
1047 break;
1048
1049 case FL_READY:
1050 case FL_STATUS:
1051 case FL_JEDEC_QUERY:
1da177e4
LT
1052 break;
1053 default:
4843653c 1054 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
1da177e4
LT
1055 }
1056 wake_up(&chip->wq);
1057}
1058
1059#ifdef CONFIG_MTD_XIP
1060
1061/*
1062 * No interrupt what so ever can be serviced while the flash isn't in array
1063 * mode. This is ensured by the xip_disable() and xip_enable() functions
1064 * enclosing any code path where the flash is known not to be in array mode.
1065 * And within a XIP disabled code path, only functions marked with __xipram
1066 * may be called and nothing else (it's a good thing to inspect generated
1067 * assembly to make sure inline functions were actually inlined and that gcc
1068 * didn't emit calls to its own support functions). Also configuring MTD CFI
1069 * support to a single buswidth and a single interleave is also recommended.
1da177e4
LT
1070 */
1071
1072static void xip_disable(struct map_info *map, struct flchip *chip,
1073 unsigned long adr)
1074{
1075 /* TODO: chips with no XIP use should ignore and return */
1076 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
1da177e4
LT
1077 local_irq_disable();
1078}
1079
1080static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1081 unsigned long adr)
1082{
1083 struct cfi_private *cfi = map->fldrv_priv;
1084 if (chip->state != FL_POINT && chip->state != FL_READY) {
1085 map_write(map, CMD(0xff), adr);
1086 chip->state = FL_READY;
1087 }
1088 (void) map_read(map, adr);
97f927a4 1089 xip_iprefetch();
1da177e4 1090 local_irq_enable();
1da177e4
LT
1091}
1092
1093/*
1094 * When a delay is required for the flash operation to complete, the
c172471b
NP
1095 * xip_wait_for_operation() function is polling for both the given timeout
1096 * and pending (but still masked) hardware interrupts. Whenever there is an
1097 * interrupt pending then the flash erase or write operation is suspended,
1098 * array mode restored and interrupts unmasked. Task scheduling might also
1099 * happen at that point. The CPU eventually returns from the interrupt or
1100 * the call to schedule() and the suspended flash operation is resumed for
1101 * the remaining of the delay period.
1da177e4
LT
1102 *
1103 * Warning: this function _will_ fool interrupt latency tracing tools.
1104 */
1105
c172471b
NP
1106static int __xipram xip_wait_for_operation(
1107 struct map_info *map, struct flchip *chip,
e93cafe4 1108 unsigned long adr, unsigned int chip_op_time_max)
1da177e4
LT
1109{
1110 struct cfi_private *cfi = map->fldrv_priv;
1111 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
1112 map_word status, OK = CMD(0x80);
c172471b 1113 unsigned long usec, suspended, start, done;
1da177e4
LT
1114 flstate_t oldstate, newstate;
1115
c172471b 1116 start = xip_currtime();
e93cafe4 1117 usec = chip_op_time_max;
c172471b
NP
1118 if (usec == 0)
1119 usec = 500000;
1120 done = 0;
1121
1da177e4
LT
1122 do {
1123 cpu_relax();
1124 if (xip_irqpending() && cfip &&
1125 ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
1126 (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
1127 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1128 /*
1129 * Let's suspend the erase or write operation when
1130 * supported. Note that we currently don't try to
1131 * suspend interleaved chips if there is already
1132 * another operation suspended (imagine what happens
1133 * when one chip was already done with the current
1134 * operation while another chip suspended it, then
1135 * we resume the whole thing at once). Yes, it
1136 * can happen!
1137 */
c172471b 1138 usec -= done;
1da177e4
LT
1139 map_write(map, CMD(0xb0), adr);
1140 map_write(map, CMD(0x70), adr);
1da177e4
LT
1141 suspended = xip_currtime();
1142 do {
1143 if (xip_elapsed_since(suspended) > 100000) {
1144 /*
1145 * The chip doesn't want to suspend
1146 * after waiting for 100 msecs.
1147 * This is a critical error but there
1148 * is not much we can do here.
1149 */
c172471b 1150 return -EIO;
1da177e4
LT
1151 }
1152 status = map_read(map, adr);
1153 } while (!map_word_andequal(map, status, OK, OK));
1154
1155 /* Suspend succeeded */
1156 oldstate = chip->state;
1157 if (oldstate == FL_ERASING) {
1158 if (!map_word_bitsset(map, status, CMD(0x40)))
1159 break;
1160 newstate = FL_XIP_WHILE_ERASING;
1161 chip->erase_suspended = 1;
1162 } else {
1163 if (!map_word_bitsset(map, status, CMD(0x04)))
1164 break;
1165 newstate = FL_XIP_WHILE_WRITING;
1166 chip->write_suspended = 1;
1167 }
1168 chip->state = newstate;
1169 map_write(map, CMD(0xff), adr);
1170 (void) map_read(map, adr);
ca5c23c3 1171 xip_iprefetch();
1da177e4 1172 local_irq_enable();
c4e77376 1173 mutex_unlock(&chip->mutex);
ca5c23c3 1174 xip_iprefetch();
1da177e4
LT
1175 cond_resched();
1176
1177 /*
1178 * We're back. However someone else might have
1179 * decided to go write to the chip if we are in
1180 * a suspended erase state. If so let's wait
1181 * until it's done.
1182 */
c4e77376 1183 mutex_lock(&chip->mutex);
1da177e4
LT
1184 while (chip->state != newstate) {
1185 DECLARE_WAITQUEUE(wait, current);
1186 set_current_state(TASK_UNINTERRUPTIBLE);
1187 add_wait_queue(&chip->wq, &wait);
c4e77376 1188 mutex_unlock(&chip->mutex);
1da177e4
LT
1189 schedule();
1190 remove_wait_queue(&chip->wq, &wait);
c4e77376 1191 mutex_lock(&chip->mutex);
1da177e4
LT
1192 }
1193 /* Disallow XIP again */
1194 local_irq_disable();
1195
1196 /* Resume the write or erase operation */
1197 map_write(map, CMD(0xd0), adr);
1198 map_write(map, CMD(0x70), adr);
1199 chip->state = oldstate;
1200 start = xip_currtime();
1201 } else if (usec >= 1000000/HZ) {
1202 /*
1203 * Try to save on CPU power when waiting delay
1204 * is at least a system timer tick period.
1205 * No need to be extremely accurate here.
1206 */
1207 xip_cpu_idle();
1208 }
1209 status = map_read(map, adr);
c172471b 1210 done = xip_elapsed_since(start);
1da177e4 1211 } while (!map_word_andequal(map, status, OK, OK)
c172471b 1212 && done < usec);
1da177e4 1213
c172471b
NP
1214 return (done >= usec) ? -ETIME : 0;
1215}
1da177e4
LT
1216
1217/*
1218 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1219 * the flash is actively programming or erasing since we have to poll for
1220 * the operation to complete anyway. We can't do that in a generic way with
6da70124 1221 * a XIP setup so do it before the actual flash operation in this case
c172471b 1222 * and stub it out from INVAL_CACHE_AND_WAIT.
1da177e4 1223 */
6da70124
NP
1224#define XIP_INVAL_CACHED_RANGE(map, from, size) \
1225 INVALIDATE_CACHED_RANGE(map, from, size)
1226
e93cafe4
AG
1227#define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
1228 xip_wait_for_operation(map, chip, cmd_adr, usec_max)
1da177e4
LT
1229
1230#else
1231
1232#define xip_disable(map, chip, adr)
1233#define xip_enable(map, chip, adr)
1da177e4 1234#define XIP_INVAL_CACHED_RANGE(x...)
c172471b
NP
1235#define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1236
1237static int inval_cache_and_wait_for_operation(
1238 struct map_info *map, struct flchip *chip,
1239 unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
e93cafe4 1240 unsigned int chip_op_time, unsigned int chip_op_time_max)
c172471b
NP
1241{
1242 struct cfi_private *cfi = map->fldrv_priv;
1243 map_word status, status_OK = CMD(0x80);
46a1652c 1244 int chip_state = chip->state;
998453fb 1245 unsigned int timeo, sleep_time, reset_timeo;
c172471b 1246
c4e77376 1247 mutex_unlock(&chip->mutex);
c172471b
NP
1248 if (inval_len)
1249 INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
c4e77376 1250 mutex_lock(&chip->mutex);
c172471b 1251
e93cafe4 1252 timeo = chip_op_time_max;
46a1652c
AK
1253 if (!timeo)
1254 timeo = 500000;
998453fb 1255 reset_timeo = timeo;
46a1652c 1256 sleep_time = chip_op_time / 2;
c172471b 1257
c172471b 1258 for (;;) {
ecf3fde0
JT
1259 if (chip->state != chip_state) {
1260 /* Someone's suspended the operation: sleep */
1261 DECLARE_WAITQUEUE(wait, current);
1262 set_current_state(TASK_UNINTERRUPTIBLE);
1263 add_wait_queue(&chip->wq, &wait);
1264 mutex_unlock(&chip->mutex);
1265 schedule();
1266 remove_wait_queue(&chip->wq, &wait);
1267 mutex_lock(&chip->mutex);
1268 continue;
1269 }
1270
c172471b
NP
1271 status = map_read(map, cmd_adr);
1272 if (map_word_andequal(map, status, status_OK, status_OK))
1273 break;
1da177e4 1274
ecf3fde0 1275 if (chip->erase_suspended && chip_state == FL_ERASING) {
25985edc 1276 /* Erase suspend occurred while sleep: reset timeout */
ecf3fde0
JT
1277 timeo = reset_timeo;
1278 chip->erase_suspended = 0;
1279 }
1280 if (chip->write_suspended && chip_state == FL_WRITING) {
25985edc 1281 /* Write suspend occurred while sleep: reset timeout */
ecf3fde0
JT
1282 timeo = reset_timeo;
1283 chip->write_suspended = 0;
1284 }
46a1652c 1285 if (!timeo) {
c172471b
NP
1286 map_write(map, CMD(0x70), cmd_adr);
1287 chip->state = FL_STATUS;
1288 return -ETIME;
1289 }
1290
46a1652c 1291 /* OK Still waiting. Drop the lock, wait a while and retry. */
c4e77376 1292 mutex_unlock(&chip->mutex);
46a1652c
AK
1293 if (sleep_time >= 1000000/HZ) {
1294 /*
1295 * Half of the normal delay still remaining
1296 * can be performed with a sleeping delay instead
1297 * of busy waiting.
1298 */
1299 msleep(sleep_time/1000);
1300 timeo -= sleep_time;
1301 sleep_time = 1000000/HZ;
1302 } else {
1303 udelay(1);
1304 cond_resched();
1305 timeo--;
1306 }
c4e77376 1307 mutex_lock(&chip->mutex);
46a1652c 1308 }
c172471b
NP
1309
1310 /* Done and happy. */
1311 chip->state = FL_STATUS;
1312 return 0;
1313}
6da70124 1314
1da177e4
LT
1315#endif
1316
e93cafe4
AG
1317#define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
1318 INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
c172471b
NP
1319
1320
1da177e4
LT
1321static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1322{
1323 unsigned long cmd_addr;
1324 struct cfi_private *cfi = map->fldrv_priv;
1325 int ret = 0;
1326
1327 adr += chip->start;
1328
1f948b43
TG
1329 /* Ensure cmd read/writes are aligned. */
1330 cmd_addr = adr & ~(map_bankwidth(map)-1);
1da177e4 1331
c4e77376 1332 mutex_lock(&chip->mutex);
1da177e4
LT
1333
1334 ret = get_chip(map, chip, cmd_addr, FL_POINT);
1335
1336 if (!ret) {
1337 if (chip->state != FL_POINT && chip->state != FL_READY)
1338 map_write(map, CMD(0xff), cmd_addr);
1339
1340 chip->state = FL_POINT;
1341 chip->ref_point_counter++;
1342 }
c4e77376 1343 mutex_unlock(&chip->mutex);
1da177e4
LT
1344
1345 return ret;
1346}
1347
a98889f3
JH
1348static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
1349 size_t *retlen, void **virt, resource_size_t *phys)
1da177e4
LT
1350{
1351 struct map_info *map = mtd->priv;
1352 struct cfi_private *cfi = map->fldrv_priv;
097f2576 1353 unsigned long ofs, last_end = 0;
1da177e4
LT
1354 int chipnum;
1355 int ret = 0;
1356
5def4898 1357 if (!map->virt)
1da177e4 1358 return -EINVAL;
1f948b43 1359
1da177e4
LT
1360 /* Now lock the chip(s) to POINT state */
1361
1362 /* ofs: offset within the first chip that the first read should start */
1363 chipnum = (from >> cfi->chipshift);
1364 ofs = from - (chipnum << cfi->chipshift);
1365
a98889f3 1366 *virt = map->virt + cfi->chips[chipnum].start + ofs;
a98889f3
JH
1367 if (phys)
1368 *phys = map->phys + cfi->chips[chipnum].start + ofs;
097f2576 1369
1da177e4
LT
1370 while (len) {
1371 unsigned long thislen;
1372
1373 if (chipnum >= cfi->numchips)
1374 break;
1375
097f2576
AL
1376 /* We cannot point across chips that are virtually disjoint */
1377 if (!last_end)
1378 last_end = cfi->chips[chipnum].start;
1379 else if (cfi->chips[chipnum].start != last_end)
1380 break;
1381
1da177e4
LT
1382 if ((len + ofs -1) >> cfi->chipshift)
1383 thislen = (1<<cfi->chipshift) - ofs;
1384 else
1385 thislen = len;
1386
1387 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1388 if (ret)
1389 break;
1390
1391 *retlen += thislen;
1392 len -= thislen;
1f948b43 1393
1da177e4 1394 ofs = 0;
097f2576 1395 last_end += 1 << cfi->chipshift;
1da177e4
LT
1396 chipnum++;
1397 }
1398 return 0;
1399}
1400
5e4e6e3f 1401static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1da177e4
LT
1402{
1403 struct map_info *map = mtd->priv;
1404 struct cfi_private *cfi = map->fldrv_priv;
1405 unsigned long ofs;
5e4e6e3f 1406 int chipnum, err = 0;
1da177e4
LT
1407
1408 /* Now unlock the chip(s) POINT state */
1409
1410 /* ofs: offset within the first chip that the first read should start */
1411 chipnum = (from >> cfi->chipshift);
1412 ofs = from - (chipnum << cfi->chipshift);
1413
5e4e6e3f 1414 while (len && !err) {
1da177e4
LT
1415 unsigned long thislen;
1416 struct flchip *chip;
1417
1418 chip = &cfi->chips[chipnum];
1419 if (chipnum >= cfi->numchips)
1420 break;
1421
1422 if ((len + ofs -1) >> cfi->chipshift)
1423 thislen = (1<<cfi->chipshift) - ofs;
1424 else
1425 thislen = len;
1426
c4e77376 1427 mutex_lock(&chip->mutex);
1da177e4
LT
1428 if (chip->state == FL_POINT) {
1429 chip->ref_point_counter--;
1430 if(chip->ref_point_counter == 0)
1431 chip->state = FL_READY;
5e4e6e3f
AB
1432 } else {
1433 printk(KERN_ERR "%s: Error: unpoint called on non pointed region\n", map->name);
1434 err = -EINVAL;
1435 }
1da177e4
LT
1436
1437 put_chip(map, chip, chip->start);
c4e77376 1438 mutex_unlock(&chip->mutex);
1da177e4
LT
1439
1440 len -= thislen;
1441 ofs = 0;
1442 chipnum++;
1443 }
5e4e6e3f
AB
1444
1445 return err;
1da177e4
LT
1446}
1447
1448static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1449{
1450 unsigned long cmd_addr;
1451 struct cfi_private *cfi = map->fldrv_priv;
1452 int ret;
1453
1454 adr += chip->start;
1455
1f948b43
TG
1456 /* Ensure cmd read/writes are aligned. */
1457 cmd_addr = adr & ~(map_bankwidth(map)-1);
1da177e4 1458
c4e77376 1459 mutex_lock(&chip->mutex);
1da177e4
LT
1460 ret = get_chip(map, chip, cmd_addr, FL_READY);
1461 if (ret) {
c4e77376 1462 mutex_unlock(&chip->mutex);
1da177e4
LT
1463 return ret;
1464 }
1465
1466 if (chip->state != FL_POINT && chip->state != FL_READY) {
1467 map_write(map, CMD(0xff), cmd_addr);
1468
1469 chip->state = FL_READY;
1470 }
1471
1472 map_copy_from(map, buf, adr, len);
1473
1474 put_chip(map, chip, cmd_addr);
1475
c4e77376 1476 mutex_unlock(&chip->mutex);
1da177e4
LT
1477 return 0;
1478}
1479
1480static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1481{
1482 struct map_info *map = mtd->priv;
1483 struct cfi_private *cfi = map->fldrv_priv;
1484 unsigned long ofs;
1485 int chipnum;
1486 int ret = 0;
1487
1488 /* ofs: offset within the first chip that the first read should start */
1489 chipnum = (from >> cfi->chipshift);
1490 ofs = from - (chipnum << cfi->chipshift);
1491
1da177e4
LT
1492 while (len) {
1493 unsigned long thislen;
1494
1495 if (chipnum >= cfi->numchips)
1496 break;
1497
1498 if ((len + ofs -1) >> cfi->chipshift)
1499 thislen = (1<<cfi->chipshift) - ofs;
1500 else
1501 thislen = len;
1502
1503 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1504 if (ret)
1505 break;
1506
1507 *retlen += thislen;
1508 len -= thislen;
1509 buf += thislen;
1f948b43 1510
1da177e4
LT
1511 ofs = 0;
1512 chipnum++;
1513 }
1514 return ret;
1515}
1516
1da177e4 1517static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
f77814dd 1518 unsigned long adr, map_word datum, int mode)
1da177e4
LT
1519{
1520 struct cfi_private *cfi = map->fldrv_priv;
c172471b
NP
1521 map_word status, write_cmd;
1522 int ret=0;
1da177e4
LT
1523
1524 adr += chip->start;
1525
f77814dd 1526 switch (mode) {
638d9838 1527 case FL_WRITING:
b5d194ce 1528 write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0x40) : CMD(0x41);
638d9838
NP
1529 break;
1530 case FL_OTP_WRITE:
1531 write_cmd = CMD(0xc0);
1532 break;
1533 default:
1534 return -EINVAL;
f77814dd 1535 }
1da177e4 1536
c4e77376 1537 mutex_lock(&chip->mutex);
f77814dd 1538 ret = get_chip(map, chip, adr, mode);
1da177e4 1539 if (ret) {
c4e77376 1540 mutex_unlock(&chip->mutex);
1da177e4
LT
1541 return ret;
1542 }
1543
1544 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1545 ENABLE_VPP(map);
1546 xip_disable(map, chip, adr);
f77814dd 1547 map_write(map, write_cmd, adr);
1da177e4 1548 map_write(map, datum, adr);
f77814dd 1549 chip->state = mode;
1da177e4 1550
c172471b
NP
1551 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1552 adr, map_bankwidth(map),
e93cafe4
AG
1553 chip->word_write_time,
1554 chip->word_write_time_max);
c172471b
NP
1555 if (ret) {
1556 xip_enable(map, chip, adr);
1557 printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
1558 goto out;
1da177e4 1559 }
1da177e4 1560
4843653c 1561 /* check for errors */
c172471b 1562 status = map_read(map, adr);
4843653c
NP
1563 if (map_word_bitsset(map, status, CMD(0x1a))) {
1564 unsigned long chipstatus = MERGESTATUS(status);
1565
1566 /* reset status */
1da177e4 1567 map_write(map, CMD(0x50), adr);
1da177e4 1568 map_write(map, CMD(0x70), adr);
4843653c
NP
1569 xip_enable(map, chip, adr);
1570
1571 if (chipstatus & 0x02) {
1572 ret = -EROFS;
1573 } else if (chipstatus & 0x08) {
1574 printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
1575 ret = -EIO;
1576 } else {
1577 printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
1578 ret = -EINVAL;
1579 }
1580
1581 goto out;
1da177e4
LT
1582 }
1583
1584 xip_enable(map, chip, adr);
85e5b2f2
PP
1585 out: DISABLE_VPP(map);
1586 put_chip(map, chip, adr);
c4e77376 1587 mutex_unlock(&chip->mutex);
1da177e4
LT
1588 return ret;
1589}
1590
1591
1592static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1593{
1594 struct map_info *map = mtd->priv;
1595 struct cfi_private *cfi = map->fldrv_priv;
1596 int ret = 0;
1597 int chipnum;
1598 unsigned long ofs;
1599
1da177e4
LT
1600 chipnum = to >> cfi->chipshift;
1601 ofs = to - (chipnum << cfi->chipshift);
1602
1603 /* If it's not bus-aligned, do the first byte write */
1604 if (ofs & (map_bankwidth(map)-1)) {
1605 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1606 int gap = ofs - bus_ofs;
1607 int n;
1608 map_word datum;
1609
1610 n = min_t(int, len, map_bankwidth(map)-gap);
1611 datum = map_word_ff(map);
1612 datum = map_word_load_partial(map, datum, buf, gap, n);
1613
1614 ret = do_write_oneword(map, &cfi->chips[chipnum],
f77814dd 1615 bus_ofs, datum, FL_WRITING);
1f948b43 1616 if (ret)
1da177e4
LT
1617 return ret;
1618
1619 len -= n;
1620 ofs += n;
1621 buf += n;
1622 (*retlen) += n;
1623
1624 if (ofs >> cfi->chipshift) {
1f948b43 1625 chipnum ++;
1da177e4
LT
1626 ofs = 0;
1627 if (chipnum == cfi->numchips)
1628 return 0;
1629 }
1630 }
1f948b43 1631
1da177e4
LT
1632 while(len >= map_bankwidth(map)) {
1633 map_word datum = map_word_load(map, buf);
1634
1635 ret = do_write_oneword(map, &cfi->chips[chipnum],
f77814dd 1636 ofs, datum, FL_WRITING);
1da177e4
LT
1637 if (ret)
1638 return ret;
1639
1640 ofs += map_bankwidth(map);
1641 buf += map_bankwidth(map);
1642 (*retlen) += map_bankwidth(map);
1643 len -= map_bankwidth(map);
1644
1645 if (ofs >> cfi->chipshift) {
1f948b43 1646 chipnum ++;
1da177e4
LT
1647 ofs = 0;
1648 if (chipnum == cfi->numchips)
1649 return 0;
1650 }
1651 }
1652
1653 if (len & (map_bankwidth(map)-1)) {
1654 map_word datum;
1655
1656 datum = map_word_ff(map);
1657 datum = map_word_load_partial(map, datum, buf, 0, len);
1658
1659 ret = do_write_oneword(map, &cfi->chips[chipnum],
f77814dd 1660 ofs, datum, FL_WRITING);
1f948b43 1661 if (ret)
1da177e4 1662 return ret;
1f948b43 1663
1da177e4
LT
1664 (*retlen) += len;
1665 }
1666
1667 return 0;
1668}
1669
1670
1f948b43 1671static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
e102d54a
NP
1672 unsigned long adr, const struct kvec **pvec,
1673 unsigned long *pvec_seek, int len)
1da177e4
LT
1674{
1675 struct cfi_private *cfi = map->fldrv_priv;
c172471b
NP
1676 map_word status, write_cmd, datum;
1677 unsigned long cmd_adr;
1678 int ret, wbufsize, word_gap, words;
e102d54a
NP
1679 const struct kvec *vec;
1680 unsigned long vec_seek;
646fd127
MC
1681 unsigned long initial_adr;
1682 int initial_len = len;
1da177e4
LT
1683
1684 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1685 adr += chip->start;
646fd127 1686 initial_adr = adr;
1da177e4 1687 cmd_adr = adr & ~(wbufsize-1);
638d9838 1688
812c5fa8
AA
1689 /* Sharp LH28F640BF chips need the first address for the
1690 * Page Buffer Program command. See Table 5 of
1691 * LH28F320BF, LH28F640BF, LH28F128BF Series (Appendix FUM00701) */
1692 if (is_LH28F640BF(cfi))
1693 cmd_adr = adr;
1694
1da177e4 1695 /* Let's determine this according to the interleave only once */
b5d194ce 1696 write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0xe8) : CMD(0xe9);
1da177e4 1697
c4e77376 1698 mutex_lock(&chip->mutex);
1da177e4
LT
1699 ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1700 if (ret) {
c4e77376 1701 mutex_unlock(&chip->mutex);
1da177e4
LT
1702 return ret;
1703 }
1704
646fd127 1705 XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len);
1da177e4
LT
1706 ENABLE_VPP(map);
1707 xip_disable(map, chip, cmd_adr);
1708
151e7659 1709 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1f948b43 1710 [...], the device will not accept any more Write to Buffer commands".
1da177e4
LT
1711 So we must check here and reset those bits if they're set. Otherwise
1712 we're just pissing in the wind */
6e7a6809 1713 if (chip->state != FL_STATUS) {
1da177e4 1714 map_write(map, CMD(0x70), cmd_adr);
6e7a6809
NP
1715 chip->state = FL_STATUS;
1716 }
1da177e4
LT
1717 status = map_read(map, cmd_adr);
1718 if (map_word_bitsset(map, status, CMD(0x30))) {
1719 xip_enable(map, chip, cmd_adr);
1720 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1721 xip_disable(map, chip, cmd_adr);
1722 map_write(map, CMD(0x50), cmd_adr);
1723 map_write(map, CMD(0x70), cmd_adr);
1724 }
1725
1726 chip->state = FL_WRITING_TO_BUFFER;
c172471b 1727 map_write(map, write_cmd, cmd_adr);
e93cafe4 1728 ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0);
c172471b
NP
1729 if (ret) {
1730 /* Argh. Not ready for write to buffer */
1731 map_word Xstatus = map_read(map, cmd_adr);
1732 map_write(map, CMD(0x70), cmd_adr);
1733 chip->state = FL_STATUS;
1da177e4 1734 status = map_read(map, cmd_adr);
c172471b
NP
1735 map_write(map, CMD(0x50), cmd_adr);
1736 map_write(map, CMD(0x70), cmd_adr);
1737 xip_enable(map, chip, cmd_adr);
1738 printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1739 map->name, Xstatus.x[0], status.x[0]);
1740 goto out;
1da177e4
LT
1741 }
1742
e102d54a
NP
1743 /* Figure out the number of words to write */
1744 word_gap = (-adr & (map_bankwidth(map)-1));
c8872b06 1745 words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map));
e102d54a
NP
1746 if (!word_gap) {
1747 words--;
1748 } else {
1749 word_gap = map_bankwidth(map) - word_gap;
1750 adr -= word_gap;
1751 datum = map_word_ff(map);
1752 }
1753
1da177e4 1754 /* Write length of data to come */
e102d54a 1755 map_write(map, CMD(words), cmd_adr );
1da177e4
LT
1756
1757 /* Write data */
e102d54a
NP
1758 vec = *pvec;
1759 vec_seek = *pvec_seek;
1760 do {
1761 int n = map_bankwidth(map) - word_gap;
1762 if (n > vec->iov_len - vec_seek)
1763 n = vec->iov_len - vec_seek;
1764 if (n > len)
1765 n = len;
1da177e4 1766
e102d54a
NP
1767 if (!word_gap && len < map_bankwidth(map))
1768 datum = map_word_ff(map);
1da177e4 1769
e102d54a 1770 datum = map_word_load_partial(map, datum,
1f948b43 1771 vec->iov_base + vec_seek,
e102d54a 1772 word_gap, n);
1da177e4 1773
e102d54a
NP
1774 len -= n;
1775 word_gap += n;
1776 if (!len || word_gap == map_bankwidth(map)) {
1777 map_write(map, datum, adr);
1778 adr += map_bankwidth(map);
1779 word_gap = 0;
1780 }
1da177e4 1781
e102d54a
NP
1782 vec_seek += n;
1783 if (vec_seek == vec->iov_len) {
1784 vec++;
1785 vec_seek = 0;
1786 }
1787 } while (len);
1788 *pvec = vec;
1789 *pvec_seek = vec_seek;
1da177e4
LT
1790
1791 /* GO GO GO */
1792 map_write(map, CMD(0xd0), cmd_adr);
1793 chip->state = FL_WRITING;
1794
c172471b 1795 ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
646fd127 1796 initial_adr, initial_len,
e93cafe4
AG
1797 chip->buffer_write_time,
1798 chip->buffer_write_time_max);
c172471b
NP
1799 if (ret) {
1800 map_write(map, CMD(0x70), cmd_adr);
1801 chip->state = FL_STATUS;
1802 xip_enable(map, chip, cmd_adr);
1803 printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
1804 goto out;
1da177e4 1805 }
1da177e4 1806
4843653c 1807 /* check for errors */
c172471b 1808 status = map_read(map, cmd_adr);
4843653c
NP
1809 if (map_word_bitsset(map, status, CMD(0x1a))) {
1810 unsigned long chipstatus = MERGESTATUS(status);
1811
1812 /* reset status */
1da177e4 1813 map_write(map, CMD(0x50), cmd_adr);
4843653c
NP
1814 map_write(map, CMD(0x70), cmd_adr);
1815 xip_enable(map, chip, cmd_adr);
1816
1817 if (chipstatus & 0x02) {
1818 ret = -EROFS;
1819 } else if (chipstatus & 0x08) {
1820 printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
1821 ret = -EIO;
1822 } else {
1823 printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
1824 ret = -EINVAL;
1825 }
1826
1827 goto out;
1da177e4
LT
1828 }
1829
1830 xip_enable(map, chip, cmd_adr);
85e5b2f2
PP
1831 out: DISABLE_VPP(map);
1832 put_chip(map, chip, cmd_adr);
c4e77376 1833 mutex_unlock(&chip->mutex);
1da177e4
LT
1834 return ret;
1835}
1836
e102d54a
NP
1837static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1838 unsigned long count, loff_t to, size_t *retlen)
1da177e4
LT
1839{
1840 struct map_info *map = mtd->priv;
1841 struct cfi_private *cfi = map->fldrv_priv;
1842 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1843 int ret = 0;
1844 int chipnum;
e102d54a
NP
1845 unsigned long ofs, vec_seek, i;
1846 size_t len = 0;
1847
1848 for (i = 0; i < count; i++)
1849 len += vecs[i].iov_len;
1da177e4 1850
1da177e4
LT
1851 if (!len)
1852 return 0;
1853
1854 chipnum = to >> cfi->chipshift;
e102d54a
NP
1855 ofs = to - (chipnum << cfi->chipshift);
1856 vec_seek = 0;
1da177e4 1857
e102d54a 1858 do {
1da177e4
LT
1859 /* We must not cross write block boundaries */
1860 int size = wbufsize - (ofs & (wbufsize-1));
1861
1862 if (size > len)
1863 size = len;
1f948b43 1864 ret = do_write_buffer(map, &cfi->chips[chipnum],
e102d54a 1865 ofs, &vecs, &vec_seek, size);
1da177e4
LT
1866 if (ret)
1867 return ret;
1868
1869 ofs += size;
1da177e4
LT
1870 (*retlen) += size;
1871 len -= size;
1872
1873 if (ofs >> cfi->chipshift) {
1f948b43 1874 chipnum ++;
1da177e4
LT
1875 ofs = 0;
1876 if (chipnum == cfi->numchips)
1877 return 0;
1878 }
df54b52c
JB
1879
1880 /* Be nice and reschedule with the chip in a usable state for other
1881 processes. */
1882 cond_resched();
1883
e102d54a
NP
1884 } while (len);
1885
1da177e4
LT
1886 return 0;
1887}
1888
e102d54a
NP
1889static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1890 size_t len, size_t *retlen, const u_char *buf)
1891{
1892 struct kvec vec;
1893
1894 vec.iov_base = (void *) buf;
1895 vec.iov_len = len;
1896
1897 return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
1898}
1899
1da177e4
LT
1900static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1901 unsigned long adr, int len, void *thunk)
1902{
1903 struct cfi_private *cfi = map->fldrv_priv;
c172471b 1904 map_word status;
1da177e4 1905 int retries = 3;
c172471b 1906 int ret;
1da177e4
LT
1907
1908 adr += chip->start;
1909
1da177e4 1910 retry:
c4e77376 1911 mutex_lock(&chip->mutex);
1da177e4
LT
1912 ret = get_chip(map, chip, adr, FL_ERASING);
1913 if (ret) {
c4e77376 1914 mutex_unlock(&chip->mutex);
1da177e4
LT
1915 return ret;
1916 }
1917
1918 XIP_INVAL_CACHED_RANGE(map, adr, len);
1919 ENABLE_VPP(map);
1920 xip_disable(map, chip, adr);
1921
1922 /* Clear the status register first */
1923 map_write(map, CMD(0x50), adr);
1924
1925 /* Now erase */
1926 map_write(map, CMD(0x20), adr);
1927 map_write(map, CMD(0xD0), adr);
1928 chip->state = FL_ERASING;
1929 chip->erase_suspended = 0;
1930
c172471b
NP
1931 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1932 adr, len,
e93cafe4
AG
1933 chip->erase_time,
1934 chip->erase_time_max);
c172471b
NP
1935 if (ret) {
1936 map_write(map, CMD(0x70), adr);
1937 chip->state = FL_STATUS;
1938 xip_enable(map, chip, adr);
1939 printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
1940 goto out;
1da177e4
LT
1941 }
1942
1943 /* We've broken this before. It doesn't hurt to be safe */
1944 map_write(map, CMD(0x70), adr);
1945 chip->state = FL_STATUS;
1946 status = map_read(map, adr);
1947
4843653c 1948 /* check for errors */
1da177e4 1949 if (map_word_bitsset(map, status, CMD(0x3a))) {
4843653c 1950 unsigned long chipstatus = MERGESTATUS(status);
1da177e4
LT
1951
1952 /* Reset the error bits */
1953 map_write(map, CMD(0x50), adr);
1954 map_write(map, CMD(0x70), adr);
1955 xip_enable(map, chip, adr);
1956
1da177e4 1957 if ((chipstatus & 0x30) == 0x30) {
4843653c
NP
1958 printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
1959 ret = -EINVAL;
1da177e4
LT
1960 } else if (chipstatus & 0x02) {
1961 /* Protection bit set */
1962 ret = -EROFS;
1963 } else if (chipstatus & 0x8) {
1964 /* Voltage */
4843653c 1965 printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
1da177e4 1966 ret = -EIO;
4843653c
NP
1967 } else if (chipstatus & 0x20 && retries--) {
1968 printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
85e5b2f2 1969 DISABLE_VPP(map);
4843653c 1970 put_chip(map, chip, adr);
c4e77376 1971 mutex_unlock(&chip->mutex);
4843653c
NP
1972 goto retry;
1973 } else {
1974 printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
1da177e4
LT
1975 ret = -EIO;
1976 }
4843653c
NP
1977
1978 goto out;
1da177e4
LT
1979 }
1980
4843653c 1981 xip_enable(map, chip, adr);
85e5b2f2
PP
1982 out: DISABLE_VPP(map);
1983 put_chip(map, chip, adr);
c4e77376 1984 mutex_unlock(&chip->mutex);
1da177e4
LT
1985 return ret;
1986}
1987
029a9eb1 1988static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1da177e4
LT
1989{
1990 unsigned long ofs, len;
1991 int ret;
1992
1993 ofs = instr->addr;
1994 len = instr->len;
1995
1996 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1997 if (ret)
1998 return ret;
1999
2000 instr->state = MTD_ERASE_DONE;
2001 mtd_erase_callback(instr);
1f948b43 2002
1da177e4
LT
2003 return 0;
2004}
2005
2006static void cfi_intelext_sync (struct mtd_info *mtd)
2007{
2008 struct map_info *map = mtd->priv;
2009 struct cfi_private *cfi = map->fldrv_priv;
2010 int i;
2011 struct flchip *chip;
2012 int ret = 0;
2013
2014 for (i=0; !ret && i<cfi->numchips; i++) {
2015 chip = &cfi->chips[i];
2016
c4e77376 2017 mutex_lock(&chip->mutex);
1da177e4
LT
2018 ret = get_chip(map, chip, chip->start, FL_SYNCING);
2019
2020 if (!ret) {
2021 chip->oldstate = chip->state;
2022 chip->state = FL_SYNCING;
1f948b43 2023 /* No need to wake_up() on this state change -
1da177e4
LT
2024 * as the whole point is that nobody can do anything
2025 * with the chip now anyway.
2026 */
2027 }
c4e77376 2028 mutex_unlock(&chip->mutex);
1da177e4
LT
2029 }
2030
2031 /* Unlock the chips again */
2032
2033 for (i--; i >=0; i--) {
2034 chip = &cfi->chips[i];
2035
c4e77376 2036 mutex_lock(&chip->mutex);
1f948b43 2037
1da177e4
LT
2038 if (chip->state == FL_SYNCING) {
2039 chip->state = chip->oldstate;
09c79335 2040 chip->oldstate = FL_READY;
1da177e4
LT
2041 wake_up(&chip->wq);
2042 }
c4e77376 2043 mutex_unlock(&chip->mutex);
1da177e4
LT
2044 }
2045}
2046
0ecbc81a 2047static int __xipram do_getlockstatus_oneblock(struct map_info *map,
1da177e4
LT
2048 struct flchip *chip,
2049 unsigned long adr,
2050 int len, void *thunk)
2051{
2052 struct cfi_private *cfi = map->fldrv_priv;
2053 int status, ofs_factor = cfi->interleave * cfi->device_type;
2054
c25bb1f5 2055 adr += chip->start;
1da177e4 2056 xip_disable(map, chip, adr+(2*ofs_factor));
c25bb1f5 2057 map_write(map, CMD(0x90), adr+(2*ofs_factor));
1da177e4
LT
2058 chip->state = FL_JEDEC_QUERY;
2059 status = cfi_read_query(map, adr+(2*ofs_factor));
2060 xip_enable(map, chip, 0);
0ecbc81a
RG
2061 return status;
2062}
2063
2064#ifdef DEBUG_LOCK_BITS
2065static int __xipram do_printlockstatus_oneblock(struct map_info *map,
2066 struct flchip *chip,
2067 unsigned long adr,
2068 int len, void *thunk)
2069{
1da177e4 2070 printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
0ecbc81a 2071 adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk));
1da177e4
LT
2072 return 0;
2073}
2074#endif
2075
2076#define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
2077#define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
2078
2079static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
2080 unsigned long adr, int len, void *thunk)
2081{
2082 struct cfi_private *cfi = map->fldrv_priv;
9a6e73ec 2083 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
7be1f6b9 2084 int mdelay;
1da177e4
LT
2085 int ret;
2086
2087 adr += chip->start;
2088
c4e77376 2089 mutex_lock(&chip->mutex);
1da177e4
LT
2090 ret = get_chip(map, chip, adr, FL_LOCKING);
2091 if (ret) {
c4e77376 2092 mutex_unlock(&chip->mutex);
1da177e4
LT
2093 return ret;
2094 }
2095
2096 ENABLE_VPP(map);
2097 xip_disable(map, chip, adr);
1f948b43 2098
1da177e4
LT
2099 map_write(map, CMD(0x60), adr);
2100 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2101 map_write(map, CMD(0x01), adr);
2102 chip->state = FL_LOCKING;
2103 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2104 map_write(map, CMD(0xD0), adr);
2105 chip->state = FL_UNLOCKING;
2106 } else
2107 BUG();
2108
9a6e73ec
TP
2109 /*
2110 * If Instant Individual Block Locking supported then no need
2111 * to delay.
2112 */
7be1f6b9
SR
2113 /*
2114 * Unlocking may take up to 1.4 seconds on some Intel flashes. So
2115 * lets use a max of 1.5 seconds (1500ms) as timeout.
2116 *
2117 * See "Clear Block Lock-Bits Time" on page 40 in
2118 * "3 Volt Intel StrataFlash Memory" 28F128J3,28F640J3,28F320J3 manual
2119 * from February 2003
2120 */
2121 mdelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1500 : 0;
9a6e73ec 2122
7be1f6b9 2123 ret = WAIT_TIMEOUT(map, chip, adr, mdelay, mdelay * 1000);
c172471b
NP
2124 if (ret) {
2125 map_write(map, CMD(0x70), adr);
2126 chip->state = FL_STATUS;
2127 xip_enable(map, chip, adr);
2128 printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
2129 goto out;
1da177e4 2130 }
1f948b43 2131
1da177e4 2132 xip_enable(map, chip, adr);
85e5b2f2
PP
2133 out: DISABLE_VPP(map);
2134 put_chip(map, chip, adr);
c4e77376 2135 mutex_unlock(&chip->mutex);
c172471b 2136 return ret;
1da177e4
LT
2137}
2138
69423d99 2139static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1da177e4
LT
2140{
2141 int ret;
2142
2143#ifdef DEBUG_LOCK_BITS
2144 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
cb53b3b9 2145 __func__, ofs, len);
1da177e4 2146 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1da1caf8 2147 ofs, len, NULL);
1da177e4
LT
2148#endif
2149
1f948b43 2150 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
1da177e4 2151 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
1f948b43 2152
1da177e4
LT
2153#ifdef DEBUG_LOCK_BITS
2154 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
cb53b3b9 2155 __func__, ret);
1da177e4 2156 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1da1caf8 2157 ofs, len, NULL);
1da177e4
LT
2158#endif
2159
2160 return ret;
2161}
2162
69423d99 2163static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1da177e4
LT
2164{
2165 int ret;
2166
2167#ifdef DEBUG_LOCK_BITS
2168 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
cb53b3b9 2169 __func__, ofs, len);
1da177e4 2170 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1da1caf8 2171 ofs, len, NULL);
1da177e4
LT
2172#endif
2173
2174 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2175 ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
1f948b43 2176
1da177e4
LT
2177#ifdef DEBUG_LOCK_BITS
2178 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
cb53b3b9 2179 __func__, ret);
1f948b43 2180 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1da1caf8 2181 ofs, len, NULL);
1da177e4 2182#endif
1f948b43 2183
1da177e4
LT
2184 return ret;
2185}
2186
9938424f
RC
2187static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
2188 uint64_t len)
2189{
2190 return cfi_varsize_frob(mtd, do_getlockstatus_oneblock,
2191 ofs, len, NULL) ? 1 : 0;
2192}
2193
f77814dd
NP
2194#ifdef CONFIG_MTD_OTP
2195
1f948b43 2196typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
f77814dd
NP
2197 u_long data_offset, u_char *buf, u_int size,
2198 u_long prot_offset, u_int groupno, u_int groupsize);
2199
2200static int __xipram
2201do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
2202 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2203{
2204 struct cfi_private *cfi = map->fldrv_priv;
2205 int ret;
2206
c4e77376 2207 mutex_lock(&chip->mutex);
f77814dd
NP
2208 ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
2209 if (ret) {
c4e77376 2210 mutex_unlock(&chip->mutex);
f77814dd
NP
2211 return ret;
2212 }
2213
2214 /* let's ensure we're not reading back cached data from array mode */
6da70124 2215 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
f77814dd
NP
2216
2217 xip_disable(map, chip, chip->start);
2218 if (chip->state != FL_JEDEC_QUERY) {
2219 map_write(map, CMD(0x90), chip->start);
2220 chip->state = FL_JEDEC_QUERY;
2221 }
2222 map_copy_from(map, buf, chip->start + offset, size);
2223 xip_enable(map, chip, chip->start);
2224
2225 /* then ensure we don't keep OTP data in the cache */
6da70124 2226 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
f77814dd
NP
2227
2228 put_chip(map, chip, chip->start);
c4e77376 2229 mutex_unlock(&chip->mutex);
f77814dd
NP
2230 return 0;
2231}
2232
2233static int
2234do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
2235 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2236{
2237 int ret;
2238
2239 while (size) {
2240 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
2241 int gap = offset - bus_ofs;
2242 int n = min_t(int, size, map_bankwidth(map)-gap);
2243 map_word datum = map_word_ff(map);
2244
2245 datum = map_word_load_partial(map, datum, buf, gap, n);
2246 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1f948b43 2247 if (ret)
f77814dd
NP
2248 return ret;
2249
2250 offset += n;
2251 buf += n;
2252 size -= n;
2253 }
2254
2255 return 0;
2256}
2257
2258static int
2259do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2260 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2261{
2262 struct cfi_private *cfi = map->fldrv_priv;
2263 map_word datum;
2264
2265 /* make sure area matches group boundaries */
332d71f7 2266 if (size != grpsz)
f77814dd
NP
2267 return -EXDEV;
2268
2269 datum = map_word_ff(map);
2270 datum = map_word_clr(map, datum, CMD(1 << grpno));
2271 return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2272}
2273
2274static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2275 size_t *retlen, u_char *buf,
2276 otp_op_t action, int user_regs)
2277{
2278 struct map_info *map = mtd->priv;
2279 struct cfi_private *cfi = map->fldrv_priv;
2280 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2281 struct flchip *chip;
2282 struct cfi_intelext_otpinfo *otp;
2283 u_long devsize, reg_prot_offset, data_offset;
2284 u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2285 u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2286 int ret;
2287
2288 *retlen = 0;
2289
2290 /* Check that we actually have some OTP registers */
2291 if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2292 return -ENODATA;
2293
2294 /* we need real chips here not virtual ones */
2295 devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2296 chip_step = devsize >> cfi->chipshift;
dce2b4da
NP
2297 chip_num = 0;
2298
2299 /* Some chips have OTP located in the _top_ partition only.
2300 For example: Intel 28F256L18T (T means top-parameter device) */
b2ef1a2b 2301 if (cfi->mfr == CFI_MFR_INTEL) {
dce2b4da
NP
2302 switch (cfi->id) {
2303 case 0x880b:
2304 case 0x880c:
2305 case 0x880d:
2306 chip_num = chip_step - 1;
2307 }
2308 }
f77814dd 2309
dce2b4da 2310 for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
f77814dd
NP
2311 chip = &cfi->chips[chip_num];
2312 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2313
2314 /* first OTP region */
2315 field = 0;
2316 reg_prot_offset = extp->ProtRegAddr;
2317 reg_fact_groups = 1;
2318 reg_fact_size = 1 << extp->FactProtRegSize;
2319 reg_user_groups = 1;
2320 reg_user_size = 1 << extp->UserProtRegSize;
2321
2322 while (len > 0) {
2323 /* flash geometry fixup */
2324 data_offset = reg_prot_offset + 1;
2325 data_offset *= cfi->interleave * cfi->device_type;
2326 reg_prot_offset *= cfi->interleave * cfi->device_type;
2327 reg_fact_size *= cfi->interleave;
2328 reg_user_size *= cfi->interleave;
2329
2330 if (user_regs) {
2331 groups = reg_user_groups;
2332 groupsize = reg_user_size;
2333 /* skip over factory reg area */
2334 groupno = reg_fact_groups;
2335 data_offset += reg_fact_groups * reg_fact_size;
2336 } else {
2337 groups = reg_fact_groups;
2338 groupsize = reg_fact_size;
2339 groupno = 0;
2340 }
2341
332d71f7 2342 while (len > 0 && groups > 0) {
f77814dd
NP
2343 if (!action) {
2344 /*
2345 * Special case: if action is NULL
2346 * we fill buf with otp_info records.
2347 */
2348 struct otp_info *otpinfo;
2349 map_word lockword;
2350 len -= sizeof(struct otp_info);
2351 if (len <= 0)
2352 return -ENOSPC;
2353 ret = do_otp_read(map, chip,
2354 reg_prot_offset,
2355 (u_char *)&lockword,
2356 map_bankwidth(map),
2357 0, 0, 0);
2358 if (ret)
2359 return ret;
2360 otpinfo = (struct otp_info *)buf;
2361 otpinfo->start = from;
2362 otpinfo->length = groupsize;
2363 otpinfo->locked =
2364 !map_word_bitsset(map, lockword,
2365 CMD(1 << groupno));
2366 from += groupsize;
2367 buf += sizeof(*otpinfo);
2368 *retlen += sizeof(*otpinfo);
2369 } else if (from >= groupsize) {
2370 from -= groupsize;
332d71f7 2371 data_offset += groupsize;
f77814dd
NP
2372 } else {
2373 int size = groupsize;
2374 data_offset += from;
2375 size -= from;
2376 from = 0;
2377 if (size > len)
2378 size = len;
2379 ret = action(map, chip, data_offset,
2380 buf, size, reg_prot_offset,
2381 groupno, groupsize);
2382 if (ret < 0)
2383 return ret;
2384 buf += size;
2385 len -= size;
2386 *retlen += size;
332d71f7 2387 data_offset += size;
f77814dd
NP
2388 }
2389 groupno++;
2390 groups--;
2391 }
2392
2393 /* next OTP region */
2394 if (++field == extp->NumProtectionFields)
2395 break;
2396 reg_prot_offset = otp->ProtRegAddr;
2397 reg_fact_groups = otp->FactGroups;
2398 reg_fact_size = 1 << otp->FactProtRegSize;
2399 reg_user_groups = otp->UserGroups;
2400 reg_user_size = 1 << otp->UserProtRegSize;
2401 otp++;
2402 }
2403 }
2404
2405 return 0;
2406}
2407
2408static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2409 size_t len, size_t *retlen,
2410 u_char *buf)
2411{
2412 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2413 buf, do_otp_read, 0);
2414}
2415
2416static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2417 size_t len, size_t *retlen,
2418 u_char *buf)
2419{
2420 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2421 buf, do_otp_read, 1);
2422}
2423
2424static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2425 size_t len, size_t *retlen,
2426 u_char *buf)
2427{
2428 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2429 buf, do_otp_write, 1);
2430}
2431
2432static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2433 loff_t from, size_t len)
2434{
2435 size_t retlen;
2436 return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2437 NULL, do_otp_lock, 1);
2438}
2439
4b78fc42
CR
2440static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd, size_t len,
2441 size_t *retlen, struct otp_info *buf)
f77814dd 2442
4b78fc42
CR
2443{
2444 return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
2445 NULL, 0);
f77814dd
NP
2446}
2447
4b78fc42
CR
2448static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd, size_t len,
2449 size_t *retlen, struct otp_info *buf)
f77814dd 2450{
4b78fc42
CR
2451 return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
2452 NULL, 1);
f77814dd
NP
2453}
2454
2455#endif
2456
0ecbc81a
RG
2457static void cfi_intelext_save_locks(struct mtd_info *mtd)
2458{
2459 struct mtd_erase_region_info *region;
2460 int block, status, i;
2461 unsigned long adr;
2462 size_t len;
2463
2464 for (i = 0; i < mtd->numeraseregions; i++) {
2465 region = &mtd->eraseregions[i];
2466 if (!region->lockmap)
2467 continue;
2468
2469 for (block = 0; block < region->numblocks; block++){
2470 len = region->erasesize;
2471 adr = region->offset + block * len;
2472
2473 status = cfi_varsize_frob(mtd,
029a9eb1 2474 do_getlockstatus_oneblock, adr, len, NULL);
0ecbc81a
RG
2475 if (status)
2476 set_bit(block, region->lockmap);
2477 else
2478 clear_bit(block, region->lockmap);
2479 }
2480 }
2481}
2482
1da177e4
LT
2483static int cfi_intelext_suspend(struct mtd_info *mtd)
2484{
2485 struct map_info *map = mtd->priv;
2486 struct cfi_private *cfi = map->fldrv_priv;
0ecbc81a 2487 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
1da177e4
LT
2488 int i;
2489 struct flchip *chip;
2490 int ret = 0;
2491
e619a75f 2492 if ((mtd->flags & MTD_POWERUP_LOCK)
0ecbc81a
RG
2493 && extp && (extp->FeatureSupport & (1 << 5)))
2494 cfi_intelext_save_locks(mtd);
2495
1da177e4
LT
2496 for (i=0; !ret && i<cfi->numchips; i++) {
2497 chip = &cfi->chips[i];
2498
c4e77376 2499 mutex_lock(&chip->mutex);
1da177e4
LT
2500
2501 switch (chip->state) {
2502 case FL_READY:
2503 case FL_STATUS:
2504 case FL_CFI_QUERY:
2505 case FL_JEDEC_QUERY:
2506 if (chip->oldstate == FL_READY) {
a86aaa6d
DA
2507 /* place the chip in a known state before suspend */
2508 map_write(map, CMD(0xFF), cfi->chips[i].start);
1da177e4
LT
2509 chip->oldstate = chip->state;
2510 chip->state = FL_PM_SUSPENDED;
1f948b43 2511 /* No need to wake_up() on this state change -
1da177e4
LT
2512 * as the whole point is that nobody can do anything
2513 * with the chip now anyway.
2514 */
2515 } else {
2516 /* There seems to be an operation pending. We must wait for it. */
2517 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2518 ret = -EAGAIN;
2519 }
2520 break;
2521 default:
2522 /* Should we actually wait? Once upon a time these routines weren't
2523 allowed to. Or should we return -EAGAIN, because the upper layers
2524 ought to have already shut down anything which was using the device
2525 anyway? The latter for now. */
342d3a93 2526 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->state);
1da177e4
LT
2527 ret = -EAGAIN;
2528 case FL_PM_SUSPENDED:
2529 break;
2530 }
c4e77376 2531 mutex_unlock(&chip->mutex);
1da177e4
LT
2532 }
2533
2534 /* Unlock the chips again */
2535
2536 if (ret) {
2537 for (i--; i >=0; i--) {
2538 chip = &cfi->chips[i];
1f948b43 2539
c4e77376 2540 mutex_lock(&chip->mutex);
1f948b43 2541
1da177e4
LT
2542 if (chip->state == FL_PM_SUSPENDED) {
2543 /* No need to force it into a known state here,
2544 because we're returning failure, and it didn't
2545 get power cycled */
2546 chip->state = chip->oldstate;
2547 chip->oldstate = FL_READY;
2548 wake_up(&chip->wq);
2549 }
c4e77376 2550 mutex_unlock(&chip->mutex);
1da177e4 2551 }
1f948b43
TG
2552 }
2553
1da177e4
LT
2554 return ret;
2555}
2556
0ecbc81a
RG
2557static void cfi_intelext_restore_locks(struct mtd_info *mtd)
2558{
2559 struct mtd_erase_region_info *region;
2560 int block, i;
2561 unsigned long adr;
2562 size_t len;
2563
2564 for (i = 0; i < mtd->numeraseregions; i++) {
2565 region = &mtd->eraseregions[i];
2566 if (!region->lockmap)
2567 continue;
2568
c527b414 2569 for_each_clear_bit(block, region->lockmap, region->numblocks) {
0ecbc81a
RG
2570 len = region->erasesize;
2571 adr = region->offset + block * len;
c527b414 2572 cfi_intelext_unlock(mtd, adr, len);
0ecbc81a
RG
2573 }
2574 }
2575}
2576
1da177e4
LT
2577static void cfi_intelext_resume(struct mtd_info *mtd)
2578{
2579 struct map_info *map = mtd->priv;
2580 struct cfi_private *cfi = map->fldrv_priv;
0ecbc81a 2581 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
1da177e4
LT
2582 int i;
2583 struct flchip *chip;
2584
2585 for (i=0; i<cfi->numchips; i++) {
1f948b43 2586
1da177e4
LT
2587 chip = &cfi->chips[i];
2588
c4e77376 2589 mutex_lock(&chip->mutex);
1f948b43 2590
1da177e4
LT
2591 /* Go to known state. Chip may have been power cycled */
2592 if (chip->state == FL_PM_SUSPENDED) {
89cf38dd
DES
2593 /* Refresh LH28F640BF Partition Config. Register */
2594 fixup_LH28F640BF(mtd);
1da177e4
LT
2595 map_write(map, CMD(0xFF), cfi->chips[i].start);
2596 chip->oldstate = chip->state = FL_READY;
2597 wake_up(&chip->wq);
2598 }
2599
c4e77376 2600 mutex_unlock(&chip->mutex);
1da177e4 2601 }
0ecbc81a 2602
e619a75f 2603 if ((mtd->flags & MTD_POWERUP_LOCK)
0ecbc81a
RG
2604 && extp && (extp->FeatureSupport & (1 << 5)))
2605 cfi_intelext_restore_locks(mtd);
1da177e4
LT
2606}
2607
963a6fb0
NP
2608static int cfi_intelext_reset(struct mtd_info *mtd)
2609{
2610 struct map_info *map = mtd->priv;
2611 struct cfi_private *cfi = map->fldrv_priv;
2612 int i, ret;
2613
2614 for (i=0; i < cfi->numchips; i++) {
2615 struct flchip *chip = &cfi->chips[i];
2616
2617 /* force the completion of any ongoing operation
1f948b43 2618 and switch to array mode so any bootloader in
963a6fb0 2619 flash is accessible for soft reboot. */
c4e77376 2620 mutex_lock(&chip->mutex);
c4a9f88d 2621 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
963a6fb0
NP
2622 if (!ret) {
2623 map_write(map, CMD(0xff), chip->start);
c4a9f88d 2624 chip->state = FL_SHUTDOWN;
c9f7ec30 2625 put_chip(map, chip, chip->start);
963a6fb0 2626 }
c4e77376 2627 mutex_unlock(&chip->mutex);
963a6fb0
NP
2628 }
2629
2630 return 0;
2631}
2632
2633static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2634 void *v)
2635{
2636 struct mtd_info *mtd;
2637
2638 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2639 cfi_intelext_reset(mtd);
2640 return NOTIFY_DONE;
2641}
2642
1da177e4
LT
2643static void cfi_intelext_destroy(struct mtd_info *mtd)
2644{
2645 struct map_info *map = mtd->priv;
2646 struct cfi_private *cfi = map->fldrv_priv;
0ecbc81a
RG
2647 struct mtd_erase_region_info *region;
2648 int i;
963a6fb0
NP
2649 cfi_intelext_reset(mtd);
2650 unregister_reboot_notifier(&mtd->reboot_notifier);
1da177e4
LT
2651 kfree(cfi->cmdset_priv);
2652 kfree(cfi->cfiq);
2653 kfree(cfi->chips[0].priv);
2654 kfree(cfi);
0ecbc81a
RG
2655 for (i = 0; i < mtd->numeraseregions; i++) {
2656 region = &mtd->eraseregions[i];
2657 if (region->lockmap)
2658 kfree(region->lockmap);
2659 }
1da177e4
LT
2660 kfree(mtd->eraseregions);
2661}
2662
1da177e4
LT
2663MODULE_LICENSE("GPL");
2664MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2665MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
a15bdeef
DW
2666MODULE_ALIAS("cfi_cmdset_0003");
2667MODULE_ALIAS("cfi_cmdset_0200");