]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/mtd/chips/cfi_cmdset_0001.c
[MTD] Reset file position when switching OTP mode
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / chips / cfi_cmdset_0001.c
CommitLineData
1da177e4
LT
1/*
2 * Common Flash Interface support:
3 * Intel Extended Vendor Command Set (ID 0x0001)
4 *
5 * (C) 2000 Red Hat. GPL'd
6 *
963a6fb0 7 * $Id: cfi_cmdset_0001.c,v 1.174 2005/04/01 01:59:52 nico Exp $
1da177e4
LT
8 *
9 *
10 * 10/10/2000 Nicolas Pitre <nico@cam.org>
11 * - completely revamped method functions so they are aware and
12 * independent of the flash geometry (buswidth, interleave, etc.)
13 * - scalability vs code size is completely set at compile-time
14 * (see include/linux/mtd/cfi.h for selection)
15 * - optimized write buffer method
16 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
17 * - reworked lock/unlock/erase support for var size flash
18 */
19
20#include <linux/module.h>
21#include <linux/types.h>
22#include <linux/kernel.h>
23#include <linux/sched.h>
24#include <linux/init.h>
25#include <asm/io.h>
26#include <asm/byteorder.h>
27
28#include <linux/errno.h>
29#include <linux/slab.h>
30#include <linux/delay.h>
31#include <linux/interrupt.h>
963a6fb0 32#include <linux/reboot.h>
1da177e4
LT
33#include <linux/mtd/xip.h>
34#include <linux/mtd/map.h>
35#include <linux/mtd/mtd.h>
36#include <linux/mtd/compatmac.h>
37#include <linux/mtd/cfi.h>
38
39/* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
40/* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
41
42// debugging, turns off buffer write mode if set to 1
43#define FORCE_WORD_WRITE 0
44
45#define MANUFACTURER_INTEL 0x0089
46#define I82802AB 0x00ad
47#define I82802AC 0x00ac
48#define MANUFACTURER_ST 0x0020
49#define M50LPW080 0x002F
50
51static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
1da177e4
LT
52static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
55static void cfi_intelext_sync (struct mtd_info *);
56static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
57static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
8048d2fc 58#ifdef CONFIG_MTD_OTP
f77814dd
NP
59static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
60static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
62static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
63static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
64 struct otp_info *, size_t);
65static int cfi_intelext_get_user_prot_info (struct mtd_info *,
66 struct otp_info *, size_t);
8048d2fc 67#endif
1da177e4
LT
68static int cfi_intelext_suspend (struct mtd_info *);
69static void cfi_intelext_resume (struct mtd_info *);
963a6fb0 70static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
1da177e4
LT
71
72static void cfi_intelext_destroy(struct mtd_info *);
73
74struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
75
76static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
77static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
78
79static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
80 size_t *retlen, u_char **mtdbuf);
81static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from,
82 size_t len);
83
84static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
85static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
86#include "fwh_lock.h"
87
88
89
90/*
91 * *********** SETUP AND PROBE BITS ***********
92 */
93
94static struct mtd_chip_driver cfi_intelext_chipdrv = {
95 .probe = NULL, /* Not usable directly */
96 .destroy = cfi_intelext_destroy,
97 .name = "cfi_cmdset_0001",
98 .module = THIS_MODULE
99};
100
101/* #define DEBUG_LOCK_BITS */
102/* #define DEBUG_CFI_FEATURES */
103
104#ifdef DEBUG_CFI_FEATURES
105static void cfi_tell_features(struct cfi_pri_intelext *extp)
106{
107 int i;
108 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
109 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
110 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
111 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
112 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
113 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
114 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
115 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
116 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
117 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
118 printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
119 for (i=10; i<32; i++) {
120 if (extp->FeatureSupport & (1<<i))
121 printk(" - Unknown Bit %X: supported\n", i);
122 }
123
124 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
125 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
126 for (i=1; i<8; i++) {
127 if (extp->SuspendCmdSupport & (1<<i))
128 printk(" - Unknown Bit %X: supported\n", i);
129 }
130
131 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
132 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
133 printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
134 for (i=2; i<16; i++) {
135 if (extp->BlkStatusRegMask & (1<<i))
136 printk(" - Unknown Bit %X Active: yes\n",i);
137 }
138
139 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
140 extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
141 if (extp->VppOptimal)
142 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
143 extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
144}
145#endif
146
147#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
148/* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
149static void fixup_intel_strataflash(struct mtd_info *mtd, void* param)
150{
151 struct map_info *map = mtd->priv;
152 struct cfi_private *cfi = map->fldrv_priv;
153 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
154
155 printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
156 "erase on write disabled.\n");
157 extp->SuspendCmdSupport &= ~1;
158}
159#endif
160
161#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
162static void fixup_no_write_suspend(struct mtd_info *mtd, void* param)
163{
164 struct map_info *map = mtd->priv;
165 struct cfi_private *cfi = map->fldrv_priv;
166 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
167
168 if (cfip && (cfip->FeatureSupport&4)) {
169 cfip->FeatureSupport &= ~4;
170 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
171 }
172}
173#endif
174
175static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param)
176{
177 struct map_info *map = mtd->priv;
178 struct cfi_private *cfi = map->fldrv_priv;
179
180 cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */
181 cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */
182}
183
184static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param)
185{
186 struct map_info *map = mtd->priv;
187 struct cfi_private *cfi = map->fldrv_priv;
188
189 /* Note this is done after the region info is endian swapped */
190 cfi->cfiq->EraseRegionInfo[1] =
191 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
192};
193
194static void fixup_use_point(struct mtd_info *mtd, void *param)
195{
196 struct map_info *map = mtd->priv;
197 if (!mtd->point && map_is_linear(map)) {
198 mtd->point = cfi_intelext_point;
199 mtd->unpoint = cfi_intelext_unpoint;
200 }
201}
202
203static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
204{
205 struct map_info *map = mtd->priv;
206 struct cfi_private *cfi = map->fldrv_priv;
207 if (cfi->cfiq->BufWriteTimeoutTyp) {
208 printk(KERN_INFO "Using buffer write method\n" );
209 mtd->write = cfi_intelext_write_buffers;
210 }
211}
212
213static struct cfi_fixup cfi_fixup_table[] = {
214#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
215 { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL },
216#endif
217#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
218 { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL },
219#endif
220#if !FORCE_WORD_WRITE
221 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL },
222#endif
223 { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL },
224 { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL },
225 { 0, 0, NULL, NULL }
226};
227
228static struct cfi_fixup jedec_fixup_table[] = {
229 { MANUFACTURER_INTEL, I82802AB, fixup_use_fwh_lock, NULL, },
230 { MANUFACTURER_INTEL, I82802AC, fixup_use_fwh_lock, NULL, },
231 { MANUFACTURER_ST, M50LPW080, fixup_use_fwh_lock, NULL, },
232 { 0, 0, NULL, NULL }
233};
234static struct cfi_fixup fixup_table[] = {
235 /* The CFI vendor ids and the JEDEC vendor IDs appear
236 * to be common. It is like the devices id's are as
237 * well. This table is to pick all cases where
238 * we know that is the case.
239 */
240 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL },
241 { 0, 0, NULL, NULL }
242};
243
244static inline struct cfi_pri_intelext *
245read_pri_intelext(struct map_info *map, __u16 adr)
246{
247 struct cfi_pri_intelext *extp;
248 unsigned int extp_size = sizeof(*extp);
249
250 again:
251 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
252 if (!extp)
253 return NULL;
254
255 /* Do some byteswapping if necessary */
256 extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
257 extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
258 extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
259
260 if (extp->MajorVersion == '1' && extp->MinorVersion == '3') {
261 unsigned int extra_size = 0;
262 int nb_parts, i;
263
264 /* Protection Register info */
72b56a2d
NP
265 extra_size += (extp->NumProtectionFields - 1) *
266 sizeof(struct cfi_intelext_otpinfo);
1da177e4
LT
267
268 /* Burst Read info */
269 extra_size += 6;
270
271 /* Number of hardware-partitions */
272 extra_size += 1;
273 if (extp_size < sizeof(*extp) + extra_size)
274 goto need_more;
275 nb_parts = extp->extra[extra_size - 1];
276
277 for (i = 0; i < nb_parts; i++) {
278 struct cfi_intelext_regioninfo *rinfo;
279 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
280 extra_size += sizeof(*rinfo);
281 if (extp_size < sizeof(*extp) + extra_size)
282 goto need_more;
283 rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
284 extra_size += (rinfo->NumBlockTypes - 1)
285 * sizeof(struct cfi_intelext_blockinfo);
286 }
287
288 if (extp_size < sizeof(*extp) + extra_size) {
289 need_more:
290 extp_size = sizeof(*extp) + extra_size;
291 kfree(extp);
292 if (extp_size > 4096) {
293 printk(KERN_ERR
294 "%s: cfi_pri_intelext is too fat\n",
295 __FUNCTION__);
296 return NULL;
297 }
298 goto again;
299 }
300 }
301
302 return extp;
303}
304
305/* This routine is made available to other mtd code via
306 * inter_module_register. It must only be accessed through
307 * inter_module_get which will bump the use count of this module. The
308 * addresses passed back in cfi are valid as long as the use count of
309 * this module is non-zero, i.e. between inter_module_get and
310 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
311 */
312struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
313{
314 struct cfi_private *cfi = map->fldrv_priv;
315 struct mtd_info *mtd;
316 int i;
317
318 mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
319 if (!mtd) {
320 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
321 return NULL;
322 }
323 memset(mtd, 0, sizeof(*mtd));
324 mtd->priv = map;
325 mtd->type = MTD_NORFLASH;
326
327 /* Fill in the default mtd operations */
328 mtd->erase = cfi_intelext_erase_varsize;
329 mtd->read = cfi_intelext_read;
330 mtd->write = cfi_intelext_write_words;
331 mtd->sync = cfi_intelext_sync;
332 mtd->lock = cfi_intelext_lock;
333 mtd->unlock = cfi_intelext_unlock;
334 mtd->suspend = cfi_intelext_suspend;
335 mtd->resume = cfi_intelext_resume;
336 mtd->flags = MTD_CAP_NORFLASH;
337 mtd->name = map->name;
963a6fb0
NP
338
339 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
340
1da177e4
LT
341 if (cfi->cfi_mode == CFI_MODE_CFI) {
342 /*
343 * It's a real CFI chip, not one for which the probe
344 * routine faked a CFI structure. So we read the feature
345 * table from it.
346 */
347 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
348 struct cfi_pri_intelext *extp;
349
350 extp = read_pri_intelext(map, adr);
351 if (!extp) {
352 kfree(mtd);
353 return NULL;
354 }
355
356 /* Install our own private info structure */
357 cfi->cmdset_priv = extp;
358
359 cfi_fixup(mtd, cfi_fixup_table);
360
361#ifdef DEBUG_CFI_FEATURES
362 /* Tell the user about it in lots of lovely detail */
363 cfi_tell_features(extp);
364#endif
365
366 if(extp->SuspendCmdSupport & 1) {
367 printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
368 }
369 }
370 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
371 /* Apply jedec specific fixups */
372 cfi_fixup(mtd, jedec_fixup_table);
373 }
374 /* Apply generic fixups */
375 cfi_fixup(mtd, fixup_table);
376
377 for (i=0; i< cfi->numchips; i++) {
378 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
379 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
380 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
381 cfi->chips[i].ref_point_counter = 0;
382 }
383
384 map->fldrv = &cfi_intelext_chipdrv;
385
386 return cfi_intelext_setup(mtd);
387}
388
389static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
390{
391 struct map_info *map = mtd->priv;
392 struct cfi_private *cfi = map->fldrv_priv;
393 unsigned long offset = 0;
394 int i,j;
395 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
396
397 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
398
399 mtd->size = devsize * cfi->numchips;
400
401 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
402 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
403 * mtd->numeraseregions, GFP_KERNEL);
404 if (!mtd->eraseregions) {
405 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
406 goto setup_err;
407 }
408
409 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
410 unsigned long ernum, ersize;
411 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
412 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
413
414 if (mtd->erasesize < ersize) {
415 mtd->erasesize = ersize;
416 }
417 for (j=0; j<cfi->numchips; j++) {
418 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
419 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
420 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
421 }
422 offset += (ersize * ernum);
423 }
424
425 if (offset != devsize) {
426 /* Argh */
427 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
428 goto setup_err;
429 }
430
431 for (i=0; i<mtd->numeraseregions;i++){
432 printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n",
433 i,mtd->eraseregions[i].offset,
434 mtd->eraseregions[i].erasesize,
435 mtd->eraseregions[i].numblocks);
436 }
437
f77814dd 438#ifdef CONFIG_MTD_OTP
1da177e4 439 mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
f77814dd
NP
440 mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
441 mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg;
442 mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
443 mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info;
444 mtd->get_user_prot_info = cfi_intelext_get_user_prot_info;
1da177e4
LT
445#endif
446
447 /* This function has the potential to distort the reality
448 a bit and therefore should be called last. */
449 if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
450 goto setup_err;
451
452 __module_get(THIS_MODULE);
963a6fb0 453 register_reboot_notifier(&mtd->reboot_notifier);
1da177e4
LT
454 return mtd;
455
456 setup_err:
457 if(mtd) {
458 if(mtd->eraseregions)
459 kfree(mtd->eraseregions);
460 kfree(mtd);
461 }
462 kfree(cfi->cmdset_priv);
463 return NULL;
464}
465
466static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
467 struct cfi_private **pcfi)
468{
469 struct map_info *map = mtd->priv;
470 struct cfi_private *cfi = *pcfi;
471 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
472
473 /*
474 * Probing of multi-partition flash ships.
475 *
476 * To support multiple partitions when available, we simply arrange
477 * for each of them to have their own flchip structure even if they
478 * are on the same physical chip. This means completely recreating
479 * a new cfi_private structure right here which is a blatent code
480 * layering violation, but this is still the least intrusive
481 * arrangement at this point. This can be rearranged in the future
482 * if someone feels motivated enough. --nico
483 */
484 if (extp && extp->MajorVersion == '1' && extp->MinorVersion == '3'
485 && extp->FeatureSupport & (1 << 9)) {
486 struct cfi_private *newcfi;
487 struct flchip *chip;
488 struct flchip_shared *shared;
489 int offs, numregions, numparts, partshift, numvirtchips, i, j;
490
491 /* Protection Register info */
72b56a2d
NP
492 offs = (extp->NumProtectionFields - 1) *
493 sizeof(struct cfi_intelext_otpinfo);
1da177e4
LT
494
495 /* Burst Read info */
496 offs += 6;
497
498 /* Number of partition regions */
499 numregions = extp->extra[offs];
500 offs += 1;
501
502 /* Number of hardware partitions */
503 numparts = 0;
504 for (i = 0; i < numregions; i++) {
505 struct cfi_intelext_regioninfo *rinfo;
506 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
507 numparts += rinfo->NumIdentPartitions;
508 offs += sizeof(*rinfo)
509 + (rinfo->NumBlockTypes - 1) *
510 sizeof(struct cfi_intelext_blockinfo);
511 }
512
513 /*
514 * All functions below currently rely on all chips having
515 * the same geometry so we'll just assume that all hardware
516 * partitions are of the same size too.
517 */
518 partshift = cfi->chipshift - __ffs(numparts);
519
520 if ((1 << partshift) < mtd->erasesize) {
521 printk( KERN_ERR
522 "%s: bad number of hw partitions (%d)\n",
523 __FUNCTION__, numparts);
524 return -EINVAL;
525 }
526
527 numvirtchips = cfi->numchips * numparts;
528 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
529 if (!newcfi)
530 return -ENOMEM;
531 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
532 if (!shared) {
533 kfree(newcfi);
534 return -ENOMEM;
535 }
536 memcpy(newcfi, cfi, sizeof(struct cfi_private));
537 newcfi->numchips = numvirtchips;
538 newcfi->chipshift = partshift;
539
540 chip = &newcfi->chips[0];
541 for (i = 0; i < cfi->numchips; i++) {
542 shared[i].writing = shared[i].erasing = NULL;
543 spin_lock_init(&shared[i].lock);
544 for (j = 0; j < numparts; j++) {
545 *chip = cfi->chips[i];
546 chip->start += j << partshift;
547 chip->priv = &shared[i];
548 /* those should be reset too since
549 they create memory references. */
550 init_waitqueue_head(&chip->wq);
551 spin_lock_init(&chip->_spinlock);
552 chip->mutex = &chip->_spinlock;
553 chip++;
554 }
555 }
556
557 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
558 "--> %d partitions of %d KiB\n",
559 map->name, cfi->numchips, cfi->interleave,
560 newcfi->numchips, 1<<(newcfi->chipshift-10));
561
562 map->fldrv_priv = newcfi;
563 *pcfi = newcfi;
564 kfree(cfi);
565 }
566
567 return 0;
568}
569
570/*
571 * *********** CHIP ACCESS FUNCTIONS ***********
572 */
573
574static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
575{
576 DECLARE_WAITQUEUE(wait, current);
577 struct cfi_private *cfi = map->fldrv_priv;
578 map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
579 unsigned long timeo;
580 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
581
582 resettime:
583 timeo = jiffies + HZ;
584 retry:
f77814dd 585 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE)) {
1da177e4
LT
586 /*
587 * OK. We have possibility for contension on the write/erase
588 * operations which are global to the real chip and not per
589 * partition. So let's fight it over in the partition which
590 * currently has authority on the operation.
591 *
592 * The rules are as follows:
593 *
594 * - any write operation must own shared->writing.
595 *
596 * - any erase operation must own _both_ shared->writing and
597 * shared->erasing.
598 *
599 * - contension arbitration is handled in the owner's context.
600 *
601 * The 'shared' struct can be read when its lock is taken.
602 * However any writes to it can only be made when the current
603 * owner's lock is also held.
604 */
605 struct flchip_shared *shared = chip->priv;
606 struct flchip *contender;
607 spin_lock(&shared->lock);
608 contender = shared->writing;
609 if (contender && contender != chip) {
610 /*
611 * The engine to perform desired operation on this
612 * partition is already in use by someone else.
613 * Let's fight over it in the context of the chip
614 * currently using it. If it is possible to suspend,
615 * that other partition will do just that, otherwise
616 * it'll happily send us to sleep. In any case, when
617 * get_chip returns success we're clear to go ahead.
618 */
619 int ret = spin_trylock(contender->mutex);
620 spin_unlock(&shared->lock);
621 if (!ret)
622 goto retry;
623 spin_unlock(chip->mutex);
624 ret = get_chip(map, contender, contender->start, mode);
625 spin_lock(chip->mutex);
626 if (ret) {
627 spin_unlock(contender->mutex);
628 return ret;
629 }
630 timeo = jiffies + HZ;
631 spin_lock(&shared->lock);
632 }
633
634 /* We now own it */
635 shared->writing = chip;
636 if (mode == FL_ERASING)
637 shared->erasing = chip;
638 if (contender && contender != chip)
639 spin_unlock(contender->mutex);
640 spin_unlock(&shared->lock);
641 }
642
643 switch (chip->state) {
644
645 case FL_STATUS:
646 for (;;) {
647 status = map_read(map, adr);
648 if (map_word_andequal(map, status, status_OK, status_OK))
649 break;
650
651 /* At this point we're fine with write operations
652 in other partitions as they don't conflict. */
653 if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
654 break;
655
656 if (time_after(jiffies, timeo)) {
657 printk(KERN_ERR "Waiting for chip to be ready timed out. Status %lx\n",
658 status.x[0]);
659 return -EIO;
660 }
661 spin_unlock(chip->mutex);
662 cfi_udelay(1);
663 spin_lock(chip->mutex);
664 /* Someone else might have been playing with it. */
665 goto retry;
666 }
667
668 case FL_READY:
669 case FL_CFI_QUERY:
670 case FL_JEDEC_QUERY:
671 return 0;
672
673 case FL_ERASING:
674 if (!cfip ||
675 !(cfip->FeatureSupport & 2) ||
676 !(mode == FL_READY || mode == FL_POINT ||
677 (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
678 goto sleep;
679
680
681 /* Erase suspend */
682 map_write(map, CMD(0xB0), adr);
683
684 /* If the flash has finished erasing, then 'erase suspend'
685 * appears to make some (28F320) flash devices switch to
686 * 'read' mode. Make sure that we switch to 'read status'
687 * mode so we get the right data. --rmk
688 */
689 map_write(map, CMD(0x70), adr);
690 chip->oldstate = FL_ERASING;
691 chip->state = FL_ERASE_SUSPENDING;
692 chip->erase_suspended = 1;
693 for (;;) {
694 status = map_read(map, adr);
695 if (map_word_andequal(map, status, status_OK, status_OK))
696 break;
697
698 if (time_after(jiffies, timeo)) {
699 /* Urgh. Resume and pretend we weren't here. */
700 map_write(map, CMD(0xd0), adr);
701 /* Make sure we're in 'read status' mode if it had finished */
702 map_write(map, CMD(0x70), adr);
703 chip->state = FL_ERASING;
704 chip->oldstate = FL_READY;
705 printk(KERN_ERR "Chip not ready after erase "
706 "suspended: status = 0x%lx\n", status.x[0]);
707 return -EIO;
708 }
709
710 spin_unlock(chip->mutex);
711 cfi_udelay(1);
712 spin_lock(chip->mutex);
713 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
714 So we can just loop here. */
715 }
716 chip->state = FL_STATUS;
717 return 0;
718
719 case FL_XIP_WHILE_ERASING:
720 if (mode != FL_READY && mode != FL_POINT &&
721 (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
722 goto sleep;
723 chip->oldstate = chip->state;
724 chip->state = FL_READY;
725 return 0;
726
727 case FL_POINT:
728 /* Only if there's no operation suspended... */
729 if (mode == FL_READY && chip->oldstate == FL_READY)
730 return 0;
731
732 default:
733 sleep:
734 set_current_state(TASK_UNINTERRUPTIBLE);
735 add_wait_queue(&chip->wq, &wait);
736 spin_unlock(chip->mutex);
737 schedule();
738 remove_wait_queue(&chip->wq, &wait);
739 spin_lock(chip->mutex);
740 goto resettime;
741 }
742}
743
744static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
745{
746 struct cfi_private *cfi = map->fldrv_priv;
747
748 if (chip->priv) {
749 struct flchip_shared *shared = chip->priv;
750 spin_lock(&shared->lock);
751 if (shared->writing == chip && chip->oldstate == FL_READY) {
752 /* We own the ability to write, but we're done */
753 shared->writing = shared->erasing;
754 if (shared->writing && shared->writing != chip) {
755 /* give back ownership to who we loaned it from */
756 struct flchip *loaner = shared->writing;
757 spin_lock(loaner->mutex);
758 spin_unlock(&shared->lock);
759 spin_unlock(chip->mutex);
760 put_chip(map, loaner, loaner->start);
761 spin_lock(chip->mutex);
762 spin_unlock(loaner->mutex);
763 wake_up(&chip->wq);
764 return;
765 }
766 shared->erasing = NULL;
767 shared->writing = NULL;
768 } else if (shared->erasing == chip && shared->writing != chip) {
769 /*
770 * We own the ability to erase without the ability
771 * to write, which means the erase was suspended
772 * and some other partition is currently writing.
773 * Don't let the switch below mess things up since
774 * we don't have ownership to resume anything.
775 */
776 spin_unlock(&shared->lock);
777 wake_up(&chip->wq);
778 return;
779 }
780 spin_unlock(&shared->lock);
781 }
782
783 switch(chip->oldstate) {
784 case FL_ERASING:
785 chip->state = chip->oldstate;
786 /* What if one interleaved chip has finished and the
787 other hasn't? The old code would leave the finished
788 one in READY mode. That's bad, and caused -EROFS
789 errors to be returned from do_erase_oneblock because
790 that's the only bit it checked for at the time.
791 As the state machine appears to explicitly allow
792 sending the 0x70 (Read Status) command to an erasing
793 chip and expecting it to be ignored, that's what we
794 do. */
795 map_write(map, CMD(0xd0), adr);
796 map_write(map, CMD(0x70), adr);
797 chip->oldstate = FL_READY;
798 chip->state = FL_ERASING;
799 break;
800
801 case FL_XIP_WHILE_ERASING:
802 chip->state = chip->oldstate;
803 chip->oldstate = FL_READY;
804 break;
805
806 case FL_READY:
807 case FL_STATUS:
808 case FL_JEDEC_QUERY:
809 /* We should really make set_vpp() count, rather than doing this */
810 DISABLE_VPP(map);
811 break;
812 default:
813 printk(KERN_ERR "put_chip() called with oldstate %d!!\n", chip->oldstate);
814 }
815 wake_up(&chip->wq);
816}
817
818#ifdef CONFIG_MTD_XIP
819
820/*
821 * No interrupt what so ever can be serviced while the flash isn't in array
822 * mode. This is ensured by the xip_disable() and xip_enable() functions
823 * enclosing any code path where the flash is known not to be in array mode.
824 * And within a XIP disabled code path, only functions marked with __xipram
825 * may be called and nothing else (it's a good thing to inspect generated
826 * assembly to make sure inline functions were actually inlined and that gcc
827 * didn't emit calls to its own support functions). Also configuring MTD CFI
828 * support to a single buswidth and a single interleave is also recommended.
829 * Note that not only IRQs are disabled but the preemption count is also
830 * increased to prevent other locking primitives (namely spin_unlock) from
831 * decrementing the preempt count to zero and scheduling the CPU away while
832 * not in array mode.
833 */
834
835static void xip_disable(struct map_info *map, struct flchip *chip,
836 unsigned long adr)
837{
838 /* TODO: chips with no XIP use should ignore and return */
839 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
840 preempt_disable();
841 local_irq_disable();
842}
843
844static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
845 unsigned long adr)
846{
847 struct cfi_private *cfi = map->fldrv_priv;
848 if (chip->state != FL_POINT && chip->state != FL_READY) {
849 map_write(map, CMD(0xff), adr);
850 chip->state = FL_READY;
851 }
852 (void) map_read(map, adr);
853 asm volatile (".rep 8; nop; .endr"); /* fill instruction prefetch */
854 local_irq_enable();
855 preempt_enable();
856}
857
858/*
859 * When a delay is required for the flash operation to complete, the
860 * xip_udelay() function is polling for both the given timeout and pending
861 * (but still masked) hardware interrupts. Whenever there is an interrupt
862 * pending then the flash erase or write operation is suspended, array mode
863 * restored and interrupts unmasked. Task scheduling might also happen at that
864 * point. The CPU eventually returns from the interrupt or the call to
865 * schedule() and the suspended flash operation is resumed for the remaining
866 * of the delay period.
867 *
868 * Warning: this function _will_ fool interrupt latency tracing tools.
869 */
870
871static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
872 unsigned long adr, int usec)
873{
874 struct cfi_private *cfi = map->fldrv_priv;
875 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
876 map_word status, OK = CMD(0x80);
877 unsigned long suspended, start = xip_currtime();
878 flstate_t oldstate, newstate;
879
880 do {
881 cpu_relax();
882 if (xip_irqpending() && cfip &&
883 ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
884 (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
885 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
886 /*
887 * Let's suspend the erase or write operation when
888 * supported. Note that we currently don't try to
889 * suspend interleaved chips if there is already
890 * another operation suspended (imagine what happens
891 * when one chip was already done with the current
892 * operation while another chip suspended it, then
893 * we resume the whole thing at once). Yes, it
894 * can happen!
895 */
896 map_write(map, CMD(0xb0), adr);
897 map_write(map, CMD(0x70), adr);
898 usec -= xip_elapsed_since(start);
899 suspended = xip_currtime();
900 do {
901 if (xip_elapsed_since(suspended) > 100000) {
902 /*
903 * The chip doesn't want to suspend
904 * after waiting for 100 msecs.
905 * This is a critical error but there
906 * is not much we can do here.
907 */
908 return;
909 }
910 status = map_read(map, adr);
911 } while (!map_word_andequal(map, status, OK, OK));
912
913 /* Suspend succeeded */
914 oldstate = chip->state;
915 if (oldstate == FL_ERASING) {
916 if (!map_word_bitsset(map, status, CMD(0x40)))
917 break;
918 newstate = FL_XIP_WHILE_ERASING;
919 chip->erase_suspended = 1;
920 } else {
921 if (!map_word_bitsset(map, status, CMD(0x04)))
922 break;
923 newstate = FL_XIP_WHILE_WRITING;
924 chip->write_suspended = 1;
925 }
926 chip->state = newstate;
927 map_write(map, CMD(0xff), adr);
928 (void) map_read(map, adr);
929 asm volatile (".rep 8; nop; .endr");
930 local_irq_enable();
931 preempt_enable();
932 asm volatile (".rep 8; nop; .endr");
933 cond_resched();
934
935 /*
936 * We're back. However someone else might have
937 * decided to go write to the chip if we are in
938 * a suspended erase state. If so let's wait
939 * until it's done.
940 */
941 preempt_disable();
942 while (chip->state != newstate) {
943 DECLARE_WAITQUEUE(wait, current);
944 set_current_state(TASK_UNINTERRUPTIBLE);
945 add_wait_queue(&chip->wq, &wait);
946 preempt_enable();
947 schedule();
948 remove_wait_queue(&chip->wq, &wait);
949 preempt_disable();
950 }
951 /* Disallow XIP again */
952 local_irq_disable();
953
954 /* Resume the write or erase operation */
955 map_write(map, CMD(0xd0), adr);
956 map_write(map, CMD(0x70), adr);
957 chip->state = oldstate;
958 start = xip_currtime();
959 } else if (usec >= 1000000/HZ) {
960 /*
961 * Try to save on CPU power when waiting delay
962 * is at least a system timer tick period.
963 * No need to be extremely accurate here.
964 */
965 xip_cpu_idle();
966 }
967 status = map_read(map, adr);
968 } while (!map_word_andequal(map, status, OK, OK)
969 && xip_elapsed_since(start) < usec);
970}
971
972#define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
973
974/*
975 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
976 * the flash is actively programming or erasing since we have to poll for
977 * the operation to complete anyway. We can't do that in a generic way with
978 * a XIP setup so do it before the actual flash operation in this case.
979 */
980#undef INVALIDATE_CACHED_RANGE
981#define INVALIDATE_CACHED_RANGE(x...)
982#define XIP_INVAL_CACHED_RANGE(map, from, size) \
983 do { if(map->inval_cache) map->inval_cache(map, from, size); } while(0)
984
985/*
986 * Extra notes:
987 *
988 * Activating this XIP support changes the way the code works a bit. For
989 * example the code to suspend the current process when concurrent access
990 * happens is never executed because xip_udelay() will always return with the
991 * same chip state as it was entered with. This is why there is no care for
992 * the presence of add_wait_queue() or schedule() calls from within a couple
993 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
994 * The queueing and scheduling are always happening within xip_udelay().
995 *
996 * Similarly, get_chip() and put_chip() just happen to always be executed
997 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
998 * is in array mode, therefore never executing many cases therein and not
999 * causing any problem with XIP.
1000 */
1001
1002#else
1003
1004#define xip_disable(map, chip, adr)
1005#define xip_enable(map, chip, adr)
1006
1007#define UDELAY(map, chip, adr, usec) cfi_udelay(usec)
1008
1009#define XIP_INVAL_CACHED_RANGE(x...)
1010
1011#endif
1012
1013static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1014{
1015 unsigned long cmd_addr;
1016 struct cfi_private *cfi = map->fldrv_priv;
1017 int ret = 0;
1018
1019 adr += chip->start;
1020
1021 /* Ensure cmd read/writes are aligned. */
1022 cmd_addr = adr & ~(map_bankwidth(map)-1);
1023
1024 spin_lock(chip->mutex);
1025
1026 ret = get_chip(map, chip, cmd_addr, FL_POINT);
1027
1028 if (!ret) {
1029 if (chip->state != FL_POINT && chip->state != FL_READY)
1030 map_write(map, CMD(0xff), cmd_addr);
1031
1032 chip->state = FL_POINT;
1033 chip->ref_point_counter++;
1034 }
1035 spin_unlock(chip->mutex);
1036
1037 return ret;
1038}
1039
1040static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf)
1041{
1042 struct map_info *map = mtd->priv;
1043 struct cfi_private *cfi = map->fldrv_priv;
1044 unsigned long ofs;
1045 int chipnum;
1046 int ret = 0;
1047
1048 if (!map->virt || (from + len > mtd->size))
1049 return -EINVAL;
1050
1051 *mtdbuf = (void *)map->virt + from;
1052 *retlen = 0;
1053
1054 /* Now lock the chip(s) to POINT state */
1055
1056 /* ofs: offset within the first chip that the first read should start */
1057 chipnum = (from >> cfi->chipshift);
1058 ofs = from - (chipnum << cfi->chipshift);
1059
1060 while (len) {
1061 unsigned long thislen;
1062
1063 if (chipnum >= cfi->numchips)
1064 break;
1065
1066 if ((len + ofs -1) >> cfi->chipshift)
1067 thislen = (1<<cfi->chipshift) - ofs;
1068 else
1069 thislen = len;
1070
1071 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1072 if (ret)
1073 break;
1074
1075 *retlen += thislen;
1076 len -= thislen;
1077
1078 ofs = 0;
1079 chipnum++;
1080 }
1081 return 0;
1082}
1083
1084static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
1085{
1086 struct map_info *map = mtd->priv;
1087 struct cfi_private *cfi = map->fldrv_priv;
1088 unsigned long ofs;
1089 int chipnum;
1090
1091 /* Now unlock the chip(s) POINT state */
1092
1093 /* ofs: offset within the first chip that the first read should start */
1094 chipnum = (from >> cfi->chipshift);
1095 ofs = from - (chipnum << cfi->chipshift);
1096
1097 while (len) {
1098 unsigned long thislen;
1099 struct flchip *chip;
1100
1101 chip = &cfi->chips[chipnum];
1102 if (chipnum >= cfi->numchips)
1103 break;
1104
1105 if ((len + ofs -1) >> cfi->chipshift)
1106 thislen = (1<<cfi->chipshift) - ofs;
1107 else
1108 thislen = len;
1109
1110 spin_lock(chip->mutex);
1111 if (chip->state == FL_POINT) {
1112 chip->ref_point_counter--;
1113 if(chip->ref_point_counter == 0)
1114 chip->state = FL_READY;
1115 } else
1116 printk(KERN_ERR "Warning: unpoint called on non pointed region\n"); /* Should this give an error? */
1117
1118 put_chip(map, chip, chip->start);
1119 spin_unlock(chip->mutex);
1120
1121 len -= thislen;
1122 ofs = 0;
1123 chipnum++;
1124 }
1125}
1126
1127static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1128{
1129 unsigned long cmd_addr;
1130 struct cfi_private *cfi = map->fldrv_priv;
1131 int ret;
1132
1133 adr += chip->start;
1134
1135 /* Ensure cmd read/writes are aligned. */
1136 cmd_addr = adr & ~(map_bankwidth(map)-1);
1137
1138 spin_lock(chip->mutex);
1139 ret = get_chip(map, chip, cmd_addr, FL_READY);
1140 if (ret) {
1141 spin_unlock(chip->mutex);
1142 return ret;
1143 }
1144
1145 if (chip->state != FL_POINT && chip->state != FL_READY) {
1146 map_write(map, CMD(0xff), cmd_addr);
1147
1148 chip->state = FL_READY;
1149 }
1150
1151 map_copy_from(map, buf, adr, len);
1152
1153 put_chip(map, chip, cmd_addr);
1154
1155 spin_unlock(chip->mutex);
1156 return 0;
1157}
1158
1159static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1160{
1161 struct map_info *map = mtd->priv;
1162 struct cfi_private *cfi = map->fldrv_priv;
1163 unsigned long ofs;
1164 int chipnum;
1165 int ret = 0;
1166
1167 /* ofs: offset within the first chip that the first read should start */
1168 chipnum = (from >> cfi->chipshift);
1169 ofs = from - (chipnum << cfi->chipshift);
1170
1171 *retlen = 0;
1172
1173 while (len) {
1174 unsigned long thislen;
1175
1176 if (chipnum >= cfi->numchips)
1177 break;
1178
1179 if ((len + ofs -1) >> cfi->chipshift)
1180 thislen = (1<<cfi->chipshift) - ofs;
1181 else
1182 thislen = len;
1183
1184 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1185 if (ret)
1186 break;
1187
1188 *retlen += thislen;
1189 len -= thislen;
1190 buf += thislen;
1191
1192 ofs = 0;
1193 chipnum++;
1194 }
1195 return ret;
1196}
1197
1da177e4 1198static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
f77814dd 1199 unsigned long adr, map_word datum, int mode)
1da177e4
LT
1200{
1201 struct cfi_private *cfi = map->fldrv_priv;
f77814dd 1202 map_word status, status_OK, write_cmd;
1da177e4
LT
1203 unsigned long timeo;
1204 int z, ret=0;
1205
1206 adr += chip->start;
1207
1208 /* Let's determine this according to the interleave only once */
1209 status_OK = CMD(0x80);
f77814dd
NP
1210 switch (mode) {
1211 case FL_WRITING: write_cmd = CMD(0x40); break;
1212 case FL_OTP_WRITE: write_cmd = CMD(0xc0); break;
1213 default: return -EINVAL;
1214 }
1da177e4
LT
1215
1216 spin_lock(chip->mutex);
f77814dd 1217 ret = get_chip(map, chip, adr, mode);
1da177e4
LT
1218 if (ret) {
1219 spin_unlock(chip->mutex);
1220 return ret;
1221 }
1222
1223 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1224 ENABLE_VPP(map);
1225 xip_disable(map, chip, adr);
f77814dd 1226 map_write(map, write_cmd, adr);
1da177e4 1227 map_write(map, datum, adr);
f77814dd 1228 chip->state = mode;
1da177e4
LT
1229
1230 spin_unlock(chip->mutex);
1231 INVALIDATE_CACHED_RANGE(map, adr, map_bankwidth(map));
1232 UDELAY(map, chip, adr, chip->word_write_time);
1233 spin_lock(chip->mutex);
1234
1235 timeo = jiffies + (HZ/2);
1236 z = 0;
1237 for (;;) {
f77814dd 1238 if (chip->state != mode) {
1da177e4
LT
1239 /* Someone's suspended the write. Sleep */
1240 DECLARE_WAITQUEUE(wait, current);
1241
1242 set_current_state(TASK_UNINTERRUPTIBLE);
1243 add_wait_queue(&chip->wq, &wait);
1244 spin_unlock(chip->mutex);
1245 schedule();
1246 remove_wait_queue(&chip->wq, &wait);
1247 timeo = jiffies + (HZ / 2); /* FIXME */
1248 spin_lock(chip->mutex);
1249 continue;
1250 }
1251
1252 status = map_read(map, adr);
1253 if (map_word_andequal(map, status, status_OK, status_OK))
1254 break;
1255
1256 /* OK Still waiting */
1257 if (time_after(jiffies, timeo)) {
1258 chip->state = FL_STATUS;
1259 xip_enable(map, chip, adr);
1260 printk(KERN_ERR "waiting for chip to be ready timed out in word write\n");
1261 ret = -EIO;
1262 goto out;
1263 }
1264
1265 /* Latency issues. Drop the lock, wait a while and retry */
1266 spin_unlock(chip->mutex);
1267 z++;
1268 UDELAY(map, chip, adr, 1);
1269 spin_lock(chip->mutex);
1270 }
1271 if (!z) {
1272 chip->word_write_time--;
1273 if (!chip->word_write_time)
1274 chip->word_write_time++;
1275 }
1276 if (z > 1)
1277 chip->word_write_time++;
1278
1279 /* Done and happy. */
1280 chip->state = FL_STATUS;
1281
1282 /* check for lock bit */
1283 if (map_word_bitsset(map, status, CMD(0x02))) {
1284 /* clear status */
1285 map_write(map, CMD(0x50), adr);
1286 /* put back into read status register mode */
1287 map_write(map, CMD(0x70), adr);
1288 ret = -EROFS;
1289 }
1290
1291 xip_enable(map, chip, adr);
1292 out: put_chip(map, chip, adr);
1293 spin_unlock(chip->mutex);
1294
1295 return ret;
1296}
1297
1298
1299static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1300{
1301 struct map_info *map = mtd->priv;
1302 struct cfi_private *cfi = map->fldrv_priv;
1303 int ret = 0;
1304 int chipnum;
1305 unsigned long ofs;
1306
1307 *retlen = 0;
1308 if (!len)
1309 return 0;
1310
1311 chipnum = to >> cfi->chipshift;
1312 ofs = to - (chipnum << cfi->chipshift);
1313
1314 /* If it's not bus-aligned, do the first byte write */
1315 if (ofs & (map_bankwidth(map)-1)) {
1316 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1317 int gap = ofs - bus_ofs;
1318 int n;
1319 map_word datum;
1320
1321 n = min_t(int, len, map_bankwidth(map)-gap);
1322 datum = map_word_ff(map);
1323 datum = map_word_load_partial(map, datum, buf, gap, n);
1324
1325 ret = do_write_oneword(map, &cfi->chips[chipnum],
f77814dd 1326 bus_ofs, datum, FL_WRITING);
1da177e4
LT
1327 if (ret)
1328 return ret;
1329
1330 len -= n;
1331 ofs += n;
1332 buf += n;
1333 (*retlen) += n;
1334
1335 if (ofs >> cfi->chipshift) {
1336 chipnum ++;
1337 ofs = 0;
1338 if (chipnum == cfi->numchips)
1339 return 0;
1340 }
1341 }
1342
1343 while(len >= map_bankwidth(map)) {
1344 map_word datum = map_word_load(map, buf);
1345
1346 ret = do_write_oneword(map, &cfi->chips[chipnum],
f77814dd 1347 ofs, datum, FL_WRITING);
1da177e4
LT
1348 if (ret)
1349 return ret;
1350
1351 ofs += map_bankwidth(map);
1352 buf += map_bankwidth(map);
1353 (*retlen) += map_bankwidth(map);
1354 len -= map_bankwidth(map);
1355
1356 if (ofs >> cfi->chipshift) {
1357 chipnum ++;
1358 ofs = 0;
1359 if (chipnum == cfi->numchips)
1360 return 0;
1361 }
1362 }
1363
1364 if (len & (map_bankwidth(map)-1)) {
1365 map_word datum;
1366
1367 datum = map_word_ff(map);
1368 datum = map_word_load_partial(map, datum, buf, 0, len);
1369
1370 ret = do_write_oneword(map, &cfi->chips[chipnum],
f77814dd 1371 ofs, datum, FL_WRITING);
1da177e4
LT
1372 if (ret)
1373 return ret;
1374
1375 (*retlen) += len;
1376 }
1377
1378 return 0;
1379}
1380
1381
1382static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1383 unsigned long adr, const u_char *buf, int len)
1384{
1385 struct cfi_private *cfi = map->fldrv_priv;
1386 map_word status, status_OK;
1387 unsigned long cmd_adr, timeo;
1388 int wbufsize, z, ret=0, bytes, words;
1389
1390 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1391 adr += chip->start;
1392 cmd_adr = adr & ~(wbufsize-1);
1393
1394 /* Let's determine this according to the interleave only once */
1395 status_OK = CMD(0x80);
1396
1397 spin_lock(chip->mutex);
1398 ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1399 if (ret) {
1400 spin_unlock(chip->mutex);
1401 return ret;
1402 }
1403
1404 XIP_INVAL_CACHED_RANGE(map, adr, len);
1405 ENABLE_VPP(map);
1406 xip_disable(map, chip, cmd_adr);
1407
1408