]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/mtd/chips/cfi_cmdset_0001.c
mtd: nand: make Open Firmware device id constant
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / chips / cfi_cmdset_0001.c
CommitLineData
1da177e4
LT
1/*
2 * Common Flash Interface support:
3 * Intel Extended Vendor Command Set (ID 0x0001)
4 *
5 * (C) 2000 Red Hat. GPL'd
6 *
1da177e4 7 *
2f82af08 8 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
1da177e4
LT
9 * - completely revamped method functions so they are aware and
10 * independent of the flash geometry (buswidth, interleave, etc.)
11 * - scalability vs code size is completely set at compile-time
12 * (see include/linux/mtd/cfi.h for selection)
13 * - optimized write buffer method
14 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
15 * - reworked lock/unlock/erase support for var size flash
0ecbc81a
RG
16 * 21/03/2007 Rodolfo Giometti <giometti@linux.it>
17 * - auto unlock sectors on resume for auto locking flash on power up
1da177e4
LT
18 */
19
20#include <linux/module.h>
21#include <linux/types.h>
22#include <linux/kernel.h>
23#include <linux/sched.h>
24#include <linux/init.h>
25#include <asm/io.h>
26#include <asm/byteorder.h>
27
28#include <linux/errno.h>
29#include <linux/slab.h>
30#include <linux/delay.h>
31#include <linux/interrupt.h>
963a6fb0 32#include <linux/reboot.h>
0ecbc81a 33#include <linux/bitmap.h>
1da177e4
LT
34#include <linux/mtd/xip.h>
35#include <linux/mtd/map.h>
36#include <linux/mtd/mtd.h>
37#include <linux/mtd/compatmac.h>
38#include <linux/mtd/cfi.h>
39
40/* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
41/* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
42
43// debugging, turns off buffer write mode if set to 1
44#define FORCE_WORD_WRITE 0
45
b2ef1a2b 46/* Intel chips */
1da177e4
LT
47#define I82802AB 0x00ad
48#define I82802AC 0x00ac
ec2d0d84 49#define PF38F4476 0x881c
b2ef1a2b 50/* STMicroelectronics chips */
1da177e4 51#define M50LPW080 0x002F
deb1a5f1
NC
52#define M50FLW080A 0x0080
53#define M50FLW080B 0x0081
8dbaea4b 54/* Atmel chips */
d10a39d1 55#define AT49BV640D 0x02de
8dbaea4b 56#define AT49BV640DT 0x02db
1da177e4
LT
57
58static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
1da177e4
LT
59static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
60static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
e102d54a 61static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
1da177e4
LT
62static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
63static void cfi_intelext_sync (struct mtd_info *);
69423d99
AH
64static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
65static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
8048d2fc 66#ifdef CONFIG_MTD_OTP
f77814dd
NP
67static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
68static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
69static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
70static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
71static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
72 struct otp_info *, size_t);
73static int cfi_intelext_get_user_prot_info (struct mtd_info *,
74 struct otp_info *, size_t);
8048d2fc 75#endif
1da177e4
LT
76static int cfi_intelext_suspend (struct mtd_info *);
77static void cfi_intelext_resume (struct mtd_info *);
963a6fb0 78static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
1da177e4
LT
79
80static void cfi_intelext_destroy(struct mtd_info *);
81
82struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
83
84static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
85static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
86
87static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
a98889f3
JH
88 size_t *retlen, void **virt, resource_size_t *phys);
89static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
1da177e4 90
5a37cf19 91static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
1da177e4
LT
92static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
93static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
94#include "fwh_lock.h"
95
96
97
98/*
99 * *********** SETUP AND PROBE BITS ***********
100 */
101
102static struct mtd_chip_driver cfi_intelext_chipdrv = {
103 .probe = NULL, /* Not usable directly */
104 .destroy = cfi_intelext_destroy,
105 .name = "cfi_cmdset_0001",
106 .module = THIS_MODULE
107};
108
109/* #define DEBUG_LOCK_BITS */
110/* #define DEBUG_CFI_FEATURES */
111
112#ifdef DEBUG_CFI_FEATURES
113static void cfi_tell_features(struct cfi_pri_intelext *extp)
114{
115 int i;
638d9838 116 printk(" Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
1da177e4
LT
117 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
118 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
119 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
120 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
121 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
122 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
123 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
124 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
125 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
126 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
127 printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
638d9838
NP
128 printk(" - Extended Flash Array: %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
129 for (i=11; i<32; i++) {
1f948b43 130 if (extp->FeatureSupport & (1<<i))
1da177e4
LT
131 printk(" - Unknown Bit %X: supported\n", i);
132 }
1f948b43 133
1da177e4
LT
134 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
135 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
136 for (i=1; i<8; i++) {
137 if (extp->SuspendCmdSupport & (1<<i))
138 printk(" - Unknown Bit %X: supported\n", i);
139 }
1f948b43 140
1da177e4
LT
141 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
142 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
638d9838
NP
143 printk(" - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
144 for (i=2; i<3; i++) {
1da177e4
LT
145 if (extp->BlkStatusRegMask & (1<<i))
146 printk(" - Unknown Bit %X Active: yes\n",i);
147 }
638d9838
NP
148 printk(" - EFA Lock Bit: %s\n", extp->BlkStatusRegMask&16?"yes":"no");
149 printk(" - EFA Lock-Down Bit: %s\n", extp->BlkStatusRegMask&32?"yes":"no");
150 for (i=6; i<16; i++) {
151 if (extp->BlkStatusRegMask & (1<<i))
152 printk(" - Unknown Bit %X Active: yes\n",i);
153 }
154
1f948b43 155 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
1da177e4
LT
156 extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
157 if (extp->VppOptimal)
1f948b43 158 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
1da177e4
LT
159 extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
160}
161#endif
162
d10a39d1
HCE
163/* Atmel chips don't use the same PRI format as Intel chips */
164static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
165{
166 struct map_info *map = mtd->priv;
167 struct cfi_private *cfi = map->fldrv_priv;
168 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
169 struct cfi_pri_atmel atmel_pri;
170 uint32_t features = 0;
171
172 /* Reverse byteswapping */
173 extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport);
174 extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask);
175 extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr);
176
177 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
178 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
179
180 printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features);
181
182 if (atmel_pri.Features & 0x01) /* chip erase supported */
183 features |= (1<<0);
184 if (atmel_pri.Features & 0x02) /* erase suspend supported */
185 features |= (1<<1);
186 if (atmel_pri.Features & 0x04) /* program suspend supported */
187 features |= (1<<2);
188 if (atmel_pri.Features & 0x08) /* simultaneous operations supported */
189 features |= (1<<9);
190 if (atmel_pri.Features & 0x20) /* page mode read supported */
191 features |= (1<<7);
192 if (atmel_pri.Features & 0x40) /* queued erase supported */
193 features |= (1<<4);
194 if (atmel_pri.Features & 0x80) /* Protection bits supported */
195 features |= (1<<6);
196
197 extp->FeatureSupport = features;
198
199 /* burst write mode not supported */
200 cfi->cfiq->BufWriteTimeoutTyp = 0;
201 cfi->cfiq->BufWriteTimeoutMax = 0;
202}
203
8dbaea4b
HCE
204static void fixup_at49bv640dx_lock(struct mtd_info *mtd, void *param)
205{
206 struct map_info *map = mtd->priv;
207 struct cfi_private *cfi = map->fldrv_priv;
208 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
209
210 cfip->FeatureSupport |= (1 << 5);
211 mtd->flags |= MTD_POWERUP_LOCK;
212}
213
1da177e4 214#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
1f948b43 215/* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
1da177e4
LT
216static void fixup_intel_strataflash(struct mtd_info *mtd, void* param)
217{
218 struct map_info *map = mtd->priv;
219 struct cfi_private *cfi = map->fldrv_priv;
91949d64 220 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
1da177e4
LT
221
222 printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
223 "erase on write disabled.\n");
224 extp->SuspendCmdSupport &= ~1;
225}
226#endif
227
228#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
229static void fixup_no_write_suspend(struct mtd_info *mtd, void* param)
230{
231 struct map_info *map = mtd->priv;
232 struct cfi_private *cfi = map->fldrv_priv;
233 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
234
235 if (cfip && (cfip->FeatureSupport&4)) {
236 cfip->FeatureSupport &= ~4;
237 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
238 }
239}
240#endif
241
242static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param)
243{
244 struct map_info *map = mtd->priv;
245 struct cfi_private *cfi = map->fldrv_priv;
1f948b43 246
1da177e4
LT
247 cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */
248 cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */
249}
250
251static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param)
252{
253 struct map_info *map = mtd->priv;
254 struct cfi_private *cfi = map->fldrv_priv;
1f948b43 255
1da177e4
LT
256 /* Note this is done after the region info is endian swapped */
257 cfi->cfiq->EraseRegionInfo[1] =
258 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
259};
260
261static void fixup_use_point(struct mtd_info *mtd, void *param)
262{
263 struct map_info *map = mtd->priv;
264 if (!mtd->point && map_is_linear(map)) {
265 mtd->point = cfi_intelext_point;
266 mtd->unpoint = cfi_intelext_unpoint;
267 }
268}
269
270static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
271{
272 struct map_info *map = mtd->priv;
273 struct cfi_private *cfi = map->fldrv_priv;
274 if (cfi->cfiq->BufWriteTimeoutTyp) {
275 printk(KERN_INFO "Using buffer write method\n" );
276 mtd->write = cfi_intelext_write_buffers;
e102d54a 277 mtd->writev = cfi_intelext_writev;
1da177e4
LT
278 }
279}
280
0ecbc81a
RG
281/*
282 * Some chips power-up with all sectors locked by default.
283 */
e619a75f 284static void fixup_unlock_powerup_lock(struct mtd_info *mtd, void *param)
0ecbc81a 285{
e619a75f
JT
286 struct map_info *map = mtd->priv;
287 struct cfi_private *cfi = map->fldrv_priv;
288 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
289
290 if (cfip->FeatureSupport&32) {
291 printk(KERN_INFO "Using auto-unlock on power-up/resume\n" );
292 mtd->flags |= MTD_POWERUP_LOCK;
293 }
0ecbc81a
RG
294}
295
1da177e4 296static struct cfi_fixup cfi_fixup_table[] = {
d10a39d1 297 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
8dbaea4b
HCE
298 { CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock, NULL },
299 { CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock, NULL },
1da177e4 300#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
1f948b43 301 { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL },
1da177e4
LT
302#endif
303#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
304 { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL },
305#endif
306#if !FORCE_WORD_WRITE
307 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL },
308#endif
309 { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL },
310 { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL },
b2ef1a2b 311 { CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock, NULL, },
1da177e4
LT
312 { 0, 0, NULL, NULL }
313};
314
315static struct cfi_fixup jedec_fixup_table[] = {
b2ef1a2b
HCE
316 { CFI_MFR_INTEL, I82802AB, fixup_use_fwh_lock, NULL, },
317 { CFI_MFR_INTEL, I82802AC, fixup_use_fwh_lock, NULL, },
318 { CFI_MFR_ST, M50LPW080, fixup_use_fwh_lock, NULL, },
319 { CFI_MFR_ST, M50FLW080A, fixup_use_fwh_lock, NULL, },
320 { CFI_MFR_ST, M50FLW080B, fixup_use_fwh_lock, NULL, },
1da177e4
LT
321 { 0, 0, NULL, NULL }
322};
323static struct cfi_fixup fixup_table[] = {
324 /* The CFI vendor ids and the JEDEC vendor IDs appear
325 * to be common. It is like the devices id's are as
326 * well. This table is to pick all cases where
327 * we know that is the case.
328 */
329 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL },
330 { 0, 0, NULL, NULL }
331};
332
ec2d0d84
DR
333static void cfi_fixup_major_minor(struct cfi_private *cfi,
334 struct cfi_pri_intelext *extp)
335{
b2ef1a2b 336 if (cfi->mfr == CFI_MFR_INTEL &&
ec2d0d84
DR
337 cfi->id == PF38F4476 && extp->MinorVersion == '3')
338 extp->MinorVersion = '1';
339}
340
1da177e4
LT
341static inline struct cfi_pri_intelext *
342read_pri_intelext(struct map_info *map, __u16 adr)
343{
ec2d0d84 344 struct cfi_private *cfi = map->fldrv_priv;
1da177e4 345 struct cfi_pri_intelext *extp;
e1b158ab 346 unsigned int extra_size = 0;
1da177e4
LT
347 unsigned int extp_size = sizeof(*extp);
348
349 again:
350 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
351 if (!extp)
352 return NULL;
353
ec2d0d84
DR
354 cfi_fixup_major_minor(cfi, extp);
355
d88f977b 356 if (extp->MajorVersion != '1' ||
b1c9c9be 357 (extp->MinorVersion < '0' || extp->MinorVersion > '5')) {
d88f977b
TP
358 printk(KERN_ERR " Unknown Intel/Sharp Extended Query "
359 "version %c.%c.\n", extp->MajorVersion,
360 extp->MinorVersion);
361 kfree(extp);
362 return NULL;
363 }
364
1da177e4
LT
365 /* Do some byteswapping if necessary */
366 extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
367 extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
368 extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
369
e1b158ab
DR
370 if (extp->MinorVersion >= '0') {
371 extra_size = 0;
1da177e4
LT
372
373 /* Protection Register info */
72b56a2d
NP
374 extra_size += (extp->NumProtectionFields - 1) *
375 sizeof(struct cfi_intelext_otpinfo);
e1b158ab 376 }
1da177e4 377
e1b158ab 378 if (extp->MinorVersion >= '1') {
1da177e4 379 /* Burst Read info */
6f6ed056
NP
380 extra_size += 2;
381 if (extp_size < sizeof(*extp) + extra_size)
382 goto need_more;
e1b158ab
DR
383 extra_size += extp->extra[extra_size - 1];
384 }
385
386 if (extp->MinorVersion >= '3') {
387 int nb_parts, i;
1da177e4
LT
388
389 /* Number of hardware-partitions */
390 extra_size += 1;
391 if (extp_size < sizeof(*extp) + extra_size)
392 goto need_more;
393 nb_parts = extp->extra[extra_size - 1];
394
638d9838
NP
395 /* skip the sizeof(partregion) field in CFI 1.4 */
396 if (extp->MinorVersion >= '4')
397 extra_size += 2;
398
1da177e4
LT
399 for (i = 0; i < nb_parts; i++) {
400 struct cfi_intelext_regioninfo *rinfo;
401 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
402 extra_size += sizeof(*rinfo);
403 if (extp_size < sizeof(*extp) + extra_size)
404 goto need_more;
405 rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
406 extra_size += (rinfo->NumBlockTypes - 1)
407 * sizeof(struct cfi_intelext_blockinfo);
408 }
409
638d9838
NP
410 if (extp->MinorVersion >= '4')
411 extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
412
1da177e4
LT
413 if (extp_size < sizeof(*extp) + extra_size) {
414 need_more:
415 extp_size = sizeof(*extp) + extra_size;
416 kfree(extp);
417 if (extp_size > 4096) {
418 printk(KERN_ERR
419 "%s: cfi_pri_intelext is too fat\n",
cb53b3b9 420 __func__);
1da177e4
LT
421 return NULL;
422 }
423 goto again;
424 }
425 }
1f948b43 426
1da177e4
LT
427 return extp;
428}
429
1da177e4
LT
430struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
431{
432 struct cfi_private *cfi = map->fldrv_priv;
433 struct mtd_info *mtd;
434 int i;
435
95b93a0c 436 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
1da177e4
LT
437 if (!mtd) {
438 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
439 return NULL;
440 }
1da177e4
LT
441 mtd->priv = map;
442 mtd->type = MTD_NORFLASH;
443
444 /* Fill in the default mtd operations */
445 mtd->erase = cfi_intelext_erase_varsize;
446 mtd->read = cfi_intelext_read;
447 mtd->write = cfi_intelext_write_words;
448 mtd->sync = cfi_intelext_sync;
449 mtd->lock = cfi_intelext_lock;
450 mtd->unlock = cfi_intelext_unlock;
451 mtd->suspend = cfi_intelext_suspend;
452 mtd->resume = cfi_intelext_resume;
453 mtd->flags = MTD_CAP_NORFLASH;
454 mtd->name = map->name;
17ffc7ba 455 mtd->writesize = 1;
963a6fb0
NP
456
457 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
458
1da177e4 459 if (cfi->cfi_mode == CFI_MODE_CFI) {
1f948b43 460 /*
1da177e4
LT
461 * It's a real CFI chip, not one for which the probe
462 * routine faked a CFI structure. So we read the feature
463 * table from it.
464 */
465 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
466 struct cfi_pri_intelext *extp;
467
468 extp = read_pri_intelext(map, adr);
469 if (!extp) {
470 kfree(mtd);
471 return NULL;
472 }
473
474 /* Install our own private info structure */
1f948b43 475 cfi->cmdset_priv = extp;
1da177e4
LT
476
477 cfi_fixup(mtd, cfi_fixup_table);
478
479#ifdef DEBUG_CFI_FEATURES
480 /* Tell the user about it in lots of lovely detail */
481 cfi_tell_features(extp);
1f948b43 482#endif
1da177e4
LT
483
484 if(extp->SuspendCmdSupport & 1) {
485 printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
486 }
487 }
488 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
489 /* Apply jedec specific fixups */
490 cfi_fixup(mtd, jedec_fixup_table);
491 }
492 /* Apply generic fixups */
493 cfi_fixup(mtd, fixup_table);
494
495 for (i=0; i< cfi->numchips; i++) {
2a5bd596
DW
496 if (cfi->cfiq->WordWriteTimeoutTyp)
497 cfi->chips[i].word_write_time =
498 1<<cfi->cfiq->WordWriteTimeoutTyp;
499 else
500 cfi->chips[i].word_write_time = 50000;
501
502 if (cfi->cfiq->BufWriteTimeoutTyp)
503 cfi->chips[i].buffer_write_time =
504 1<<cfi->cfiq->BufWriteTimeoutTyp;
505 /* No default; if it isn't specified, we won't use it */
506
507 if (cfi->cfiq->BlockEraseTimeoutTyp)
508 cfi->chips[i].erase_time =
509 1000<<cfi->cfiq->BlockEraseTimeoutTyp;
510 else
511 cfi->chips[i].erase_time = 2000000;
512
e93cafe4
AG
513 if (cfi->cfiq->WordWriteTimeoutTyp &&
514 cfi->cfiq->WordWriteTimeoutMax)
515 cfi->chips[i].word_write_time_max =
516 1<<(cfi->cfiq->WordWriteTimeoutTyp +
517 cfi->cfiq->WordWriteTimeoutMax);
518 else
519 cfi->chips[i].word_write_time_max = 50000 * 8;
520
521 if (cfi->cfiq->BufWriteTimeoutTyp &&
522 cfi->cfiq->BufWriteTimeoutMax)
523 cfi->chips[i].buffer_write_time_max =
524 1<<(cfi->cfiq->BufWriteTimeoutTyp +
525 cfi->cfiq->BufWriteTimeoutMax);
526
527 if (cfi->cfiq->BlockEraseTimeoutTyp &&
528 cfi->cfiq->BlockEraseTimeoutMax)
529 cfi->chips[i].erase_time_max =
530 1000<<(cfi->cfiq->BlockEraseTimeoutTyp +
531 cfi->cfiq->BlockEraseTimeoutMax);
532 else
533 cfi->chips[i].erase_time_max = 2000000 * 8;
534
1da177e4 535 cfi->chips[i].ref_point_counter = 0;
c314b6f1 536 init_waitqueue_head(&(cfi->chips[i].wq));
1f948b43 537 }
1da177e4
LT
538
539 map->fldrv = &cfi_intelext_chipdrv;
1f948b43 540
1da177e4
LT
541 return cfi_intelext_setup(mtd);
542}
a15bdeef
DW
543struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
544struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
545EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
546EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
547EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
1da177e4
LT
548
549static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
550{
551 struct map_info *map = mtd->priv;
552 struct cfi_private *cfi = map->fldrv_priv;
553 unsigned long offset = 0;
554 int i,j;
555 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
556
557 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
558
559 mtd->size = devsize * cfi->numchips;
560
561 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
1f948b43 562 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
1da177e4 563 * mtd->numeraseregions, GFP_KERNEL);
1f948b43 564 if (!mtd->eraseregions) {
1da177e4
LT
565 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
566 goto setup_err;
567 }
1f948b43 568
1da177e4
LT
569 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
570 unsigned long ernum, ersize;
571 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
572 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
573
574 if (mtd->erasesize < ersize) {
575 mtd->erasesize = ersize;
576 }
577 for (j=0; j<cfi->numchips; j++) {
578 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
579 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
580 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
0ecbc81a 581 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL);
1da177e4
LT
582 }
583 offset += (ersize * ernum);
584 }
585
586 if (offset != devsize) {
587 /* Argh */
588 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
589 goto setup_err;
590 }
591
592 for (i=0; i<mtd->numeraseregions;i++){
69423d99
AH
593 printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n",
594 i,(unsigned long long)mtd->eraseregions[i].offset,
1da177e4
LT
595 mtd->eraseregions[i].erasesize,
596 mtd->eraseregions[i].numblocks);
597 }
598
f77814dd 599#ifdef CONFIG_MTD_OTP
1da177e4 600 mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
f77814dd
NP
601 mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
602 mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg;
603 mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
604 mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info;
605 mtd->get_user_prot_info = cfi_intelext_get_user_prot_info;
1da177e4
LT
606#endif
607
608 /* This function has the potential to distort the reality
609 a bit and therefore should be called last. */
610 if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
611 goto setup_err;
612
613 __module_get(THIS_MODULE);
963a6fb0 614 register_reboot_notifier(&mtd->reboot_notifier);
1da177e4
LT
615 return mtd;
616
617 setup_err:
618 if(mtd) {
fa671646 619 kfree(mtd->eraseregions);
1da177e4
LT
620 kfree(mtd);
621 }
622 kfree(cfi->cmdset_priv);
623 return NULL;
624}
625
626static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
627 struct cfi_private **pcfi)
628{
629 struct map_info *map = mtd->priv;
630 struct cfi_private *cfi = *pcfi;
631 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
632
633 /*
8f1a866f 634 * Probing of multi-partition flash chips.
1da177e4
LT
635 *
636 * To support multiple partitions when available, we simply arrange
637 * for each of them to have their own flchip structure even if they
638 * are on the same physical chip. This means completely recreating
639 * a new cfi_private structure right here which is a blatent code
640 * layering violation, but this is still the least intrusive
641 * arrangement at this point. This can be rearranged in the future
642 * if someone feels motivated enough. --nico
643 */
638d9838 644 if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
1da177e4
LT
645 && extp->FeatureSupport & (1 << 9)) {
646 struct cfi_private *newcfi;
647 struct flchip *chip;
648 struct flchip_shared *shared;
649 int offs, numregions, numparts, partshift, numvirtchips, i, j;
650
651 /* Protection Register info */
72b56a2d
NP
652 offs = (extp->NumProtectionFields - 1) *
653 sizeof(struct cfi_intelext_otpinfo);
1da177e4
LT
654
655 /* Burst Read info */
6f6ed056 656 offs += extp->extra[offs+1]+2;
1da177e4
LT
657
658 /* Number of partition regions */
659 numregions = extp->extra[offs];
660 offs += 1;
661
638d9838
NP
662 /* skip the sizeof(partregion) field in CFI 1.4 */
663 if (extp->MinorVersion >= '4')
664 offs += 2;
665
1da177e4
LT
666 /* Number of hardware partitions */
667 numparts = 0;
668 for (i = 0; i < numregions; i++) {
669 struct cfi_intelext_regioninfo *rinfo;
670 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
671 numparts += rinfo->NumIdentPartitions;
672 offs += sizeof(*rinfo)
673 + (rinfo->NumBlockTypes - 1) *
674 sizeof(struct cfi_intelext_blockinfo);
675 }
676
fe224668
TK
677 if (!numparts)
678 numparts = 1;
679
638d9838
NP
680 /* Programming Region info */
681 if (extp->MinorVersion >= '4') {
682 struct cfi_intelext_programming_regioninfo *prinfo;
683 prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
28318776 684 mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
5fa43394 685 mtd->flags &= ~MTD_BIT_WRITEABLE;
638d9838 686 printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
28318776 687 map->name, mtd->writesize,
d4160855
AB
688 cfi->interleave * prinfo->ControlValid,
689 cfi->interleave * prinfo->ControlInvalid);
638d9838
NP
690 }
691
1da177e4
LT
692 /*
693 * All functions below currently rely on all chips having
694 * the same geometry so we'll just assume that all hardware
695 * partitions are of the same size too.
696 */
697 partshift = cfi->chipshift - __ffs(numparts);
698
699 if ((1 << partshift) < mtd->erasesize) {
700 printk( KERN_ERR
701 "%s: bad number of hw partitions (%d)\n",
cb53b3b9 702 __func__, numparts);
1da177e4
LT
703 return -EINVAL;
704 }
705
706 numvirtchips = cfi->numchips * numparts;
707 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
708 if (!newcfi)
709 return -ENOMEM;
710 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
711 if (!shared) {
712 kfree(newcfi);
713 return -ENOMEM;
714 }
715 memcpy(newcfi, cfi, sizeof(struct cfi_private));
716 newcfi->numchips = numvirtchips;
717 newcfi->chipshift = partshift;
718
719 chip = &newcfi->chips[0];
720 for (i = 0; i < cfi->numchips; i++) {
721 shared[i].writing = shared[i].erasing = NULL;
722 spin_lock_init(&shared[i].lock);
723 for (j = 0; j < numparts; j++) {
724 *chip = cfi->chips[i];
725 chip->start += j << partshift;
726 chip->priv = &shared[i];
727 /* those should be reset too since
728 they create memory references. */
729 init_waitqueue_head(&chip->wq);
730 spin_lock_init(&chip->_spinlock);
731 chip->mutex = &chip->_spinlock;
732 chip++;
733 }
734 }
735
736 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
737 "--> %d partitions of %d KiB\n",
738 map->name, cfi->numchips, cfi->interleave,
739 newcfi->numchips, 1<<(newcfi->chipshift-10));
740
741 map->fldrv_priv = newcfi;
742 *pcfi = newcfi;
743 kfree(cfi);
744 }
745
746 return 0;
747}
748
749/*
750 * *********** CHIP ACCESS FUNCTIONS ***********
751 */
5a37cf19 752static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
1da177e4
LT
753{
754 DECLARE_WAITQUEUE(wait, current);
755 struct cfi_private *cfi = map->fldrv_priv;
756 map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
1da177e4 757 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
5a37cf19 758 unsigned long timeo = jiffies + HZ;
1da177e4 759
3afe7eb3
AB
760 /* Prevent setting state FL_SYNCING for chip in suspended state. */
761 if (mode == FL_SYNCING && chip->oldstate != FL_READY)
762 goto sleep;
763
1da177e4
LT
764 switch (chip->state) {
765
766 case FL_STATUS:
767 for (;;) {
768 status = map_read(map, adr);
769 if (map_word_andequal(map, status, status_OK, status_OK))
770 break;
771
772 /* At this point we're fine with write operations
773 in other partitions as they don't conflict. */
774 if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
775 break;
776
1da177e4
LT
777 spin_unlock(chip->mutex);
778 cfi_udelay(1);
779 spin_lock(chip->mutex);
780 /* Someone else might have been playing with it. */
5a37cf19 781 return -EAGAIN;
1da177e4 782 }
fb6d080c 783 /* Fall through */
1da177e4
LT
784 case FL_READY:
785 case FL_CFI_QUERY:
786 case FL_JEDEC_QUERY:
787 return 0;
788
789 case FL_ERASING:
790 if (!cfip ||
791 !(cfip->FeatureSupport & 2) ||
792 !(mode == FL_READY || mode == FL_POINT ||
793 (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
794 goto sleep;
795
796
797 /* Erase suspend */
798 map_write(map, CMD(0xB0), adr);
799
800 /* If the flash has finished erasing, then 'erase suspend'
801 * appears to make some (28F320) flash devices switch to
802 * 'read' mode. Make sure that we switch to 'read status'
803 * mode so we get the right data. --rmk
804 */
805 map_write(map, CMD(0x70), adr);
806 chip->oldstate = FL_ERASING;
807 chip->state = FL_ERASE_SUSPENDING;
808 chip->erase_suspended = 1;
809 for (;;) {
810 status = map_read(map, adr);
811 if (map_word_andequal(map, status, status_OK, status_OK))
812 break;
813
814 if (time_after(jiffies, timeo)) {
815 /* Urgh. Resume and pretend we weren't here. */
816 map_write(map, CMD(0xd0), adr);
817 /* Make sure we're in 'read status' mode if it had finished */
818 map_write(map, CMD(0x70), adr);
819 chip->state = FL_ERASING;
820 chip->oldstate = FL_READY;
4843653c
NP
821 printk(KERN_ERR "%s: Chip not ready after erase "
822 "suspended: status = 0x%lx\n", map->name, status.x[0]);
1da177e4
LT
823 return -EIO;
824 }
825
826 spin_unlock(chip->mutex);
827 cfi_udelay(1);
828 spin_lock(chip->mutex);
829 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
830 So we can just loop here. */
831 }
832 chip->state = FL_STATUS;
833 return 0;
834
835 case FL_XIP_WHILE_ERASING:
836 if (mode != FL_READY && mode != FL_POINT &&
837 (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
838 goto sleep;
839 chip->oldstate = chip->state;
840 chip->state = FL_READY;
841 return 0;
842
fb6d080c
AK
843 case FL_SHUTDOWN:
844 /* The machine is rebooting now,so no one can get chip anymore */
845 return -EIO;
1da177e4
LT
846 case FL_POINT:
847 /* Only if there's no operation suspended... */
848 if (mode == FL_READY && chip->oldstate == FL_READY)
849 return 0;
fb6d080c 850 /* Fall through */
1da177e4
LT
851 default:
852 sleep:
853 set_current_state(TASK_UNINTERRUPTIBLE);
854 add_wait_queue(&chip->wq, &wait);
855 spin_unlock(chip->mutex);
856 schedule();
857 remove_wait_queue(&chip->wq, &wait);
858 spin_lock(chip->mutex);
5a37cf19
AK
859 return -EAGAIN;
860 }
861}
862
863static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
864{
865 int ret;
6c24e416 866 DECLARE_WAITQUEUE(wait, current);
5a37cf19
AK
867
868 retry:
3afe7eb3
AB
869 if (chip->priv &&
870 (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE
871 || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) {
5a37cf19
AK
872 /*
873 * OK. We have possibility for contention on the write/erase
874 * operations which are global to the real chip and not per
875 * partition. So let's fight it over in the partition which
876 * currently has authority on the operation.
877 *
878 * The rules are as follows:
879 *
880 * - any write operation must own shared->writing.
881 *
882 * - any erase operation must own _both_ shared->writing and
883 * shared->erasing.
884 *
885 * - contention arbitration is handled in the owner's context.
886 *
887 * The 'shared' struct can be read and/or written only when
888 * its lock is taken.
889 */
890 struct flchip_shared *shared = chip->priv;
891 struct flchip *contender;
892 spin_lock(&shared->lock);
893 contender = shared->writing;
894 if (contender && contender != chip) {
895 /*
896 * The engine to perform desired operation on this
897 * partition is already in use by someone else.
898 * Let's fight over it in the context of the chip
899 * currently using it. If it is possible to suspend,
900 * that other partition will do just that, otherwise
901 * it'll happily send us to sleep. In any case, when
902 * get_chip returns success we're clear to go ahead.
903 */
904 ret = spin_trylock(contender->mutex);
905 spin_unlock(&shared->lock);
906 if (!ret)
907 goto retry;
908 spin_unlock(chip->mutex);
909 ret = chip_ready(map, contender, contender->start, mode);
910 spin_lock(chip->mutex);
911
912 if (ret == -EAGAIN) {
913 spin_unlock(contender->mutex);
914 goto retry;
915 }
916 if (ret) {
917 spin_unlock(contender->mutex);
918 return ret;
919 }
920 spin_lock(&shared->lock);
3afe7eb3
AB
921
922 /* We should not own chip if it is already
923 * in FL_SYNCING state. Put contender and retry. */
924 if (chip->state == FL_SYNCING) {
925 put_chip(map, contender, contender->start);
926 spin_unlock(contender->mutex);
927 goto retry;
928 }
5a37cf19
AK
929 spin_unlock(contender->mutex);
930 }
931
6c24e416
AB
932 /* Check if we already have suspended erase
933 * on this chip. Sleep. */
934 if (mode == FL_ERASING && shared->erasing
935 && shared->erasing->oldstate == FL_ERASING) {
936 spin_unlock(&shared->lock);
937 set_current_state(TASK_UNINTERRUPTIBLE);
938 add_wait_queue(&chip->wq, &wait);
939 spin_unlock(chip->mutex);
940 schedule();
941 remove_wait_queue(&chip->wq, &wait);
942 spin_lock(chip->mutex);
943 goto retry;
944 }
945
5a37cf19
AK
946 /* We now own it */
947 shared->writing = chip;
948 if (mode == FL_ERASING)
949 shared->erasing = chip;
950 spin_unlock(&shared->lock);
1da177e4 951 }
5a37cf19
AK
952 ret = chip_ready(map, chip, adr, mode);
953 if (ret == -EAGAIN)
954 goto retry;
955
956 return ret;
1da177e4
LT
957}
958
959static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
960{
961 struct cfi_private *cfi = map->fldrv_priv;
962
963 if (chip->priv) {
964 struct flchip_shared *shared = chip->priv;
965 spin_lock(&shared->lock);
966 if (shared->writing == chip && chip->oldstate == FL_READY) {
967 /* We own the ability to write, but we're done */
968 shared->writing = shared->erasing;
969 if (shared->writing && shared->writing != chip) {
970 /* give back ownership to who we loaned it from */
971 struct flchip *loaner = shared->writing;
972 spin_lock(loaner->mutex);
973 spin_unlock(&shared->lock);
974 spin_unlock(chip->mutex);
975 put_chip(map, loaner, loaner->start);
976 spin_lock(chip->mutex);
977 spin_unlock(loaner->mutex);
978 wake_up(&chip->wq);
979 return;
980 }
981 shared->erasing = NULL;
982 shared->writing = NULL;
983 } else if (shared->erasing == chip && shared->writing != chip) {
984 /*
985 * We own the ability to erase without the ability
986 * to write, which means the erase was suspended
987 * and some other partition is currently writing.
988 * Don't let the switch below mess things up since
989 * we don't have ownership to resume anything.
990 */
991 spin_unlock(&shared->lock);
992 wake_up(&chip->wq);
993 return;
994 }
995 spin_unlock(&shared->lock);
996 }
997
998 switch(chip->oldstate) {
999 case FL_ERASING:
1000 chip->state = chip->oldstate;
1f948b43 1001 /* What if one interleaved chip has finished and the
1da177e4 1002 other hasn't? The old code would leave the finished
1f948b43 1003 one in READY mode. That's bad, and caused -EROFS
1da177e4
LT
1004 errors to be returned from do_erase_oneblock because
1005 that's the only bit it checked for at the time.
1f948b43 1006 As the state machine appears to explicitly allow
1da177e4 1007 sending the 0x70 (Read Status) command to an erasing
1f948b43 1008 chip and expecting it to be ignored, that's what we
1da177e4
LT
1009 do. */
1010 map_write(map, CMD(0xd0), adr);
1011 map_write(map, CMD(0x70), adr);
1012 chip->oldstate = FL_READY;
1013 chip->state = FL_ERASING;
1014 break;
1015
1016 case FL_XIP_WHILE_ERASING:
1017 chip->state = chip->oldstate;
1018 chip->oldstate = FL_READY;
1019 break;
1020
1021 case FL_READY:
1022 case FL_STATUS:
1023 case FL_JEDEC_QUERY:
1024 /* We should really make set_vpp() count, rather than doing this */
1025 DISABLE_VPP(map);
1026 break;
1027 default:
4843653c 1028 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
1da177e4
LT
1029 }
1030 wake_up(&chip->wq);
1031}
1032
1033#ifdef CONFIG_MTD_XIP
1034
1035/*
1036 * No interrupt what so ever can be serviced while the flash isn't in array
1037 * mode. This is ensured by the xip_disable() and xip_enable() functions
1038 * enclosing any code path where the flash is known not to be in array mode.
1039 * And within a XIP disabled code path, only functions marked with __xipram
1040 * may be called and nothing else (it's a good thing to inspect generated
1041 * assembly to make sure inline functions were actually inlined and that gcc
1042 * didn't emit calls to its own support functions). Also configuring MTD CFI
1043 * support to a single buswidth and a single interleave is also recommended.
1da177e4
LT
1044 */
1045
1046static void xip_disable(struct map_info *map, struct flchip *chip,
1047 unsigned long adr)
1048{
1049 /* TODO: chips with no XIP use should ignore and return */
1050 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
1da177e4
LT
1051 local_irq_disable();
1052}
1053
1054static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1055 unsigned long adr)
1056{
1057 struct cfi_private *cfi = map->fldrv_priv;
1058 if (chip->state != FL_POINT && chip->state != FL_READY) {
1059 map_write(map, CMD(0xff), adr);
1060 chip->state = FL_READY;
1061 }
1062 (void) map_read(map, adr);
97f927a4 1063 xip_iprefetch();
1da177e4 1064 local_irq_enable();
1da177e4
LT
1065}
1066
1067/*
1068 * When a delay is required for the flash operation to complete, the
c172471b
NP
1069 * xip_wait_for_operation() function is polling for both the given timeout
1070 * and pending (but still masked) hardware interrupts. Whenever there is an
1071 * interrupt pending then the flash erase or write operation is suspended,
1072 * array mode restored and interrupts unmasked. Task scheduling might also
1073 * happen at that point. The CPU eventually returns from the interrupt or
1074 * the call to schedule() and the suspended flash operation is resumed for
1075 * the remaining of the delay period.
1da177e4
LT
1076 *
1077 * Warning: this function _will_ fool interrupt latency tracing tools.
1078 */
1079
c172471b
NP
1080static int __xipram xip_wait_for_operation(
1081 struct map_info *map, struct flchip *chip,
e93cafe4 1082 unsigned long adr, unsigned int chip_op_time_max)
1da177e4
LT
1083{
1084 struct cfi_private *cfi = map->fldrv_priv;
1085 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
1086 map_word status, OK = CMD(0x80);
c172471b 1087 unsigned long usec, suspended, start, done;
1da177e4
LT
1088 flstate_t oldstate, newstate;
1089
c172471b 1090 start = xip_currtime();
e93cafe4 1091 usec = chip_op_time_max;
c172471b
NP
1092 if (usec == 0)
1093 usec = 500000;
1094 done = 0;
1095
1da177e4
LT
1096 do {
1097 cpu_relax();
1098 if (xip_irqpending() && cfip &&
1099 ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
1100 (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
1101 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1102 /*
1103 * Let's suspend the erase or write operation when
1104 * supported. Note that we currently don't try to
1105 * suspend interleaved chips if there is already
1106 * another operation suspended (imagine what happens
1107 * when one chip was already done with the current
1108 * operation while another chip suspended it, then
1109 * we resume the whole thing at once). Yes, it
1110 * can happen!
1111 */
c172471b 1112 usec -= done;
1da177e4
LT
1113 map_write(map, CMD(0xb0), adr);
1114 map_write(map, CMD(0x70), adr);
1da177e4
LT
1115 suspended = xip_currtime();
1116 do {
1117 if (xip_elapsed_since(suspended) > 100000) {
1118 /*
1119 * The chip doesn't want to suspend
1120 * after waiting for 100 msecs.
1121 * This is a critical error but there
1122 * is not much we can do here.
1123 */
c172471b 1124 return -EIO;
1da177e4
LT
1125 }
1126 status = map_read(map, adr);
1127 } while (!map_word_andequal(map, status, OK, OK));
1128
1129 /* Suspend succeeded */
1130 oldstate = chip->state;
1131 if (oldstate == FL_ERASING) {
1132 if (!map_word_bitsset(map, status, CMD(0x40)))
1133 break;
1134 newstate = FL_XIP_WHILE_ERASING;
1135 chip->erase_suspended = 1;
1136 } else {
1137 if (!map_word_bitsset(map, status, CMD(0x04)))
1138 break;
1139 newstate = FL_XIP_WHILE_WRITING;
1140 chip->write_suspended = 1;
1141 }
1142 chip->state = newstate;
1143 map_write(map, CMD(0xff), adr);
1144 (void) map_read(map, adr);
ca5c23c3 1145 xip_iprefetch();
1da177e4 1146 local_irq_enable();
6da70124 1147 spin_unlock(chip->mutex);
ca5c23c3 1148 xip_iprefetch();
1da177e4
LT
1149 cond_resched();
1150
1151 /*
1152 * We're back. However someone else might have
1153 * decided to go write to the chip if we are in
1154 * a suspended erase state. If so let's wait
1155 * until it's done.
1156 */
6da70124 1157 spin_lock(chip->mutex);
1da177e4
LT
1158 while (chip->state != newstate) {
1159 DECLARE_WAITQUEUE(wait, current);
1160 set_current_state(TASK_UNINTERRUPTIBLE);
1161 add_wait_queue(&chip->wq, &wait);
6da70124 1162 spin_unlock(chip->mutex);
1da177e4
LT
1163 schedule();
1164 remove_wait_queue(&chip->wq, &wait);
6da70124 1165 spin_lock(chip->mutex);
1da177e4
LT
1166 }
1167 /* Disallow XIP again */
1168 local_irq_disable();
1169
1170 /* Resume the write or erase operation */
1171 map_write(map, CMD(0xd0), adr);
1172 map_write(map, CMD(0x70), adr);
1173 chip->state = oldstate;
1174 start = xip_currtime();
1175 } else if (usec >= 1000000/HZ) {
1176 /*
1177 * Try to save on CPU power when waiting delay
1178 * is at least a system timer tick period.
1179 * No need to be extremely accurate here.
1180 */
1181 xip_cpu_idle();
1182 }
1183 status = map_read(map, adr);
c172471b 1184 done = xip_elapsed_since(start);
1da177e4 1185 } while (!map_word_andequal(map, status, OK, OK)
c172471b 1186 && done < usec);
1da177e4 1187
c172471b
NP
1188 return (done >= usec) ? -ETIME : 0;
1189}
1da177e4
LT
1190
1191/*
1192 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1193 * the flash is actively programming or erasing since we have to poll for
1194 * the operation to complete anyway. We can't do that in a generic way with
6da70124 1195 * a XIP setup so do it before the actual flash operation in this case
c172471b 1196 * and stub it out from INVAL_CACHE_AND_WAIT.
1da177e4 1197 */
6da70124
NP
1198#define XIP_INVAL_CACHED_RANGE(map, from, size) \
1199 INVALIDATE_CACHED_RANGE(map, from, size)
1200
e93cafe4
AG
1201#define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
1202 xip_wait_for_operation(map, chip, cmd_adr, usec_max)
1da177e4
LT
1203
1204#else
1205
1206#define xip_disable(map, chip, adr)
1207#define xip_enable(map, chip, adr)
1da177e4 1208#define XIP_INVAL_CACHED_RANGE(x...)
c172471b
NP
1209#define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1210
1211static int inval_cache_and_wait_for_operation(
1212 struct map_info *map, struct flchip *chip,
1213 unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
e93cafe4 1214 unsigned int chip_op_time, unsigned int chip_op_time_max)
c172471b
NP
1215{
1216 struct cfi_private *cfi = map->fldrv_priv;
1217 map_word status, status_OK = CMD(0x80);
46a1652c 1218 int chip_state = chip->state;
998453fb 1219 unsigned int timeo, sleep_time, reset_timeo;
c172471b
NP
1220
1221 spin_unlock(chip->mutex);
1222 if (inval_len)
1223 INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
c172471b
NP
1224 spin_lock(chip->mutex);
1225
e93cafe4 1226 timeo = chip_op_time_max;
46a1652c
AK
1227 if (!timeo)
1228 timeo = 500000;
998453fb 1229 reset_timeo = timeo;
46a1652c 1230 sleep_time = chip_op_time / 2;
c172471b 1231
c172471b 1232 for (;;) {
c172471b
NP
1233 status = map_read(map, cmd_adr);
1234 if (map_word_andequal(map, status, status_OK, status_OK))
1235 break;
1da177e4 1236
46a1652c 1237 if (!timeo) {
c172471b
NP
1238 map_write(map, CMD(0x70), cmd_adr);
1239 chip->state = FL_STATUS;
1240 return -ETIME;
1241 }
1242
46a1652c 1243 /* OK Still waiting. Drop the lock, wait a while and retry. */
c172471b 1244 spin_unlock(chip->mutex);
46a1652c
AK
1245 if (sleep_time >= 1000000/HZ) {
1246 /*
1247 * Half of the normal delay still remaining
1248 * can be performed with a sleeping delay instead
1249 * of busy waiting.
1250 */
1251 msleep(sleep_time/1000);
1252 timeo -= sleep_time;
1253 sleep_time = 1000000/HZ;
1254 } else {
1255 udelay(1);
1256 cond_resched();
1257 timeo--;
1258 }
c172471b 1259 spin_lock(chip->mutex);
c172471b 1260
967bf623 1261 while (chip->state != chip_state) {
46a1652c
AK
1262 /* Someone's suspended the operation: sleep */
1263 DECLARE_WAITQUEUE(wait, current);
1264 set_current_state(TASK_UNINTERRUPTIBLE);
1265 add_wait_queue(&chip->wq, &wait);
1266 spin_unlock(chip->mutex);
1267 schedule();
1268 remove_wait_queue(&chip->wq, &wait);
1269 spin_lock(chip->mutex);
1270 }
6ac15e92
GY
1271 if (chip->erase_suspended && chip_state == FL_ERASING) {
1272 /* Erase suspend occured while sleep: reset timeout */
998453fb
AK
1273 timeo = reset_timeo;
1274 chip->erase_suspended = 0;
6ac15e92
GY
1275 }
1276 if (chip->write_suspended && chip_state == FL_WRITING) {
1277 /* Write suspend occured while sleep: reset timeout */
1278 timeo = reset_timeo;
998453fb
AK
1279 chip->write_suspended = 0;
1280 }
46a1652c 1281 }
c172471b
NP
1282
1283 /* Done and happy. */
1284 chip->state = FL_STATUS;
1285 return 0;
1286}
6da70124 1287
1da177e4
LT
1288#endif
1289
e93cafe4
AG
1290#define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
1291 INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
c172471b
NP
1292
1293
1da177e4
LT
1294static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1295{
1296 unsigned long cmd_addr;
1297 struct cfi_private *cfi = map->fldrv_priv;
1298 int ret = 0;
1299
1300 adr += chip->start;
1301
1f948b43
TG
1302 /* Ensure cmd read/writes are aligned. */
1303 cmd_addr = adr & ~(map_bankwidth(map)-1);
1da177e4
LT
1304
1305 spin_lock(chip->mutex);
1306
1307 ret = get_chip(map, chip, cmd_addr, FL_POINT);
1308
1309 if (!ret) {
1310 if (chip->state != FL_POINT && chip->state != FL_READY)
1311 map_write(map, CMD(0xff), cmd_addr);
1312
1313 chip->state = FL_POINT;
1314 chip->ref_point_counter++;
1315 }
1316 spin_unlock(chip->mutex);
1317
1318 return ret;
1319}
1320
a98889f3
JH
1321static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
1322 size_t *retlen, void **virt, resource_size_t *phys)
1da177e4
LT
1323{
1324 struct map_info *map = mtd->priv;
1325 struct cfi_private *cfi = map->fldrv_priv;
097f2576 1326 unsigned long ofs, last_end = 0;
1da177e4
LT
1327 int chipnum;
1328 int ret = 0;
1329
1330 if (!map->virt || (from + len > mtd->size))
1331 return -EINVAL;
1f948b43 1332
1da177e4
LT
1333 /* Now lock the chip(s) to POINT state */
1334
1335 /* ofs: offset within the first chip that the first read should start */
1336 chipnum = (from >> cfi->chipshift);
1337 ofs = from - (chipnum << cfi->chipshift);
1338
a98889f3 1339 *virt = map->virt + cfi->chips[chipnum].start + ofs;
097f2576 1340 *retlen = 0;
a98889f3
JH
1341 if (phys)
1342 *phys = map->phys + cfi->chips[chipnum].start + ofs;
097f2576 1343
1da177e4
LT
1344 while (len) {
1345 unsigned long thislen;
1346
1347 if (chipnum >= cfi->numchips)
1348 break;
1349
097f2576
AL
1350 /* We cannot point across chips that are virtually disjoint */
1351 if (!last_end)
1352 last_end = cfi->chips[chipnum].start;
1353 else if (cfi->chips[chipnum].start != last_end)
1354 break;
1355
1da177e4
LT
1356 if ((len + ofs -1) >> cfi->chipshift)
1357 thislen = (1<<cfi->chipshift) - ofs;
1358 else
1359 thislen = len;
1360
1361 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1362 if (ret)
1363 break;
1364
1365 *retlen += thislen;
1366 len -= thislen;
1f948b43 1367
1da177e4 1368 ofs = 0;
097f2576 1369 last_end += 1 << cfi->chipshift;
1da177e4
LT
1370 chipnum++;
1371 }
1372 return 0;
1373}
1374
a98889f3 1375static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1da177e4
LT
1376{
1377 struct map_info *map = mtd->priv;
1378 struct cfi_private *cfi = map->fldrv_priv;
1379 unsigned long ofs;
1380 int chipnum;
1381
1382 /* Now unlock the chip(s) POINT state */
1383
1384 /* ofs: offset within the first chip that the first read should start */
1385 chipnum = (from >> cfi->chipshift);
1386 ofs = from - (chipnum << cfi->chipshift);
1387
1388 while (len) {
1389 unsigned long thislen;
1390 struct flchip *chip;
1391
1392 chip = &cfi->chips[chipnum];
1393 if (chipnum >= cfi->numchips)
1394 break;
1395
1396 if ((len + ofs -1) >> cfi->chipshift)
1397 thislen = (1<<cfi->chipshift) - ofs;
1398 else
1399 thislen = len;
1400
1401 spin_lock(chip->mutex);
1402 if (chip->state == FL_POINT) {
1403 chip->ref_point_counter--;
1404 if(chip->ref_point_counter == 0)
1405 chip->state = FL_READY;
1406 } else
4843653c 1407 printk(KERN_ERR "%s: Warning: unpoint called on non pointed region\n", map->name); /* Should this give an error? */
1da177e4
LT
1408
1409 put_chip(map, chip, chip->start);
1410 spin_unlock(chip->mutex);
1411
1412 len -= thislen;
1413 ofs = 0;
1414 chipnum++;
1415 }
1416}
1417
1418static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1419{
1420 unsigned long cmd_addr;
1421 struct cfi_private *cfi = map->fldrv_priv;
1422 int ret;
1423
1424 adr += chip->start;
1425
1f948b43
TG
1426 /* Ensure cmd read/writes are aligned. */
1427 cmd_addr = adr & ~(map_bankwidth(map)-1);
1da177e4
LT
1428
1429 spin_lock(chip->mutex);
1430 ret = get_chip(map, chip, cmd_addr, FL_READY);
1431 if (ret) {
1432 spin_unlock(chip->mutex);
1433 return ret;
1434 }
1435
1436 if (chip->state != FL_POINT && chip->state != FL_READY) {
1437 map_write(map, CMD(0xff), cmd_addr);
1438
1439 chip->state = FL_READY;
1440 }
1441
1442 map_copy_from(map, buf, adr, len);
1443
1444 put_chip(map, chip, cmd_addr);
1445
1446 spin_unlock(chip->mutex);
1447 return 0;
1448}
1449
1450static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1451{
1452 struct map_info *map = mtd->priv;
1453 struct cfi_private *cfi = map->fldrv_priv;
1454 unsigned long ofs;
1455 int chipnum;
1456 int ret = 0;
1457
1458 /* ofs: offset within the first chip that the first read should start */
1459 chipnum = (from >> cfi->chipshift);
1460 ofs = from - (chipnum << cfi->chipshift);
1461
1462 *retlen = 0;
1463
1464 while (len) {
1465 unsigned long thislen;
1466
1467 if (chipnum >= cfi->numchips)
1468 break;
1469
1470 if ((len + ofs -1) >> cfi->chipshift)
1471 thislen = (1<<cfi->chipshift) - ofs;
1472 else
1473 thislen = len;
1474
1475 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1476 if (ret)
1477 break;
1478
1479 *retlen += thislen;
1480 len -= thislen;
1481 buf += thislen;
1f948b43 1482
1da177e4
LT
1483 ofs = 0;
1484 chipnum++;
1485 }
1486 return ret;
1487}
1488
1da177e4 1489static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
f77814dd 1490 unsigned long adr, map_word datum, int mode)
1da177e4
LT
1491{
1492 struct cfi_private *cfi = map->fldrv_priv;
c172471b
NP
1493 map_word status, write_cmd;
1494 int ret=0;
1da177e4
LT
1495
1496 adr += chip->start;
1497
f77814dd 1498 switch (mode) {
638d9838
NP
1499 case FL_WRITING:
1500 write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0x40) : CMD(0x41);
1501 break;
1502 case FL_OTP_WRITE:
1503 write_cmd = CMD(0xc0);
1504 break;
1505 default:
1506 return -EINVAL;
f77814dd 1507 }
1da177e4
LT
1508
1509 spin_lock(chip->mutex);
f77814dd 1510 ret = get_chip(map, chip, adr, mode);
1da177e4
LT
1511 if (ret) {
1512 spin_unlock(chip->mutex);
1513 return ret;
1514 }
1515
1516 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1517 ENABLE_VPP(map);
1518 xip_disable(map, chip, adr);
f77814dd 1519 map_write(map, write_cmd, adr);
1da177e4 1520 map_write(map, datum, adr);
f77814dd 1521 chip->state = mode;
1da177e4 1522
c172471b
NP
1523 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1524 adr, map_bankwidth(map),
e93cafe4
AG
1525 chip->word_write_time,
1526 chip->word_write_time_max);
c172471b
NP
1527 if (ret) {
1528 xip_enable(map, chip, adr);
1529 printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
1530 goto out;
1da177e4 1531 }
1da177e4 1532
4843653c 1533 /* check for errors */
c172471b 1534 status = map_read(map, adr);
4843653c
NP
1535 if (map_word_bitsset(map, status, CMD(0x1a))) {
1536 unsigned long chipstatus = MERGESTATUS(status);
1537
1538 /* reset status */
1da177e4 1539 map_write(map, CMD(0x50), adr);
1da177e4 1540 map_write(map, CMD(0x70), adr);
4843653c
NP
1541 xip_enable(map, chip, adr);
1542
1543 if (chipstatus & 0x02) {
1544 ret = -EROFS;
1545 } else if (chipstatus & 0x08) {
1546 printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
1547 ret = -EIO;
1548 } else {
1549 printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
1550 ret = -EINVAL;
1551 }
1552
1553 goto out;
1da177e4
LT
1554 }
1555
1556 xip_enable(map, chip, adr);
1557 out: put_chip(map, chip, adr);
1558 spin_unlock(chip->mutex);
1da177e4
LT
1559 return ret;
1560}
1561
1562
1563static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1564{
1565 struct map_info *map = mtd->priv;
1566 struct cfi_private *cfi = map->fldrv_priv;
1567 int ret = 0;
1568 int chipnum;
1569 unsigned long ofs;
1570
1571 *retlen = 0;
1572 if (!len)
1573 return 0;
1574
1575 chipnum = to >> cfi->chipshift;
1576 ofs = to - (chipnum << cfi->chipshift);
1577
1578 /* If it's not bus-aligned, do the first byte write */
1579 if (ofs & (map_bankwidth(map)-1)) {
1580 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1581 int gap = ofs - bus_ofs;
1582 int n;
1583 map_word datum;
1584
1585 n = min_t(int, len, map_bankwidth(map)-gap);
1586 datum = map_word_ff(map);
1587 datum = map_word_load_partial(map, datum, buf, gap, n);
1588
1589 ret = do_write_oneword(map, &cfi->chips[chipnum],
f77814dd 1590 bus_ofs, datum, FL_WRITING);
1f948b43 1591 if (ret)
1da177e4
LT
1592 return ret;
1593
1594 len -= n;
1595 ofs += n;
1596 buf += n;
1597 (*retlen) += n;
1598
1599 if (ofs >> cfi->chipshift) {
1f948b43 1600 chipnum ++;
1da177e4
LT
1601 ofs = 0;
1602 if (chipnum == cfi->numchips)
1603 return 0;
1604 }
1605 }
1f948b43 1606
1da177e4
LT
1607 while(len >= map_bankwidth(map)) {
1608 map_word datum = map_word_load(map, buf);
1609
1610 ret = do_write_oneword(map, &cfi->chips[chipnum],
f77814dd 1611 ofs, datum, FL_WRITING);
1da177e4
LT
1612 if (ret)
1613 return ret;
1614
1615 ofs += map_bankwidth(map);
1616 buf += map_bankwidth(map);
1617 (*retlen) += map_bankwidth(map);
1618 len -= map_bankwidth(map);
1619
1620 if (ofs >> cfi->chipshift) {
1f948b43 1621 chipnum ++;
1da177e4
LT
1622 ofs = 0;
1623 if (chipnum == cfi->numchips)
1624 return 0;
1625 }
1626 }
1627
1628 if (len & (map_bankwidth(map)-1)) {
1629 map_word datum;
1630
1631 datum = map_word_ff(map);
1632 datum = map_word_load_partial(map, datum, buf, 0, len);
1633
1634 ret = do_write_oneword(map, &cfi->chips[chipnum],
f77814dd 1635 ofs, datum, FL_WRITING);
1f948b43 1636 if (ret)
1da177e4 1637 return ret;
1f948b43 1638
1da177e4
LT
1639 (*retlen) += len;
1640 }
1641
1642 return 0;
1643}
1644
1645
1f948b43 1646static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
e102d54a
NP
1647 unsigned long adr, const struct kvec **pvec,
1648 unsigned long *pvec_seek, int len)
1da177e4
LT
1649{
1650 struct cfi_private *cfi = map->fldrv_priv;
c172471b
NP
1651 map_word status, write_cmd, datum;
1652 unsigned long cmd_adr;
1653 int ret, wbufsize, word_gap, words;
e102d54a
NP
1654 const struct kvec *vec;
1655 unsigned long vec_seek;
646fd127
MC
1656 unsigned long initial_adr;
1657 int initial_len = len;
1da177e4
LT
1658
1659 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1660 adr += chip->start;
646fd127 1661 initial_adr = adr;
1da177e4 1662 cmd_adr = adr & ~(wbufsize-1);
638d9838 1663
1da177e4 1664 /* Let's determine this according to the interleave only once */
638d9838 1665 write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0xe8) : CMD(0xe9);
1da177e4
LT
1666
1667 spin_lock(chip->mutex);
1668 ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1669 if (ret) {
1670 spin_unlock(chip->mutex);
1671 return ret;
1672 }
1673
646fd127 1674 XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len);
1da177e4
LT
1675 ENABLE_VPP(map);
1676 xip_disable(map, chip, cmd_adr);
1677
151e7659 1678 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1f948b43 1679 [...], the device will not accept any more Write to Buffer commands".
1da177e4
LT
1680 So we must check here and reset those bits if they're set. Otherwise
1681 we're just pissing in the wind */
6e7a6809 1682 if (chip->state != FL_STATUS) {
1da177e4 1683 map_write(map, CMD(0x70), cmd_adr);
6e7a6809
NP
1684 chip->state = FL_STATUS;
1685 }
1da177e4
LT
1686 status = map_read(map, cmd_adr);
1687 if (map_word_bitsset(map, status, CMD(0x30))) {
1688 xip_enable(map, chip, cmd_adr);
1689 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1690 xip_disable(map, chip, cmd_adr);
1691 map_write(map, CMD(0x50), cmd_adr);
1692 map_write(map, CMD(0x70), cmd_adr);
1693 }
1694
1695 chip->state = FL_WRITING_TO_BUFFER;
c172471b 1696 map_write(map, write_cmd, cmd_adr);
e93cafe4 1697 ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0);
c172471b
NP
1698 if (ret) {
1699 /* Argh. Not ready for write to buffer */
1700 map_word Xstatus = map_read(map, cmd_adr);
1701 map_write(map, CMD(0x70), cmd_adr);
1702 chip->state = FL_STATUS;
1da177e4 1703 status = map_read(map, cmd_adr);
c172471b
NP
1704 map_write(map, CMD(0x50), cmd_adr);
1705 map_write(map, CMD(0x70), cmd_adr);
1706 xip_enable(map, chip, cmd_adr);
1707 printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1708 map->name, Xstatus.x[0], status.x[0]);
1709 goto out;
1da177e4
LT
1710 }
1711
e102d54a
NP
1712 /* Figure out the number of words to write */
1713 word_gap = (-adr & (map_bankwidth(map)-1));
c8872b06 1714 words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map));
e102d54a
NP
1715 if (!word_gap) {
1716 words--;
1717 } else {
1718 word_gap = map_bankwidth(map) - word_gap;
1719 adr -= word_gap;
1720 datum = map_word_ff(map);
1721 }
1722
1da177e4 1723 /* Write length of data to come */
e102d54a 1724 map_write(map, CMD(words), cmd_adr );
1da177e4
LT
1725
1726 /* Write data */
e102d54a
NP
1727 vec = *pvec;
1728 vec_seek = *pvec_seek;
1729 do {
1730 int n = map_bankwidth(map) - word_gap;
1731 if (n > vec->iov_len - vec_seek)
1732 n = vec->iov_len - vec_seek;
1733 if (n > len)
1734 n = len;
1da177e4 1735
e102d54a
NP
1736 if (!word_gap && len < map_bankwidth(map))
1737 datum = map_word_ff(map);
1da177e4 1738
e102d54a 1739 datum = map_word_load_partial(map, datum,
1f948b43 1740 vec->iov_base + vec_seek,
e102d54a 1741 word_gap, n);
1da177e4 1742
e102d54a
NP
1743 len -= n;
1744 word_gap += n;
1745 if (!len || word_gap == map_bankwidth(map)) {
1746 map_write(map, datum, adr);
1747 adr += map_bankwidth(map);
1748 word_gap = 0;
1749 }
1da177e4 1750
e102d54a
NP
1751 vec_seek += n;
1752 if (vec_seek == vec->iov_len) {
1753 vec++;
1754 vec_seek = 0;
1755 }
1756 } while (len);
1757 *pvec = vec;
1758 *pvec_seek = vec_seek;
1da177e4
LT
1759
1760 /* GO GO GO */
1761 map_write(map, CMD(0xd0), cmd_adr);
1762 chip->state = FL_WRITING;
1763
c172471b 1764 ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
646fd127 1765 initial_adr, initial_len,
e93cafe4
AG
1766 chip->buffer_write_time,
1767 chip->buffer_write_time_max);
c172471b
NP
1768 if (ret) {
1769 map_write(map, CMD(0x70), cmd_adr);
1770 chip->state = FL_STATUS;
1771 xip_enable(map, chip, cmd_adr);
1772 printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
1773 goto out;
1da177e4 1774 }
1da177e4 1775
4843653c 1776 /* check for errors */
c172471b 1777 status = map_read(map, cmd_adr);
4843653c
NP
1778 if (map_word_bitsset(map, status, CMD(0x1a))) {
1779 unsigned long chipstatus = MERGESTATUS(status);
1780
1781 /* reset status */
1da177e4 1782 map_write(map, CMD(0x50), cmd_adr);
4843653c
NP
1783 map_write(map, CMD(0x70), cmd_adr);
1784 xip_enable(map, chip, cmd_adr);
1785
1786 if (chipstatus & 0x02) {
1787 ret = -EROFS;
1788 } else if (chipstatus & 0x08) {
1789 printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
1790 ret = -EIO;
1791 } else {
1792 printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
1793 ret = -EINVAL;
1794 }
1795
1796 goto out;
1da177e4
LT
1797 }
1798
1799 xip_enable(map, chip, cmd_adr);
1800 out: put_chip(map, chip, cmd_adr);
1801 spin_unlock(chip->mutex);
1802 return ret;
1803}
1804
e102d54a
NP
1805static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1806 unsigned long count, loff_t to, size_t *retlen)
1da177e4
LT
1807{
1808 struct map_info *map = mtd->priv;
1809 struct cfi_private *cfi = map->fldrv_priv;
1810 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1811 int ret = 0;
1812 int chipnum;
e102d54a
NP
1813 unsigned long ofs, vec_seek, i;
1814 size_t len = 0;
1815
1816 for (i = 0; i < count; i++)
1817 len += vecs[i].iov_len;
1da177e4
LT
1818
1819 *retlen = 0;
1820 if (!len)
1821 return 0;
1822
1823 chipnum = to >> cfi->chipshift;
e102d54a
NP
1824 ofs = to - (chipnum << cfi->chipshift);
1825 vec_seek = 0;
1da177e4 1826
e102d54a 1827 do {
1da177e4
LT
1828 /* We must not cross write block boundaries */
1829 int size = wbufsize - (ofs & (wbufsize-1));
1830
1831 if (size > len)
1832 size = len;
1f948b43 1833 ret = do_write_buffer(map, &cfi->chips[chipnum],
e102d54a 1834 ofs, &vecs, &vec_seek, size);
1da177e4
LT
1835 if (ret)
1836 return ret;
1837
1838 ofs += size;
1da177e4
LT
1839 (*retlen) += size;
1840 len -= size;
1841
1842 if (ofs >> cfi->chipshift) {
1f948b43 1843 chipnum ++;
1da177e4
LT
1844 ofs = 0;
1845 if (chipnum == cfi->numchips)
1846 return 0;
1847 }
df54b52c
JB
1848
1849 /* Be nice and reschedule with the chip in a usable state for other
1850 processes. */
1851 cond_resched();
1852
e102d54a
NP
1853 } while (len);
1854
1da177e4
LT
1855 return 0;
1856}
1857
e102d54a
NP
1858static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1859 size_t len, size_t *retlen, const u_char *buf)
1860{
1861 struct kvec vec;
1862
1863 vec.iov_base = (void *) buf;
1864 vec.iov_len = len;
1865
1866 return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
1867}
1868
1da177e4
LT
1869static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1870 unsigned long adr, int len, void *thunk)
1871{
1872 struct cfi_private *cfi = map->fldrv_priv;
c172471b 1873 map_word status;
1da177e4 1874 int retries = 3;
c172471b 1875 int ret;
1da177e4
LT
1876
1877 adr += chip->start;
1878
1da177e4
LT
1879 retry:
1880 spin_lock(chip->mutex);
1881 ret = get_chip(map, chip, adr, FL_ERASING);
1882 if (ret) {
1883 spin_unlock(chip->mutex);
1884 return ret;
1885 }
1886
1887 XIP_INVAL_CACHED_RANGE(map, adr, len);
1888 ENABLE_VPP(map);
1889 xip_disable(map, chip, adr);
1890
1891 /* Clear the status register first */
1892 map_write(map, CMD(0x50), adr);
1893
1894 /* Now erase */
1895 map_write(map, CMD(0x20), adr);
1896 map_write(map, CMD(0xD0), adr);
1897 chip->state = FL_ERASING;
1898 chip->erase_suspended = 0;
1899
c172471b
NP
1900 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1901 adr, len,
e93cafe4
AG
1902 chip->erase_time,
1903 chip->erase_time_max);
c172471b
NP
1904 if (ret) {
1905 map_write(map, CMD(0x70), adr);
1906 chip->state = FL_STATUS;
1907 xip_enable(map, chip, adr);
1908 printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
1909 goto out;
1da177e4
LT
1910 }
1911
1912 /* We've broken this before. It doesn't hurt to be safe */
1913 map_write(map, CMD(0x70), adr);
1914 chip->state = FL_STATUS;
1915 status = map_read(map, adr);
1916
4843653c 1917 /* check for errors */
1da177e4 1918 if (map_word_bitsset(map, status, CMD(0x3a))) {
4843653c 1919 unsigned long chipstatus = MERGESTATUS(status);
1da177e4
LT
1920
1921 /* Reset the error bits */
1922 map_write(map, CMD(0x50), adr);
1923 map_write(map, CMD(0x70), adr);
1924 xip_enable(map, chip, adr);
1925
1da177e4 1926 if ((chipstatus & 0x30) == 0x30) {
4843653c
NP
1927 printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
1928 ret = -EINVAL;
1da177e4
LT
1929 } else if (chipstatus & 0x02) {
1930 /* Protection bit set */
1931 ret = -EROFS;
1932 } else if (chipstatus & 0x8) {
1933 /* Voltage */
4843653c 1934 printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
1da177e4 1935 ret = -EIO;
4843653c
NP
1936 } else if (chipstatus & 0x20 && retries--) {
1937 printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
4843653c
NP
1938 put_chip(map, chip, adr);
1939 spin_unlock(chip->mutex);
1940 goto retry;
1941 } else {
1942 printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
1da177e4
LT
1943 ret = -EIO;
1944 }
4843653c
NP
1945
1946 goto out;
1da177e4
LT
1947 }
1948
4843653c 1949 xip_enable(map, chip, adr);
1da177e4
LT
1950 out: put_chip(map, chip, adr);
1951 spin_unlock(chip->mutex);
1952 return ret;
1953}
1954
029a9eb1 1955static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1da177e4
LT
1956{
1957 unsigned long ofs, len;
1958 int ret;
1959
1960 ofs = instr->addr;
1961 len = instr->len;
1962
1963 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1964 if (ret)
1965 return ret;
1966
1967 instr->state = MTD_ERASE_DONE;
1968 mtd_erase_callback(instr);
1f948b43 1969
1da177e4
LT
1970 return 0;
1971}
1972
1973static void cfi_intelext_sync (struct mtd_info *mtd)
1974{
1975 struct map_info *map = mtd->priv;
1976 struct cfi_private *cfi = map->fldrv_priv;
1977 int i;
1978 struct flchip *chip;
1979 int ret = 0;
1980
1981 for (i=0; !ret && i<cfi->numchips; i++) {
1982 chip = &cfi->chips[i];
1983
1984 spin_lock(chip->mutex);
1985 ret = get_chip(map, chip, chip->start, FL_SYNCING);
1986
1987 if (!ret) {
1988 chip->oldstate = chip->state;
1989 chip->state = FL_SYNCING;
1f948b43 1990 /* No need to wake_up() on this state change -
1da177e4
LT
1991 * as the whole point is that nobody can do anything
1992 * with the chip now anyway.
1993 */
1994 }
1995 spin_unlock(chip->mutex);
1996 }
1997
1998 /* Unlock the chips again */
1999
2000 for (i--; i >=0; i--) {
2001 chip = &cfi->chips[i];
2002
2003 spin_lock(chip->mutex);
1f948b43 2004
1da177e4
LT
2005 if (chip->state == FL_SYNCING) {
2006 chip->state = chip->oldstate;
09c79335 2007 chip->oldstate = FL_READY;
1da177e4
LT
2008 wake_up(&chip->wq);
2009 }
2010 spin_unlock(chip->mutex);
2011 }
2012}
2013
0ecbc81a 2014static int __xipram do_getlockstatus_oneblock(struct map_info *map,
1da177e4
LT
2015 struct flchip *chip,
2016 unsigned long adr,
2017 int len, void *thunk)
2018{
2019 struct cfi_private *cfi = map->fldrv_priv;
2020 int status, ofs_factor = cfi->interleave * cfi->device_type;
2021
c25bb1f5 2022 adr += chip->start;
1da177e4 2023 xip_disable(map, chip, adr+(2*ofs_factor));
c25bb1f5 2024 map_write(map, CMD(0x90), adr+(2*ofs_factor));
1da177e4
LT
2025 chip->state = FL_JEDEC_QUERY;
2026 status = cfi_read_query(map, adr+(2*ofs_factor));
2027 xip_enable(map, chip, 0);
0ecbc81a
RG
2028 return status;
2029}
2030
2031#ifdef DEBUG_LOCK_BITS
2032static int __xipram do_printlockstatus_oneblock(struct map_info *map,
2033 struct flchip *chip,
2034 unsigned long adr,
2035 int len, void *thunk)
2036{
1da177e4 2037 printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
0ecbc81a 2038 adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk));
1da177e4
LT
2039 return 0;
2040}
2041#endif
2042
2043#define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
2044#define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
2045
2046static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
2047 unsigned long adr, int len, void *thunk)
2048{
2049 struct cfi_private *cfi = map->fldrv_priv;
9a6e73ec 2050 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
c172471b 2051 int udelay;
1da177e4
LT
2052 int ret;
2053
2054 adr += chip->start;
2055
1da177e4
LT
2056 spin_lock(chip->mutex);
2057 ret = get_chip(map, chip, adr, FL_LOCKING);
2058 if (ret) {
2059 spin_unlock(chip->mutex);
2060 return ret;
2061 }
2062
2063 ENABLE_VPP(map);
2064 xip_disable(map, chip, adr);
1f948b43 2065
1da177e4
LT
2066 map_write(map, CMD(0x60), adr);
2067 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2068 map_write(map, CMD(0x01), adr);
2069 chip->state = FL_LOCKING;
2070 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2071 map_write(map, CMD(0xD0), adr);
2072 chip->state = FL_UNLOCKING;
2073 } else
2074 BUG();
2075
9a6e73ec
TP
2076 /*
2077 * If Instant Individual Block Locking supported then no need
2078 * to delay.
2079 */
c172471b 2080 udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0;
9a6e73ec 2081
e93cafe4 2082 ret = WAIT_TIMEOUT(map, chip, adr, udelay, udelay * 100);
c172471b
NP
2083 if (ret) {
2084 map_write(map, CMD(0x70), adr);
2085 chip->state = FL_STATUS;
2086 xip_enable(map, chip, adr);
2087 printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
2088 goto out;
1da177e4 2089 }
1f948b43 2090
1da177e4 2091 xip_enable(map, chip, adr);
c172471b 2092out: put_chip(map, chip, adr);
1da177e4 2093 spin_unlock(chip->mutex);
c172471b 2094 return ret;
1da177e4
LT
2095}
2096
69423d99 2097static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1da177e4
LT
2098{
2099 int ret;
2100
2101#ifdef DEBUG_LOCK_BITS
2102 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
cb53b3b9 2103 __func__, ofs, len);
1da177e4 2104 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1da1caf8 2105 ofs, len, NULL);
1da177e4
LT
2106#endif
2107
1f948b43 2108 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
1da177e4 2109 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
1f948b43 2110
1da177e4
LT
2111#ifdef DEBUG_LOCK_BITS
2112 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
cb53b3b9 2113 __func__, ret);
1da177e4 2114 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1da1caf8 2115 ofs, len, NULL);
1da177e4
LT
2116#endif
2117
2118 return ret;
2119}
2120
69423d99 2121static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1da177e4
LT
2122{
2123 int ret;
2124
2125#ifdef DEBUG_LOCK_BITS
2126 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
cb53b3b9 2127 __func__, ofs, len);
1da177e4 2128 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1da1caf8 2129 ofs, len, NULL);
1da177e4
LT
2130#endif
2131
2132 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2133 ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
1f948b43 2134
1da177e4
LT
2135#ifdef DEBUG_LOCK_BITS
2136 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
cb53b3b9 2137 __func__, ret);
1f948b43 2138 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1da1caf8 2139 ofs, len, NULL);
1da177e4 2140#endif
1f948b43 2141
1da177e4
LT
2142 return ret;
2143}
2144
f77814dd
NP
2145#ifdef CONFIG_MTD_OTP
2146
1f948b43 2147typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
f77814dd
NP
2148 u_long data_offset, u_char *buf, u_int size,
2149 u_long prot_offset, u_int groupno, u_int groupsize);
2150
2151static int __xipram
2152do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
2153 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2154{
2155 struct cfi_private *cfi = map->fldrv_priv;
2156 int ret;
2157
2158 spin_lock(chip->mutex);
2159 ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
2160 if (ret) {
2161 spin_unlock(chip->mutex);
2162 return ret;
2163 }
2164
2165 /* let's ensure we're not reading back cached data from array mode */
6da70124 2166 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
f77814dd
NP
2167
2168 xip_disable(map, chip, chip->start);
2169 if (chip->state != FL_JEDEC_QUERY) {
2170 map_write(map, CMD(0x90), chip->start);
2171 chip->state = FL_JEDEC_QUERY;
2172 }
2173 map_copy_from(map, buf, chip->start + offset, size);
2174 xip_enable(map, chip, chip->start);
2175
2176 /* then ensure we don't keep OTP data in the cache */
6da70124 2177 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
f77814dd
NP
2178
2179 put_chip(map, chip, chip->start);
2180 spin_unlock(chip->mutex);
2181 return 0;
2182}
2183
2184static int
2185do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
2186 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2187{
2188 int ret;
2189
2190 while (size) {
2191 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
2192 int gap = offset - bus_ofs;
2193 int n = min_t(int, size, map_bankwidth(map)-gap);
2194 map_word datum = map_word_ff(map);
2195
2196 datum = map_word_load_partial(map, datum, buf, gap, n);
2197 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1f948b43 2198 if (ret)
f77814dd
NP
2199 return ret;
2200
2201 offset += n;
2202 buf += n;
2203 size -= n;
2204 }
2205
2206 return 0;
2207}
2208
2209static int
2210do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2211 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2212{
2213 struct cfi_private *cfi = map->fldrv_priv;
2214 map_word datum;
2215
2216 /* make sure area matches group boundaries */
332d71f7 2217 if (size != grpsz)
f77814dd
NP
2218 return -EXDEV;
2219
2220 datum = map_word_ff(map);
2221 datum = map_word_clr(map, datum, CMD(1 << grpno));
2222 return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2223}
2224
2225static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2226 size_t *retlen, u_char *buf,
2227 otp_op_t action, int user_regs)
2228{
2229 struct map_info *map = mtd->priv;
2230 struct cfi_private *cfi = map->fldrv_priv;
2231 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2232 struct flchip *chip;
2233 struct cfi_intelext_otpinfo *otp;
2234 u_long devsize, reg_prot_offset, data_offset;
2235 u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2236 u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2237 int ret;
2238
2239 *retlen = 0;
2240
2241 /* Check that we actually have some OTP registers */
2242 if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2243 return -ENODATA;
2244
2245 /* we need real chips here not virtual ones */
2246 devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2247 chip_step = devsize >> cfi->chipshift;
dce2b4da
NP
2248 chip_num = 0;
2249
2250 /* Some chips have OTP located in the _top_ partition only.
2251 For example: Intel 28F256L18T (T means top-parameter device) */
b2ef1a2b 2252 if (cfi->mfr == CFI_MFR_INTEL) {
dce2b4da
NP
2253 switch (cfi->id) {
2254 case 0x880b:
2255 case 0x880c:
2256 case 0x880d:
2257 chip_num = chip_step - 1;
2258 }
2259 }
f77814dd 2260
dce2b4da 2261 for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
f77814dd
NP
2262 chip = &cfi->chips[chip_num];
2263 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2264
2265 /* first OTP region */
2266 field = 0;
2267 reg_prot_offset = extp->ProtRegAddr;
2268 reg_fact_groups = 1;
2269 reg_fact_size = 1 << extp->FactProtRegSize;
2270 reg_user_groups = 1;
2271 reg_user_size = 1 << extp->UserProtRegSize;
2272
2273 while (len > 0) {
2274 /* flash geometry fixup */
2275 data_offset = reg_prot_offset + 1;
2276 data_offset *= cfi->interleave * cfi->device_type;
2277 reg_prot_offset *= cfi->interleave * cfi->device_type;
2278 reg_fact_size *= cfi->interleave;
2279 reg_user_size *= cfi->interleave;
2280
2281 if (user_regs) {
2282 groups = reg_user_groups;
2283 groupsize = reg_user_size;
2284 /* skip over factory reg area */
2285 groupno = reg_fact_groups;
2286 data_offset += reg_fact_groups * reg_fact_size;
2287 } else {
2288 groups = reg_fact_groups;
2289 groupsize = reg_fact_size;
2290 groupno = 0;
2291 }
2292
332d71f7 2293 while (len > 0 && groups > 0) {
f77814dd
NP
2294 if (!action) {
2295 /*
2296 * Special case: if action is NULL
2297 * we fill buf with otp_info records.
2298 */
2299 struct otp_info *otpinfo;
2300 map_word lockword;
2301 len -= sizeof(struct otp_info);
2302 if (len <= 0)
2303 return -ENOSPC;
2304 ret = do_otp_read(map, chip,
2305 reg_prot_offset,
2306 (u_char *)&lockword,
2307 map_bankwidth(map),
2308 0, 0, 0);
2309 if (ret)
2310 return ret;
2311 otpinfo = (struct otp_info *)buf;
2312 otpinfo->start = from;
2313 otpinfo->length = groupsize;
2314 otpinfo->locked =
2315 !map_word_bitsset(map, lockword,
2316 CMD(1 << groupno));
2317 from += groupsize;
2318 buf += sizeof(*otpinfo);
2319 *retlen += sizeof(*otpinfo);
2320 } else if (from >= groupsize) {
2321 from -= groupsize;
332d71f7 2322 data_offset += groupsize;
f77814dd
NP
2323 } else {
2324 int size = groupsize;
2325 data_offset += from;
2326 size -= from;
2327 from = 0;
2328 if (size > len)
2329 size = len;
2330 ret = action(map, chip, data_offset,
2331 buf, size, reg_prot_offset,
2332 groupno, groupsize);
2333 if (ret < 0)
2334 return ret;
2335 buf += size;
2336 len -= size;
2337 *retlen += size;
332d71f7 2338 data_offset += size;
f77814dd
NP
2339 }
2340 groupno++;
2341 groups--;
2342 }
2343
2344 /* next OTP region */
2345 if (++field == extp->NumProtectionFields)
2346 break;
2347 reg_prot_offset = otp->ProtRegAddr;
2348 reg_fact_groups = otp->FactGroups;
2349 reg_fact_size = 1 << otp->FactProtRegSize;
2350 reg_user_groups = otp->UserGroups;
2351 reg_user_size = 1 << otp->UserProtRegSize;
2352 otp++;
2353 }
2354 }
2355
2356 return 0;
2357}
2358
2359static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2360 size_t len, size_t *retlen,
2361 u_char *buf)
2362{
2363 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2364 buf, do_otp_read, 0);
2365}
2366
2367static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2368 size_t len, size_t *retlen,
2369 u_char *buf)
2370{
2371 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2372 buf, do_otp_read, 1);
2373}
2374
2375static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2376 size_t len, size_t *retlen,
2377 u_char *buf)
2378{
2379 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2380 buf, do_otp_write, 1);
2381}
2382
2383static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2384 loff_t from, size_t len)
2385{
2386 size_t retlen;
2387 return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2388 NULL, do_otp_lock, 1);
2389}
2390
1f948b43 2391static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd,
f77814dd
NP
2392 struct otp_info *buf, size_t len)
2393{
2394 size_t retlen;
2395 int ret;
2396
2397 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
2398 return ret ? : retlen;
2399}
2400
2401static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
2402 struct otp_info *buf, size_t len)
2403{
2404 size_t retlen;
2405 int ret;
2406
2407 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
2408 return ret ? : retlen;
2409}
2410
2411#endif
2412
0ecbc81a
RG
2413static void cfi_intelext_save_locks(struct mtd_info *mtd)
2414{
2415 struct mtd_erase_region_info *region;
2416 int block, status, i;
2417 unsigned long adr;
2418 size_t len;
2419
2420 for (i = 0; i < mtd->numeraseregions; i++) {
2421 region = &mtd->eraseregions[i];
2422 if (!region->lockmap)
2423 continue;
2424
2425 for (block = 0; block < region->numblocks; block++){
2426 len = region->erasesize;
2427 adr = region->offset + block * len;
2428
2429 status = cfi_varsize_frob(mtd,
029a9eb1 2430 do_getlockstatus_oneblock, adr, len, NULL);
0ecbc81a
RG
2431 if (status)
2432 set_bit(block, region->lockmap);
2433 else
2434 clear_bit(block, region->lockmap);
2435 }
2436 }
2437}
2438
1da177e4
LT
2439static int cfi_intelext_suspend(struct mtd_info *mtd)
2440{
2441 struct map_info *map = mtd->priv;
2442 struct cfi_private *cfi = map->fldrv_priv;
0ecbc81a 2443 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
1da177e4
LT
2444 int i;
2445 struct flchip *chip;
2446 int ret = 0;
2447
e619a75f 2448 if ((mtd->flags & MTD_POWERUP_LOCK)
0ecbc81a
RG
2449 && extp && (extp->FeatureSupport & (1 << 5)))
2450 cfi_intelext_save_locks(mtd);
2451
1da177e4
LT
2452 for (i=0; !ret && i<cfi->numchips; i++) {
2453 chip = &cfi->chips[i];
2454
2455 spin_lock(chip->mutex);
2456
2457 switch (chip->state) {
2458 case FL_READY:
2459 case FL_STATUS:
2460 case FL_CFI_QUERY:
2461 case FL_JEDEC_QUERY:
2462 if (chip->oldstate == FL_READY) {
a86aaa6d
DA
2463 /* place the chip in a known state before suspend */
2464 map_write(map, CMD(0xFF), cfi->chips[i].start);
1da177e4
LT
2465 chip->oldstate = chip->state;
2466 chip->state = FL_PM_SUSPENDED;
1f948b43 2467 /* No need to wake_up() on this state change -
1da177e4
LT
2468 * as the whole point is that nobody can do anything
2469 * with the chip now anyway.
2470 */
2471 } else {
2472 /* There seems to be an operation pending. We must wait for it. */
2473 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2474 ret = -EAGAIN;
2475 }
2476 break;
2477 default:
2478 /* Should we actually wait? Once upon a time these routines weren't
2479 allowed to. Or should we return -EAGAIN, because the upper layers
2480 ought to have already shut down anything which was using the device
2481 anyway? The latter for now. */
2482 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate);
2483 ret = -EAGAIN;
2484 case FL_PM_SUSPENDED:
2485 break;
2486 }
2487 spin_unlock(chip->mutex);
2488 }
2489
2490 /* Unlock the chips again */
2491
2492 if (ret) {
2493 for (i--; i >=0; i--) {
2494 chip = &cfi->chips[i];
1f948b43 2495
1da177e4 2496 spin_lock(chip->mutex);
1f948b43 2497
1da177e4
LT
2498 if (chip->state == FL_PM_SUSPENDED) {
2499 /* No need to force it into a known state here,
2500 because we're returning failure, and it didn't
2501 get power cycled */
2502 chip->state = chip->oldstate;
2503 chip->oldstate = FL_READY;
2504 wake_up(&chip->wq);
2505 }
2506 spin_unlock(chip->mutex);
2507 }
1f948b43
TG
2508 }
2509
1da177e4
LT
2510 return ret;
2511}
2512
0ecbc81a
RG
2513static void cfi_intelext_restore_locks(struct mtd_info *mtd)
2514{
2515 struct mtd_erase_region_info *region;
2516 int block, i;
2517 unsigned long adr;
2518 size_t len;
2519
2520 for (i = 0; i < mtd->numeraseregions; i++) {
2521 region = &mtd->eraseregions[i];
2522 if (!region->lockmap)
2523 continue;
2524
2525 for (block = 0; block < region->numblocks; block++) {
2526 len = region->erasesize;
2527 adr = region->offset + block * len;
2528
2529 if (!test_bit(block, region->lockmap))
2530 cfi_intelext_unlock(mtd, adr, len);
2531 }
2532 }
2533}
2534
1da177e4
LT
2535static void cfi_intelext_resume(struct mtd_info *mtd)
2536{
2537 struct map_info *map = mtd->priv;
2538 struct cfi_private *cfi = map->fldrv_priv;
0ecbc81a 2539 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
1da177e4
LT
2540 int i;
2541 struct flchip *chip;
2542
2543 for (i=0; i<cfi->numchips; i++) {
1f948b43 2544
1da177e4
LT
2545 chip = &cfi->chips[i];
2546
2547 spin_lock(chip->mutex);
1f948b43 2548
1da177e4
LT
2549 /* Go to known state. Chip may have been power cycled */
2550 if (chip->state == FL_PM_SUSPENDED) {
2551 map_write(map, CMD(0xFF), cfi->chips[i].start);
2552 chip->oldstate = chip->state = FL_READY;
2553 wake_up(&chip->wq);
2554 }
2555
2556 spin_unlock(chip->mutex);
2557 }
0ecbc81a 2558
e619a75f 2559 if ((mtd->flags & MTD_POWERUP_LOCK)
0ecbc81a
RG
2560 && extp && (extp->FeatureSupport & (1 << 5)))
2561 cfi_intelext_restore_locks(mtd);
1da177e4
LT
2562}
2563
963a6fb0
NP
2564static int cfi_intelext_reset(struct mtd_info *mtd)
2565{
2566 struct map_info *map = mtd->priv;
2567 struct cfi_private *cfi = map->fldrv_priv;
2568 int i, ret;
2569
2570 for (i=0; i < cfi->numchips; i++) {
2571 struct flchip *chip = &cfi->chips[i];
2572
2573 /* force the completion of any ongoing operation
1f948b43 2574 and switch to array mode so any bootloader in
963a6fb0
NP
2575 flash is accessible for soft reboot. */
2576 spin_lock(chip->mutex);
c4a9f88d 2577 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
963a6fb0
NP
2578 if (!ret) {
2579 map_write(map, CMD(0xff), chip->start);
c4a9f88d 2580 chip->state = FL_SHUTDOWN;
c9f7ec30 2581 put_chip(map, chip, chip->start);
963a6fb0
NP
2582 }
2583 spin_unlock(chip->mutex);
2584 }
2585
2586 return 0;
2587}
2588
2589static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2590 void *v)
2591{
2592 struct mtd_info *mtd;
2593
2594 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2595 cfi_intelext_reset(mtd);
2596 return NOTIFY_DONE;
2597}
2598
1da177e4
LT
2599static void cfi_intelext_destroy(struct mtd_info *mtd)
2600{
2601 struct map_info *map = mtd->priv;
2602 struct cfi_private *cfi = map->fldrv_priv;
0ecbc81a
RG
2603 struct mtd_erase_region_info *region;
2604 int i;
963a6fb0
NP
2605 cfi_intelext_reset(mtd);
2606 unregister_reboot_notifier(&mtd->reboot_notifier);
1da177e4
LT
2607 kfree(cfi->cmdset_priv);
2608 kfree(cfi->cfiq);
2609 kfree(cfi->chips[0].priv);
2610 kfree(cfi);
0ecbc81a
RG
2611 for (i = 0; i < mtd->numeraseregions; i++) {
2612 region = &mtd->eraseregions[i];
2613 if (region->lockmap)
2614 kfree(region->lockmap);
2615 }
1da177e4
LT
2616 kfree(mtd->eraseregions);
2617}
2618
1da177e4
LT
2619MODULE_LICENSE("GPL");
2620MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2621MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
a15bdeef
DW
2622MODULE_ALIAS("cfi_cmdset_0003");
2623MODULE_ALIAS("cfi_cmdset_0200");