]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/mtd/chips/cfi_cmdset_0002.c
mtd: cfi_cmdset_0002: check return code for get_chip()
[mirror_ubuntu-hirsute-kernel.git] / drivers / mtd / chips / cfi_cmdset_0002.c
CommitLineData
1da177e4
LT
1/*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4 *
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
02b15e34 7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
1da177e4
LT
8 *
9 * 2_by_8 routines added by Simon Munton
10 *
11 * 4_by_16 work by Carolyn J. Smith
12 *
1f948b43 13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
02b15e34 14 * by Nicolas Pitre)
1f948b43 15 *
87e92c06
CM
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17 *
1da177e4
LT
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19 *
20 * This code is GPL
1da177e4
LT
21 */
22
1da177e4
LT
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/kernel.h>
26#include <linux/sched.h>
1da177e4
LT
27#include <asm/io.h>
28#include <asm/byteorder.h>
29
30#include <linux/errno.h>
31#include <linux/slab.h>
32#include <linux/delay.h>
33#include <linux/interrupt.h>
eafe1311 34#include <linux/reboot.h>
1648eaaa
SR
35#include <linux/of.h>
36#include <linux/of_platform.h>
1da177e4
LT
37#include <linux/mtd/map.h>
38#include <linux/mtd/mtd.h>
39#include <linux/mtd/cfi.h>
02b15e34 40#include <linux/mtd/xip.h>
1da177e4
LT
41
42#define AMD_BOOTLOC_BUG
43#define FORCE_WORD_WRITE 0
44
45#define MAX_WORD_RETRIES 3
46
1da177e4 47#define SST49LF004B 0x0060
89072ef9 48#define SST49LF040B 0x0050
fb4a90bf 49#define SST49LF008A 0x005a
0165508c 50#define AT49BV6416 0x00d6
1da177e4
LT
51
52static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
53static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
55static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
56static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
57static void cfi_amdstd_sync (struct mtd_info *);
58static int cfi_amdstd_suspend (struct mtd_info *);
59static void cfi_amdstd_resume (struct mtd_info *);
eafe1311 60static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
dc7e9ecd
CR
61static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
62 size_t *, struct otp_info *);
63static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
64 size_t *, struct otp_info *);
1da177e4 65static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
dc7e9ecd
CR
66static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
67 size_t *, u_char *);
68static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
69 size_t *, u_char *);
af744750
CR
70static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
71 size_t *, u_char *);
4f5cb243 72static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
1da177e4 73
30ec5a2c
IS
74static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
75 size_t *retlen, const u_char *buf);
76
1da177e4
LT
77static void cfi_amdstd_destroy(struct mtd_info *);
78
79struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
80static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
81
82static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
83static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
84#include "fwh_lock.h"
85
69423d99
AH
86static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
87static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
0165508c 88
1648eaaa
SR
89static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
90static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
91static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
92
1da177e4
LT
93static struct mtd_chip_driver cfi_amdstd_chipdrv = {
94 .probe = NULL, /* Not usable directly */
95 .destroy = cfi_amdstd_destroy,
96 .name = "cfi_cmdset_0002",
97 .module = THIS_MODULE
98};
99
100
101/* #define DEBUG_CFI_FEATURES */
102
103
104#ifdef DEBUG_CFI_FEATURES
105static void cfi_tell_features(struct cfi_pri_amdstd *extp)
106{
107 const char* erase_suspend[3] = {
108 "Not supported", "Read only", "Read/write"
109 };
110 const char* top_bottom[6] = {
111 "No WP", "8x8KiB sectors at top & bottom, no WP",
112 "Bottom boot", "Top boot",
113 "Uniform, Bottom WP", "Uniform, Top WP"
114 };
115
116 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
1f948b43 117 printk(" Address sensitive unlock: %s\n",
1da177e4
LT
118 (extp->SiliconRevision & 1) ? "Not required" : "Required");
119
120 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
121 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
122 else
123 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
124
125 if (extp->BlkProt == 0)
126 printk(" Block protection: Not supported\n");
127 else
128 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
129
130
131 printk(" Temporary block unprotect: %s\n",
132 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
133 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
134 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
135 printk(" Burst mode: %s\n",
136 extp->BurstMode ? "Supported" : "Not supported");
137 if (extp->PageMode == 0)
138 printk(" Page mode: Not supported\n");
139 else
140 printk(" Page mode: %d word page\n", extp->PageMode << 2);
141
1f948b43 142 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
1da177e4 143 extp->VppMin >> 4, extp->VppMin & 0xf);
1f948b43 144 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
1da177e4
LT
145 extp->VppMax >> 4, extp->VppMax & 0xf);
146
147 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
148 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
149 else
150 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
151}
152#endif
153
154#ifdef AMD_BOOTLOC_BUG
155/* Wheee. Bring me the head of someone at AMD. */
cc318222 156static void fixup_amd_bootblock(struct mtd_info *mtd)
1da177e4
LT
157{
158 struct map_info *map = mtd->priv;
159 struct cfi_private *cfi = map->fldrv_priv;
160 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
161 __u8 major = extp->MajorVersion;
162 __u8 minor = extp->MinorVersion;
163
164 if (((major << 8) | minor) < 0x3131) {
165 /* CFI version 1.0 => don't trust bootloc */
87e92c06 166
289c0522 167 pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
87e92c06
CM
168 map->name, cfi->mfr, cfi->id);
169
170 /* AFAICS all 29LV400 with a bottom boot block have a device ID
171 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
172 * These were badly detected as they have the 0x80 bit set
173 * so treat them as a special case.
174 */
175 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
176
177 /* Macronix added CFI to their 2nd generation
178 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
179 * Fujitsu, Spansion, EON, ESI and older Macronix)
180 * has CFI.
181 *
182 * Therefore also check the manufacturer.
183 * This reduces the risk of false detection due to
184 * the 8-bit device ID.
185 */
f3e69c65 186 (cfi->mfr == CFI_MFR_MACRONIX)) {
289c0522 187 pr_debug("%s: Macronix MX29LV400C with bottom boot block"
87e92c06
CM
188 " detected\n", map->name);
189 extp->TopBottom = 2; /* bottom boot */
190 } else
1da177e4
LT
191 if (cfi->id & 0x80) {
192 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
193 extp->TopBottom = 3; /* top boot */
194 } else {
195 extp->TopBottom = 2; /* bottom boot */
196 }
87e92c06 197
289c0522 198 pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
87e92c06
CM
199 " deduced %s from Device ID\n", map->name, major, minor,
200 extp->TopBottom == 2 ? "bottom" : "top");
1da177e4
LT
201 }
202}
203#endif
204
cc318222 205static void fixup_use_write_buffers(struct mtd_info *mtd)
1da177e4
LT
206{
207 struct map_info *map = mtd->priv;
208 struct cfi_private *cfi = map->fldrv_priv;
209 if (cfi->cfiq->BufWriteTimeoutTyp) {
289c0522 210 pr_debug("Using buffer write method\n" );
3c3c10bb 211 mtd->_write = cfi_amdstd_write_buffers;
1da177e4
LT
212 }
213}
214
5b0c5c2c 215/* Atmel chips don't use the same PRI format as AMD chips */
cc318222 216static void fixup_convert_atmel_pri(struct mtd_info *mtd)
5b0c5c2c
HS
217{
218 struct map_info *map = mtd->priv;
219 struct cfi_private *cfi = map->fldrv_priv;
220 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
221 struct cfi_pri_atmel atmel_pri;
222
223 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
de591dac 224 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
5b0c5c2c
HS
225
226 if (atmel_pri.Features & 0x02)
227 extp->EraseSuspend = 2;
228
be8f78b8
HS
229 /* Some chips got it backwards... */
230 if (cfi->id == AT49BV6416) {
231 if (atmel_pri.BottomBoot)
232 extp->TopBottom = 3;
233 else
234 extp->TopBottom = 2;
235 } else {
236 if (atmel_pri.BottomBoot)
237 extp->TopBottom = 2;
238 else
239 extp->TopBottom = 3;
240 }
d10a39d1
HCE
241
242 /* burst write mode not supported */
243 cfi->cfiq->BufWriteTimeoutTyp = 0;
244 cfi->cfiq->BufWriteTimeoutMax = 0;
5b0c5c2c
HS
245}
246
cc318222 247static void fixup_use_secsi(struct mtd_info *mtd)
1da177e4
LT
248{
249 /* Setup for chips with a secsi area */
3c3c10bb
AB
250 mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
251 mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
1da177e4
LT
252}
253
cc318222 254static void fixup_use_erase_chip(struct mtd_info *mtd)
1da177e4
LT
255{
256 struct map_info *map = mtd->priv;
257 struct cfi_private *cfi = map->fldrv_priv;
258 if ((cfi->cfiq->NumEraseRegions == 1) &&
259 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
3c3c10bb 260 mtd->_erase = cfi_amdstd_erase_chip;
1da177e4 261 }
1f948b43 262
1da177e4
LT
263}
264
0165508c
HS
265/*
266 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
267 * locked by default.
268 */
cc318222 269static void fixup_use_atmel_lock(struct mtd_info *mtd)
0165508c 270{
3c3c10bb
AB
271 mtd->_lock = cfi_atmel_lock;
272 mtd->_unlock = cfi_atmel_unlock;
e619a75f 273 mtd->flags |= MTD_POWERUP_LOCK;
0165508c
HS
274}
275
83dcd3bb
GL
276static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
277{
278 struct map_info *map = mtd->priv;
279 struct cfi_private *cfi = map->fldrv_priv;
280
281 /*
25985edc 282 * These flashes report two separate eraseblock regions based on the
83dcd3bb
GL
283 * sector_erase-size and block_erase-size, although they both operate on the
284 * same memory. This is not allowed according to CFI, so we just pick the
285 * sector_erase-size.
286 */
287 cfi->cfiq->NumEraseRegions = 1;
288}
289
cc318222 290static void fixup_sst39vf(struct mtd_info *mtd)
83dcd3bb
GL
291{
292 struct map_info *map = mtd->priv;
293 struct cfi_private *cfi = map->fldrv_priv;
294
295 fixup_old_sst_eraseregion(mtd);
296
297 cfi->addr_unlock1 = 0x5555;
298 cfi->addr_unlock2 = 0x2AAA;
299}
300
cc318222 301static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
5a0563f0
GL
302{
303 struct map_info *map = mtd->priv;
304 struct cfi_private *cfi = map->fldrv_priv;
305
306 fixup_old_sst_eraseregion(mtd);
307
308 cfi->addr_unlock1 = 0x555;
309 cfi->addr_unlock2 = 0x2AA;
08968041
GL
310
311 cfi->sector_erase_cmd = CMD(0x50);
5a0563f0
GL
312}
313
cc318222 314static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
9fc05fca
GL
315{
316 struct map_info *map = mtd->priv;
317 struct cfi_private *cfi = map->fldrv_priv;
318
cc318222 319 fixup_sst39vf_rev_b(mtd);
9fc05fca
GL
320
321 /*
322 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
323 * it should report a size of 8KBytes (0x0020*256).
324 */
325 cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
326 pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
327}
328
cc318222 329static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
70b07255
TP
330{
331 struct map_info *map = mtd->priv;
332 struct cfi_private *cfi = map->fldrv_priv;
333
334 if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
335 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
5df41de5 336 pr_warning("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n", mtd->name);
70b07255
TP
337 }
338}
339
cc318222 340static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
70b07255
TP
341{
342 struct map_info *map = mtd->priv;
343 struct cfi_private *cfi = map->fldrv_priv;
344
345 if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
346 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
5df41de5 347 pr_warning("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n", mtd->name);
70b07255
TP
348 }
349}
350
43dc03c7
JM
351static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
352{
353 struct map_info *map = mtd->priv;
354 struct cfi_private *cfi = map->fldrv_priv;
355
356 /*
357 * S29NS512P flash uses more than 8bits to report number of sectors,
358 * which is not permitted by CFI.
359 */
360 cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
5df41de5 361 pr_warning("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n", mtd->name);
43dc03c7
JM
362}
363
83dcd3bb
GL
364/* Used to fix CFI-Tables of chips without Extended Query Tables */
365static struct cfi_fixup cfi_nopri_fixup_table[] = {
cc318222
GL
366 { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
367 { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
368 { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
369 { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
370 { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
371 { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
372 { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
373 { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
374 { 0, 0, NULL }
83dcd3bb
GL
375};
376
1da177e4 377static struct cfi_fixup cfi_fixup_table[] = {
cc318222 378 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
1da177e4 379#ifdef AMD_BOOTLOC_BUG
cc318222 380 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
1065cda8 381 { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
cc318222 382 { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
1da177e4 383#endif
cc318222
GL
384 { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
385 { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
386 { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
387 { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
388 { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
389 { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
390 { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
391 { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
392 { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
393 { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
43dc03c7 394 { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
cc318222
GL
395 { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
396 { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
397 { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
398 { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
1da177e4 399#if !FORCE_WORD_WRITE
cc318222 400 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
1da177e4 401#endif
cc318222 402 { 0, 0, NULL }
1da177e4
LT
403};
404static struct cfi_fixup jedec_fixup_table[] = {
cc318222
GL
405 { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
406 { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
407 { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
408 { 0, 0, NULL }
1da177e4
LT
409};
410
411static struct cfi_fixup fixup_table[] = {
412 /* The CFI vendor ids and the JEDEC vendor IDs appear
413 * to be common. It is like the devices id's are as
414 * well. This table is to pick all cases where
415 * we know that is the case.
416 */
cc318222
GL
417 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
418 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
419 { 0, 0, NULL }
1da177e4
LT
420};
421
422
fefae48b
WG
423static void cfi_fixup_major_minor(struct cfi_private *cfi,
424 struct cfi_pri_amdstd *extp)
425{
e6372763 426 if (cfi->mfr == CFI_MFR_SAMSUNG) {
e8953b73
GL
427 if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
428 (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
e6372763
GL
429 /*
430 * Samsung K8P2815UQB and K8D6x16UxM chips
431 * report major=0 / minor=0.
e8953b73 432 * K8D3x16UxC chips report major=3 / minor=3.
e6372763
GL
433 */
434 printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
435 " Extended Query version to 1.%c\n",
436 extp->MinorVersion);
437 extp->MajorVersion = '1';
438 }
439 }
440
9fc05fca
GL
441 /*
442 * SST 38VF640x chips report major=0xFF / minor=0xFF.
443 */
444 if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
445 extp->MajorVersion = '1';
446 extp->MinorVersion = '0';
447 }
fefae48b
WG
448}
449
42096288
GF
450static int is_m29ew(struct cfi_private *cfi)
451{
452 if (cfi->mfr == CFI_MFR_INTEL &&
453 ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
454 (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
455 return 1;
456 return 0;
457}
458
459/*
460 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
461 * Some revisions of the M29EW suffer from erase suspend hang ups. In
462 * particular, it can occur when the sequence
463 * Erase Confirm -> Suspend -> Program -> Resume
464 * causes a lockup due to internal timing issues. The consequence is that the
465 * erase cannot be resumed without inserting a dummy command after programming
466 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
467 * that writes an F0 command code before the RESUME command.
468 */
469static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
470 unsigned long adr)
471{
472 struct cfi_private *cfi = map->fldrv_priv;
473 /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
474 if (is_m29ew(cfi))
475 map_write(map, CMD(0xF0), adr);
476}
477
478/*
479 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
480 *
481 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
482 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
483 * command is issued after an ERASE RESUME operation without waiting for a
484 * minimum delay. The result is that once the ERASE seems to be completed
485 * (no bits are toggling), the contents of the Flash memory block on which
486 * the erase was ongoing could be inconsistent with the expected values
487 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
488 * values), causing a consequent failure of the ERASE operation.
489 * The occurrence of this issue could be high, especially when file system
490 * operations on the Flash are intensive. As a result, it is recommended
491 * that a patch be applied. Intensive file system operations can cause many
492 * calls to the garbage routine to free Flash space (also by erasing physical
493 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
494 * commands can occur. The problem disappears when a delay is inserted after
495 * the RESUME command by using the udelay() function available in Linux.
496 * The DELAY value must be tuned based on the customer's platform.
497 * The maximum value that fixes the problem in all cases is 500us.
498 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
499 * in most cases.
500 * We have chosen 500µs because this latency is acceptable.
501 */
502static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
503{
504 /*
505 * Resolving the Delay After Resume Issue see Micron TN-13-07
506 * Worst case delay must be 500µs but 30-50µs should be ok as well
507 */
508 if (is_m29ew(cfi))
509 cfi_udelay(500);
510}
511
1da177e4
LT
512struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
513{
514 struct cfi_private *cfi = map->fldrv_priv;
1648eaaa 515 struct device_node __maybe_unused *np = map->device_node;
1da177e4
LT
516 struct mtd_info *mtd;
517 int i;
518
95b93a0c 519 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
5c8b1fbb 520 if (!mtd)
1da177e4 521 return NULL;
1da177e4
LT
522 mtd->priv = map;
523 mtd->type = MTD_NORFLASH;
524
525 /* Fill in the default mtd operations */
3c3c10bb
AB
526 mtd->_erase = cfi_amdstd_erase_varsize;
527 mtd->_write = cfi_amdstd_write_words;
528 mtd->_read = cfi_amdstd_read;
529 mtd->_sync = cfi_amdstd_sync;
530 mtd->_suspend = cfi_amdstd_suspend;
531 mtd->_resume = cfi_amdstd_resume;
dc7e9ecd
CR
532 mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
533 mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
534 mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
535 mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
af744750 536 mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
4f5cb243 537 mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
1da177e4
LT
538 mtd->flags = MTD_CAP_NORFLASH;
539 mtd->name = map->name;
783ed81f 540 mtd->writesize = 1;
13ce77f4 541 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
d261c72a 542
0a32a102
BN
543 pr_debug("MTD %s(): write buffer size %d\n", __func__,
544 mtd->writebufsize);
1da177e4 545
3c3c10bb 546 mtd->_panic_write = cfi_amdstd_panic_write;
eafe1311
KC
547 mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
548
1da177e4
LT
549 if (cfi->cfi_mode==CFI_MODE_CFI){
550 unsigned char bootloc;
1da177e4
LT
551 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
552 struct cfi_pri_amdstd *extp;
553
554 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
564b8497
GL
555 if (extp) {
556 /*
557 * It's a real CFI chip, not one for which the probe
558 * routine faked a CFI structure.
559 */
560 cfi_fixup_major_minor(cfi, extp);
561
e17f47a1 562 /*
c9ddab25 563 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
631dd1a8
JM
564 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
565 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
5da19532 566 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
c9ddab25 567 * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
e17f47a1 568 */
564b8497 569 if (extp->MajorVersion != '1' ||
c9ddab25 570 (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
564b8497 571 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
e17f47a1
GL
572 "version %c.%c (%#02x/%#02x).\n",
573 extp->MajorVersion, extp->MinorVersion,
574 extp->MajorVersion, extp->MinorVersion);
564b8497
GL
575 kfree(extp);
576 kfree(mtd);
577 return NULL;
578 }
d88f977b 579
e17f47a1
GL
580 printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
581 extp->MajorVersion, extp->MinorVersion);
582
564b8497
GL
583 /* Install our own private info structure */
584 cfi->cmdset_priv = extp;
1da177e4 585
564b8497
GL
586 /* Apply cfi device specific fixups */
587 cfi_fixup(mtd, cfi_fixup_table);
1da177e4
LT
588
589#ifdef DEBUG_CFI_FEATURES
564b8497
GL
590 /* Tell the user about it in lots of lovely detail */
591 cfi_tell_features(extp);
1f948b43 592#endif
1da177e4 593
1648eaaa
SR
594#ifdef CONFIG_OF
595 if (np && of_property_read_bool(
596 np, "use-advanced-sector-protection")
597 && extp->BlkProtUnprot == 8) {
598 printk(KERN_INFO " Advanced Sector Protection (PPB Locking) supported\n");
599 mtd->_lock = cfi_ppb_lock;
600 mtd->_unlock = cfi_ppb_unlock;
601 mtd->_is_locked = cfi_ppb_is_locked;
602 }
603#endif
604
564b8497 605 bootloc = extp->TopBottom;
412da2f6
DW
606 if ((bootloc < 2) || (bootloc > 5)) {
607 printk(KERN_WARNING "%s: CFI contains unrecognised boot "
608 "bank location (%d). Assuming bottom.\n",
abab7ebf 609 map->name, bootloc);
564b8497
GL
610 bootloc = 2;
611 }
1da177e4 612
564b8497 613 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
412da2f6 614 printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
1f948b43 615
564b8497
GL
616 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
617 int j = (cfi->cfiq->NumEraseRegions-1)-i;
618 __u32 swap;
1f948b43 619
564b8497
GL
620 swap = cfi->cfiq->EraseRegionInfo[i];
621 cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
622 cfi->cfiq->EraseRegionInfo[j] = swap;
623 }
1da177e4 624 }
564b8497
GL
625 /* Set the default CFI lock/unlock addresses */
626 cfi->addr_unlock1 = 0x555;
627 cfi->addr_unlock2 = 0x2aa;
628 }
83dcd3bb 629 cfi_fixup(mtd, cfi_nopri_fixup_table);
564b8497
GL
630
631 if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
632 kfree(mtd);
633 return NULL;
1da177e4 634 }
1da177e4
LT
635
636 } /* CFI mode */
637 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
638 /* Apply jedec specific fixups */
639 cfi_fixup(mtd, jedec_fixup_table);
640 }
641 /* Apply generic fixups */
642 cfi_fixup(mtd, fixup_table);
643
644 for (i=0; i< cfi->numchips; i++) {
645 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
646 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
647 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
6534e680
BH
648 /*
649 * First calculate the timeout max according to timeout field
650 * of struct cfi_ident that probed from chip's CFI aera, if
651 * available. Specify a minimum of 2000us, in case the CFI data
652 * is wrong.
653 */
654 if (cfi->cfiq->BufWriteTimeoutTyp &&
655 cfi->cfiq->BufWriteTimeoutMax)
656 cfi->chips[i].buffer_write_time_max =
657 1 << (cfi->cfiq->BufWriteTimeoutTyp +
658 cfi->cfiq->BufWriteTimeoutMax);
659 else
660 cfi->chips[i].buffer_write_time_max = 0;
661
662 cfi->chips[i].buffer_write_time_max =
663 max(cfi->chips[i].buffer_write_time_max, 2000);
664
83d48091
VS
665 cfi->chips[i].ref_point_counter = 0;
666 init_waitqueue_head(&(cfi->chips[i].wq));
1f948b43
TG
667 }
668
1da177e4 669 map->fldrv = &cfi_amdstd_chipdrv;
1f948b43 670
1da177e4
LT
671 return cfi_amdstd_setup(mtd);
672}
80461128 673struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
1e804cec 674struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
83ea4ef2 675EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
80461128 676EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
1e804cec 677EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
1da177e4
LT
678
679static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
680{
681 struct map_info *map = mtd->priv;
682 struct cfi_private *cfi = map->fldrv_priv;
683 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
684 unsigned long offset = 0;
685 int i,j;
686
1f948b43 687 printk(KERN_NOTICE "number of %s chips: %d\n",
1da177e4 688 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
1f948b43 689 /* Select the correct geometry setup */
1da177e4
LT
690 mtd->size = devsize * cfi->numchips;
691
692 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
693 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
694 * mtd->numeraseregions, GFP_KERNEL);
5c8b1fbb 695 if (!mtd->eraseregions)
1da177e4 696 goto setup_err;
1f948b43 697
1da177e4
LT
698 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
699 unsigned long ernum, ersize;
700 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
701 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
1f948b43 702
1da177e4
LT
703 if (mtd->erasesize < ersize) {
704 mtd->erasesize = ersize;
705 }
706 for (j=0; j<cfi->numchips; j++) {
707 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
708 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
709 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
710 }
711 offset += (ersize * ernum);
712 }
713 if (offset != devsize) {
714 /* Argh */
715 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
716 goto setup_err;
717 }
1da177e4 718
1da177e4 719 __module_get(THIS_MODULE);
eafe1311 720 register_reboot_notifier(&mtd->reboot_notifier);
1da177e4
LT
721 return mtd;
722
723 setup_err:
17fabf15
JS
724 kfree(mtd->eraseregions);
725 kfree(mtd);
1da177e4
LT
726 kfree(cfi->cmdset_priv);
727 kfree(cfi->cfiq);
728 return NULL;
729}
730
731/*
732 * Return true if the chip is ready.
733 *
734 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
735 * non-suspended sector) and is indicated by no toggle bits toggling.
736 *
737 * Note that anything more complicated than checking if no bits are toggling
738 * (including checking DQ5 for an error status) is tricky to get working
25985edc
LDM
739 * correctly and is therefore not done (particularly with interleaved chips
740 * as each chip must be checked independently of the others).
1da177e4 741 */
02b15e34 742static int __xipram chip_ready(struct map_info *map, unsigned long addr)
1da177e4
LT
743{
744 map_word d, t;
745
746 d = map_read(map, addr);
747 t = map_read(map, addr);
748
749 return map_word_equal(map, d, t);
750}
751
fb4a90bf
EB
752/*
753 * Return true if the chip is ready and has the correct value.
754 *
755 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
756 * non-suspended sector) and it is indicated by no bits toggling.
757 *
758 * Error are indicated by toggling bits or bits held with the wrong value,
759 * or with bits toggling.
760 *
761 * Note that anything more complicated than checking if no bits are toggling
762 * (including checking DQ5 for an error status) is tricky to get working
25985edc
LDM
763 * correctly and is therefore not done (particularly with interleaved chips
764 * as each chip must be checked independently of the others).
fb4a90bf
EB
765 *
766 */
02b15e34 767static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
fb4a90bf
EB
768{
769 map_word oldd, curd;
770
771 oldd = map_read(map, addr);
772 curd = map_read(map, addr);
773
1f948b43 774 return map_word_equal(map, oldd, curd) &&
fb4a90bf
EB
775 map_word_equal(map, curd, expected);
776}
777
1da177e4
LT
778static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
779{
780 DECLARE_WAITQUEUE(wait, current);
781 struct cfi_private *cfi = map->fldrv_priv;
782 unsigned long timeo;
783 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
784
785 resettime:
786 timeo = jiffies + HZ;
787 retry:
788 switch (chip->state) {
789
790 case FL_STATUS:
791 for (;;) {
792 if (chip_ready(map, adr))
793 break;
794
795 if (time_after(jiffies, timeo)) {
796 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
1da177e4
LT
797 return -EIO;
798 }
c4e77376 799 mutex_unlock(&chip->mutex);
1da177e4 800 cfi_udelay(1);
c4e77376 801 mutex_lock(&chip->mutex);
1da177e4
LT
802 /* Someone else might have been playing with it. */
803 goto retry;
804 }
1f948b43 805
1da177e4
LT
806 case FL_READY:
807 case FL_CFI_QUERY:
808 case FL_JEDEC_QUERY:
809 return 0;
810
811 case FL_ERASING:
2695eab9
JT
812 if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
813 !(mode == FL_READY || mode == FL_POINT ||
814 (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
1da177e4
LT
815 goto sleep;
816
817 /* We could check to see if we're trying to access the sector
818 * that is currently being erased. However, no user will try
819 * anything like that so we just wait for the timeout. */
820
821 /* Erase suspend */
822 /* It's harmless to issue the Erase-Suspend and Erase-Resume
823 * commands when the erase algorithm isn't in progress. */
824 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
825 chip->oldstate = FL_ERASING;
826 chip->state = FL_ERASE_SUSPENDING;
827 chip->erase_suspended = 1;
828 for (;;) {
829 if (chip_ready(map, adr))
830 break;
831
832 if (time_after(jiffies, timeo)) {
833 /* Should have suspended the erase by now.
834 * Send an Erase-Resume command as either
835 * there was an error (so leave the erase
836 * routine to recover from it) or we trying to
837 * use the erase-in-progress sector. */
100f2341 838 put_chip(map, chip, adr);
1da177e4
LT
839 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
840 return -EIO;
841 }
1f948b43 842
c4e77376 843 mutex_unlock(&chip->mutex);
1da177e4 844 cfi_udelay(1);
c4e77376 845 mutex_lock(&chip->mutex);
1da177e4
LT
846 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
847 So we can just loop here. */
848 }
849 chip->state = FL_READY;
850 return 0;
851
02b15e34
TP
852 case FL_XIP_WHILE_ERASING:
853 if (mode != FL_READY && mode != FL_POINT &&
854 (!cfip || !(cfip->EraseSuspend&2)))
855 goto sleep;
856 chip->oldstate = chip->state;
857 chip->state = FL_READY;
858 return 0;
859
eafe1311
KC
860 case FL_SHUTDOWN:
861 /* The machine is rebooting */
862 return -EIO;
863
1da177e4
LT
864 case FL_POINT:
865 /* Only if there's no operation suspended... */
866 if (mode == FL_READY && chip->oldstate == FL_READY)
867 return 0;
868
869 default:
870 sleep:
871 set_current_state(TASK_UNINTERRUPTIBLE);
872 add_wait_queue(&chip->wq, &wait);
c4e77376 873 mutex_unlock(&chip->mutex);
1da177e4
LT
874 schedule();
875 remove_wait_queue(&chip->wq, &wait);
c4e77376 876 mutex_lock(&chip->mutex);
1da177e4
LT
877 goto resettime;
878 }
879}
880
881
882static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
883{
884 struct cfi_private *cfi = map->fldrv_priv;
885
886 switch(chip->oldstate) {
887 case FL_ERASING:
42096288
GF
888 cfi_fixup_m29ew_erase_suspend(map,
889 chip->in_progress_block_addr);
08968041 890 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
42096288 891 cfi_fixup_m29ew_delay_after_resume(cfi);
1da177e4
LT
892 chip->oldstate = FL_READY;
893 chip->state = FL_ERASING;
894 break;
895
02b15e34
TP
896 case FL_XIP_WHILE_ERASING:
897 chip->state = chip->oldstate;
898 chip->oldstate = FL_READY;
899 break;
900
1da177e4
LT
901 case FL_READY:
902 case FL_STATUS:
1da177e4
LT
903 break;
904 default:
905 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
906 }
907 wake_up(&chip->wq);
908}
909
02b15e34
TP
910#ifdef CONFIG_MTD_XIP
911
912/*
913 * No interrupt what so ever can be serviced while the flash isn't in array
914 * mode. This is ensured by the xip_disable() and xip_enable() functions
915 * enclosing any code path where the flash is known not to be in array mode.
916 * And within a XIP disabled code path, only functions marked with __xipram
917 * may be called and nothing else (it's a good thing to inspect generated
918 * assembly to make sure inline functions were actually inlined and that gcc
919 * didn't emit calls to its own support functions). Also configuring MTD CFI
920 * support to a single buswidth and a single interleave is also recommended.
921 */
f8eb321b 922
02b15e34
TP
923static void xip_disable(struct map_info *map, struct flchip *chip,
924 unsigned long adr)
925{
926 /* TODO: chips with no XIP use should ignore and return */
927 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
928 local_irq_disable();
929}
930
931static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
932 unsigned long adr)
933{
934 struct cfi_private *cfi = map->fldrv_priv;
935
936 if (chip->state != FL_POINT && chip->state != FL_READY) {
937 map_write(map, CMD(0xf0), adr);
938 chip->state = FL_READY;
939 }
940 (void) map_read(map, adr);
97f927a4 941 xip_iprefetch();
02b15e34
TP
942 local_irq_enable();
943}
944
945/*
946 * When a delay is required for the flash operation to complete, the
947 * xip_udelay() function is polling for both the given timeout and pending
948 * (but still masked) hardware interrupts. Whenever there is an interrupt
1f948b43 949 * pending then the flash erase operation is suspended, array mode restored
02b15e34
TP
950 * and interrupts unmasked. Task scheduling might also happen at that
951 * point. The CPU eventually returns from the interrupt or the call to
952 * schedule() and the suspended flash operation is resumed for the remaining
953 * of the delay period.
954 *
955 * Warning: this function _will_ fool interrupt latency tracing tools.
956 */
957
958static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
959 unsigned long adr, int usec)
960{
961 struct cfi_private *cfi = map->fldrv_priv;
962 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
963 map_word status, OK = CMD(0x80);
964 unsigned long suspended, start = xip_currtime();
965 flstate_t oldstate;
966
967 do {
968 cpu_relax();
969 if (xip_irqpending() && extp &&
970 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
971 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
972 /*
1f948b43
TG
973 * Let's suspend the erase operation when supported.
974 * Note that we currently don't try to suspend
975 * interleaved chips if there is already another
02b15e34
TP
976 * operation suspended (imagine what happens
977 * when one chip was already done with the current
978 * operation while another chip suspended it, then
979 * we resume the whole thing at once). Yes, it
980 * can happen!
981 */
982 map_write(map, CMD(0xb0), adr);
983 usec -= xip_elapsed_since(start);
984 suspended = xip_currtime();
985 do {
986 if (xip_elapsed_since(suspended) > 100000) {
987 /*
988 * The chip doesn't want to suspend
989 * after waiting for 100 msecs.
990 * This is a critical error but there
991 * is not much we can do here.
992 */
993 return;
994 }
995 status = map_read(map, adr);
996 } while (!map_word_andequal(map, status, OK, OK));
997
998 /* Suspend succeeded */
999 oldstate = chip->state;
1000 if (!map_word_bitsset(map, status, CMD(0x40)))
1001 break;
1002 chip->state = FL_XIP_WHILE_ERASING;
1003 chip->erase_suspended = 1;
1004 map_write(map, CMD(0xf0), adr);
1005 (void) map_read(map, adr);
ca5c23c3 1006 xip_iprefetch();
02b15e34 1007 local_irq_enable();
c4e77376 1008 mutex_unlock(&chip->mutex);
ca5c23c3 1009 xip_iprefetch();
02b15e34
TP
1010 cond_resched();
1011
1012 /*
1013 * We're back. However someone else might have
1014 * decided to go write to the chip if we are in
1015 * a suspended erase state. If so let's wait
1016 * until it's done.
1017 */
c4e77376 1018 mutex_lock(&chip->mutex);
02b15e34
TP
1019 while (chip->state != FL_XIP_WHILE_ERASING) {
1020 DECLARE_WAITQUEUE(wait, current);
1021 set_current_state(TASK_UNINTERRUPTIBLE);
1022 add_wait_queue(&chip->wq, &wait);
c4e77376 1023 mutex_unlock(&chip->mutex);
02b15e34
TP
1024 schedule();
1025 remove_wait_queue(&chip->wq, &wait);
c4e77376 1026 mutex_lock(&chip->mutex);
02b15e34
TP
1027 }
1028 /* Disallow XIP again */
1029 local_irq_disable();
1030
42096288
GF
1031 /* Correct Erase Suspend Hangups for M29EW */
1032 cfi_fixup_m29ew_erase_suspend(map, adr);
02b15e34 1033 /* Resume the write or erase operation */
08968041 1034 map_write(map, cfi->sector_erase_cmd, adr);
02b15e34
TP
1035 chip->state = oldstate;
1036 start = xip_currtime();
1037 } else if (usec >= 1000000/HZ) {
1038 /*
1039 * Try to save on CPU power when waiting delay
1040 * is at least a system timer tick period.
1041 * No need to be extremely accurate here.
1042 */
1043 xip_cpu_idle();
1044 }
1045 status = map_read(map, adr);
1046 } while (!map_word_andequal(map, status, OK, OK)
1047 && xip_elapsed_since(start) < usec);
1048}
1049
1050#define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
1051
1052/*
1053 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1054 * the flash is actively programming or erasing since we have to poll for
1055 * the operation to complete anyway. We can't do that in a generic way with
1056 * a XIP setup so do it before the actual flash operation in this case
1057 * and stub it out from INVALIDATE_CACHE_UDELAY.
1058 */
1059#define XIP_INVAL_CACHED_RANGE(map, from, size) \
1060 INVALIDATE_CACHED_RANGE(map, from, size)
1061
1062#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1063 UDELAY(map, chip, adr, usec)
1064
1065/*
1066 * Extra notes:
1067 *
1068 * Activating this XIP support changes the way the code works a bit. For
1069 * example the code to suspend the current process when concurrent access
1070 * happens is never executed because xip_udelay() will always return with the
1071 * same chip state as it was entered with. This is why there is no care for
1072 * the presence of add_wait_queue() or schedule() calls from within a couple
1073 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
1074 * The queueing and scheduling are always happening within xip_udelay().
1075 *
1076 * Similarly, get_chip() and put_chip() just happen to always be executed
1077 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1078 * is in array mode, therefore never executing many cases therein and not
1079 * causing any problem with XIP.
1080 */
1081
1082#else
1083
1084#define xip_disable(map, chip, adr)
1085#define xip_enable(map, chip, adr)
1086#define XIP_INVAL_CACHED_RANGE(x...)
1087
1088#define UDELAY(map, chip, adr, usec) \
1089do { \
c4e77376 1090 mutex_unlock(&chip->mutex); \
02b15e34 1091 cfi_udelay(usec); \
c4e77376 1092 mutex_lock(&chip->mutex); \
02b15e34
TP
1093} while (0)
1094
1095#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1096do { \
c4e77376 1097 mutex_unlock(&chip->mutex); \
02b15e34
TP
1098 INVALIDATE_CACHED_RANGE(map, adr, len); \
1099 cfi_udelay(usec); \
c4e77376 1100 mutex_lock(&chip->mutex); \
02b15e34
TP
1101} while (0)
1102
1103#endif
1da177e4
LT
1104
1105static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1106{
1107 unsigned long cmd_addr;
1108 struct cfi_private *cfi = map->fldrv_priv;
1109 int ret;
1110
1111 adr += chip->start;
1112
1f948b43
TG
1113 /* Ensure cmd read/writes are aligned. */
1114 cmd_addr = adr & ~(map_bankwidth(map)-1);
1da177e4 1115
c4e77376 1116 mutex_lock(&chip->mutex);
1da177e4
LT
1117 ret = get_chip(map, chip, cmd_addr, FL_READY);
1118 if (ret) {
c4e77376 1119 mutex_unlock(&chip->mutex);
1da177e4
LT
1120 return ret;
1121 }
1122
1123 if (chip->state != FL_POINT && chip->state != FL_READY) {
1124 map_write(map, CMD(0xf0), cmd_addr);
1125 chip->state = FL_READY;
1126 }
1127
1128 map_copy_from(map, buf, adr, len);
1129
1130 put_chip(map, chip, cmd_addr);
1131
c4e77376 1132 mutex_unlock(&chip->mutex);
1da177e4
LT
1133 return 0;
1134}
1135
1136
1137static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1138{
1139 struct map_info *map = mtd->priv;
1140 struct cfi_private *cfi = map->fldrv_priv;
1141 unsigned long ofs;
1142 int chipnum;
1143 int ret = 0;
1144
1145 /* ofs: offset within the first chip that the first read should start */
1da177e4
LT
1146 chipnum = (from >> cfi->chipshift);
1147 ofs = from - (chipnum << cfi->chipshift);
1148
1da177e4
LT
1149 while (len) {
1150 unsigned long thislen;
1151
1152 if (chipnum >= cfi->numchips)
1153 break;
1154
1155 if ((len + ofs -1) >> cfi->chipshift)
1156 thislen = (1<<cfi->chipshift) - ofs;
1157 else
1158 thislen = len;
1159
1160 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1161 if (ret)
1162 break;
1163
1164 *retlen += thislen;
1165 len -= thislen;
1166 buf += thislen;
1167
1168 ofs = 0;
1169 chipnum++;
1170 }
1171 return ret;
1172}
1173
dc7e9ecd 1174typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
4f5cb243 1175 loff_t adr, size_t len, u_char *buf, size_t grouplen);
1da177e4 1176
feb86779
CR
1177static inline void otp_enter(struct map_info *map, struct flchip *chip,
1178 loff_t adr, size_t len)
1179{
1180 struct cfi_private *cfi = map->fldrv_priv;
1181
1182 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1183 cfi->device_type, NULL);
1184 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1185 cfi->device_type, NULL);
1186 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1187 cfi->device_type, NULL);
1188
1189 INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1190}
1191
1192static inline void otp_exit(struct map_info *map, struct flchip *chip,
1193 loff_t adr, size_t len)
1194{
1195 struct cfi_private *cfi = map->fldrv_priv;
1196
1197 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1198 cfi->device_type, NULL);
1199 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1200 cfi->device_type, NULL);
1201 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1202 cfi->device_type, NULL);
1203 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1204 cfi->device_type, NULL);
1205
1206 INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1207}
1208
4f5cb243
CR
1209static inline int do_read_secsi_onechip(struct map_info *map,
1210 struct flchip *chip, loff_t adr,
1211 size_t len, u_char *buf,
1212 size_t grouplen)
1da177e4
LT
1213{
1214 DECLARE_WAITQUEUE(wait, current);
1215 unsigned long timeo = jiffies + HZ;
1da177e4
LT
1216
1217 retry:
c4e77376 1218 mutex_lock(&chip->mutex);
1da177e4
LT
1219
1220 if (chip->state != FL_READY){
1da177e4
LT
1221 set_current_state(TASK_UNINTERRUPTIBLE);
1222 add_wait_queue(&chip->wq, &wait);
1f948b43 1223
c4e77376 1224 mutex_unlock(&chip->mutex);
1da177e4
LT
1225
1226 schedule();
1227 remove_wait_queue(&chip->wq, &wait);
1da177e4
LT
1228 timeo = jiffies + HZ;
1229
1230 goto retry;
1f948b43 1231 }
1da177e4
LT
1232
1233 adr += chip->start;
1234
1235 chip->state = FL_READY;
1236
feb86779 1237 otp_enter(map, chip, adr, len);
1da177e4 1238 map_copy_from(map, buf, adr, len);
feb86779 1239 otp_exit(map, chip, adr, len);
1f948b43 1240
1da177e4 1241 wake_up(&chip->wq);
c4e77376 1242 mutex_unlock(&chip->mutex);
1da177e4
LT
1243
1244 return 0;
1245}
1246
1247static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1248{
1249 struct map_info *map = mtd->priv;
1250 struct cfi_private *cfi = map->fldrv_priv;
1251 unsigned long ofs;
1252 int chipnum;
1253 int ret = 0;
1254
1da177e4 1255 /* ofs: offset within the first chip that the first read should start */
1da177e4
LT
1256 /* 8 secsi bytes per chip */
1257 chipnum=from>>3;
1258 ofs=from & 7;
1259
1da177e4
LT
1260 while (len) {
1261 unsigned long thislen;
1262
1263 if (chipnum >= cfi->numchips)
1264 break;
1265
1266 if ((len + ofs -1) >> 3)
1267 thislen = (1<<3) - ofs;
1268 else
1269 thislen = len;
1270
4f5cb243
CR
1271 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1272 thislen, buf, 0);
1da177e4
LT
1273 if (ret)
1274 break;
1275
1276 *retlen += thislen;
1277 len -= thislen;
1278 buf += thislen;
1279
1280 ofs = 0;
1281 chipnum++;
1282 }
1283 return ret;
1284}
1285
af744750
CR
1286static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1287 unsigned long adr, map_word datum,
1288 int mode);
1289
1290static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
4f5cb243 1291 size_t len, u_char *buf, size_t grouplen)
af744750
CR
1292{
1293 int ret;
1294 while (len) {
1295 unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1296 int gap = adr - bus_ofs;
1297 int n = min_t(int, len, map_bankwidth(map) - gap);
1298 map_word datum;
1299
1300 if (n != map_bankwidth(map)) {
1301 /* partial write of a word, load old contents */
1302 otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1303 datum = map_read(map, bus_ofs);
1304 otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1305 }
1306
1307 datum = map_word_load_partial(map, datum, buf, gap, n);
1308 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1309 if (ret)
1310 return ret;
1311
1312 adr += n;
1313 buf += n;
1314 len -= n;
1315 }
1316
1317 return 0;
1318}
1319
4f5cb243
CR
1320static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1321 size_t len, u_char *buf, size_t grouplen)
1322{
1323 struct cfi_private *cfi = map->fldrv_priv;
1324 uint8_t lockreg;
1325 unsigned long timeo;
1326 int ret;
1327
1328 /* make sure area matches group boundaries */
1329 if ((adr != 0) || (len != grouplen))
1330 return -EINVAL;
1331
1332 mutex_lock(&chip->mutex);
1333 ret = get_chip(map, chip, chip->start, FL_LOCKING);
1334 if (ret) {
1335 mutex_unlock(&chip->mutex);
1336 return ret;
1337 }
1338 chip->state = FL_LOCKING;
1339
1340 /* Enter lock register command */
1341 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1342 cfi->device_type, NULL);
1343 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1344 cfi->device_type, NULL);
1345 cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1346 cfi->device_type, NULL);
1347
1348 /* read lock register */
1349 lockreg = cfi_read_query(map, 0);
1350
1351 /* set bit 0 to protect extended memory block */
1352 lockreg &= ~0x01;
1353
1354 /* set bit 0 to protect extended memory block */
1355 /* write lock register */
1356 map_write(map, CMD(0xA0), chip->start);
1357 map_write(map, CMD(lockreg), chip->start);
1358
1359 /* wait for chip to become ready */
1360 timeo = jiffies + msecs_to_jiffies(2);
1361 for (;;) {
1362 if (chip_ready(map, adr))
1363 break;
1364
1365 if (time_after(jiffies, timeo)) {
1366 pr_err("Waiting for chip to be ready timed out.\n");
1367 ret = -EIO;
1368 break;
1369 }
1370 UDELAY(map, chip, 0, 1);
1371 }
1372
1373 /* exit protection commands */
1374 map_write(map, CMD(0x90), chip->start);
1375 map_write(map, CMD(0x00), chip->start);
1376
1377 chip->state = FL_READY;
1378 put_chip(map, chip, chip->start);
1379 mutex_unlock(&chip->mutex);
1380
1381 return ret;
1382}
1383
dc7e9ecd
CR
1384static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1385 size_t *retlen, u_char *buf,
1386 otp_op_t action, int user_regs)
1387{
1388 struct map_info *map = mtd->priv;
1389 struct cfi_private *cfi = map->fldrv_priv;
1390 int ofs_factor = cfi->interleave * cfi->device_type;
1391 unsigned long base;
1392 int chipnum;
1393 struct flchip *chip;
1394 uint8_t otp, lockreg;
1395 int ret;
1396
1397 size_t user_size, factory_size, otpsize;
1398 loff_t user_offset, factory_offset, otpoffset;
1399 int user_locked = 0, otplocked;
1400
1401 *retlen = 0;
1402
1403 for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1404 chip = &cfi->chips[chipnum];
1405 factory_size = 0;
1406 user_size = 0;
1407
1408 /* Micron M29EW family */
1409 if (is_m29ew(cfi)) {
1410 base = chip->start;
1411
1412 /* check whether secsi area is factory locked
1413 or user lockable */
1414 mutex_lock(&chip->mutex);
1415 ret = get_chip(map, chip, base, FL_CFI_QUERY);
1416 if (ret) {
1417 mutex_unlock(&chip->mutex);
1418 return ret;
1419 }
1420 cfi_qry_mode_on(base, map, cfi);
1421 otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1422 cfi_qry_mode_off(base, map, cfi);
1423 put_chip(map, chip, base);
1424 mutex_unlock(&chip->mutex);
1425
1426 if (otp & 0x80) {
1427 /* factory locked */
1428 factory_offset = 0;
1429 factory_size = 0x100;
1430 } else {
1431 /* customer lockable */
1432 user_offset = 0;
1433 user_size = 0x100;
1434
1435 mutex_lock(&chip->mutex);
1436 ret = get_chip(map, chip, base, FL_LOCKING);
5d20bad1
BN
1437 if (ret) {
1438 mutex_unlock(&chip->mutex);
1439 return ret;
1440 }
dc7e9ecd
CR
1441
1442 /* Enter lock register command */
1443 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1444 chip->start, map, cfi,
1445 cfi->device_type, NULL);
1446 cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1447 chip->start, map, cfi,
1448 cfi->device_type, NULL);
1449 cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1450 chip->start, map, cfi,
1451 cfi->device_type, NULL);
1452 /* read lock register */
1453 lockreg = cfi_read_query(map, 0);
1454 /* exit protection commands */
1455 map_write(map, CMD(0x90), chip->start);
1456 map_write(map, CMD(0x00), chip->start);
1457 put_chip(map, chip, chip->start);
1458 mutex_unlock(&chip->mutex);
1459
1460 user_locked = ((lockreg & 0x01) == 0x00);
1461 }
1462 }
1463
1464 otpsize = user_regs ? user_size : factory_size;
1465 if (!otpsize)
1466 continue;
1467 otpoffset = user_regs ? user_offset : factory_offset;
1468 otplocked = user_regs ? user_locked : 1;
1469
1470 if (!action) {
1471 /* return otpinfo */
1472 struct otp_info *otpinfo;
1473 len -= sizeof(*otpinfo);
1474 if (len <= 0)
1475 return -ENOSPC;
1476 otpinfo = (struct otp_info *)buf;
1477 otpinfo->start = from;
1478 otpinfo->length = otpsize;
1479 otpinfo->locked = otplocked;
1480 buf += sizeof(*otpinfo);
1481 *retlen += sizeof(*otpinfo);
1482 from += otpsize;
1483 } else if ((from < otpsize) && (len > 0)) {
1484 size_t size;
1485 size = (len < otpsize - from) ? len : otpsize - from;
4f5cb243
CR
1486 ret = action(map, chip, otpoffset + from, size, buf,
1487 otpsize);
dc7e9ecd
CR
1488 if (ret < 0)
1489 return ret;
1490
1491 buf += size;
1492 len -= size;
1493 *retlen += size;
1494 from = 0;
1495 } else {
1496 from -= otpsize;
1497 }
1498 }
1499 return 0;
1500}
1501
1502static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1503 size_t *retlen, struct otp_info *buf)
1504{
1505 return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1506 NULL, 0);
1507}
1508
1509static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1510 size_t *retlen, struct otp_info *buf)
1511{
1512 return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1513 NULL, 1);
1514}
1515
1516static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1517 size_t len, size_t *retlen,
1518 u_char *buf)
1519{
1520 return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1521 buf, do_read_secsi_onechip, 0);
1522}
1523
1524static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1525 size_t len, size_t *retlen,
1526 u_char *buf)
1527{
1528 return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1529 buf, do_read_secsi_onechip, 1);
1530}
1da177e4 1531
af744750
CR
1532static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1533 size_t len, size_t *retlen,
1534 u_char *buf)
1535{
1536 return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1537 do_otp_write, 1);
1538}
1539
4f5cb243
CR
1540static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1541 size_t len)
1542{
1543 size_t retlen;
1544 return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1545 do_otp_lock, 1);
1546}
1547
af744750
CR
1548static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1549 unsigned long adr, map_word datum,
1550 int mode)
1da177e4
LT
1551{
1552 struct cfi_private *cfi = map->fldrv_priv;
1553 unsigned long timeo = jiffies + HZ;
1554 /*
1555 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1556 * have a max write time of a few hundreds usec). However, we should
1557 * use the maximum timeout value given by the chip at probe time
1558 * instead. Unfortunately, struct flchip does have a field for
1559 * maximum timeout, only for typical which can be far too short
1560 * depending of the conditions. The ' + 1' is to avoid having a
1561 * timeout of 0 jiffies if HZ is smaller than 1000.
1562 */
1563 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1564 int ret = 0;
1565 map_word oldd;
1566 int retry_cnt = 0;
1567
1568 adr += chip->start;
1569
c4e77376 1570 mutex_lock(&chip->mutex);
af744750 1571 ret = get_chip(map, chip, adr, mode);
1da177e4 1572 if (ret) {
c4e77376 1573 mutex_unlock(&chip->mutex);
1da177e4
LT
1574 return ret;
1575 }
1576
289c0522 1577 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1da177e4
LT
1578 __func__, adr, datum.x[0] );
1579
af744750
CR
1580 if (mode == FL_OTP_WRITE)
1581 otp_enter(map, chip, adr, map_bankwidth(map));
1582
1da177e4
LT
1583 /*
1584 * Check for a NOP for the case when the datum to write is already
1585 * present - it saves time and works around buggy chips that corrupt
1586 * data at other locations when 0xff is written to a location that
1587 * already contains 0xff.
1588 */
1589 oldd = map_read(map, adr);
1590 if (map_word_equal(map, oldd, datum)) {
289c0522 1591 pr_debug("MTD %s(): NOP\n",
1da177e4
LT
1592 __func__);
1593 goto op_done;
1594 }
1595
02b15e34 1596 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1da177e4 1597 ENABLE_VPP(map);
02b15e34 1598 xip_disable(map, chip, adr);
af744750 1599
1da177e4
LT
1600 retry:
1601 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1602 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1603 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1604 map_write(map, datum, adr);
af744750 1605 chip->state = mode;
1da177e4 1606
02b15e34
TP
1607 INVALIDATE_CACHE_UDELAY(map, chip,
1608 adr, map_bankwidth(map),
1609 chip->word_write_time);
1da177e4
LT
1610
1611 /* See comment above for timeout value. */
1f948b43 1612 timeo = jiffies + uWriteTimeout;
1da177e4 1613 for (;;) {
af744750 1614 if (chip->state != mode) {
1da177e4
LT
1615 /* Someone's suspended the write. Sleep */
1616 DECLARE_WAITQUEUE(wait, current);
1617
1618 set_current_state(TASK_UNINTERRUPTIBLE);
1619 add_wait_queue(&chip->wq, &wait);
c4e77376 1620 mutex_unlock(&chip->mutex);
1da177e4
LT
1621 schedule();
1622 remove_wait_queue(&chip->wq, &wait);
1623 timeo = jiffies + (HZ / 2); /* FIXME */
c4e77376 1624 mutex_lock(&chip->mutex);
1da177e4
LT
1625 continue;
1626 }
1627
b95f9609 1628 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
02b15e34 1629 xip_enable(map, chip, adr);
fb4a90bf 1630 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
02b15e34 1631 xip_disable(map, chip, adr);
b95f9609 1632 break;
fb4a90bf 1633 }
1da177e4 1634
b95f9609
KB
1635 if (chip_ready(map, adr))
1636 break;
1637
1da177e4 1638 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 1639 UDELAY(map, chip, adr, 1);
1da177e4 1640 }
fb4a90bf
EB
1641 /* Did we succeed? */
1642 if (!chip_good(map, adr, datum)) {
1643 /* reset on all failures. */
1644 map_write( map, CMD(0xF0), chip->start );
1645 /* FIXME - should have reset delay before continuing */
1da177e4 1646
1f948b43 1647 if (++retry_cnt <= MAX_WORD_RETRIES)
fb4a90bf 1648 goto retry;
1da177e4 1649
fb4a90bf
EB
1650 ret = -EIO;
1651 }
02b15e34 1652 xip_enable(map, chip, adr);
1da177e4 1653 op_done:
af744750
CR
1654 if (mode == FL_OTP_WRITE)
1655 otp_exit(map, chip, adr, map_bankwidth(map));
1da177e4 1656 chip->state = FL_READY;
e7d9377e 1657 DISABLE_VPP(map);
1da177e4 1658 put_chip(map, chip, adr);
c4e77376 1659 mutex_unlock(&chip->mutex);
1da177e4
LT
1660
1661 return ret;
1662}
1663
1664
1665static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1666 size_t *retlen, const u_char *buf)
1667{
1668 struct map_info *map = mtd->priv;
1669 struct cfi_private *cfi = map->fldrv_priv;
1670 int ret = 0;
1671 int chipnum;
1672 unsigned long ofs, chipstart;
1673 DECLARE_WAITQUEUE(wait, current);
1674
1da177e4
LT
1675 chipnum = to >> cfi->chipshift;
1676 ofs = to - (chipnum << cfi->chipshift);
1677 chipstart = cfi->chips[chipnum].start;
1678
1679 /* If it's not bus-aligned, do the first byte write */
1680 if (ofs & (map_bankwidth(map)-1)) {
1681 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1682 int i = ofs - bus_ofs;
1683 int n = 0;
1684 map_word tmp_buf;
1685
1686 retry:
c4e77376 1687 mutex_lock(&cfi->chips[chipnum].mutex);
1da177e4
LT
1688
1689 if (cfi->chips[chipnum].state != FL_READY) {
1da177e4
LT
1690 set_current_state(TASK_UNINTERRUPTIBLE);
1691 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1692
c4e77376 1693 mutex_unlock(&cfi->chips[chipnum].mutex);
1da177e4
LT
1694
1695 schedule();
1696 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1da177e4
LT
1697 goto retry;
1698 }
1699
1700 /* Load 'tmp_buf' with old contents of flash */
1701 tmp_buf = map_read(map, bus_ofs+chipstart);
1702
c4e77376 1703 mutex_unlock(&cfi->chips[chipnum].mutex);
1da177e4
LT
1704
1705 /* Number of bytes to copy from buffer */
1706 n = min_t(int, len, map_bankwidth(map)-i);
1f948b43 1707
1da177e4
LT
1708 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1709
1f948b43 1710 ret = do_write_oneword(map, &cfi->chips[chipnum],
af744750 1711 bus_ofs, tmp_buf, FL_WRITING);
1f948b43 1712 if (ret)
1da177e4 1713 return ret;
1f948b43 1714
1da177e4
LT
1715 ofs += n;
1716 buf += n;
1717 (*retlen) += n;
1718 len -= n;
1719
1720 if (ofs >> cfi->chipshift) {
1f948b43 1721 chipnum ++;
1da177e4
LT
1722 ofs = 0;
1723 if (chipnum == cfi->numchips)
1724 return 0;
1725 }
1726 }
1f948b43 1727
1da177e4
LT
1728 /* We are now aligned, write as much as possible */
1729 while(len >= map_bankwidth(map)) {
1730 map_word datum;
1731
1732 datum = map_word_load(map, buf);
1733
1734 ret = do_write_oneword(map, &cfi->chips[chipnum],
af744750 1735 ofs, datum, FL_WRITING);
1da177e4
LT
1736 if (ret)
1737 return ret;
1738
1739 ofs += map_bankwidth(map);
1740 buf += map_bankwidth(map);
1741 (*retlen) += map_bankwidth(map);
1742 len -= map_bankwidth(map);
1743
1744 if (ofs >> cfi->chipshift) {
1f948b43 1745 chipnum ++;
1da177e4
LT
1746 ofs = 0;
1747 if (chipnum == cfi->numchips)
1748 return 0;
1749 chipstart = cfi->chips[chipnum].start;
1750 }
1751 }
1752
1753 /* Write the trailing bytes if any */
1754 if (len & (map_bankwidth(map)-1)) {
1755 map_word tmp_buf;
1756
1757 retry1:
c4e77376 1758 mutex_lock(&cfi->chips[chipnum].mutex);
1da177e4
LT
1759
1760 if (cfi->chips[chipnum].state != FL_READY) {
1da177e4
LT
1761 set_current_state(TASK_UNINTERRUPTIBLE);
1762 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1763
c4e77376 1764 mutex_unlock(&cfi->chips[chipnum].mutex);
1da177e4
LT
1765
1766 schedule();
1767 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1da177e4
LT
1768 goto retry1;
1769 }
1770
1771 tmp_buf = map_read(map, ofs + chipstart);
1772
c4e77376 1773 mutex_unlock(&cfi->chips[chipnum].mutex);
1da177e4
LT
1774
1775 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1f948b43
TG
1776
1777 ret = do_write_oneword(map, &cfi->chips[chipnum],
af744750 1778 ofs, tmp_buf, FL_WRITING);
1f948b43 1779 if (ret)
1da177e4 1780 return ret;
1f948b43 1781
1da177e4
LT
1782 (*retlen) += len;
1783 }
1784
1785 return 0;
1786}
1787
1788
1789/*
1790 * FIXME: interleaved mode not tested, and probably not supported!
1791 */
02b15e34 1792static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1f948b43 1793 unsigned long adr, const u_char *buf,
02b15e34 1794 int len)
1da177e4
LT
1795{
1796 struct cfi_private *cfi = map->fldrv_priv;
1797 unsigned long timeo = jiffies + HZ;
6534e680
BH
1798 /*
1799 * Timeout is calculated according to CFI data, if available.
1800 * See more comments in cfi_cmdset_0002().
1801 */
1802 unsigned long uWriteTimeout =
1803 usecs_to_jiffies(chip->buffer_write_time_max);
1da177e4
LT
1804 int ret = -EIO;
1805 unsigned long cmd_adr;
1806 int z, words;
1807 map_word datum;
1808
1809 adr += chip->start;
1810 cmd_adr = adr;
1811
c4e77376 1812 mutex_lock(&chip->mutex);
1da177e4
LT
1813 ret = get_chip(map, chip, adr, FL_WRITING);
1814 if (ret) {
c4e77376 1815 mutex_unlock(&chip->mutex);
1da177e4
LT
1816 return ret;
1817 }
1818
1819 datum = map_word_load(map, buf);
1820
289c0522 1821 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1da177e4
LT
1822 __func__, adr, datum.x[0] );
1823
02b15e34 1824 XIP_INVAL_CACHED_RANGE(map, adr, len);
1da177e4 1825 ENABLE_VPP(map);
02b15e34 1826 xip_disable(map, chip, cmd_adr);
1f948b43 1827
1da177e4
LT
1828 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1829 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1da177e4
LT
1830
1831 /* Write Buffer Load */
1832 map_write(map, CMD(0x25), cmd_adr);
1833
1834 chip->state = FL_WRITING_TO_BUFFER;
1835
1836 /* Write length of data to come */
1837 words = len / map_bankwidth(map);
1838 map_write(map, CMD(words - 1), cmd_adr);
1839 /* Write data */
1840 z = 0;
1841 while(z < words * map_bankwidth(map)) {
1842 datum = map_word_load(map, buf);
1843 map_write(map, datum, adr + z);
1844
1845 z += map_bankwidth(map);
1846 buf += map_bankwidth(map);
1847 }
1848 z -= map_bankwidth(map);
1849
1850 adr += z;
1851
1852 /* Write Buffer Program Confirm: GO GO GO */
1853 map_write(map, CMD(0x29), cmd_adr);
1854 chip->state = FL_WRITING;
1855
02b15e34
TP
1856 INVALIDATE_CACHE_UDELAY(map, chip,
1857 adr, map_bankwidth(map),
1858 chip->word_write_time);
1da177e4 1859
1f948b43
TG
1860 timeo = jiffies + uWriteTimeout;
1861
1da177e4
LT
1862 for (;;) {
1863 if (chip->state != FL_WRITING) {
1864 /* Someone's suspended the write. Sleep */
1865 DECLARE_WAITQUEUE(wait, current);
1866
1867 set_current_state(TASK_UNINTERRUPTIBLE);
1868 add_wait_queue(&chip->wq, &wait);
c4e77376 1869 mutex_unlock(&chip->mutex);
1da177e4
LT
1870 schedule();
1871 remove_wait_queue(&chip->wq, &wait);
1872 timeo = jiffies + (HZ / 2); /* FIXME */
c4e77376 1873 mutex_lock(&chip->mutex);
1da177e4
LT
1874 continue;
1875 }
1876
b95f9609
KB
1877 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1878 break;
1879
02b15e34
TP
1880 if (chip_ready(map, adr)) {
1881 xip_enable(map, chip, adr);
1da177e4 1882 goto op_done;
02b15e34 1883 }
1da177e4
LT
1884
1885 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 1886 UDELAY(map, chip, adr, 1);
1da177e4
LT
1887 }
1888
070c3222
HNH
1889 /*
1890 * Recovery from write-buffer programming failures requires
1891 * the write-to-buffer-reset sequence. Since the last part
1892 * of the sequence also works as a normal reset, we can run
1893 * the same commands regardless of why we are here.
1894 * See e.g.
1895 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
1896 */
1897 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1898 cfi->device_type, NULL);
1899 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1900 cfi->device_type, NULL);
1901 cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
1902 cfi->device_type, NULL);
02b15e34 1903 xip_enable(map, chip, adr);
1da177e4
LT
1904 /* FIXME - should have reset delay before continuing */
1905
25983b18
HS
1906 printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n",
1907 __func__, adr);
02b15e34 1908
1da177e4
LT
1909 ret = -EIO;
1910 op_done:
1911 chip->state = FL_READY;
e7d9377e 1912 DISABLE_VPP(map);
1da177e4 1913 put_chip(map, chip, adr);
c4e77376 1914 mutex_unlock(&chip->mutex);
1da177e4
LT
1915
1916 return ret;
1917}
1918
1919
1920static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1921 size_t *retlen, const u_char *buf)
1922{
1923 struct map_info *map = mtd->priv;
1924 struct cfi_private *cfi = map->fldrv_priv;
1925 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1926 int ret = 0;
1927 int chipnum;
1928 unsigned long ofs;
1929
1da177e4
LT
1930 chipnum = to >> cfi->chipshift;
1931 ofs = to - (chipnum << cfi->chipshift);
1932
1933 /* If it's not bus-aligned, do the first word write */
1934 if (ofs & (map_bankwidth(map)-1)) {
1935 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1936 if (local_len > len)
1937 local_len = len;
1938 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1939 local_len, retlen, buf);
1940 if (ret)
1941 return ret;
1942 ofs += local_len;
1943 buf += local_len;
1944 len -= local_len;
1945
1946 if (ofs >> cfi->chipshift) {
1947 chipnum ++;
1948 ofs = 0;
1949 if (chipnum == cfi->numchips)
1950 return 0;
1951 }
1952 }
1953
1954 /* Write buffer is worth it only if more than one word to write... */
1955 while (len >= map_bankwidth(map) * 2) {
1956 /* We must not cross write block boundaries */
1957 int size = wbufsize - (ofs & (wbufsize-1));
1958
1959 if (size > len)
1960 size = len;
1961 if (size % map_bankwidth(map))
1962 size -= size % map_bankwidth(map);
1963
1f948b43 1964 ret = do_write_buffer(map, &cfi->chips[chipnum],
1da177e4
LT
1965 ofs, buf, size);
1966 if (ret)
1967 return ret;
1968
1969 ofs += size;
1970 buf += size;
1971 (*retlen) += size;
1972 len -= size;
1973
1974 if (ofs >> cfi->chipshift) {
1f948b43 1975 chipnum ++;
1da177e4
LT
1976 ofs = 0;
1977 if (chipnum == cfi->numchips)
1978 return 0;
1979 }
1980 }
1981
1982 if (len) {
1983 size_t retlen_dregs = 0;
1984
1985 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1986 len, &retlen_dregs, buf);
1987
1988 *retlen += retlen_dregs;
1989 return ret;
1990 }
1991
1992 return 0;
1993}
1994
30ec5a2c
IS
1995/*
1996 * Wait for the flash chip to become ready to write data
1997 *
1998 * This is only called during the panic_write() path. When panic_write()
1999 * is called, the kernel is in the process of a panic, and will soon be
2000 * dead. Therefore we don't take any locks, and attempt to get access
2001 * to the chip as soon as possible.
2002 */
2003static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2004 unsigned long adr)
2005{
2006 struct cfi_private *cfi = map->fldrv_priv;
2007 int retries = 10;
2008 int i;
2009
2010 /*
2011 * If the driver thinks the chip is idle, and no toggle bits
2012 * are changing, then the chip is actually idle for sure.
2013 */
2014 if (chip->state == FL_READY && chip_ready(map, adr))
2015 return 0;
2016
2017 /*
2018 * Try several times to reset the chip and then wait for it
2019 * to become idle. The upper limit of a few milliseconds of
2020 * delay isn't a big problem: the kernel is dying anyway. It
2021 * is more important to save the messages.
2022 */
2023 while (retries > 0) {
2024 const unsigned long timeo = (HZ / 1000) + 1;
2025
2026 /* send the reset command */
2027 map_write(map, CMD(0xF0), chip->start);
2028
2029 /* wait for the chip to become ready */
2030 for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2031 if (chip_ready(map, adr))
2032 return 0;
2033
2034 udelay(1);
2035 }
2036 }
2037
2038 /* the chip never became ready */
2039 return -EBUSY;
2040}
2041
2042/*
2043 * Write out one word of data to a single flash chip during a kernel panic
2044 *
2045 * This is only called during the panic_write() path. When panic_write()
2046 * is called, the kernel is in the process of a panic, and will soon be
2047 * dead. Therefore we don't take any locks, and attempt to get access
2048 * to the chip as soon as possible.
2049 *
2050 * The implementation of this routine is intentionally similar to
2051 * do_write_oneword(), in order to ease code maintenance.
2052 */
2053static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2054 unsigned long adr, map_word datum)
2055{
2056 const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2057 struct cfi_private *cfi = map->fldrv_priv;
2058 int retry_cnt = 0;
2059 map_word oldd;
2060 int ret = 0;
2061 int i;
2062
2063 adr += chip->start;
2064
2065 ret = cfi_amdstd_panic_wait(map, chip, adr);
2066 if (ret)
2067 return ret;
2068
2069 pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2070 __func__, adr, datum.x[0]);
2071
2072 /*
2073 * Check for a NOP for the case when the datum to write is already
2074 * present - it saves time and works around buggy chips that corrupt
2075 * data at other locations when 0xff is written to a location that
2076 * already contains 0xff.
2077 */
2078 oldd = map_read(map, adr);
2079 if (map_word_equal(map, oldd, datum)) {
2080 pr_debug("MTD %s(): NOP\n", __func__);
2081 goto op_done;
2082 }
2083
2084 ENABLE_VPP(map);
2085
2086retry:
2087 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2088 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2089 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2090 map_write(map, datum, adr);
2091
2092 for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2093 if (chip_ready(map, adr))
2094 break;
2095
2096 udelay(1);
2097 }
2098
2099 if (!chip_good(map, adr, datum)) {
2100 /* reset on all failures. */
2101 map_write(map, CMD(0xF0), chip->start);
2102 /* FIXME - should have reset delay before continuing */
2103
2104 if (++retry_cnt <= MAX_WORD_RETRIES)
2105 goto retry;
2106
2107 ret = -EIO;
2108 }
2109
2110op_done:
2111 DISABLE_VPP(map);
2112 return ret;
2113}
2114
2115/*
2116 * Write out some data during a kernel panic
2117 *
2118 * This is used by the mtdoops driver to save the dying messages from a
2119 * kernel which has panic'd.
2120 *
2121 * This routine ignores all of the locking used throughout the rest of the
2122 * driver, in order to ensure that the data gets written out no matter what
2123 * state this driver (and the flash chip itself) was in when the kernel crashed.
2124 *
2125 * The implementation of this routine is intentionally similar to
2126 * cfi_amdstd_write_words(), in order to ease code maintenance.
2127 */
2128static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2129 size_t *retlen, const u_char *buf)
2130{
2131 struct map_info *map = mtd->priv;
2132 struct cfi_private *cfi = map->fldrv_priv;
2133 unsigned long ofs, chipstart;
2134 int ret = 0;
2135 int chipnum;
2136
30ec5a2c
IS
2137 chipnum = to >> cfi->chipshift;
2138 ofs = to - (chipnum << cfi->chipshift);
2139 chipstart = cfi->chips[chipnum].start;
2140
2141 /* If it's not bus aligned, do the first byte write */
2142 if (ofs & (map_bankwidth(map) - 1)) {
2143 unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2144 int i = ofs - bus_ofs;
2145 int n = 0;
2146 map_word tmp_buf;
2147
2148 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2149 if (ret)
2150 return ret;
2151
2152 /* Load 'tmp_buf' with old contents of flash */
2153 tmp_buf = map_read(map, bus_ofs + chipstart);
2154
2155 /* Number of bytes to copy from buffer */
2156 n = min_t(int, len, map_bankwidth(map) - i);
2157
2158 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2159
2160 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2161 bus_ofs, tmp_buf);
2162 if (ret)
2163 return ret;
2164
2165 ofs += n;
2166 buf += n;
2167 (*retlen) += n;
2168 len -= n;
2169
2170 if (ofs >> cfi->chipshift) {
2171 chipnum++;
2172 ofs = 0;
2173 if (chipnum == cfi->numchips)
2174 return 0;
2175 }
2176 }
2177
2178 /* We are now aligned, write as much as possible */
2179 while (len >= map_bankwidth(map)) {
2180 map_word datum;
2181
2182 datum = map_word_load(map, buf);
2183
2184 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2185 ofs, datum);
2186 if (ret)
2187 return ret;
2188
2189 ofs += map_bankwidth(map);
2190 buf += map_bankwidth(map);
2191 (*retlen) += map_bankwidth(map);
2192 len -= map_bankwidth(map);
2193
2194 if (ofs >> cfi->chipshift) {
2195 chipnum++;
2196 ofs = 0;
2197 if (chipnum == cfi->numchips)
2198 return 0;
2199
2200 chipstart = cfi->chips[chipnum].start;
2201 }
2202 }
2203
2204 /* Write the trailing bytes if any */
2205 if (len & (map_bankwidth(map) - 1)) {
2206 map_word tmp_buf;
2207
2208 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2209 if (ret)
2210 return ret;
2211
2212 tmp_buf = map_read(map, ofs + chipstart);
2213
2214 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2215
2216 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2217 ofs, tmp_buf);
2218 if (ret)
2219 return ret;
2220
2221 (*retlen) += len;
2222 }
2223
2224 return 0;
2225}
2226
1da177e4
LT
2227
2228/*
2229 * Handle devices with one erase region, that only implement
2230 * the chip erase command.
2231 */
02b15e34 2232static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1da177e4
LT
2233{
2234 struct cfi_private *cfi = map->fldrv_priv;
2235 unsigned long timeo = jiffies + HZ;
2236 unsigned long int adr;
2237 DECLARE_WAITQUEUE(wait, current);
2238 int ret = 0;
2239
2240 adr = cfi->addr_unlock1;
2241
c4e77376 2242 mutex_lock(&chip->mutex);
1da177e4
LT
2243 ret = get_chip(map, chip, adr, FL_WRITING);
2244 if (ret) {
c4e77376 2245 mutex_unlock(&chip->mutex);
1da177e4
LT
2246 return ret;
2247 }
2248
289c0522 2249 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
1da177e4
LT
2250 __func__, chip->start );
2251
02b15e34 2252 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1da177e4 2253 ENABLE_VPP(map);
02b15e34
TP
2254 xip_disable(map, chip, adr);
2255
1da177e4
LT
2256 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2257 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2258 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2259 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2260 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2261 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2262
2263 chip->state = FL_ERASING;
2264 chip->erase_suspended = 0;
2265 chip->in_progress_block_addr = adr;
2266
02b15e34
TP
2267 INVALIDATE_CACHE_UDELAY(map, chip,
2268 adr, map->size,
2269 chip->erase_time*500);
1da177e4
LT
2270
2271 timeo = jiffies + (HZ*20);
2272
2273 for (;;) {
2274 if (chip->state != FL_ERASING) {
2275 /* Someone's suspended the erase. Sleep */
2276 set_current_state(TASK_UNINTERRUPTIBLE);
2277 add_wait_queue(&chip->wq, &wait);
c4e77376 2278 mutex_unlock(&chip->mutex);
1da177e4
LT
2279 schedule();
2280 remove_wait_queue(&chip->wq, &wait);
c4e77376 2281 mutex_lock(&chip->mutex);
1da177e4
LT
2282 continue;
2283 }
2284 if (chip->erase_suspended) {
2285 /* This erase was suspended and resumed.
2286 Adjust the timeout */
2287 timeo = jiffies + (HZ*20); /* FIXME */
2288 chip->erase_suspended = 0;
2289 }
2290
2291 if (chip_ready(map, adr))
fb4a90bf 2292 break;
1da177e4 2293
fb4a90bf
EB
2294 if (time_after(jiffies, timeo)) {
2295 printk(KERN_WARNING "MTD %s(): software timeout\n",
2296 __func__ );
1da177e4 2297 break;
fb4a90bf 2298 }
1da177e4
LT
2299
2300 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 2301 UDELAY(map, chip, adr, 1000000/HZ);
1da177e4 2302 }
fb4a90bf
EB
2303 /* Did we succeed? */
2304 if (!chip_good(map, adr, map_word_ff(map))) {
2305 /* reset on all failures. */
2306 map_write( map, CMD(0xF0), chip->start );
2307 /* FIXME - should have reset delay before continuing */
1da177e4 2308
fb4a90bf
EB
2309 ret = -EIO;
2310 }
1da177e4 2311
1da177e4 2312 chip->state = FL_READY;
02b15e34 2313 xip_enable(map, chip, adr);
e7d9377e 2314 DISABLE_VPP(map);
1da177e4 2315 put_chip(map, chip, adr);
c4e77376 2316 mutex_unlock(&chip->mutex);
1da177e4
LT
2317
2318 return ret;
2319}
2320
2321
02b15e34 2322static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1da177e4
LT
2323{
2324 struct cfi_private *cfi = map->fldrv_priv;
2325 unsigned long timeo = jiffies + HZ;
2326 DECLARE_WAITQUEUE(wait, current);
2327 int ret = 0;
2328
2329 adr += chip->start;
2330
c4e77376 2331 mutex_lock(&chip->mutex);
1da177e4
LT
2332 ret = get_chip(map, chip, adr, FL_ERASING);
2333 if (ret) {
c4e77376 2334 mutex_unlock(&chip->mutex);
1da177e4
LT
2335 return ret;
2336 }
2337
289c0522 2338 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
1da177e4
LT
2339 __func__, adr );
2340
02b15e34 2341 XIP_INVAL_CACHED_RANGE(map, adr, len);
1da177e4 2342 ENABLE_VPP(map);
02b15e34
TP
2343 xip_disable(map, chip, adr);
2344
1da177e4
LT
2345 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2346 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2347 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2348 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2349 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
08968041 2350 map_write(map, cfi->sector_erase_cmd, adr);
1da177e4
LT
2351
2352 chip->state = FL_ERASING;
2353 chip->erase_suspended = 0;
2354 chip->in_progress_block_addr = adr;
02b15e34
TP
2355
2356 INVALIDATE_CACHE_UDELAY(map, chip,
2357 adr, len,
2358 chip->erase_time*500);
1da177e4
LT
2359
2360 timeo = jiffies + (HZ*20);
2361
2362 for (;;) {
2363 if (chip->state != FL_ERASING) {
2364 /* Someone's suspended the erase. Sleep */
2365 set_current_state(TASK_UNINTERRUPTIBLE);
2366 add_wait_queue(&chip->wq, &wait);
c4e77376 2367 mutex_unlock(&chip->mutex);
1da177e4
LT
2368 schedule();
2369 remove_wait_queue(&chip->wq, &wait);
c4e77376 2370 mutex_lock(&chip->mutex);
1da177e4
LT
2371 continue;
2372 }
2373 if (chip->erase_suspended) {
2374 /* This erase was suspended and resumed.
2375 Adjust the timeout */
2376 timeo = jiffies + (HZ*20); /* FIXME */
2377 chip->erase_suspended = 0;
2378 }
2379
02b15e34
TP
2380 if (chip_ready(map, adr)) {
2381 xip_enable(map, chip, adr);
fb4a90bf 2382 break;
02b15e34 2383 }
1da177e4 2384
fb4a90bf 2385 if (time_after(jiffies, timeo)) {
02b15e34 2386 xip_enable(map, chip, adr);
fb4a90bf
EB
2387 printk(KERN_WARNING "MTD %s(): software timeout\n",
2388 __func__ );
1da177e4 2389 break;
fb4a90bf 2390 }
1da177e4
LT
2391
2392 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 2393 UDELAY(map, chip, adr, 1000000/HZ);
1da177e4 2394 }
fb4a90bf 2395 /* Did we succeed? */
22fd9a87 2396 if (!chip_good(map, adr, map_word_ff(map))) {
fb4a90bf
EB
2397 /* reset on all failures. */
2398 map_write( map, CMD(0xF0), chip->start );
2399 /* FIXME - should have reset delay before continuing */
2400
2401 ret = -EIO;
2402 }
1da177e4 2403
1da177e4 2404 chip->state = FL_READY;
e7d9377e 2405 DISABLE_VPP(map);
1da177e4 2406 put_chip(map, chip, adr);
c4e77376 2407 mutex_unlock(&chip->mutex);
1da177e4
LT
2408 return ret;
2409}
2410
2411
ce0f33ad 2412static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1da177e4
LT
2413{
2414 unsigned long ofs, len;
2415 int ret;
2416
2417 ofs = instr->addr;
2418 len = instr->len;
2419
2420 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
2421 if (ret)
2422 return ret;
2423
2424 instr->state = MTD_ERASE_DONE;
2425 mtd_erase_callback(instr);
1f948b43 2426
1da177e4
LT
2427 return 0;
2428}
2429
2430
2431static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2432{
2433 struct map_info *map = mtd->priv;
2434 struct cfi_private *cfi = map->fldrv_priv;
2435 int ret = 0;
2436
2437 if (instr->addr != 0)
2438 return -EINVAL;
2439
2440 if (instr->len != mtd->size)
2441 return -EINVAL;
2442
2443 ret = do_erase_chip(map, &cfi->chips[0]);
2444 if (ret)
2445 return ret;
2446
2447 instr->state = MTD_ERASE_DONE;
2448 mtd_erase_callback(instr);
1f948b43 2449
1da177e4
LT
2450 return 0;
2451}
2452
0165508c
HS
2453static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2454 unsigned long adr, int len, void *thunk)
2455{
2456 struct cfi_private *cfi = map->fldrv_priv;
2457 int ret;
2458
c4e77376 2459 mutex_lock(&chip->mutex);
0165508c
HS
2460 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2461 if (ret)
2462 goto out_unlock;
2463 chip->state = FL_LOCKING;
2464
0a32a102 2465 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
0165508c
HS
2466
2467 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2468 cfi->device_type, NULL);
2469 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2470 cfi->device_type, NULL);
2471 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2472 cfi->device_type, NULL);
2473 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2474 cfi->device_type, NULL);
2475 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2476 cfi->device_type, NULL);
2477 map_write(map, CMD(0x40), chip->start + adr);
2478
2479 chip->state = FL_READY;
2480 put_chip(map, chip, adr + chip->start);
2481 ret = 0;
2482
2483out_unlock:
c4e77376 2484 mutex_unlock(&chip->mutex);
0165508c
HS
2485 return ret;
2486}
2487
2488static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2489 unsigned long adr, int len, void *thunk)
2490{
2491 struct cfi_private *cfi = map->fldrv_priv;
2492 int ret;
2493
c4e77376 2494 mutex_lock(&chip->mutex);
0165508c
HS
2495 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2496 if (ret)
2497 goto out_unlock;
2498 chip->state = FL_UNLOCKING;
2499
0a32a102 2500 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
0165508c
HS
2501
2502 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2503 cfi->device_type, NULL);
2504 map_write(map, CMD(0x70), adr);
2505
2506 chip->state = FL_READY;
2507 put_chip(map, chip, adr + chip->start);
2508 ret = 0;
2509
2510out_unlock:
c4e77376 2511 mutex_unlock(&chip->mutex);
0165508c
HS
2512 return ret;
2513}
2514
69423d99 2515static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
0165508c
HS
2516{
2517 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2518}
2519
69423d99 2520static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
0165508c
HS
2521{
2522 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2523}
2524
1648eaaa
SR
2525/*
2526 * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2527 */
2528
2529struct ppb_lock {
2530 struct flchip *chip;
2531 loff_t offset;
2532 int locked;
2533};
2534
2535#define MAX_SECTORS 512
2536
2537#define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1)
2538#define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2)
2539#define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3)
2540
2541static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2542 struct flchip *chip,
2543 unsigned long adr, int len, void *thunk)
2544{
2545 struct cfi_private *cfi = map->fldrv_priv;
2546 unsigned long timeo;
2547 int ret;
2548
2549 mutex_lock(&chip->mutex);
2550 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2551 if (ret) {
2552 mutex_unlock(&chip->mutex);
2553 return ret;
2554 }
2555
2556 pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2557
2558 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2559 cfi->device_type, NULL);
2560 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2561 cfi->device_type, NULL);
2562 /* PPB entry command */
2563 cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2564 cfi->device_type, NULL);
2565
2566 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2567 chip->state = FL_LOCKING;
2568 map_write(map, CMD(0xA0), chip->start + adr);
2569 map_write(map, CMD(0x00), chip->start + adr);
2570 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2571 /*
2572 * Unlocking of one specific sector is not supported, so we
2573 * have to unlock all sectors of this device instead
2574 */
2575 chip->state = FL_UNLOCKING;
2576 map_write(map, CMD(0x80), chip->start);
2577 map_write(map, CMD(0x30), chip->start);
2578 } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2579 chip->state = FL_JEDEC_QUERY;
2580 /* Return locked status: 0->locked, 1->unlocked */
2581 ret = !cfi_read_query(map, adr);
2582 } else
2583 BUG();
2584
2585 /*
2586 * Wait for some time as unlocking of all sectors takes quite long
2587 */
2588 timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */
2589 for (;;) {
2590 if (chip_ready(map, adr))
2591 break;
2592
2593 if (time_after(jiffies, timeo)) {
2594 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2595 ret = -EIO;
2596 break;
2597 }
2598
2599 UDELAY(map, chip, adr, 1);
2600 }
2601
2602 /* Exit BC commands */
2603 map_write(map, CMD(0x90), chip->start);
2604 map_write(map, CMD(0x00), chip->start);
2605
2606 chip->state = FL_READY;
2607 put_chip(map, chip, adr + chip->start);
2608 mutex_unlock(&chip->mutex);
2609
2610 return ret;
2611}
2612
2613static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2614 uint64_t len)
2615{
2616 return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2617 DO_XXLOCK_ONEBLOCK_LOCK);
2618}
2619
2620static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2621 uint64_t len)
2622{
2623 struct mtd_erase_region_info *regions = mtd->eraseregions;
2624 struct map_info *map = mtd->priv;
2625 struct cfi_private *cfi = map->fldrv_priv;
2626 struct ppb_lock *sect;
2627 unsigned long adr;
2628 loff_t offset;
2629 uint64_t length;
2630 int chipnum;
2631 int i;
2632 int sectors;
2633 int ret;
2634
2635 /*
2636 * PPB unlocking always unlocks all sectors of the flash chip.
2637 * We need to re-lock all previously locked sectors. So lets
2638 * first check the locking status of all sectors and save
2639 * it for future use.
2640 */
2641 sect = kzalloc(MAX_SECTORS * sizeof(struct ppb_lock), GFP_KERNEL);
2642 if (!sect)
2643 return -ENOMEM;
2644
2645 /*
2646 * This code to walk all sectors is a slightly modified version
2647 * of the cfi_varsize_frob() code.
2648 */
2649 i = 0;
2650 chipnum = 0;
2651 adr = 0;
2652 sectors = 0;
2653 offset = 0;
2654 length = mtd->size;
2655
2656 while (length) {
2657 int size = regions[i].erasesize;
2658
2659 /*
2660 * Only test sectors that shall not be unlocked. The other
2661 * sectors shall be unlocked, so lets keep their locking
2662 * status at "unlocked" (locked=0) for the final re-locking.
2663 */
2664 if ((adr < ofs) || (adr >= (ofs + len))) {
2665 sect[sectors].chip = &cfi->chips[chipnum];
2666 sect[sectors].offset = offset;
2667 sect[sectors].locked = do_ppb_xxlock(
2668 map, &cfi->chips[chipnum], adr, 0,
2669 DO_XXLOCK_ONEBLOCK_GETLOCK);
2670 }
2671
2672 adr += size;
2673 offset += size;
2674 length -= size;
2675
2676 if (offset == regions[i].offset + size * regions[i].numblocks)
2677 i++;
2678
2679 if (adr >> cfi->chipshift) {
2680 adr = 0;
2681 chipnum++;
2682
2683 if (chipnum >= cfi->numchips)
2684 break;
2685 }
2686
2687 sectors++;
2688 if (sectors >= MAX_SECTORS) {
2689 printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2690 MAX_SECTORS);
2691 kfree(sect);
2692 return -EINVAL;
2693 }
2694 }
2695
2696 /* Now unlock the whole chip */
2697 ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2698 DO_XXLOCK_ONEBLOCK_UNLOCK);
2699 if (ret) {
2700 kfree(sect);
2701 return ret;
2702 }
2703
2704 /*
2705 * PPB unlocking always unlocks all sectors of the flash chip.
2706 * We need to re-lock all previously locked sectors.
2707 */
2708 for (i = 0; i < sectors; i++) {
2709 if (sect[i].locked)
2710 do_ppb_xxlock(map, sect[i].chip, sect[i].offset, 0,
2711 DO_XXLOCK_ONEBLOCK_LOCK);
2712 }
2713
2714 kfree(sect);
2715 return ret;
2716}
2717
2718static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2719 uint64_t len)
2720{
2721 return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2722 DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2723}
1da177e4
LT
2724
2725static void cfi_amdstd_sync (struct mtd_info *mtd)
2726{
2727 struct map_info *map = mtd->priv;
2728 struct cfi_private *cfi = map->fldrv_priv;
2729 int i;
2730 struct flchip *chip;
2731 int ret = 0;
2732 DECLARE_WAITQUEUE(wait, current);
2733
2734 for (i=0; !ret && i<cfi->numchips; i++) {
2735 chip = &cfi->chips[i];
2736
2737 retry:
c4e77376 2738 mutex_lock(&chip->mutex);
1da177e4
LT
2739
2740 switch(chip->state) {
2741 case FL_READY:
2742 case FL_STATUS:
2743 case FL_CFI_QUERY:
2744 case FL_JEDEC_QUERY:
2745 chip->oldstate = chip->state;
2746 chip->state = FL_SYNCING;
1f948b43 2747 /* No need to wake_up() on this state change -
1da177e4
LT
2748 * as the whole point is that nobody can do anything
2749 * with the chip now anyway.
2750 */
2751 case FL_SYNCING:
c4e77376 2752 mutex_unlock(&chip->mutex);
1da177e4
LT
2753 break;
2754
2755 default:
2756 /* Not an idle state */
f8e30e44 2757 set_current_state(TASK_UNINTERRUPTIBLE);
1da177e4 2758 add_wait_queue(&chip->wq, &wait);
1f948b43 2759
c4e77376 2760 mutex_unlock(&chip->mutex);
1da177e4
LT
2761
2762 schedule();
2763
2764 remove_wait_queue(&chip->wq, &wait);
1f948b43 2765
1da177e4
LT
2766 goto retry;
2767 }
2768 }
2769
2770 /* Unlock the chips again */
2771
2772 for (i--; i >=0; i--) {
2773 chip = &cfi->chips[i];
2774
c4e77376 2775 mutex_lock(&chip->mutex);
1f948b43 2776
1da177e4
LT
2777 if (chip->state == FL_SYNCING) {
2778 chip->state = chip->oldstate;
2779 wake_up(&chip->wq);
2780 }
c4e77376 2781 mutex_unlock(&chip->mutex);
1da177e4
LT
2782 }
2783}
2784
2785
2786static int cfi_amdstd_suspend(struct mtd_info *mtd)
2787{
2788 struct map_info *map = mtd->priv;
2789 struct cfi_private *cfi = map->fldrv_priv;
2790 int i;
2791 struct flchip *chip;
2792 int ret = 0;
2793
2794 for (i=0; !ret && i<cfi->numchips; i++) {
2795 chip = &cfi->chips[i];
2796
c4e77376 2797 mutex_lock(&chip->mutex);
1da177e4
LT
2798
2799 switch(chip->state) {
2800 case FL_READY:
2801 case FL_STATUS:
2802 case FL_CFI_QUERY:
2803 case FL_JEDEC_QUERY:
2804 chip->oldstate = chip->state;
2805 chip->state = FL_PM_SUSPENDED;
1f948b43 2806 /* No need to wake_up() on this state change -
1da177e4
LT
2807 * as the whole point is that nobody can do anything
2808 * with the chip now anyway.
2809 */
2810 case FL_PM_SUSPENDED:
2811 break;
2812
2813 default:
2814 ret = -EAGAIN;
2815 break;
2816 }
c4e77376 2817 mutex_unlock(&chip->mutex);
1da177e4
LT
2818 }
2819
2820 /* Unlock the chips again */
2821
2822 if (ret) {
2823 for (i--; i >=0; i--) {
2824 chip = &cfi->chips[i];
2825
c4e77376 2826 mutex_lock(&chip->mutex);
1f948b43 2827
1da177e4
LT
2828 if (chip->state == FL_PM_SUSPENDED) {
2829 chip->state = chip->oldstate;
2830 wake_up(&chip->wq);
2831 }
c4e77376 2832 mutex_unlock(&chip->mutex);
1da177e4
LT
2833 }
2834 }
1f948b43 2835
1da177e4
LT
2836 return ret;
2837}
2838
2839
2840static void cfi_amdstd_resume(struct mtd_info *mtd)
2841{
2842 struct map_info *map = mtd->priv;
2843 struct cfi_private *cfi = map->fldrv_priv;
2844 int i;
2845 struct flchip *chip;
2846
2847 for (i=0; i<cfi->numchips; i++) {
1f948b43 2848
1da177e4
LT
2849 chip = &cfi->chips[i];
2850
c4e77376 2851 mutex_lock(&chip->mutex);
1f948b43 2852
1da177e4
LT
2853 if (chip->state == FL_PM_SUSPENDED) {
2854 chip->state = FL_READY;
2855 map_write(map, CMD(0xF0), chip->start);
2856 wake_up(&chip->wq);
2857 }
2858 else
2859 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2860
c4e77376 2861 mutex_unlock(&chip->mutex);
1da177e4
LT
2862 }
2863}
2864
eafe1311
KC
2865
2866/*
2867 * Ensure that the flash device is put back into read array mode before
2868 * unloading the driver or rebooting. On some systems, rebooting while
2869 * the flash is in query/program/erase mode will prevent the CPU from
2870 * fetching the bootloader code, requiring a hard reset or power cycle.
2871 */
2872static int cfi_amdstd_reset(struct mtd_info *mtd)
2873{
2874 struct map_info *map = mtd->priv;
2875 struct cfi_private *cfi = map->fldrv_priv;
2876 int i, ret;
2877 struct flchip *chip;
2878
2879 for (i = 0; i < cfi->numchips; i++) {
2880
2881 chip = &cfi->chips[i];
2882
2883 mutex_lock(&chip->mutex);
2884
2885 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2886 if (!ret) {
2887 map_write(map, CMD(0xF0), chip->start);
2888 chip->state = FL_SHUTDOWN;
2889 put_chip(map, chip, chip->start);
2890 }
2891
2892 mutex_unlock(&chip->mutex);
2893 }
2894
2895 return 0;
2896}
2897
2898
2899static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2900 void *v)
2901{
2902 struct mtd_info *mtd;
2903
2904 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2905 cfi_amdstd_reset(mtd);
2906 return NOTIFY_DONE;
2907}
2908
2909
1da177e4
LT
2910static void cfi_amdstd_destroy(struct mtd_info *mtd)
2911{
2912 struct map_info *map = mtd->priv;
2913 struct cfi_private *cfi = map->fldrv_priv;
fa671646 2914
eafe1311
KC
2915 cfi_amdstd_reset(mtd);
2916 unregister_reboot_notifier(&mtd->reboot_notifier);
1da177e4
LT
2917 kfree(cfi->cmdset_priv);
2918 kfree(cfi->cfiq);
2919 kfree(cfi);
2920 kfree(mtd->eraseregions);
2921}
2922
1da177e4
LT
2923MODULE_LICENSE("GPL");
2924MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2925MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
80461128 2926MODULE_ALIAS("cfi_cmdset_0006");
1e804cec 2927MODULE_ALIAS("cfi_cmdset_0701");