]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/mtd/mtdcore.c
ACPI / video: no automatic brightness changes by win8-compatible firmware
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / mtdcore.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
a1452a37
DW
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
1da177e4
LT
22 */
23
1da177e4
LT
24#include <linux/module.h>
25#include <linux/kernel.h>
1da177e4 26#include <linux/ptrace.h>
447d9bd8 27#include <linux/seq_file.h>
1da177e4
LT
28#include <linux/string.h>
29#include <linux/timer.h>
30#include <linux/major.h>
31#include <linux/fs.h>
7799308f 32#include <linux/err.h>
1da177e4
LT
33#include <linux/ioctl.h>
34#include <linux/init.h>
1da177e4 35#include <linux/proc_fs.h>
b520e412 36#include <linux/idr.h>
a33eb6b9 37#include <linux/backing-dev.h>
05d71b46 38#include <linux/gfp.h>
0d01ff25 39#include <linux/slab.h>
1da177e4
LT
40
41#include <linux/mtd/mtd.h>
f5671ab3 42#include <linux/mtd/partitions.h>
1da177e4 43
356d70f1 44#include "mtdcore.h"
660685d9 45
a33eb6b9
JE
46/*
47 * backing device capabilities for non-mappable devices (such as NAND flash)
48 * - permits private mappings, copies are taken of the data
49 */
ca91facf 50static struct backing_dev_info mtd_bdi_unmappable = {
a33eb6b9
JE
51 .capabilities = BDI_CAP_MAP_COPY,
52};
53
54/*
55 * backing device capabilities for R/O mappable devices (such as ROM)
56 * - permits private mappings, copies are taken of the data
57 * - permits non-writable shared mappings
58 */
ca91facf 59static struct backing_dev_info mtd_bdi_ro_mappable = {
a33eb6b9
JE
60 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
61 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
62};
63
64/*
65 * backing device capabilities for writable mappable devices (such as RAM)
66 * - permits private mappings, copies are taken of the data
67 * - permits non-writable shared mappings
68 */
ca91facf 69static struct backing_dev_info mtd_bdi_rw_mappable = {
a33eb6b9
JE
70 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
71 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
72 BDI_CAP_WRITE_MAP),
73};
356d70f1 74
15bce40c
DW
75static int mtd_cls_suspend(struct device *dev, pm_message_t state);
76static int mtd_cls_resume(struct device *dev);
77
78static struct class mtd_class = {
79 .name = "mtd",
80 .owner = THIS_MODULE,
81 .suspend = mtd_cls_suspend,
82 .resume = mtd_cls_resume,
83};
1f24b5a8 84
b520e412
BH
85static DEFINE_IDR(mtd_idr);
86
97894cda 87/* These are exported solely for the purpose of mtd_blkdevs.c. You
1da177e4 88 should not use them for _anything_ else */
48b19268 89DEFINE_MUTEX(mtd_table_mutex);
1da177e4 90EXPORT_SYMBOL_GPL(mtd_table_mutex);
b520e412
BH
91
92struct mtd_info *__mtd_next_device(int i)
93{
94 return idr_get_next(&mtd_idr, &i);
95}
96EXPORT_SYMBOL_GPL(__mtd_next_device);
1da177e4
LT
97
98static LIST_HEAD(mtd_notifiers);
99
1f24b5a8 100
1f24b5a8 101#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
1f24b5a8
DB
102
103/* REVISIT once MTD uses the driver model better, whoever allocates
104 * the mtd_info will probably want to use the release() hook...
105 */
106static void mtd_release(struct device *dev)
107{
335a5f40 108 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
d5de20a9 109 dev_t index = MTD_DEVT(mtd->index);
1f24b5a8
DB
110
111 /* remove /dev/mtdXro node if needed */
2fdb1144 112 if (index)
15bce40c
DW
113 device_destroy(&mtd_class, index + 1);
114}
115
116static int mtd_cls_suspend(struct device *dev, pm_message_t state)
117{
d5de20a9 118 struct mtd_info *mtd = dev_get_drvdata(dev);
6afc4fdb 119
1a30871f 120 return mtd ? mtd_suspend(mtd) : 0;
15bce40c
DW
121}
122
123static int mtd_cls_resume(struct device *dev)
124{
d5de20a9 125 struct mtd_info *mtd = dev_get_drvdata(dev);
33c87b4a 126
3ee50141 127 if (mtd)
ead995f8 128 mtd_resume(mtd);
15bce40c 129 return 0;
1f24b5a8
DB
130}
131
132static ssize_t mtd_type_show(struct device *dev,
133 struct device_attribute *attr, char *buf)
134{
d5de20a9 135 struct mtd_info *mtd = dev_get_drvdata(dev);
1f24b5a8
DB
136 char *type;
137
138 switch (mtd->type) {
139 case MTD_ABSENT:
140 type = "absent";
141 break;
142 case MTD_RAM:
143 type = "ram";
144 break;
145 case MTD_ROM:
146 type = "rom";
147 break;
148 case MTD_NORFLASH:
149 type = "nor";
150 break;
151 case MTD_NANDFLASH:
152 type = "nand";
153 break;
154 case MTD_DATAFLASH:
155 type = "dataflash";
156 break;
157 case MTD_UBIVOLUME:
158 type = "ubi";
159 break;
160 default:
161 type = "unknown";
162 }
163
164 return snprintf(buf, PAGE_SIZE, "%s\n", type);
165}
694bb7fc
KC
166static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
167
168static ssize_t mtd_flags_show(struct device *dev,
169 struct device_attribute *attr, char *buf)
170{
d5de20a9 171 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
172
173 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
174
175}
176static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
177
178static ssize_t mtd_size_show(struct device *dev,
179 struct device_attribute *attr, char *buf)
180{
d5de20a9 181 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
182
183 return snprintf(buf, PAGE_SIZE, "%llu\n",
184 (unsigned long long)mtd->size);
185
186}
187static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
188
189static ssize_t mtd_erasesize_show(struct device *dev,
190 struct device_attribute *attr, char *buf)
191{
d5de20a9 192 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
193
194 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
195
196}
197static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
198
199static ssize_t mtd_writesize_show(struct device *dev,
200 struct device_attribute *attr, char *buf)
201{
d5de20a9 202 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
203
204 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
205
206}
207static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
208
e7693548
AB
209static ssize_t mtd_subpagesize_show(struct device *dev,
210 struct device_attribute *attr, char *buf)
211{
d5de20a9 212 struct mtd_info *mtd = dev_get_drvdata(dev);
e7693548
AB
213 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
214
215 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
216
217}
218static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
219
694bb7fc
KC
220static ssize_t mtd_oobsize_show(struct device *dev,
221 struct device_attribute *attr, char *buf)
222{
d5de20a9 223 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
224
225 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
226
227}
228static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
229
230static ssize_t mtd_numeraseregions_show(struct device *dev,
231 struct device_attribute *attr, char *buf)
232{
d5de20a9 233 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
234
235 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
236
237}
238static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
239 NULL);
240
241static ssize_t mtd_name_show(struct device *dev,
242 struct device_attribute *attr, char *buf)
243{
d5de20a9 244 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
245
246 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
247
248}
249static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
1f24b5a8 250
a9b672e8
MD
251static ssize_t mtd_ecc_strength_show(struct device *dev,
252 struct device_attribute *attr, char *buf)
253{
254 struct mtd_info *mtd = dev_get_drvdata(dev);
255
256 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
257}
258static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
259
d062d4ed
MD
260static ssize_t mtd_bitflip_threshold_show(struct device *dev,
261 struct device_attribute *attr,
262 char *buf)
263{
264 struct mtd_info *mtd = dev_get_drvdata(dev);
265
266 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
267}
268
269static ssize_t mtd_bitflip_threshold_store(struct device *dev,
270 struct device_attribute *attr,
271 const char *buf, size_t count)
272{
273 struct mtd_info *mtd = dev_get_drvdata(dev);
274 unsigned int bitflip_threshold;
275 int retval;
276
277 retval = kstrtouint(buf, 0, &bitflip_threshold);
278 if (retval)
279 return retval;
280
281 mtd->bitflip_threshold = bitflip_threshold;
282 return count;
283}
284static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
285 mtd_bitflip_threshold_show,
286 mtd_bitflip_threshold_store);
287
1f24b5a8 288static struct attribute *mtd_attrs[] = {
694bb7fc
KC
289 &dev_attr_type.attr,
290 &dev_attr_flags.attr,
291 &dev_attr_size.attr,
292 &dev_attr_erasesize.attr,
293 &dev_attr_writesize.attr,
e7693548 294 &dev_attr_subpagesize.attr,
694bb7fc
KC
295 &dev_attr_oobsize.attr,
296 &dev_attr_numeraseregions.attr,
297 &dev_attr_name.attr,
a9b672e8 298 &dev_attr_ecc_strength.attr,
d062d4ed 299 &dev_attr_bitflip_threshold.attr,
1f24b5a8
DB
300 NULL,
301};
302
fca91088 303static struct attribute_group mtd_group = {
1f24b5a8
DB
304 .attrs = mtd_attrs,
305};
306
6469f540 307static const struct attribute_group *mtd_groups[] = {
1f24b5a8
DB
308 &mtd_group,
309 NULL,
310};
311
312static struct device_type mtd_devtype = {
313 .name = "mtd",
314 .groups = mtd_groups,
315 .release = mtd_release,
316};
317
1da177e4
LT
318/**
319 * add_mtd_device - register an MTD device
320 * @mtd: pointer to new MTD device info structure
321 *
322 * Add a device to the list of MTD devices present in the system, and
323 * notify each currently active MTD 'user' of its arrival. Returns
324 * zero on success or 1 on failure, which currently will only happen
b520e412 325 * if there is insufficient memory or a sysfs error.
1da177e4
LT
326 */
327
328int add_mtd_device(struct mtd_info *mtd)
329{
b520e412
BH
330 struct mtd_notifier *not;
331 int i, error;
1da177e4 332
402d3265
DH
333 if (!mtd->backing_dev_info) {
334 switch (mtd->type) {
335 case MTD_RAM:
336 mtd->backing_dev_info = &mtd_bdi_rw_mappable;
337 break;
338 case MTD_ROM:
339 mtd->backing_dev_info = &mtd_bdi_ro_mappable;
340 break;
341 default:
342 mtd->backing_dev_info = &mtd_bdi_unmappable;
343 break;
344 }
345 }
346
783ed81f 347 BUG_ON(mtd->writesize == 0);
48b19268 348 mutex_lock(&mtd_table_mutex);
1da177e4 349
589e9c4d
TH
350 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
351 if (i < 0)
b520e412 352 goto fail_locked;
1f24b5a8 353
b520e412
BH
354 mtd->index = i;
355 mtd->usecount = 0;
356
d062d4ed
MD
357 /* default value if not set by driver */
358 if (mtd->bitflip_threshold == 0)
359 mtd->bitflip_threshold = mtd->ecc_strength;
360
b520e412
BH
361 if (is_power_of_2(mtd->erasesize))
362 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
363 else
364 mtd->erasesize_shift = 0;
365
366 if (is_power_of_2(mtd->writesize))
367 mtd->writesize_shift = ffs(mtd->writesize) - 1;
368 else
369 mtd->writesize_shift = 0;
370
371 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
372 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
373
374 /* Some chips always power up locked. Unlock them now */
38134565
AB
375 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
376 error = mtd_unlock(mtd, 0, mtd->size);
377 if (error && error != -EOPNOTSUPP)
b520e412
BH
378 printk(KERN_WARNING
379 "%s: unlock failed, writes may not work\n",
380 mtd->name);
381 }
382
383 /* Caller should have set dev.parent to match the
384 * physical device.
385 */
386 mtd->dev.type = &mtd_devtype;
387 mtd->dev.class = &mtd_class;
388 mtd->dev.devt = MTD_DEVT(i);
389 dev_set_name(&mtd->dev, "mtd%d", i);
390 dev_set_drvdata(&mtd->dev, mtd);
391 if (device_register(&mtd->dev) != 0)
392 goto fail_added;
393
394 if (MTD_DEVT(i))
395 device_create(&mtd_class, mtd->dev.parent,
396 MTD_DEVT(i) + 1,
397 NULL, "mtd%dro", i);
398
289c0522 399 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
b520e412
BH
400 /* No need to get a refcount on the module containing
401 the notifier, since we hold the mtd_table_mutex */
402 list_for_each_entry(not, &mtd_notifiers, list)
403 not->add(mtd);
404
405 mutex_unlock(&mtd_table_mutex);
406 /* We _know_ we aren't being removed, because
407 our caller is still holding us here. So none
408 of this try_ nonsense, and no bitching about it
409 either. :) */
410 __module_get(THIS_MODULE);
411 return 0;
97894cda 412
b520e412
BH
413fail_added:
414 idr_remove(&mtd_idr, i);
415fail_locked:
48b19268 416 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
417 return 1;
418}
419
420/**
421 * del_mtd_device - unregister an MTD device
422 * @mtd: pointer to MTD device info structure
423 *
424 * Remove a device from the list of MTD devices present in the system,
425 * and notify each currently active MTD 'user' of its departure.
426 * Returns zero on success or 1 on failure, which currently will happen
427 * if the requested device does not appear to be present in the list.
428 */
429
eea72d5f 430int del_mtd_device(struct mtd_info *mtd)
1da177e4
LT
431{
432 int ret;
75c0b84d 433 struct mtd_notifier *not;
97894cda 434
48b19268 435 mutex_lock(&mtd_table_mutex);
1da177e4 436
b520e412 437 if (idr_find(&mtd_idr, mtd->index) != mtd) {
1da177e4 438 ret = -ENODEV;
75c0b84d
ML
439 goto out_error;
440 }
441
442 /* No need to get a refcount on the module containing
443 the notifier, since we hold the mtd_table_mutex */
444 list_for_each_entry(not, &mtd_notifiers, list)
445 not->remove(mtd);
446
447 if (mtd->usecount) {
97894cda 448 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
1da177e4
LT
449 mtd->index, mtd->name, mtd->usecount);
450 ret = -EBUSY;
451 } else {
694bb7fc
KC
452 device_unregister(&mtd->dev);
453
b520e412 454 idr_remove(&mtd_idr, mtd->index);
1da177e4
LT
455
456 module_put(THIS_MODULE);
457 ret = 0;
458 }
459
75c0b84d 460out_error:
48b19268 461 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
462 return ret;
463}
464
1c4c215c
DES
465/**
466 * mtd_device_parse_register - parse partitions and register an MTD device.
467 *
468 * @mtd: the MTD device to register
469 * @types: the list of MTD partition probes to try, see
470 * 'parse_mtd_partitions()' for more information
c7975330 471 * @parser_data: MTD partition parser-specific data
1c4c215c
DES
472 * @parts: fallback partition information to register, if parsing fails;
473 * only valid if %nr_parts > %0
474 * @nr_parts: the number of partitions in parts, if zero then the full
475 * MTD device is registered if no partition info is found
476 *
477 * This function aggregates MTD partitions parsing (done by
478 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
479 * basically follows the most common pattern found in many MTD drivers:
480 *
481 * * It first tries to probe partitions on MTD device @mtd using parsers
482 * specified in @types (if @types is %NULL, then the default list of parsers
483 * is used, see 'parse_mtd_partitions()' for more information). If none are
484 * found this functions tries to fallback to information specified in
485 * @parts/@nr_parts.
92394b5c 486 * * If any partitioning info was found, this function registers the found
1c4c215c
DES
487 * partitions.
488 * * If no partitions were found this function just registers the MTD device
489 * @mtd and exits.
490 *
491 * Returns zero in case of success and a negative error code in case of failure.
492 */
26a47346 493int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
c7975330 494 struct mtd_part_parser_data *parser_data,
1c4c215c
DES
495 const struct mtd_partition *parts,
496 int nr_parts)
497{
498 int err;
499 struct mtd_partition *real_parts;
500
c7975330 501 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
4d523b60 502 if (err <= 0 && nr_parts && parts) {
1c4c215c
DES
503 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
504 GFP_KERNEL);
4d523b60 505 if (!real_parts)
1c4c215c 506 err = -ENOMEM;
4d523b60
JL
507 else
508 err = nr_parts;
1c4c215c
DES
509 }
510
511 if (err > 0) {
512 err = add_mtd_partitions(mtd, real_parts, err);
513 kfree(real_parts);
514 } else if (err == 0) {
515 err = add_mtd_device(mtd);
516 if (err == 1)
517 err = -ENODEV;
518 }
519
520 return err;
521}
522EXPORT_SYMBOL_GPL(mtd_device_parse_register);
523
f5671ab3
JI
524/**
525 * mtd_device_unregister - unregister an existing MTD device.
526 *
527 * @master: the MTD device to unregister. This will unregister both the master
528 * and any partitions if registered.
529 */
530int mtd_device_unregister(struct mtd_info *master)
531{
532 int err;
533
534 err = del_mtd_partitions(master);
535 if (err)
536 return err;
537
538 if (!device_is_registered(&master->dev))
539 return 0;
540
541 return del_mtd_device(master);
542}
543EXPORT_SYMBOL_GPL(mtd_device_unregister);
544
1da177e4
LT
545/**
546 * register_mtd_user - register a 'user' of MTD devices.
547 * @new: pointer to notifier info structure
548 *
549 * Registers a pair of callbacks function to be called upon addition
550 * or removal of MTD devices. Causes the 'add' callback to be immediately
551 * invoked for each MTD device currently present in the system.
552 */
1da177e4
LT
553void register_mtd_user (struct mtd_notifier *new)
554{
f1332ba2 555 struct mtd_info *mtd;
1da177e4 556
48b19268 557 mutex_lock(&mtd_table_mutex);
1da177e4
LT
558
559 list_add(&new->list, &mtd_notifiers);
560
d5ca5129 561 __module_get(THIS_MODULE);
97894cda 562
f1332ba2
BH
563 mtd_for_each_device(mtd)
564 new->add(mtd);
1da177e4 565
48b19268 566 mutex_unlock(&mtd_table_mutex);
1da177e4 567}
33c87b4a 568EXPORT_SYMBOL_GPL(register_mtd_user);
1da177e4
LT
569
570/**
49450795
AB
571 * unregister_mtd_user - unregister a 'user' of MTD devices.
572 * @old: pointer to notifier info structure
1da177e4
LT
573 *
574 * Removes a callback function pair from the list of 'users' to be
575 * notified upon addition or removal of MTD devices. Causes the
576 * 'remove' callback to be immediately invoked for each MTD device
577 * currently present in the system.
578 */
1da177e4
LT
579int unregister_mtd_user (struct mtd_notifier *old)
580{
f1332ba2 581 struct mtd_info *mtd;
1da177e4 582
48b19268 583 mutex_lock(&mtd_table_mutex);
1da177e4
LT
584
585 module_put(THIS_MODULE);
586
f1332ba2
BH
587 mtd_for_each_device(mtd)
588 old->remove(mtd);
97894cda 589
1da177e4 590 list_del(&old->list);
48b19268 591 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
592 return 0;
593}
33c87b4a 594EXPORT_SYMBOL_GPL(unregister_mtd_user);
1da177e4
LT
595
596/**
597 * get_mtd_device - obtain a validated handle for an MTD device
598 * @mtd: last known address of the required MTD device
599 * @num: internal device number of the required MTD device
600 *
601 * Given a number and NULL address, return the num'th entry in the device
602 * table, if any. Given an address and num == -1, search the device table
603 * for a device with that address and return if it's still present. Given
9c74034f
AB
604 * both, return the num'th driver only if its address matches. Return
605 * error code if not.
1da177e4 606 */
1da177e4
LT
607struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
608{
f1332ba2
BH
609 struct mtd_info *ret = NULL, *other;
610 int err = -ENODEV;
1da177e4 611
48b19268 612 mutex_lock(&mtd_table_mutex);
1da177e4
LT
613
614 if (num == -1) {
f1332ba2
BH
615 mtd_for_each_device(other) {
616 if (other == mtd) {
617 ret = mtd;
618 break;
619 }
620 }
b520e412
BH
621 } else if (num >= 0) {
622 ret = idr_find(&mtd_idr, num);
1da177e4
LT
623 if (mtd && mtd != ret)
624 ret = NULL;
625 }
626
3bd45657
ML
627 if (!ret) {
628 ret = ERR_PTR(err);
629 goto out;
9fe912ce 630 }
1da177e4 631
3bd45657
ML
632 err = __get_mtd_device(ret);
633 if (err)
634 ret = ERR_PTR(err);
635out:
9c74034f
AB
636 mutex_unlock(&mtd_table_mutex);
637 return ret;
3bd45657 638}
33c87b4a 639EXPORT_SYMBOL_GPL(get_mtd_device);
1da177e4 640
3bd45657
ML
641
642int __get_mtd_device(struct mtd_info *mtd)
643{
644 int err;
645
646 if (!try_module_get(mtd->owner))
647 return -ENODEV;
648
3c3c10bb
AB
649 if (mtd->_get_device) {
650 err = mtd->_get_device(mtd);
3bd45657
ML
651
652 if (err) {
653 module_put(mtd->owner);
654 return err;
655 }
656 }
657 mtd->usecount++;
658 return 0;
1da177e4 659}
33c87b4a 660EXPORT_SYMBOL_GPL(__get_mtd_device);
1da177e4 661
7799308f
AB
662/**
663 * get_mtd_device_nm - obtain a validated handle for an MTD device by
664 * device name
665 * @name: MTD device name to open
666 *
667 * This function returns MTD device description structure in case of
668 * success and an error code in case of failure.
669 */
7799308f
AB
670struct mtd_info *get_mtd_device_nm(const char *name)
671{
f1332ba2
BH
672 int err = -ENODEV;
673 struct mtd_info *mtd = NULL, *other;
7799308f
AB
674
675 mutex_lock(&mtd_table_mutex);
676
f1332ba2
BH
677 mtd_for_each_device(other) {
678 if (!strcmp(name, other->name)) {
679 mtd = other;
7799308f
AB
680 break;
681 }
682 }
683
9fe912ce 684 if (!mtd)
7799308f
AB
685 goto out_unlock;
686
52534f2d
WG
687 err = __get_mtd_device(mtd);
688 if (err)
7799308f
AB
689 goto out_unlock;
690
9fe912ce
AB
691 mutex_unlock(&mtd_table_mutex);
692 return mtd;
7799308f
AB
693
694out_unlock:
695 mutex_unlock(&mtd_table_mutex);
9fe912ce 696 return ERR_PTR(err);
7799308f 697}
33c87b4a 698EXPORT_SYMBOL_GPL(get_mtd_device_nm);
7799308f 699
1da177e4
LT
700void put_mtd_device(struct mtd_info *mtd)
701{
48b19268 702 mutex_lock(&mtd_table_mutex);
3bd45657
ML
703 __put_mtd_device(mtd);
704 mutex_unlock(&mtd_table_mutex);
705
706}
33c87b4a 707EXPORT_SYMBOL_GPL(put_mtd_device);
3bd45657
ML
708
709void __put_mtd_device(struct mtd_info *mtd)
710{
711 --mtd->usecount;
712 BUG_ON(mtd->usecount < 0);
713
3c3c10bb
AB
714 if (mtd->_put_device)
715 mtd->_put_device(mtd);
1da177e4
LT
716
717 module_put(mtd->owner);
718}
33c87b4a 719EXPORT_SYMBOL_GPL(__put_mtd_device);
1da177e4 720
8273a0c9
AB
721/*
722 * Erase is an asynchronous operation. Device drivers are supposed
723 * to call instr->callback() whenever the operation completes, even
724 * if it completes with a failure.
725 * Callers are supposed to pass a callback function and wait for it
726 * to be called before writing to the block.
727 */
728int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
729{
730 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
731 return -EINVAL;
664addc2
AB
732 if (!(mtd->flags & MTD_WRITEABLE))
733 return -EROFS;
3b27dac0 734 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
bcb1d238
AB
735 if (!instr->len) {
736 instr->state = MTD_ERASE_DONE;
737 mtd_erase_callback(instr);
738 return 0;
739 }
8273a0c9
AB
740 return mtd->_erase(mtd, instr);
741}
742EXPORT_SYMBOL_GPL(mtd_erase);
743
744/*
745 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
746 */
747int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
748 void **virt, resource_size_t *phys)
749{
750 *retlen = 0;
0dd5235f
AB
751 *virt = NULL;
752 if (phys)
753 *phys = 0;
8273a0c9
AB
754 if (!mtd->_point)
755 return -EOPNOTSUPP;
756 if (from < 0 || from > mtd->size || len > mtd->size - from)
757 return -EINVAL;
bcb1d238
AB
758 if (!len)
759 return 0;
8273a0c9
AB
760 return mtd->_point(mtd, from, len, retlen, virt, phys);
761}
762EXPORT_SYMBOL_GPL(mtd_point);
763
764/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
765int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
766{
767 if (!mtd->_point)
768 return -EOPNOTSUPP;
769 if (from < 0 || from > mtd->size || len > mtd->size - from)
770 return -EINVAL;
bcb1d238
AB
771 if (!len)
772 return 0;
8273a0c9
AB
773 return mtd->_unpoint(mtd, from, len);
774}
775EXPORT_SYMBOL_GPL(mtd_unpoint);
776
777/*
778 * Allow NOMMU mmap() to directly map the device (if not NULL)
779 * - return the address to which the offset maps
780 * - return -ENOSYS to indicate refusal to do the mapping
781 */
782unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
783 unsigned long offset, unsigned long flags)
784{
785 if (!mtd->_get_unmapped_area)
786 return -EOPNOTSUPP;
787 if (offset > mtd->size || len > mtd->size - offset)
788 return -EINVAL;
789 return mtd->_get_unmapped_area(mtd, len, offset, flags);
790}
791EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
792
793int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
794 u_char *buf)
795{
edbc4540 796 int ret_code;
834247ec 797 *retlen = 0;
8273a0c9
AB
798 if (from < 0 || from > mtd->size || len > mtd->size - from)
799 return -EINVAL;
bcb1d238
AB
800 if (!len)
801 return 0;
edbc4540
MD
802
803 /*
804 * In the absence of an error, drivers return a non-negative integer
805 * representing the maximum number of bitflips that were corrected on
806 * any one ecc region (if applicable; zero otherwise).
807 */
808 ret_code = mtd->_read(mtd, from, len, retlen, buf);
809 if (unlikely(ret_code < 0))
810 return ret_code;
811 if (mtd->ecc_strength == 0)
812 return 0; /* device lacks ecc */
813 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
8273a0c9
AB
814}
815EXPORT_SYMBOL_GPL(mtd_read);
816
817int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
818 const u_char *buf)
819{
820 *retlen = 0;
8273a0c9
AB
821 if (to < 0 || to > mtd->size || len > mtd->size - to)
822 return -EINVAL;
664addc2
AB
823 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
824 return -EROFS;
bcb1d238
AB
825 if (!len)
826 return 0;
8273a0c9
AB
827 return mtd->_write(mtd, to, len, retlen, buf);
828}
829EXPORT_SYMBOL_GPL(mtd_write);
830
831/*
832 * In blackbox flight recorder like scenarios we want to make successful writes
833 * in interrupt context. panic_write() is only intended to be called when its
834 * known the kernel is about to panic and we need the write to succeed. Since
835 * the kernel is not going to be running for much longer, this function can
836 * break locks and delay to ensure the write succeeds (but not sleep).
837 */
838int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
839 const u_char *buf)
840{
841 *retlen = 0;
842 if (!mtd->_panic_write)
843 return -EOPNOTSUPP;
844 if (to < 0 || to > mtd->size || len > mtd->size - to)
845 return -EINVAL;
664addc2
AB
846 if (!(mtd->flags & MTD_WRITEABLE))
847 return -EROFS;
bcb1d238
AB
848 if (!len)
849 return 0;
8273a0c9
AB
850 return mtd->_panic_write(mtd, to, len, retlen, buf);
851}
852EXPORT_SYMBOL_GPL(mtd_panic_write);
853
d2d48480
BN
854int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
855{
e47f6858 856 int ret_code;
d2d48480
BN
857 ops->retlen = ops->oobretlen = 0;
858 if (!mtd->_read_oob)
859 return -EOPNOTSUPP;
e47f6858
BN
860 /*
861 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
862 * similar to mtd->_read(), returning a non-negative integer
863 * representing max bitflips. In other cases, mtd->_read_oob() may
864 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
865 */
866 ret_code = mtd->_read_oob(mtd, from, ops);
867 if (unlikely(ret_code < 0))
868 return ret_code;
869 if (mtd->ecc_strength == 0)
870 return 0; /* device lacks ecc */
871 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
d2d48480
BN
872}
873EXPORT_SYMBOL_GPL(mtd_read_oob);
874
de3cac93
AB
875/*
876 * Method to access the protection register area, present in some flash
877 * devices. The user data is one time programmable but the factory data is read
878 * only.
879 */
880int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
881 size_t len)
882{
883 if (!mtd->_get_fact_prot_info)
884 return -EOPNOTSUPP;
885 if (!len)
886 return 0;
887 return mtd->_get_fact_prot_info(mtd, buf, len);
888}
889EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
890
891int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
892 size_t *retlen, u_char *buf)
893{
894 *retlen = 0;
895 if (!mtd->_read_fact_prot_reg)
896 return -EOPNOTSUPP;
897 if (!len)
898 return 0;
899 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
900}
901EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
902
903int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
904 size_t len)
905{
906 if (!mtd->_get_user_prot_info)
907 return -EOPNOTSUPP;
908 if (!len)
909 return 0;
910 return mtd->_get_user_prot_info(mtd, buf, len);
911}
912EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
913
914int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
915 size_t *retlen, u_char *buf)
916{
917 *retlen = 0;
918 if (!mtd->_read_user_prot_reg)
919 return -EOPNOTSUPP;
920 if (!len)
921 return 0;
922 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
923}
924EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
925
926int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
927 size_t *retlen, u_char *buf)
928{
929 *retlen = 0;
930 if (!mtd->_write_user_prot_reg)
931 return -EOPNOTSUPP;
932 if (!len)
933 return 0;
934 return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
935}
936EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
937
938int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
939{
940 if (!mtd->_lock_user_prot_reg)
941 return -EOPNOTSUPP;
942 if (!len)
943 return 0;
944 return mtd->_lock_user_prot_reg(mtd, from, len);
945}
946EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
947
8273a0c9
AB
948/* Chip-supported device locking */
949int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
950{
951 if (!mtd->_lock)
952 return -EOPNOTSUPP;
953 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
954 return -EINVAL;
bcb1d238
AB
955 if (!len)
956 return 0;
8273a0c9
AB
957 return mtd->_lock(mtd, ofs, len);
958}
959EXPORT_SYMBOL_GPL(mtd_lock);
960
961int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
962{
963 if (!mtd->_unlock)
964 return -EOPNOTSUPP;
965 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
966 return -EINVAL;
bcb1d238
AB
967 if (!len)
968 return 0;
8273a0c9
AB
969 return mtd->_unlock(mtd, ofs, len);
970}
971EXPORT_SYMBOL_GPL(mtd_unlock);
972
973int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
974{
975 if (!mtd->_is_locked)
976 return -EOPNOTSUPP;
977 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
978 return -EINVAL;
bcb1d238
AB
979 if (!len)
980 return 0;
8273a0c9
AB
981 return mtd->_is_locked(mtd, ofs, len);
982}
983EXPORT_SYMBOL_GPL(mtd_is_locked);
984
985int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
986{
987 if (!mtd->_block_isbad)
988 return 0;
989 if (ofs < 0 || ofs > mtd->size)
990 return -EINVAL;
991 return mtd->_block_isbad(mtd, ofs);
992}
993EXPORT_SYMBOL_GPL(mtd_block_isbad);
994
995int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
996{
997 if (!mtd->_block_markbad)
998 return -EOPNOTSUPP;
999 if (ofs < 0 || ofs > mtd->size)
1000 return -EINVAL;
664addc2
AB
1001 if (!(mtd->flags & MTD_WRITEABLE))
1002 return -EROFS;
8273a0c9
AB
1003 return mtd->_block_markbad(mtd, ofs);
1004}
1005EXPORT_SYMBOL_GPL(mtd_block_markbad);
1006
52b02031
AB
1007/*
1008 * default_mtd_writev - the default writev method
1009 * @mtd: mtd device description object pointer
1010 * @vecs: the vectors to write
1011 * @count: count of vectors in @vecs
1012 * @to: the MTD device offset to write to
1013 * @retlen: on exit contains the count of bytes written to the MTD device.
1014 *
1015 * This function returns zero in case of success and a negative error code in
1016 * case of failure.
1da177e4 1017 */
1dbebd32
AB
1018static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1019 unsigned long count, loff_t to, size_t *retlen)
1da177e4
LT
1020{
1021 unsigned long i;
1022 size_t totlen = 0, thislen;
1023 int ret = 0;
1024
52b02031
AB
1025 for (i = 0; i < count; i++) {
1026 if (!vecs[i].iov_len)
1027 continue;
1028 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1029 vecs[i].iov_base);
1030 totlen += thislen;
1031 if (ret || thislen != vecs[i].iov_len)
1032 break;
1033 to += vecs[i].iov_len;
1da177e4 1034 }
52b02031 1035 *retlen = totlen;
1da177e4
LT
1036 return ret;
1037}
1dbebd32
AB
1038
1039/*
1040 * mtd_writev - the vector-based MTD write method
1041 * @mtd: mtd device description object pointer
1042 * @vecs: the vectors to write
1043 * @count: count of vectors in @vecs
1044 * @to: the MTD device offset to write to
1045 * @retlen: on exit contains the count of bytes written to the MTD device.
1046 *
1047 * This function returns zero in case of success and a negative error code in
1048 * case of failure.
1049 */
1050int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1051 unsigned long count, loff_t to, size_t *retlen)
1052{
1053 *retlen = 0;
664addc2
AB
1054 if (!(mtd->flags & MTD_WRITEABLE))
1055 return -EROFS;
3c3c10bb 1056 if (!mtd->_writev)
1dbebd32 1057 return default_mtd_writev(mtd, vecs, count, to, retlen);
3c3c10bb 1058 return mtd->_writev(mtd, vecs, count, to, retlen);
1dbebd32
AB
1059}
1060EXPORT_SYMBOL_GPL(mtd_writev);
1da177e4 1061
33b53716
GE
1062/**
1063 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
52b02031
AB
1064 * @mtd: mtd device description object pointer
1065 * @size: a pointer to the ideal or maximum size of the allocation, points
33b53716
GE
1066 * to the actual allocation size on success.
1067 *
1068 * This routine attempts to allocate a contiguous kernel buffer up to
1069 * the specified size, backing off the size of the request exponentially
1070 * until the request succeeds or until the allocation size falls below
1071 * the system page size. This attempts to make sure it does not adversely
1072 * impact system performance, so when allocating more than one page, we
caf49191
LT
1073 * ask the memory allocator to avoid re-trying, swapping, writing back
1074 * or performing I/O.
33b53716
GE
1075 *
1076 * Note, this function also makes sure that the allocated buffer is aligned to
1077 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1078 *
1079 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1080 * to handle smaller (i.e. degraded) buffer allocations under low- or
1081 * fragmented-memory situations where such reduced allocations, from a
1082 * requested ideal, are allowed.
1083 *
1084 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1085 */
1086void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1087{
caf49191
LT
1088 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1089 __GFP_NORETRY | __GFP_NO_KSWAPD;
33b53716
GE
1090 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1091 void *kbuf;
1092
1093 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1094
1095 while (*size > min_alloc) {
1096 kbuf = kmalloc(*size, flags);
1097 if (kbuf)
1098 return kbuf;
1099
1100 *size >>= 1;
1101 *size = ALIGN(*size, mtd->writesize);
1102 }
1103
1104 /*
1105 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1106 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1107 */
1108 return kmalloc(*size, GFP_KERNEL);
1109}
33b53716 1110EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1da177e4 1111
2d2dce0e
PM
1112#ifdef CONFIG_PROC_FS
1113
1da177e4
LT
1114/*====================================================================*/
1115/* Support for /proc/mtd */
1116
447d9bd8 1117static int mtd_proc_show(struct seq_file *m, void *v)
1da177e4 1118{
f1332ba2 1119 struct mtd_info *mtd;
1da177e4 1120
447d9bd8 1121 seq_puts(m, "dev: size erasesize name\n");
48b19268 1122 mutex_lock(&mtd_table_mutex);
f1332ba2 1123 mtd_for_each_device(mtd) {
447d9bd8
AD
1124 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1125 mtd->index, (unsigned long long)mtd->size,
1126 mtd->erasesize, mtd->name);
d5ca5129 1127 }
48b19268 1128 mutex_unlock(&mtd_table_mutex);
d5ca5129 1129 return 0;
1da177e4
LT
1130}
1131
447d9bd8
AD
1132static int mtd_proc_open(struct inode *inode, struct file *file)
1133{
1134 return single_open(file, mtd_proc_show, NULL);
1135}
1136
1137static const struct file_operations mtd_proc_ops = {
1138 .open = mtd_proc_open,
1139 .read = seq_read,
1140 .llseek = seq_lseek,
1141 .release = single_release,
1142};
45b09076
KC
1143#endif /* CONFIG_PROC_FS */
1144
1da177e4
LT
1145/*====================================================================*/
1146/* Init code */
1147
0661b1ac
JA
1148static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1149{
1150 int ret;
1151
1152 ret = bdi_init(bdi);
1153 if (!ret)
02aa2a37 1154 ret = bdi_register(bdi, NULL, "%s", name);
0661b1ac
JA
1155
1156 if (ret)
1157 bdi_destroy(bdi);
1158
1159 return ret;
1160}
1161
93e56214
AB
1162static struct proc_dir_entry *proc_mtd;
1163
1da177e4
LT
1164static int __init init_mtd(void)
1165{
15bce40c 1166 int ret;
0661b1ac 1167
15bce40c 1168 ret = class_register(&mtd_class);
0661b1ac
JA
1169 if (ret)
1170 goto err_reg;
1171
1172 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1173 if (ret)
1174 goto err_bdi1;
1175
1176 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1177 if (ret)
1178 goto err_bdi2;
1179
1180 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1181 if (ret)
1182 goto err_bdi3;
694bb7fc 1183
447d9bd8 1184 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
93e56214 1185
660685d9
AB
1186 ret = init_mtdchar();
1187 if (ret)
1188 goto out_procfs;
1189
1da177e4 1190 return 0;
0661b1ac 1191
660685d9
AB
1192out_procfs:
1193 if (proc_mtd)
1194 remove_proc_entry("mtd", NULL);
0661b1ac
JA
1195err_bdi3:
1196 bdi_destroy(&mtd_bdi_ro_mappable);
1197err_bdi2:
1198 bdi_destroy(&mtd_bdi_unmappable);
1199err_bdi1:
1200 class_unregister(&mtd_class);
1201err_reg:
1202 pr_err("Error registering mtd class or bdi: %d\n", ret);
1203 return ret;
1da177e4
LT
1204}
1205
1206static void __exit cleanup_mtd(void)
1207{
660685d9 1208 cleanup_mtdchar();
d5ca5129 1209 if (proc_mtd)
93e56214 1210 remove_proc_entry("mtd", NULL);
15bce40c 1211 class_unregister(&mtd_class);
0661b1ac
JA
1212 bdi_destroy(&mtd_bdi_unmappable);
1213 bdi_destroy(&mtd_bdi_ro_mappable);
1214 bdi_destroy(&mtd_bdi_rw_mappable);
1da177e4
LT
1215}
1216
1217module_init(init_mtd);
1218module_exit(cleanup_mtd);
1219
1da177e4
LT
1220MODULE_LICENSE("GPL");
1221MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1222MODULE_DESCRIPTION("Core MTD registration and access routines");