]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/mtd/mtdcore.c
Merge tag 'pm-fixes-4.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / mtdcore.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
a1452a37
DW
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
1da177e4
LT
22 */
23
1da177e4
LT
24#include <linux/module.h>
25#include <linux/kernel.h>
1da177e4 26#include <linux/ptrace.h>
447d9bd8 27#include <linux/seq_file.h>
1da177e4
LT
28#include <linux/string.h>
29#include <linux/timer.h>
30#include <linux/major.h>
31#include <linux/fs.h>
7799308f 32#include <linux/err.h>
1da177e4
LT
33#include <linux/ioctl.h>
34#include <linux/init.h>
215a02fd 35#include <linux/of.h>
1da177e4 36#include <linux/proc_fs.h>
b520e412 37#include <linux/idr.h>
a33eb6b9 38#include <linux/backing-dev.h>
05d71b46 39#include <linux/gfp.h>
0d01ff25 40#include <linux/slab.h>
3efe41be 41#include <linux/reboot.h>
fea728c0 42#include <linux/leds.h>
1da177e4
LT
43
44#include <linux/mtd/mtd.h>
f5671ab3 45#include <linux/mtd/partitions.h>
1da177e4 46
356d70f1 47#include "mtdcore.h"
660685d9 48
fa06052d 49struct backing_dev_info *mtd_bdi;
356d70f1 50
57b8045d
LPC
51#ifdef CONFIG_PM_SLEEP
52
53static int mtd_cls_suspend(struct device *dev)
54{
55 struct mtd_info *mtd = dev_get_drvdata(dev);
56
57 return mtd ? mtd_suspend(mtd) : 0;
58}
59
60static int mtd_cls_resume(struct device *dev)
61{
62 struct mtd_info *mtd = dev_get_drvdata(dev);
63
64 if (mtd)
65 mtd_resume(mtd);
66 return 0;
67}
68
69static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
70#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
71#else
72#define MTD_CLS_PM_OPS NULL
73#endif
15bce40c
DW
74
75static struct class mtd_class = {
76 .name = "mtd",
77 .owner = THIS_MODULE,
57b8045d 78 .pm = MTD_CLS_PM_OPS,
15bce40c 79};
1f24b5a8 80
b520e412
BH
81static DEFINE_IDR(mtd_idr);
82
97894cda 83/* These are exported solely for the purpose of mtd_blkdevs.c. You
1da177e4 84 should not use them for _anything_ else */
48b19268 85DEFINE_MUTEX(mtd_table_mutex);
1da177e4 86EXPORT_SYMBOL_GPL(mtd_table_mutex);
b520e412
BH
87
88struct mtd_info *__mtd_next_device(int i)
89{
90 return idr_get_next(&mtd_idr, &i);
91}
92EXPORT_SYMBOL_GPL(__mtd_next_device);
1da177e4
LT
93
94static LIST_HEAD(mtd_notifiers);
95
1f24b5a8 96
1f24b5a8 97#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
1f24b5a8
DB
98
99/* REVISIT once MTD uses the driver model better, whoever allocates
100 * the mtd_info will probably want to use the release() hook...
101 */
102static void mtd_release(struct device *dev)
103{
5e472128 104 struct mtd_info *mtd = dev_get_drvdata(dev);
d5de20a9 105 dev_t index = MTD_DEVT(mtd->index);
1f24b5a8 106
5e472128
BN
107 /* remove /dev/mtdXro node */
108 device_destroy(&mtd_class, index + 1);
15bce40c
DW
109}
110
1f24b5a8
DB
111static ssize_t mtd_type_show(struct device *dev,
112 struct device_attribute *attr, char *buf)
113{
d5de20a9 114 struct mtd_info *mtd = dev_get_drvdata(dev);
1f24b5a8
DB
115 char *type;
116
117 switch (mtd->type) {
118 case MTD_ABSENT:
119 type = "absent";
120 break;
121 case MTD_RAM:
122 type = "ram";
123 break;
124 case MTD_ROM:
125 type = "rom";
126 break;
127 case MTD_NORFLASH:
128 type = "nor";
129 break;
130 case MTD_NANDFLASH:
131 type = "nand";
132 break;
133 case MTD_DATAFLASH:
134 type = "dataflash";
135 break;
136 case MTD_UBIVOLUME:
137 type = "ubi";
138 break;
f4837246
HS
139 case MTD_MLCNANDFLASH:
140 type = "mlc-nand";
141 break;
1f24b5a8
DB
142 default:
143 type = "unknown";
144 }
145
146 return snprintf(buf, PAGE_SIZE, "%s\n", type);
147}
694bb7fc
KC
148static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
149
150static ssize_t mtd_flags_show(struct device *dev,
151 struct device_attribute *attr, char *buf)
152{
d5de20a9 153 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
154
155 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
156
157}
158static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
159
160static ssize_t mtd_size_show(struct device *dev,
161 struct device_attribute *attr, char *buf)
162{
d5de20a9 163 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
164
165 return snprintf(buf, PAGE_SIZE, "%llu\n",
166 (unsigned long long)mtd->size);
167
168}
169static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
170
171static ssize_t mtd_erasesize_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
173{
d5de20a9 174 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
175
176 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
177
178}
179static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
180
181static ssize_t mtd_writesize_show(struct device *dev,
182 struct device_attribute *attr, char *buf)
183{
d5de20a9 184 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
185
186 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
187
188}
189static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
190
e7693548
AB
191static ssize_t mtd_subpagesize_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
193{
d5de20a9 194 struct mtd_info *mtd = dev_get_drvdata(dev);
e7693548
AB
195 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
196
197 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
198
199}
200static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
201
694bb7fc
KC
202static ssize_t mtd_oobsize_show(struct device *dev,
203 struct device_attribute *attr, char *buf)
204{
d5de20a9 205 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
206
207 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
208
209}
210static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
211
212static ssize_t mtd_numeraseregions_show(struct device *dev,
213 struct device_attribute *attr, char *buf)
214{
d5de20a9 215 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
216
217 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
218
219}
220static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
221 NULL);
222
223static ssize_t mtd_name_show(struct device *dev,
224 struct device_attribute *attr, char *buf)
225{
d5de20a9 226 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
227
228 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
229
230}
231static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
1f24b5a8 232
a9b672e8
MD
233static ssize_t mtd_ecc_strength_show(struct device *dev,
234 struct device_attribute *attr, char *buf)
235{
236 struct mtd_info *mtd = dev_get_drvdata(dev);
237
238 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
239}
240static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
241
d062d4ed
MD
242static ssize_t mtd_bitflip_threshold_show(struct device *dev,
243 struct device_attribute *attr,
244 char *buf)
245{
246 struct mtd_info *mtd = dev_get_drvdata(dev);
247
248 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
249}
250
251static ssize_t mtd_bitflip_threshold_store(struct device *dev,
252 struct device_attribute *attr,
253 const char *buf, size_t count)
254{
255 struct mtd_info *mtd = dev_get_drvdata(dev);
256 unsigned int bitflip_threshold;
257 int retval;
258
259 retval = kstrtouint(buf, 0, &bitflip_threshold);
260 if (retval)
261 return retval;
262
263 mtd->bitflip_threshold = bitflip_threshold;
264 return count;
265}
266static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
267 mtd_bitflip_threshold_show,
268 mtd_bitflip_threshold_store);
269
bf977e3f
HS
270static ssize_t mtd_ecc_step_size_show(struct device *dev,
271 struct device_attribute *attr, char *buf)
272{
273 struct mtd_info *mtd = dev_get_drvdata(dev);
274
275 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
276
277}
278static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
279
990a3af0
EG
280static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282{
283 struct mtd_info *mtd = dev_get_drvdata(dev);
284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285
286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
287}
288static DEVICE_ATTR(corrected_bits, S_IRUGO,
289 mtd_ecc_stats_corrected_show, NULL);
290
291static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293{
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296
297 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
298}
299static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
300
301static ssize_t mtd_badblocks_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303{
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306
307 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
308}
309static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
310
311static ssize_t mtd_bbtblocks_show(struct device *dev,
312 struct device_attribute *attr, char *buf)
313{
314 struct mtd_info *mtd = dev_get_drvdata(dev);
315 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316
317 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
318}
319static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
320
1f24b5a8 321static struct attribute *mtd_attrs[] = {
694bb7fc
KC
322 &dev_attr_type.attr,
323 &dev_attr_flags.attr,
324 &dev_attr_size.attr,
325 &dev_attr_erasesize.attr,
326 &dev_attr_writesize.attr,
e7693548 327 &dev_attr_subpagesize.attr,
694bb7fc
KC
328 &dev_attr_oobsize.attr,
329 &dev_attr_numeraseregions.attr,
330 &dev_attr_name.attr,
a9b672e8 331 &dev_attr_ecc_strength.attr,
bf977e3f 332 &dev_attr_ecc_step_size.attr,
990a3af0
EG
333 &dev_attr_corrected_bits.attr,
334 &dev_attr_ecc_failures.attr,
335 &dev_attr_bad_blocks.attr,
336 &dev_attr_bbt_blocks.attr,
d062d4ed 337 &dev_attr_bitflip_threshold.attr,
1f24b5a8
DB
338 NULL,
339};
54c738f6 340ATTRIBUTE_GROUPS(mtd);
1f24b5a8
DB
341
342static struct device_type mtd_devtype = {
343 .name = "mtd",
344 .groups = mtd_groups,
345 .release = mtd_release,
346};
347
b4caecd4
CH
348#ifndef CONFIG_MMU
349unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
350{
351 switch (mtd->type) {
352 case MTD_RAM:
353 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
354 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
355 case MTD_ROM:
356 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
357 NOMMU_MAP_READ;
358 default:
359 return NOMMU_MAP_COPY;
360 }
361}
706a4e5a 362EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
b4caecd4
CH
363#endif
364
3efe41be
BN
365static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
366 void *cmd)
367{
368 struct mtd_info *mtd;
369
370 mtd = container_of(n, struct mtd_info, reboot_notifier);
371 mtd->_reboot(mtd);
372
373 return NOTIFY_DONE;
374}
375
477b0229
BB
376/**
377 * mtd_wunit_to_pairing_info - get pairing information of a wunit
378 * @mtd: pointer to new MTD device info structure
379 * @wunit: write unit we are interested in
380 * @info: returned pairing information
381 *
382 * Retrieve pairing information associated to the wunit.
383 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
384 * paired together, and where programming a page may influence the page it is
385 * paired with.
386 * The notion of page is replaced by the term wunit (write-unit) to stay
387 * consistent with the ->writesize field.
388 *
389 * The @wunit argument can be extracted from an absolute offset using
390 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
391 * to @wunit.
392 *
393 * From the pairing info the MTD user can find all the wunits paired with
394 * @wunit using the following loop:
395 *
396 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
397 * info.pair = i;
398 * mtd_pairing_info_to_wunit(mtd, &info);
399 * ...
400 * }
401 */
402int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
403 struct mtd_pairing_info *info)
404{
405 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
406
407 if (wunit < 0 || wunit >= npairs)
408 return -EINVAL;
409
410 if (mtd->pairing && mtd->pairing->get_info)
411 return mtd->pairing->get_info(mtd, wunit, info);
412
413 info->group = 0;
414 info->pair = wunit;
415
416 return 0;
417}
418EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
419
420/**
421 * mtd_wunit_to_pairing_info - get wunit from pairing information
422 * @mtd: pointer to new MTD device info structure
423 * @info: pairing information struct
424 *
425 * Returns a positive number representing the wunit associated to the info
426 * struct, or a negative error code.
427 *
428 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
429 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
430 * doc).
431 *
432 * It can also be used to only program the first page of each pair (i.e.
433 * page attached to group 0), which allows one to use an MLC NAND in
434 * software-emulated SLC mode:
435 *
436 * info.group = 0;
437 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
438 * for (info.pair = 0; info.pair < npairs; info.pair++) {
439 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
440 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
441 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
442 * }
443 */
444int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
445 const struct mtd_pairing_info *info)
446{
447 int ngroups = mtd_pairing_groups(mtd);
448 int npairs = mtd_wunit_per_eb(mtd) / ngroups;
449
450 if (!info || info->pair < 0 || info->pair >= npairs ||
451 info->group < 0 || info->group >= ngroups)
452 return -EINVAL;
453
454 if (mtd->pairing && mtd->pairing->get_wunit)
455 return mtd->pairing->get_wunit(mtd, info);
456
457 return info->pair;
458}
459EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
460
461/**
462 * mtd_pairing_groups - get the number of pairing groups
463 * @mtd: pointer to new MTD device info structure
464 *
465 * Returns the number of pairing groups.
466 *
467 * This number is usually equal to the number of bits exposed by a single
468 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
469 * to iterate over all pages of a given pair.
470 */
471int mtd_pairing_groups(struct mtd_info *mtd)
472{
473 if (!mtd->pairing || !mtd->pairing->ngroups)
474 return 1;
475
476 return mtd->pairing->ngroups;
477}
478EXPORT_SYMBOL_GPL(mtd_pairing_groups);
479
1da177e4
LT
480/**
481 * add_mtd_device - register an MTD device
482 * @mtd: pointer to new MTD device info structure
483 *
484 * Add a device to the list of MTD devices present in the system, and
485 * notify each currently active MTD 'user' of its arrival. Returns
57dd990c 486 * zero on success or non-zero on failure.
1da177e4
LT
487 */
488
489int add_mtd_device(struct mtd_info *mtd)
490{
b520e412
BH
491 struct mtd_notifier *not;
492 int i, error;
1da177e4 493
be0dbff8
BN
494 /*
495 * May occur, for instance, on buggy drivers which call
496 * mtd_device_parse_register() multiple times on the same master MTD,
497 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
498 */
fa06052d 499 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
be0dbff8
BN
500 return -EEXIST;
501
783ed81f 502 BUG_ON(mtd->writesize == 0);
48b19268 503 mutex_lock(&mtd_table_mutex);
1da177e4 504
589e9c4d 505 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
57dd990c
BN
506 if (i < 0) {
507 error = i;
b520e412 508 goto fail_locked;
57dd990c 509 }
1f24b5a8 510
b520e412
BH
511 mtd->index = i;
512 mtd->usecount = 0;
513
d062d4ed
MD
514 /* default value if not set by driver */
515 if (mtd->bitflip_threshold == 0)
516 mtd->bitflip_threshold = mtd->ecc_strength;
517
b520e412
BH
518 if (is_power_of_2(mtd->erasesize))
519 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
520 else
521 mtd->erasesize_shift = 0;
522
523 if (is_power_of_2(mtd->writesize))
524 mtd->writesize_shift = ffs(mtd->writesize) - 1;
525 else
526 mtd->writesize_shift = 0;
527
528 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
529 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
530
531 /* Some chips always power up locked. Unlock them now */
38134565
AB
532 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
533 error = mtd_unlock(mtd, 0, mtd->size);
534 if (error && error != -EOPNOTSUPP)
b520e412
BH
535 printk(KERN_WARNING
536 "%s: unlock failed, writes may not work\n",
537 mtd->name);
57dd990c
BN
538 /* Ignore unlock failures? */
539 error = 0;
b520e412
BH
540 }
541
542 /* Caller should have set dev.parent to match the
260e89a6 543 * physical device, if appropriate.
b520e412
BH
544 */
545 mtd->dev.type = &mtd_devtype;
546 mtd->dev.class = &mtd_class;
547 mtd->dev.devt = MTD_DEVT(i);
548 dev_set_name(&mtd->dev, "mtd%d", i);
549 dev_set_drvdata(&mtd->dev, mtd);
215a02fd 550 of_node_get(mtd_get_of_node(mtd));
57dd990c
BN
551 error = device_register(&mtd->dev);
552 if (error)
b520e412
BH
553 goto fail_added;
554
5e472128
BN
555 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
556 "mtd%dro", i);
b520e412 557
289c0522 558 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
b520e412
BH
559 /* No need to get a refcount on the module containing
560 the notifier, since we hold the mtd_table_mutex */
561 list_for_each_entry(not, &mtd_notifiers, list)
562 not->add(mtd);
563
564 mutex_unlock(&mtd_table_mutex);
565 /* We _know_ we aren't being removed, because
566 our caller is still holding us here. So none
567 of this try_ nonsense, and no bitching about it
568 either. :) */
569 __module_get(THIS_MODULE);
570 return 0;
97894cda 571
b520e412 572fail_added:
215a02fd 573 of_node_put(mtd_get_of_node(mtd));
b520e412
BH
574 idr_remove(&mtd_idr, i);
575fail_locked:
48b19268 576 mutex_unlock(&mtd_table_mutex);
57dd990c 577 return error;
1da177e4
LT
578}
579
580/**
581 * del_mtd_device - unregister an MTD device
582 * @mtd: pointer to MTD device info structure
583 *
584 * Remove a device from the list of MTD devices present in the system,
585 * and notify each currently active MTD 'user' of its departure.
586 * Returns zero on success or 1 on failure, which currently will happen
587 * if the requested device does not appear to be present in the list.
588 */
589
eea72d5f 590int del_mtd_device(struct mtd_info *mtd)
1da177e4
LT
591{
592 int ret;
75c0b84d 593 struct mtd_notifier *not;
97894cda 594
48b19268 595 mutex_lock(&mtd_table_mutex);
1da177e4 596
b520e412 597 if (idr_find(&mtd_idr, mtd->index) != mtd) {
1da177e4 598 ret = -ENODEV;
75c0b84d
ML
599 goto out_error;
600 }
601
602 /* No need to get a refcount on the module containing
603 the notifier, since we hold the mtd_table_mutex */
604 list_for_each_entry(not, &mtd_notifiers, list)
605 not->remove(mtd);
606
607 if (mtd->usecount) {
97894cda 608 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
1da177e4
LT
609 mtd->index, mtd->name, mtd->usecount);
610 ret = -EBUSY;
611 } else {
694bb7fc
KC
612 device_unregister(&mtd->dev);
613
b520e412 614 idr_remove(&mtd_idr, mtd->index);
215a02fd 615 of_node_put(mtd_get_of_node(mtd));
1da177e4
LT
616
617 module_put(THIS_MODULE);
618 ret = 0;
619 }
620
75c0b84d 621out_error:
48b19268 622 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
623 return ret;
624}
625
727dc612 626static int mtd_add_device_partitions(struct mtd_info *mtd,
07fd2f87 627 struct mtd_partitions *parts)
727dc612 628{
07fd2f87
BN
629 const struct mtd_partition *real_parts = parts->parts;
630 int nbparts = parts->nr_parts;
727dc612
DE
631 int ret;
632
633 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
634 ret = add_mtd_device(mtd);
57dd990c
BN
635 if (ret)
636 return ret;
727dc612
DE
637 }
638
639 if (nbparts > 0) {
640 ret = add_mtd_partitions(mtd, real_parts, nbparts);
641 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
642 del_mtd_device(mtd);
643 return ret;
644 }
645
646 return 0;
647}
648
472b444e
BN
649/*
650 * Set a few defaults based on the parent devices, if not provided by the
651 * driver
652 */
653static void mtd_set_dev_defaults(struct mtd_info *mtd)
654{
655 if (mtd->dev.parent) {
656 if (!mtd->owner && mtd->dev.parent->driver)
657 mtd->owner = mtd->dev.parent->driver->owner;
658 if (!mtd->name)
659 mtd->name = dev_name(mtd->dev.parent);
660 } else {
661 pr_debug("mtd device won't show a device symlink in sysfs\n");
662 }
663}
727dc612 664
1c4c215c
DES
665/**
666 * mtd_device_parse_register - parse partitions and register an MTD device.
667 *
668 * @mtd: the MTD device to register
669 * @types: the list of MTD partition probes to try, see
670 * 'parse_mtd_partitions()' for more information
c7975330 671 * @parser_data: MTD partition parser-specific data
1c4c215c
DES
672 * @parts: fallback partition information to register, if parsing fails;
673 * only valid if %nr_parts > %0
674 * @nr_parts: the number of partitions in parts, if zero then the full
675 * MTD device is registered if no partition info is found
676 *
677 * This function aggregates MTD partitions parsing (done by
678 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
679 * basically follows the most common pattern found in many MTD drivers:
680 *
681 * * It first tries to probe partitions on MTD device @mtd using parsers
682 * specified in @types (if @types is %NULL, then the default list of parsers
683 * is used, see 'parse_mtd_partitions()' for more information). If none are
684 * found this functions tries to fallback to information specified in
685 * @parts/@nr_parts.
92394b5c 686 * * If any partitioning info was found, this function registers the found
727dc612
DE
687 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
688 * as a whole is registered first.
1c4c215c
DES
689 * * If no partitions were found this function just registers the MTD device
690 * @mtd and exits.
691 *
692 * Returns zero in case of success and a negative error code in case of failure.
693 */
26a47346 694int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
c7975330 695 struct mtd_part_parser_data *parser_data,
1c4c215c
DES
696 const struct mtd_partition *parts,
697 int nr_parts)
698{
07fd2f87 699 struct mtd_partitions parsed;
727dc612 700 int ret;
1c4c215c 701
472b444e
BN
702 mtd_set_dev_defaults(mtd);
703
07fd2f87
BN
704 memset(&parsed, 0, sizeof(parsed));
705
706 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
707 if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
708 /* Fall back to driver-provided partitions */
709 parsed = (struct mtd_partitions){
710 .parts = parts,
711 .nr_parts = nr_parts,
712 };
713 } else if (ret < 0) {
714 /* Didn't come up with parsed OR fallback partitions */
5a2415b0
BN
715 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
716 ret);
717 /* Don't abort on errors; we can still use unpartitioned MTD */
07fd2f87 718 memset(&parsed, 0, sizeof(parsed));
3e00ed0e 719 }
1c4c215c 720
07fd2f87 721 ret = mtd_add_device_partitions(mtd, &parsed);
3e00ed0e
BN
722 if (ret)
723 goto out;
1c4c215c 724
e1dd8641
NC
725 /*
726 * FIXME: some drivers unfortunately call this function more than once.
727 * So we have to check if we've already assigned the reboot notifier.
728 *
729 * Generally, we can make multiple calls work for most cases, but it
730 * does cause problems with parse_mtd_partitions() above (e.g.,
731 * cmdlineparts will register partitions more than once).
732 */
f8479dd6
BN
733 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
734 "MTD already registered\n");
e1dd8641 735 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
3efe41be
BN
736 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
737 register_reboot_notifier(&mtd->reboot_notifier);
738 }
739
3e00ed0e 740out:
c42c2710 741 /* Cleanup any parsed partitions */
adc83bf8 742 mtd_part_parser_cleanup(&parsed);
727dc612 743 return ret;
1c4c215c
DES
744}
745EXPORT_SYMBOL_GPL(mtd_device_parse_register);
746
f5671ab3
JI
747/**
748 * mtd_device_unregister - unregister an existing MTD device.
749 *
750 * @master: the MTD device to unregister. This will unregister both the master
751 * and any partitions if registered.
752 */
753int mtd_device_unregister(struct mtd_info *master)
754{
755 int err;
756
3efe41be
BN
757 if (master->_reboot)
758 unregister_reboot_notifier(&master->reboot_notifier);
759
f5671ab3
JI
760 err = del_mtd_partitions(master);
761 if (err)
762 return err;
763
764 if (!device_is_registered(&master->dev))
765 return 0;
766
767 return del_mtd_device(master);
768}
769EXPORT_SYMBOL_GPL(mtd_device_unregister);
770
1da177e4
LT
771/**
772 * register_mtd_user - register a 'user' of MTD devices.
773 * @new: pointer to notifier info structure
774 *
775 * Registers a pair of callbacks function to be called upon addition
776 * or removal of MTD devices. Causes the 'add' callback to be immediately
777 * invoked for each MTD device currently present in the system.
778 */
1da177e4
LT
779void register_mtd_user (struct mtd_notifier *new)
780{
f1332ba2 781 struct mtd_info *mtd;
1da177e4 782
48b19268 783 mutex_lock(&mtd_table_mutex);
1da177e4
LT
784
785 list_add(&new->list, &mtd_notifiers);
786
d5ca5129 787 __module_get(THIS_MODULE);
97894cda 788
f1332ba2
BH
789 mtd_for_each_device(mtd)
790 new->add(mtd);
1da177e4 791
48b19268 792 mutex_unlock(&mtd_table_mutex);
1da177e4 793}
33c87b4a 794EXPORT_SYMBOL_GPL(register_mtd_user);
1da177e4
LT
795
796/**
49450795
AB
797 * unregister_mtd_user - unregister a 'user' of MTD devices.
798 * @old: pointer to notifier info structure
1da177e4
LT
799 *
800 * Removes a callback function pair from the list of 'users' to be
801 * notified upon addition or removal of MTD devices. Causes the
802 * 'remove' callback to be immediately invoked for each MTD device
803 * currently present in the system.
804 */
1da177e4
LT
805int unregister_mtd_user (struct mtd_notifier *old)
806{
f1332ba2 807 struct mtd_info *mtd;
1da177e4 808
48b19268 809 mutex_lock(&mtd_table_mutex);
1da177e4
LT
810
811 module_put(THIS_MODULE);
812
f1332ba2
BH
813 mtd_for_each_device(mtd)
814 old->remove(mtd);
97894cda 815
1da177e4 816 list_del(&old->list);
48b19268 817 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
818 return 0;
819}
33c87b4a 820EXPORT_SYMBOL_GPL(unregister_mtd_user);
1da177e4
LT
821
822/**
823 * get_mtd_device - obtain a validated handle for an MTD device
824 * @mtd: last known address of the required MTD device
825 * @num: internal device number of the required MTD device
826 *
827 * Given a number and NULL address, return the num'th entry in the device
828 * table, if any. Given an address and num == -1, search the device table
829 * for a device with that address and return if it's still present. Given
9c74034f
AB
830 * both, return the num'th driver only if its address matches. Return
831 * error code if not.
1da177e4 832 */
1da177e4
LT
833struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
834{
f1332ba2
BH
835 struct mtd_info *ret = NULL, *other;
836 int err = -ENODEV;
1da177e4 837
48b19268 838 mutex_lock(&mtd_table_mutex);
1da177e4
LT
839
840 if (num == -1) {
f1332ba2
BH
841 mtd_for_each_device(other) {
842 if (other == mtd) {
843 ret = mtd;
844 break;
845 }
846 }
b520e412
BH
847 } else if (num >= 0) {
848 ret = idr_find(&mtd_idr, num);
1da177e4
LT
849 if (mtd && mtd != ret)
850 ret = NULL;
851 }
852
3bd45657
ML
853 if (!ret) {
854 ret = ERR_PTR(err);
855 goto out;
9fe912ce 856 }
1da177e4 857
3bd45657
ML
858 err = __get_mtd_device(ret);
859 if (err)
860 ret = ERR_PTR(err);
861out:
9c74034f
AB
862 mutex_unlock(&mtd_table_mutex);
863 return ret;
3bd45657 864}
33c87b4a 865EXPORT_SYMBOL_GPL(get_mtd_device);
1da177e4 866
3bd45657
ML
867
868int __get_mtd_device(struct mtd_info *mtd)
869{
870 int err;
871
872 if (!try_module_get(mtd->owner))
873 return -ENODEV;
874
3c3c10bb
AB
875 if (mtd->_get_device) {
876 err = mtd->_get_device(mtd);
3bd45657
ML
877
878 if (err) {
879 module_put(mtd->owner);
880 return err;
881 }
882 }
883 mtd->usecount++;
884 return 0;
1da177e4 885}
33c87b4a 886EXPORT_SYMBOL_GPL(__get_mtd_device);
1da177e4 887
7799308f
AB
888/**
889 * get_mtd_device_nm - obtain a validated handle for an MTD device by
890 * device name
891 * @name: MTD device name to open
892 *
893 * This function returns MTD device description structure in case of
894 * success and an error code in case of failure.
895 */
7799308f
AB
896struct mtd_info *get_mtd_device_nm(const char *name)
897{
f1332ba2
BH
898 int err = -ENODEV;
899 struct mtd_info *mtd = NULL, *other;
7799308f
AB
900
901 mutex_lock(&mtd_table_mutex);
902
f1332ba2
BH
903 mtd_for_each_device(other) {
904 if (!strcmp(name, other->name)) {
905 mtd = other;
7799308f
AB
906 break;
907 }
908 }
909
9fe912ce 910 if (!mtd)
7799308f
AB
911 goto out_unlock;
912
52534f2d
WG
913 err = __get_mtd_device(mtd);
914 if (err)
7799308f
AB
915 goto out_unlock;
916
9fe912ce
AB
917 mutex_unlock(&mtd_table_mutex);
918 return mtd;
7799308f
AB
919
920out_unlock:
921 mutex_unlock(&mtd_table_mutex);
9fe912ce 922 return ERR_PTR(err);
7799308f 923}
33c87b4a 924EXPORT_SYMBOL_GPL(get_mtd_device_nm);
7799308f 925
1da177e4
LT
926void put_mtd_device(struct mtd_info *mtd)
927{
48b19268 928 mutex_lock(&mtd_table_mutex);
3bd45657
ML
929 __put_mtd_device(mtd);
930 mutex_unlock(&mtd_table_mutex);
931
932}
33c87b4a 933EXPORT_SYMBOL_GPL(put_mtd_device);
3bd45657
ML
934
935void __put_mtd_device(struct mtd_info *mtd)
936{
937 --mtd->usecount;
938 BUG_ON(mtd->usecount < 0);
939
3c3c10bb
AB
940 if (mtd->_put_device)
941 mtd->_put_device(mtd);
1da177e4
LT
942
943 module_put(mtd->owner);
944}
33c87b4a 945EXPORT_SYMBOL_GPL(__put_mtd_device);
1da177e4 946
8273a0c9
AB
947/*
948 * Erase is an asynchronous operation. Device drivers are supposed
949 * to call instr->callback() whenever the operation completes, even
950 * if it completes with a failure.
951 * Callers are supposed to pass a callback function and wait for it
952 * to be called before writing to the block.
953 */
954int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
955{
0c2b4e21 956 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
8273a0c9 957 return -EINVAL;
664addc2
AB
958 if (!(mtd->flags & MTD_WRITEABLE))
959 return -EROFS;
3b27dac0 960 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
bcb1d238
AB
961 if (!instr->len) {
962 instr->state = MTD_ERASE_DONE;
963 mtd_erase_callback(instr);
964 return 0;
965 }
fea728c0 966 ledtrig_mtd_activity();
8273a0c9
AB
967 return mtd->_erase(mtd, instr);
968}
969EXPORT_SYMBOL_GPL(mtd_erase);
970
971/*
972 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
973 */
974int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
975 void **virt, resource_size_t *phys)
976{
977 *retlen = 0;
0dd5235f
AB
978 *virt = NULL;
979 if (phys)
980 *phys = 0;
8273a0c9
AB
981 if (!mtd->_point)
982 return -EOPNOTSUPP;
0c2b4e21 983 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 984 return -EINVAL;
bcb1d238
AB
985 if (!len)
986 return 0;
8273a0c9
AB
987 return mtd->_point(mtd, from, len, retlen, virt, phys);
988}
989EXPORT_SYMBOL_GPL(mtd_point);
990
991/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
992int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
993{
b9504247 994 if (!mtd->_unpoint)
8273a0c9 995 return -EOPNOTSUPP;
0c2b4e21 996 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 997 return -EINVAL;
bcb1d238
AB
998 if (!len)
999 return 0;
8273a0c9
AB
1000 return mtd->_unpoint(mtd, from, len);
1001}
1002EXPORT_SYMBOL_GPL(mtd_unpoint);
1003
1004/*
1005 * Allow NOMMU mmap() to directly map the device (if not NULL)
1006 * - return the address to which the offset maps
1007 * - return -ENOSYS to indicate refusal to do the mapping
1008 */
1009unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1010 unsigned long offset, unsigned long flags)
1011{
1012 if (!mtd->_get_unmapped_area)
1013 return -EOPNOTSUPP;
0c2b4e21 1014 if (offset >= mtd->size || len > mtd->size - offset)
8273a0c9
AB
1015 return -EINVAL;
1016 return mtd->_get_unmapped_area(mtd, len, offset, flags);
1017}
1018EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1019
1020int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1021 u_char *buf)
1022{
edbc4540 1023 int ret_code;
834247ec 1024 *retlen = 0;
0c2b4e21 1025 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 1026 return -EINVAL;
bcb1d238
AB
1027 if (!len)
1028 return 0;
edbc4540 1029
fea728c0 1030 ledtrig_mtd_activity();
edbc4540
MD
1031 /*
1032 * In the absence of an error, drivers return a non-negative integer
1033 * representing the maximum number of bitflips that were corrected on
1034 * any one ecc region (if applicable; zero otherwise).
1035 */
1036 ret_code = mtd->_read(mtd, from, len, retlen, buf);
1037 if (unlikely(ret_code < 0))
1038 return ret_code;
1039 if (mtd->ecc_strength == 0)
1040 return 0; /* device lacks ecc */
1041 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
8273a0c9
AB
1042}
1043EXPORT_SYMBOL_GPL(mtd_read);
1044
1045int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1046 const u_char *buf)
1047{
1048 *retlen = 0;
0c2b4e21 1049 if (to < 0 || to >= mtd->size || len > mtd->size - to)
8273a0c9 1050 return -EINVAL;
664addc2
AB
1051 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
1052 return -EROFS;
bcb1d238
AB
1053 if (!len)
1054 return 0;
fea728c0 1055 ledtrig_mtd_activity();
8273a0c9
AB
1056 return mtd->_write(mtd, to, len, retlen, buf);
1057}
1058EXPORT_SYMBOL_GPL(mtd_write);
1059
1060/*
1061 * In blackbox flight recorder like scenarios we want to make successful writes
1062 * in interrupt context. panic_write() is only intended to be called when its
1063 * known the kernel is about to panic and we need the write to succeed. Since
1064 * the kernel is not going to be running for much longer, this function can
1065 * break locks and delay to ensure the write succeeds (but not sleep).
1066 */
1067int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1068 const u_char *buf)
1069{
1070 *retlen = 0;
1071 if (!mtd->_panic_write)
1072 return -EOPNOTSUPP;
0c2b4e21 1073 if (to < 0 || to >= mtd->size || len > mtd->size - to)
8273a0c9 1074 return -EINVAL;
664addc2
AB
1075 if (!(mtd->flags & MTD_WRITEABLE))
1076 return -EROFS;
bcb1d238
AB
1077 if (!len)
1078 return 0;
8273a0c9
AB
1079 return mtd->_panic_write(mtd, to, len, retlen, buf);
1080}
1081EXPORT_SYMBOL_GPL(mtd_panic_write);
1082
d2d48480
BN
1083int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1084{
e47f6858 1085 int ret_code;
d2d48480
BN
1086 ops->retlen = ops->oobretlen = 0;
1087 if (!mtd->_read_oob)
1088 return -EOPNOTSUPP;
fea728c0
EG
1089
1090 ledtrig_mtd_activity();
e47f6858
BN
1091 /*
1092 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1093 * similar to mtd->_read(), returning a non-negative integer
1094 * representing max bitflips. In other cases, mtd->_read_oob() may
1095 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1096 */
1097 ret_code = mtd->_read_oob(mtd, from, ops);
1098 if (unlikely(ret_code < 0))
1099 return ret_code;
1100 if (mtd->ecc_strength == 0)
1101 return 0; /* device lacks ecc */
1102 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
d2d48480
BN
1103}
1104EXPORT_SYMBOL_GPL(mtd_read_oob);
1105
0c034fe3
EG
1106int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1107 struct mtd_oob_ops *ops)
1108{
1109 ops->retlen = ops->oobretlen = 0;
1110 if (!mtd->_write_oob)
1111 return -EOPNOTSUPP;
1112 if (!(mtd->flags & MTD_WRITEABLE))
1113 return -EROFS;
fea728c0 1114 ledtrig_mtd_activity();
0c034fe3
EG
1115 return mtd->_write_oob(mtd, to, ops);
1116}
1117EXPORT_SYMBOL_GPL(mtd_write_oob);
1118
75eb2cec
BB
1119/**
1120 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1121 * @mtd: MTD device structure
1122 * @section: ECC section. Depending on the layout you may have all the ECC
1123 * bytes stored in a single contiguous section, or one section
1124 * per ECC chunk (and sometime several sections for a single ECC
1125 * ECC chunk)
1126 * @oobecc: OOB region struct filled with the appropriate ECC position
1127 * information
1128 *
7da0fffb 1129 * This function returns ECC section information in the OOB area. If you want
75eb2cec
BB
1130 * to get all the ECC bytes information, then you should call
1131 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1132 *
1133 * Returns zero on success, a negative error code otherwise.
1134 */
1135int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1136 struct mtd_oob_region *oobecc)
1137{
75eb2cec
BB
1138 memset(oobecc, 0, sizeof(*oobecc));
1139
1140 if (!mtd || section < 0)
1141 return -EINVAL;
1142
adbbc3bc 1143 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
75eb2cec
BB
1144 return -ENOTSUPP;
1145
adbbc3bc 1146 return mtd->ooblayout->ecc(mtd, section, oobecc);
75eb2cec
BB
1147}
1148EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1149
1150/**
1151 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1152 * section
1153 * @mtd: MTD device structure
1154 * @section: Free section you are interested in. Depending on the layout
1155 * you may have all the free bytes stored in a single contiguous
1156 * section, or one section per ECC chunk plus an extra section
1157 * for the remaining bytes (or other funky layout).
1158 * @oobfree: OOB region struct filled with the appropriate free position
1159 * information
1160 *
7da0fffb 1161 * This function returns free bytes position in the OOB area. If you want
75eb2cec
BB
1162 * to get all the free bytes information, then you should call
1163 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1164 *
1165 * Returns zero on success, a negative error code otherwise.
1166 */
1167int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1168 struct mtd_oob_region *oobfree)
1169{
1170 memset(oobfree, 0, sizeof(*oobfree));
1171
1172 if (!mtd || section < 0)
1173 return -EINVAL;
1174
adbbc3bc 1175 if (!mtd->ooblayout || !mtd->ooblayout->free)
75eb2cec
BB
1176 return -ENOTSUPP;
1177
adbbc3bc 1178 return mtd->ooblayout->free(mtd, section, oobfree);
75eb2cec
BB
1179}
1180EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1181
1182/**
1183 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1184 * @mtd: mtd info structure
1185 * @byte: the byte we are searching for
1186 * @sectionp: pointer where the section id will be stored
1187 * @oobregion: used to retrieve the ECC position
1188 * @iter: iterator function. Should be either mtd_ooblayout_free or
1189 * mtd_ooblayout_ecc depending on the region type you're searching for
1190 *
7da0fffb 1191 * This function returns the section id and oobregion information of a
75eb2cec
BB
1192 * specific byte. For example, say you want to know where the 4th ECC byte is
1193 * stored, you'll use:
1194 *
1195 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1196 *
1197 * Returns zero on success, a negative error code otherwise.
1198 */
1199static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1200 int *sectionp, struct mtd_oob_region *oobregion,
1201 int (*iter)(struct mtd_info *,
1202 int section,
1203 struct mtd_oob_region *oobregion))
1204{
1205 int pos = 0, ret, section = 0;
1206
1207 memset(oobregion, 0, sizeof(*oobregion));
1208
1209 while (1) {
1210 ret = iter(mtd, section, oobregion);
1211 if (ret)
1212 return ret;
1213
1214 if (pos + oobregion->length > byte)
1215 break;
1216
1217 pos += oobregion->length;
1218 section++;
1219 }
1220
1221 /*
1222 * Adjust region info to make it start at the beginning at the
1223 * 'start' ECC byte.
1224 */
1225 oobregion->offset += byte - pos;
1226 oobregion->length -= byte - pos;
1227 *sectionp = section;
1228
1229 return 0;
1230}
1231
1232/**
1233 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1234 * ECC byte
1235 * @mtd: mtd info structure
1236 * @eccbyte: the byte we are searching for
1237 * @sectionp: pointer where the section id will be stored
1238 * @oobregion: OOB region information
1239 *
1240 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1241 * byte.
1242 *
1243 * Returns zero on success, a negative error code otherwise.
1244 */
1245int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1246 int *section,
1247 struct mtd_oob_region *oobregion)
1248{
1249 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1250 mtd_ooblayout_ecc);
1251}
1252EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1253
1254/**
1255 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1256 * @mtd: mtd info structure
1257 * @buf: destination buffer to store OOB bytes
1258 * @oobbuf: OOB buffer
1259 * @start: first byte to retrieve
1260 * @nbytes: number of bytes to retrieve
1261 * @iter: section iterator
1262 *
1263 * Extract bytes attached to a specific category (ECC or free)
1264 * from the OOB buffer and copy them into buf.
1265 *
1266 * Returns zero on success, a negative error code otherwise.
1267 */
1268static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1269 const u8 *oobbuf, int start, int nbytes,
1270 int (*iter)(struct mtd_info *,
1271 int section,
1272 struct mtd_oob_region *oobregion))
1273{
8e8fd4d1
MY
1274 struct mtd_oob_region oobregion;
1275 int section, ret;
75eb2cec
BB
1276
1277 ret = mtd_ooblayout_find_region(mtd, start, &section,
1278 &oobregion, iter);
1279
1280 while (!ret) {
1281 int cnt;
1282
7c295ef9 1283 cnt = min_t(int, nbytes, oobregion.length);
75eb2cec
BB
1284 memcpy(buf, oobbuf + oobregion.offset, cnt);
1285 buf += cnt;
1286 nbytes -= cnt;
1287
1288 if (!nbytes)
1289 break;
1290
1291 ret = iter(mtd, ++section, &oobregion);
1292 }
1293
1294 return ret;
1295}
1296
1297/**
1298 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1299 * @mtd: mtd info structure
1300 * @buf: source buffer to get OOB bytes from
1301 * @oobbuf: OOB buffer
1302 * @start: first OOB byte to set
1303 * @nbytes: number of OOB bytes to set
1304 * @iter: section iterator
1305 *
1306 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1307 * is selected by passing the appropriate iterator.
1308 *
1309 * Returns zero on success, a negative error code otherwise.
1310 */
1311static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1312 u8 *oobbuf, int start, int nbytes,
1313 int (*iter)(struct mtd_info *,
1314 int section,
1315 struct mtd_oob_region *oobregion))
1316{
8e8fd4d1
MY
1317 struct mtd_oob_region oobregion;
1318 int section, ret;
75eb2cec
BB
1319
1320 ret = mtd_ooblayout_find_region(mtd, start, &section,
1321 &oobregion, iter);
1322
1323 while (!ret) {
1324 int cnt;
1325
7c295ef9 1326 cnt = min_t(int, nbytes, oobregion.length);
75eb2cec
BB
1327 memcpy(oobbuf + oobregion.offset, buf, cnt);
1328 buf += cnt;
1329 nbytes -= cnt;
1330
1331 if (!nbytes)
1332 break;
1333
1334 ret = iter(mtd, ++section, &oobregion);
1335 }
1336
1337 return ret;
1338}
1339
1340/**
1341 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1342 * @mtd: mtd info structure
1343 * @iter: category iterator
1344 *
1345 * Count the number of bytes in a given category.
1346 *
1347 * Returns a positive value on success, a negative error code otherwise.
1348 */
1349static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1350 int (*iter)(struct mtd_info *,
1351 int section,
1352 struct mtd_oob_region *oobregion))
1353{
4d6aecfb 1354 struct mtd_oob_region oobregion;
75eb2cec
BB
1355 int section = 0, ret, nbytes = 0;
1356
1357 while (1) {
1358 ret = iter(mtd, section++, &oobregion);
1359 if (ret) {
1360 if (ret == -ERANGE)
1361 ret = nbytes;
1362 break;
1363 }
1364
1365 nbytes += oobregion.length;
1366 }
1367
1368 return ret;
1369}
1370
1371/**
1372 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1373 * @mtd: mtd info structure
1374 * @eccbuf: destination buffer to store ECC bytes
1375 * @oobbuf: OOB buffer
1376 * @start: first ECC byte to retrieve
1377 * @nbytes: number of ECC bytes to retrieve
1378 *
1379 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1380 *
1381 * Returns zero on success, a negative error code otherwise.
1382 */
1383int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1384 const u8 *oobbuf, int start, int nbytes)
1385{
1386 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1387 mtd_ooblayout_ecc);
1388}
1389EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1390
1391/**
1392 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1393 * @mtd: mtd info structure
1394 * @eccbuf: source buffer to get ECC bytes from
1395 * @oobbuf: OOB buffer
1396 * @start: first ECC byte to set
1397 * @nbytes: number of ECC bytes to set
1398 *
1399 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1400 *
1401 * Returns zero on success, a negative error code otherwise.
1402 */
1403int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1404 u8 *oobbuf, int start, int nbytes)
1405{
1406 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1407 mtd_ooblayout_ecc);
1408}
1409EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1410
1411/**
1412 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1413 * @mtd: mtd info structure
1414 * @databuf: destination buffer to store ECC bytes
1415 * @oobbuf: OOB buffer
1416 * @start: first ECC byte to retrieve
1417 * @nbytes: number of ECC bytes to retrieve
1418 *
1419 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1420 *
1421 * Returns zero on success, a negative error code otherwise.
1422 */
1423int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1424 const u8 *oobbuf, int start, int nbytes)
1425{
1426 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1427 mtd_ooblayout_free);
1428}
1429EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1430
1431/**
1432 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1433 * @mtd: mtd info structure
1434 * @eccbuf: source buffer to get data bytes from
1435 * @oobbuf: OOB buffer
1436 * @start: first ECC byte to set
1437 * @nbytes: number of ECC bytes to set
1438 *
1439 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1440 *
1441 * Returns zero on success, a negative error code otherwise.
1442 */
1443int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1444 u8 *oobbuf, int start, int nbytes)
1445{
1446 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1447 mtd_ooblayout_free);
1448}
1449EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1450
1451/**
1452 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1453 * @mtd: mtd info structure
1454 *
1455 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1456 *
1457 * Returns zero on success, a negative error code otherwise.
1458 */
1459int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1460{
1461 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1462}
1463EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1464
1465/**
1466 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1467 * @mtd: mtd info structure
1468 *
1469 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1470 *
1471 * Returns zero on success, a negative error code otherwise.
1472 */
1473int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1474{
1475 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1476}
1477EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1478
de3cac93
AB
1479/*
1480 * Method to access the protection register area, present in some flash
1481 * devices. The user data is one time programmable but the factory data is read
1482 * only.
1483 */
4b78fc42
CR
1484int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1485 struct otp_info *buf)
de3cac93
AB
1486{
1487 if (!mtd->_get_fact_prot_info)
1488 return -EOPNOTSUPP;
1489 if (!len)
1490 return 0;
4b78fc42 1491 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
de3cac93
AB
1492}
1493EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1494
1495int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1496 size_t *retlen, u_char *buf)
1497{
1498 *retlen = 0;
1499 if (!mtd->_read_fact_prot_reg)
1500 return -EOPNOTSUPP;
1501 if (!len)
1502 return 0;
1503 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1504}
1505EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1506
4b78fc42
CR
1507int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1508 struct otp_info *buf)
de3cac93
AB
1509{
1510 if (!mtd->_get_user_prot_info)
1511 return -EOPNOTSUPP;
1512 if (!len)
1513 return 0;
4b78fc42 1514 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
de3cac93
AB
1515}
1516EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1517
1518int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1519 size_t *retlen, u_char *buf)
1520{
1521 *retlen = 0;
1522 if (!mtd->_read_user_prot_reg)
1523 return -EOPNOTSUPP;
1524 if (!len)
1525 return 0;
1526 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1527}
1528EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1529
1530int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1531 size_t *retlen, u_char *buf)
1532{
9a78bc83
CR
1533 int ret;
1534
de3cac93
AB
1535 *retlen = 0;
1536 if (!mtd->_write_user_prot_reg)
1537 return -EOPNOTSUPP;
1538 if (!len)
1539 return 0;
9a78bc83
CR
1540 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1541 if (ret)
1542 return ret;
1543
1544 /*
1545 * If no data could be written at all, we are out of memory and
1546 * must return -ENOSPC.
1547 */
1548 return (*retlen) ? 0 : -ENOSPC;
de3cac93
AB
1549}
1550EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1551
1552int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1553{
1554 if (!mtd->_lock_user_prot_reg)
1555 return -EOPNOTSUPP;
1556 if (!len)
1557 return 0;
1558 return mtd->_lock_user_prot_reg(mtd, from, len);
1559}
1560EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1561
8273a0c9
AB
1562/* Chip-supported device locking */
1563int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1564{
1565 if (!mtd->_lock)
1566 return -EOPNOTSUPP;
0c2b4e21 1567 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1568 return -EINVAL;
bcb1d238
AB
1569 if (!len)
1570 return 0;
8273a0c9
AB
1571 return mtd->_lock(mtd, ofs, len);
1572}
1573EXPORT_SYMBOL_GPL(mtd_lock);
1574
1575int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1576{
1577 if (!mtd->_unlock)
1578 return -EOPNOTSUPP;
0c2b4e21 1579 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1580 return -EINVAL;
bcb1d238
AB
1581 if (!len)
1582 return 0;
8273a0c9
AB
1583 return mtd->_unlock(mtd, ofs, len);
1584}
1585EXPORT_SYMBOL_GPL(mtd_unlock);
1586
1587int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1588{
1589 if (!mtd->_is_locked)
1590 return -EOPNOTSUPP;
0c2b4e21 1591 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1592 return -EINVAL;
bcb1d238
AB
1593 if (!len)
1594 return 0;
8273a0c9
AB
1595 return mtd->_is_locked(mtd, ofs, len);
1596}
1597EXPORT_SYMBOL_GPL(mtd_is_locked);
1598
8471bb73 1599int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
8273a0c9 1600{
0c2b4e21 1601 if (ofs < 0 || ofs >= mtd->size)
8471bb73
EG
1602 return -EINVAL;
1603 if (!mtd->_block_isreserved)
8273a0c9 1604 return 0;
8471bb73
EG
1605 return mtd->_block_isreserved(mtd, ofs);
1606}
1607EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1608
1609int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1610{
0c2b4e21 1611 if (ofs < 0 || ofs >= mtd->size)
8273a0c9 1612 return -EINVAL;
8471bb73
EG
1613 if (!mtd->_block_isbad)
1614 return 0;
8273a0c9
AB
1615 return mtd->_block_isbad(mtd, ofs);
1616}
1617EXPORT_SYMBOL_GPL(mtd_block_isbad);
1618
1619int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1620{
1621 if (!mtd->_block_markbad)
1622 return -EOPNOTSUPP;
0c2b4e21 1623 if (ofs < 0 || ofs >= mtd->size)
8273a0c9 1624 return -EINVAL;
664addc2
AB
1625 if (!(mtd->flags & MTD_WRITEABLE))
1626 return -EROFS;
8273a0c9
AB
1627 return mtd->_block_markbad(mtd, ofs);
1628}
1629EXPORT_SYMBOL_GPL(mtd_block_markbad);
1630
52b02031
AB
1631/*
1632 * default_mtd_writev - the default writev method
1633 * @mtd: mtd device description object pointer
1634 * @vecs: the vectors to write
1635 * @count: count of vectors in @vecs
1636 * @to: the MTD device offset to write to
1637 * @retlen: on exit contains the count of bytes written to the MTD device.
1638 *
1639 * This function returns zero in case of success and a negative error code in
1640 * case of failure.
1da177e4 1641 */
1dbebd32
AB
1642static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1643 unsigned long count, loff_t to, size_t *retlen)
1da177e4
LT
1644{
1645 unsigned long i;
1646 size_t totlen = 0, thislen;
1647 int ret = 0;
1648
52b02031
AB
1649 for (i = 0; i < count; i++) {
1650 if (!vecs[i].iov_len)
1651 continue;
1652 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1653 vecs[i].iov_base);
1654 totlen += thislen;
1655 if (ret || thislen != vecs[i].iov_len)
1656 break;
1657 to += vecs[i].iov_len;
1da177e4 1658 }
52b02031 1659 *retlen = totlen;
1da177e4
LT
1660 return ret;
1661}
1dbebd32
AB
1662
1663/*
1664 * mtd_writev - the vector-based MTD write method
1665 * @mtd: mtd device description object pointer
1666 * @vecs: the vectors to write
1667 * @count: count of vectors in @vecs
1668 * @to: the MTD device offset to write to
1669 * @retlen: on exit contains the count of bytes written to the MTD device.
1670 *
1671 * This function returns zero in case of success and a negative error code in
1672 * case of failure.
1673 */
1674int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1675 unsigned long count, loff_t to, size_t *retlen)
1676{
1677 *retlen = 0;
664addc2
AB
1678 if (!(mtd->flags & MTD_WRITEABLE))
1679 return -EROFS;
3c3c10bb 1680 if (!mtd->_writev)
1dbebd32 1681 return default_mtd_writev(mtd, vecs, count, to, retlen);
3c3c10bb 1682 return mtd->_writev(mtd, vecs, count, to, retlen);
1dbebd32
AB
1683}
1684EXPORT_SYMBOL_GPL(mtd_writev);
1da177e4 1685
33b53716
GE
1686/**
1687 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
52b02031
AB
1688 * @mtd: mtd device description object pointer
1689 * @size: a pointer to the ideal or maximum size of the allocation, points
33b53716
GE
1690 * to the actual allocation size on success.
1691 *
1692 * This routine attempts to allocate a contiguous kernel buffer up to
1693 * the specified size, backing off the size of the request exponentially
1694 * until the request succeeds or until the allocation size falls below
1695 * the system page size. This attempts to make sure it does not adversely
1696 * impact system performance, so when allocating more than one page, we
caf49191
LT
1697 * ask the memory allocator to avoid re-trying, swapping, writing back
1698 * or performing I/O.
33b53716
GE
1699 *
1700 * Note, this function also makes sure that the allocated buffer is aligned to
1701 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1702 *
1703 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1704 * to handle smaller (i.e. degraded) buffer allocations under low- or
1705 * fragmented-memory situations where such reduced allocations, from a
1706 * requested ideal, are allowed.
1707 *
1708 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1709 */
1710void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1711{
d0164adc 1712 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
33b53716
GE
1713 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1714 void *kbuf;
1715
1716 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1717
1718 while (*size > min_alloc) {
1719 kbuf = kmalloc(*size, flags);
1720 if (kbuf)
1721 return kbuf;
1722
1723 *size >>= 1;
1724 *size = ALIGN(*size, mtd->writesize);
1725 }
1726
1727 /*
1728 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1729 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1730 */
1731 return kmalloc(*size, GFP_KERNEL);
1732}
33b53716 1733EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1da177e4 1734
2d2dce0e
PM
1735#ifdef CONFIG_PROC_FS
1736
1da177e4
LT
1737/*====================================================================*/
1738/* Support for /proc/mtd */
1739
447d9bd8 1740static int mtd_proc_show(struct seq_file *m, void *v)
1da177e4 1741{
f1332ba2 1742 struct mtd_info *mtd;
1da177e4 1743
447d9bd8 1744 seq_puts(m, "dev: size erasesize name\n");
48b19268 1745 mutex_lock(&mtd_table_mutex);
f1332ba2 1746 mtd_for_each_device(mtd) {
447d9bd8
AD
1747 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1748 mtd->index, (unsigned long long)mtd->size,
1749 mtd->erasesize, mtd->name);
d5ca5129 1750 }
48b19268 1751 mutex_unlock(&mtd_table_mutex);
d5ca5129 1752 return 0;
1da177e4
LT
1753}
1754
447d9bd8
AD
1755static int mtd_proc_open(struct inode *inode, struct file *file)
1756{
1757 return single_open(file, mtd_proc_show, NULL);
1758}
1759
1760static const struct file_operations mtd_proc_ops = {
1761 .open = mtd_proc_open,
1762 .read = seq_read,
1763 .llseek = seq_lseek,
1764 .release = single_release,
1765};
45b09076
KC
1766#endif /* CONFIG_PROC_FS */
1767
1da177e4
LT
1768/*====================================================================*/
1769/* Init code */
1770
445caaa2 1771static struct backing_dev_info * __init mtd_bdi_init(char *name)
0661b1ac 1772{
445caaa2 1773 struct backing_dev_info *bdi;
0661b1ac
JA
1774 int ret;
1775
fa06052d 1776 bdi = bdi_alloc(GFP_KERNEL);
445caaa2
SL
1777 if (!bdi)
1778 return ERR_PTR(-ENOMEM);
0661b1ac 1779
fa06052d
JK
1780 bdi->name = name;
1781 /*
1782 * We put '-0' suffix to the name to get the same name format as we
1783 * used to get. Since this is called only once, we get a unique name.
1784 */
7c4cc300 1785 ret = bdi_register(bdi, "%.28s-0", name);
0661b1ac 1786 if (ret)
fa06052d 1787 bdi_put(bdi);
0661b1ac 1788
445caaa2 1789 return ret ? ERR_PTR(ret) : bdi;
0661b1ac
JA
1790}
1791
93e56214
AB
1792static struct proc_dir_entry *proc_mtd;
1793
1da177e4
LT
1794static int __init init_mtd(void)
1795{
15bce40c 1796 int ret;
0661b1ac 1797
15bce40c 1798 ret = class_register(&mtd_class);
0661b1ac
JA
1799 if (ret)
1800 goto err_reg;
1801
445caaa2
SL
1802 mtd_bdi = mtd_bdi_init("mtd");
1803 if (IS_ERR(mtd_bdi)) {
1804 ret = PTR_ERR(mtd_bdi);
b4caecd4 1805 goto err_bdi;
445caaa2 1806 }
694bb7fc 1807
447d9bd8 1808 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
93e56214 1809
660685d9
AB
1810 ret = init_mtdchar();
1811 if (ret)
1812 goto out_procfs;
1813
1da177e4 1814 return 0;
0661b1ac 1815
660685d9
AB
1816out_procfs:
1817 if (proc_mtd)
1818 remove_proc_entry("mtd", NULL);
fa06052d 1819 bdi_put(mtd_bdi);
b4caecd4 1820err_bdi:
0661b1ac
JA
1821 class_unregister(&mtd_class);
1822err_reg:
1823 pr_err("Error registering mtd class or bdi: %d\n", ret);
1824 return ret;
1da177e4
LT
1825}
1826
1827static void __exit cleanup_mtd(void)
1828{
660685d9 1829 cleanup_mtdchar();
d5ca5129 1830 if (proc_mtd)
93e56214 1831 remove_proc_entry("mtd", NULL);
15bce40c 1832 class_unregister(&mtd_class);
fa06052d 1833 bdi_put(mtd_bdi);
35667b99 1834 idr_destroy(&mtd_idr);
1da177e4
LT
1835}
1836
1837module_init(init_mtd);
1838module_exit(cleanup_mtd);
1839
1da177e4
LT
1840MODULE_LICENSE("GPL");
1841MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1842MODULE_DESCRIPTION("Core MTD registration and access routines");