]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/mtd/mtdcore.c
mtd: fsl-quadspi: fix macro collision problems with READ/WRITE
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / mtdcore.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
a1452a37
DW
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
1da177e4
LT
22 */
23
1da177e4
LT
24#include <linux/module.h>
25#include <linux/kernel.h>
1da177e4 26#include <linux/ptrace.h>
447d9bd8 27#include <linux/seq_file.h>
1da177e4
LT
28#include <linux/string.h>
29#include <linux/timer.h>
30#include <linux/major.h>
31#include <linux/fs.h>
7799308f 32#include <linux/err.h>
1da177e4
LT
33#include <linux/ioctl.h>
34#include <linux/init.h>
1da177e4 35#include <linux/proc_fs.h>
b520e412 36#include <linux/idr.h>
a33eb6b9 37#include <linux/backing-dev.h>
05d71b46 38#include <linux/gfp.h>
0d01ff25 39#include <linux/slab.h>
3efe41be 40#include <linux/reboot.h>
727dc612 41#include <linux/kconfig.h>
1da177e4
LT
42
43#include <linux/mtd/mtd.h>
f5671ab3 44#include <linux/mtd/partitions.h>
1da177e4 45
356d70f1 46#include "mtdcore.h"
660685d9 47
b4caecd4 48static struct backing_dev_info mtd_bdi = {
a33eb6b9 49};
356d70f1 50
57b8045d
LPC
51#ifdef CONFIG_PM_SLEEP
52
53static int mtd_cls_suspend(struct device *dev)
54{
55 struct mtd_info *mtd = dev_get_drvdata(dev);
56
57 return mtd ? mtd_suspend(mtd) : 0;
58}
59
60static int mtd_cls_resume(struct device *dev)
61{
62 struct mtd_info *mtd = dev_get_drvdata(dev);
63
64 if (mtd)
65 mtd_resume(mtd);
66 return 0;
67}
68
69static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
70#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
71#else
72#define MTD_CLS_PM_OPS NULL
73#endif
15bce40c
DW
74
75static struct class mtd_class = {
76 .name = "mtd",
77 .owner = THIS_MODULE,
57b8045d 78 .pm = MTD_CLS_PM_OPS,
15bce40c 79};
1f24b5a8 80
b520e412
BH
81static DEFINE_IDR(mtd_idr);
82
97894cda 83/* These are exported solely for the purpose of mtd_blkdevs.c. You
1da177e4 84 should not use them for _anything_ else */
48b19268 85DEFINE_MUTEX(mtd_table_mutex);
1da177e4 86EXPORT_SYMBOL_GPL(mtd_table_mutex);
b520e412
BH
87
88struct mtd_info *__mtd_next_device(int i)
89{
90 return idr_get_next(&mtd_idr, &i);
91}
92EXPORT_SYMBOL_GPL(__mtd_next_device);
1da177e4
LT
93
94static LIST_HEAD(mtd_notifiers);
95
1f24b5a8 96
1f24b5a8 97#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
1f24b5a8
DB
98
99/* REVISIT once MTD uses the driver model better, whoever allocates
100 * the mtd_info will probably want to use the release() hook...
101 */
102static void mtd_release(struct device *dev)
103{
5e472128 104 struct mtd_info *mtd = dev_get_drvdata(dev);
d5de20a9 105 dev_t index = MTD_DEVT(mtd->index);
1f24b5a8 106
5e472128
BN
107 /* remove /dev/mtdXro node */
108 device_destroy(&mtd_class, index + 1);
15bce40c
DW
109}
110
1f24b5a8
DB
111static ssize_t mtd_type_show(struct device *dev,
112 struct device_attribute *attr, char *buf)
113{
d5de20a9 114 struct mtd_info *mtd = dev_get_drvdata(dev);
1f24b5a8
DB
115 char *type;
116
117 switch (mtd->type) {
118 case MTD_ABSENT:
119 type = "absent";
120 break;
121 case MTD_RAM:
122 type = "ram";
123 break;
124 case MTD_ROM:
125 type = "rom";
126 break;
127 case MTD_NORFLASH:
128 type = "nor";
129 break;
130 case MTD_NANDFLASH:
131 type = "nand";
132 break;
133 case MTD_DATAFLASH:
134 type = "dataflash";
135 break;
136 case MTD_UBIVOLUME:
137 type = "ubi";
138 break;
f4837246
HS
139 case MTD_MLCNANDFLASH:
140 type = "mlc-nand";
141 break;
1f24b5a8
DB
142 default:
143 type = "unknown";
144 }
145
146 return snprintf(buf, PAGE_SIZE, "%s\n", type);
147}
694bb7fc
KC
148static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
149
150static ssize_t mtd_flags_show(struct device *dev,
151 struct device_attribute *attr, char *buf)
152{
d5de20a9 153 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
154
155 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
156
157}
158static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
159
160static ssize_t mtd_size_show(struct device *dev,
161 struct device_attribute *attr, char *buf)
162{
d5de20a9 163 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
164
165 return snprintf(buf, PAGE_SIZE, "%llu\n",
166 (unsigned long long)mtd->size);
167
168}
169static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
170
171static ssize_t mtd_erasesize_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
173{
d5de20a9 174 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
175
176 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
177
178}
179static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
180
181static ssize_t mtd_writesize_show(struct device *dev,
182 struct device_attribute *attr, char *buf)
183{
d5de20a9 184 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
185
186 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
187
188}
189static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
190
e7693548
AB
191static ssize_t mtd_subpagesize_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
193{
d5de20a9 194 struct mtd_info *mtd = dev_get_drvdata(dev);
e7693548
AB
195 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
196
197 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
198
199}
200static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
201
694bb7fc
KC
202static ssize_t mtd_oobsize_show(struct device *dev,
203 struct device_attribute *attr, char *buf)
204{
d5de20a9 205 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
206
207 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
208
209}
210static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
211
212static ssize_t mtd_numeraseregions_show(struct device *dev,
213 struct device_attribute *attr, char *buf)
214{
d5de20a9 215 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
216
217 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
218
219}
220static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
221 NULL);
222
223static ssize_t mtd_name_show(struct device *dev,
224 struct device_attribute *attr, char *buf)
225{
d5de20a9 226 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
227
228 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
229
230}
231static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
1f24b5a8 232
a9b672e8
MD
233static ssize_t mtd_ecc_strength_show(struct device *dev,
234 struct device_attribute *attr, char *buf)
235{
236 struct mtd_info *mtd = dev_get_drvdata(dev);
237
238 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
239}
240static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
241
d062d4ed
MD
242static ssize_t mtd_bitflip_threshold_show(struct device *dev,
243 struct device_attribute *attr,
244 char *buf)
245{
246 struct mtd_info *mtd = dev_get_drvdata(dev);
247
248 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
249}
250
251static ssize_t mtd_bitflip_threshold_store(struct device *dev,
252 struct device_attribute *attr,
253 const char *buf, size_t count)
254{
255 struct mtd_info *mtd = dev_get_drvdata(dev);
256 unsigned int bitflip_threshold;
257 int retval;
258
259 retval = kstrtouint(buf, 0, &bitflip_threshold);
260 if (retval)
261 return retval;
262
263 mtd->bitflip_threshold = bitflip_threshold;
264 return count;
265}
266static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
267 mtd_bitflip_threshold_show,
268 mtd_bitflip_threshold_store);
269
bf977e3f
HS
270static ssize_t mtd_ecc_step_size_show(struct device *dev,
271 struct device_attribute *attr, char *buf)
272{
273 struct mtd_info *mtd = dev_get_drvdata(dev);
274
275 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
276
277}
278static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
279
990a3af0
EG
280static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282{
283 struct mtd_info *mtd = dev_get_drvdata(dev);
284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285
286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
287}
288static DEVICE_ATTR(corrected_bits, S_IRUGO,
289 mtd_ecc_stats_corrected_show, NULL);
290
291static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293{
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296
297 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
298}
299static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
300
301static ssize_t mtd_badblocks_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303{
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306
307 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
308}
309static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
310
311static ssize_t mtd_bbtblocks_show(struct device *dev,
312 struct device_attribute *attr, char *buf)
313{
314 struct mtd_info *mtd = dev_get_drvdata(dev);
315 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316
317 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
318}
319static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
320
1f24b5a8 321static struct attribute *mtd_attrs[] = {
694bb7fc
KC
322 &dev_attr_type.attr,
323 &dev_attr_flags.attr,
324 &dev_attr_size.attr,
325 &dev_attr_erasesize.attr,
326 &dev_attr_writesize.attr,
e7693548 327 &dev_attr_subpagesize.attr,
694bb7fc
KC
328 &dev_attr_oobsize.attr,
329 &dev_attr_numeraseregions.attr,
330 &dev_attr_name.attr,
a9b672e8 331 &dev_attr_ecc_strength.attr,
bf977e3f 332 &dev_attr_ecc_step_size.attr,
990a3af0
EG
333 &dev_attr_corrected_bits.attr,
334 &dev_attr_ecc_failures.attr,
335 &dev_attr_bad_blocks.attr,
336 &dev_attr_bbt_blocks.attr,
d062d4ed 337 &dev_attr_bitflip_threshold.attr,
1f24b5a8
DB
338 NULL,
339};
54c738f6 340ATTRIBUTE_GROUPS(mtd);
1f24b5a8
DB
341
342static struct device_type mtd_devtype = {
343 .name = "mtd",
344 .groups = mtd_groups,
345 .release = mtd_release,
346};
347
b4caecd4
CH
348#ifndef CONFIG_MMU
349unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
350{
351 switch (mtd->type) {
352 case MTD_RAM:
353 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
354 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
355 case MTD_ROM:
356 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
357 NOMMU_MAP_READ;
358 default:
359 return NOMMU_MAP_COPY;
360 }
361}
706a4e5a 362EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
b4caecd4
CH
363#endif
364
3efe41be
BN
365static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
366 void *cmd)
367{
368 struct mtd_info *mtd;
369
370 mtd = container_of(n, struct mtd_info, reboot_notifier);
371 mtd->_reboot(mtd);
372
373 return NOTIFY_DONE;
374}
375
1da177e4
LT
376/**
377 * add_mtd_device - register an MTD device
378 * @mtd: pointer to new MTD device info structure
379 *
380 * Add a device to the list of MTD devices present in the system, and
381 * notify each currently active MTD 'user' of its arrival. Returns
57dd990c 382 * zero on success or non-zero on failure.
1da177e4
LT
383 */
384
385int add_mtd_device(struct mtd_info *mtd)
386{
b520e412
BH
387 struct mtd_notifier *not;
388 int i, error;
1da177e4 389
be0dbff8
BN
390 /*
391 * May occur, for instance, on buggy drivers which call
392 * mtd_device_parse_register() multiple times on the same master MTD,
393 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
394 */
395 if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n"))
396 return -EEXIST;
397
b4caecd4 398 mtd->backing_dev_info = &mtd_bdi;
402d3265 399
783ed81f 400 BUG_ON(mtd->writesize == 0);
48b19268 401 mutex_lock(&mtd_table_mutex);
1da177e4 402
589e9c4d 403 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
57dd990c
BN
404 if (i < 0) {
405 error = i;
b520e412 406 goto fail_locked;
57dd990c 407 }
1f24b5a8 408
b520e412
BH
409 mtd->index = i;
410 mtd->usecount = 0;
411
d062d4ed
MD
412 /* default value if not set by driver */
413 if (mtd->bitflip_threshold == 0)
414 mtd->bitflip_threshold = mtd->ecc_strength;
415
b520e412
BH
416 if (is_power_of_2(mtd->erasesize))
417 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
418 else
419 mtd->erasesize_shift = 0;
420
421 if (is_power_of_2(mtd->writesize))
422 mtd->writesize_shift = ffs(mtd->writesize) - 1;
423 else
424 mtd->writesize_shift = 0;
425
426 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
427 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
428
807f16d4
FK
429 if (mtd->dev.parent) {
430 if (!mtd->owner && mtd->dev.parent->driver)
431 mtd->owner = mtd->dev.parent->driver->owner;
432 if (!mtd->name)
433 mtd->name = dev_name(mtd->dev.parent);
434 } else {
435 pr_debug("mtd device won't show a device symlink in sysfs\n");
436 }
437
b520e412 438 /* Some chips always power up locked. Unlock them now */
38134565
AB
439 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
440 error = mtd_unlock(mtd, 0, mtd->size);
441 if (error && error != -EOPNOTSUPP)
b520e412
BH
442 printk(KERN_WARNING
443 "%s: unlock failed, writes may not work\n",
444 mtd->name);
57dd990c
BN
445 /* Ignore unlock failures? */
446 error = 0;
b520e412
BH
447 }
448
449 /* Caller should have set dev.parent to match the
260e89a6 450 * physical device, if appropriate.
b520e412
BH
451 */
452 mtd->dev.type = &mtd_devtype;
453 mtd->dev.class = &mtd_class;
454 mtd->dev.devt = MTD_DEVT(i);
455 dev_set_name(&mtd->dev, "mtd%d", i);
456 dev_set_drvdata(&mtd->dev, mtd);
57dd990c
BN
457 error = device_register(&mtd->dev);
458 if (error)
b520e412
BH
459 goto fail_added;
460
5e472128
BN
461 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
462 "mtd%dro", i);
b520e412 463
289c0522 464 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
b520e412
BH
465 /* No need to get a refcount on the module containing
466 the notifier, since we hold the mtd_table_mutex */
467 list_for_each_entry(not, &mtd_notifiers, list)
468 not->add(mtd);
469
470 mutex_unlock(&mtd_table_mutex);
471 /* We _know_ we aren't being removed, because
472 our caller is still holding us here. So none
473 of this try_ nonsense, and no bitching about it
474 either. :) */
475 __module_get(THIS_MODULE);
476 return 0;
97894cda 477
b520e412
BH
478fail_added:
479 idr_remove(&mtd_idr, i);
480fail_locked:
48b19268 481 mutex_unlock(&mtd_table_mutex);
57dd990c 482 return error;
1da177e4
LT
483}
484
485/**
486 * del_mtd_device - unregister an MTD device
487 * @mtd: pointer to MTD device info structure
488 *
489 * Remove a device from the list of MTD devices present in the system,
490 * and notify each currently active MTD 'user' of its departure.
491 * Returns zero on success or 1 on failure, which currently will happen
492 * if the requested device does not appear to be present in the list.
493 */
494
eea72d5f 495int del_mtd_device(struct mtd_info *mtd)
1da177e4
LT
496{
497 int ret;
75c0b84d 498 struct mtd_notifier *not;
97894cda 499
48b19268 500 mutex_lock(&mtd_table_mutex);
1da177e4 501
b520e412 502 if (idr_find(&mtd_idr, mtd->index) != mtd) {
1da177e4 503 ret = -ENODEV;
75c0b84d
ML
504 goto out_error;
505 }
506
507 /* No need to get a refcount on the module containing
508 the notifier, since we hold the mtd_table_mutex */
509 list_for_each_entry(not, &mtd_notifiers, list)
510 not->remove(mtd);
511
512 if (mtd->usecount) {
97894cda 513 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
1da177e4
LT
514 mtd->index, mtd->name, mtd->usecount);
515 ret = -EBUSY;
516 } else {
694bb7fc
KC
517 device_unregister(&mtd->dev);
518
b520e412 519 idr_remove(&mtd_idr, mtd->index);
1da177e4
LT
520
521 module_put(THIS_MODULE);
522 ret = 0;
523 }
524
75c0b84d 525out_error:
48b19268 526 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
527 return ret;
528}
529
727dc612
DE
530static int mtd_add_device_partitions(struct mtd_info *mtd,
531 struct mtd_partition *real_parts,
532 int nbparts)
533{
534 int ret;
535
536 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
537 ret = add_mtd_device(mtd);
57dd990c
BN
538 if (ret)
539 return ret;
727dc612
DE
540 }
541
542 if (nbparts > 0) {
543 ret = add_mtd_partitions(mtd, real_parts, nbparts);
544 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
545 del_mtd_device(mtd);
546 return ret;
547 }
548
549 return 0;
550}
551
552
1c4c215c
DES
553/**
554 * mtd_device_parse_register - parse partitions and register an MTD device.
555 *
556 * @mtd: the MTD device to register
557 * @types: the list of MTD partition probes to try, see
558 * 'parse_mtd_partitions()' for more information
c7975330 559 * @parser_data: MTD partition parser-specific data
1c4c215c
DES
560 * @parts: fallback partition information to register, if parsing fails;
561 * only valid if %nr_parts > %0
562 * @nr_parts: the number of partitions in parts, if zero then the full
563 * MTD device is registered if no partition info is found
564 *
565 * This function aggregates MTD partitions parsing (done by
566 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
567 * basically follows the most common pattern found in many MTD drivers:
568 *
569 * * It first tries to probe partitions on MTD device @mtd using parsers
570 * specified in @types (if @types is %NULL, then the default list of parsers
571 * is used, see 'parse_mtd_partitions()' for more information). If none are
572 * found this functions tries to fallback to information specified in
573 * @parts/@nr_parts.
92394b5c 574 * * If any partitioning info was found, this function registers the found
727dc612
DE
575 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
576 * as a whole is registered first.
1c4c215c
DES
577 * * If no partitions were found this function just registers the MTD device
578 * @mtd and exits.
579 *
580 * Returns zero in case of success and a negative error code in case of failure.
581 */
26a47346 582int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
c7975330 583 struct mtd_part_parser_data *parser_data,
1c4c215c
DES
584 const struct mtd_partition *parts,
585 int nr_parts)
586{
727dc612
DE
587 int ret;
588 struct mtd_partition *real_parts = NULL;
1c4c215c 589
727dc612
DE
590 ret = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
591 if (ret <= 0 && nr_parts && parts) {
1c4c215c
DES
592 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
593 GFP_KERNEL);
4d523b60 594 if (!real_parts)
727dc612 595 ret = -ENOMEM;
4d523b60 596 else
727dc612 597 ret = nr_parts;
1c4c215c 598 }
3e00ed0e
BN
599 /* Didn't come up with either parsed OR fallback partitions */
600 if (ret < 0) {
601 pr_info("mtd: failed to find partitions\n");
602 goto out;
603 }
1c4c215c 604
3e00ed0e
BN
605 ret = mtd_add_device_partitions(mtd, real_parts, ret);
606 if (ret)
607 goto out;
1c4c215c 608
e1dd8641
NC
609 /*
610 * FIXME: some drivers unfortunately call this function more than once.
611 * So we have to check if we've already assigned the reboot notifier.
612 *
613 * Generally, we can make multiple calls work for most cases, but it
614 * does cause problems with parse_mtd_partitions() above (e.g.,
615 * cmdlineparts will register partitions more than once).
616 */
be0dbff8 617 WARN_ONCE(mtd->reboot_notifier.notifier_call, "MTD already registered\n");
e1dd8641 618 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
3efe41be
BN
619 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
620 register_reboot_notifier(&mtd->reboot_notifier);
621 }
622
3e00ed0e 623out:
727dc612
DE
624 kfree(real_parts);
625 return ret;
1c4c215c
DES
626}
627EXPORT_SYMBOL_GPL(mtd_device_parse_register);
628
f5671ab3
JI
629/**
630 * mtd_device_unregister - unregister an existing MTD device.
631 *
632 * @master: the MTD device to unregister. This will unregister both the master
633 * and any partitions if registered.
634 */
635int mtd_device_unregister(struct mtd_info *master)
636{
637 int err;
638
3efe41be
BN
639 if (master->_reboot)
640 unregister_reboot_notifier(&master->reboot_notifier);
641
f5671ab3
JI
642 err = del_mtd_partitions(master);
643 if (err)
644 return err;
645
646 if (!device_is_registered(&master->dev))
647 return 0;
648
649 return del_mtd_device(master);
650}
651EXPORT_SYMBOL_GPL(mtd_device_unregister);
652
1da177e4
LT
653/**
654 * register_mtd_user - register a 'user' of MTD devices.
655 * @new: pointer to notifier info structure
656 *
657 * Registers a pair of callbacks function to be called upon addition
658 * or removal of MTD devices. Causes the 'add' callback to be immediately
659 * invoked for each MTD device currently present in the system.
660 */
1da177e4
LT
661void register_mtd_user (struct mtd_notifier *new)
662{
f1332ba2 663 struct mtd_info *mtd;
1da177e4 664
48b19268 665 mutex_lock(&mtd_table_mutex);
1da177e4
LT
666
667 list_add(&new->list, &mtd_notifiers);
668
d5ca5129 669 __module_get(THIS_MODULE);
97894cda 670
f1332ba2
BH
671 mtd_for_each_device(mtd)
672 new->add(mtd);
1da177e4 673
48b19268 674 mutex_unlock(&mtd_table_mutex);
1da177e4 675}
33c87b4a 676EXPORT_SYMBOL_GPL(register_mtd_user);
1da177e4
LT
677
678/**
49450795
AB
679 * unregister_mtd_user - unregister a 'user' of MTD devices.
680 * @old: pointer to notifier info structure
1da177e4
LT
681 *
682 * Removes a callback function pair from the list of 'users' to be
683 * notified upon addition or removal of MTD devices. Causes the
684 * 'remove' callback to be immediately invoked for each MTD device
685 * currently present in the system.
686 */
1da177e4
LT
687int unregister_mtd_user (struct mtd_notifier *old)
688{
f1332ba2 689 struct mtd_info *mtd;
1da177e4 690
48b19268 691 mutex_lock(&mtd_table_mutex);
1da177e4
LT
692
693 module_put(THIS_MODULE);
694
f1332ba2
BH
695 mtd_for_each_device(mtd)
696 old->remove(mtd);
97894cda 697
1da177e4 698 list_del(&old->list);
48b19268 699 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
700 return 0;
701}
33c87b4a 702EXPORT_SYMBOL_GPL(unregister_mtd_user);
1da177e4
LT
703
704/**
705 * get_mtd_device - obtain a validated handle for an MTD device
706 * @mtd: last known address of the required MTD device
707 * @num: internal device number of the required MTD device
708 *
709 * Given a number and NULL address, return the num'th entry in the device
710 * table, if any. Given an address and num == -1, search the device table
711 * for a device with that address and return if it's still present. Given
9c74034f
AB
712 * both, return the num'th driver only if its address matches. Return
713 * error code if not.
1da177e4 714 */
1da177e4
LT
715struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
716{
f1332ba2
BH
717 struct mtd_info *ret = NULL, *other;
718 int err = -ENODEV;
1da177e4 719
48b19268 720 mutex_lock(&mtd_table_mutex);
1da177e4
LT
721
722 if (num == -1) {
f1332ba2
BH
723 mtd_for_each_device(other) {
724 if (other == mtd) {
725 ret = mtd;
726 break;
727 }
728 }
b520e412
BH
729 } else if (num >= 0) {
730 ret = idr_find(&mtd_idr, num);
1da177e4
LT
731 if (mtd && mtd != ret)
732 ret = NULL;
733 }
734
3bd45657
ML
735 if (!ret) {
736 ret = ERR_PTR(err);
737 goto out;
9fe912ce 738 }
1da177e4 739
3bd45657
ML
740 err = __get_mtd_device(ret);
741 if (err)
742 ret = ERR_PTR(err);
743out:
9c74034f
AB
744 mutex_unlock(&mtd_table_mutex);
745 return ret;
3bd45657 746}
33c87b4a 747EXPORT_SYMBOL_GPL(get_mtd_device);
1da177e4 748
3bd45657
ML
749
750int __get_mtd_device(struct mtd_info *mtd)
751{
752 int err;
753
754 if (!try_module_get(mtd->owner))
755 return -ENODEV;
756
3c3c10bb
AB
757 if (mtd->_get_device) {
758 err = mtd->_get_device(mtd);
3bd45657
ML
759
760 if (err) {
761 module_put(mtd->owner);
762 return err;
763 }
764 }
765 mtd->usecount++;
766 return 0;
1da177e4 767}
33c87b4a 768EXPORT_SYMBOL_GPL(__get_mtd_device);
1da177e4 769
7799308f
AB
770/**
771 * get_mtd_device_nm - obtain a validated handle for an MTD device by
772 * device name
773 * @name: MTD device name to open
774 *
775 * This function returns MTD device description structure in case of
776 * success and an error code in case of failure.
777 */
7799308f
AB
778struct mtd_info *get_mtd_device_nm(const char *name)
779{
f1332ba2
BH
780 int err = -ENODEV;
781 struct mtd_info *mtd = NULL, *other;
7799308f
AB
782
783 mutex_lock(&mtd_table_mutex);
784
f1332ba2
BH
785 mtd_for_each_device(other) {
786 if (!strcmp(name, other->name)) {
787 mtd = other;
7799308f
AB
788 break;
789 }
790 }
791
9fe912ce 792 if (!mtd)
7799308f
AB
793 goto out_unlock;
794
52534f2d
WG
795 err = __get_mtd_device(mtd);
796 if (err)
7799308f
AB
797 goto out_unlock;
798
9fe912ce
AB
799 mutex_unlock(&mtd_table_mutex);
800 return mtd;
7799308f
AB
801
802out_unlock:
803 mutex_unlock(&mtd_table_mutex);
9fe912ce 804 return ERR_PTR(err);
7799308f 805}
33c87b4a 806EXPORT_SYMBOL_GPL(get_mtd_device_nm);
7799308f 807
1da177e4
LT
808void put_mtd_device(struct mtd_info *mtd)
809{
48b19268 810 mutex_lock(&mtd_table_mutex);
3bd45657
ML
811 __put_mtd_device(mtd);
812 mutex_unlock(&mtd_table_mutex);
813
814}
33c87b4a 815EXPORT_SYMBOL_GPL(put_mtd_device);
3bd45657
ML
816
817void __put_mtd_device(struct mtd_info *mtd)
818{
819 --mtd->usecount;
820 BUG_ON(mtd->usecount < 0);
821
3c3c10bb
AB
822 if (mtd->_put_device)
823 mtd->_put_device(mtd);
1da177e4
LT
824
825 module_put(mtd->owner);
826}
33c87b4a 827EXPORT_SYMBOL_GPL(__put_mtd_device);
1da177e4 828
8273a0c9
AB
829/*
830 * Erase is an asynchronous operation. Device drivers are supposed
831 * to call instr->callback() whenever the operation completes, even
832 * if it completes with a failure.
833 * Callers are supposed to pass a callback function and wait for it
834 * to be called before writing to the block.
835 */
836int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
837{
0c2b4e21 838 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
8273a0c9 839 return -EINVAL;
664addc2
AB
840 if (!(mtd->flags & MTD_WRITEABLE))
841 return -EROFS;
3b27dac0 842 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
bcb1d238
AB
843 if (!instr->len) {
844 instr->state = MTD_ERASE_DONE;
845 mtd_erase_callback(instr);
846 return 0;
847 }
8273a0c9
AB
848 return mtd->_erase(mtd, instr);
849}
850EXPORT_SYMBOL_GPL(mtd_erase);
851
852/*
853 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
854 */
855int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
856 void **virt, resource_size_t *phys)
857{
858 *retlen = 0;
0dd5235f
AB
859 *virt = NULL;
860 if (phys)
861 *phys = 0;
8273a0c9
AB
862 if (!mtd->_point)
863 return -EOPNOTSUPP;
0c2b4e21 864 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 865 return -EINVAL;
bcb1d238
AB
866 if (!len)
867 return 0;
8273a0c9
AB
868 return mtd->_point(mtd, from, len, retlen, virt, phys);
869}
870EXPORT_SYMBOL_GPL(mtd_point);
871
872/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
873int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
874{
875 if (!mtd->_point)
876 return -EOPNOTSUPP;
0c2b4e21 877 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 878 return -EINVAL;
bcb1d238
AB
879 if (!len)
880 return 0;
8273a0c9
AB
881 return mtd->_unpoint(mtd, from, len);
882}
883EXPORT_SYMBOL_GPL(mtd_unpoint);
884
885/*
886 * Allow NOMMU mmap() to directly map the device (if not NULL)
887 * - return the address to which the offset maps
888 * - return -ENOSYS to indicate refusal to do the mapping
889 */
890unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
891 unsigned long offset, unsigned long flags)
892{
893 if (!mtd->_get_unmapped_area)
894 return -EOPNOTSUPP;
0c2b4e21 895 if (offset >= mtd->size || len > mtd->size - offset)
8273a0c9
AB
896 return -EINVAL;
897 return mtd->_get_unmapped_area(mtd, len, offset, flags);
898}
899EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
900
901int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
902 u_char *buf)
903{
edbc4540 904 int ret_code;
834247ec 905 *retlen = 0;
0c2b4e21 906 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 907 return -EINVAL;
bcb1d238
AB
908 if (!len)
909 return 0;
edbc4540
MD
910
911 /*
912 * In the absence of an error, drivers return a non-negative integer
913 * representing the maximum number of bitflips that were corrected on
914 * any one ecc region (if applicable; zero otherwise).
915 */
916 ret_code = mtd->_read(mtd, from, len, retlen, buf);
917 if (unlikely(ret_code < 0))
918 return ret_code;
919 if (mtd->ecc_strength == 0)
920 return 0; /* device lacks ecc */
921 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
8273a0c9
AB
922}
923EXPORT_SYMBOL_GPL(mtd_read);
924
925int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
926 const u_char *buf)
927{
928 *retlen = 0;
0c2b4e21 929 if (to < 0 || to >= mtd->size || len > mtd->size - to)
8273a0c9 930 return -EINVAL;
664addc2
AB
931 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
932 return -EROFS;
bcb1d238
AB
933 if (!len)
934 return 0;
8273a0c9
AB
935 return mtd->_write(mtd, to, len, retlen, buf);
936}
937EXPORT_SYMBOL_GPL(mtd_write);
938
939/*
940 * In blackbox flight recorder like scenarios we want to make successful writes
941 * in interrupt context. panic_write() is only intended to be called when its
942 * known the kernel is about to panic and we need the write to succeed. Since
943 * the kernel is not going to be running for much longer, this function can
944 * break locks and delay to ensure the write succeeds (but not sleep).
945 */
946int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
947 const u_char *buf)
948{
949 *retlen = 0;
950 if (!mtd->_panic_write)
951 return -EOPNOTSUPP;
0c2b4e21 952 if (to < 0 || to >= mtd->size || len > mtd->size - to)
8273a0c9 953 return -EINVAL;
664addc2
AB
954 if (!(mtd->flags & MTD_WRITEABLE))
955 return -EROFS;
bcb1d238
AB
956 if (!len)
957 return 0;
8273a0c9
AB
958 return mtd->_panic_write(mtd, to, len, retlen, buf);
959}
960EXPORT_SYMBOL_GPL(mtd_panic_write);
961
d2d48480
BN
962int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
963{
e47f6858 964 int ret_code;
d2d48480
BN
965 ops->retlen = ops->oobretlen = 0;
966 if (!mtd->_read_oob)
967 return -EOPNOTSUPP;
e47f6858
BN
968 /*
969 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
970 * similar to mtd->_read(), returning a non-negative integer
971 * representing max bitflips. In other cases, mtd->_read_oob() may
972 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
973 */
974 ret_code = mtd->_read_oob(mtd, from, ops);
975 if (unlikely(ret_code < 0))
976 return ret_code;
977 if (mtd->ecc_strength == 0)
978 return 0; /* device lacks ecc */
979 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
d2d48480
BN
980}
981EXPORT_SYMBOL_GPL(mtd_read_oob);
982
de3cac93
AB
983/*
984 * Method to access the protection register area, present in some flash
985 * devices. The user data is one time programmable but the factory data is read
986 * only.
987 */
4b78fc42
CR
988int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
989 struct otp_info *buf)
de3cac93
AB
990{
991 if (!mtd->_get_fact_prot_info)
992 return -EOPNOTSUPP;
993 if (!len)
994 return 0;
4b78fc42 995 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
de3cac93
AB
996}
997EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
998
999int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1000 size_t *retlen, u_char *buf)
1001{
1002 *retlen = 0;
1003 if (!mtd->_read_fact_prot_reg)
1004 return -EOPNOTSUPP;
1005 if (!len)
1006 return 0;
1007 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1008}
1009EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1010
4b78fc42
CR
1011int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1012 struct otp_info *buf)
de3cac93
AB
1013{
1014 if (!mtd->_get_user_prot_info)
1015 return -EOPNOTSUPP;
1016 if (!len)
1017 return 0;
4b78fc42 1018 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
de3cac93
AB
1019}
1020EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1021
1022int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1023 size_t *retlen, u_char *buf)
1024{
1025 *retlen = 0;
1026 if (!mtd->_read_user_prot_reg)
1027 return -EOPNOTSUPP;
1028 if (!len)
1029 return 0;
1030 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1031}
1032EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1033
1034int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1035 size_t *retlen, u_char *buf)
1036{
9a78bc83
CR
1037 int ret;
1038
de3cac93
AB
1039 *retlen = 0;
1040 if (!mtd->_write_user_prot_reg)
1041 return -EOPNOTSUPP;
1042 if (!len)
1043 return 0;
9a78bc83
CR
1044 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1045 if (ret)
1046 return ret;
1047
1048 /*
1049 * If no data could be written at all, we are out of memory and
1050 * must return -ENOSPC.
1051 */
1052 return (*retlen) ? 0 : -ENOSPC;
de3cac93
AB
1053}
1054EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1055
1056int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1057{
1058 if (!mtd->_lock_user_prot_reg)
1059 return -EOPNOTSUPP;
1060 if (!len)
1061 return 0;
1062 return mtd->_lock_user_prot_reg(mtd, from, len);
1063}
1064EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1065
8273a0c9
AB
1066/* Chip-supported device locking */
1067int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1068{
1069 if (!mtd->_lock)
1070 return -EOPNOTSUPP;
0c2b4e21 1071 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1072 return -EINVAL;
bcb1d238
AB
1073 if (!len)
1074 return 0;
8273a0c9
AB
1075 return mtd->_lock(mtd, ofs, len);
1076}
1077EXPORT_SYMBOL_GPL(mtd_lock);
1078
1079int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1080{
1081 if (!mtd->_unlock)
1082 return -EOPNOTSUPP;
0c2b4e21 1083 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1084 return -EINVAL;
bcb1d238
AB
1085 if (!len)
1086 return 0;
8273a0c9
AB
1087 return mtd->_unlock(mtd, ofs, len);
1088}
1089EXPORT_SYMBOL_GPL(mtd_unlock);
1090
1091int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1092{
1093 if (!mtd->_is_locked)
1094 return -EOPNOTSUPP;
0c2b4e21 1095 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1096 return -EINVAL;
bcb1d238
AB
1097 if (!len)
1098 return 0;
8273a0c9
AB
1099 return mtd->_is_locked(mtd, ofs, len);
1100}
1101EXPORT_SYMBOL_GPL(mtd_is_locked);
1102
8471bb73 1103int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
8273a0c9 1104{
0c2b4e21 1105 if (ofs < 0 || ofs >= mtd->size)
8471bb73
EG
1106 return -EINVAL;
1107 if (!mtd->_block_isreserved)
8273a0c9 1108 return 0;
8471bb73
EG
1109 return mtd->_block_isreserved(mtd, ofs);
1110}
1111EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1112
1113int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1114{
0c2b4e21 1115 if (ofs < 0 || ofs >= mtd->size)
8273a0c9 1116 return -EINVAL;
8471bb73
EG
1117 if (!mtd->_block_isbad)
1118 return 0;
8273a0c9
AB
1119 return mtd->_block_isbad(mtd, ofs);
1120}
1121EXPORT_SYMBOL_GPL(mtd_block_isbad);
1122
1123int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1124{
1125 if (!mtd->_block_markbad)
1126 return -EOPNOTSUPP;
0c2b4e21 1127 if (ofs < 0 || ofs >= mtd->size)
8273a0c9 1128 return -EINVAL;
664addc2
AB
1129 if (!(mtd->flags & MTD_WRITEABLE))
1130 return -EROFS;
8273a0c9
AB
1131 return mtd->_block_markbad(mtd, ofs);
1132}
1133EXPORT_SYMBOL_GPL(mtd_block_markbad);
1134
52b02031
AB
1135/*
1136 * default_mtd_writev - the default writev method
1137 * @mtd: mtd device description object pointer
1138 * @vecs: the vectors to write
1139 * @count: count of vectors in @vecs
1140 * @to: the MTD device offset to write to
1141 * @retlen: on exit contains the count of bytes written to the MTD device.
1142 *
1143 * This function returns zero in case of success and a negative error code in
1144 * case of failure.
1da177e4 1145 */
1dbebd32
AB
1146static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1147 unsigned long count, loff_t to, size_t *retlen)
1da177e4
LT
1148{
1149 unsigned long i;
1150 size_t totlen = 0, thislen;
1151 int ret = 0;
1152
52b02031
AB
1153 for (i = 0; i < count; i++) {
1154 if (!vecs[i].iov_len)
1155 continue;
1156 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1157 vecs[i].iov_base);
1158 totlen += thislen;
1159 if (ret || thislen != vecs[i].iov_len)
1160 break;
1161 to += vecs[i].iov_len;
1da177e4 1162 }
52b02031 1163 *retlen = totlen;
1da177e4
LT
1164 return ret;
1165}
1dbebd32
AB
1166
1167/*
1168 * mtd_writev - the vector-based MTD write method
1169 * @mtd: mtd device description object pointer
1170 * @vecs: the vectors to write
1171 * @count: count of vectors in @vecs
1172 * @to: the MTD device offset to write to
1173 * @retlen: on exit contains the count of bytes written to the MTD device.
1174 *
1175 * This function returns zero in case of success and a negative error code in
1176 * case of failure.
1177 */
1178int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1179 unsigned long count, loff_t to, size_t *retlen)
1180{
1181 *retlen = 0;
664addc2
AB
1182 if (!(mtd->flags & MTD_WRITEABLE))
1183 return -EROFS;
3c3c10bb 1184 if (!mtd->_writev)
1dbebd32 1185 return default_mtd_writev(mtd, vecs, count, to, retlen);
3c3c10bb 1186 return mtd->_writev(mtd, vecs, count, to, retlen);
1dbebd32
AB
1187}
1188EXPORT_SYMBOL_GPL(mtd_writev);
1da177e4 1189
33b53716
GE
1190/**
1191 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
52b02031
AB
1192 * @mtd: mtd device description object pointer
1193 * @size: a pointer to the ideal or maximum size of the allocation, points
33b53716
GE
1194 * to the actual allocation size on success.
1195 *
1196 * This routine attempts to allocate a contiguous kernel buffer up to
1197 * the specified size, backing off the size of the request exponentially
1198 * until the request succeeds or until the allocation size falls below
1199 * the system page size. This attempts to make sure it does not adversely
1200 * impact system performance, so when allocating more than one page, we
caf49191
LT
1201 * ask the memory allocator to avoid re-trying, swapping, writing back
1202 * or performing I/O.
33b53716
GE
1203 *
1204 * Note, this function also makes sure that the allocated buffer is aligned to
1205 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1206 *
1207 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1208 * to handle smaller (i.e. degraded) buffer allocations under low- or
1209 * fragmented-memory situations where such reduced allocations, from a
1210 * requested ideal, are allowed.
1211 *
1212 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1213 */
1214void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1215{
caf49191
LT
1216 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1217 __GFP_NORETRY | __GFP_NO_KSWAPD;
33b53716
GE
1218 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1219 void *kbuf;
1220
1221 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1222
1223 while (*size > min_alloc) {
1224 kbuf = kmalloc(*size, flags);
1225 if (kbuf)
1226 return kbuf;
1227
1228 *size >>= 1;
1229 *size = ALIGN(*size, mtd->writesize);
1230 }
1231
1232 /*
1233 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1234 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1235 */
1236 return kmalloc(*size, GFP_KERNEL);
1237}
33b53716 1238EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1da177e4 1239
2d2dce0e
PM
1240#ifdef CONFIG_PROC_FS
1241
1da177e4
LT
1242/*====================================================================*/
1243/* Support for /proc/mtd */
1244
447d9bd8 1245static int mtd_proc_show(struct seq_file *m, void *v)
1da177e4 1246{
f1332ba2 1247 struct mtd_info *mtd;
1da177e4 1248
447d9bd8 1249 seq_puts(m, "dev: size erasesize name\n");
48b19268 1250 mutex_lock(&mtd_table_mutex);
f1332ba2 1251 mtd_for_each_device(mtd) {
447d9bd8
AD
1252 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1253 mtd->index, (unsigned long long)mtd->size,
1254 mtd->erasesize, mtd->name);
d5ca5129 1255 }
48b19268 1256 mutex_unlock(&mtd_table_mutex);
d5ca5129 1257 return 0;
1da177e4
LT
1258}
1259
447d9bd8
AD
1260static int mtd_proc_open(struct inode *inode, struct file *file)
1261{
1262 return single_open(file, mtd_proc_show, NULL);
1263}
1264
1265static const struct file_operations mtd_proc_ops = {
1266 .open = mtd_proc_open,
1267 .read = seq_read,
1268 .llseek = seq_lseek,
1269 .release = single_release,
1270};
45b09076
KC
1271#endif /* CONFIG_PROC_FS */
1272
1da177e4
LT
1273/*====================================================================*/
1274/* Init code */
1275
0661b1ac
JA
1276static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1277{
1278 int ret;
1279
1280 ret = bdi_init(bdi);
1281 if (!ret)
02aa2a37 1282 ret = bdi_register(bdi, NULL, "%s", name);
0661b1ac
JA
1283
1284 if (ret)
1285 bdi_destroy(bdi);
1286
1287 return ret;
1288}
1289
93e56214
AB
1290static struct proc_dir_entry *proc_mtd;
1291
1da177e4
LT
1292static int __init init_mtd(void)
1293{
15bce40c 1294 int ret;
0661b1ac 1295
15bce40c 1296 ret = class_register(&mtd_class);
0661b1ac
JA
1297 if (ret)
1298 goto err_reg;
1299
b4caecd4 1300 ret = mtd_bdi_init(&mtd_bdi, "mtd");
0661b1ac 1301 if (ret)
b4caecd4 1302 goto err_bdi;
694bb7fc 1303
447d9bd8 1304 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
93e56214 1305
660685d9
AB
1306 ret = init_mtdchar();
1307 if (ret)
1308 goto out_procfs;
1309
1da177e4 1310 return 0;
0661b1ac 1311
660685d9
AB
1312out_procfs:
1313 if (proc_mtd)
1314 remove_proc_entry("mtd", NULL);
b4caecd4 1315err_bdi:
0661b1ac
JA
1316 class_unregister(&mtd_class);
1317err_reg:
1318 pr_err("Error registering mtd class or bdi: %d\n", ret);
1319 return ret;
1da177e4
LT
1320}
1321
1322static void __exit cleanup_mtd(void)
1323{
660685d9 1324 cleanup_mtdchar();
d5ca5129 1325 if (proc_mtd)
93e56214 1326 remove_proc_entry("mtd", NULL);
15bce40c 1327 class_unregister(&mtd_class);
b4caecd4 1328 bdi_destroy(&mtd_bdi);
35667b99 1329 idr_destroy(&mtd_idr);
1da177e4
LT
1330}
1331
1332module_init(init_mtd);
1333module_exit(cleanup_mtd);
1334
1da177e4
LT
1335MODULE_LICENSE("GPL");
1336MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1337MODULE_DESCRIPTION("Core MTD registration and access routines");