]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/mtd/mtdcore.c
mtd: support ONFI multi lun NAND
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / mtdcore.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
a1452a37
DW
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
1da177e4
LT
22 */
23
1da177e4
LT
24#include <linux/module.h>
25#include <linux/kernel.h>
1da177e4 26#include <linux/ptrace.h>
447d9bd8 27#include <linux/seq_file.h>
1da177e4
LT
28#include <linux/string.h>
29#include <linux/timer.h>
30#include <linux/major.h>
31#include <linux/fs.h>
7799308f 32#include <linux/err.h>
1da177e4
LT
33#include <linux/ioctl.h>
34#include <linux/init.h>
1da177e4 35#include <linux/proc_fs.h>
b520e412 36#include <linux/idr.h>
a33eb6b9 37#include <linux/backing-dev.h>
05d71b46 38#include <linux/gfp.h>
1da177e4
LT
39
40#include <linux/mtd/mtd.h>
f5671ab3 41#include <linux/mtd/partitions.h>
1da177e4 42
356d70f1 43#include "mtdcore.h"
a33eb6b9
JE
44/*
45 * backing device capabilities for non-mappable devices (such as NAND flash)
46 * - permits private mappings, copies are taken of the data
47 */
ca91facf 48static struct backing_dev_info mtd_bdi_unmappable = {
a33eb6b9
JE
49 .capabilities = BDI_CAP_MAP_COPY,
50};
51
52/*
53 * backing device capabilities for R/O mappable devices (such as ROM)
54 * - permits private mappings, copies are taken of the data
55 * - permits non-writable shared mappings
56 */
ca91facf 57static struct backing_dev_info mtd_bdi_ro_mappable = {
a33eb6b9
JE
58 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
59 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
60};
61
62/*
63 * backing device capabilities for writable mappable devices (such as RAM)
64 * - permits private mappings, copies are taken of the data
65 * - permits non-writable shared mappings
66 */
ca91facf 67static struct backing_dev_info mtd_bdi_rw_mappable = {
a33eb6b9
JE
68 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
69 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
70 BDI_CAP_WRITE_MAP),
71};
356d70f1 72
15bce40c
DW
73static int mtd_cls_suspend(struct device *dev, pm_message_t state);
74static int mtd_cls_resume(struct device *dev);
75
76static struct class mtd_class = {
77 .name = "mtd",
78 .owner = THIS_MODULE,
79 .suspend = mtd_cls_suspend,
80 .resume = mtd_cls_resume,
81};
1f24b5a8 82
b520e412
BH
83static DEFINE_IDR(mtd_idr);
84
97894cda 85/* These are exported solely for the purpose of mtd_blkdevs.c. You
1da177e4 86 should not use them for _anything_ else */
48b19268 87DEFINE_MUTEX(mtd_table_mutex);
1da177e4 88EXPORT_SYMBOL_GPL(mtd_table_mutex);
b520e412
BH
89
90struct mtd_info *__mtd_next_device(int i)
91{
92 return idr_get_next(&mtd_idr, &i);
93}
94EXPORT_SYMBOL_GPL(__mtd_next_device);
1da177e4
LT
95
96static LIST_HEAD(mtd_notifiers);
97
1f24b5a8
DB
98
99#if defined(CONFIG_MTD_CHAR) || defined(CONFIG_MTD_CHAR_MODULE)
100#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
101#else
102#define MTD_DEVT(index) 0
103#endif
104
105/* REVISIT once MTD uses the driver model better, whoever allocates
106 * the mtd_info will probably want to use the release() hook...
107 */
108static void mtd_release(struct device *dev)
109{
335a5f40 110 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
d5de20a9 111 dev_t index = MTD_DEVT(mtd->index);
1f24b5a8
DB
112
113 /* remove /dev/mtdXro node if needed */
2fdb1144 114 if (index)
15bce40c
DW
115 device_destroy(&mtd_class, index + 1);
116}
117
118static int mtd_cls_suspend(struct device *dev, pm_message_t state)
119{
d5de20a9 120 struct mtd_info *mtd = dev_get_drvdata(dev);
6afc4fdb 121
1a30871f 122 return mtd ? mtd_suspend(mtd) : 0;
15bce40c
DW
123}
124
125static int mtd_cls_resume(struct device *dev)
126{
d5de20a9 127 struct mtd_info *mtd = dev_get_drvdata(dev);
33c87b4a 128
3ee50141 129 if (mtd)
ead995f8 130 mtd_resume(mtd);
15bce40c 131 return 0;
1f24b5a8
DB
132}
133
134static ssize_t mtd_type_show(struct device *dev,
135 struct device_attribute *attr, char *buf)
136{
d5de20a9 137 struct mtd_info *mtd = dev_get_drvdata(dev);
1f24b5a8
DB
138 char *type;
139
140 switch (mtd->type) {
141 case MTD_ABSENT:
142 type = "absent";
143 break;
144 case MTD_RAM:
145 type = "ram";
146 break;
147 case MTD_ROM:
148 type = "rom";
149 break;
150 case MTD_NORFLASH:
151 type = "nor";
152 break;
153 case MTD_NANDFLASH:
154 type = "nand";
155 break;
156 case MTD_DATAFLASH:
157 type = "dataflash";
158 break;
159 case MTD_UBIVOLUME:
160 type = "ubi";
161 break;
162 default:
163 type = "unknown";
164 }
165
166 return snprintf(buf, PAGE_SIZE, "%s\n", type);
167}
694bb7fc
KC
168static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
169
170static ssize_t mtd_flags_show(struct device *dev,
171 struct device_attribute *attr, char *buf)
172{
d5de20a9 173 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
174
175 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
176
177}
178static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
179
180static ssize_t mtd_size_show(struct device *dev,
181 struct device_attribute *attr, char *buf)
182{
d5de20a9 183 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
184
185 return snprintf(buf, PAGE_SIZE, "%llu\n",
186 (unsigned long long)mtd->size);
187
188}
189static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
190
191static ssize_t mtd_erasesize_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
193{
d5de20a9 194 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
195
196 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
197
198}
199static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
200
201static ssize_t mtd_writesize_show(struct device *dev,
202 struct device_attribute *attr, char *buf)
203{
d5de20a9 204 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
205
206 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
207
208}
209static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
210
e7693548
AB
211static ssize_t mtd_subpagesize_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213{
d5de20a9 214 struct mtd_info *mtd = dev_get_drvdata(dev);
e7693548
AB
215 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
216
217 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
218
219}
220static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
221
694bb7fc
KC
222static ssize_t mtd_oobsize_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
224{
d5de20a9 225 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
226
227 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
228
229}
230static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
231
232static ssize_t mtd_numeraseregions_show(struct device *dev,
233 struct device_attribute *attr, char *buf)
234{
d5de20a9 235 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
236
237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
238
239}
240static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
241 NULL);
242
243static ssize_t mtd_name_show(struct device *dev,
244 struct device_attribute *attr, char *buf)
245{
d5de20a9 246 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
247
248 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
249
250}
251static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
1f24b5a8
DB
252
253static struct attribute *mtd_attrs[] = {
694bb7fc
KC
254 &dev_attr_type.attr,
255 &dev_attr_flags.attr,
256 &dev_attr_size.attr,
257 &dev_attr_erasesize.attr,
258 &dev_attr_writesize.attr,
e7693548 259 &dev_attr_subpagesize.attr,
694bb7fc
KC
260 &dev_attr_oobsize.attr,
261 &dev_attr_numeraseregions.attr,
262 &dev_attr_name.attr,
1f24b5a8
DB
263 NULL,
264};
265
fca91088 266static struct attribute_group mtd_group = {
1f24b5a8
DB
267 .attrs = mtd_attrs,
268};
269
6469f540 270static const struct attribute_group *mtd_groups[] = {
1f24b5a8
DB
271 &mtd_group,
272 NULL,
273};
274
275static struct device_type mtd_devtype = {
276 .name = "mtd",
277 .groups = mtd_groups,
278 .release = mtd_release,
279};
280
1da177e4
LT
281/**
282 * add_mtd_device - register an MTD device
283 * @mtd: pointer to new MTD device info structure
284 *
285 * Add a device to the list of MTD devices present in the system, and
286 * notify each currently active MTD 'user' of its arrival. Returns
287 * zero on success or 1 on failure, which currently will only happen
b520e412 288 * if there is insufficient memory or a sysfs error.
1da177e4
LT
289 */
290
291int add_mtd_device(struct mtd_info *mtd)
292{
b520e412
BH
293 struct mtd_notifier *not;
294 int i, error;
1da177e4 295
402d3265
DH
296 if (!mtd->backing_dev_info) {
297 switch (mtd->type) {
298 case MTD_RAM:
299 mtd->backing_dev_info = &mtd_bdi_rw_mappable;
300 break;
301 case MTD_ROM:
302 mtd->backing_dev_info = &mtd_bdi_ro_mappable;
303 break;
304 default:
305 mtd->backing_dev_info = &mtd_bdi_unmappable;
306 break;
307 }
308 }
309
783ed81f 310 BUG_ON(mtd->writesize == 0);
48b19268 311 mutex_lock(&mtd_table_mutex);
1da177e4 312
b520e412
BH
313 do {
314 if (!idr_pre_get(&mtd_idr, GFP_KERNEL))
315 goto fail_locked;
316 error = idr_get_new(&mtd_idr, mtd, &i);
317 } while (error == -EAGAIN);
187ef152 318
b520e412
BH
319 if (error)
320 goto fail_locked;
1f24b5a8 321
b520e412
BH
322 mtd->index = i;
323 mtd->usecount = 0;
324
325 if (is_power_of_2(mtd->erasesize))
326 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
327 else
328 mtd->erasesize_shift = 0;
329
330 if (is_power_of_2(mtd->writesize))
331 mtd->writesize_shift = ffs(mtd->writesize) - 1;
332 else
333 mtd->writesize_shift = 0;
334
335 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
336 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
337
338 /* Some chips always power up locked. Unlock them now */
38134565
AB
339 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
340 error = mtd_unlock(mtd, 0, mtd->size);
341 if (error && error != -EOPNOTSUPP)
b520e412
BH
342 printk(KERN_WARNING
343 "%s: unlock failed, writes may not work\n",
344 mtd->name);
345 }
346
347 /* Caller should have set dev.parent to match the
348 * physical device.
349 */
350 mtd->dev.type = &mtd_devtype;
351 mtd->dev.class = &mtd_class;
352 mtd->dev.devt = MTD_DEVT(i);
353 dev_set_name(&mtd->dev, "mtd%d", i);
354 dev_set_drvdata(&mtd->dev, mtd);
355 if (device_register(&mtd->dev) != 0)
356 goto fail_added;
357
358 if (MTD_DEVT(i))
359 device_create(&mtd_class, mtd->dev.parent,
360 MTD_DEVT(i) + 1,
361 NULL, "mtd%dro", i);
362
289c0522 363 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
b520e412
BH
364 /* No need to get a refcount on the module containing
365 the notifier, since we hold the mtd_table_mutex */
366 list_for_each_entry(not, &mtd_notifiers, list)
367 not->add(mtd);
368
369 mutex_unlock(&mtd_table_mutex);
370 /* We _know_ we aren't being removed, because
371 our caller is still holding us here. So none
372 of this try_ nonsense, and no bitching about it
373 either. :) */
374 __module_get(THIS_MODULE);
375 return 0;
97894cda 376
b520e412
BH
377fail_added:
378 idr_remove(&mtd_idr, i);
379fail_locked:
48b19268 380 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
381 return 1;
382}
383
384/**
385 * del_mtd_device - unregister an MTD device
386 * @mtd: pointer to MTD device info structure
387 *
388 * Remove a device from the list of MTD devices present in the system,
389 * and notify each currently active MTD 'user' of its departure.
390 * Returns zero on success or 1 on failure, which currently will happen
391 * if the requested device does not appear to be present in the list.
392 */
393
eea72d5f 394int del_mtd_device(struct mtd_info *mtd)
1da177e4
LT
395{
396 int ret;
75c0b84d 397 struct mtd_notifier *not;
97894cda 398
48b19268 399 mutex_lock(&mtd_table_mutex);
1da177e4 400
b520e412 401 if (idr_find(&mtd_idr, mtd->index) != mtd) {
1da177e4 402 ret = -ENODEV;
75c0b84d
ML
403 goto out_error;
404 }
405
406 /* No need to get a refcount on the module containing
407 the notifier, since we hold the mtd_table_mutex */
408 list_for_each_entry(not, &mtd_notifiers, list)
409 not->remove(mtd);
410
411 if (mtd->usecount) {
97894cda 412 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
1da177e4
LT
413 mtd->index, mtd->name, mtd->usecount);
414 ret = -EBUSY;
415 } else {
694bb7fc
KC
416 device_unregister(&mtd->dev);
417
b520e412 418 idr_remove(&mtd_idr, mtd->index);
1da177e4
LT
419
420 module_put(THIS_MODULE);
421 ret = 0;
422 }
423
75c0b84d 424out_error:
48b19268 425 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
426 return ret;
427}
428
1c4c215c
DES
429/**
430 * mtd_device_parse_register - parse partitions and register an MTD device.
431 *
432 * @mtd: the MTD device to register
433 * @types: the list of MTD partition probes to try, see
434 * 'parse_mtd_partitions()' for more information
c7975330 435 * @parser_data: MTD partition parser-specific data
1c4c215c
DES
436 * @parts: fallback partition information to register, if parsing fails;
437 * only valid if %nr_parts > %0
438 * @nr_parts: the number of partitions in parts, if zero then the full
439 * MTD device is registered if no partition info is found
440 *
441 * This function aggregates MTD partitions parsing (done by
442 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
443 * basically follows the most common pattern found in many MTD drivers:
444 *
445 * * It first tries to probe partitions on MTD device @mtd using parsers
446 * specified in @types (if @types is %NULL, then the default list of parsers
447 * is used, see 'parse_mtd_partitions()' for more information). If none are
448 * found this functions tries to fallback to information specified in
449 * @parts/@nr_parts.
92394b5c 450 * * If any partitioning info was found, this function registers the found
1c4c215c
DES
451 * partitions.
452 * * If no partitions were found this function just registers the MTD device
453 * @mtd and exits.
454 *
455 * Returns zero in case of success and a negative error code in case of failure.
456 */
457int mtd_device_parse_register(struct mtd_info *mtd, const char **types,
c7975330 458 struct mtd_part_parser_data *parser_data,
1c4c215c
DES
459 const struct mtd_partition *parts,
460 int nr_parts)
461{
462 int err;
463 struct mtd_partition *real_parts;
464
c7975330 465 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
4d523b60 466 if (err <= 0 && nr_parts && parts) {
1c4c215c
DES
467 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
468 GFP_KERNEL);
4d523b60 469 if (!real_parts)
1c4c215c 470 err = -ENOMEM;
4d523b60
JL
471 else
472 err = nr_parts;
1c4c215c
DES
473 }
474
475 if (err > 0) {
476 err = add_mtd_partitions(mtd, real_parts, err);
477 kfree(real_parts);
478 } else if (err == 0) {
479 err = add_mtd_device(mtd);
480 if (err == 1)
481 err = -ENODEV;
482 }
483
484 return err;
485}
486EXPORT_SYMBOL_GPL(mtd_device_parse_register);
487
f5671ab3
JI
488/**
489 * mtd_device_unregister - unregister an existing MTD device.
490 *
491 * @master: the MTD device to unregister. This will unregister both the master
492 * and any partitions if registered.
493 */
494int mtd_device_unregister(struct mtd_info *master)
495{
496 int err;
497
498 err = del_mtd_partitions(master);
499 if (err)
500 return err;
501
502 if (!device_is_registered(&master->dev))
503 return 0;
504
505 return del_mtd_device(master);
506}
507EXPORT_SYMBOL_GPL(mtd_device_unregister);
508
1da177e4
LT
509/**
510 * register_mtd_user - register a 'user' of MTD devices.
511 * @new: pointer to notifier info structure
512 *
513 * Registers a pair of callbacks function to be called upon addition
514 * or removal of MTD devices. Causes the 'add' callback to be immediately
515 * invoked for each MTD device currently present in the system.
516 */
1da177e4
LT
517void register_mtd_user (struct mtd_notifier *new)
518{
f1332ba2 519 struct mtd_info *mtd;
1da177e4 520
48b19268 521 mutex_lock(&mtd_table_mutex);
1da177e4
LT
522
523 list_add(&new->list, &mtd_notifiers);
524
d5ca5129 525 __module_get(THIS_MODULE);
97894cda 526
f1332ba2
BH
527 mtd_for_each_device(mtd)
528 new->add(mtd);
1da177e4 529
48b19268 530 mutex_unlock(&mtd_table_mutex);
1da177e4 531}
33c87b4a 532EXPORT_SYMBOL_GPL(register_mtd_user);
1da177e4
LT
533
534/**
49450795
AB
535 * unregister_mtd_user - unregister a 'user' of MTD devices.
536 * @old: pointer to notifier info structure
1da177e4
LT
537 *
538 * Removes a callback function pair from the list of 'users' to be
539 * notified upon addition or removal of MTD devices. Causes the
540 * 'remove' callback to be immediately invoked for each MTD device
541 * currently present in the system.
542 */
1da177e4
LT
543int unregister_mtd_user (struct mtd_notifier *old)
544{
f1332ba2 545 struct mtd_info *mtd;
1da177e4 546
48b19268 547 mutex_lock(&mtd_table_mutex);
1da177e4
LT
548
549 module_put(THIS_MODULE);
550
f1332ba2
BH
551 mtd_for_each_device(mtd)
552 old->remove(mtd);
97894cda 553
1da177e4 554 list_del(&old->list);
48b19268 555 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
556 return 0;
557}
33c87b4a 558EXPORT_SYMBOL_GPL(unregister_mtd_user);
1da177e4
LT
559
560/**
561 * get_mtd_device - obtain a validated handle for an MTD device
562 * @mtd: last known address of the required MTD device
563 * @num: internal device number of the required MTD device
564 *
565 * Given a number and NULL address, return the num'th entry in the device
566 * table, if any. Given an address and num == -1, search the device table
567 * for a device with that address and return if it's still present. Given
9c74034f
AB
568 * both, return the num'th driver only if its address matches. Return
569 * error code if not.
1da177e4 570 */
1da177e4
LT
571struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
572{
f1332ba2
BH
573 struct mtd_info *ret = NULL, *other;
574 int err = -ENODEV;
1da177e4 575
48b19268 576 mutex_lock(&mtd_table_mutex);
1da177e4
LT
577
578 if (num == -1) {
f1332ba2
BH
579 mtd_for_each_device(other) {
580 if (other == mtd) {
581 ret = mtd;
582 break;
583 }
584 }
b520e412
BH
585 } else if (num >= 0) {
586 ret = idr_find(&mtd_idr, num);
1da177e4
LT
587 if (mtd && mtd != ret)
588 ret = NULL;
589 }
590
3bd45657
ML
591 if (!ret) {
592 ret = ERR_PTR(err);
593 goto out;
9fe912ce 594 }
1da177e4 595
3bd45657
ML
596 err = __get_mtd_device(ret);
597 if (err)
598 ret = ERR_PTR(err);
599out:
9c74034f
AB
600 mutex_unlock(&mtd_table_mutex);
601 return ret;
3bd45657 602}
33c87b4a 603EXPORT_SYMBOL_GPL(get_mtd_device);
1da177e4 604
3bd45657
ML
605
606int __get_mtd_device(struct mtd_info *mtd)
607{
608 int err;
609
610 if (!try_module_get(mtd->owner))
611 return -ENODEV;
612
3c3c10bb
AB
613 if (mtd->_get_device) {
614 err = mtd->_get_device(mtd);
3bd45657
ML
615
616 if (err) {
617 module_put(mtd->owner);
618 return err;
619 }
620 }
621 mtd->usecount++;
622 return 0;
1da177e4 623}
33c87b4a 624EXPORT_SYMBOL_GPL(__get_mtd_device);
1da177e4 625
7799308f
AB
626/**
627 * get_mtd_device_nm - obtain a validated handle for an MTD device by
628 * device name
629 * @name: MTD device name to open
630 *
631 * This function returns MTD device description structure in case of
632 * success and an error code in case of failure.
633 */
7799308f
AB
634struct mtd_info *get_mtd_device_nm(const char *name)
635{
f1332ba2
BH
636 int err = -ENODEV;
637 struct mtd_info *mtd = NULL, *other;
7799308f
AB
638
639 mutex_lock(&mtd_table_mutex);
640
f1332ba2
BH
641 mtd_for_each_device(other) {
642 if (!strcmp(name, other->name)) {
643 mtd = other;
7799308f
AB
644 break;
645 }
646 }
647
9fe912ce 648 if (!mtd)
7799308f
AB
649 goto out_unlock;
650
52534f2d
WG
651 err = __get_mtd_device(mtd);
652 if (err)
7799308f
AB
653 goto out_unlock;
654
9fe912ce
AB
655 mutex_unlock(&mtd_table_mutex);
656 return mtd;
7799308f
AB
657
658out_unlock:
659 mutex_unlock(&mtd_table_mutex);
9fe912ce 660 return ERR_PTR(err);
7799308f 661}
33c87b4a 662EXPORT_SYMBOL_GPL(get_mtd_device_nm);
7799308f 663
1da177e4
LT
664void put_mtd_device(struct mtd_info *mtd)
665{
48b19268 666 mutex_lock(&mtd_table_mutex);
3bd45657
ML
667 __put_mtd_device(mtd);
668 mutex_unlock(&mtd_table_mutex);
669
670}
33c87b4a 671EXPORT_SYMBOL_GPL(put_mtd_device);
3bd45657
ML
672
673void __put_mtd_device(struct mtd_info *mtd)
674{
675 --mtd->usecount;
676 BUG_ON(mtd->usecount < 0);
677
3c3c10bb
AB
678 if (mtd->_put_device)
679 mtd->_put_device(mtd);
1da177e4
LT
680
681 module_put(mtd->owner);
682}
33c87b4a 683EXPORT_SYMBOL_GPL(__put_mtd_device);
1da177e4 684
8273a0c9
AB
685/*
686 * Erase is an asynchronous operation. Device drivers are supposed
687 * to call instr->callback() whenever the operation completes, even
688 * if it completes with a failure.
689 * Callers are supposed to pass a callback function and wait for it
690 * to be called before writing to the block.
691 */
692int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
693{
694 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
695 return -EINVAL;
664addc2
AB
696 if (!(mtd->flags & MTD_WRITEABLE))
697 return -EROFS;
bcb1d238
AB
698 if (!instr->len) {
699 instr->state = MTD_ERASE_DONE;
700 mtd_erase_callback(instr);
701 return 0;
702 }
8273a0c9
AB
703 return mtd->_erase(mtd, instr);
704}
705EXPORT_SYMBOL_GPL(mtd_erase);
706
707/*
708 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
709 */
710int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
711 void **virt, resource_size_t *phys)
712{
713 *retlen = 0;
0dd5235f
AB
714 *virt = NULL;
715 if (phys)
716 *phys = 0;
8273a0c9
AB
717 if (!mtd->_point)
718 return -EOPNOTSUPP;
719 if (from < 0 || from > mtd->size || len > mtd->size - from)
720 return -EINVAL;
bcb1d238
AB
721 if (!len)
722 return 0;
8273a0c9
AB
723 return mtd->_point(mtd, from, len, retlen, virt, phys);
724}
725EXPORT_SYMBOL_GPL(mtd_point);
726
727/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
728int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
729{
730 if (!mtd->_point)
731 return -EOPNOTSUPP;
732 if (from < 0 || from > mtd->size || len > mtd->size - from)
733 return -EINVAL;
bcb1d238
AB
734 if (!len)
735 return 0;
8273a0c9
AB
736 return mtd->_unpoint(mtd, from, len);
737}
738EXPORT_SYMBOL_GPL(mtd_unpoint);
739
740/*
741 * Allow NOMMU mmap() to directly map the device (if not NULL)
742 * - return the address to which the offset maps
743 * - return -ENOSYS to indicate refusal to do the mapping
744 */
745unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
746 unsigned long offset, unsigned long flags)
747{
748 if (!mtd->_get_unmapped_area)
749 return -EOPNOTSUPP;
750 if (offset > mtd->size || len > mtd->size - offset)
751 return -EINVAL;
752 return mtd->_get_unmapped_area(mtd, len, offset, flags);
753}
754EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
755
756int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
757 u_char *buf)
758{
834247ec 759 *retlen = 0;
8273a0c9
AB
760 if (from < 0 || from > mtd->size || len > mtd->size - from)
761 return -EINVAL;
bcb1d238
AB
762 if (!len)
763 return 0;
8273a0c9
AB
764 return mtd->_read(mtd, from, len, retlen, buf);
765}
766EXPORT_SYMBOL_GPL(mtd_read);
767
768int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
769 const u_char *buf)
770{
771 *retlen = 0;
8273a0c9
AB
772 if (to < 0 || to > mtd->size || len > mtd->size - to)
773 return -EINVAL;
664addc2
AB
774 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
775 return -EROFS;
bcb1d238
AB
776 if (!len)
777 return 0;
8273a0c9
AB
778 return mtd->_write(mtd, to, len, retlen, buf);
779}
780EXPORT_SYMBOL_GPL(mtd_write);
781
782/*
783 * In blackbox flight recorder like scenarios we want to make successful writes
784 * in interrupt context. panic_write() is only intended to be called when its
785 * known the kernel is about to panic and we need the write to succeed. Since
786 * the kernel is not going to be running for much longer, this function can
787 * break locks and delay to ensure the write succeeds (but not sleep).
788 */
789int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
790 const u_char *buf)
791{
792 *retlen = 0;
793 if (!mtd->_panic_write)
794 return -EOPNOTSUPP;
795 if (to < 0 || to > mtd->size || len > mtd->size - to)
796 return -EINVAL;
664addc2
AB
797 if (!(mtd->flags & MTD_WRITEABLE))
798 return -EROFS;
bcb1d238
AB
799 if (!len)
800 return 0;
8273a0c9
AB
801 return mtd->_panic_write(mtd, to, len, retlen, buf);
802}
803EXPORT_SYMBOL_GPL(mtd_panic_write);
804
de3cac93
AB
805/*
806 * Method to access the protection register area, present in some flash
807 * devices. The user data is one time programmable but the factory data is read
808 * only.
809 */
810int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
811 size_t len)
812{
813 if (!mtd->_get_fact_prot_info)
814 return -EOPNOTSUPP;
815 if (!len)
816 return 0;
817 return mtd->_get_fact_prot_info(mtd, buf, len);
818}
819EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
820
821int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
822 size_t *retlen, u_char *buf)
823{
824 *retlen = 0;
825 if (!mtd->_read_fact_prot_reg)
826 return -EOPNOTSUPP;
827 if (!len)
828 return 0;
829 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
830}
831EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
832
833int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
834 size_t len)
835{
836 if (!mtd->_get_user_prot_info)
837 return -EOPNOTSUPP;
838 if (!len)
839 return 0;
840 return mtd->_get_user_prot_info(mtd, buf, len);
841}
842EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
843
844int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
845 size_t *retlen, u_char *buf)
846{
847 *retlen = 0;
848 if (!mtd->_read_user_prot_reg)
849 return -EOPNOTSUPP;
850 if (!len)
851 return 0;
852 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
853}
854EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
855
856int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
857 size_t *retlen, u_char *buf)
858{
859 *retlen = 0;
860 if (!mtd->_write_user_prot_reg)
861 return -EOPNOTSUPP;
862 if (!len)
863 return 0;
864 return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
865}
866EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
867
868int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
869{
870 if (!mtd->_lock_user_prot_reg)
871 return -EOPNOTSUPP;
872 if (!len)
873 return 0;
874 return mtd->_lock_user_prot_reg(mtd, from, len);
875}
876EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
877
8273a0c9
AB
878/* Chip-supported device locking */
879int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
880{
881 if (!mtd->_lock)
882 return -EOPNOTSUPP;
883 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
884 return -EINVAL;
bcb1d238
AB
885 if (!len)
886 return 0;
8273a0c9
AB
887 return mtd->_lock(mtd, ofs, len);
888}
889EXPORT_SYMBOL_GPL(mtd_lock);
890
891int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
892{
893 if (!mtd->_unlock)
894 return -EOPNOTSUPP;
895 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
896 return -EINVAL;
bcb1d238
AB
897 if (!len)
898 return 0;
8273a0c9
AB
899 return mtd->_unlock(mtd, ofs, len);
900}
901EXPORT_SYMBOL_GPL(mtd_unlock);
902
903int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
904{
905 if (!mtd->_is_locked)
906 return -EOPNOTSUPP;
907 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
908 return -EINVAL;
bcb1d238
AB
909 if (!len)
910 return 0;
8273a0c9
AB
911 return mtd->_is_locked(mtd, ofs, len);
912}
913EXPORT_SYMBOL_GPL(mtd_is_locked);
914
915int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
916{
917 if (!mtd->_block_isbad)
918 return 0;
919 if (ofs < 0 || ofs > mtd->size)
920 return -EINVAL;
921 return mtd->_block_isbad(mtd, ofs);
922}
923EXPORT_SYMBOL_GPL(mtd_block_isbad);
924
925int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
926{
927 if (!mtd->_block_markbad)
928 return -EOPNOTSUPP;
929 if (ofs < 0 || ofs > mtd->size)
930 return -EINVAL;
664addc2
AB
931 if (!(mtd->flags & MTD_WRITEABLE))
932 return -EROFS;
8273a0c9
AB
933 return mtd->_block_markbad(mtd, ofs);
934}
935EXPORT_SYMBOL_GPL(mtd_block_markbad);
936
52b02031
AB
937/*
938 * default_mtd_writev - the default writev method
939 * @mtd: mtd device description object pointer
940 * @vecs: the vectors to write
941 * @count: count of vectors in @vecs
942 * @to: the MTD device offset to write to
943 * @retlen: on exit contains the count of bytes written to the MTD device.
944 *
945 * This function returns zero in case of success and a negative error code in
946 * case of failure.
1da177e4 947 */
1dbebd32
AB
948static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
949 unsigned long count, loff_t to, size_t *retlen)
1da177e4
LT
950{
951 unsigned long i;
952 size_t totlen = 0, thislen;
953 int ret = 0;
954
52b02031
AB
955 for (i = 0; i < count; i++) {
956 if (!vecs[i].iov_len)
957 continue;
958 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
959 vecs[i].iov_base);
960 totlen += thislen;
961 if (ret || thislen != vecs[i].iov_len)
962 break;
963 to += vecs[i].iov_len;
1da177e4 964 }
52b02031 965 *retlen = totlen;
1da177e4
LT
966 return ret;
967}
1dbebd32
AB
968
969/*
970 * mtd_writev - the vector-based MTD write method
971 * @mtd: mtd device description object pointer
972 * @vecs: the vectors to write
973 * @count: count of vectors in @vecs
974 * @to: the MTD device offset to write to
975 * @retlen: on exit contains the count of bytes written to the MTD device.
976 *
977 * This function returns zero in case of success and a negative error code in
978 * case of failure.
979 */
980int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
981 unsigned long count, loff_t to, size_t *retlen)
982{
983 *retlen = 0;
664addc2
AB
984 if (!(mtd->flags & MTD_WRITEABLE))
985 return -EROFS;
3c3c10bb 986 if (!mtd->_writev)
1dbebd32 987 return default_mtd_writev(mtd, vecs, count, to, retlen);
3c3c10bb 988 return mtd->_writev(mtd, vecs, count, to, retlen);
1dbebd32
AB
989}
990EXPORT_SYMBOL_GPL(mtd_writev);
1da177e4 991
33b53716
GE
992/**
993 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
52b02031
AB
994 * @mtd: mtd device description object pointer
995 * @size: a pointer to the ideal or maximum size of the allocation, points
33b53716
GE
996 * to the actual allocation size on success.
997 *
998 * This routine attempts to allocate a contiguous kernel buffer up to
999 * the specified size, backing off the size of the request exponentially
1000 * until the request succeeds or until the allocation size falls below
1001 * the system page size. This attempts to make sure it does not adversely
1002 * impact system performance, so when allocating more than one page, we
1003 * ask the memory allocator to avoid re-trying, swapping, writing back
1004 * or performing I/O.
1005 *
1006 * Note, this function also makes sure that the allocated buffer is aligned to
1007 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1008 *
1009 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1010 * to handle smaller (i.e. degraded) buffer allocations under low- or
1011 * fragmented-memory situations where such reduced allocations, from a
1012 * requested ideal, are allowed.
1013 *
1014 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1015 */
1016void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1017{
1018 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1019 __GFP_NORETRY | __GFP_NO_KSWAPD;
1020 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1021 void *kbuf;
1022
1023 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1024
1025 while (*size > min_alloc) {
1026 kbuf = kmalloc(*size, flags);
1027 if (kbuf)
1028 return kbuf;
1029
1030 *size >>= 1;
1031 *size = ALIGN(*size, mtd->writesize);
1032 }
1033
1034 /*
1035 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1036 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1037 */
1038 return kmalloc(*size, GFP_KERNEL);
1039}
33b53716 1040EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1da177e4 1041
2d2dce0e
PM
1042#ifdef CONFIG_PROC_FS
1043
1da177e4
LT
1044/*====================================================================*/
1045/* Support for /proc/mtd */
1046
1da177e4
LT
1047static struct proc_dir_entry *proc_mtd;
1048
447d9bd8 1049static int mtd_proc_show(struct seq_file *m, void *v)
1da177e4 1050{
f1332ba2 1051 struct mtd_info *mtd;
1da177e4 1052
447d9bd8 1053 seq_puts(m, "dev: size erasesize name\n");
48b19268 1054 mutex_lock(&mtd_table_mutex);
f1332ba2 1055 mtd_for_each_device(mtd) {
447d9bd8
AD
1056 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1057 mtd->index, (unsigned long long)mtd->size,
1058 mtd->erasesize, mtd->name);
d5ca5129 1059 }
48b19268 1060 mutex_unlock(&mtd_table_mutex);
d5ca5129 1061 return 0;
1da177e4
LT
1062}
1063
447d9bd8
AD
1064static int mtd_proc_open(struct inode *inode, struct file *file)
1065{
1066 return single_open(file, mtd_proc_show, NULL);
1067}
1068
1069static const struct file_operations mtd_proc_ops = {
1070 .open = mtd_proc_open,
1071 .read = seq_read,
1072 .llseek = seq_lseek,
1073 .release = single_release,
1074};
45b09076
KC
1075#endif /* CONFIG_PROC_FS */
1076
1da177e4
LT
1077/*====================================================================*/
1078/* Init code */
1079
0661b1ac
JA
1080static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1081{
1082 int ret;
1083
1084 ret = bdi_init(bdi);
1085 if (!ret)
1086 ret = bdi_register(bdi, NULL, name);
1087
1088 if (ret)
1089 bdi_destroy(bdi);
1090
1091 return ret;
1092}
1093
1da177e4
LT
1094static int __init init_mtd(void)
1095{
15bce40c 1096 int ret;
0661b1ac 1097
15bce40c 1098 ret = class_register(&mtd_class);
0661b1ac
JA
1099 if (ret)
1100 goto err_reg;
1101
1102 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1103 if (ret)
1104 goto err_bdi1;
1105
1106 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1107 if (ret)
1108 goto err_bdi2;
1109
1110 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1111 if (ret)
1112 goto err_bdi3;
694bb7fc 1113
45b09076 1114#ifdef CONFIG_PROC_FS
447d9bd8 1115 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
45b09076 1116#endif /* CONFIG_PROC_FS */
1da177e4 1117 return 0;
0661b1ac
JA
1118
1119err_bdi3:
1120 bdi_destroy(&mtd_bdi_ro_mappable);
1121err_bdi2:
1122 bdi_destroy(&mtd_bdi_unmappable);
1123err_bdi1:
1124 class_unregister(&mtd_class);
1125err_reg:
1126 pr_err("Error registering mtd class or bdi: %d\n", ret);
1127 return ret;
1da177e4
LT
1128}
1129
1130static void __exit cleanup_mtd(void)
1131{
45b09076 1132#ifdef CONFIG_PROC_FS
d5ca5129 1133 if (proc_mtd)
1da177e4 1134 remove_proc_entry( "mtd", NULL);
45b09076 1135#endif /* CONFIG_PROC_FS */
15bce40c 1136 class_unregister(&mtd_class);
0661b1ac
JA
1137 bdi_destroy(&mtd_bdi_unmappable);
1138 bdi_destroy(&mtd_bdi_ro_mappable);
1139 bdi_destroy(&mtd_bdi_rw_mappable);
1da177e4
LT
1140}
1141
1142module_init(init_mtd);
1143module_exit(cleanup_mtd);
1144
1da177e4
LT
1145MODULE_LICENSE("GPL");
1146MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1147MODULE_DESCRIPTION("Core MTD registration and access routines");