]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/mtd/mtdcore.c
Merge tag 'char-misc-4.15-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / mtdcore.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
a1452a37
DW
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
1da177e4
LT
22 */
23
1da177e4
LT
24#include <linux/module.h>
25#include <linux/kernel.h>
1da177e4 26#include <linux/ptrace.h>
447d9bd8 27#include <linux/seq_file.h>
1da177e4
LT
28#include <linux/string.h>
29#include <linux/timer.h>
30#include <linux/major.h>
31#include <linux/fs.h>
7799308f 32#include <linux/err.h>
1da177e4
LT
33#include <linux/ioctl.h>
34#include <linux/init.h>
215a02fd 35#include <linux/of.h>
1da177e4 36#include <linux/proc_fs.h>
b520e412 37#include <linux/idr.h>
a33eb6b9 38#include <linux/backing-dev.h>
05d71b46 39#include <linux/gfp.h>
0d01ff25 40#include <linux/slab.h>
3efe41be 41#include <linux/reboot.h>
fea728c0 42#include <linux/leds.h>
e8e3edb9 43#include <linux/debugfs.h>
1da177e4
LT
44
45#include <linux/mtd/mtd.h>
f5671ab3 46#include <linux/mtd/partitions.h>
1da177e4 47
356d70f1 48#include "mtdcore.h"
660685d9 49
fa06052d 50struct backing_dev_info *mtd_bdi;
356d70f1 51
57b8045d
LPC
52#ifdef CONFIG_PM_SLEEP
53
54static int mtd_cls_suspend(struct device *dev)
55{
56 struct mtd_info *mtd = dev_get_drvdata(dev);
57
58 return mtd ? mtd_suspend(mtd) : 0;
59}
60
61static int mtd_cls_resume(struct device *dev)
62{
63 struct mtd_info *mtd = dev_get_drvdata(dev);
64
65 if (mtd)
66 mtd_resume(mtd);
67 return 0;
68}
69
70static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
71#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
72#else
73#define MTD_CLS_PM_OPS NULL
74#endif
15bce40c
DW
75
76static struct class mtd_class = {
77 .name = "mtd",
78 .owner = THIS_MODULE,
57b8045d 79 .pm = MTD_CLS_PM_OPS,
15bce40c 80};
1f24b5a8 81
b520e412
BH
82static DEFINE_IDR(mtd_idr);
83
97894cda 84/* These are exported solely for the purpose of mtd_blkdevs.c. You
1da177e4 85 should not use them for _anything_ else */
48b19268 86DEFINE_MUTEX(mtd_table_mutex);
1da177e4 87EXPORT_SYMBOL_GPL(mtd_table_mutex);
b520e412
BH
88
89struct mtd_info *__mtd_next_device(int i)
90{
91 return idr_get_next(&mtd_idr, &i);
92}
93EXPORT_SYMBOL_GPL(__mtd_next_device);
1da177e4
LT
94
95static LIST_HEAD(mtd_notifiers);
96
1f24b5a8 97
1f24b5a8 98#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
1f24b5a8
DB
99
100/* REVISIT once MTD uses the driver model better, whoever allocates
101 * the mtd_info will probably want to use the release() hook...
102 */
103static void mtd_release(struct device *dev)
104{
5e472128 105 struct mtd_info *mtd = dev_get_drvdata(dev);
d5de20a9 106 dev_t index = MTD_DEVT(mtd->index);
1f24b5a8 107
5e472128
BN
108 /* remove /dev/mtdXro node */
109 device_destroy(&mtd_class, index + 1);
15bce40c
DW
110}
111
1f24b5a8
DB
112static ssize_t mtd_type_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
114{
d5de20a9 115 struct mtd_info *mtd = dev_get_drvdata(dev);
1f24b5a8
DB
116 char *type;
117
118 switch (mtd->type) {
119 case MTD_ABSENT:
120 type = "absent";
121 break;
122 case MTD_RAM:
123 type = "ram";
124 break;
125 case MTD_ROM:
126 type = "rom";
127 break;
128 case MTD_NORFLASH:
129 type = "nor";
130 break;
131 case MTD_NANDFLASH:
132 type = "nand";
133 break;
134 case MTD_DATAFLASH:
135 type = "dataflash";
136 break;
137 case MTD_UBIVOLUME:
138 type = "ubi";
139 break;
f4837246
HS
140 case MTD_MLCNANDFLASH:
141 type = "mlc-nand";
142 break;
1f24b5a8
DB
143 default:
144 type = "unknown";
145 }
146
147 return snprintf(buf, PAGE_SIZE, "%s\n", type);
148}
694bb7fc
KC
149static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
150
151static ssize_t mtd_flags_show(struct device *dev,
152 struct device_attribute *attr, char *buf)
153{
d5de20a9 154 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
155
156 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
157
158}
159static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
160
161static ssize_t mtd_size_show(struct device *dev,
162 struct device_attribute *attr, char *buf)
163{
d5de20a9 164 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
165
166 return snprintf(buf, PAGE_SIZE, "%llu\n",
167 (unsigned long long)mtd->size);
168
169}
170static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
171
172static ssize_t mtd_erasesize_show(struct device *dev,
173 struct device_attribute *attr, char *buf)
174{
d5de20a9 175 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
176
177 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
178
179}
180static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
181
182static ssize_t mtd_writesize_show(struct device *dev,
183 struct device_attribute *attr, char *buf)
184{
d5de20a9 185 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
186
187 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
188
189}
190static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
191
e7693548
AB
192static ssize_t mtd_subpagesize_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
194{
d5de20a9 195 struct mtd_info *mtd = dev_get_drvdata(dev);
e7693548
AB
196 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
197
198 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
199
200}
201static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
202
694bb7fc
KC
203static ssize_t mtd_oobsize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205{
d5de20a9 206 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
207
208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
209
210}
211static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
212
213static ssize_t mtd_numeraseregions_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215{
d5de20a9 216 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
217
218 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
219
220}
221static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
222 NULL);
223
224static ssize_t mtd_name_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
226{
d5de20a9 227 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
228
229 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
230
231}
232static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
1f24b5a8 233
a9b672e8
MD
234static ssize_t mtd_ecc_strength_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
236{
237 struct mtd_info *mtd = dev_get_drvdata(dev);
238
239 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
240}
241static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
242
d062d4ed
MD
243static ssize_t mtd_bitflip_threshold_show(struct device *dev,
244 struct device_attribute *attr,
245 char *buf)
246{
247 struct mtd_info *mtd = dev_get_drvdata(dev);
248
249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
250}
251
252static ssize_t mtd_bitflip_threshold_store(struct device *dev,
253 struct device_attribute *attr,
254 const char *buf, size_t count)
255{
256 struct mtd_info *mtd = dev_get_drvdata(dev);
257 unsigned int bitflip_threshold;
258 int retval;
259
260 retval = kstrtouint(buf, 0, &bitflip_threshold);
261 if (retval)
262 return retval;
263
264 mtd->bitflip_threshold = bitflip_threshold;
265 return count;
266}
267static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
268 mtd_bitflip_threshold_show,
269 mtd_bitflip_threshold_store);
270
bf977e3f
HS
271static ssize_t mtd_ecc_step_size_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
273{
274 struct mtd_info *mtd = dev_get_drvdata(dev);
275
276 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
277
278}
279static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
280
990a3af0
EG
281static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283{
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286
287 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
288}
289static DEVICE_ATTR(corrected_bits, S_IRUGO,
290 mtd_ecc_stats_corrected_show, NULL);
291
292static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
293 struct device_attribute *attr, char *buf)
294{
295 struct mtd_info *mtd = dev_get_drvdata(dev);
296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
297
298 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
299}
300static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
301
302static ssize_t mtd_badblocks_show(struct device *dev,
303 struct device_attribute *attr, char *buf)
304{
305 struct mtd_info *mtd = dev_get_drvdata(dev);
306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307
308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
309}
310static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
311
312static ssize_t mtd_bbtblocks_show(struct device *dev,
313 struct device_attribute *attr, char *buf)
314{
315 struct mtd_info *mtd = dev_get_drvdata(dev);
316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317
318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
319}
320static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
321
1f24b5a8 322static struct attribute *mtd_attrs[] = {
694bb7fc
KC
323 &dev_attr_type.attr,
324 &dev_attr_flags.attr,
325 &dev_attr_size.attr,
326 &dev_attr_erasesize.attr,
327 &dev_attr_writesize.attr,
e7693548 328 &dev_attr_subpagesize.attr,
694bb7fc
KC
329 &dev_attr_oobsize.attr,
330 &dev_attr_numeraseregions.attr,
331 &dev_attr_name.attr,
a9b672e8 332 &dev_attr_ecc_strength.attr,
bf977e3f 333 &dev_attr_ecc_step_size.attr,
990a3af0
EG
334 &dev_attr_corrected_bits.attr,
335 &dev_attr_ecc_failures.attr,
336 &dev_attr_bad_blocks.attr,
337 &dev_attr_bbt_blocks.attr,
d062d4ed 338 &dev_attr_bitflip_threshold.attr,
1f24b5a8
DB
339 NULL,
340};
54c738f6 341ATTRIBUTE_GROUPS(mtd);
1f24b5a8 342
75864b30 343static const struct device_type mtd_devtype = {
1f24b5a8
DB
344 .name = "mtd",
345 .groups = mtd_groups,
346 .release = mtd_release,
347};
348
b4caecd4
CH
349#ifndef CONFIG_MMU
350unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
351{
352 switch (mtd->type) {
353 case MTD_RAM:
354 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
355 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
356 case MTD_ROM:
357 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
358 NOMMU_MAP_READ;
359 default:
360 return NOMMU_MAP_COPY;
361 }
362}
706a4e5a 363EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
b4caecd4
CH
364#endif
365
3efe41be
BN
366static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
367 void *cmd)
368{
369 struct mtd_info *mtd;
370
371 mtd = container_of(n, struct mtd_info, reboot_notifier);
372 mtd->_reboot(mtd);
373
374 return NOTIFY_DONE;
375}
376
477b0229
BB
377/**
378 * mtd_wunit_to_pairing_info - get pairing information of a wunit
379 * @mtd: pointer to new MTD device info structure
380 * @wunit: write unit we are interested in
381 * @info: returned pairing information
382 *
383 * Retrieve pairing information associated to the wunit.
384 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
385 * paired together, and where programming a page may influence the page it is
386 * paired with.
387 * The notion of page is replaced by the term wunit (write-unit) to stay
388 * consistent with the ->writesize field.
389 *
390 * The @wunit argument can be extracted from an absolute offset using
391 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
392 * to @wunit.
393 *
394 * From the pairing info the MTD user can find all the wunits paired with
395 * @wunit using the following loop:
396 *
397 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
398 * info.pair = i;
399 * mtd_pairing_info_to_wunit(mtd, &info);
400 * ...
401 * }
402 */
403int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
404 struct mtd_pairing_info *info)
405{
406 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
407
408 if (wunit < 0 || wunit >= npairs)
409 return -EINVAL;
410
411 if (mtd->pairing && mtd->pairing->get_info)
412 return mtd->pairing->get_info(mtd, wunit, info);
413
414 info->group = 0;
415 info->pair = wunit;
416
417 return 0;
418}
419EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
420
421/**
422 * mtd_wunit_to_pairing_info - get wunit from pairing information
423 * @mtd: pointer to new MTD device info structure
424 * @info: pairing information struct
425 *
426 * Returns a positive number representing the wunit associated to the info
427 * struct, or a negative error code.
428 *
429 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
430 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
431 * doc).
432 *
433 * It can also be used to only program the first page of each pair (i.e.
434 * page attached to group 0), which allows one to use an MLC NAND in
435 * software-emulated SLC mode:
436 *
437 * info.group = 0;
438 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
439 * for (info.pair = 0; info.pair < npairs; info.pair++) {
440 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
441 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
442 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
443 * }
444 */
445int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
446 const struct mtd_pairing_info *info)
447{
448 int ngroups = mtd_pairing_groups(mtd);
449 int npairs = mtd_wunit_per_eb(mtd) / ngroups;
450
451 if (!info || info->pair < 0 || info->pair >= npairs ||
452 info->group < 0 || info->group >= ngroups)
453 return -EINVAL;
454
455 if (mtd->pairing && mtd->pairing->get_wunit)
456 return mtd->pairing->get_wunit(mtd, info);
457
458 return info->pair;
459}
460EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
461
462/**
463 * mtd_pairing_groups - get the number of pairing groups
464 * @mtd: pointer to new MTD device info structure
465 *
466 * Returns the number of pairing groups.
467 *
468 * This number is usually equal to the number of bits exposed by a single
469 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
470 * to iterate over all pages of a given pair.
471 */
472int mtd_pairing_groups(struct mtd_info *mtd)
473{
474 if (!mtd->pairing || !mtd->pairing->ngroups)
475 return 1;
476
477 return mtd->pairing->ngroups;
478}
479EXPORT_SYMBOL_GPL(mtd_pairing_groups);
480
e8e3edb9
MR
481static struct dentry *dfs_dir_mtd;
482
1da177e4
LT
483/**
484 * add_mtd_device - register an MTD device
485 * @mtd: pointer to new MTD device info structure
486 *
487 * Add a device to the list of MTD devices present in the system, and
488 * notify each currently active MTD 'user' of its arrival. Returns
57dd990c 489 * zero on success or non-zero on failure.
1da177e4
LT
490 */
491
492int add_mtd_device(struct mtd_info *mtd)
493{
b520e412
BH
494 struct mtd_notifier *not;
495 int i, error;
1da177e4 496
be0dbff8
BN
497 /*
498 * May occur, for instance, on buggy drivers which call
499 * mtd_device_parse_register() multiple times on the same master MTD,
500 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
501 */
fa06052d 502 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
be0dbff8
BN
503 return -EEXIST;
504
783ed81f 505 BUG_ON(mtd->writesize == 0);
48b19268 506 mutex_lock(&mtd_table_mutex);
1da177e4 507
589e9c4d 508 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
57dd990c
BN
509 if (i < 0) {
510 error = i;
b520e412 511 goto fail_locked;
57dd990c 512 }
1f24b5a8 513
b520e412
BH
514 mtd->index = i;
515 mtd->usecount = 0;
516
d062d4ed
MD
517 /* default value if not set by driver */
518 if (mtd->bitflip_threshold == 0)
519 mtd->bitflip_threshold = mtd->ecc_strength;
520
b520e412
BH
521 if (is_power_of_2(mtd->erasesize))
522 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
523 else
524 mtd->erasesize_shift = 0;
525
526 if (is_power_of_2(mtd->writesize))
527 mtd->writesize_shift = ffs(mtd->writesize) - 1;
528 else
529 mtd->writesize_shift = 0;
530
531 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
532 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
533
534 /* Some chips always power up locked. Unlock them now */
38134565
AB
535 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
536 error = mtd_unlock(mtd, 0, mtd->size);
537 if (error && error != -EOPNOTSUPP)
b520e412
BH
538 printk(KERN_WARNING
539 "%s: unlock failed, writes may not work\n",
540 mtd->name);
57dd990c
BN
541 /* Ignore unlock failures? */
542 error = 0;
b520e412
BH
543 }
544
545 /* Caller should have set dev.parent to match the
260e89a6 546 * physical device, if appropriate.
b520e412
BH
547 */
548 mtd->dev.type = &mtd_devtype;
549 mtd->dev.class = &mtd_class;
550 mtd->dev.devt = MTD_DEVT(i);
551 dev_set_name(&mtd->dev, "mtd%d", i);
552 dev_set_drvdata(&mtd->dev, mtd);
215a02fd 553 of_node_get(mtd_get_of_node(mtd));
57dd990c
BN
554 error = device_register(&mtd->dev);
555 if (error)
b520e412
BH
556 goto fail_added;
557
e8e3edb9
MR
558 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
559 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
560 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
561 pr_debug("mtd device %s won't show data in debugfs\n",
562 dev_name(&mtd->dev));
563 }
564 }
565
5e472128
BN
566 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
567 "mtd%dro", i);
b520e412 568
289c0522 569 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
b520e412
BH
570 /* No need to get a refcount on the module containing
571 the notifier, since we hold the mtd_table_mutex */
572 list_for_each_entry(not, &mtd_notifiers, list)
573 not->add(mtd);
574
575 mutex_unlock(&mtd_table_mutex);
576 /* We _know_ we aren't being removed, because
577 our caller is still holding us here. So none
578 of this try_ nonsense, and no bitching about it
579 either. :) */
580 __module_get(THIS_MODULE);
581 return 0;
97894cda 582
b520e412 583fail_added:
215a02fd 584 of_node_put(mtd_get_of_node(mtd));
b520e412
BH
585 idr_remove(&mtd_idr, i);
586fail_locked:
48b19268 587 mutex_unlock(&mtd_table_mutex);
57dd990c 588 return error;
1da177e4
LT
589}
590
591/**
592 * del_mtd_device - unregister an MTD device
593 * @mtd: pointer to MTD device info structure
594 *
595 * Remove a device from the list of MTD devices present in the system,
596 * and notify each currently active MTD 'user' of its departure.
597 * Returns zero on success or 1 on failure, which currently will happen
598 * if the requested device does not appear to be present in the list.
599 */
600
eea72d5f 601int del_mtd_device(struct mtd_info *mtd)
1da177e4
LT
602{
603 int ret;
75c0b84d 604 struct mtd_notifier *not;
97894cda 605
48b19268 606 mutex_lock(&mtd_table_mutex);
1da177e4 607
e8e3edb9
MR
608 debugfs_remove_recursive(mtd->dbg.dfs_dir);
609
b520e412 610 if (idr_find(&mtd_idr, mtd->index) != mtd) {
1da177e4 611 ret = -ENODEV;
75c0b84d
ML
612 goto out_error;
613 }
614
615 /* No need to get a refcount on the module containing
616 the notifier, since we hold the mtd_table_mutex */
617 list_for_each_entry(not, &mtd_notifiers, list)
618 not->remove(mtd);
619
620 if (mtd->usecount) {
97894cda 621 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
1da177e4
LT
622 mtd->index, mtd->name, mtd->usecount);
623 ret = -EBUSY;
624 } else {
694bb7fc
KC
625 device_unregister(&mtd->dev);
626
b520e412 627 idr_remove(&mtd_idr, mtd->index);
215a02fd 628 of_node_put(mtd_get_of_node(mtd));
1da177e4
LT
629
630 module_put(THIS_MODULE);
631 ret = 0;
632 }
633
75c0b84d 634out_error:
48b19268 635 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
636 return ret;
637}
638
727dc612 639static int mtd_add_device_partitions(struct mtd_info *mtd,
07fd2f87 640 struct mtd_partitions *parts)
727dc612 641{
07fd2f87
BN
642 const struct mtd_partition *real_parts = parts->parts;
643 int nbparts = parts->nr_parts;
727dc612
DE
644 int ret;
645
646 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
647 ret = add_mtd_device(mtd);
57dd990c
BN
648 if (ret)
649 return ret;
727dc612
DE
650 }
651
652 if (nbparts > 0) {
653 ret = add_mtd_partitions(mtd, real_parts, nbparts);
654 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
655 del_mtd_device(mtd);
656 return ret;
657 }
658
659 return 0;
660}
661
472b444e
BN
662/*
663 * Set a few defaults based on the parent devices, if not provided by the
664 * driver
665 */
666static void mtd_set_dev_defaults(struct mtd_info *mtd)
667{
668 if (mtd->dev.parent) {
669 if (!mtd->owner && mtd->dev.parent->driver)
670 mtd->owner = mtd->dev.parent->driver->owner;
671 if (!mtd->name)
672 mtd->name = dev_name(mtd->dev.parent);
673 } else {
674 pr_debug("mtd device won't show a device symlink in sysfs\n");
675 }
676}
727dc612 677
1c4c215c
DES
678/**
679 * mtd_device_parse_register - parse partitions and register an MTD device.
680 *
681 * @mtd: the MTD device to register
682 * @types: the list of MTD partition probes to try, see
683 * 'parse_mtd_partitions()' for more information
c7975330 684 * @parser_data: MTD partition parser-specific data
1c4c215c
DES
685 * @parts: fallback partition information to register, if parsing fails;
686 * only valid if %nr_parts > %0
687 * @nr_parts: the number of partitions in parts, if zero then the full
688 * MTD device is registered if no partition info is found
689 *
690 * This function aggregates MTD partitions parsing (done by
691 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
692 * basically follows the most common pattern found in many MTD drivers:
693 *
694 * * It first tries to probe partitions on MTD device @mtd using parsers
695 * specified in @types (if @types is %NULL, then the default list of parsers
696 * is used, see 'parse_mtd_partitions()' for more information). If none are
697 * found this functions tries to fallback to information specified in
698 * @parts/@nr_parts.
92394b5c 699 * * If any partitioning info was found, this function registers the found
727dc612
DE
700 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
701 * as a whole is registered first.
1c4c215c
DES
702 * * If no partitions were found this function just registers the MTD device
703 * @mtd and exits.
704 *
705 * Returns zero in case of success and a negative error code in case of failure.
706 */
26a47346 707int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
c7975330 708 struct mtd_part_parser_data *parser_data,
1c4c215c
DES
709 const struct mtd_partition *parts,
710 int nr_parts)
711{
07fd2f87 712 struct mtd_partitions parsed;
727dc612 713 int ret;
1c4c215c 714
472b444e
BN
715 mtd_set_dev_defaults(mtd);
716
07fd2f87
BN
717 memset(&parsed, 0, sizeof(parsed));
718
719 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
720 if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
721 /* Fall back to driver-provided partitions */
722 parsed = (struct mtd_partitions){
723 .parts = parts,
724 .nr_parts = nr_parts,
725 };
726 } else if (ret < 0) {
727 /* Didn't come up with parsed OR fallback partitions */
5a2415b0
BN
728 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
729 ret);
730 /* Don't abort on errors; we can still use unpartitioned MTD */
07fd2f87 731 memset(&parsed, 0, sizeof(parsed));
3e00ed0e 732 }
1c4c215c 733
07fd2f87 734 ret = mtd_add_device_partitions(mtd, &parsed);
3e00ed0e
BN
735 if (ret)
736 goto out;
1c4c215c 737
e1dd8641
NC
738 /*
739 * FIXME: some drivers unfortunately call this function more than once.
740 * So we have to check if we've already assigned the reboot notifier.
741 *
742 * Generally, we can make multiple calls work for most cases, but it
743 * does cause problems with parse_mtd_partitions() above (e.g.,
744 * cmdlineparts will register partitions more than once).
745 */
f8479dd6
BN
746 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
747 "MTD already registered\n");
e1dd8641 748 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
3efe41be
BN
749 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
750 register_reboot_notifier(&mtd->reboot_notifier);
751 }
752
3e00ed0e 753out:
c42c2710 754 /* Cleanup any parsed partitions */
adc83bf8 755 mtd_part_parser_cleanup(&parsed);
727dc612 756 return ret;
1c4c215c
DES
757}
758EXPORT_SYMBOL_GPL(mtd_device_parse_register);
759
f5671ab3
JI
760/**
761 * mtd_device_unregister - unregister an existing MTD device.
762 *
763 * @master: the MTD device to unregister. This will unregister both the master
764 * and any partitions if registered.
765 */
766int mtd_device_unregister(struct mtd_info *master)
767{
768 int err;
769
3efe41be
BN
770 if (master->_reboot)
771 unregister_reboot_notifier(&master->reboot_notifier);
772
f5671ab3
JI
773 err = del_mtd_partitions(master);
774 if (err)
775 return err;
776
777 if (!device_is_registered(&master->dev))
778 return 0;
779
780 return del_mtd_device(master);
781}
782EXPORT_SYMBOL_GPL(mtd_device_unregister);
783
1da177e4
LT
784/**
785 * register_mtd_user - register a 'user' of MTD devices.
786 * @new: pointer to notifier info structure
787 *
788 * Registers a pair of callbacks function to be called upon addition
789 * or removal of MTD devices. Causes the 'add' callback to be immediately
790 * invoked for each MTD device currently present in the system.
791 */
1da177e4
LT
792void register_mtd_user (struct mtd_notifier *new)
793{
f1332ba2 794 struct mtd_info *mtd;
1da177e4 795
48b19268 796 mutex_lock(&mtd_table_mutex);
1da177e4
LT
797
798 list_add(&new->list, &mtd_notifiers);
799
d5ca5129 800 __module_get(THIS_MODULE);
97894cda 801
f1332ba2
BH
802 mtd_for_each_device(mtd)
803 new->add(mtd);
1da177e4 804
48b19268 805 mutex_unlock(&mtd_table_mutex);
1da177e4 806}
33c87b4a 807EXPORT_SYMBOL_GPL(register_mtd_user);
1da177e4
LT
808
809/**
49450795
AB
810 * unregister_mtd_user - unregister a 'user' of MTD devices.
811 * @old: pointer to notifier info structure
1da177e4
LT
812 *
813 * Removes a callback function pair from the list of 'users' to be
814 * notified upon addition or removal of MTD devices. Causes the
815 * 'remove' callback to be immediately invoked for each MTD device
816 * currently present in the system.
817 */
1da177e4
LT
818int unregister_mtd_user (struct mtd_notifier *old)
819{
f1332ba2 820 struct mtd_info *mtd;
1da177e4 821
48b19268 822 mutex_lock(&mtd_table_mutex);
1da177e4
LT
823
824 module_put(THIS_MODULE);
825
f1332ba2
BH
826 mtd_for_each_device(mtd)
827 old->remove(mtd);
97894cda 828
1da177e4 829 list_del(&old->list);
48b19268 830 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
831 return 0;
832}
33c87b4a 833EXPORT_SYMBOL_GPL(unregister_mtd_user);
1da177e4
LT
834
835/**
836 * get_mtd_device - obtain a validated handle for an MTD device
837 * @mtd: last known address of the required MTD device
838 * @num: internal device number of the required MTD device
839 *
840 * Given a number and NULL address, return the num'th entry in the device
841 * table, if any. Given an address and num == -1, search the device table
842 * for a device with that address and return if it's still present. Given
9c74034f
AB
843 * both, return the num'th driver only if its address matches. Return
844 * error code if not.
1da177e4 845 */
1da177e4
LT
846struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
847{
f1332ba2
BH
848 struct mtd_info *ret = NULL, *other;
849 int err = -ENODEV;
1da177e4 850
48b19268 851 mutex_lock(&mtd_table_mutex);
1da177e4
LT
852
853 if (num == -1) {
f1332ba2
BH
854 mtd_for_each_device(other) {
855 if (other == mtd) {
856 ret = mtd;
857 break;
858 }
859 }
b520e412
BH
860 } else if (num >= 0) {
861 ret = idr_find(&mtd_idr, num);
1da177e4
LT
862 if (mtd && mtd != ret)
863 ret = NULL;
864 }
865
3bd45657
ML
866 if (!ret) {
867 ret = ERR_PTR(err);
868 goto out;
9fe912ce 869 }
1da177e4 870
3bd45657
ML
871 err = __get_mtd_device(ret);
872 if (err)
873 ret = ERR_PTR(err);
874out:
9c74034f
AB
875 mutex_unlock(&mtd_table_mutex);
876 return ret;
3bd45657 877}
33c87b4a 878EXPORT_SYMBOL_GPL(get_mtd_device);
1da177e4 879
3bd45657
ML
880
881int __get_mtd_device(struct mtd_info *mtd)
882{
883 int err;
884
885 if (!try_module_get(mtd->owner))
886 return -ENODEV;
887
3c3c10bb
AB
888 if (mtd->_get_device) {
889 err = mtd->_get_device(mtd);
3bd45657
ML
890
891 if (err) {
892 module_put(mtd->owner);
893 return err;
894 }
895 }
896 mtd->usecount++;
897 return 0;
1da177e4 898}
33c87b4a 899EXPORT_SYMBOL_GPL(__get_mtd_device);
1da177e4 900
7799308f
AB
901/**
902 * get_mtd_device_nm - obtain a validated handle for an MTD device by
903 * device name
904 * @name: MTD device name to open
905 *
906 * This function returns MTD device description structure in case of
907 * success and an error code in case of failure.
908 */
7799308f
AB
909struct mtd_info *get_mtd_device_nm(const char *name)
910{
f1332ba2
BH
911 int err = -ENODEV;
912 struct mtd_info *mtd = NULL, *other;
7799308f
AB
913
914 mutex_lock(&mtd_table_mutex);
915
f1332ba2
BH
916 mtd_for_each_device(other) {
917 if (!strcmp(name, other->name)) {
918 mtd = other;
7799308f
AB
919 break;
920 }
921 }
922
9fe912ce 923 if (!mtd)
7799308f
AB
924 goto out_unlock;
925
52534f2d
WG
926 err = __get_mtd_device(mtd);
927 if (err)
7799308f
AB
928 goto out_unlock;
929
9fe912ce
AB
930 mutex_unlock(&mtd_table_mutex);
931 return mtd;
7799308f
AB
932
933out_unlock:
934 mutex_unlock(&mtd_table_mutex);
9fe912ce 935 return ERR_PTR(err);
7799308f 936}
33c87b4a 937EXPORT_SYMBOL_GPL(get_mtd_device_nm);
7799308f 938
1da177e4
LT
939void put_mtd_device(struct mtd_info *mtd)
940{
48b19268 941 mutex_lock(&mtd_table_mutex);
3bd45657
ML
942 __put_mtd_device(mtd);
943 mutex_unlock(&mtd_table_mutex);
944
945}
33c87b4a 946EXPORT_SYMBOL_GPL(put_mtd_device);
3bd45657
ML
947
948void __put_mtd_device(struct mtd_info *mtd)
949{
950 --mtd->usecount;
951 BUG_ON(mtd->usecount < 0);
952
3c3c10bb
AB
953 if (mtd->_put_device)
954 mtd->_put_device(mtd);
1da177e4
LT
955
956 module_put(mtd->owner);
957}
33c87b4a 958EXPORT_SYMBOL_GPL(__put_mtd_device);
1da177e4 959
8273a0c9
AB
960/*
961 * Erase is an asynchronous operation. Device drivers are supposed
962 * to call instr->callback() whenever the operation completes, even
963 * if it completes with a failure.
964 * Callers are supposed to pass a callback function and wait for it
965 * to be called before writing to the block.
966 */
967int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
968{
0c2b4e21 969 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
8273a0c9 970 return -EINVAL;
664addc2
AB
971 if (!(mtd->flags & MTD_WRITEABLE))
972 return -EROFS;
3b27dac0 973 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
bcb1d238
AB
974 if (!instr->len) {
975 instr->state = MTD_ERASE_DONE;
976 mtd_erase_callback(instr);
977 return 0;
978 }
fea728c0 979 ledtrig_mtd_activity();
8273a0c9
AB
980 return mtd->_erase(mtd, instr);
981}
982EXPORT_SYMBOL_GPL(mtd_erase);
983
984/*
985 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
986 */
987int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
988 void **virt, resource_size_t *phys)
989{
990 *retlen = 0;
0dd5235f
AB
991 *virt = NULL;
992 if (phys)
993 *phys = 0;
8273a0c9
AB
994 if (!mtd->_point)
995 return -EOPNOTSUPP;
0c2b4e21 996 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 997 return -EINVAL;
bcb1d238
AB
998 if (!len)
999 return 0;
8273a0c9
AB
1000 return mtd->_point(mtd, from, len, retlen, virt, phys);
1001}
1002EXPORT_SYMBOL_GPL(mtd_point);
1003
1004/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1005int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1006{
b9504247 1007 if (!mtd->_unpoint)
8273a0c9 1008 return -EOPNOTSUPP;
0c2b4e21 1009 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 1010 return -EINVAL;
bcb1d238
AB
1011 if (!len)
1012 return 0;
8273a0c9
AB
1013 return mtd->_unpoint(mtd, from, len);
1014}
1015EXPORT_SYMBOL_GPL(mtd_unpoint);
1016
1017/*
1018 * Allow NOMMU mmap() to directly map the device (if not NULL)
1019 * - return the address to which the offset maps
1020 * - return -ENOSYS to indicate refusal to do the mapping
1021 */
1022unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1023 unsigned long offset, unsigned long flags)
1024{
9eaa903c
NP
1025 size_t retlen;
1026 void *virt;
1027 int ret;
1028
1029 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1030 if (ret)
1031 return ret;
1032 if (retlen != len) {
1033 mtd_unpoint(mtd, offset, retlen);
1034 return -ENOSYS;
1035 }
1036 return (unsigned long)virt;
8273a0c9
AB
1037}
1038EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1039
1040int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1041 u_char *buf)
1042{
edbc4540 1043 int ret_code;
834247ec 1044 *retlen = 0;
0c2b4e21 1045 if (from < 0 || from >= mtd->size || len > mtd->size - from)
8273a0c9 1046 return -EINVAL;
bcb1d238
AB
1047 if (!len)
1048 return 0;
edbc4540 1049
fea728c0 1050 ledtrig_mtd_activity();
edbc4540
MD
1051 /*
1052 * In the absence of an error, drivers return a non-negative integer
1053 * representing the maximum number of bitflips that were corrected on
1054 * any one ecc region (if applicable; zero otherwise).
1055 */
1056 ret_code = mtd->_read(mtd, from, len, retlen, buf);
1057 if (unlikely(ret_code < 0))
1058 return ret_code;
1059 if (mtd->ecc_strength == 0)
1060 return 0; /* device lacks ecc */
1061 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
8273a0c9
AB
1062}
1063EXPORT_SYMBOL_GPL(mtd_read);
1064
1065int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1066 const u_char *buf)
1067{
1068 *retlen = 0;
0c2b4e21 1069 if (to < 0 || to >= mtd->size || len > mtd->size - to)
8273a0c9 1070 return -EINVAL;
664addc2
AB
1071 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
1072 return -EROFS;
bcb1d238
AB
1073 if (!len)
1074 return 0;
fea728c0 1075 ledtrig_mtd_activity();
8273a0c9
AB
1076 return mtd->_write(mtd, to, len, retlen, buf);
1077}
1078EXPORT_SYMBOL_GPL(mtd_write);
1079
1080/*
1081 * In blackbox flight recorder like scenarios we want to make successful writes
1082 * in interrupt context. panic_write() is only intended to be called when its
1083 * known the kernel is about to panic and we need the write to succeed. Since
1084 * the kernel is not going to be running for much longer, this function can
1085 * break locks and delay to ensure the write succeeds (but not sleep).
1086 */
1087int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1088 const u_char *buf)
1089{
1090 *retlen = 0;
1091 if (!mtd->_panic_write)
1092 return -EOPNOTSUPP;
0c2b4e21 1093 if (to < 0 || to >= mtd->size || len > mtd->size - to)
8273a0c9 1094 return -EINVAL;
664addc2
AB
1095 if (!(mtd->flags & MTD_WRITEABLE))
1096 return -EROFS;
bcb1d238
AB
1097 if (!len)
1098 return 0;
8273a0c9
AB
1099 return mtd->_panic_write(mtd, to, len, retlen, buf);
1100}
1101EXPORT_SYMBOL_GPL(mtd_panic_write);
1102
5cdd929d
BB
1103static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1104 struct mtd_oob_ops *ops)
1105{
1106 /*
1107 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1108 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1109 * this case.
1110 */
1111 if (!ops->datbuf)
1112 ops->len = 0;
1113
1114 if (!ops->oobbuf)
1115 ops->ooblen = 0;
1116
d82c3682 1117 if (offs < 0 || offs + ops->len > mtd->size)
5cdd929d
BB
1118 return -EINVAL;
1119
1120 if (ops->ooblen) {
1121 u64 maxooblen;
1122
1123 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1124 return -EINVAL;
1125
1126 maxooblen = ((mtd_div_by_ws(mtd->size, mtd) -
1127 mtd_div_by_ws(offs, mtd)) *
1128 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1129 if (ops->ooblen > maxooblen)
1130 return -EINVAL;
1131 }
1132
1133 return 0;
1134}
1135
d2d48480
BN
1136int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1137{
e47f6858 1138 int ret_code;
d2d48480
BN
1139 ops->retlen = ops->oobretlen = 0;
1140 if (!mtd->_read_oob)
1141 return -EOPNOTSUPP;
fea728c0 1142
5cdd929d
BB
1143 ret_code = mtd_check_oob_ops(mtd, from, ops);
1144 if (ret_code)
1145 return ret_code;
1146
fea728c0 1147 ledtrig_mtd_activity();
e47f6858
BN
1148 /*
1149 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1150 * similar to mtd->_read(), returning a non-negative integer
1151 * representing max bitflips. In other cases, mtd->_read_oob() may
1152 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1153 */
1154 ret_code = mtd->_read_oob(mtd, from, ops);
1155 if (unlikely(ret_code < 0))
1156 return ret_code;
1157 if (mtd->ecc_strength == 0)
1158 return 0; /* device lacks ecc */
1159 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
d2d48480
BN
1160}
1161EXPORT_SYMBOL_GPL(mtd_read_oob);
1162
0c034fe3
EG
1163int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1164 struct mtd_oob_ops *ops)
1165{
5cdd929d
BB
1166 int ret;
1167
0c034fe3
EG
1168 ops->retlen = ops->oobretlen = 0;
1169 if (!mtd->_write_oob)
1170 return -EOPNOTSUPP;
1171 if (!(mtd->flags & MTD_WRITEABLE))
1172 return -EROFS;
5cdd929d
BB
1173
1174 ret = mtd_check_oob_ops(mtd, to, ops);
1175 if (ret)
1176 return ret;
1177
fea728c0 1178 ledtrig_mtd_activity();
0c034fe3
EG
1179 return mtd->_write_oob(mtd, to, ops);
1180}
1181EXPORT_SYMBOL_GPL(mtd_write_oob);
1182
75eb2cec
BB
1183/**
1184 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1185 * @mtd: MTD device structure
1186 * @section: ECC section. Depending on the layout you may have all the ECC
1187 * bytes stored in a single contiguous section, or one section
1188 * per ECC chunk (and sometime several sections for a single ECC
1189 * ECC chunk)
1190 * @oobecc: OOB region struct filled with the appropriate ECC position
1191 * information
1192 *
7da0fffb 1193 * This function returns ECC section information in the OOB area. If you want
75eb2cec
BB
1194 * to get all the ECC bytes information, then you should call
1195 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1196 *
1197 * Returns zero on success, a negative error code otherwise.
1198 */
1199int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1200 struct mtd_oob_region *oobecc)
1201{
75eb2cec
BB
1202 memset(oobecc, 0, sizeof(*oobecc));
1203
1204 if (!mtd || section < 0)
1205 return -EINVAL;
1206
adbbc3bc 1207 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
75eb2cec
BB
1208 return -ENOTSUPP;
1209
adbbc3bc 1210 return mtd->ooblayout->ecc(mtd, section, oobecc);
75eb2cec
BB
1211}
1212EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1213
1214/**
1215 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1216 * section
1217 * @mtd: MTD device structure
1218 * @section: Free section you are interested in. Depending on the layout
1219 * you may have all the free bytes stored in a single contiguous
1220 * section, or one section per ECC chunk plus an extra section
1221 * for the remaining bytes (or other funky layout).
1222 * @oobfree: OOB region struct filled with the appropriate free position
1223 * information
1224 *
7da0fffb 1225 * This function returns free bytes position in the OOB area. If you want
75eb2cec
BB
1226 * to get all the free bytes information, then you should call
1227 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1228 *
1229 * Returns zero on success, a negative error code otherwise.
1230 */
1231int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1232 struct mtd_oob_region *oobfree)
1233{
1234 memset(oobfree, 0, sizeof(*oobfree));
1235
1236 if (!mtd || section < 0)
1237 return -EINVAL;
1238
adbbc3bc 1239 if (!mtd->ooblayout || !mtd->ooblayout->free)
75eb2cec
BB
1240 return -ENOTSUPP;
1241
adbbc3bc 1242 return mtd->ooblayout->free(mtd, section, oobfree);
75eb2cec
BB
1243}
1244EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1245
1246/**
1247 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1248 * @mtd: mtd info structure
1249 * @byte: the byte we are searching for
1250 * @sectionp: pointer where the section id will be stored
1251 * @oobregion: used to retrieve the ECC position
1252 * @iter: iterator function. Should be either mtd_ooblayout_free or
1253 * mtd_ooblayout_ecc depending on the region type you're searching for
1254 *
7da0fffb 1255 * This function returns the section id and oobregion information of a
75eb2cec
BB
1256 * specific byte. For example, say you want to know where the 4th ECC byte is
1257 * stored, you'll use:
1258 *
1259 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1260 *
1261 * Returns zero on success, a negative error code otherwise.
1262 */
1263static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1264 int *sectionp, struct mtd_oob_region *oobregion,
1265 int (*iter)(struct mtd_info *,
1266 int section,
1267 struct mtd_oob_region *oobregion))
1268{
1269 int pos = 0, ret, section = 0;
1270
1271 memset(oobregion, 0, sizeof(*oobregion));
1272
1273 while (1) {
1274 ret = iter(mtd, section, oobregion);
1275 if (ret)
1276 return ret;
1277
1278 if (pos + oobregion->length > byte)
1279 break;
1280
1281 pos += oobregion->length;
1282 section++;
1283 }
1284
1285 /*
1286 * Adjust region info to make it start at the beginning at the
1287 * 'start' ECC byte.
1288 */
1289 oobregion->offset += byte - pos;
1290 oobregion->length -= byte - pos;
1291 *sectionp = section;
1292
1293 return 0;
1294}
1295
1296/**
1297 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1298 * ECC byte
1299 * @mtd: mtd info structure
1300 * @eccbyte: the byte we are searching for
1301 * @sectionp: pointer where the section id will be stored
1302 * @oobregion: OOB region information
1303 *
1304 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1305 * byte.
1306 *
1307 * Returns zero on success, a negative error code otherwise.
1308 */
1309int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1310 int *section,
1311 struct mtd_oob_region *oobregion)
1312{
1313 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1314 mtd_ooblayout_ecc);
1315}
1316EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1317
1318/**
1319 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1320 * @mtd: mtd info structure
1321 * @buf: destination buffer to store OOB bytes
1322 * @oobbuf: OOB buffer
1323 * @start: first byte to retrieve
1324 * @nbytes: number of bytes to retrieve
1325 * @iter: section iterator
1326 *
1327 * Extract bytes attached to a specific category (ECC or free)
1328 * from the OOB buffer and copy them into buf.
1329 *
1330 * Returns zero on success, a negative error code otherwise.
1331 */
1332static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1333 const u8 *oobbuf, int start, int nbytes,
1334 int (*iter)(struct mtd_info *,
1335 int section,
1336 struct mtd_oob_region *oobregion))
1337{
8e8fd4d1
MY
1338 struct mtd_oob_region oobregion;
1339 int section, ret;
75eb2cec
BB
1340
1341 ret = mtd_ooblayout_find_region(mtd, start, &section,
1342 &oobregion, iter);
1343
1344 while (!ret) {
1345 int cnt;
1346
7c295ef9 1347 cnt = min_t(int, nbytes, oobregion.length);
75eb2cec
BB
1348 memcpy(buf, oobbuf + oobregion.offset, cnt);
1349 buf += cnt;
1350 nbytes -= cnt;
1351
1352 if (!nbytes)
1353 break;
1354
1355 ret = iter(mtd, ++section, &oobregion);
1356 }
1357
1358 return ret;
1359}
1360
1361/**
1362 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1363 * @mtd: mtd info structure
1364 * @buf: source buffer to get OOB bytes from
1365 * @oobbuf: OOB buffer
1366 * @start: first OOB byte to set
1367 * @nbytes: number of OOB bytes to set
1368 * @iter: section iterator
1369 *
1370 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1371 * is selected by passing the appropriate iterator.
1372 *
1373 * Returns zero on success, a negative error code otherwise.
1374 */
1375static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1376 u8 *oobbuf, int start, int nbytes,
1377 int (*iter)(struct mtd_info *,
1378 int section,
1379 struct mtd_oob_region *oobregion))
1380{
8e8fd4d1
MY
1381 struct mtd_oob_region oobregion;
1382 int section, ret;
75eb2cec
BB
1383
1384 ret = mtd_ooblayout_find_region(mtd, start, &section,
1385 &oobregion, iter);
1386
1387 while (!ret) {
1388 int cnt;
1389
7c295ef9 1390 cnt = min_t(int, nbytes, oobregion.length);
75eb2cec
BB
1391 memcpy(oobbuf + oobregion.offset, buf, cnt);
1392 buf += cnt;
1393 nbytes -= cnt;
1394
1395 if (!nbytes)
1396 break;
1397
1398 ret = iter(mtd, ++section, &oobregion);
1399 }
1400
1401 return ret;
1402}
1403
1404/**
1405 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1406 * @mtd: mtd info structure
1407 * @iter: category iterator
1408 *
1409 * Count the number of bytes in a given category.
1410 *
1411 * Returns a positive value on success, a negative error code otherwise.
1412 */
1413static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1414 int (*iter)(struct mtd_info *,
1415 int section,
1416 struct mtd_oob_region *oobregion))
1417{
4d6aecfb 1418 struct mtd_oob_region oobregion;
75eb2cec
BB
1419 int section = 0, ret, nbytes = 0;
1420
1421 while (1) {
1422 ret = iter(mtd, section++, &oobregion);
1423 if (ret) {
1424 if (ret == -ERANGE)
1425 ret = nbytes;
1426 break;
1427 }
1428
1429 nbytes += oobregion.length;
1430 }
1431
1432 return ret;
1433}
1434
1435/**
1436 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1437 * @mtd: mtd info structure
1438 * @eccbuf: destination buffer to store ECC bytes
1439 * @oobbuf: OOB buffer
1440 * @start: first ECC byte to retrieve
1441 * @nbytes: number of ECC bytes to retrieve
1442 *
1443 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1444 *
1445 * Returns zero on success, a negative error code otherwise.
1446 */
1447int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1448 const u8 *oobbuf, int start, int nbytes)
1449{
1450 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1451 mtd_ooblayout_ecc);
1452}
1453EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1454
1455/**
1456 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1457 * @mtd: mtd info structure
1458 * @eccbuf: source buffer to get ECC bytes from
1459 * @oobbuf: OOB buffer
1460 * @start: first ECC byte to set
1461 * @nbytes: number of ECC bytes to set
1462 *
1463 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1464 *
1465 * Returns zero on success, a negative error code otherwise.
1466 */
1467int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1468 u8 *oobbuf, int start, int nbytes)
1469{
1470 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1471 mtd_ooblayout_ecc);
1472}
1473EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1474
1475/**
1476 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1477 * @mtd: mtd info structure
1478 * @databuf: destination buffer to store ECC bytes
1479 * @oobbuf: OOB buffer
1480 * @start: first ECC byte to retrieve
1481 * @nbytes: number of ECC bytes to retrieve
1482 *
1483 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1484 *
1485 * Returns zero on success, a negative error code otherwise.
1486 */
1487int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1488 const u8 *oobbuf, int start, int nbytes)
1489{
1490 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1491 mtd_ooblayout_free);
1492}
1493EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1494
1495/**
1496 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1497 * @mtd: mtd info structure
1498 * @eccbuf: source buffer to get data bytes from
1499 * @oobbuf: OOB buffer
1500 * @start: first ECC byte to set
1501 * @nbytes: number of ECC bytes to set
1502 *
1503 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1504 *
1505 * Returns zero on success, a negative error code otherwise.
1506 */
1507int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1508 u8 *oobbuf, int start, int nbytes)
1509{
1510 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1511 mtd_ooblayout_free);
1512}
1513EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1514
1515/**
1516 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1517 * @mtd: mtd info structure
1518 *
1519 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1520 *
1521 * Returns zero on success, a negative error code otherwise.
1522 */
1523int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1524{
1525 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1526}
1527EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1528
1529/**
1530 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1531 * @mtd: mtd info structure
1532 *
1533 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1534 *
1535 * Returns zero on success, a negative error code otherwise.
1536 */
1537int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1538{
1539 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1540}
1541EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1542
de3cac93
AB
1543/*
1544 * Method to access the protection register area, present in some flash
1545 * devices. The user data is one time programmable but the factory data is read
1546 * only.
1547 */
4b78fc42
CR
1548int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1549 struct otp_info *buf)
de3cac93
AB
1550{
1551 if (!mtd->_get_fact_prot_info)
1552 return -EOPNOTSUPP;
1553 if (!len)
1554 return 0;
4b78fc42 1555 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
de3cac93
AB
1556}
1557EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1558
1559int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1560 size_t *retlen, u_char *buf)
1561{
1562 *retlen = 0;
1563 if (!mtd->_read_fact_prot_reg)
1564 return -EOPNOTSUPP;
1565 if (!len)
1566 return 0;
1567 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1568}
1569EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1570
4b78fc42
CR
1571int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1572 struct otp_info *buf)
de3cac93
AB
1573{
1574 if (!mtd->_get_user_prot_info)
1575 return -EOPNOTSUPP;
1576 if (!len)
1577 return 0;
4b78fc42 1578 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
de3cac93
AB
1579}
1580EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1581
1582int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1583 size_t *retlen, u_char *buf)
1584{
1585 *retlen = 0;
1586 if (!mtd->_read_user_prot_reg)
1587 return -EOPNOTSUPP;
1588 if (!len)
1589 return 0;
1590 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1591}
1592EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1593
1594int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1595 size_t *retlen, u_char *buf)
1596{
9a78bc83
CR
1597 int ret;
1598
de3cac93
AB
1599 *retlen = 0;
1600 if (!mtd->_write_user_prot_reg)
1601 return -EOPNOTSUPP;
1602 if (!len)
1603 return 0;
9a78bc83
CR
1604 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1605 if (ret)
1606 return ret;
1607
1608 /*
1609 * If no data could be written at all, we are out of memory and
1610 * must return -ENOSPC.
1611 */
1612 return (*retlen) ? 0 : -ENOSPC;
de3cac93
AB
1613}
1614EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1615
1616int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1617{
1618 if (!mtd->_lock_user_prot_reg)
1619 return -EOPNOTSUPP;
1620 if (!len)
1621 return 0;
1622 return mtd->_lock_user_prot_reg(mtd, from, len);
1623}
1624EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1625
8273a0c9
AB
1626/* Chip-supported device locking */
1627int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1628{
1629 if (!mtd->_lock)
1630 return -EOPNOTSUPP;
0c2b4e21 1631 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1632 return -EINVAL;
bcb1d238
AB
1633 if (!len)
1634 return 0;
8273a0c9
AB
1635 return mtd->_lock(mtd, ofs, len);
1636}
1637EXPORT_SYMBOL_GPL(mtd_lock);
1638
1639int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1640{
1641 if (!mtd->_unlock)
1642 return -EOPNOTSUPP;
0c2b4e21 1643 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1644 return -EINVAL;
bcb1d238
AB
1645 if (!len)
1646 return 0;
8273a0c9
AB
1647 return mtd->_unlock(mtd, ofs, len);
1648}
1649EXPORT_SYMBOL_GPL(mtd_unlock);
1650
1651int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1652{
1653 if (!mtd->_is_locked)
1654 return -EOPNOTSUPP;
0c2b4e21 1655 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
8273a0c9 1656 return -EINVAL;
bcb1d238
AB
1657 if (!len)
1658 return 0;
8273a0c9
AB
1659 return mtd->_is_locked(mtd, ofs, len);
1660}
1661EXPORT_SYMBOL_GPL(mtd_is_locked);
1662
8471bb73 1663int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
8273a0c9 1664{
0c2b4e21 1665 if (ofs < 0 || ofs >= mtd->size)
8471bb73
EG
1666 return -EINVAL;
1667 if (!mtd->_block_isreserved)
8273a0c9 1668 return 0;
8471bb73
EG
1669 return mtd->_block_isreserved(mtd, ofs);
1670}
1671EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1672
1673int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1674{
0c2b4e21 1675 if (ofs < 0 || ofs >= mtd->size)
8273a0c9 1676 return -EINVAL;
8471bb73
EG
1677 if (!mtd->_block_isbad)
1678 return 0;
8273a0c9
AB
1679 return mtd->_block_isbad(mtd, ofs);
1680}
1681EXPORT_SYMBOL_GPL(mtd_block_isbad);
1682
1683int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1684{
1685 if (!mtd->_block_markbad)
1686 return -EOPNOTSUPP;
0c2b4e21 1687 if (ofs < 0 || ofs >= mtd->size)
8273a0c9 1688 return -EINVAL;
664addc2
AB
1689 if (!(mtd->flags & MTD_WRITEABLE))
1690 return -EROFS;
8273a0c9
AB
1691 return mtd->_block_markbad(mtd, ofs);
1692}
1693EXPORT_SYMBOL_GPL(mtd_block_markbad);
1694
52b02031
AB
1695/*
1696 * default_mtd_writev - the default writev method
1697 * @mtd: mtd device description object pointer
1698 * @vecs: the vectors to write
1699 * @count: count of vectors in @vecs
1700 * @to: the MTD device offset to write to
1701 * @retlen: on exit contains the count of bytes written to the MTD device.
1702 *
1703 * This function returns zero in case of success and a negative error code in
1704 * case of failure.
1da177e4 1705 */
1dbebd32
AB
1706static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1707 unsigned long count, loff_t to, size_t *retlen)
1da177e4
LT
1708{
1709 unsigned long i;
1710 size_t totlen = 0, thislen;
1711 int ret = 0;
1712
52b02031
AB
1713 for (i = 0; i < count; i++) {
1714 if (!vecs[i].iov_len)
1715 continue;
1716 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1717 vecs[i].iov_base);
1718 totlen += thislen;
1719 if (ret || thislen != vecs[i].iov_len)
1720 break;
1721 to += vecs[i].iov_len;
1da177e4 1722 }
52b02031 1723 *retlen = totlen;
1da177e4
LT
1724 return ret;
1725}
1dbebd32
AB
1726
1727/*
1728 * mtd_writev - the vector-based MTD write method
1729 * @mtd: mtd device description object pointer
1730 * @vecs: the vectors to write
1731 * @count: count of vectors in @vecs
1732 * @to: the MTD device offset to write to
1733 * @retlen: on exit contains the count of bytes written to the MTD device.
1734 *
1735 * This function returns zero in case of success and a negative error code in
1736 * case of failure.
1737 */
1738int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1739 unsigned long count, loff_t to, size_t *retlen)
1740{
1741 *retlen = 0;
664addc2
AB
1742 if (!(mtd->flags & MTD_WRITEABLE))
1743 return -EROFS;
3c3c10bb 1744 if (!mtd->_writev)
1dbebd32 1745 return default_mtd_writev(mtd, vecs, count, to, retlen);
3c3c10bb 1746 return mtd->_writev(mtd, vecs, count, to, retlen);
1dbebd32
AB
1747}
1748EXPORT_SYMBOL_GPL(mtd_writev);
1da177e4 1749
33b53716
GE
1750/**
1751 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
52b02031
AB
1752 * @mtd: mtd device description object pointer
1753 * @size: a pointer to the ideal or maximum size of the allocation, points
33b53716
GE
1754 * to the actual allocation size on success.
1755 *
1756 * This routine attempts to allocate a contiguous kernel buffer up to
1757 * the specified size, backing off the size of the request exponentially
1758 * until the request succeeds or until the allocation size falls below
1759 * the system page size. This attempts to make sure it does not adversely
1760 * impact system performance, so when allocating more than one page, we
caf49191
LT
1761 * ask the memory allocator to avoid re-trying, swapping, writing back
1762 * or performing I/O.
33b53716
GE
1763 *
1764 * Note, this function also makes sure that the allocated buffer is aligned to
1765 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1766 *
1767 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1768 * to handle smaller (i.e. degraded) buffer allocations under low- or
1769 * fragmented-memory situations where such reduced allocations, from a
1770 * requested ideal, are allowed.
1771 *
1772 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1773 */
1774void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1775{
d0164adc 1776 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
33b53716
GE
1777 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1778 void *kbuf;
1779
1780 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1781
1782 while (*size > min_alloc) {
1783 kbuf = kmalloc(*size, flags);
1784 if (kbuf)
1785 return kbuf;
1786
1787 *size >>= 1;
1788 *size = ALIGN(*size, mtd->writesize);
1789 }
1790
1791 /*
1792 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1793 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1794 */
1795 return kmalloc(*size, GFP_KERNEL);
1796}
33b53716 1797EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1da177e4 1798
2d2dce0e
PM
1799#ifdef CONFIG_PROC_FS
1800
1da177e4
LT
1801/*====================================================================*/
1802/* Support for /proc/mtd */
1803
447d9bd8 1804static int mtd_proc_show(struct seq_file *m, void *v)
1da177e4 1805{
f1332ba2 1806 struct mtd_info *mtd;
1da177e4 1807
447d9bd8 1808 seq_puts(m, "dev: size erasesize name\n");
48b19268 1809 mutex_lock(&mtd_table_mutex);
f1332ba2 1810 mtd_for_each_device(mtd) {
447d9bd8
AD
1811 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1812 mtd->index, (unsigned long long)mtd->size,
1813 mtd->erasesize, mtd->name);
d5ca5129 1814 }
48b19268 1815 mutex_unlock(&mtd_table_mutex);
d5ca5129 1816 return 0;
1da177e4
LT
1817}
1818
447d9bd8
AD
1819static int mtd_proc_open(struct inode *inode, struct file *file)
1820{
1821 return single_open(file, mtd_proc_show, NULL);
1822}
1823
1824static const struct file_operations mtd_proc_ops = {
1825 .open = mtd_proc_open,
1826 .read = seq_read,
1827 .llseek = seq_lseek,
1828 .release = single_release,
1829};
45b09076
KC
1830#endif /* CONFIG_PROC_FS */
1831
1da177e4
LT
1832/*====================================================================*/
1833/* Init code */
1834
445caaa2 1835static struct backing_dev_info * __init mtd_bdi_init(char *name)
0661b1ac 1836{
445caaa2 1837 struct backing_dev_info *bdi;
0661b1ac
JA
1838 int ret;
1839
fa06052d 1840 bdi = bdi_alloc(GFP_KERNEL);
445caaa2
SL
1841 if (!bdi)
1842 return ERR_PTR(-ENOMEM);
0661b1ac 1843
fa06052d
JK
1844 bdi->name = name;
1845 /*
1846 * We put '-0' suffix to the name to get the same name format as we
1847 * used to get. Since this is called only once, we get a unique name.
1848 */
7c4cc300 1849 ret = bdi_register(bdi, "%.28s-0", name);
0661b1ac 1850 if (ret)
fa06052d 1851 bdi_put(bdi);
0661b1ac 1852
445caaa2 1853 return ret ? ERR_PTR(ret) : bdi;
0661b1ac
JA
1854}
1855
93e56214
AB
1856static struct proc_dir_entry *proc_mtd;
1857
1da177e4
LT
1858static int __init init_mtd(void)
1859{
15bce40c 1860 int ret;
0661b1ac 1861
15bce40c 1862 ret = class_register(&mtd_class);
0661b1ac
JA
1863 if (ret)
1864 goto err_reg;
1865
445caaa2
SL
1866 mtd_bdi = mtd_bdi_init("mtd");
1867 if (IS_ERR(mtd_bdi)) {
1868 ret = PTR_ERR(mtd_bdi);
b4caecd4 1869 goto err_bdi;
445caaa2 1870 }
694bb7fc 1871
447d9bd8 1872 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
93e56214 1873
660685d9
AB
1874 ret = init_mtdchar();
1875 if (ret)
1876 goto out_procfs;
1877
e8e3edb9
MR
1878 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1879
1da177e4 1880 return 0;
0661b1ac 1881
660685d9
AB
1882out_procfs:
1883 if (proc_mtd)
1884 remove_proc_entry("mtd", NULL);
fa06052d 1885 bdi_put(mtd_bdi);
b4caecd4 1886err_bdi:
0661b1ac
JA
1887 class_unregister(&mtd_class);
1888err_reg:
1889 pr_err("Error registering mtd class or bdi: %d\n", ret);
1890 return ret;
1da177e4
LT
1891}
1892
1893static void __exit cleanup_mtd(void)
1894{
e8e3edb9 1895 debugfs_remove_recursive(dfs_dir_mtd);
660685d9 1896 cleanup_mtdchar();
d5ca5129 1897 if (proc_mtd)
93e56214 1898 remove_proc_entry("mtd", NULL);
15bce40c 1899 class_unregister(&mtd_class);
fa06052d 1900 bdi_put(mtd_bdi);
35667b99 1901 idr_destroy(&mtd_idr);
1da177e4
LT
1902}
1903
1904module_init(init_mtd);
1905module_exit(cleanup_mtd);
1906
1da177e4
LT
1907MODULE_LICENSE("GPL");
1908MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1909MODULE_DESCRIPTION("Core MTD registration and access routines");