]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/mtd/mtdpart.c
Linux 5.6-rc4
[mirror_ubuntu-hirsute-kernel.git] / drivers / mtd / mtdpart.c
CommitLineData
fd534e9b 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * Simple MTD partitioning layer
4 *
a1452a37
DW
5 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
6 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
7 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
97894cda 8 */
1da177e4
LT
9
10#include <linux/module.h>
11#include <linux/types.h>
12#include <linux/kernel.h>
13#include <linux/slab.h>
14#include <linux/list.h>
1da177e4
LT
15#include <linux/kmod.h>
16#include <linux/mtd/mtd.h>
17#include <linux/mtd/partitions.h>
5daa7b21 18#include <linux/err.h>
5b644aa0 19#include <linux/of.h>
1da177e4 20
eea72d5f
JI
21#include "mtdcore.h"
22
1da177e4
LT
23/* Our partition linked list */
24static LIST_HEAD(mtd_partitions);
5daa7b21 25static DEFINE_MUTEX(mtd_partitions_mutex);
1da177e4 26
0a9d72b6
RM
27/**
28 * struct mtd_part - our partition node structure
29 *
30 * @mtd: struct holding partition details
31 * @parent: parent mtd - flash device or another partition
32 * @offset: partition offset relative to the *flash device*
33 */
1da177e4
LT
34struct mtd_part {
35 struct mtd_info mtd;
0a9d72b6 36 struct mtd_info *parent;
69423d99 37 uint64_t offset;
1da177e4 38 struct list_head list;
1da177e4
LT
39};
40
41/*
42 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
2524534d 43 * the pointer to that structure.
1da177e4 44 */
2524534d
BN
45static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
46{
47 return container_of(mtd, struct mtd_part, mtd);
48}
1da177e4 49
6750f61a
RM
50static u64 part_absolute_offset(struct mtd_info *mtd)
51{
52 struct mtd_part *part = mtd_to_part(mtd);
53
54 if (!mtd_is_partition(mtd))
55 return 0;
56
57 return part_absolute_offset(part->parent) + part->offset;
58}
97894cda
TG
59
60/*
1da177e4
LT
61 * MTD methods which simply translate the effective address and pass through
62 * to the _real_ device.
63 */
64
b33a2887
AN
65static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
66 size_t *retlen, u_char *buf)
1da177e4 67{
2524534d 68 struct mtd_part *part = mtd_to_part(mtd);
d8877f19 69 struct mtd_ecc_stats stats;
f1a28c02
TG
70 int res;
71
0a9d72b6
RM
72 stats = part->parent->ecc_stats;
73 res = part->parent->_read(part->parent, from + part->offset, len,
994c8409 74 retlen, buf);
edbc4540
MD
75 if (unlikely(mtd_is_eccerr(res)))
76 mtd->ecc_stats.failed +=
0a9d72b6 77 part->parent->ecc_stats.failed - stats.failed;
edbc4540
MD
78 else
79 mtd->ecc_stats.corrected +=
0a9d72b6 80 part->parent->ecc_stats.corrected - stats.corrected;
f1a28c02 81 return res;
1da177e4
LT
82}
83
b33a2887
AN
84static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
85 size_t *retlen, void **virt, resource_size_t *phys)
1da177e4 86{
2524534d 87 struct mtd_part *part = mtd_to_part(mtd);
5def4898 88
0a9d72b6 89 return part->parent->_point(part->parent, from + part->offset, len,
994c8409 90 retlen, virt, phys);
1da177e4 91}
9223a456 92
5e4e6e3f 93static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1da177e4 94{
2524534d 95 struct mtd_part *part = mtd_to_part(mtd);
1da177e4 96
0a9d72b6 97 return part->parent->_unpoint(part->parent, from + part->offset, len);
1da177e4
LT
98}
99
8593fbc6 100static int part_read_oob(struct mtd_info *mtd, loff_t from,
b33a2887 101 struct mtd_oob_ops *ops)
1da177e4 102{
2524534d 103 struct mtd_part *part = mtd_to_part(mtd);
d020fc8e 104 struct mtd_ecc_stats stats;
f1a28c02 105 int res;
8593fbc6 106
d020fc8e 107 stats = part->parent->ecc_stats;
0a9d72b6 108 res = part->parent->_read_oob(part->parent, from + part->offset, ops);
d020fc8e
BB
109 if (unlikely(mtd_is_eccerr(res)))
110 mtd->ecc_stats.failed +=
111 part->parent->ecc_stats.failed - stats.failed;
112 else
113 mtd->ecc_stats.corrected +=
114 part->parent->ecc_stats.corrected - stats.corrected;
f1a28c02 115 return res;
1da177e4
LT
116}
117
b33a2887
AN
118static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
119 size_t len, size_t *retlen, u_char *buf)
1da177e4 120{
2524534d 121 struct mtd_part *part = mtd_to_part(mtd);
0a9d72b6 122 return part->parent->_read_user_prot_reg(part->parent, from, len,
994c8409 123 retlen, buf);
1da177e4
LT
124}
125
4b78fc42
CR
126static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
127 size_t *retlen, struct otp_info *buf)
f77814dd 128{
2524534d 129 struct mtd_part *part = mtd_to_part(mtd);
0a9d72b6 130 return part->parent->_get_user_prot_info(part->parent, len, retlen,
4b78fc42 131 buf);
f77814dd
NP
132}
133
b33a2887
AN
134static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
135 size_t len, size_t *retlen, u_char *buf)
1da177e4 136{
2524534d 137 struct mtd_part *part = mtd_to_part(mtd);
0a9d72b6 138 return part->parent->_read_fact_prot_reg(part->parent, from, len,
994c8409 139 retlen, buf);
1da177e4
LT
140}
141
4b78fc42
CR
142static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
143 size_t *retlen, struct otp_info *buf)
f77814dd 144{
2524534d 145 struct mtd_part *part = mtd_to_part(mtd);
0a9d72b6 146 return part->parent->_get_fact_prot_info(part->parent, len, retlen,
4b78fc42 147 buf);
f77814dd
NP
148}
149
b33a2887
AN
150static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
151 size_t *retlen, const u_char *buf)
1da177e4 152{
2524534d 153 struct mtd_part *part = mtd_to_part(mtd);
0a9d72b6 154 return part->parent->_write(part->parent, to + part->offset, len,
994c8409 155 retlen, buf);
1da177e4
LT
156}
157
b33a2887
AN
158static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
159 size_t *retlen, const u_char *buf)
388bbb09 160{
2524534d 161 struct mtd_part *part = mtd_to_part(mtd);
0a9d72b6 162 return part->parent->_panic_write(part->parent, to + part->offset, len,
994c8409 163 retlen, buf);
388bbb09
RP
164}
165
8593fbc6 166static int part_write_oob(struct mtd_info *mtd, loff_t to,
b33a2887 167 struct mtd_oob_ops *ops)
1da177e4 168{
2524534d 169 struct mtd_part *part = mtd_to_part(mtd);
8593fbc6 170
0a9d72b6 171 return part->parent->_write_oob(part->parent, to + part->offset, ops);
1da177e4
LT
172}
173
b33a2887
AN
174static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
175 size_t len, size_t *retlen, u_char *buf)
1da177e4 176{
2524534d 177 struct mtd_part *part = mtd_to_part(mtd);
0a9d72b6 178 return part->parent->_write_user_prot_reg(part->parent, from, len,
994c8409 179 retlen, buf);
1da177e4
LT
180}
181
b33a2887
AN
182static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
183 size_t len)
f77814dd 184{
2524534d 185 struct mtd_part *part = mtd_to_part(mtd);
0a9d72b6 186 return part->parent->_lock_user_prot_reg(part->parent, from, len);
f77814dd
NP
187}
188
b33a2887
AN
189static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
190 unsigned long count, loff_t to, size_t *retlen)
1da177e4 191{
2524534d 192 struct mtd_part *part = mtd_to_part(mtd);
0a9d72b6 193 return part->parent->_writev(part->parent, vecs, count,
994c8409 194 to + part->offset, retlen);
1da177e4
LT
195}
196
b33a2887 197static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 198{
2524534d 199 struct mtd_part *part = mtd_to_part(mtd);
1da177e4 200 int ret;
664addc2 201
1da177e4 202 instr->addr += part->offset;
0a9d72b6 203 ret = part->parent->_erase(part->parent, instr);
8f347c42
BB
204 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
205 instr->fail_addr -= part->offset;
206 instr->addr -= part->offset;
207
1da177e4
LT
208 return ret;
209}
210
69423d99 211static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1da177e4 212{
2524534d 213 struct mtd_part *part = mtd_to_part(mtd);
0a9d72b6 214 return part->parent->_lock(part->parent, ofs + part->offset, len);
1da177e4
LT
215}
216
69423d99 217static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1da177e4 218{
2524534d 219 struct mtd_part *part = mtd_to_part(mtd);
0a9d72b6 220 return part->parent->_unlock(part->parent, ofs + part->offset, len);
1da177e4
LT
221}
222
9938424f
RC
223static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
224{
2524534d 225 struct mtd_part *part = mtd_to_part(mtd);
0a9d72b6 226 return part->parent->_is_locked(part->parent, ofs + part->offset, len);
9938424f
RC
227}
228
1da177e4
LT
229static void part_sync(struct mtd_info *mtd)
230{
2524534d 231 struct mtd_part *part = mtd_to_part(mtd);
0a9d72b6 232 part->parent->_sync(part->parent);
1da177e4
LT
233}
234
235static int part_suspend(struct mtd_info *mtd)
236{
2524534d 237 struct mtd_part *part = mtd_to_part(mtd);
0a9d72b6 238 return part->parent->_suspend(part->parent);
1da177e4
LT
239}
240
241static void part_resume(struct mtd_info *mtd)
242{
2524534d 243 struct mtd_part *part = mtd_to_part(mtd);
0a9d72b6 244 part->parent->_resume(part->parent);
1da177e4
LT
245}
246
8471bb73
EG
247static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
248{
2524534d 249 struct mtd_part *part = mtd_to_part(mtd);
8471bb73 250 ofs += part->offset;
0a9d72b6 251 return part->parent->_block_isreserved(part->parent, ofs);
8471bb73
EG
252}
253
b33a2887 254static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 255{
2524534d 256 struct mtd_part *part = mtd_to_part(mtd);
1da177e4 257 ofs += part->offset;
0a9d72b6 258 return part->parent->_block_isbad(part->parent, ofs);
1da177e4
LT
259}
260
b33a2887 261static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 262{
2524534d 263 struct mtd_part *part = mtd_to_part(mtd);
f1a28c02
TG
264 int res;
265
1da177e4 266 ofs += part->offset;
0a9d72b6 267 res = part->parent->_block_markbad(part->parent, ofs);
f1a28c02
TG
268 if (!res)
269 mtd->ecc_stats.badblocks++;
270 return res;
1da177e4
LT
271}
272
5e149073
RW
273static int part_get_device(struct mtd_info *mtd)
274{
275 struct mtd_part *part = mtd_to_part(mtd);
0a9d72b6 276 return part->parent->_get_device(part->parent);
5e149073
RW
277}
278
279static void part_put_device(struct mtd_info *mtd)
280{
281 struct mtd_part *part = mtd_to_part(mtd);
0a9d72b6 282 part->parent->_put_device(part->parent);
5e149073
RW
283}
284
adbbc3bc
BB
285static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
286 struct mtd_oob_region *oobregion)
287{
288 struct mtd_part *part = mtd_to_part(mtd);
289
0a9d72b6 290 return mtd_ooblayout_ecc(part->parent, section, oobregion);
adbbc3bc
BB
291}
292
293static int part_ooblayout_free(struct mtd_info *mtd, int section,
294 struct mtd_oob_region *oobregion)
295{
296 struct mtd_part *part = mtd_to_part(mtd);
297
0a9d72b6 298 return mtd_ooblayout_free(part->parent, section, oobregion);
adbbc3bc
BB
299}
300
301static const struct mtd_ooblayout_ops part_ooblayout_ops = {
302 .ecc = part_ooblayout_ecc,
303 .free = part_ooblayout_free,
304};
305
6080ef6e
JW
306static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
307{
308 struct mtd_part *part = mtd_to_part(mtd);
309
0a9d72b6 310 return part->parent->_max_bad_blocks(part->parent,
6080ef6e
JW
311 ofs + part->offset, len);
312}
313
5daa7b21
RT
314static inline void free_partition(struct mtd_part *p)
315{
316 kfree(p->mtd.name);
317 kfree(p);
318}
319
0a9d72b6 320static struct mtd_part *allocate_partition(struct mtd_info *parent,
5daa7b21
RT
321 const struct mtd_partition *part, int partno,
322 uint64_t cur_offset)
7788ba71 323{
c169e3d3 324 int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
0a9d72b6 325 parent->erasesize;
7788ba71 326 struct mtd_part *slave;
1eeef2d7 327 u32 remainder;
5daa7b21 328 char *name;
1eeef2d7 329 u64 tmp;
7788ba71
AN
330
331 /* allocate the partition structure */
b33a2887 332 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
5daa7b21
RT
333 name = kstrdup(part->name, GFP_KERNEL);
334 if (!name || !slave) {
b33a2887 335 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
0a9d72b6 336 parent->name);
5daa7b21
RT
337 kfree(name);
338 kfree(slave);
339 return ERR_PTR(-ENOMEM);
7788ba71 340 }
7788ba71
AN
341
342 /* set up the MTD object for this partition */
0a9d72b6 343 slave->mtd.type = parent->type;
1186af45
RM
344 slave->mtd.flags = parent->orig_flags & ~part->mask_flags;
345 slave->mtd.orig_flags = slave->mtd.flags;
7788ba71 346 slave->mtd.size = part->size;
0a9d72b6
RM
347 slave->mtd.writesize = parent->writesize;
348 slave->mtd.writebufsize = parent->writebufsize;
349 slave->mtd.oobsize = parent->oobsize;
350 slave->mtd.oobavail = parent->oobavail;
351 slave->mtd.subpage_sft = parent->subpage_sft;
352 slave->mtd.pairing = parent->pairing;
7788ba71 353
5daa7b21 354 slave->mtd.name = name;
0a9d72b6 355 slave->mtd.owner = parent->owner;
7788ba71 356
727dc612
DE
357 /* NOTE: Historically, we didn't arrange MTDs as a tree out of
358 * concern for showing the same data in multiple partitions.
359 * However, it is very useful to have the master node present,
360 * so the MTD_PARTITIONED_MASTER option allows that. The master
361 * will have device nodes etc only if this is set, so make the
362 * parent conditional on that option. Note, this is a way to
363 * distinguish between the master and the partition in sysfs.
1f24b5a8 364 */
97519dc5 365 slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
0a9d72b6
RM
366 &parent->dev :
367 parent->dev.parent;
42e9401b 368 slave->mtd.dev.of_node = part->of_node;
1f24b5a8 369
24ff1292
BB
370 if (parent->_read)
371 slave->mtd._read = part_read;
372 if (parent->_write)
373 slave->mtd._write = part_write;
7788ba71 374
0a9d72b6 375 if (parent->_panic_write)
3c3c10bb 376 slave->mtd._panic_write = part_panic_write;
7788ba71 377
0a9d72b6 378 if (parent->_point && parent->_unpoint) {
3c3c10bb
AB
379 slave->mtd._point = part_point;
380 slave->mtd._unpoint = part_unpoint;
7788ba71
AN
381 }
382
0a9d72b6 383 if (parent->_read_oob)
3c3c10bb 384 slave->mtd._read_oob = part_read_oob;
0a9d72b6 385 if (parent->_write_oob)
3c3c10bb 386 slave->mtd._write_oob = part_write_oob;
0a9d72b6 387 if (parent->_read_user_prot_reg)
3c3c10bb 388 slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
0a9d72b6 389 if (parent->_read_fact_prot_reg)
3c3c10bb 390 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
0a9d72b6 391 if (parent->_write_user_prot_reg)
3c3c10bb 392 slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
0a9d72b6 393 if (parent->_lock_user_prot_reg)
3c3c10bb 394 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
0a9d72b6 395 if (parent->_get_user_prot_info)
3c3c10bb 396 slave->mtd._get_user_prot_info = part_get_user_prot_info;
0a9d72b6 397 if (parent->_get_fact_prot_info)
3c3c10bb 398 slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
0a9d72b6 399 if (parent->_sync)
3c3c10bb 400 slave->mtd._sync = part_sync;
0a9d72b6
RM
401 if (!partno && !parent->dev.class && parent->_suspend &&
402 parent->_resume) {
c169e3d3
BN
403 slave->mtd._suspend = part_suspend;
404 slave->mtd._resume = part_resume;
7788ba71 405 }
0a9d72b6 406 if (parent->_writev)
3c3c10bb 407 slave->mtd._writev = part_writev;
0a9d72b6 408 if (parent->_lock)
3c3c10bb 409 slave->mtd._lock = part_lock;
0a9d72b6 410 if (parent->_unlock)
3c3c10bb 411 slave->mtd._unlock = part_unlock;
0a9d72b6 412 if (parent->_is_locked)
3c3c10bb 413 slave->mtd._is_locked = part_is_locked;
0a9d72b6 414 if (parent->_block_isreserved)
8471bb73 415 slave->mtd._block_isreserved = part_block_isreserved;
0a9d72b6 416 if (parent->_block_isbad)
3c3c10bb 417 slave->mtd._block_isbad = part_block_isbad;
0a9d72b6 418 if (parent->_block_markbad)
3c3c10bb 419 slave->mtd._block_markbad = part_block_markbad;
0a9d72b6 420 if (parent->_max_bad_blocks)
6080ef6e 421 slave->mtd._max_bad_blocks = part_max_bad_blocks;
5e149073 422
0a9d72b6 423 if (parent->_get_device)
5e149073 424 slave->mtd._get_device = part_get_device;
0a9d72b6 425 if (parent->_put_device)
5e149073
RW
426 slave->mtd._put_device = part_put_device;
427
3c3c10bb 428 slave->mtd._erase = part_erase;
0a9d72b6 429 slave->parent = parent;
7788ba71 430 slave->offset = part->offset;
7788ba71
AN
431
432 if (slave->offset == MTDPART_OFS_APPEND)
433 slave->offset = cur_offset;
434 if (slave->offset == MTDPART_OFS_NXTBLK) {
1eeef2d7 435 tmp = cur_offset;
7788ba71 436 slave->offset = cur_offset;
1eeef2d7
CP
437 remainder = do_div(tmp, wr_alignment);
438 if (remainder) {
439 slave->offset += wr_alignment - remainder;
7788ba71 440 printk(KERN_NOTICE "Moving partition %d: "
69423d99
AH
441 "0x%012llx -> 0x%012llx\n", partno,
442 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
7788ba71
AN
443 }
444 }
1a31368b
DB
445 if (slave->offset == MTDPART_OFS_RETAIN) {
446 slave->offset = cur_offset;
0a9d72b6
RM
447 if (parent->size - slave->offset >= slave->mtd.size) {
448 slave->mtd.size = parent->size - slave->offset
1a31368b
DB
449 - slave->mtd.size;
450 } else {
451 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
0a9d72b6 452 part->name, parent->size - slave->offset,
1a31368b
DB
453 slave->mtd.size);
454 /* register to preserve ordering */
455 goto out_register;
456 }
457 }
7788ba71 458 if (slave->mtd.size == MTDPART_SIZ_FULL)
0a9d72b6 459 slave->mtd.size = parent->size - slave->offset;
7788ba71 460
69423d99
AH
461 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
462 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
7788ba71
AN
463
464 /* let's do some sanity checks */
0a9d72b6 465 if (slave->offset >= parent->size) {
f636ffb4 466 /* let's register it anyway to preserve ordering */
7788ba71
AN
467 slave->offset = 0;
468 slave->mtd.size = 0;
ad463515
BB
469
470 /* Initialize ->erasesize to make add_mtd_device() happy. */
471 slave->mtd.erasesize = parent->erasesize;
472
b33a2887 473 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
7788ba71 474 part->name);
f636ffb4 475 goto out_register;
7788ba71 476 }
0a9d72b6
RM
477 if (slave->offset + slave->mtd.size > parent->size) {
478 slave->mtd.size = parent->size - slave->offset;
69423d99 479 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
0a9d72b6 480 part->name, parent->name, (unsigned long long)slave->mtd.size);
7788ba71 481 }
0a9d72b6 482 if (parent->numeraseregions > 1) {
7788ba71 483 /* Deal with variable erase size stuff */
0a9d72b6 484 int i, max = parent->numeraseregions;
69423d99 485 u64 end = slave->offset + slave->mtd.size;
0a9d72b6 486 struct mtd_erase_region_info *regions = parent->eraseregions;
7788ba71 487
6910c136
AN
488 /* Find the first erase regions which is part of this
489 * partition. */
490 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
7788ba71 491 ;
6910c136 492 /* The loop searched for the region _behind_ the first one */
a57ca046
RK
493 if (i > 0)
494 i--;
7788ba71 495
6910c136
AN
496 /* Pick biggest erasesize */
497 for (; i < max && regions[i].offset < end; i++) {
7788ba71
AN
498 if (slave->mtd.erasesize < regions[i].erasesize) {
499 slave->mtd.erasesize = regions[i].erasesize;
500 }
501 }
6910c136 502 BUG_ON(slave->mtd.erasesize == 0);
7788ba71
AN
503 } else {
504 /* Single erase size */
0a9d72b6 505 slave->mtd.erasesize = parent->erasesize;
7788ba71
AN
506 }
507
7e439681
BB
508 /*
509 * Slave erasesize might differ from the master one if the master
510 * exposes several regions with different erasesize. Adjust
511 * wr_alignment accordingly.
512 */
513 if (!(slave->mtd.flags & MTD_NO_ERASE))
514 wr_alignment = slave->mtd.erasesize;
515
6750f61a 516 tmp = part_absolute_offset(parent) + slave->offset;
1eeef2d7
CP
517 remainder = do_div(tmp, wr_alignment);
518 if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
7788ba71 519 /* Doesn't start on a boundary of major erase size */
b33a2887
AN
520 /* FIXME: Let it be writable if it is on a boundary of
521 * _minor_ erase size though */
7788ba71 522 slave->mtd.flags &= ~MTD_WRITEABLE;
1eeef2d7 523 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
7788ba71
AN
524 part->name);
525 }
1eeef2d7 526
6750f61a 527 tmp = part_absolute_offset(parent) + slave->mtd.size;
1eeef2d7
CP
528 remainder = do_div(tmp, wr_alignment);
529 if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
7788ba71 530 slave->mtd.flags &= ~MTD_WRITEABLE;
1eeef2d7 531 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
7788ba71
AN
532 part->name);
533 }
534
adbbc3bc 535 mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
0a9d72b6
RM
536 slave->mtd.ecc_step_size = parent->ecc_step_size;
537 slave->mtd.ecc_strength = parent->ecc_strength;
538 slave->mtd.bitflip_threshold = parent->bitflip_threshold;
d062d4ed 539
0a9d72b6 540 if (parent->_block_isbad) {
69423d99 541 uint64_t offs = 0;
7788ba71 542
b33a2887 543 while (offs < slave->mtd.size) {
0a9d72b6 544 if (mtd_block_isreserved(parent, offs + slave->offset))
fdf43a42 545 slave->mtd.ecc_stats.bbtblocks++;
0a9d72b6 546 else if (mtd_block_isbad(parent, offs + slave->offset))
7788ba71
AN
547 slave->mtd.ecc_stats.badblocks++;
548 offs += slave->mtd.erasesize;
549 }
550 }
551
f636ffb4 552out_register:
7788ba71
AN
553 return slave;
554}
555
a62c24d7
DE
556static ssize_t mtd_partition_offset_show(struct device *dev,
557 struct device_attribute *attr, char *buf)
558{
559 struct mtd_info *mtd = dev_get_drvdata(dev);
2524534d 560 struct mtd_part *part = mtd_to_part(mtd);
3008ba87 561 return snprintf(buf, PAGE_SIZE, "%llu\n", part->offset);
a62c24d7
DE
562}
563
564static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
565
566static const struct attribute *mtd_partition_attrs[] = {
567 &dev_attr_offset.attr,
568 NULL
569};
570
571static int mtd_add_partition_attrs(struct mtd_part *new)
572{
573 int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
574 if (ret)
575 printk(KERN_WARNING
576 "mtd: failed to create partition attrs, err=%d\n", ret);
577 return ret;
578}
579
0a9d72b6 580int mtd_add_partition(struct mtd_info *parent, const char *name,
5daa7b21
RT
581 long long offset, long long length)
582{
583 struct mtd_partition part;
3a434f66 584 struct mtd_part *new;
5daa7b21
RT
585 int ret = 0;
586
587 /* the direct offset is expected */
588 if (offset == MTDPART_OFS_APPEND ||
589 offset == MTDPART_OFS_NXTBLK)
590 return -EINVAL;
591
592 if (length == MTDPART_SIZ_FULL)
0a9d72b6 593 length = parent->size - offset;
5daa7b21
RT
594
595 if (length <= 0)
596 return -EINVAL;
597
93867233 598 memset(&part, 0, sizeof(part));
5daa7b21
RT
599 part.name = name;
600 part.size = length;
601 part.offset = offset;
5daa7b21 602
0a9d72b6 603 new = allocate_partition(parent, &part, -1, offset);
5daa7b21
RT
604 if (IS_ERR(new))
605 return PTR_ERR(new);
606
5daa7b21 607 mutex_lock(&mtd_partitions_mutex);
5daa7b21
RT
608 list_add(&new->list, &mtd_partitions);
609 mutex_unlock(&mtd_partitions_mutex);
610
2b6f0090
BB
611 ret = add_mtd_device(&new->mtd);
612 if (ret)
613 goto err_remove_part;
5daa7b21 614
a62c24d7
DE
615 mtd_add_partition_attrs(new);
616
2b6f0090
BB
617 return 0;
618
619err_remove_part:
620 mutex_lock(&mtd_partitions_mutex);
621 list_del(&new->list);
622 mutex_unlock(&mtd_partitions_mutex);
623
624 free_partition(new);
2b6f0090 625
5daa7b21 626 return ret;
5daa7b21
RT
627}
628EXPORT_SYMBOL_GPL(mtd_add_partition);
629
08263a9a
RM
630/**
631 * __mtd_del_partition - delete MTD partition
632 *
633 * @priv: internal MTD struct for partition to be deleted
634 *
635 * This function must be called with the partitions mutex locked.
636 */
637static int __mtd_del_partition(struct mtd_part *priv)
638{
97519dc5 639 struct mtd_part *child, *next;
08263a9a
RM
640 int err;
641
97519dc5
RM
642 list_for_each_entry_safe(child, next, &mtd_partitions, list) {
643 if (child->parent == &priv->mtd) {
644 err = __mtd_del_partition(child);
645 if (err)
646 return err;
647 }
648 }
649
c5ceaba7
RM
650 sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
651
08263a9a
RM
652 err = del_mtd_device(&priv->mtd);
653 if (err)
654 return err;
655
656 list_del(&priv->list);
657 free_partition(priv);
658
659 return 0;
660}
661
662/*
663 * This function unregisters and destroy all slave MTD objects which are
97519dc5 664 * attached to the given MTD object.
08263a9a 665 */
97519dc5 666int del_mtd_partitions(struct mtd_info *mtd)
08263a9a
RM
667{
668 struct mtd_part *slave, *next;
669 int ret, err = 0;
670
671 mutex_lock(&mtd_partitions_mutex);
672 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
97519dc5 673 if (slave->parent == mtd) {
08263a9a
RM
674 ret = __mtd_del_partition(slave);
675 if (ret < 0)
676 err = ret;
677 }
678 mutex_unlock(&mtd_partitions_mutex);
679
680 return err;
681}
682
97519dc5 683int mtd_del_partition(struct mtd_info *mtd, int partno)
5daa7b21
RT
684{
685 struct mtd_part *slave, *next;
686 int ret = -EINVAL;
687
688 mutex_lock(&mtd_partitions_mutex);
689 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
97519dc5 690 if ((slave->parent == mtd) &&
5daa7b21 691 (slave->mtd.index == partno)) {
08263a9a 692 ret = __mtd_del_partition(slave);
5daa7b21
RT
693 break;
694 }
695 mutex_unlock(&mtd_partitions_mutex);
696
697 return ret;
698}
699EXPORT_SYMBOL_GPL(mtd_del_partition);
700
1da177e4
LT
701/*
702 * This function, given a master MTD object and a partition table, creates
703 * and registers slave MTD objects which are bound to the master according to
704 * the partition definitions.
1f24b5a8 705 *
727dc612
DE
706 * For historical reasons, this function's caller only registers the master
707 * if the MTD_PARTITIONED_MASTER config option is set.
1da177e4
LT
708 */
709
97894cda 710int add_mtd_partitions(struct mtd_info *master,
1da177e4
LT
711 const struct mtd_partition *parts,
712 int nbparts)
713{
714 struct mtd_part *slave;
69423d99 715 uint64_t cur_offset = 0;
2b6f0090 716 int i, ret;
1da177e4 717
b33a2887 718 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
1da177e4
LT
719
720 for (i = 0; i < nbparts; i++) {
5daa7b21 721 slave = allocate_partition(master, parts + i, i, cur_offset);
e5bae867 722 if (IS_ERR(slave)) {
2b6f0090
BB
723 ret = PTR_ERR(slave);
724 goto err_del_partitions;
e5bae867 725 }
5daa7b21
RT
726
727 mutex_lock(&mtd_partitions_mutex);
728 list_add(&slave->list, &mtd_partitions);
729 mutex_unlock(&mtd_partitions_mutex);
730
2b6f0090
BB
731 ret = add_mtd_device(&slave->mtd);
732 if (ret) {
733 mutex_lock(&mtd_partitions_mutex);
734 list_del(&slave->list);
735 mutex_unlock(&mtd_partitions_mutex);
736
737 free_partition(slave);
738 goto err_del_partitions;
739 }
740
a62c24d7 741 mtd_add_partition_attrs(slave);
76a83225
RM
742 /* Look for subpartitions */
743 parse_mtd_partitions(&slave->mtd, parts[i].types, NULL);
5daa7b21 744
1da177e4 745 cur_offset = slave->offset + slave->mtd.size;
1da177e4
LT
746 }
747
748 return 0;
2b6f0090
BB
749
750err_del_partitions:
751 del_mtd_partitions(master);
752
753 return ret;
1da177e4 754}
1da177e4
LT
755
756static DEFINE_SPINLOCK(part_parser_lock);
757static LIST_HEAD(part_parsers);
758
5531ae48 759static struct mtd_part_parser *mtd_part_parser_get(const char *name)
1da177e4 760{
71a928c0 761 struct mtd_part_parser *p, *ret = NULL;
1da177e4 762
71a928c0 763 spin_lock(&part_parser_lock);
1da177e4 764
71a928c0 765 list_for_each_entry(p, &part_parsers, list)
1da177e4
LT
766 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
767 ret = p;
768 break;
769 }
71a928c0 770
1da177e4
LT
771 spin_unlock(&part_parser_lock);
772
773 return ret;
774}
775
5531ae48
BN
776static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
777{
778 module_put(p->owner);
779}
953b3bd1 780
adc83bf8
BN
781/*
782 * Many partition parsers just expected the core to kfree() all their data in
783 * one chunk. Do that by default.
784 */
785static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
786 int nr_parts)
787{
788 kfree(pparts);
789}
790
b9eab011 791int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
1da177e4 792{
b9eab011
BN
793 p->owner = owner;
794
adc83bf8
BN
795 if (!p->cleanup)
796 p->cleanup = &mtd_part_parser_cleanup_default;
797
1da177e4
LT
798 spin_lock(&part_parser_lock);
799 list_add(&p->list, &part_parsers);
800 spin_unlock(&part_parser_lock);
b9eab011
BN
801
802 return 0;
1da177e4 803}
b9eab011 804EXPORT_SYMBOL_GPL(__register_mtd_parser);
1da177e4 805
cf3b2b1e 806void deregister_mtd_parser(struct mtd_part_parser *p)
1da177e4
LT
807{
808 spin_lock(&part_parser_lock);
809 list_del(&p->list);
810 spin_unlock(&part_parser_lock);
1da177e4 811}
b33a2887 812EXPORT_SYMBOL_GPL(deregister_mtd_parser);
1da177e4 813
ad274cec
AB
814/*
815 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
816 * are changing this array!
817 */
ccef4dcc 818static const char * const default_mtd_part_types[] = {
d26c87d6
DB
819 "cmdlinepart",
820 "ofpart",
821 NULL
822};
5c4eefbd 823
76a83225
RM
824/* Check DT only when looking for subpartitions. */
825static const char * const default_subpartition_types[] = {
826 "ofpart",
827 NULL
828};
829
01f9c724
BN
830static int mtd_part_do_parse(struct mtd_part_parser *parser,
831 struct mtd_info *master,
832 struct mtd_partitions *pparts,
833 struct mtd_part_parser_data *data)
834{
835 int ret;
836
837 ret = (*parser->parse_fn)(master, &pparts->parts, data);
838 pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
839 if (ret <= 0)
840 return ret;
841
842 pr_notice("%d %s partitions found on MTD device %s\n", ret,
843 parser->name, master->name);
844
845 pparts->nr_parts = ret;
846 pparts->parser = parser;
847
848 return ret;
849}
850
5b644aa0
RM
851/**
852 * mtd_part_get_compatible_parser - find MTD parser by a compatible string
853 *
854 * @compat: compatible string describing partitions in a device tree
855 *
856 * MTD parsers can specify supported partitions by providing a table of
857 * compatibility strings. This function finds a parser that advertises support
858 * for a passed value of "compatible".
859 */
860static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat)
861{
862 struct mtd_part_parser *p, *ret = NULL;
863
864 spin_lock(&part_parser_lock);
865
866 list_for_each_entry(p, &part_parsers, list) {
867 const struct of_device_id *matches;
868
869 matches = p->of_match_table;
870 if (!matches)
871 continue;
872
873 for (; matches->compatible[0]; matches++) {
874 if (!strcmp(matches->compatible, compat) &&
875 try_module_get(p->owner)) {
876 ret = p;
877 break;
878 }
879 }
880
881 if (ret)
882 break;
883 }
884
885 spin_unlock(&part_parser_lock);
886
887 return ret;
888}
889
890static int mtd_part_of_parse(struct mtd_info *master,
891 struct mtd_partitions *pparts)
892{
893 struct mtd_part_parser *parser;
894 struct device_node *np;
895 struct property *prop;
896 const char *compat;
c0faf434 897 const char *fixed = "fixed-partitions";
5b644aa0
RM
898 int ret, err = 0;
899
76a83225 900 np = mtd_get_of_node(master);
85516a98
MR
901 if (mtd_is_partition(master))
902 of_node_get(np);
903 else
76a83225 904 np = of_get_child_by_name(np, "partitions");
85516a98 905
5b644aa0
RM
906 of_property_for_each_string(np, "compatible", prop, compat) {
907 parser = mtd_part_get_compatible_parser(compat);
908 if (!parser)
909 continue;
910 ret = mtd_part_do_parse(parser, master, pparts, NULL);
911 if (ret > 0) {
912 of_node_put(np);
913 return ret;
914 }
915 mtd_part_parser_put(parser);
916 if (ret < 0 && !err)
917 err = ret;
918 }
919 of_node_put(np);
920
921 /*
c0faf434 922 * For backward compatibility we have to try the "fixed-partitions"
5b644aa0
RM
923 * parser. It supports old DT format with partitions specified as a
924 * direct subnodes of a flash device DT node without any compatibility
925 * specified we could match.
926 */
927 parser = mtd_part_parser_get(fixed);
928 if (!parser && !request_module("%s", fixed))
929 parser = mtd_part_parser_get(fixed);
930 if (parser) {
931 ret = mtd_part_do_parse(parser, master, pparts, NULL);
932 if (ret > 0)
933 return ret;
934 mtd_part_parser_put(parser);
935 if (ret < 0 && !err)
936 err = ret;
937 }
938
939 return err;
940}
941
ad274cec 942/**
5ac67ce3
RM
943 * parse_mtd_partitions - parse and register MTD partitions
944 *
ad274cec
AB
945 * @master: the master partition (describes whole MTD device)
946 * @types: names of partition parsers to try or %NULL
c7975330 947 * @data: MTD partition parser-specific data
ad274cec 948 *
5ac67ce3
RM
949 * This function tries to find & register partitions on MTD device @master. It
950 * uses MTD partition parsers, specified in @types. However, if @types is %NULL,
951 * then the default list of parsers is used. The default list contains only the
d26c87d6 952 * "cmdlinepart" and "ofpart" parsers ATM.
c51803dd
HS
953 * Note: If there are more then one parser in @types, the kernel only takes the
954 * partitions parsed out by the first parser.
ad274cec
AB
955 *
956 * This function may return:
957 * o a negative error code in case of failure
5ac67ce3 958 * o number of found partitions otherwise
ad274cec 959 */
26a47346 960int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
c7975330 961 struct mtd_part_parser_data *data)
1da177e4 962{
5ac67ce3 963 struct mtd_partitions pparts = { };
1da177e4 964 struct mtd_part_parser *parser;
5a2415b0 965 int ret, err = 0;
97894cda 966
5c4eefbd 967 if (!types)
76a83225
RM
968 types = mtd_is_partition(master) ? default_subpartition_types :
969 default_mtd_part_types;
5c4eefbd 970
5a2415b0 971 for ( ; *types; types++) {
5b644aa0
RM
972 /*
973 * ofpart is a special type that means OF partitioning info
974 * should be used. It requires a bit different logic so it is
975 * handled in a separated function.
976 */
977 if (!strcmp(*types, "ofpart")) {
5ac67ce3 978 ret = mtd_part_of_parse(master, &pparts);
5b644aa0
RM
979 } else {
980 pr_debug("%s: parsing partitions %s\n", master->name,
981 *types);
5531ae48 982 parser = mtd_part_parser_get(*types);
5b644aa0
RM
983 if (!parser && !request_module("%s", *types))
984 parser = mtd_part_parser_get(*types);
985 pr_debug("%s: got parser %s\n", master->name,
986 parser ? parser->name : NULL);
987 if (!parser)
988 continue;
5ac67ce3 989 ret = mtd_part_do_parse(parser, master, &pparts, data);
5b644aa0
RM
990 if (ret <= 0)
991 mtd_part_parser_put(parser);
992 }
01f9c724 993 /* Found partitions! */
5ac67ce3
RM
994 if (ret > 0) {
995 err = add_mtd_partitions(master, pparts.parts,
996 pparts.nr_parts);
997 mtd_part_parser_cleanup(&pparts);
998 return err ? err : pparts.nr_parts;
999 }
5a2415b0
BN
1000 /*
1001 * Stash the first error we see; only report it if no parser
1002 * succeeds
1003 */
1004 if (ret < 0 && !err)
1005 err = ret;
1da177e4 1006 }
5a2415b0 1007 return err;
1da177e4 1008}
5daa7b21 1009
adc83bf8
BN
1010void mtd_part_parser_cleanup(struct mtd_partitions *parts)
1011{
1012 const struct mtd_part_parser *parser;
1013
1014 if (!parts)
1015 return;
1016
1017 parser = parts->parser;
1018 if (parser) {
1019 if (parser->cleanup)
1020 parser->cleanup(parts->parts, parts->nr_parts);
1021
1022 mtd_part_parser_put(parser);
1023 }
1024}
1025
5dee4674 1026int mtd_is_partition(const struct mtd_info *mtd)
5daa7b21
RT
1027{
1028 struct mtd_part *part;
a7e93dcd 1029 int ispart = 0;
5daa7b21
RT
1030
1031 mutex_lock(&mtd_partitions_mutex);
1032 list_for_each_entry(part, &mtd_partitions, list)
1033 if (&part->mtd == mtd) {
a7e93dcd 1034 ispart = 1;
5daa7b21
RT
1035 break;
1036 }
1037 mutex_unlock(&mtd_partitions_mutex);
1038
a7e93dcd 1039 return ispart;
5daa7b21 1040}
a7e93dcd 1041EXPORT_SYMBOL_GPL(mtd_is_partition);
62082e56
RG
1042
1043/* Returns the size of the entire flash chip */
1044uint64_t mtd_get_device_size(const struct mtd_info *mtd)
1045{
1046 if (!mtd_is_partition(mtd))
1047 return mtd->size;
1048
97519dc5 1049 return mtd_get_device_size(mtd_to_part(mtd)->parent);
62082e56
RG
1050}
1051EXPORT_SYMBOL_GPL(mtd_get_device_size);