]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/mtd/nand/davinci_nand.c
mtd: m25p80: Add support for two new Spansion SPI devices (S25FL-K)
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / nand / davinci_nand.c
CommitLineData
ff4569c7
DB
1/*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3 *
4 * Copyright © 2006 Texas Instruments.
5 *
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26#include <linux/kernel.h>
27#include <linux/init.h>
28#include <linux/module.h>
29#include <linux/platform_device.h>
30#include <linux/err.h>
31#include <linux/clk.h>
32#include <linux/io.h>
33#include <linux/mtd/nand.h>
34#include <linux/mtd/partitions.h>
5a0e3ad6 35#include <linux/slab.h>
ff4569c7 36
ff4569c7
DB
37#include <mach/nand.h>
38
39#include <asm/mach-types.h>
40
41
ff4569c7
DB
42/*
43 * This is a device driver for the NAND flash controller found on the
44 * various DaVinci family chips. It handles up to four SoC chipselects,
45 * and some flavors of secondary chipselect (e.g. based on A12) as used
46 * with multichip packages.
47 *
6a4123e5 48 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
ff4569c7
DB
49 * available on chips like the DM355 and OMAP-L137 and needed with the
50 * more error-prone MLC NAND chips.
51 *
52 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
53 * outputs in a "wire-AND" configuration, with no per-chip signals.
54 */
55struct davinci_nand_info {
56 struct mtd_info mtd;
57 struct nand_chip chip;
6a4123e5 58 struct nand_ecclayout ecclayout;
ff4569c7
DB
59
60 struct device *dev;
61 struct clk *clk;
62 bool partitioned;
63
6a4123e5
DB
64 bool is_readmode;
65
ff4569c7
DB
66 void __iomem *base;
67 void __iomem *vaddr;
68
69 uint32_t ioaddr;
70 uint32_t current_cs;
71
72 uint32_t mask_chipsel;
73 uint32_t mask_ale;
74 uint32_t mask_cle;
75
76 uint32_t core_chipsel;
77};
78
79static DEFINE_SPINLOCK(davinci_nand_lock);
6a4123e5 80static bool ecc4_busy;
ff4569c7
DB
81
82#define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
83
84
85static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
86 int offset)
87{
88 return __raw_readl(info->base + offset);
89}
90
91static inline void davinci_nand_writel(struct davinci_nand_info *info,
92 int offset, unsigned long value)
93{
94 __raw_writel(value, info->base + offset);
95}
96
97/*----------------------------------------------------------------------*/
98
99/*
100 * Access to hardware control lines: ALE, CLE, secondary chipselect.
101 */
102
103static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
104 unsigned int ctrl)
105{
106 struct davinci_nand_info *info = to_davinci_nand(mtd);
107 uint32_t addr = info->current_cs;
108 struct nand_chip *nand = mtd->priv;
109
110 /* Did the control lines change? */
111 if (ctrl & NAND_CTRL_CHANGE) {
112 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
113 addr |= info->mask_cle;
114 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
115 addr |= info->mask_ale;
116
117 nand->IO_ADDR_W = (void __iomem __force *)addr;
118 }
119
120 if (cmd != NAND_CMD_NONE)
121 iowrite8(cmd, nand->IO_ADDR_W);
122}
123
124static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
125{
126 struct davinci_nand_info *info = to_davinci_nand(mtd);
127 uint32_t addr = info->ioaddr;
128
129 /* maybe kick in a second chipselect */
130 if (chip > 0)
131 addr |= info->mask_chipsel;
132 info->current_cs = addr;
133
134 info->chip.IO_ADDR_W = (void __iomem __force *)addr;
135 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
136}
137
138/*----------------------------------------------------------------------*/
139
140/*
141 * 1-bit hardware ECC ... context maintained for each core chipselect
142 */
143
144static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
145{
146 struct davinci_nand_info *info = to_davinci_nand(mtd);
147
148 return davinci_nand_readl(info, NANDF1ECC_OFFSET
149 + 4 * info->core_chipsel);
150}
151
152static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
153{
154 struct davinci_nand_info *info;
155 uint32_t nandcfr;
156 unsigned long flags;
157
158 info = to_davinci_nand(mtd);
159
160 /* Reset ECC hardware */
161 nand_davinci_readecc_1bit(mtd);
162
163 spin_lock_irqsave(&davinci_nand_lock, flags);
164
165 /* Restart ECC hardware */
166 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
167 nandcfr |= BIT(8 + info->core_chipsel);
168 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
169
170 spin_unlock_irqrestore(&davinci_nand_lock, flags);
171}
172
173/*
174 * Read hardware ECC value and pack into three bytes
175 */
176static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
177 const u_char *dat, u_char *ecc_code)
178{
179 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
180 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
181
182 /* invert so that erased block ecc is correct */
183 ecc24 = ~ecc24;
184 ecc_code[0] = (u_char)(ecc24);
185 ecc_code[1] = (u_char)(ecc24 >> 8);
186 ecc_code[2] = (u_char)(ecc24 >> 16);
187
188 return 0;
189}
190
191static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
192 u_char *read_ecc, u_char *calc_ecc)
193{
194 struct nand_chip *chip = mtd->priv;
195 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
196 (read_ecc[2] << 16);
197 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
198 (calc_ecc[2] << 16);
199 uint32_t diff = eccCalc ^ eccNand;
200
201 if (diff) {
202 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
203 /* Correctable error */
204 if ((diff >> (12 + 3)) < chip->ecc.size) {
205 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
206 return 1;
207 } else {
208 return -1;
209 }
210 } else if (!(diff & (diff - 1))) {
211 /* Single bit ECC error in the ECC itself,
212 * nothing to fix */
213 return 1;
214 } else {
215 /* Uncorrectable error */
216 return -1;
217 }
218
219 }
220 return 0;
221}
222
223/*----------------------------------------------------------------------*/
224
6a4123e5
DB
225/*
226 * 4-bit hardware ECC ... context maintained over entire AEMIF
227 *
228 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
229 * since that forces use of a problematic "infix OOB" layout.
230 * Among other things, it trashes manufacturer bad block markers.
231 * Also, and specific to this hardware, it ECC-protects the "prepad"
232 * in the OOB ... while having ECC protection for parts of OOB would
233 * seem useful, the current MTD stack sometimes wants to update the
234 * OOB without recomputing ECC.
235 */
236
237static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
238{
239 struct davinci_nand_info *info = to_davinci_nand(mtd);
240 unsigned long flags;
241 u32 val;
242
243 spin_lock_irqsave(&davinci_nand_lock, flags);
244
245 /* Start 4-bit ECC calculation for read/write */
246 val = davinci_nand_readl(info, NANDFCR_OFFSET);
247 val &= ~(0x03 << 4);
248 val |= (info->core_chipsel << 4) | BIT(12);
249 davinci_nand_writel(info, NANDFCR_OFFSET, val);
250
251 info->is_readmode = (mode == NAND_ECC_READ);
252
253 spin_unlock_irqrestore(&davinci_nand_lock, flags);
254}
255
256/* Read raw ECC code after writing to NAND. */
257static void
258nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
259{
260 const u32 mask = 0x03ff03ff;
261
262 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
263 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
264 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
265 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
266}
267
268/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
269static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
270 const u_char *dat, u_char *ecc_code)
271{
272 struct davinci_nand_info *info = to_davinci_nand(mtd);
273 u32 raw_ecc[4], *p;
274 unsigned i;
275
276 /* After a read, terminate ECC calculation by a dummy read
277 * of some 4-bit ECC register. ECC covers everything that
278 * was read; correct() just uses the hardware state, so
279 * ecc_code is not needed.
280 */
281 if (info->is_readmode) {
282 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
283 return 0;
284 }
285
286 /* Pack eight raw 10-bit ecc values into ten bytes, making
287 * two passes which each convert four values (in upper and
288 * lower halves of two 32-bit words) into five bytes. The
289 * ROM boot loader uses this same packing scheme.
290 */
291 nand_davinci_readecc_4bit(info, raw_ecc);
292 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
293 *ecc_code++ = p[0] & 0xff;
294 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
295 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
296 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
297 *ecc_code++ = (p[1] >> 18) & 0xff;
298 }
299
300 return 0;
301}
302
303/* Correct up to 4 bits in data we just read, using state left in the
304 * hardware plus the ecc_code computed when it was first written.
305 */
306static int nand_davinci_correct_4bit(struct mtd_info *mtd,
307 u_char *data, u_char *ecc_code, u_char *null)
308{
309 int i;
310 struct davinci_nand_info *info = to_davinci_nand(mtd);
311 unsigned short ecc10[8];
312 unsigned short *ecc16;
313 u32 syndrome[4];
1c3275b6 314 u32 ecc_state;
6a4123e5 315 unsigned num_errors, corrected;
1c3275b6 316 unsigned long timeo = jiffies + msecs_to_jiffies(100);
6a4123e5
DB
317
318 /* All bytes 0xff? It's an erased page; ignore its ECC. */
319 for (i = 0; i < 10; i++) {
320 if (ecc_code[i] != 0xff)
321 goto compare;
322 }
323 return 0;
324
325compare:
326 /* Unpack ten bytes into eight 10 bit values. We know we're
327 * little-endian, and use type punning for less shifting/masking.
328 */
329 if (WARN_ON(0x01 & (unsigned) ecc_code))
330 return -EINVAL;
331 ecc16 = (unsigned short *)ecc_code;
332
333 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
334 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
335 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
336 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
337 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
338 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
339 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
340 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
341
342 /* Tell ECC controller about the expected ECC codes. */
343 for (i = 7; i >= 0; i--)
344 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
345
346 /* Allow time for syndrome calculation ... then read it.
347 * A syndrome of all zeroes 0 means no detected errors.
348 */
349 davinci_nand_readl(info, NANDFSR_OFFSET);
350 nand_davinci_readecc_4bit(info, syndrome);
351 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
352 return 0;
353
f12a9473
SN
354 /*
355 * Clear any previous address calculation by doing a dummy read of an
356 * error address register.
357 */
358 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
359
6a4123e5
DB
360 /* Start address calculation, and wait for it to complete.
361 * We _could_ start reading more data while this is working,
362 * to speed up the overall page read.
363 */
364 davinci_nand_writel(info, NANDFCR_OFFSET,
365 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
1c3275b6
SR
366
367 /*
368 * ECC_STATE field reads 0x3 (Error correction complete) immediately
369 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
370 * begin trying to poll for the state, you may fall right out of your
371 * loop without any of the correction calculations having taken place.
eea116ed
WS
372 * The recommendation from the hardware team is to initially delay as
373 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
374 * correction state.
1c3275b6
SR
375 */
376 do {
377 ecc_state = (davinci_nand_readl(info,
378 NANDFSR_OFFSET) >> 8) & 0x0f;
379 cpu_relax();
380 } while ((ecc_state < 4) && time_before(jiffies, timeo));
381
6a4123e5
DB
382 for (;;) {
383 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
384
385 switch ((fsr >> 8) & 0x0f) {
386 case 0: /* no error, should not happen */
f12a9473 387 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
6a4123e5
DB
388 return 0;
389 case 1: /* five or more errors detected */
f12a9473 390 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
6a4123e5
DB
391 return -EIO;
392 case 2: /* error addresses computed */
393 case 3:
394 num_errors = 1 + ((fsr >> 16) & 0x03);
395 goto correct;
396 default: /* still working on it */
397 cpu_relax();
398 continue;
399 }
400 }
401
402correct:
403 /* correct each error */
404 for (i = 0, corrected = 0; i < num_errors; i++) {
405 int error_address, error_value;
406
407 if (i > 1) {
408 error_address = davinci_nand_readl(info,
409 NAND_ERR_ADD2_OFFSET);
410 error_value = davinci_nand_readl(info,
411 NAND_ERR_ERRVAL2_OFFSET);
412 } else {
413 error_address = davinci_nand_readl(info,
414 NAND_ERR_ADD1_OFFSET);
415 error_value = davinci_nand_readl(info,
416 NAND_ERR_ERRVAL1_OFFSET);
417 }
418
419 if (i & 1) {
420 error_address >>= 16;
421 error_value >>= 16;
422 }
423 error_address &= 0x3ff;
424 error_address = (512 + 7) - error_address;
425
426 if (error_address < 512) {
427 data[error_address] ^= error_value;
428 corrected++;
429 }
430 }
431
432 return corrected;
433}
434
435/*----------------------------------------------------------------------*/
436
ff4569c7
DB
437/*
438 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
439 * how these chips are normally wired. This translates to both 8 and 16
440 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
441 *
442 * For now we assume that configuration, or any other one which ignores
443 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
444 * and have that transparently morphed into multiple NAND operations.
445 */
446static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
447{
448 struct nand_chip *chip = mtd->priv;
449
450 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
451 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
452 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
453 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
454 else
455 ioread8_rep(chip->IO_ADDR_R, buf, len);
456}
457
458static void nand_davinci_write_buf(struct mtd_info *mtd,
459 const uint8_t *buf, int len)
460{
461 struct nand_chip *chip = mtd->priv;
462
463 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
464 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
465 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
466 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
467 else
468 iowrite8_rep(chip->IO_ADDR_R, buf, len);
469}
470
471/*
472 * Check hardware register for wait status. Returns 1 if device is ready,
473 * 0 if it is still busy.
474 */
475static int nand_davinci_dev_ready(struct mtd_info *mtd)
476{
477 struct davinci_nand_info *info = to_davinci_nand(mtd);
478
479 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
480}
481
482static void __init nand_dm6446evm_flash_init(struct davinci_nand_info *info)
483{
484 uint32_t regval, a1cr;
485
486 /*
487 * NAND FLASH timings @ PLL1 == 459 MHz
488 * - AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz
489 * - AEMIF.CLK period = 1/76.5 MHz = 13.1 ns
490 */
491 regval = 0
492 | (0 << 31) /* selectStrobe */
493 | (0 << 30) /* extWait (never with NAND) */
494 | (1 << 26) /* writeSetup 10 ns */
495 | (3 << 20) /* writeStrobe 40 ns */
496 | (1 << 17) /* writeHold 10 ns */
497 | (0 << 13) /* readSetup 10 ns */
498 | (3 << 7) /* readStrobe 60 ns */
499 | (0 << 4) /* readHold 10 ns */
500 | (3 << 2) /* turnAround ?? ns */
501 | (0 << 0) /* asyncSize 8-bit bus */
502 ;
503 a1cr = davinci_nand_readl(info, A1CR_OFFSET);
504 if (a1cr != regval) {
505 dev_dbg(info->dev, "Warning: NAND config: Set A1CR " \
506 "reg to 0x%08x, was 0x%08x, should be done by " \
507 "bootloader.\n", regval, a1cr);
508 davinci_nand_writel(info, A1CR_OFFSET, regval);
509 }
510}
511
512/*----------------------------------------------------------------------*/
513
6a4123e5
DB
514/* An ECC layout for using 4-bit ECC with small-page flash, storing
515 * ten ECC bytes plus the manufacturer's bad block marker byte, and
516 * and not overlapping the default BBT markers.
517 */
518static struct nand_ecclayout hwecc4_small __initconst = {
519 .eccbytes = 10,
520 .eccpos = { 0, 1, 2, 3, 4,
521 /* offset 5 holds the badblock marker */
522 6, 7,
523 13, 14, 15, },
524 .oobfree = {
525 {.offset = 8, .length = 5, },
526 {.offset = 16, },
527 },
528};
529
f12a9473
SN
530/* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
531 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
532 * and not overlapping the default BBT markers.
533 */
534static struct nand_ecclayout hwecc4_2048 __initconst = {
535 .eccbytes = 40,
536 .eccpos = {
537 /* at the end of spare sector */
538 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
539 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
540 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
541 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
542 },
543 .oobfree = {
544 /* 2 bytes at offset 0 hold manufacturer badblock markers */
545 {.offset = 2, .length = 22, },
546 /* 5 bytes at offset 8 hold BBT markers */
547 /* 8 bytes at offset 16 hold JFFS2 clean markers */
548 },
549};
6a4123e5 550
ff4569c7
DB
551static int __init nand_davinci_probe(struct platform_device *pdev)
552{
553 struct davinci_nand_pdata *pdata = pdev->dev.platform_data;
554 struct davinci_nand_info *info;
555 struct resource *res1;
556 struct resource *res2;
557 void __iomem *vaddr;
558 void __iomem *base;
559 int ret;
560 uint32_t val;
561 nand_ecc_modes_t ecc_mode;
562
533a0149
DB
563 /* insist on board-specific configuration */
564 if (!pdata)
565 return -ENODEV;
566
ff4569c7
DB
567 /* which external chipselect will we be managing? */
568 if (pdev->id < 0 || pdev->id > 3)
569 return -ENODEV;
570
571 info = kzalloc(sizeof(*info), GFP_KERNEL);
572 if (!info) {
573 dev_err(&pdev->dev, "unable to allocate memory\n");
574 ret = -ENOMEM;
575 goto err_nomem;
576 }
577
578 platform_set_drvdata(pdev, info);
579
580 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
581 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
582 if (!res1 || !res2) {
583 dev_err(&pdev->dev, "resource missing\n");
584 ret = -EINVAL;
585 goto err_nomem;
586 }
587
d8bc5555
HS
588 vaddr = ioremap(res1->start, resource_size(res1));
589 base = ioremap(res2->start, resource_size(res2));
ff4569c7
DB
590 if (!vaddr || !base) {
591 dev_err(&pdev->dev, "ioremap failed\n");
592 ret = -EINVAL;
593 goto err_ioremap;
594 }
595
596 info->dev = &pdev->dev;
597 info->base = base;
598 info->vaddr = vaddr;
599
600 info->mtd.priv = &info->chip;
601 info->mtd.name = dev_name(&pdev->dev);
602 info->mtd.owner = THIS_MODULE;
603
87f39f04
DB
604 info->mtd.dev.parent = &pdev->dev;
605
ff4569c7
DB
606 info->chip.IO_ADDR_R = vaddr;
607 info->chip.IO_ADDR_W = vaddr;
608 info->chip.chip_delay = 0;
609 info->chip.select_chip = nand_davinci_select_chip;
610
611 /* options such as NAND_USE_FLASH_BBT or 16-bit widths */
533a0149 612 info->chip.options = pdata->options;
f611a79f
MG
613 info->chip.bbt_td = pdata->bbt_td;
614 info->chip.bbt_md = pdata->bbt_md;
ff4569c7
DB
615
616 info->ioaddr = (uint32_t __force) vaddr;
617
618 info->current_cs = info->ioaddr;
619 info->core_chipsel = pdev->id;
620 info->mask_chipsel = pdata->mask_chipsel;
621
622 /* use nandboot-capable ALE/CLE masks by default */
5cd0be8e 623 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
533a0149 624 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
ff4569c7
DB
625
626 /* Set address of hardware control function */
627 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
628 info->chip.dev_ready = nand_davinci_dev_ready;
629
630 /* Speed up buffer I/O */
631 info->chip.read_buf = nand_davinci_read_buf;
632 info->chip.write_buf = nand_davinci_write_buf;
633
533a0149
DB
634 /* Use board-specific ECC config */
635 ecc_mode = pdata->ecc_mode;
ff4569c7 636
6a4123e5 637 ret = -EINVAL;
ff4569c7
DB
638 switch (ecc_mode) {
639 case NAND_ECC_NONE:
640 case NAND_ECC_SOFT:
6a4123e5 641 pdata->ecc_bits = 0;
ff4569c7
DB
642 break;
643 case NAND_ECC_HW:
6a4123e5
DB
644 if (pdata->ecc_bits == 4) {
645 /* No sanity checks: CPUs must support this,
646 * and the chips may not use NAND_BUSWIDTH_16.
647 */
648
649 /* No sharing 4-bit hardware between chipselects yet */
650 spin_lock_irq(&davinci_nand_lock);
651 if (ecc4_busy)
652 ret = -EBUSY;
653 else
654 ecc4_busy = true;
655 spin_unlock_irq(&davinci_nand_lock);
656
657 if (ret == -EBUSY)
658 goto err_ecc;
659
660 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
661 info->chip.ecc.correct = nand_davinci_correct_4bit;
662 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
663 info->chip.ecc.bytes = 10;
664 } else {
665 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
666 info->chip.ecc.correct = nand_davinci_correct_1bit;
667 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
668 info->chip.ecc.bytes = 3;
669 }
ff4569c7 670 info->chip.ecc.size = 512;
ff4569c7 671 break;
ff4569c7
DB
672 default:
673 ret = -EINVAL;
674 goto err_ecc;
675 }
676 info->chip.ecc.mode = ecc_mode;
677
cd24f8c1 678 info->clk = clk_get(&pdev->dev, "aemif");
ff4569c7
DB
679 if (IS_ERR(info->clk)) {
680 ret = PTR_ERR(info->clk);
cd24f8c1 681 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
ff4569c7
DB
682 goto err_clk;
683 }
684
685 ret = clk_enable(info->clk);
686 if (ret < 0) {
cd24f8c1
KH
687 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
688 ret);
ff4569c7
DB
689 goto err_clk_enable;
690 }
691
692 /* EMIF timings should normally be set by the boot loader,
693 * especially after boot-from-NAND. The *only* reason to
694 * have this special casing for the DM6446 EVM is to work
695 * with boot-from-NOR ... with CS0 manually re-jumpered
696 * (after startup) so it addresses the NAND flash, not NOR.
697 * Even for dev boards, that's unusually rude...
698 */
699 if (machine_is_davinci_evm())
700 nand_dm6446evm_flash_init(info);
701
702 spin_lock_irq(&davinci_nand_lock);
703
704 /* put CSxNAND into NAND mode */
705 val = davinci_nand_readl(info, NANDFCR_OFFSET);
706 val |= BIT(info->core_chipsel);
707 davinci_nand_writel(info, NANDFCR_OFFSET, val);
708
709 spin_unlock_irq(&davinci_nand_lock);
710
711 /* Scan to find existence of the device(s) */
5e81e88a 712 ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
ff4569c7
DB
713 if (ret < 0) {
714 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
715 goto err_scan;
716 }
717
6a4123e5
DB
718 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
719 * is OK, but it allocates 6 bytes when only 3 are needed (for
720 * each 512 bytes). For the 4-bit HW ECC, that default is not
721 * usable: 10 bytes are needed, not 6.
722 */
723 if (pdata->ecc_bits == 4) {
724 int chunks = info->mtd.writesize / 512;
725
726 if (!chunks || info->mtd.oobsize < 16) {
727 dev_dbg(&pdev->dev, "too small\n");
728 ret = -EINVAL;
729 goto err_scan;
730 }
731
732 /* For small page chips, preserve the manufacturer's
733 * badblock marking data ... and make sure a flash BBT
734 * table marker fits in the free bytes.
735 */
736 if (chunks == 1) {
737 info->ecclayout = hwecc4_small;
738 info->ecclayout.oobfree[1].length =
739 info->mtd.oobsize - 16;
740 goto syndrome_done;
741 }
f12a9473
SN
742 if (chunks == 4) {
743 info->ecclayout = hwecc4_2048;
744 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
745 goto syndrome_done;
746 }
6a4123e5 747
f12a9473
SN
748 /* 4KiB page chips are not yet supported. The eccpos from
749 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
750 * breaks userspace ioctl interface with mtd-utils. Once we
751 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
752 * for the 4KiB page chips.
cc26c3cd
BN
753 *
754 * TODO: Note that nand_ecclayout has now been expanded and can
755 * hold plenty of OOB entries.
6a4123e5
DB
756 */
757 dev_warn(&pdev->dev, "no 4-bit ECC support yet "
f12a9473 758 "for 4KiB-page NAND\n");
6a4123e5
DB
759 ret = -EIO;
760 goto err_scan;
761
762syndrome_done:
763 info->chip.ecc.layout = &info->ecclayout;
764 }
765
766 ret = nand_scan_tail(&info->mtd);
767 if (ret < 0)
768 goto err_scan;
769
ff4569c7
DB
770 if (mtd_has_partitions()) {
771 struct mtd_partition *mtd_parts = NULL;
772 int mtd_parts_nb = 0;
773
774 if (mtd_has_cmdlinepart()) {
775 static const char *probes[] __initconst =
776 { "cmdlinepart", NULL };
777
ff4569c7
DB
778 mtd_parts_nb = parse_mtd_partitions(&info->mtd, probes,
779 &mtd_parts, 0);
ff4569c7
DB
780 }
781
533a0149 782 if (mtd_parts_nb <= 0) {
ff4569c7
DB
783 mtd_parts = pdata->parts;
784 mtd_parts_nb = pdata->nr_parts;
785 }
786
787 /* Register any partitions */
788 if (mtd_parts_nb > 0) {
789 ret = add_mtd_partitions(&info->mtd,
790 mtd_parts, mtd_parts_nb);
791 if (ret == 0)
792 info->partitioned = true;
793 }
794
533a0149 795 } else if (pdata->nr_parts) {
ff4569c7
DB
796 dev_warn(&pdev->dev, "ignoring %d default partitions on %s\n",
797 pdata->nr_parts, info->mtd.name);
798 }
799
800 /* If there's no partition info, just package the whole chip
801 * as a single MTD device.
802 */
803 if (!info->partitioned)
804 ret = add_mtd_device(&info->mtd) ? -ENODEV : 0;
805
806 if (ret < 0)
807 goto err_scan;
808
809 val = davinci_nand_readl(info, NRCSR_OFFSET);
810 dev_info(&pdev->dev, "controller rev. %d.%d\n",
811 (val >> 8) & 0xff, val & 0xff);
812
813 return 0;
814
815err_scan:
816 clk_disable(info->clk);
817
818err_clk_enable:
819 clk_put(info->clk);
820
6a4123e5
DB
821 spin_lock_irq(&davinci_nand_lock);
822 if (ecc_mode == NAND_ECC_HW_SYNDROME)
823 ecc4_busy = false;
824 spin_unlock_irq(&davinci_nand_lock);
825
ff4569c7
DB
826err_ecc:
827err_clk:
828err_ioremap:
829 if (base)
830 iounmap(base);
831 if (vaddr)
832 iounmap(vaddr);
833
834err_nomem:
835 kfree(info);
836 return ret;
837}
838
839static int __exit nand_davinci_remove(struct platform_device *pdev)
840{
841 struct davinci_nand_info *info = platform_get_drvdata(pdev);
842 int status;
843
844 if (mtd_has_partitions() && info->partitioned)
845 status = del_mtd_partitions(&info->mtd);
846 else
847 status = del_mtd_device(&info->mtd);
848
6a4123e5
DB
849 spin_lock_irq(&davinci_nand_lock);
850 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
851 ecc4_busy = false;
852 spin_unlock_irq(&davinci_nand_lock);
853
ff4569c7
DB
854 iounmap(info->base);
855 iounmap(info->vaddr);
856
857 nand_release(&info->mtd);
858
859 clk_disable(info->clk);
860 clk_put(info->clk);
861
862 kfree(info);
863
864 return 0;
865}
866
867static struct platform_driver nand_davinci_driver = {
868 .remove = __exit_p(nand_davinci_remove),
869 .driver = {
870 .name = "davinci_nand",
871 },
872};
873MODULE_ALIAS("platform:davinci_nand");
874
875static int __init nand_davinci_init(void)
876{
877 return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe);
878}
879module_init(nand_davinci_init);
880
881static void __exit nand_davinci_exit(void)
882{
883 platform_driver_unregister(&nand_davinci_driver);
884}
885module_exit(nand_davinci_exit);
886
887MODULE_LICENSE("GPL");
888MODULE_AUTHOR("Texas Instruments");
889MODULE_DESCRIPTION("Davinci NAND flash driver");
890