]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/mtd/nand/denali.c
mtd: denali: remove nearly-duplicated register definitions
[mirror_ubuntu-focal-kernel.git] / drivers / mtd / nand / denali.c
CommitLineData
ce082596
JR
1/*
2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 *
18 */
19
20#include <linux/interrupt.h>
21#include <linux/delay.h>
84457949 22#include <linux/dma-mapping.h>
ce082596
JR
23#include <linux/wait.h>
24#include <linux/mutex.h>
b8664b37 25#include <linux/slab.h>
ce082596
JR
26#include <linux/pci.h>
27#include <linux/mtd/mtd.h>
28#include <linux/module.h>
29
30#include "denali.h"
31
32MODULE_LICENSE("GPL");
33
5bac3acf 34/* We define a module parameter that allows the user to override
ce082596
JR
35 * the hardware and decide what timing mode should be used.
36 */
37#define NAND_DEFAULT_TIMINGS -1
38
39static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
40module_param(onfi_timing_mode, int, S_IRUGO);
bdca6dae
CD
41MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
42 " -1 indicates use default timings");
ce082596
JR
43
44#define DENALI_NAND_NAME "denali-nand"
45
46/* We define a macro here that combines all interrupts this driver uses into
47 * a single constant value, for convenience. */
9589bf5b
JI
48#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
49 INTR_STATUS__ECC_TRANSACTION_DONE | \
50 INTR_STATUS__ECC_ERR | \
51 INTR_STATUS__PROGRAM_FAIL | \
52 INTR_STATUS__LOAD_COMP | \
53 INTR_STATUS__PROGRAM_COMP | \
54 INTR_STATUS__TIME_OUT | \
55 INTR_STATUS__ERASE_FAIL | \
56 INTR_STATUS__RST_COMP | \
57 INTR_STATUS__ERASE_COMP)
ce082596 58
5bac3acf 59/* indicates whether or not the internal value for the flash bank is
b292c341 60 * valid or not */
5bac3acf 61#define CHIP_SELECT_INVALID -1
ce082596
JR
62
63#define SUPPORT_8BITECC 1
64
5bac3acf 65/* This macro divides two integers and rounds fractional values up
ce082596
JR
66 * to the nearest integer value. */
67#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
68
69/* this macro allows us to convert from an MTD structure to our own
70 * device context (denali) structure.
71 */
72#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
73
74/* These constants are defined by the driver to enable common driver
b292c341 75 * configuration options. */
ce082596
JR
76#define SPARE_ACCESS 0x41
77#define MAIN_ACCESS 0x42
78#define MAIN_SPARE_ACCESS 0x43
79
80#define DENALI_READ 0
81#define DENALI_WRITE 0x100
82
83/* types of device accesses. We can issue commands and get status */
84#define COMMAND_CYCLE 0
85#define ADDR_CYCLE 1
86#define STATUS_CYCLE 2
87
5bac3acf 88/* this is a helper macro that allows us to
ce082596
JR
89 * format the bank into the proper bits for the controller */
90#define BANK(x) ((x) << 24)
91
92/* List of platforms this NAND controller has be integrated into */
93static const struct pci_device_id denali_pci_ids[] = {
94 { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
95 { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
96 { /* end: all zeroes */ }
97};
98
ce082596
JR
99/* forward declarations */
100static void clear_interrupts(struct denali_nand_info *denali);
bdca6dae
CD
101static uint32_t wait_for_irq(struct denali_nand_info *denali,
102 uint32_t irq_mask);
103static void denali_irq_enable(struct denali_nand_info *denali,
104 uint32_t int_mask);
ce082596
JR
105static uint32_t read_interrupt_status(struct denali_nand_info *denali);
106
bdca6dae
CD
107/* Certain operations for the denali NAND controller use
108 * an indexed mode to read/write data. The operation is
109 * performed by writing the address value of the command
110 * to the device memory followed by the data. This function
111 * abstracts this common operation.
ce082596 112*/
bdca6dae
CD
113static void index_addr(struct denali_nand_info *denali,
114 uint32_t address, uint32_t data)
ce082596 115{
24c3fa36
CD
116 iowrite32(address, denali->flash_mem);
117 iowrite32(data, denali->flash_mem + 0x10);
ce082596
JR
118}
119
120/* Perform an indexed read of the device */
121static void index_addr_read_data(struct denali_nand_info *denali,
122 uint32_t address, uint32_t *pdata)
123{
24c3fa36 124 iowrite32(address, denali->flash_mem);
ce082596
JR
125 *pdata = ioread32(denali->flash_mem + 0x10);
126}
127
5bac3acf 128/* We need to buffer some data for some of the NAND core routines.
ce082596
JR
129 * The operations manage buffering that data. */
130static void reset_buf(struct denali_nand_info *denali)
131{
132 denali->buf.head = denali->buf.tail = 0;
133}
134
135static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
136{
137 BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
138 denali->buf.buf[denali->buf.tail++] = byte;
139}
140
141/* reads the status of the device */
142static void read_status(struct denali_nand_info *denali)
143{
144 uint32_t cmd = 0x0;
145
146 /* initialize the data buffer to store status */
147 reset_buf(denali);
148
f0bc0c77
CD
149 cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
150 if (cmd)
151 write_byte_to_buf(denali, NAND_STATUS_WP);
152 else
153 write_byte_to_buf(denali, 0);
ce082596
JR
154}
155
156/* resets a specific device connected to the core */
157static void reset_bank(struct denali_nand_info *denali)
158{
159 uint32_t irq_status = 0;
9589bf5b
JI
160 uint32_t irq_mask = INTR_STATUS__RST_COMP |
161 INTR_STATUS__TIME_OUT;
ce082596
JR
162
163 clear_interrupts(denali);
164
9589bf5b 165 iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
ce082596
JR
166
167 irq_status = wait_for_irq(denali, irq_mask);
5bac3acf 168
9589bf5b 169 if (irq_status & INTR_STATUS__TIME_OUT)
84457949 170 dev_err(denali->dev, "reset bank failed.\n");
ce082596
JR
171}
172
173/* Reset the flash controller */
eda936ef 174static uint16_t denali_nand_reset(struct denali_nand_info *denali)
ce082596
JR
175{
176 uint32_t i;
177
84457949 178 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
ce082596
JR
179 __FILE__, __LINE__, __func__);
180
181 for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
9589bf5b
JI
182 iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
183 denali->flash_reg + INTR_STATUS(i));
ce082596
JR
184
185 for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
9589bf5b 186 iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
bdca6dae 187 while (!(ioread32(denali->flash_reg +
9589bf5b
JI
188 INTR_STATUS(i)) &
189 (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
628bfd41 190 cpu_relax();
9589bf5b
JI
191 if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
192 INTR_STATUS__TIME_OUT)
84457949 193 dev_dbg(denali->dev,
ce082596
JR
194 "NAND Reset operation timed out on bank %d\n", i);
195 }
196
197 for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
9589bf5b
JI
198 iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
199 denali->flash_reg + INTR_STATUS(i));
ce082596
JR
200
201 return PASS;
202}
203
bdca6dae
CD
204/* this routine calculates the ONFI timing values for a given mode and
205 * programs the clocking register accordingly. The mode is determined by
206 * the get_onfi_nand_para routine.
ce082596 207 */
eda936ef 208static void nand_onfi_timing_set(struct denali_nand_info *denali,
bdca6dae 209 uint16_t mode)
ce082596
JR
210{
211 uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
212 uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
213 uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
214 uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
215 uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
216 uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
217 uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
218 uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
219 uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
220 uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
221 uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
222 uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
223
224 uint16_t TclsRising = 1;
225 uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
226 uint16_t dv_window = 0;
227 uint16_t en_lo, en_hi;
228 uint16_t acc_clks;
229 uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
230
84457949 231 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
ce082596
JR
232 __FILE__, __LINE__, __func__);
233
234 en_lo = CEIL_DIV(Trp[mode], CLK_X);
235 en_hi = CEIL_DIV(Treh[mode], CLK_X);
236#if ONFI_BLOOM_TIME
237 if ((en_hi * CLK_X) < (Treh[mode] + 2))
238 en_hi++;
239#endif
240
241 if ((en_lo + en_hi) * CLK_X < Trc[mode])
242 en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
243
244 if ((en_lo + en_hi) < CLK_MULTI)
245 en_lo += CLK_MULTI - en_lo - en_hi;
246
247 while (dv_window < 8) {
248 data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
249
250 data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
251
252 data_invalid =
253 data_invalid_rhoh <
254 data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
255
256 dv_window = data_invalid - Trea[mode];
257
258 if (dv_window < 8)
259 en_lo++;
260 }
261
262 acc_clks = CEIL_DIV(Trea[mode], CLK_X);
263
264 while (((acc_clks * CLK_X) - Trea[mode]) < 3)
265 acc_clks++;
266
267 if ((data_invalid - acc_clks * CLK_X) < 2)
84457949 268 dev_warn(denali->dev, "%s, Line %d: Warning!\n",
ce082596
JR
269 __FILE__, __LINE__);
270
271 addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
272 re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
273 re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
274 we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
275 cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
276 if (!TclsRising)
277 cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
278 if (cs_cnt == 0)
279 cs_cnt = 1;
280
281 if (Tcea[mode]) {
282 while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
283 cs_cnt++;
284 }
285
286#if MODE5_WORKAROUND
287 if (mode == 5)
288 acc_clks = 5;
289#endif
290
291 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
292 if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
293 (ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
294 acc_clks = 6;
295
24c3fa36
CD
296 iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
297 iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
298 iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
299 iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
300 iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
301 iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
302 iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
303 iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
ce082596
JR
304}
305
ce082596
JR
306/* queries the NAND device to see what ONFI modes it supports. */
307static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
308{
309 int i;
4c03bbdf
CD
310 /* we needn't to do a reset here because driver has already
311 * reset all the banks before
312 * */
ce082596
JR
313 if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
314 ONFI_TIMING_MODE__VALUE))
315 return FAIL;
316
317 for (i = 5; i > 0; i--) {
bdca6dae
CD
318 if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
319 (0x01 << i))
ce082596
JR
320 break;
321 }
322
eda936ef 323 nand_onfi_timing_set(denali, i);
ce082596
JR
324
325 /* By now, all the ONFI devices we know support the page cache */
326 /* rw feature. So here we enable the pipeline_rw_ahead feature */
327 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
328 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
329
330 return PASS;
331}
332
4c03bbdf
CD
333static void get_samsung_nand_para(struct denali_nand_info *denali,
334 uint8_t device_id)
ce082596 335{
4c03bbdf 336 if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
ce082596 337 /* Set timing register values according to datasheet */
24c3fa36
CD
338 iowrite32(5, denali->flash_reg + ACC_CLKS);
339 iowrite32(20, denali->flash_reg + RE_2_WE);
340 iowrite32(12, denali->flash_reg + WE_2_RE);
341 iowrite32(14, denali->flash_reg + ADDR_2_DATA);
342 iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
343 iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
344 iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
ce082596 345 }
ce082596
JR
346}
347
348static void get_toshiba_nand_para(struct denali_nand_info *denali)
349{
ce082596
JR
350 uint32_t tmp;
351
352 /* Workaround to fix a controller bug which reports a wrong */
353 /* spare area size for some kind of Toshiba NAND device */
354 if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
355 (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
24c3fa36 356 iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
ce082596
JR
357 tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
358 ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
24c3fa36 359 iowrite32(tmp,
bdca6dae 360 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
ce082596 361#if SUPPORT_15BITECC
24c3fa36 362 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
ce082596 363#elif SUPPORT_8BITECC
24c3fa36 364 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
ce082596
JR
365#endif
366 }
ce082596
JR
367}
368
ef41e1bb
CD
369static void get_hynix_nand_para(struct denali_nand_info *denali,
370 uint8_t device_id)
ce082596 371{
ce082596
JR
372 uint32_t main_size, spare_size;
373
ef41e1bb 374 switch (device_id) {
ce082596
JR
375 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
376 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
24c3fa36
CD
377 iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
378 iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
379 iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
bdca6dae
CD
380 main_size = 4096 *
381 ioread32(denali->flash_reg + DEVICES_CONNECTED);
382 spare_size = 224 *
383 ioread32(denali->flash_reg + DEVICES_CONNECTED);
24c3fa36 384 iowrite32(main_size,
bdca6dae 385 denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
24c3fa36 386 iowrite32(spare_size,
bdca6dae 387 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
24c3fa36 388 iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
ce082596 389#if SUPPORT_15BITECC
24c3fa36 390 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
ce082596 391#elif SUPPORT_8BITECC
24c3fa36 392 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
ce082596 393#endif
ce082596
JR
394 break;
395 default:
84457949 396 dev_warn(denali->dev,
ce082596
JR
397 "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
398 "Will use default parameter values instead.\n",
66406524 399 device_id);
ce082596
JR
400 }
401}
402
403/* determines how many NAND chips are connected to the controller. Note for
b292c341 404 * Intel CE4100 devices we don't support more than one device.
ce082596
JR
405 */
406static void find_valid_banks(struct denali_nand_info *denali)
407{
408 uint32_t id[LLD_MAX_FLASH_BANKS];
409 int i;
410
411 denali->total_used_banks = 1;
412 for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
413 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
414 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
bdca6dae
CD
415 index_addr_read_data(denali,
416 (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
ce082596 417
84457949 418 dev_dbg(denali->dev,
ce082596
JR
419 "Return 1st ID for bank[%d]: %x\n", i, id[i]);
420
421 if (i == 0) {
422 if (!(id[i] & 0x0ff))
423 break; /* WTF? */
424 } else {
425 if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
426 denali->total_used_banks++;
427 else
428 break;
429 }
430 }
431
345b1d3b 432 if (denali->platform == INTEL_CE4100) {
ce082596
JR
433 /* Platform limitations of the CE4100 device limit
434 * users to a single chip solution for NAND.
5bac3acf
C
435 * Multichip support is not enabled.
436 */
345b1d3b 437 if (denali->total_used_banks != 1) {
84457949 438 dev_err(denali->dev,
7cfffac0 439 "Sorry, Intel CE4100 only supports "
ce082596
JR
440 "a single NAND device.\n");
441 BUG();
442 }
443 }
84457949 444 dev_dbg(denali->dev,
ce082596
JR
445 "denali->total_used_banks: %d\n", denali->total_used_banks);
446}
447
448static void detect_partition_feature(struct denali_nand_info *denali)
449{
66406524
CD
450 /* For MRST platform, denali->fwblks represent the
451 * number of blocks firmware is taken,
452 * FW is in protect partition and MTD driver has no
453 * permission to access it. So let driver know how many
454 * blocks it can't touch.
455 * */
ce082596 456 if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
9589bf5b
JI
457 if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
458 PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
66406524 459 denali->fwblks =
9589bf5b
JI
460 ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
461 MIN_MAX_BANK__MIN_VALUE) *
66406524 462 denali->blksperchip)
ce082596 463 +
9589bf5b
JI
464 (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
465 MIN_BLK_ADDR__VALUE);
66406524
CD
466 } else
467 denali->fwblks = SPECTRA_START_BLOCK;
468 } else
469 denali->fwblks = SPECTRA_START_BLOCK;
ce082596
JR
470}
471
eda936ef 472static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
ce082596
JR
473{
474 uint16_t status = PASS;
ef41e1bb
CD
475 uint32_t id_bytes[5], addr;
476 uint8_t i, maf_id, device_id;
ce082596 477
84457949 478 dev_dbg(denali->dev,
7cfffac0
CD
479 "%s, Line %d, Function: %s\n",
480 __FILE__, __LINE__, __func__);
ce082596 481
ef41e1bb
CD
482 /* Use read id method to get device ID and other
483 * params. For some NAND chips, controller can't
484 * report the correct device ID by reading from
485 * DEVICE_ID register
486 * */
487 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
488 index_addr(denali, (uint32_t)addr | 0, 0x90);
489 index_addr(denali, (uint32_t)addr | 1, 0);
490 for (i = 0; i < 5; i++)
491 index_addr_read_data(denali, addr | 2, &id_bytes[i]);
492 maf_id = id_bytes[0];
493 device_id = id_bytes[1];
ce082596
JR
494
495 if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
496 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
497 if (FAIL == get_onfi_nand_para(denali))
498 return FAIL;
ef41e1bb 499 } else if (maf_id == 0xEC) { /* Samsung NAND */
4c03bbdf 500 get_samsung_nand_para(denali, device_id);
ef41e1bb 501 } else if (maf_id == 0x98) { /* Toshiba NAND */
ce082596 502 get_toshiba_nand_para(denali);
ef41e1bb
CD
503 } else if (maf_id == 0xAD) { /* Hynix NAND */
504 get_hynix_nand_para(denali, device_id);
ce082596
JR
505 }
506
84457949 507 dev_info(denali->dev,
7cfffac0
CD
508 "Dump timing register values:"
509 "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
510 "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
ce082596
JR
511 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
512 ioread32(denali->flash_reg + ACC_CLKS),
513 ioread32(denali->flash_reg + RE_2_WE),
7cfffac0 514 ioread32(denali->flash_reg + RE_2_RE),
ce082596
JR
515 ioread32(denali->flash_reg + WE_2_RE),
516 ioread32(denali->flash_reg + ADDR_2_DATA),
517 ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
518 ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
519 ioread32(denali->flash_reg + CS_SETUP_CNT));
520
ce082596
JR
521 find_valid_banks(denali);
522
523 detect_partition_feature(denali);
524
ce082596 525 /* If the user specified to override the default timings
5bac3acf 526 * with a specific ONFI mode, we apply those changes here.
ce082596
JR
527 */
528 if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
eda936ef 529 nand_onfi_timing_set(denali, onfi_timing_mode);
ce082596
JR
530
531 return status;
532}
533
eda936ef 534static void denali_set_intr_modes(struct denali_nand_info *denali,
ce082596
JR
535 uint16_t INT_ENABLE)
536{
84457949 537 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
ce082596
JR
538 __FILE__, __LINE__, __func__);
539
540 if (INT_ENABLE)
24c3fa36 541 iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
ce082596 542 else
24c3fa36 543 iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
ce082596
JR
544}
545
546/* validation function to verify that the controlling software is making
b292c341 547 * a valid request
ce082596
JR
548 */
549static inline bool is_flash_bank_valid(int flash_bank)
550{
5bac3acf 551 return (flash_bank >= 0 && flash_bank < 4);
ce082596
JR
552}
553
554static void denali_irq_init(struct denali_nand_info *denali)
555{
556 uint32_t int_mask = 0;
9589bf5b 557 int i;
ce082596
JR
558
559 /* Disable global interrupts */
eda936ef 560 denali_set_intr_modes(denali, false);
ce082596
JR
561
562 int_mask = DENALI_IRQ_ALL;
563
564 /* Clear all status bits */
9589bf5b
JI
565 for (i = 0; i < LLD_MAX_FLASH_BANKS; ++i)
566 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
ce082596
JR
567
568 denali_irq_enable(denali, int_mask);
569}
570
571static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
572{
eda936ef 573 denali_set_intr_modes(denali, false);
ce082596
JR
574 free_irq(irqnum, denali);
575}
576
bdca6dae
CD
577static void denali_irq_enable(struct denali_nand_info *denali,
578 uint32_t int_mask)
ce082596 579{
9589bf5b
JI
580 int i;
581
582 for (i = 0; i < LLD_MAX_FLASH_BANKS; ++i)
583 iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
ce082596
JR
584}
585
586/* This function only returns when an interrupt that this driver cares about
5bac3acf 587 * occurs. This is to reduce the overhead of servicing interrupts
ce082596
JR
588 */
589static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
590{
a99d1796 591 return read_interrupt_status(denali) & DENALI_IRQ_ALL;
ce082596
JR
592}
593
594/* Interrupts are cleared by writing a 1 to the appropriate status bit */
bdca6dae
CD
595static inline void clear_interrupt(struct denali_nand_info *denali,
596 uint32_t irq_mask)
ce082596
JR
597{
598 uint32_t intr_status_reg = 0;
599
9589bf5b 600 intr_status_reg = INTR_STATUS(denali->flash_bank);
ce082596 601
24c3fa36 602 iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
ce082596
JR
603}
604
605static void clear_interrupts(struct denali_nand_info *denali)
606{
607 uint32_t status = 0x0;
608 spin_lock_irq(&denali->irq_lock);
609
610 status = read_interrupt_status(denali);
8ae61ebd 611 clear_interrupt(denali, status);
ce082596 612
ce082596
JR
613 denali->irq_status = 0x0;
614 spin_unlock_irq(&denali->irq_lock);
615}
616
617static uint32_t read_interrupt_status(struct denali_nand_info *denali)
618{
619 uint32_t intr_status_reg = 0;
620
9589bf5b 621 intr_status_reg = INTR_STATUS(denali->flash_bank);
ce082596
JR
622
623 return ioread32(denali->flash_reg + intr_status_reg);
624}
625
5bac3acf
C
626/* This is the interrupt service routine. It handles all interrupts
627 * sent to this device. Note that on CE4100, this is a shared
628 * interrupt.
ce082596
JR
629 */
630static irqreturn_t denali_isr(int irq, void *dev_id)
631{
632 struct denali_nand_info *denali = dev_id;
633 uint32_t irq_status = 0x0;
634 irqreturn_t result = IRQ_NONE;
635
636 spin_lock(&denali->irq_lock);
637
5bac3acf
C
638 /* check to see if a valid NAND chip has
639 * been selected.
ce082596 640 */
345b1d3b 641 if (is_flash_bank_valid(denali->flash_bank)) {
5bac3acf 642 /* check to see if controller generated
ce082596 643 * the interrupt, since this is a shared interrupt */
bdca6dae
CD
644 irq_status = denali_irq_detected(denali);
645 if (irq_status != 0) {
ce082596
JR
646 /* handle interrupt */
647 /* first acknowledge it */
648 clear_interrupt(denali, irq_status);
649 /* store the status in the device context for someone
650 to read */
651 denali->irq_status |= irq_status;
652 /* notify anyone who cares that it happened */
653 complete(&denali->complete);
654 /* tell the OS that we've handled this */
655 result = IRQ_HANDLED;
656 }
657 }
658 spin_unlock(&denali->irq_lock);
659 return result;
660}
661#define BANK(x) ((x) << 24)
662
663static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
664{
665 unsigned long comp_res = 0;
666 uint32_t intr_status = 0;
667 bool retry = false;
668 unsigned long timeout = msecs_to_jiffies(1000);
669
345b1d3b 670 do {
bdca6dae
CD
671 comp_res =
672 wait_for_completion_timeout(&denali->complete, timeout);
ce082596
JR
673 spin_lock_irq(&denali->irq_lock);
674 intr_status = denali->irq_status;
675
345b1d3b 676 if (intr_status & irq_mask) {
ce082596
JR
677 denali->irq_status &= ~irq_mask;
678 spin_unlock_irq(&denali->irq_lock);
ce082596
JR
679 /* our interrupt was detected */
680 break;
345b1d3b 681 } else {
5bac3acf
C
682 /* these are not the interrupts you are looking for -
683 * need to wait again */
ce082596 684 spin_unlock_irq(&denali->irq_lock);
ce082596
JR
685 retry = true;
686 }
687 } while (comp_res != 0);
688
345b1d3b 689 if (comp_res == 0) {
ce082596 690 /* timeout */
5bac3acf
C
691 printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
692 intr_status, irq_mask);
ce082596
JR
693
694 intr_status = 0;
695 }
696 return intr_status;
697}
698
5bac3acf 699/* This helper function setups the registers for ECC and whether or not
25985edc 700 * the spare area will be transferred. */
5bac3acf 701static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
ce082596
JR
702 bool transfer_spare)
703{
5bac3acf 704 int ecc_en_flag = 0, transfer_spare_flag = 0;
ce082596
JR
705
706 /* set ECC, transfer spare bits if needed */
707 ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
708 transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
709
710 /* Enable spare area/ECC per user's request. */
24c3fa36
CD
711 iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
712 iowrite32(transfer_spare_flag,
bdca6dae 713 denali->flash_reg + TRANSFER_SPARE_REG);
ce082596
JR
714}
715
5bac3acf 716/* sends a pipeline command operation to the controller. See the Denali NAND
b292c341 717 * controller's user guide for more information (section 4.2.3.6).
ce082596 718 */
bdca6dae
CD
719static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
720 bool ecc_en,
721 bool transfer_spare,
722 int access_type,
723 int op)
ce082596
JR
724{
725 int status = PASS;
5bac3acf 726 uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
ce082596
JR
727 irq_mask = 0;
728
a99d1796 729 if (op == DENALI_READ)
9589bf5b 730 irq_mask = INTR_STATUS__LOAD_COMP;
a99d1796
CD
731 else if (op == DENALI_WRITE)
732 irq_mask = 0;
733 else
734 BUG();
ce082596
JR
735
736 setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
737
ce082596 738 /* clear interrupts */
5bac3acf 739 clear_interrupts(denali);
ce082596
JR
740
741 addr = BANK(denali->flash_bank) | denali->page;
742
345b1d3b 743 if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
5bac3acf 744 cmd = MODE_01 | addr;
24c3fa36 745 iowrite32(cmd, denali->flash_mem);
345b1d3b 746 } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
ce082596 747 /* read spare area */
5bac3acf 748 cmd = MODE_10 | addr;
ce082596
JR
749 index_addr(denali, (uint32_t)cmd, access_type);
750
5bac3acf 751 cmd = MODE_01 | addr;
24c3fa36 752 iowrite32(cmd, denali->flash_mem);
345b1d3b 753 } else if (op == DENALI_READ) {
ce082596 754 /* setup page read request for access type */
5bac3acf 755 cmd = MODE_10 | addr;
ce082596
JR
756 index_addr(denali, (uint32_t)cmd, access_type);
757
758 /* page 33 of the NAND controller spec indicates we should not
5bac3acf 759 use the pipeline commands in Spare area only mode. So we
ce082596
JR
760 don't.
761 */
345b1d3b 762 if (access_type == SPARE_ACCESS) {
ce082596 763 cmd = MODE_01 | addr;
24c3fa36 764 iowrite32(cmd, denali->flash_mem);
345b1d3b 765 } else {
bdca6dae
CD
766 index_addr(denali, (uint32_t)cmd,
767 0x2000 | op | page_count);
5bac3acf
C
768
769 /* wait for command to be accepted
bdca6dae
CD
770 * can always use status0 bit as the
771 * mask is identical for each
ce082596
JR
772 * bank. */
773 irq_status = wait_for_irq(denali, irq_mask);
774
345b1d3b 775 if (irq_status == 0) {
84457949 776 dev_err(denali->dev,
7cfffac0
CD
777 "cmd, page, addr on timeout "
778 "(0x%x, 0x%x, 0x%x)\n",
779 cmd, denali->page, addr);
ce082596 780 status = FAIL;
345b1d3b 781 } else {
ce082596 782 cmd = MODE_01 | addr;
24c3fa36 783 iowrite32(cmd, denali->flash_mem);
ce082596
JR
784 }
785 }
786 }
787 return status;
788}
789
790/* helper function that simply writes a buffer to the flash */
bdca6dae
CD
791static int write_data_to_flash_mem(struct denali_nand_info *denali,
792 const uint8_t *buf,
793 int len)
ce082596
JR
794{
795 uint32_t i = 0, *buf32;
796
5bac3acf
C
797 /* verify that the len is a multiple of 4. see comment in
798 * read_data_from_flash_mem() */
ce082596
JR
799 BUG_ON((len % 4) != 0);
800
801 /* write the data to the flash memory */
802 buf32 = (uint32_t *)buf;
803 for (i = 0; i < len / 4; i++)
24c3fa36 804 iowrite32(*buf32++, denali->flash_mem + 0x10);
5bac3acf 805 return i*4; /* intent is to return the number of bytes read */
ce082596
JR
806}
807
808/* helper function that simply reads a buffer from the flash */
bdca6dae
CD
809static int read_data_from_flash_mem(struct denali_nand_info *denali,
810 uint8_t *buf,
811 int len)
ce082596
JR
812{
813 uint32_t i = 0, *buf32;
814
815 /* we assume that len will be a multiple of 4, if not
816 * it would be nice to know about it ASAP rather than
5bac3acf
C
817 * have random failures...
818 * This assumption is based on the fact that this
819 * function is designed to be used to read flash pages,
ce082596
JR
820 * which are typically multiples of 4...
821 */
822
823 BUG_ON((len % 4) != 0);
824
825 /* transfer the data from the flash */
826 buf32 = (uint32_t *)buf;
827 for (i = 0; i < len / 4; i++)
ce082596 828 *buf32++ = ioread32(denali->flash_mem + 0x10);
5bac3acf 829 return i*4; /* intent is to return the number of bytes read */
ce082596
JR
830}
831
832/* writes OOB data to the device */
833static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
834{
835 struct denali_nand_info *denali = mtd_to_denali(mtd);
836 uint32_t irq_status = 0;
9589bf5b
JI
837 uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
838 INTR_STATUS__PROGRAM_FAIL;
ce082596
JR
839 int status = 0;
840
841 denali->page = page;
842
5bac3acf 843 if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
345b1d3b 844 DENALI_WRITE) == PASS) {
ce082596
JR
845 write_data_to_flash_mem(denali, buf, mtd->oobsize);
846
ce082596
JR
847 /* wait for operation to complete */
848 irq_status = wait_for_irq(denali, irq_mask);
849
345b1d3b 850 if (irq_status == 0) {
84457949 851 dev_err(denali->dev, "OOB write failed\n");
ce082596
JR
852 status = -EIO;
853 }
345b1d3b 854 } else {
84457949 855 dev_err(denali->dev, "unable to send pipeline command\n");
5bac3acf 856 status = -EIO;
ce082596
JR
857 }
858 return status;
859}
860
861/* reads OOB data from the device */
862static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
863{
864 struct denali_nand_info *denali = mtd_to_denali(mtd);
9589bf5b 865 uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
bdca6dae 866 irq_status = 0, addr = 0x0, cmd = 0x0;
ce082596
JR
867
868 denali->page = page;
869
5bac3acf 870 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
345b1d3b 871 DENALI_READ) == PASS) {
5bac3acf 872 read_data_from_flash_mem(denali, buf, mtd->oobsize);
ce082596 873
5bac3acf 874 /* wait for command to be accepted
ce082596
JR
875 * can always use status0 bit as the mask is identical for each
876 * bank. */
877 irq_status = wait_for_irq(denali, irq_mask);
878
879 if (irq_status == 0)
84457949 880 dev_err(denali->dev, "page on OOB timeout %d\n",
bdca6dae 881 denali->page);
ce082596
JR
882
883 /* We set the device back to MAIN_ACCESS here as I observed
884 * instability with the controller if you do a block erase
885 * and the last transaction was a SPARE_ACCESS. Block erase
886 * is reliable (according to the MTD test infrastructure)
5bac3acf 887 * if you are in MAIN_ACCESS.
ce082596
JR
888 */
889 addr = BANK(denali->flash_bank) | denali->page;
5bac3acf 890 cmd = MODE_10 | addr;
ce082596 891 index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
ce082596
JR
892 }
893}
894
5bac3acf 895/* this function examines buffers to see if they contain data that
ce082596
JR
896 * indicate that the buffer is part of an erased region of flash.
897 */
898bool is_erased(uint8_t *buf, int len)
899{
900 int i = 0;
901 for (i = 0; i < len; i++)
ce082596 902 if (buf[i] != 0xFF)
ce082596 903 return false;
ce082596
JR
904 return true;
905}
906#define ECC_SECTOR_SIZE 512
907
908#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
909#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
910#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
8ae61ebd
CD
911#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
912#define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
ce082596
JR
913#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
914
5bac3acf 915static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
8ae61ebd 916 uint32_t irq_status)
ce082596
JR
917{
918 bool check_erased_page = false;
919
9589bf5b 920 if (irq_status & INTR_STATUS__ECC_ERR) {
ce082596
JR
921 /* read the ECC errors. we'll ignore them for now */
922 uint32_t err_address = 0, err_correction_info = 0;
923 uint32_t err_byte = 0, err_sector = 0, err_device = 0;
924 uint32_t err_correction_value = 0;
8ae61ebd 925 denali_set_intr_modes(denali, false);
ce082596 926
345b1d3b 927 do {
5bac3acf 928 err_address = ioread32(denali->flash_reg +
ce082596
JR
929 ECC_ERROR_ADDRESS);
930 err_sector = ECC_SECTOR(err_address);
931 err_byte = ECC_BYTE(err_address);
932
5bac3acf 933 err_correction_info = ioread32(denali->flash_reg +
ce082596 934 ERR_CORRECTION_INFO);
5bac3acf 935 err_correction_value =
ce082596
JR
936 ECC_CORRECTION_VALUE(err_correction_info);
937 err_device = ECC_ERR_DEVICE(err_correction_info);
938
345b1d3b 939 if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
8ae61ebd 940 /* If err_byte is larger than ECC_SECTOR_SIZE,
25985edc 941 * means error happened in OOB, so we ignore
8ae61ebd
CD
942 * it. It's no need for us to correct it
943 * err_device is represented the NAND error
944 * bits are happened in if there are more
945 * than one NAND connected.
946 * */
947 if (err_byte < ECC_SECTOR_SIZE) {
948 int offset;
949 offset = (err_sector *
950 ECC_SECTOR_SIZE +
951 err_byte) *
952 denali->devnum +
953 err_device;
ce082596
JR
954 /* correct the ECC error */
955 buf[offset] ^= err_correction_value;
956 denali->mtd.ecc_stats.corrected++;
ce082596 957 }
345b1d3b 958 } else {
5bac3acf 959 /* if the error is not correctable, need to
bdca6dae
CD
960 * look at the page to see if it is an erased
961 * page. if so, then it's not a real ECC error
962 * */
ce082596
JR
963 check_erased_page = true;
964 }
ce082596 965 } while (!ECC_LAST_ERR(err_correction_info));
8ae61ebd
CD
966 /* Once handle all ecc errors, controller will triger
967 * a ECC_TRANSACTION_DONE interrupt, so here just wait
968 * for a while for this interrupt
969 * */
970 while (!(read_interrupt_status(denali) &
9589bf5b 971 INTR_STATUS__ECC_TRANSACTION_DONE))
8ae61ebd
CD
972 cpu_relax();
973 clear_interrupts(denali);
974 denali_set_intr_modes(denali, true);
ce082596
JR
975 }
976 return check_erased_page;
977}
978
979/* programs the controller to either enable/disable DMA transfers */
aadff49c 980static void denali_enable_dma(struct denali_nand_info *denali, bool en)
ce082596
JR
981{
982 uint32_t reg_val = 0x0;
983
a99d1796
CD
984 if (en)
985 reg_val = DMA_ENABLE__FLAG;
ce082596 986
24c3fa36 987 iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
ce082596
JR
988 ioread32(denali->flash_reg + DMA_ENABLE);
989}
990
991/* setups the HW to perform the data DMA */
aadff49c 992static void denali_setup_dma(struct denali_nand_info *denali, int op)
ce082596
JR
993{
994 uint32_t mode = 0x0;
995 const int page_count = 1;
996 dma_addr_t addr = denali->buf.dma_buf;
997
998 mode = MODE_10 | BANK(denali->flash_bank);
999
1000 /* DMA is a four step process */
1001
1002 /* 1. setup transfer type and # of pages */
1003 index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1004
1005 /* 2. set memory high address bits 23:8 */
1006 index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
1007
1008 /* 3. set memory low address bits 23:8 */
1009 index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
1010
1011 /* 4. interrupt when complete, burst len = 64 bytes*/
1012 index_addr(denali, mode | 0x14000, 0x2400);
1013}
1014
5bac3acf 1015/* writes a page. user specifies type, and this function handles the
b292c341 1016 * configuration details. */
5bac3acf 1017static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1018 const uint8_t *buf, bool raw_xfer)
1019{
1020 struct denali_nand_info *denali = mtd_to_denali(mtd);
ce082596
JR
1021
1022 dma_addr_t addr = denali->buf.dma_buf;
1023 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1024
1025 uint32_t irq_status = 0;
9589bf5b
JI
1026 uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
1027 INTR_STATUS__PROGRAM_FAIL;
ce082596
JR
1028
1029 /* if it is a raw xfer, we want to disable ecc, and send
1030 * the spare area.
1031 * !raw_xfer - enable ecc
1032 * raw_xfer - transfer spare
1033 */
1034 setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1035
1036 /* copy buffer into DMA buffer */
1037 memcpy(denali->buf.buf, buf, mtd->writesize);
1038
345b1d3b 1039 if (raw_xfer) {
ce082596 1040 /* transfer the data to the spare area */
5bac3acf
C
1041 memcpy(denali->buf.buf + mtd->writesize,
1042 chip->oob_poi,
1043 mtd->oobsize);
ce082596
JR
1044 }
1045
84457949 1046 dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
ce082596
JR
1047
1048 clear_interrupts(denali);
5bac3acf 1049 denali_enable_dma(denali, true);
ce082596 1050
aadff49c 1051 denali_setup_dma(denali, DENALI_WRITE);
ce082596
JR
1052
1053 /* wait for operation to complete */
1054 irq_status = wait_for_irq(denali, irq_mask);
1055
345b1d3b 1056 if (irq_status == 0) {
84457949 1057 dev_err(denali->dev,
7cfffac0
CD
1058 "timeout on write_page (type = %d)\n",
1059 raw_xfer);
5bac3acf 1060 denali->status =
9589bf5b 1061 (irq_status & INTR_STATUS__PROGRAM_FAIL) ?
bdca6dae 1062 NAND_STATUS_FAIL : PASS;
ce082596
JR
1063 }
1064
5bac3acf 1065 denali_enable_dma(denali, false);
84457949 1066 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
ce082596
JR
1067}
1068
1069/* NAND core entry points */
1070
5bac3acf 1071/* this is the callback that the NAND core calls to write a page. Since
b292c341
CD
1072 * writing a page with ECC or without is similar, all the work is done
1073 * by write_page above.
1074 * */
5bac3acf 1075static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1076 const uint8_t *buf)
1077{
1078 /* for regular page writes, we let HW handle all the ECC
5bac3acf 1079 * data written to the device. */
ce082596
JR
1080 write_page(mtd, chip, buf, false);
1081}
1082
5bac3acf 1083/* This is the callback that the NAND core calls to write a page without ECC.
25985edc 1084 * raw access is similar to ECC page writes, so all the work is done in the
b292c341 1085 * write_page() function above.
ce082596 1086 */
5bac3acf 1087static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1088 const uint8_t *buf)
1089{
5bac3acf 1090 /* for raw page writes, we want to disable ECC and simply write
ce082596
JR
1091 whatever data is in the buffer. */
1092 write_page(mtd, chip, buf, true);
1093}
1094
5bac3acf 1095static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1096 int page)
1097{
5bac3acf 1098 return write_oob_data(mtd, chip->oob_poi, page);
ce082596
JR
1099}
1100
5bac3acf 1101static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1102 int page, int sndcmd)
1103{
1104 read_oob_data(mtd, chip->oob_poi, page);
1105
5bac3acf
C
1106 return 0; /* notify NAND core to send command to
1107 NAND device. */
ce082596
JR
1108}
1109
1110static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1111 uint8_t *buf, int page)
1112{
1113 struct denali_nand_info *denali = mtd_to_denali(mtd);
ce082596
JR
1114
1115 dma_addr_t addr = denali->buf.dma_buf;
1116 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1117
1118 uint32_t irq_status = 0;
9589bf5b
JI
1119 uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
1120 INTR_STATUS__ECC_ERR;
ce082596
JR
1121 bool check_erased_page = false;
1122
7d8a26fd 1123 if (page != denali->page) {
84457949 1124 dev_err(denali->dev, "IN %s: page %d is not"
7d8a26fd
CD
1125 " equal to denali->page %d, investigate!!",
1126 __func__, page, denali->page);
1127 BUG();
1128 }
1129
ce082596
JR
1130 setup_ecc_for_xfer(denali, true, false);
1131
aadff49c 1132 denali_enable_dma(denali, true);
84457949 1133 dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
ce082596
JR
1134
1135 clear_interrupts(denali);
aadff49c 1136 denali_setup_dma(denali, DENALI_READ);
ce082596
JR
1137
1138 /* wait for operation to complete */
1139 irq_status = wait_for_irq(denali, irq_mask);
1140
84457949 1141 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
ce082596
JR
1142
1143 memcpy(buf, denali->buf.buf, mtd->writesize);
5bac3acf 1144
8ae61ebd 1145 check_erased_page = handle_ecc(denali, buf, irq_status);
aadff49c 1146 denali_enable_dma(denali, false);
ce082596 1147
345b1d3b 1148 if (check_erased_page) {
ce082596
JR
1149 read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1150
1151 /* check ECC failures that may have occurred on erased pages */
345b1d3b 1152 if (check_erased_page) {
ce082596 1153 if (!is_erased(buf, denali->mtd.writesize))
ce082596 1154 denali->mtd.ecc_stats.failed++;
ce082596 1155 if (!is_erased(buf, denali->mtd.oobsize))
ce082596 1156 denali->mtd.ecc_stats.failed++;
5bac3acf 1157 }
ce082596
JR
1158 }
1159 return 0;
1160}
1161
1162static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1163 uint8_t *buf, int page)
1164{
1165 struct denali_nand_info *denali = mtd_to_denali(mtd);
ce082596
JR
1166
1167 dma_addr_t addr = denali->buf.dma_buf;
1168 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1169
1170 uint32_t irq_status = 0;
9589bf5b 1171 uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
5bac3acf 1172
7d8a26fd 1173 if (page != denali->page) {
84457949 1174 dev_err(denali->dev, "IN %s: page %d is not"
7d8a26fd
CD
1175 " equal to denali->page %d, investigate!!",
1176 __func__, page, denali->page);
1177 BUG();
1178 }
1179
ce082596 1180 setup_ecc_for_xfer(denali, false, true);
aadff49c 1181 denali_enable_dma(denali, true);
ce082596 1182
84457949 1183 dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
ce082596
JR
1184
1185 clear_interrupts(denali);
aadff49c 1186 denali_setup_dma(denali, DENALI_READ);
ce082596
JR
1187
1188 /* wait for operation to complete */
1189 irq_status = wait_for_irq(denali, irq_mask);
1190
84457949 1191 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
ce082596 1192
aadff49c 1193 denali_enable_dma(denali, false);
ce082596
JR
1194
1195 memcpy(buf, denali->buf.buf, mtd->writesize);
1196 memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1197
1198 return 0;
1199}
1200
1201static uint8_t denali_read_byte(struct mtd_info *mtd)
1202{
1203 struct denali_nand_info *denali = mtd_to_denali(mtd);
1204 uint8_t result = 0xff;
1205
1206 if (denali->buf.head < denali->buf.tail)
ce082596 1207 result = denali->buf.buf[denali->buf.head++];
ce082596 1208
ce082596
JR
1209 return result;
1210}
1211
1212static void denali_select_chip(struct mtd_info *mtd, int chip)
1213{
1214 struct denali_nand_info *denali = mtd_to_denali(mtd);
7cfffac0 1215
ce082596
JR
1216 spin_lock_irq(&denali->irq_lock);
1217 denali->flash_bank = chip;
1218 spin_unlock_irq(&denali->irq_lock);
1219}
1220
1221static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1222{
1223 struct denali_nand_info *denali = mtd_to_denali(mtd);
1224 int status = denali->status;
1225 denali->status = 0;
1226
ce082596
JR
1227 return status;
1228}
1229
1230static void denali_erase(struct mtd_info *mtd, int page)
1231{
1232 struct denali_nand_info *denali = mtd_to_denali(mtd);
1233
1234 uint32_t cmd = 0x0, irq_status = 0;
1235
ce082596 1236 /* clear interrupts */
5bac3acf 1237 clear_interrupts(denali);
ce082596
JR
1238
1239 /* setup page read request for access type */
1240 cmd = MODE_10 | BANK(denali->flash_bank) | page;
1241 index_addr(denali, (uint32_t)cmd, 0x1);
1242
1243 /* wait for erase to complete or failure to occur */
9589bf5b
JI
1244 irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
1245 INTR_STATUS__ERASE_FAIL);
ce082596 1246
9589bf5b 1247 denali->status = (irq_status & INTR_STATUS__ERASE_FAIL) ?
bdca6dae 1248 NAND_STATUS_FAIL : PASS;
ce082596
JR
1249}
1250
5bac3acf 1251static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
ce082596
JR
1252 int page)
1253{
1254 struct denali_nand_info *denali = mtd_to_denali(mtd);
ef41e1bb
CD
1255 uint32_t addr, id;
1256 int i;
ce082596 1257
345b1d3b 1258 switch (cmd) {
a99d1796
CD
1259 case NAND_CMD_PAGEPROG:
1260 break;
1261 case NAND_CMD_STATUS:
1262 read_status(denali);
1263 break;
1264 case NAND_CMD_READID:
42af8b58 1265 case NAND_CMD_PARAM:
a99d1796 1266 reset_buf(denali);
ef41e1bb
CD
1267 /*sometimes ManufactureId read from register is not right
1268 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1269 * So here we send READID cmd to NAND insteand
1270 * */
1271 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1272 index_addr(denali, (uint32_t)addr | 0, 0x90);
1273 index_addr(denali, (uint32_t)addr | 1, 0);
1274 for (i = 0; i < 5; i++) {
1275 index_addr_read_data(denali,
1276 (uint32_t)addr | 2,
1277 &id);
1278 write_byte_to_buf(denali, id);
a99d1796
CD
1279 }
1280 break;
1281 case NAND_CMD_READ0:
1282 case NAND_CMD_SEQIN:
1283 denali->page = page;
1284 break;
1285 case NAND_CMD_RESET:
1286 reset_bank(denali);
1287 break;
1288 case NAND_CMD_READOOB:
1289 /* TODO: Read OOB data */
1290 break;
1291 default:
1292 printk(KERN_ERR ": unsupported command"
1293 " received 0x%x\n", cmd);
1294 break;
ce082596
JR
1295 }
1296}
1297
1298/* stubs for ECC functions not used by the NAND core */
5bac3acf 1299static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
ce082596
JR
1300 uint8_t *ecc_code)
1301{
7cfffac0 1302 struct denali_nand_info *denali = mtd_to_denali(mtd);
84457949 1303 dev_err(denali->dev,
7cfffac0 1304 "denali_ecc_calculate called unexpectedly\n");
ce082596
JR
1305 BUG();
1306 return -EIO;
1307}
1308
5bac3acf 1309static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
ce082596
JR
1310 uint8_t *read_ecc, uint8_t *calc_ecc)
1311{
7cfffac0 1312 struct denali_nand_info *denali = mtd_to_denali(mtd);
84457949 1313 dev_err(denali->dev,
7cfffac0 1314 "denali_ecc_correct called unexpectedly\n");
ce082596
JR
1315 BUG();
1316 return -EIO;
1317}
1318
1319static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
1320{
7cfffac0 1321 struct denali_nand_info *denali = mtd_to_denali(mtd);
84457949 1322 dev_err(denali->dev,
7cfffac0 1323 "denali_ecc_hwctl called unexpectedly\n");
ce082596
JR
1324 BUG();
1325}
1326/* end NAND core entry points */
1327
1328/* Initialization code to bring the device up to a known good state */
1329static void denali_hw_init(struct denali_nand_info *denali)
1330{
db9a3210
CD
1331 /* tell driver how many bit controller will skip before
1332 * writing ECC code in OOB, this register may be already
1333 * set by firmware. So we read this value out.
1334 * if this value is 0, just let it be.
1335 * */
1336 denali->bbtskipbytes = ioread32(denali->flash_reg +
1337 SPARE_AREA_SKIP_BYTES);
eda936ef 1338 denali_nand_reset(denali);
24c3fa36
CD
1339 iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1340 iowrite32(CHIP_EN_DONT_CARE__FLAG,
bdca6dae 1341 denali->flash_reg + CHIP_ENABLE_DONT_CARE);
ce082596 1342
24c3fa36 1343 iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
ce082596
JR
1344
1345 /* Should set value for these registers when init */
24c3fa36
CD
1346 iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1347 iowrite32(1, denali->flash_reg + ECC_ENABLE);
5eab6aaa
CD
1348 denali_nand_timing_set(denali);
1349 denali_irq_init(denali);
ce082596
JR
1350}
1351
db9a3210
CD
1352/* Althogh controller spec said SLC ECC is forceb to be 4bit,
1353 * but denali controller in MRST only support 15bit and 8bit ECC
1354 * correction
1355 * */
1356#define ECC_8BITS 14
1357static struct nand_ecclayout nand_8bit_oob = {
1358 .eccbytes = 14,
ce082596
JR
1359};
1360
db9a3210
CD
1361#define ECC_15BITS 26
1362static struct nand_ecclayout nand_15bit_oob = {
1363 .eccbytes = 26,
ce082596
JR
1364};
1365
1366static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1367static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1368
1369static struct nand_bbt_descr bbt_main_descr = {
1370 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1371 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1372 .offs = 8,
1373 .len = 4,
1374 .veroffs = 12,
1375 .maxblocks = 4,
1376 .pattern = bbt_pattern,
1377};
1378
1379static struct nand_bbt_descr bbt_mirror_descr = {
1380 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1381 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1382 .offs = 8,
1383 .len = 4,
1384 .veroffs = 12,
1385 .maxblocks = 4,
1386 .pattern = mirror_pattern,
1387};
1388
421f91d2 1389/* initialize driver data structures */
ce082596
JR
1390void denali_drv_init(struct denali_nand_info *denali)
1391{
1392 denali->idx = 0;
1393
1394 /* setup interrupt handler */
5bac3acf 1395 /* the completion object will be used to notify
ce082596
JR
1396 * the callee that the interrupt is done */
1397 init_completion(&denali->complete);
1398
1399 /* the spinlock will be used to synchronize the ISR
5bac3acf 1400 * with any element that might be access shared
ce082596
JR
1401 * data (interrupt status) */
1402 spin_lock_init(&denali->irq_lock);
1403
1404 /* indicate that MTD has not selected a valid bank yet */
1405 denali->flash_bank = CHIP_SELECT_INVALID;
1406
1407 /* initialize our irq_status variable to indicate no interrupts */
1408 denali->irq_status = 0;
1409}
1410
1411/* driver entry point */
1412static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
1413{
1414 int ret = -ENODEV;
1415 resource_size_t csr_base, mem_base;
1416 unsigned long csr_len, mem_len;
1417 struct denali_nand_info *denali;
1418
ce082596
JR
1419 denali = kzalloc(sizeof(*denali), GFP_KERNEL);
1420 if (!denali)
1421 return -ENOMEM;
1422
1423 ret = pci_enable_device(dev);
1424 if (ret) {
1425 printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
5c0eb900 1426 goto failed_alloc_memery;
ce082596
JR
1427 }
1428
1429 if (id->driver_data == INTEL_CE4100) {
5bac3acf
C
1430 /* Due to a silicon limitation, we can only support
1431 * ONFI timing mode 1 and below.
1432 */
345b1d3b 1433 if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
bdca6dae
CD
1434 printk(KERN_ERR "Intel CE4100 only supports"
1435 " ONFI timing mode 1 or below\n");
ce082596 1436 ret = -EINVAL;
5c0eb900 1437 goto failed_enable_dev;
ce082596
JR
1438 }
1439 denali->platform = INTEL_CE4100;
1440 mem_base = pci_resource_start(dev, 0);
1441 mem_len = pci_resource_len(dev, 1);
1442 csr_base = pci_resource_start(dev, 1);
1443 csr_len = pci_resource_len(dev, 1);
1444 } else {
1445 denali->platform = INTEL_MRST;
1446 csr_base = pci_resource_start(dev, 0);
5c0eb900 1447 csr_len = pci_resource_len(dev, 0);
ce082596
JR
1448 mem_base = pci_resource_start(dev, 1);
1449 mem_len = pci_resource_len(dev, 1);
1450 if (!mem_len) {
1451 mem_base = csr_base + csr_len;
1452 mem_len = csr_len;
ce082596
JR
1453 }
1454 }
1455
1456 /* Is 32-bit DMA supported? */
84457949 1457 ret = dma_set_mask(&dev->dev, DMA_BIT_MASK(32));
345b1d3b 1458 if (ret) {
ce082596 1459 printk(KERN_ERR "Spectra: no usable DMA configuration\n");
5c0eb900 1460 goto failed_enable_dev;
ce082596 1461 }
84457949
JI
1462 denali->buf.dma_buf = dma_map_single(&dev->dev, denali->buf.buf,
1463 DENALI_BUF_SIZE,
1464 DMA_BIDIRECTIONAL);
ce082596 1465
84457949 1466 if (dma_mapping_error(&dev->dev, denali->buf.dma_buf)) {
7cfffac0 1467 dev_err(&dev->dev, "Spectra: failed to map DMA buffer\n");
5c0eb900 1468 goto failed_enable_dev;
ce082596
JR
1469 }
1470
1471 pci_set_master(dev);
84457949 1472 denali->dev = &dev->dev;
5eab6aaa 1473 denali->mtd.dev.parent = &dev->dev;
ce082596
JR
1474
1475 ret = pci_request_regions(dev, DENALI_NAND_NAME);
1476 if (ret) {
1477 printk(KERN_ERR "Spectra: Unable to request memory regions\n");
5c0eb900 1478 goto failed_dma_map;
ce082596
JR
1479 }
1480
1481 denali->flash_reg = ioremap_nocache(csr_base, csr_len);
1482 if (!denali->flash_reg) {
1483 printk(KERN_ERR "Spectra: Unable to remap memory region\n");
1484 ret = -ENOMEM;
5c0eb900 1485 goto failed_req_regions;
ce082596 1486 }
ce082596
JR
1487
1488 denali->flash_mem = ioremap_nocache(mem_base, mem_len);
1489 if (!denali->flash_mem) {
1490 printk(KERN_ERR "Spectra: ioremap_nocache failed!");
ce082596 1491 ret = -ENOMEM;
5c0eb900 1492 goto failed_remap_reg;
ce082596
JR
1493 }
1494
ce082596
JR
1495 denali_hw_init(denali);
1496 denali_drv_init(denali);
1497
5eab6aaa
CD
1498 /* denali_isr register is done after all the hardware
1499 * initilization is finished*/
ce082596
JR
1500 if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
1501 DENALI_NAND_NAME, denali)) {
1502 printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
1503 ret = -ENODEV;
5c0eb900 1504 goto failed_remap_mem;
ce082596
JR
1505 }
1506
1507 /* now that our ISR is registered, we can enable interrupts */
eda936ef 1508 denali_set_intr_modes(denali, true);
ce082596
JR
1509
1510 pci_set_drvdata(dev, denali);
1511
5eab6aaa 1512 denali->mtd.name = "denali-nand";
ce082596
JR
1513 denali->mtd.owner = THIS_MODULE;
1514 denali->mtd.priv = &denali->nand;
1515
1516 /* register the driver with the NAND core subsystem */
1517 denali->nand.select_chip = denali_select_chip;
1518 denali->nand.cmdfunc = denali_cmdfunc;
1519 denali->nand.read_byte = denali_read_byte;
1520 denali->nand.waitfunc = denali_waitfunc;
1521
5bac3acf 1522 /* scan for NAND devices attached to the controller
ce082596 1523 * this is the first stage in a two step process to register
5bac3acf 1524 * with the nand subsystem */
345b1d3b 1525 if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) {
ce082596 1526 ret = -ENXIO;
5c0eb900 1527 goto failed_req_irq;
ce082596 1528 }
5bac3acf 1529
66406524
CD
1530 /* MTD supported page sizes vary by kernel. We validate our
1531 * kernel supports the device here.
1532 */
1533 if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
1534 ret = -ENODEV;
1535 printk(KERN_ERR "Spectra: device size not supported by this "
1536 "version of MTD.");
5c0eb900 1537 goto failed_req_irq;
66406524
CD
1538 }
1539
08b9ab99
CD
1540 /* support for multi nand
1541 * MTD known nothing about multi nand,
1542 * so we should tell it the real pagesize
1543 * and anything necessery
1544 */
1545 denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1546 denali->nand.chipsize <<= (denali->devnum - 1);
1547 denali->nand.page_shift += (denali->devnum - 1);
1548 denali->nand.pagemask = (denali->nand.chipsize >>
1549 denali->nand.page_shift) - 1;
1550 denali->nand.bbt_erase_shift += (denali->devnum - 1);
1551 denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1552 denali->nand.chip_shift += (denali->devnum - 1);
1553 denali->mtd.writesize <<= (denali->devnum - 1);
1554 denali->mtd.oobsize <<= (denali->devnum - 1);
1555 denali->mtd.erasesize <<= (denali->devnum - 1);
1556 denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
1557 denali->bbtskipbytes *= denali->devnum;
1558
5bac3acf
C
1559 /* second stage of the NAND scan
1560 * this stage requires information regarding ECC and
1561 * bad block management. */
ce082596
JR
1562
1563 /* Bad block management */
1564 denali->nand.bbt_td = &bbt_main_descr;
1565 denali->nand.bbt_md = &bbt_mirror_descr;
1566
1567 /* skip the scan for now until we have OOB read and write support */
1568 denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
1569 denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1570
db9a3210
CD
1571 /* Denali Controller only support 15bit and 8bit ECC in MRST,
1572 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1573 * SLC if possible.
1574 * */
1575 if (denali->nand.cellinfo & 0xc &&
1576 (denali->mtd.oobsize > (denali->bbtskipbytes +
1577 ECC_15BITS * (denali->mtd.writesize /
1578 ECC_SECTOR_SIZE)))) {
1579 /* if MLC OOB size is large enough, use 15bit ECC*/
1580 denali->nand.ecc.layout = &nand_15bit_oob;
1581 denali->nand.ecc.bytes = ECC_15BITS;
24c3fa36 1582 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
db9a3210
CD
1583 } else if (denali->mtd.oobsize < (denali->bbtskipbytes +
1584 ECC_8BITS * (denali->mtd.writesize /
1585 ECC_SECTOR_SIZE))) {
1586 printk(KERN_ERR "Your NAND chip OOB is not large enough to"
1587 " contain 8bit ECC correction codes");
5c0eb900 1588 goto failed_req_irq;
db9a3210
CD
1589 } else {
1590 denali->nand.ecc.layout = &nand_8bit_oob;
1591 denali->nand.ecc.bytes = ECC_8BITS;
24c3fa36 1592 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
ce082596
JR
1593 }
1594
08b9ab99 1595 denali->nand.ecc.bytes *= denali->devnum;
db9a3210
CD
1596 denali->nand.ecc.layout->eccbytes *=
1597 denali->mtd.writesize / ECC_SECTOR_SIZE;
1598 denali->nand.ecc.layout->oobfree[0].offset =
1599 denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1600 denali->nand.ecc.layout->oobfree[0].length =
1601 denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
1602 denali->bbtskipbytes;
1603
66406524
CD
1604 /* Let driver know the total blocks number and
1605 * how many blocks contained by each nand chip.
1606 * blksperchip will help driver to know how many
1607 * blocks is taken by FW.
1608 * */
1609 denali->totalblks = denali->mtd.size >>
1610 denali->nand.phys_erase_shift;
1611 denali->blksperchip = denali->totalblks / denali->nand.numchips;
1612
5bac3acf
C
1613 /* These functions are required by the NAND core framework, otherwise,
1614 * the NAND core will assert. However, we don't need them, so we'll stub
1615 * them out. */
ce082596
JR
1616 denali->nand.ecc.calculate = denali_ecc_calculate;
1617 denali->nand.ecc.correct = denali_ecc_correct;
1618 denali->nand.ecc.hwctl = denali_ecc_hwctl;
1619
1620 /* override the default read operations */
08b9ab99 1621 denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
ce082596
JR
1622 denali->nand.ecc.read_page = denali_read_page;
1623 denali->nand.ecc.read_page_raw = denali_read_page_raw;
1624 denali->nand.ecc.write_page = denali_write_page;
1625 denali->nand.ecc.write_page_raw = denali_write_page_raw;
1626 denali->nand.ecc.read_oob = denali_read_oob;
1627 denali->nand.ecc.write_oob = denali_write_oob;
1628 denali->nand.erase_cmd = denali_erase;
1629
345b1d3b 1630 if (nand_scan_tail(&denali->mtd)) {
ce082596 1631 ret = -ENXIO;
5c0eb900 1632 goto failed_req_irq;
ce082596
JR
1633 }
1634
1635 ret = add_mtd_device(&denali->mtd);
1636 if (ret) {
7cfffac0
CD
1637 dev_err(&dev->dev, "Spectra: Failed to register MTD: %d\n",
1638 ret);
5c0eb900 1639 goto failed_req_irq;
ce082596
JR
1640 }
1641 return 0;
1642
5c0eb900 1643failed_req_irq:
ce082596 1644 denali_irq_cleanup(dev->irq, denali);
5c0eb900 1645failed_remap_mem:
ce082596 1646 iounmap(denali->flash_mem);
5c0eb900
CD
1647failed_remap_reg:
1648 iounmap(denali->flash_reg);
1649failed_req_regions:
ce082596 1650 pci_release_regions(dev);
5c0eb900 1651failed_dma_map:
84457949
JI
1652 dma_unmap_single(&dev->dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1653 DMA_BIDIRECTIONAL);
5c0eb900
CD
1654failed_enable_dev:
1655 pci_disable_device(dev);
1656failed_alloc_memery:
ce082596
JR
1657 kfree(denali);
1658 return ret;
1659}
1660
1661/* driver exit point */
1662static void denali_pci_remove(struct pci_dev *dev)
1663{
1664 struct denali_nand_info *denali = pci_get_drvdata(dev);
1665
ce082596
JR
1666 nand_release(&denali->mtd);
1667 del_mtd_device(&denali->mtd);
1668
1669 denali_irq_cleanup(dev->irq, denali);
1670
1671 iounmap(denali->flash_reg);
1672 iounmap(denali->flash_mem);
1673 pci_release_regions(dev);
1674 pci_disable_device(dev);
84457949
JI
1675 dma_unmap_single(&dev->dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1676 DMA_BIDIRECTIONAL);
ce082596
JR
1677 pci_set_drvdata(dev, NULL);
1678 kfree(denali);
1679}
1680
1681MODULE_DEVICE_TABLE(pci, denali_pci_ids);
1682
1683static struct pci_driver denali_pci_driver = {
1684 .name = DENALI_NAND_NAME,
1685 .id_table = denali_pci_ids,
1686 .probe = denali_pci_probe,
1687 .remove = denali_pci_remove,
1688};
1689
1690static int __devinit denali_init(void)
1691{
9b5705a2 1692 printk(KERN_INFO "Spectra MTD driver\n");
ce082596
JR
1693 return pci_register_driver(&denali_pci_driver);
1694}
1695
1696/* Free memory */
1697static void __devexit denali_exit(void)
1698{
1699 pci_unregister_driver(&denali_pci_driver);
1700}
1701
1702module_init(denali_init);
1703module_exit(denali_exit);