]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/mtd/nand/fsmc_nand.c
KVM: arm64: vgic-v3: Log which GICv3 system registers are trapped
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / nand / fsmc_nand.c
CommitLineData
6c009ab8
LW
1/*
2 * drivers/mtd/nand/fsmc_nand.c
3 *
4 * ST Microelectronics
5 * Flexible Static Memory Controller (FSMC)
6 * Driver for NAND portions
7 *
8 * Copyright © 2010 ST Microelectronics
9 * Vipin Kumar <vipin.kumar@st.com>
10 * Ashish Priyadarshi
11 *
12 * Based on drivers/mtd/nand/nomadik_nand.c
13 *
14 * This file is licensed under the terms of the GNU General Public
15 * License version 2. This program is licensed "as is" without any
16 * warranty of any kind, whether express or implied.
17 */
18
19#include <linux/clk.h>
4774fb0a
VK
20#include <linux/completion.h>
21#include <linux/dmaengine.h>
22#include <linux/dma-direction.h>
23#include <linux/dma-mapping.h>
6c009ab8
LW
24#include <linux/err.h>
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/resource.h>
28#include <linux/sched.h>
29#include <linux/types.h>
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/nand.h>
32#include <linux/mtd/nand_ecc.h>
33#include <linux/platform_device.h>
eea62819 34#include <linux/of.h>
6c009ab8
LW
35#include <linux/mtd/partitions.h>
36#include <linux/io.h>
37#include <linux/slab.h>
38#include <linux/mtd/fsmc.h>
593cd871 39#include <linux/amba/bus.h>
6c009ab8
LW
40#include <mtd/mtd-abi.h>
41
22b46957
BB
42static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
43 struct mtd_oob_region *oobregion)
44{
45 struct nand_chip *chip = mtd_to_nand(mtd);
46
47 if (section >= chip->ecc.steps)
48 return -ERANGE;
49
50 oobregion->offset = (section * 16) + 2;
51 oobregion->length = 3;
52
53 return 0;
54}
55
56static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
57 struct mtd_oob_region *oobregion)
58{
59 struct nand_chip *chip = mtd_to_nand(mtd);
60
61 if (section >= chip->ecc.steps)
62 return -ERANGE;
63
64 oobregion->offset = (section * 16) + 8;
65
66 if (section < chip->ecc.steps - 1)
67 oobregion->length = 8;
68 else
69 oobregion->length = mtd->oobsize - oobregion->offset;
70
71 return 0;
72}
73
74static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
75 .ecc = fsmc_ecc1_ooblayout_ecc,
76 .free = fsmc_ecc1_ooblayout_free,
77};
78
04a123a9
BB
79/*
80 * ECC placement definitions in oobfree type format.
81 * There are 13 bytes of ecc for every 512 byte block and it has to be read
82 * consecutively and immediately after the 512 byte data block for hardware to
83 * generate the error bit offsets in 512 byte data.
84 */
22b46957
BB
85static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
86 struct mtd_oob_region *oobregion)
87{
88 struct nand_chip *chip = mtd_to_nand(mtd);
89
90 if (section >= chip->ecc.steps)
91 return -ERANGE;
92
93 oobregion->length = chip->ecc.bytes;
94
95 if (!section && mtd->writesize <= 512)
96 oobregion->offset = 0;
97 else
98 oobregion->offset = (section * 16) + 2;
99
100 return 0;
101}
102
103static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
104 struct mtd_oob_region *oobregion)
105{
106 struct nand_chip *chip = mtd_to_nand(mtd);
107
108 if (section >= chip->ecc.steps)
109 return -ERANGE;
110
111 oobregion->offset = (section * 16) + 15;
112
113 if (section < chip->ecc.steps - 1)
114 oobregion->length = 3;
115 else
116 oobregion->length = mtd->oobsize - oobregion->offset;
117
118 return 0;
119}
120
121static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
122 .ecc = fsmc_ecc4_ooblayout_ecc,
123 .free = fsmc_ecc4_ooblayout_free,
124};
125
6c009ab8 126/**
593cd871 127 * struct fsmc_nand_data - structure for FSMC NAND device state
6c009ab8 128 *
593cd871 129 * @pid: Part ID on the AMBA PrimeCell format
6c009ab8
LW
130 * @mtd: MTD info for a NAND flash.
131 * @nand: Chip related info for a NAND flash.
71470324
VK
132 * @partitions: Partition info for a NAND Flash.
133 * @nr_partitions: Total number of partition of a NAND flash.
6c009ab8 134 *
6c009ab8
LW
135 * @bank: Bank number for probed device.
136 * @clk: Clock structure for FSMC.
137 *
4774fb0a
VK
138 * @read_dma_chan: DMA channel for read access
139 * @write_dma_chan: DMA channel for write access to NAND
140 * @dma_access_complete: Completion structure
141 *
142 * @data_pa: NAND Physical port for Data.
6c009ab8
LW
143 * @data_va: NAND port for Data.
144 * @cmd_va: NAND port for Command.
145 * @addr_va: NAND port for Address.
146 * @regs_va: FSMC regs base address.
147 */
148struct fsmc_nand_data {
593cd871 149 u32 pid;
6c009ab8 150 struct nand_chip nand;
71470324
VK
151 struct mtd_partition *partitions;
152 unsigned int nr_partitions;
6c009ab8 153
6c009ab8 154 unsigned int bank;
712c4add 155 struct device *dev;
4774fb0a 156 enum access_mode mode;
6c009ab8
LW
157 struct clk *clk;
158
4774fb0a
VK
159 /* DMA related objects */
160 struct dma_chan *read_dma_chan;
161 struct dma_chan *write_dma_chan;
162 struct completion dma_access_complete;
163
e2f6bce8
VK
164 struct fsmc_nand_timings *dev_timings;
165
4774fb0a 166 dma_addr_t data_pa;
6c009ab8
LW
167 void __iomem *data_va;
168 void __iomem *cmd_va;
169 void __iomem *addr_va;
170 void __iomem *regs_va;
171
172 void (*select_chip)(uint32_t bank, uint32_t busw);
173};
174
277af429
BB
175static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
176{
bdf3a555 177 return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
277af429
BB
178}
179
6c009ab8
LW
180/* Assert CS signal based on chipnr */
181static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
182{
4bd4ebcc 183 struct nand_chip *chip = mtd_to_nand(mtd);
6c009ab8
LW
184 struct fsmc_nand_data *host;
185
277af429 186 host = mtd_to_fsmc(mtd);
6c009ab8
LW
187
188 switch (chipnr) {
189 case -1:
190 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
191 break;
192 case 0:
193 case 1:
194 case 2:
195 case 3:
196 if (host->select_chip)
197 host->select_chip(chipnr,
198 chip->options & NAND_BUSWIDTH_16);
199 break;
200
201 default:
6efadcf9 202 dev_err(host->dev, "unsupported chip-select %d\n", chipnr);
6c009ab8
LW
203 }
204}
205
206/*
207 * fsmc_cmd_ctrl - For facilitaing Hardware access
208 * This routine allows hardware specific access to control-lines(ALE,CLE)
209 */
210static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
211{
4bd4ebcc 212 struct nand_chip *this = mtd_to_nand(mtd);
277af429 213 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
605add7d 214 void __iomem *regs = host->regs_va;
6c009ab8
LW
215 unsigned int bank = host->bank;
216
217 if (ctrl & NAND_CTRL_CHANGE) {
2a5dbead
VK
218 u32 pc;
219
6c009ab8 220 if (ctrl & NAND_CLE) {
2a5dbead
VK
221 this->IO_ADDR_R = host->cmd_va;
222 this->IO_ADDR_W = host->cmd_va;
6c009ab8 223 } else if (ctrl & NAND_ALE) {
2a5dbead
VK
224 this->IO_ADDR_R = host->addr_va;
225 this->IO_ADDR_W = host->addr_va;
6c009ab8 226 } else {
2a5dbead
VK
227 this->IO_ADDR_R = host->data_va;
228 this->IO_ADDR_W = host->data_va;
6c009ab8
LW
229 }
230
2a5dbead
VK
231 pc = readl(FSMC_NAND_REG(regs, bank, PC));
232 if (ctrl & NAND_NCE)
233 pc |= FSMC_ENABLE;
234 else
235 pc &= ~FSMC_ENABLE;
a4742d51 236 writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
6c009ab8
LW
237 }
238
239 mb();
240
241 if (cmd != NAND_CMD_NONE)
a4742d51 242 writeb_relaxed(cmd, this->IO_ADDR_W);
6c009ab8
LW
243}
244
245/*
246 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
247 *
248 * This routine initializes timing parameters related to NAND memory access in
249 * FSMC registers
250 */
2a5dbead 251static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
e2f6bce8 252 uint32_t busw, struct fsmc_nand_timings *timings)
6c009ab8
LW
253{
254 uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
e2f6bce8
VK
255 uint32_t tclr, tar, thiz, thold, twait, tset;
256 struct fsmc_nand_timings *tims;
257 struct fsmc_nand_timings default_timings = {
258 .tclr = FSMC_TCLR_1,
259 .tar = FSMC_TAR_1,
260 .thiz = FSMC_THIZ_1,
261 .thold = FSMC_THOLD_4,
262 .twait = FSMC_TWAIT_6,
263 .tset = FSMC_TSET_0,
264 };
265
266 if (timings)
267 tims = timings;
268 else
269 tims = &default_timings;
270
271 tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
272 tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
273 thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
274 thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
275 twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
276 tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
6c009ab8
LW
277
278 if (busw)
a4742d51
VK
279 writel_relaxed(value | FSMC_DEVWID_16,
280 FSMC_NAND_REG(regs, bank, PC));
6c009ab8 281 else
a4742d51
VK
282 writel_relaxed(value | FSMC_DEVWID_8,
283 FSMC_NAND_REG(regs, bank, PC));
6c009ab8 284
a4742d51 285 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
2a5dbead 286 FSMC_NAND_REG(regs, bank, PC));
a4742d51
VK
287 writel_relaxed(thiz | thold | twait | tset,
288 FSMC_NAND_REG(regs, bank, COMM));
289 writel_relaxed(thiz | thold | twait | tset,
290 FSMC_NAND_REG(regs, bank, ATTRIB));
6c009ab8
LW
291}
292
293/*
294 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
295 */
296static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
297{
277af429 298 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
2a5dbead 299 void __iomem *regs = host->regs_va;
6c009ab8
LW
300 uint32_t bank = host->bank;
301
a4742d51 302 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
2a5dbead 303 FSMC_NAND_REG(regs, bank, PC));
a4742d51 304 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
2a5dbead 305 FSMC_NAND_REG(regs, bank, PC));
a4742d51 306 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
2a5dbead 307 FSMC_NAND_REG(regs, bank, PC));
6c009ab8
LW
308}
309
310/*
311 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
25985edc 312 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
6c009ab8
LW
313 * max of 8-bits)
314 */
315static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
316 uint8_t *ecc)
317{
277af429 318 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
2a5dbead 319 void __iomem *regs = host->regs_va;
6c009ab8
LW
320 uint32_t bank = host->bank;
321 uint32_t ecc_tmp;
322 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
323
324 do {
a4742d51 325 if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
6c009ab8
LW
326 break;
327 else
328 cond_resched();
329 } while (!time_after_eq(jiffies, deadline));
330
712c4add
VK
331 if (time_after_eq(jiffies, deadline)) {
332 dev_err(host->dev, "calculate ecc timed out\n");
333 return -ETIMEDOUT;
334 }
335
a4742d51 336 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
6c009ab8
LW
337 ecc[0] = (uint8_t) (ecc_tmp >> 0);
338 ecc[1] = (uint8_t) (ecc_tmp >> 8);
339 ecc[2] = (uint8_t) (ecc_tmp >> 16);
340 ecc[3] = (uint8_t) (ecc_tmp >> 24);
341
a4742d51 342 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
6c009ab8
LW
343 ecc[4] = (uint8_t) (ecc_tmp >> 0);
344 ecc[5] = (uint8_t) (ecc_tmp >> 8);
345 ecc[6] = (uint8_t) (ecc_tmp >> 16);
346 ecc[7] = (uint8_t) (ecc_tmp >> 24);
347
a4742d51 348 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
6c009ab8
LW
349 ecc[8] = (uint8_t) (ecc_tmp >> 0);
350 ecc[9] = (uint8_t) (ecc_tmp >> 8);
351 ecc[10] = (uint8_t) (ecc_tmp >> 16);
352 ecc[11] = (uint8_t) (ecc_tmp >> 24);
353
a4742d51 354 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
6c009ab8
LW
355 ecc[12] = (uint8_t) (ecc_tmp >> 16);
356
357 return 0;
358}
359
360/*
361 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
25985edc 362 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
6c009ab8
LW
363 * max of 1-bit)
364 */
365static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
366 uint8_t *ecc)
367{
277af429 368 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
2a5dbead 369 void __iomem *regs = host->regs_va;
6c009ab8
LW
370 uint32_t bank = host->bank;
371 uint32_t ecc_tmp;
372
a4742d51 373 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
6c009ab8
LW
374 ecc[0] = (uint8_t) (ecc_tmp >> 0);
375 ecc[1] = (uint8_t) (ecc_tmp >> 8);
376 ecc[2] = (uint8_t) (ecc_tmp >> 16);
377
378 return 0;
379}
380
519300cf
VK
381/* Count the number of 0's in buff upto a max of max_bits */
382static int count_written_bits(uint8_t *buff, int size, int max_bits)
383{
384 int k, written_bits = 0;
385
386 for (k = 0; k < size; k++) {
387 written_bits += hweight8(~buff[k]);
388 if (written_bits > max_bits)
389 break;
390 }
391
392 return written_bits;
393}
394
4774fb0a
VK
395static void dma_complete(void *param)
396{
397 struct fsmc_nand_data *host = param;
398
399 complete(&host->dma_access_complete);
400}
401
402static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
403 enum dma_data_direction direction)
404{
405 struct dma_chan *chan;
406 struct dma_device *dma_dev;
407 struct dma_async_tx_descriptor *tx;
408 dma_addr_t dma_dst, dma_src, dma_addr;
409 dma_cookie_t cookie;
410 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
411 int ret;
818a45b1 412 unsigned long time_left;
4774fb0a
VK
413
414 if (direction == DMA_TO_DEVICE)
415 chan = host->write_dma_chan;
416 else if (direction == DMA_FROM_DEVICE)
417 chan = host->read_dma_chan;
418 else
419 return -EINVAL;
420
421 dma_dev = chan->device;
422 dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
423
424 if (direction == DMA_TO_DEVICE) {
425 dma_src = dma_addr;
426 dma_dst = host->data_pa;
4774fb0a
VK
427 } else {
428 dma_src = host->data_pa;
429 dma_dst = dma_addr;
4774fb0a
VK
430 }
431
432 tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
433 len, flags);
4774fb0a
VK
434 if (!tx) {
435 dev_err(host->dev, "device_prep_dma_memcpy error\n");
d1806a5c
BZ
436 ret = -EIO;
437 goto unmap_dma;
4774fb0a
VK
438 }
439
440 tx->callback = dma_complete;
441 tx->callback_param = host;
442 cookie = tx->tx_submit(tx);
443
444 ret = dma_submit_error(cookie);
445 if (ret) {
446 dev_err(host->dev, "dma_submit_error %d\n", cookie);
d1806a5c 447 goto unmap_dma;
4774fb0a
VK
448 }
449
450 dma_async_issue_pending(chan);
451
818a45b1 452 time_left =
928aa2ae 453 wait_for_completion_timeout(&host->dma_access_complete,
4774fb0a 454 msecs_to_jiffies(3000));
818a45b1 455 if (time_left == 0) {
b177ea34 456 dmaengine_terminate_all(chan);
4774fb0a 457 dev_err(host->dev, "wait_for_completion_timeout\n");
0bda3e19 458 ret = -ETIMEDOUT;
d1806a5c 459 goto unmap_dma;
4774fb0a
VK
460 }
461
d1806a5c
BZ
462 ret = 0;
463
464unmap_dma:
465 dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
466
467 return ret;
4774fb0a
VK
468}
469
604e7544
VK
470/*
471 * fsmc_write_buf - write buffer to chip
472 * @mtd: MTD device structure
473 * @buf: data buffer
474 * @len: number of bytes to write
475 */
476static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
477{
478 int i;
4bd4ebcc 479 struct nand_chip *chip = mtd_to_nand(mtd);
604e7544
VK
480
481 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
482 IS_ALIGNED(len, sizeof(uint32_t))) {
483 uint32_t *p = (uint32_t *)buf;
484 len = len >> 2;
485 for (i = 0; i < len; i++)
a4742d51 486 writel_relaxed(p[i], chip->IO_ADDR_W);
604e7544
VK
487 } else {
488 for (i = 0; i < len; i++)
a4742d51 489 writeb_relaxed(buf[i], chip->IO_ADDR_W);
604e7544
VK
490 }
491}
492
493/*
494 * fsmc_read_buf - read chip data into buffer
495 * @mtd: MTD device structure
496 * @buf: buffer to store date
497 * @len: number of bytes to read
498 */
499static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
500{
501 int i;
4bd4ebcc 502 struct nand_chip *chip = mtd_to_nand(mtd);
604e7544
VK
503
504 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
505 IS_ALIGNED(len, sizeof(uint32_t))) {
506 uint32_t *p = (uint32_t *)buf;
507 len = len >> 2;
508 for (i = 0; i < len; i++)
a4742d51 509 p[i] = readl_relaxed(chip->IO_ADDR_R);
604e7544
VK
510 } else {
511 for (i = 0; i < len; i++)
a4742d51 512 buf[i] = readb_relaxed(chip->IO_ADDR_R);
604e7544
VK
513 }
514}
515
4774fb0a
VK
516/*
517 * fsmc_read_buf_dma - read chip data into buffer
518 * @mtd: MTD device structure
519 * @buf: buffer to store date
520 * @len: number of bytes to read
521 */
522static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
523{
277af429 524 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
4774fb0a 525
4774fb0a
VK
526 dma_xfer(host, buf, len, DMA_FROM_DEVICE);
527}
528
529/*
530 * fsmc_write_buf_dma - write buffer to chip
531 * @mtd: MTD device structure
532 * @buf: data buffer
533 * @len: number of bytes to write
534 */
535static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
536 int len)
537{
277af429 538 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
4774fb0a 539
4774fb0a
VK
540 dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
541}
542
6c009ab8
LW
543/*
544 * fsmc_read_page_hwecc
545 * @mtd: mtd info structure
546 * @chip: nand chip info structure
547 * @buf: buffer to store read data
1fbb938d 548 * @oob_required: caller expects OOB data read to chip->oob_poi
6c009ab8
LW
549 * @page: page number to read
550 *
25985edc 551 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
6c009ab8
LW
552 * performed in a strict sequence as follows:
553 * data(512 byte) -> ecc(13 byte)
25985edc 554 * After this read, fsmc hardware generates and reports error data bits(up to a
6c009ab8
LW
555 * max of 8 bits)
556 */
557static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 558 uint8_t *buf, int oob_required, int page)
6c009ab8 559{
6c009ab8
LW
560 int i, j, s, stat, eccsize = chip->ecc.size;
561 int eccbytes = chip->ecc.bytes;
562 int eccsteps = chip->ecc.steps;
563 uint8_t *p = buf;
564 uint8_t *ecc_calc = chip->buffers->ecccalc;
565 uint8_t *ecc_code = chip->buffers->ecccode;
566 int off, len, group = 0;
567 /*
568 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
569 * end up reading 14 bytes (7 words) from oob. The local array is
570 * to maintain word alignment
571 */
572 uint16_t ecc_oob[7];
573 uint8_t *oob = (uint8_t *)&ecc_oob[0];
3f91e94f 574 unsigned int max_bitflips = 0;
6c009ab8
LW
575
576 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
6c009ab8
LW
577 chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
578 chip->ecc.hwctl(mtd, NAND_ECC_READ);
579 chip->read_buf(mtd, p, eccsize);
580
581 for (j = 0; j < eccbytes;) {
04a123a9
BB
582 struct mtd_oob_region oobregion;
583 int ret;
584
585 ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
586 if (ret)
587 return ret;
588
589 off = oobregion.offset;
590 len = oobregion.length;
6c009ab8
LW
591
592 /*
4cbe1bf0
VK
593 * length is intentionally kept a higher multiple of 2
594 * to read at least 13 bytes even in case of 16 bit NAND
595 * devices
596 */
aea686b4
VK
597 if (chip->options & NAND_BUSWIDTH_16)
598 len = roundup(len, 2);
599
6c009ab8
LW
600 chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
601 chip->read_buf(mtd, oob + j, len);
602 j += len;
603 }
604
519300cf 605 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
6c009ab8
LW
606 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
607
608 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 609 if (stat < 0) {
6c009ab8 610 mtd->ecc_stats.failed++;
3f91e94f 611 } else {
6c009ab8 612 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
613 max_bitflips = max_t(unsigned int, max_bitflips, stat);
614 }
6c009ab8
LW
615 }
616
3f91e94f 617 return max_bitflips;
6c009ab8
LW
618}
619
620/*
753e0139 621 * fsmc_bch8_correct_data
6c009ab8
LW
622 * @mtd: mtd info structure
623 * @dat: buffer of read data
624 * @read_ecc: ecc read from device spare area
625 * @calc_ecc: ecc calculated from read data
626 *
627 * calc_ecc is a 104 bit information containing maximum of 8 error
628 * offset informations of 13 bits each in 512 bytes of read data.
629 */
753e0139 630static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
6c009ab8
LW
631 uint8_t *read_ecc, uint8_t *calc_ecc)
632{
4bd4ebcc 633 struct nand_chip *chip = mtd_to_nand(mtd);
277af429 634 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
2a5dbead 635 void __iomem *regs = host->regs_va;
6c009ab8 636 unsigned int bank = host->bank;
a612c2ae 637 uint32_t err_idx[8];
6c009ab8 638 uint32_t num_err, i;
753e0139 639 uint32_t ecc1, ecc2, ecc3, ecc4;
6c009ab8 640
a4742d51 641 num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
519300cf
VK
642
643 /* no bit flipping */
644 if (likely(num_err == 0))
645 return 0;
646
647 /* too many errors */
648 if (unlikely(num_err > 8)) {
649 /*
650 * This is a temporary erase check. A newly erased page read
651 * would result in an ecc error because the oob data is also
652 * erased to FF and the calculated ecc for an FF data is not
653 * FF..FF.
654 * This is a workaround to skip performing correction in case
655 * data is FF..FF
656 *
657 * Logic:
658 * For every page, each bit written as 0 is counted until these
659 * number of bits are greater than 8 (the maximum correction
660 * capability of FSMC for each 512 + 13 bytes)
661 */
662
663 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
664 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
665
666 if ((bits_ecc + bits_data) <= 8) {
667 if (bits_data)
668 memset(dat, 0xff, chip->ecc.size);
669 return bits_data;
670 }
671
672 return -EBADMSG;
673 }
674
6c009ab8
LW
675 /*
676 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
677 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
678 *
679 * calc_ecc is a 104 bit information containing maximum of 8 error
680 * offset informations of 13 bits each. calc_ecc is copied into a
681 * uint64_t array and error offset indexes are populated in err_idx
682 * array
683 */
a4742d51
VK
684 ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
685 ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
686 ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
687 ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
753e0139
AV
688
689 err_idx[0] = (ecc1 >> 0) & 0x1FFF;
690 err_idx[1] = (ecc1 >> 13) & 0x1FFF;
691 err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
692 err_idx[3] = (ecc2 >> 7) & 0x1FFF;
693 err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
694 err_idx[5] = (ecc3 >> 1) & 0x1FFF;
695 err_idx[6] = (ecc3 >> 14) & 0x1FFF;
696 err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
6c009ab8
LW
697
698 i = 0;
699 while (num_err--) {
700 change_bit(0, (unsigned long *)&err_idx[i]);
701 change_bit(1, (unsigned long *)&err_idx[i]);
702
b533f8d8 703 if (err_idx[i] < chip->ecc.size * 8) {
6c009ab8
LW
704 change_bit(err_idx[i], (unsigned long *)dat);
705 i++;
706 }
707 }
708 return i;
709}
710
4774fb0a
VK
711static bool filter(struct dma_chan *chan, void *slave)
712{
713 chan->private = slave;
714 return true;
715}
716
eea62819 717#ifdef CONFIG_OF
06f25510 718static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
d8929942 719 struct device_node *np)
eea62819
SR
720{
721 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
722 u32 val;
62b57f4c 723 int ret;
eea62819
SR
724
725 /* Set default NAND width to 8 bits */
726 pdata->width = 8;
727 if (!of_property_read_u32(np, "bank-width", &val)) {
728 if (val == 2) {
729 pdata->width = 16;
730 } else if (val != 1) {
731 dev_err(&pdev->dev, "invalid bank-width %u\n", val);
732 return -EINVAL;
733 }
734 }
eea62819
SR
735 if (of_get_property(np, "nand-skip-bbtscan", NULL))
736 pdata->options = NAND_SKIP_BBTSCAN;
737
64ddba4d
MYK
738 pdata->nand_timings = devm_kzalloc(&pdev->dev,
739 sizeof(*pdata->nand_timings), GFP_KERNEL);
d9a21ae8 740 if (!pdata->nand_timings)
64ddba4d 741 return -ENOMEM;
62b57f4c 742 ret = of_property_read_u8_array(np, "timings", (u8 *)pdata->nand_timings,
64ddba4d 743 sizeof(*pdata->nand_timings));
62b57f4c
SR
744 if (ret) {
745 dev_info(&pdev->dev, "No timings in dts specified, using default timings!\n");
746 pdata->nand_timings = NULL;
747 }
64ddba4d
MYK
748
749 /* Set default NAND bank to 0 */
750 pdata->bank = 0;
751 if (!of_property_read_u32(np, "bank", &val)) {
752 if (val > 3) {
753 dev_err(&pdev->dev, "invalid bank %u\n", val);
754 return -EINVAL;
755 }
756 pdata->bank = val;
757 }
eea62819
SR
758 return 0;
759}
760#else
06f25510 761static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
d8929942 762 struct device_node *np)
eea62819
SR
763{
764 return -ENOSYS;
765}
766#endif
767
6c009ab8
LW
768/*
769 * fsmc_nand_probe - Probe function
770 * @pdev: platform device structure
771 */
772static int __init fsmc_nand_probe(struct platform_device *pdev)
773{
774 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
eea62819 775 struct device_node __maybe_unused *np = pdev->dev.of_node;
6c009ab8
LW
776 struct fsmc_nand_data *host;
777 struct mtd_info *mtd;
778 struct nand_chip *nand;
6c009ab8 779 struct resource *res;
4774fb0a 780 dma_cap_mask_t mask;
4ad916bc 781 int ret = 0;
593cd871
LW
782 u32 pid;
783 int i;
6c009ab8 784
eea62819
SR
785 if (np) {
786 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
787 pdev->dev.platform_data = pdata;
788 ret = fsmc_nand_probe_config_dt(pdev, np);
789 if (ret) {
790 dev_err(&pdev->dev, "no platform data\n");
791 return -ENODEV;
792 }
793 }
794
6c009ab8
LW
795 if (!pdata) {
796 dev_err(&pdev->dev, "platform data is NULL\n");
797 return -EINVAL;
798 }
799
800 /* Allocate memory for the device structure (and zero it) */
82b9dbe2 801 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
d9a21ae8 802 if (!host)
6c009ab8 803 return -ENOMEM;
6c009ab8
LW
804
805 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
b0de774c
TR
806 host->data_va = devm_ioremap_resource(&pdev->dev, res);
807 if (IS_ERR(host->data_va))
808 return PTR_ERR(host->data_va);
cbf29b83 809
6d7b42a4 810 host->data_pa = (dma_addr_t)res->start;
6c009ab8 811
6d7b42a4 812 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
b0de774c
TR
813 host->addr_va = devm_ioremap_resource(&pdev->dev, res);
814 if (IS_ERR(host->addr_va))
815 return PTR_ERR(host->addr_va);
6c009ab8 816
6d7b42a4 817 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
b0de774c
TR
818 host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
819 if (IS_ERR(host->cmd_va))
820 return PTR_ERR(host->cmd_va);
6c009ab8
LW
821
822 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
b0de774c
TR
823 host->regs_va = devm_ioremap_resource(&pdev->dev, res);
824 if (IS_ERR(host->regs_va))
825 return PTR_ERR(host->regs_va);
6c009ab8
LW
826
827 host->clk = clk_get(&pdev->dev, NULL);
828 if (IS_ERR(host->clk)) {
829 dev_err(&pdev->dev, "failed to fetch block clock\n");
82b9dbe2 830 return PTR_ERR(host->clk);
6c009ab8
LW
831 }
832
e25da1c0 833 ret = clk_prepare_enable(host->clk);
6c009ab8 834 if (ret)
e25da1c0 835 goto err_clk_prepare_enable;
6c009ab8 836
593cd871
LW
837 /*
838 * This device ID is actually a common AMBA ID as used on the
839 * AMBA PrimeCell bus. However it is not a PrimeCell.
840 */
841 for (pid = 0, i = 0; i < 4; i++)
842 pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
843 host->pid = pid;
844 dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
845 "revision %02x, config %02x\n",
846 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
847 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
848
6c009ab8
LW
849 host->bank = pdata->bank;
850 host->select_chip = pdata->select_bank;
71470324
VK
851 host->partitions = pdata->partitions;
852 host->nr_partitions = pdata->nr_partitions;
712c4add 853 host->dev = &pdev->dev;
e2f6bce8 854 host->dev_timings = pdata->nand_timings;
4774fb0a
VK
855 host->mode = pdata->mode;
856
857 if (host->mode == USE_DMA_ACCESS)
858 init_completion(&host->dma_access_complete);
859
6c009ab8 860 /* Link all private pointers */
bdf3a555 861 mtd = nand_to_mtd(&host->nand);
6c009ab8 862 nand = &host->nand;
d699ed25 863 nand_set_controller_data(nand, host);
a61ae81a 864 nand_set_flash_node(nand, np);
6c009ab8 865
bdf3a555 866 mtd->dev.parent = &pdev->dev;
6c009ab8
LW
867 nand->IO_ADDR_R = host->data_va;
868 nand->IO_ADDR_W = host->data_va;
869 nand->cmd_ctrl = fsmc_cmd_ctrl;
870 nand->chip_delay = 30;
871
e278fc71
SR
872 /*
873 * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
874 * can overwrite this value if the DT provides a different value.
875 */
6c009ab8
LW
876 nand->ecc.mode = NAND_ECC_HW;
877 nand->ecc.hwctl = fsmc_enable_hwecc;
878 nand->ecc.size = 512;
879 nand->options = pdata->options;
880 nand->select_chip = fsmc_select_chip;
467e6e7b 881 nand->badblockbits = 7;
63752199 882 nand_set_flash_node(nand, np);
6c009ab8
LW
883
884 if (pdata->width == FSMC_NAND_BW16)
885 nand->options |= NAND_BUSWIDTH_16;
886
4774fb0a
VK
887 switch (host->mode) {
888 case USE_DMA_ACCESS:
889 dma_cap_zero(mask);
890 dma_cap_set(DMA_MEMCPY, mask);
891 host->read_dma_chan = dma_request_channel(mask, filter,
892 pdata->read_dma_priv);
893 if (!host->read_dma_chan) {
894 dev_err(&pdev->dev, "Unable to get read dma channel\n");
895 goto err_req_read_chnl;
896 }
897 host->write_dma_chan = dma_request_channel(mask, filter,
898 pdata->write_dma_priv);
899 if (!host->write_dma_chan) {
900 dev_err(&pdev->dev, "Unable to get write dma channel\n");
901 goto err_req_write_chnl;
902 }
903 nand->read_buf = fsmc_read_buf_dma;
904 nand->write_buf = fsmc_write_buf_dma;
905 break;
906
907 default:
908 case USE_WORD_ACCESS:
604e7544
VK
909 nand->read_buf = fsmc_read_buf;
910 nand->write_buf = fsmc_write_buf;
4774fb0a 911 break;
604e7544
VK
912 }
913
2a5dbead
VK
914 fsmc_nand_setup(host->regs_va, host->bank,
915 nand->options & NAND_BUSWIDTH_16,
e2f6bce8 916 host->dev_timings);
6c009ab8 917
593cd871 918 if (AMBA_REV_BITS(host->pid) >= 8) {
6c009ab8
LW
919 nand->ecc.read_page = fsmc_read_page_hwecc;
920 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
753e0139 921 nand->ecc.correct = fsmc_bch8_correct_data;
6c009ab8 922 nand->ecc.bytes = 13;
6a918bad 923 nand->ecc.strength = 8;
6c009ab8
LW
924 }
925
926 /*
25985edc 927 * Scan to find existence of the device
6c009ab8 928 */
ad5678ec
MY
929 ret = nand_scan_ident(mtd, 1, NULL);
930 if (ret) {
6c009ab8 931 dev_err(&pdev->dev, "No NAND Device found!\n");
82b9dbe2 932 goto err_scan_ident;
6c009ab8
LW
933 }
934
593cd871 935 if (AMBA_REV_BITS(host->pid) >= 8) {
bdf3a555 936 switch (mtd->oobsize) {
e29ee57b 937 case 16:
e29ee57b 938 case 64:
e29ee57b 939 case 128:
0c78e93b 940 case 224:
e29ee57b 941 case 256:
e29ee57b
BY
942 break;
943 default:
67b19a63
JH
944 dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
945 mtd->oobsize);
6efadcf9
SR
946 ret = -EINVAL;
947 goto err_probe;
6c009ab8 948 }
22b46957
BB
949
950 mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
6c009ab8 951 } else {
e278fc71
SR
952 switch (nand->ecc.mode) {
953 case NAND_ECC_HW:
954 dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n");
955 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
956 nand->ecc.correct = nand_correct_data;
957 nand->ecc.bytes = 3;
958 nand->ecc.strength = 1;
e29ee57b 959 break;
e278fc71 960
ef296dc9 961 case NAND_ECC_SOFT:
ef296dc9
RM
962 if (nand->ecc.algo == NAND_ECC_BCH) {
963 dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n");
964 break;
965 }
e278fc71 966
e29ee57b 967 default:
e278fc71 968 dev_err(&pdev->dev, "Unsupported ECC mode!\n");
6efadcf9 969 goto err_probe;
e29ee57b 970 }
e278fc71
SR
971
972 /*
973 * Don't set layout for BCH4 SW ECC. This will be
974 * generated later in nand_bch_init() later.
975 */
e4225ae8 976 if (nand->ecc.mode == NAND_ECC_HW) {
bdf3a555 977 switch (mtd->oobsize) {
e278fc71 978 case 16:
e278fc71 979 case 64:
e278fc71 980 case 128:
22b46957
BB
981 mtd_set_ooblayout(mtd,
982 &fsmc_ecc1_ooblayout_ops);
e278fc71
SR
983 break;
984 default:
985 dev_warn(&pdev->dev,
986 "No oob scheme defined for oobsize %d\n",
987 mtd->oobsize);
988 ret = -EINVAL;
989 goto err_probe;
990 }
991 }
6c009ab8
LW
992 }
993
994 /* Second stage of scan to fill MTD data-structures */
ad5678ec
MY
995 ret = nand_scan_tail(mtd);
996 if (ret)
6c009ab8 997 goto err_probe;
6c009ab8
LW
998
999 /*
1000 * The partition information can is accessed by (in the same precedence)
1001 *
1002 * command line through Bootloader,
1003 * platform data,
1004 * default partition information present in driver.
1005 */
6c009ab8 1006 /*
8d3f8bb8 1007 * Check for partition info passed
6c009ab8 1008 */
bdf3a555
BB
1009 mtd->name = "nand";
1010 ret = mtd_device_register(mtd, host->partitions, host->nr_partitions);
99335d00 1011 if (ret)
6c009ab8 1012 goto err_probe;
6c009ab8
LW
1013
1014 platform_set_drvdata(pdev, host);
1015 dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1016 return 0;
1017
1018err_probe:
82b9dbe2 1019err_scan_ident:
4774fb0a
VK
1020 if (host->mode == USE_DMA_ACCESS)
1021 dma_release_channel(host->write_dma_chan);
1022err_req_write_chnl:
1023 if (host->mode == USE_DMA_ACCESS)
1024 dma_release_channel(host->read_dma_chan);
1025err_req_read_chnl:
e25da1c0
VK
1026 clk_disable_unprepare(host->clk);
1027err_clk_prepare_enable:
82b9dbe2 1028 clk_put(host->clk);
6c009ab8
LW
1029 return ret;
1030}
1031
1032/*
1033 * Clean up routine
1034 */
1035static int fsmc_nand_remove(struct platform_device *pdev)
1036{
1037 struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1038
6c009ab8 1039 if (host) {
bdf3a555 1040 nand_release(nand_to_mtd(&host->nand));
4774fb0a
VK
1041
1042 if (host->mode == USE_DMA_ACCESS) {
1043 dma_release_channel(host->write_dma_chan);
1044 dma_release_channel(host->read_dma_chan);
1045 }
e25da1c0 1046 clk_disable_unprepare(host->clk);
6c009ab8 1047 clk_put(host->clk);
6c009ab8 1048 }
82b9dbe2 1049
6c009ab8
LW
1050 return 0;
1051}
1052
80ce4dde 1053#ifdef CONFIG_PM_SLEEP
6c009ab8
LW
1054static int fsmc_nand_suspend(struct device *dev)
1055{
1056 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1057 if (host)
e25da1c0 1058 clk_disable_unprepare(host->clk);
6c009ab8
LW
1059 return 0;
1060}
1061
1062static int fsmc_nand_resume(struct device *dev)
1063{
1064 struct fsmc_nand_data *host = dev_get_drvdata(dev);
f63acb75 1065 if (host) {
e25da1c0 1066 clk_prepare_enable(host->clk);
f63acb75 1067 fsmc_nand_setup(host->regs_va, host->bank,
e2f6bce8
VK
1068 host->nand.options & NAND_BUSWIDTH_16,
1069 host->dev_timings);
f63acb75 1070 }
6c009ab8
LW
1071 return 0;
1072}
80ce4dde 1073#endif
6c009ab8 1074
f63acb75 1075static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
6c009ab8 1076
eea62819
SR
1077#ifdef CONFIG_OF
1078static const struct of_device_id fsmc_nand_id_table[] = {
1079 { .compatible = "st,spear600-fsmc-nand" },
ba785205 1080 { .compatible = "stericsson,fsmc-nand" },
eea62819
SR
1081 {}
1082};
1083MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1084#endif
1085
6c009ab8
LW
1086static struct platform_driver fsmc_nand_driver = {
1087 .remove = fsmc_nand_remove,
1088 .driver = {
6c009ab8 1089 .name = "fsmc-nand",
eea62819 1090 .of_match_table = of_match_ptr(fsmc_nand_id_table),
6c009ab8 1091 .pm = &fsmc_nand_pm_ops,
6c009ab8
LW
1092 },
1093};
1094
307d2a51 1095module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
6c009ab8
LW
1096
1097MODULE_LICENSE("GPL");
1098MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1099MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");