]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/mtd/nand/fsmc_nand.c
mtd: delete nomadik_nand driver
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / nand / fsmc_nand.c
CommitLineData
6c009ab8
LW
1/*
2 * drivers/mtd/nand/fsmc_nand.c
3 *
4 * ST Microelectronics
5 * Flexible Static Memory Controller (FSMC)
6 * Driver for NAND portions
7 *
8 * Copyright © 2010 ST Microelectronics
9 * Vipin Kumar <vipin.kumar@st.com>
10 * Ashish Priyadarshi
11 *
12 * Based on drivers/mtd/nand/nomadik_nand.c
13 *
14 * This file is licensed under the terms of the GNU General Public
15 * License version 2. This program is licensed "as is" without any
16 * warranty of any kind, whether express or implied.
17 */
18
19#include <linux/clk.h>
4774fb0a
VK
20#include <linux/completion.h>
21#include <linux/dmaengine.h>
22#include <linux/dma-direction.h>
23#include <linux/dma-mapping.h>
6c009ab8
LW
24#include <linux/err.h>
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/resource.h>
28#include <linux/sched.h>
29#include <linux/types.h>
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/nand.h>
32#include <linux/mtd/nand_ecc.h>
33#include <linux/platform_device.h>
eea62819 34#include <linux/of.h>
6c009ab8
LW
35#include <linux/mtd/partitions.h>
36#include <linux/io.h>
37#include <linux/slab.h>
38#include <linux/mtd/fsmc.h>
593cd871 39#include <linux/amba/bus.h>
6c009ab8
LW
40#include <mtd/mtd-abi.h>
41
e29ee57b 42static struct nand_ecclayout fsmc_ecc1_128_layout = {
6c009ab8
LW
43 .eccbytes = 24,
44 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
45 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
46 .oobfree = {
47 {.offset = 8, .length = 8},
48 {.offset = 24, .length = 8},
49 {.offset = 40, .length = 8},
50 {.offset = 56, .length = 8},
51 {.offset = 72, .length = 8},
52 {.offset = 88, .length = 8},
53 {.offset = 104, .length = 8},
54 {.offset = 120, .length = 8}
55 }
56};
57
e29ee57b
BY
58static struct nand_ecclayout fsmc_ecc1_64_layout = {
59 .eccbytes = 12,
60 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52},
61 .oobfree = {
62 {.offset = 8, .length = 8},
63 {.offset = 24, .length = 8},
64 {.offset = 40, .length = 8},
65 {.offset = 56, .length = 8},
66 }
67};
68
69static struct nand_ecclayout fsmc_ecc1_16_layout = {
70 .eccbytes = 3,
71 .eccpos = {2, 3, 4},
72 .oobfree = {
73 {.offset = 8, .length = 8},
74 }
75};
76
77/*
78 * ECC4 layout for NAND of pagesize 8192 bytes & OOBsize 256 bytes. 13*16 bytes
79 * of OB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 46
80 * bytes are free for use.
81 */
82static struct nand_ecclayout fsmc_ecc4_256_layout = {
83 .eccbytes = 208,
84 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
85 9, 10, 11, 12, 13, 14,
86 18, 19, 20, 21, 22, 23, 24,
87 25, 26, 27, 28, 29, 30,
88 34, 35, 36, 37, 38, 39, 40,
89 41, 42, 43, 44, 45, 46,
90 50, 51, 52, 53, 54, 55, 56,
91 57, 58, 59, 60, 61, 62,
92 66, 67, 68, 69, 70, 71, 72,
93 73, 74, 75, 76, 77, 78,
94 82, 83, 84, 85, 86, 87, 88,
95 89, 90, 91, 92, 93, 94,
96 98, 99, 100, 101, 102, 103, 104,
97 105, 106, 107, 108, 109, 110,
98 114, 115, 116, 117, 118, 119, 120,
99 121, 122, 123, 124, 125, 126,
100 130, 131, 132, 133, 134, 135, 136,
101 137, 138, 139, 140, 141, 142,
102 146, 147, 148, 149, 150, 151, 152,
103 153, 154, 155, 156, 157, 158,
104 162, 163, 164, 165, 166, 167, 168,
105 169, 170, 171, 172, 173, 174,
106 178, 179, 180, 181, 182, 183, 184,
107 185, 186, 187, 188, 189, 190,
108 194, 195, 196, 197, 198, 199, 200,
109 201, 202, 203, 204, 205, 206,
110 210, 211, 212, 213, 214, 215, 216,
111 217, 218, 219, 220, 221, 222,
112 226, 227, 228, 229, 230, 231, 232,
113 233, 234, 235, 236, 237, 238,
114 242, 243, 244, 245, 246, 247, 248,
115 249, 250, 251, 252, 253, 254
116 },
117 .oobfree = {
118 {.offset = 15, .length = 3},
119 {.offset = 31, .length = 3},
120 {.offset = 47, .length = 3},
121 {.offset = 63, .length = 3},
122 {.offset = 79, .length = 3},
123 {.offset = 95, .length = 3},
124 {.offset = 111, .length = 3},
125 {.offset = 127, .length = 3},
126 {.offset = 143, .length = 3},
127 {.offset = 159, .length = 3},
128 {.offset = 175, .length = 3},
129 {.offset = 191, .length = 3},
130 {.offset = 207, .length = 3},
131 {.offset = 223, .length = 3},
132 {.offset = 239, .length = 3},
133 {.offset = 255, .length = 1}
134 }
135};
136
0c78e93b
AV
137/*
138 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes
139 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118
140 * bytes are free for use.
141 */
142static struct nand_ecclayout fsmc_ecc4_224_layout = {
143 .eccbytes = 104,
144 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
145 9, 10, 11, 12, 13, 14,
146 18, 19, 20, 21, 22, 23, 24,
147 25, 26, 27, 28, 29, 30,
148 34, 35, 36, 37, 38, 39, 40,
149 41, 42, 43, 44, 45, 46,
150 50, 51, 52, 53, 54, 55, 56,
151 57, 58, 59, 60, 61, 62,
152 66, 67, 68, 69, 70, 71, 72,
153 73, 74, 75, 76, 77, 78,
154 82, 83, 84, 85, 86, 87, 88,
155 89, 90, 91, 92, 93, 94,
156 98, 99, 100, 101, 102, 103, 104,
157 105, 106, 107, 108, 109, 110,
158 114, 115, 116, 117, 118, 119, 120,
159 121, 122, 123, 124, 125, 126
160 },
161 .oobfree = {
162 {.offset = 15, .length = 3},
163 {.offset = 31, .length = 3},
164 {.offset = 47, .length = 3},
165 {.offset = 63, .length = 3},
166 {.offset = 79, .length = 3},
167 {.offset = 95, .length = 3},
168 {.offset = 111, .length = 3},
169 {.offset = 127, .length = 97}
170 }
171};
172
e29ee57b
BY
173/*
174 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 128 bytes. 13*8 bytes
175 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 22
176 * bytes are free for use.
177 */
178static struct nand_ecclayout fsmc_ecc4_128_layout = {
6c009ab8
LW
179 .eccbytes = 104,
180 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
181 9, 10, 11, 12, 13, 14,
182 18, 19, 20, 21, 22, 23, 24,
183 25, 26, 27, 28, 29, 30,
184 34, 35, 36, 37, 38, 39, 40,
185 41, 42, 43, 44, 45, 46,
186 50, 51, 52, 53, 54, 55, 56,
187 57, 58, 59, 60, 61, 62,
188 66, 67, 68, 69, 70, 71, 72,
189 73, 74, 75, 76, 77, 78,
190 82, 83, 84, 85, 86, 87, 88,
191 89, 90, 91, 92, 93, 94,
192 98, 99, 100, 101, 102, 103, 104,
193 105, 106, 107, 108, 109, 110,
194 114, 115, 116, 117, 118, 119, 120,
195 121, 122, 123, 124, 125, 126
196 },
197 .oobfree = {
198 {.offset = 15, .length = 3},
199 {.offset = 31, .length = 3},
200 {.offset = 47, .length = 3},
201 {.offset = 63, .length = 3},
202 {.offset = 79, .length = 3},
203 {.offset = 95, .length = 3},
204 {.offset = 111, .length = 3},
205 {.offset = 127, .length = 1}
206 }
207};
208
e29ee57b
BY
209/*
210 * ECC4 layout for NAND of pagesize 2048 bytes & OOBsize 64 bytes. 13*4 bytes of
211 * OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 10
212 * bytes are free for use.
213 */
214static struct nand_ecclayout fsmc_ecc4_64_layout = {
215 .eccbytes = 52,
216 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
217 9, 10, 11, 12, 13, 14,
218 18, 19, 20, 21, 22, 23, 24,
219 25, 26, 27, 28, 29, 30,
220 34, 35, 36, 37, 38, 39, 40,
221 41, 42, 43, 44, 45, 46,
222 50, 51, 52, 53, 54, 55, 56,
223 57, 58, 59, 60, 61, 62,
224 },
225 .oobfree = {
226 {.offset = 15, .length = 3},
227 {.offset = 31, .length = 3},
228 {.offset = 47, .length = 3},
229 {.offset = 63, .length = 1},
230 }
231};
232
233/*
234 * ECC4 layout for NAND of pagesize 512 bytes & OOBsize 16 bytes. 13 bytes of
235 * OOB size is reserved for ECC, Byte no. 4 & 5 reserved for bad block and One
236 * byte is free for use.
237 */
238static struct nand_ecclayout fsmc_ecc4_16_layout = {
239 .eccbytes = 13,
240 .eccpos = { 0, 1, 2, 3, 6, 7, 8,
241 9, 10, 11, 12, 13, 14
242 },
243 .oobfree = {
244 {.offset = 15, .length = 1},
245 }
246};
247
6c009ab8
LW
248/*
249 * ECC placement definitions in oobfree type format.
250 * There are 13 bytes of ecc for every 512 byte block and it has to be read
251 * consecutively and immediately after the 512 byte data block for hardware to
252 * generate the error bit offsets in 512 byte data.
253 * Managing the ecc bytes in the following way makes it easier for software to
254 * read ecc bytes consecutive to data bytes. This way is similar to
255 * oobfree structure maintained already in generic nand driver
256 */
257static struct fsmc_eccplace fsmc_ecc4_lp_place = {
258 .eccplace = {
259 {.offset = 2, .length = 13},
260 {.offset = 18, .length = 13},
261 {.offset = 34, .length = 13},
262 {.offset = 50, .length = 13},
263 {.offset = 66, .length = 13},
264 {.offset = 82, .length = 13},
265 {.offset = 98, .length = 13},
266 {.offset = 114, .length = 13}
267 }
268};
269
6c009ab8
LW
270static struct fsmc_eccplace fsmc_ecc4_sp_place = {
271 .eccplace = {
272 {.offset = 0, .length = 4},
273 {.offset = 6, .length = 9}
274 }
275};
276
6c009ab8 277/**
593cd871 278 * struct fsmc_nand_data - structure for FSMC NAND device state
6c009ab8 279 *
593cd871 280 * @pid: Part ID on the AMBA PrimeCell format
6c009ab8
LW
281 * @mtd: MTD info for a NAND flash.
282 * @nand: Chip related info for a NAND flash.
71470324
VK
283 * @partitions: Partition info for a NAND Flash.
284 * @nr_partitions: Total number of partition of a NAND flash.
6c009ab8
LW
285 *
286 * @ecc_place: ECC placing locations in oobfree type format.
287 * @bank: Bank number for probed device.
288 * @clk: Clock structure for FSMC.
289 *
4774fb0a
VK
290 * @read_dma_chan: DMA channel for read access
291 * @write_dma_chan: DMA channel for write access to NAND
292 * @dma_access_complete: Completion structure
293 *
294 * @data_pa: NAND Physical port for Data.
6c009ab8
LW
295 * @data_va: NAND port for Data.
296 * @cmd_va: NAND port for Command.
297 * @addr_va: NAND port for Address.
298 * @regs_va: FSMC regs base address.
299 */
300struct fsmc_nand_data {
593cd871 301 u32 pid;
6c009ab8
LW
302 struct mtd_info mtd;
303 struct nand_chip nand;
71470324
VK
304 struct mtd_partition *partitions;
305 unsigned int nr_partitions;
6c009ab8
LW
306
307 struct fsmc_eccplace *ecc_place;
308 unsigned int bank;
712c4add 309 struct device *dev;
4774fb0a 310 enum access_mode mode;
6c009ab8
LW
311 struct clk *clk;
312
4774fb0a
VK
313 /* DMA related objects */
314 struct dma_chan *read_dma_chan;
315 struct dma_chan *write_dma_chan;
316 struct completion dma_access_complete;
317
e2f6bce8
VK
318 struct fsmc_nand_timings *dev_timings;
319
4774fb0a 320 dma_addr_t data_pa;
6c009ab8
LW
321 void __iomem *data_va;
322 void __iomem *cmd_va;
323 void __iomem *addr_va;
324 void __iomem *regs_va;
325
326 void (*select_chip)(uint32_t bank, uint32_t busw);
327};
328
329/* Assert CS signal based on chipnr */
330static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
331{
332 struct nand_chip *chip = mtd->priv;
333 struct fsmc_nand_data *host;
334
335 host = container_of(mtd, struct fsmc_nand_data, mtd);
336
337 switch (chipnr) {
338 case -1:
339 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
340 break;
341 case 0:
342 case 1:
343 case 2:
344 case 3:
345 if (host->select_chip)
346 host->select_chip(chipnr,
347 chip->options & NAND_BUSWIDTH_16);
348 break;
349
350 default:
351 BUG();
352 }
353}
354
355/*
356 * fsmc_cmd_ctrl - For facilitaing Hardware access
357 * This routine allows hardware specific access to control-lines(ALE,CLE)
358 */
359static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
360{
361 struct nand_chip *this = mtd->priv;
362 struct fsmc_nand_data *host = container_of(mtd,
363 struct fsmc_nand_data, mtd);
2a5dbead 364 void *__iomem *regs = host->regs_va;
6c009ab8
LW
365 unsigned int bank = host->bank;
366
367 if (ctrl & NAND_CTRL_CHANGE) {
2a5dbead
VK
368 u32 pc;
369
6c009ab8 370 if (ctrl & NAND_CLE) {
2a5dbead
VK
371 this->IO_ADDR_R = host->cmd_va;
372 this->IO_ADDR_W = host->cmd_va;
6c009ab8 373 } else if (ctrl & NAND_ALE) {
2a5dbead
VK
374 this->IO_ADDR_R = host->addr_va;
375 this->IO_ADDR_W = host->addr_va;
6c009ab8 376 } else {
2a5dbead
VK
377 this->IO_ADDR_R = host->data_va;
378 this->IO_ADDR_W = host->data_va;
6c009ab8
LW
379 }
380
2a5dbead
VK
381 pc = readl(FSMC_NAND_REG(regs, bank, PC));
382 if (ctrl & NAND_NCE)
383 pc |= FSMC_ENABLE;
384 else
385 pc &= ~FSMC_ENABLE;
386 writel(pc, FSMC_NAND_REG(regs, bank, PC));
6c009ab8
LW
387 }
388
389 mb();
390
391 if (cmd != NAND_CMD_NONE)
392 writeb(cmd, this->IO_ADDR_W);
393}
394
395/*
396 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
397 *
398 * This routine initializes timing parameters related to NAND memory access in
399 * FSMC registers
400 */
2a5dbead 401static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
e2f6bce8 402 uint32_t busw, struct fsmc_nand_timings *timings)
6c009ab8
LW
403{
404 uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
e2f6bce8
VK
405 uint32_t tclr, tar, thiz, thold, twait, tset;
406 struct fsmc_nand_timings *tims;
407 struct fsmc_nand_timings default_timings = {
408 .tclr = FSMC_TCLR_1,
409 .tar = FSMC_TAR_1,
410 .thiz = FSMC_THIZ_1,
411 .thold = FSMC_THOLD_4,
412 .twait = FSMC_TWAIT_6,
413 .tset = FSMC_TSET_0,
414 };
415
416 if (timings)
417 tims = timings;
418 else
419 tims = &default_timings;
420
421 tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
422 tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
423 thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
424 thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
425 twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
426 tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
6c009ab8
LW
427
428 if (busw)
2a5dbead 429 writel(value | FSMC_DEVWID_16, FSMC_NAND_REG(regs, bank, PC));
6c009ab8 430 else
2a5dbead 431 writel(value | FSMC_DEVWID_8, FSMC_NAND_REG(regs, bank, PC));
6c009ab8 432
2a5dbead
VK
433 writel(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
434 FSMC_NAND_REG(regs, bank, PC));
435 writel(thiz | thold | twait | tset, FSMC_NAND_REG(regs, bank, COMM));
436 writel(thiz | thold | twait | tset, FSMC_NAND_REG(regs, bank, ATTRIB));
6c009ab8
LW
437}
438
439/*
440 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
441 */
442static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
443{
444 struct fsmc_nand_data *host = container_of(mtd,
445 struct fsmc_nand_data, mtd);
2a5dbead 446 void __iomem *regs = host->regs_va;
6c009ab8
LW
447 uint32_t bank = host->bank;
448
2a5dbead
VK
449 writel(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
450 FSMC_NAND_REG(regs, bank, PC));
451 writel(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
452 FSMC_NAND_REG(regs, bank, PC));
453 writel(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
454 FSMC_NAND_REG(regs, bank, PC));
6c009ab8
LW
455}
456
457/*
458 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
25985edc 459 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
6c009ab8
LW
460 * max of 8-bits)
461 */
462static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
463 uint8_t *ecc)
464{
465 struct fsmc_nand_data *host = container_of(mtd,
466 struct fsmc_nand_data, mtd);
2a5dbead 467 void __iomem *regs = host->regs_va;
6c009ab8
LW
468 uint32_t bank = host->bank;
469 uint32_t ecc_tmp;
470 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
471
472 do {
2a5dbead 473 if (readl(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
6c009ab8
LW
474 break;
475 else
476 cond_resched();
477 } while (!time_after_eq(jiffies, deadline));
478
712c4add
VK
479 if (time_after_eq(jiffies, deadline)) {
480 dev_err(host->dev, "calculate ecc timed out\n");
481 return -ETIMEDOUT;
482 }
483
2a5dbead 484 ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC1));
6c009ab8
LW
485 ecc[0] = (uint8_t) (ecc_tmp >> 0);
486 ecc[1] = (uint8_t) (ecc_tmp >> 8);
487 ecc[2] = (uint8_t) (ecc_tmp >> 16);
488 ecc[3] = (uint8_t) (ecc_tmp >> 24);
489
2a5dbead 490 ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC2));
6c009ab8
LW
491 ecc[4] = (uint8_t) (ecc_tmp >> 0);
492 ecc[5] = (uint8_t) (ecc_tmp >> 8);
493 ecc[6] = (uint8_t) (ecc_tmp >> 16);
494 ecc[7] = (uint8_t) (ecc_tmp >> 24);
495
2a5dbead 496 ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC3));
6c009ab8
LW
497 ecc[8] = (uint8_t) (ecc_tmp >> 0);
498 ecc[9] = (uint8_t) (ecc_tmp >> 8);
499 ecc[10] = (uint8_t) (ecc_tmp >> 16);
500 ecc[11] = (uint8_t) (ecc_tmp >> 24);
501
2a5dbead 502 ecc_tmp = readl(FSMC_NAND_REG(regs, bank, STS));
6c009ab8
LW
503 ecc[12] = (uint8_t) (ecc_tmp >> 16);
504
505 return 0;
506}
507
508/*
509 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
25985edc 510 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
6c009ab8
LW
511 * max of 1-bit)
512 */
513static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
514 uint8_t *ecc)
515{
516 struct fsmc_nand_data *host = container_of(mtd,
517 struct fsmc_nand_data, mtd);
2a5dbead 518 void __iomem *regs = host->regs_va;
6c009ab8
LW
519 uint32_t bank = host->bank;
520 uint32_t ecc_tmp;
521
2a5dbead 522 ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC1));
6c009ab8
LW
523 ecc[0] = (uint8_t) (ecc_tmp >> 0);
524 ecc[1] = (uint8_t) (ecc_tmp >> 8);
525 ecc[2] = (uint8_t) (ecc_tmp >> 16);
526
527 return 0;
528}
529
519300cf
VK
530/* Count the number of 0's in buff upto a max of max_bits */
531static int count_written_bits(uint8_t *buff, int size, int max_bits)
532{
533 int k, written_bits = 0;
534
535 for (k = 0; k < size; k++) {
536 written_bits += hweight8(~buff[k]);
537 if (written_bits > max_bits)
538 break;
539 }
540
541 return written_bits;
542}
543
4774fb0a
VK
544static void dma_complete(void *param)
545{
546 struct fsmc_nand_data *host = param;
547
548 complete(&host->dma_access_complete);
549}
550
551static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
552 enum dma_data_direction direction)
553{
554 struct dma_chan *chan;
555 struct dma_device *dma_dev;
556 struct dma_async_tx_descriptor *tx;
557 dma_addr_t dma_dst, dma_src, dma_addr;
558 dma_cookie_t cookie;
559 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
560 int ret;
561
562 if (direction == DMA_TO_DEVICE)
563 chan = host->write_dma_chan;
564 else if (direction == DMA_FROM_DEVICE)
565 chan = host->read_dma_chan;
566 else
567 return -EINVAL;
568
569 dma_dev = chan->device;
570 dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
571
572 if (direction == DMA_TO_DEVICE) {
573 dma_src = dma_addr;
574 dma_dst = host->data_pa;
575 flags |= DMA_COMPL_SRC_UNMAP_SINGLE | DMA_COMPL_SKIP_DEST_UNMAP;
576 } else {
577 dma_src = host->data_pa;
578 dma_dst = dma_addr;
579 flags |= DMA_COMPL_DEST_UNMAP_SINGLE | DMA_COMPL_SKIP_SRC_UNMAP;
580 }
581
582 tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
583 len, flags);
584
585 if (!tx) {
586 dev_err(host->dev, "device_prep_dma_memcpy error\n");
587 dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
588 return -EIO;
589 }
590
591 tx->callback = dma_complete;
592 tx->callback_param = host;
593 cookie = tx->tx_submit(tx);
594
595 ret = dma_submit_error(cookie);
596 if (ret) {
597 dev_err(host->dev, "dma_submit_error %d\n", cookie);
598 return ret;
599 }
600
601 dma_async_issue_pending(chan);
602
603 ret =
604 wait_for_completion_interruptible_timeout(&host->dma_access_complete,
605 msecs_to_jiffies(3000));
606 if (ret <= 0) {
607 chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
608 dev_err(host->dev, "wait_for_completion_timeout\n");
609 return ret ? ret : -ETIMEDOUT;
610 }
611
612 return 0;
613}
614
604e7544
VK
615/*
616 * fsmc_write_buf - write buffer to chip
617 * @mtd: MTD device structure
618 * @buf: data buffer
619 * @len: number of bytes to write
620 */
621static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
622{
623 int i;
624 struct nand_chip *chip = mtd->priv;
625
626 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
627 IS_ALIGNED(len, sizeof(uint32_t))) {
628 uint32_t *p = (uint32_t *)buf;
629 len = len >> 2;
630 for (i = 0; i < len; i++)
631 writel(p[i], chip->IO_ADDR_W);
632 } else {
633 for (i = 0; i < len; i++)
634 writeb(buf[i], chip->IO_ADDR_W);
635 }
636}
637
638/*
639 * fsmc_read_buf - read chip data into buffer
640 * @mtd: MTD device structure
641 * @buf: buffer to store date
642 * @len: number of bytes to read
643 */
644static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
645{
646 int i;
647 struct nand_chip *chip = mtd->priv;
648
649 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
650 IS_ALIGNED(len, sizeof(uint32_t))) {
651 uint32_t *p = (uint32_t *)buf;
652 len = len >> 2;
653 for (i = 0; i < len; i++)
654 p[i] = readl(chip->IO_ADDR_R);
655 } else {
656 for (i = 0; i < len; i++)
657 buf[i] = readb(chip->IO_ADDR_R);
658 }
659}
660
4774fb0a
VK
661/*
662 * fsmc_read_buf_dma - read chip data into buffer
663 * @mtd: MTD device structure
664 * @buf: buffer to store date
665 * @len: number of bytes to read
666 */
667static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
668{
669 struct fsmc_nand_data *host;
670
671 host = container_of(mtd, struct fsmc_nand_data, mtd);
672 dma_xfer(host, buf, len, DMA_FROM_DEVICE);
673}
674
675/*
676 * fsmc_write_buf_dma - write buffer to chip
677 * @mtd: MTD device structure
678 * @buf: data buffer
679 * @len: number of bytes to write
680 */
681static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
682 int len)
683{
684 struct fsmc_nand_data *host;
685
686 host = container_of(mtd, struct fsmc_nand_data, mtd);
687 dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
688}
689
6c009ab8
LW
690/*
691 * fsmc_read_page_hwecc
692 * @mtd: mtd info structure
693 * @chip: nand chip info structure
694 * @buf: buffer to store read data
1fbb938d 695 * @oob_required: caller expects OOB data read to chip->oob_poi
6c009ab8
LW
696 * @page: page number to read
697 *
25985edc 698 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
6c009ab8
LW
699 * performed in a strict sequence as follows:
700 * data(512 byte) -> ecc(13 byte)
25985edc 701 * After this read, fsmc hardware generates and reports error data bits(up to a
6c009ab8
LW
702 * max of 8 bits)
703 */
704static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 705 uint8_t *buf, int oob_required, int page)
6c009ab8
LW
706{
707 struct fsmc_nand_data *host = container_of(mtd,
708 struct fsmc_nand_data, mtd);
709 struct fsmc_eccplace *ecc_place = host->ecc_place;
710 int i, j, s, stat, eccsize = chip->ecc.size;
711 int eccbytes = chip->ecc.bytes;
712 int eccsteps = chip->ecc.steps;
713 uint8_t *p = buf;
714 uint8_t *ecc_calc = chip->buffers->ecccalc;
715 uint8_t *ecc_code = chip->buffers->ecccode;
716 int off, len, group = 0;
717 /*
718 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
719 * end up reading 14 bytes (7 words) from oob. The local array is
720 * to maintain word alignment
721 */
722 uint16_t ecc_oob[7];
723 uint8_t *oob = (uint8_t *)&ecc_oob[0];
3f91e94f 724 unsigned int max_bitflips = 0;
6c009ab8
LW
725
726 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
6c009ab8
LW
727 chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
728 chip->ecc.hwctl(mtd, NAND_ECC_READ);
729 chip->read_buf(mtd, p, eccsize);
730
731 for (j = 0; j < eccbytes;) {
732 off = ecc_place->eccplace[group].offset;
733 len = ecc_place->eccplace[group].length;
734 group++;
735
736 /*
4cbe1bf0
VK
737 * length is intentionally kept a higher multiple of 2
738 * to read at least 13 bytes even in case of 16 bit NAND
739 * devices
740 */
aea686b4
VK
741 if (chip->options & NAND_BUSWIDTH_16)
742 len = roundup(len, 2);
743
6c009ab8
LW
744 chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
745 chip->read_buf(mtd, oob + j, len);
746 j += len;
747 }
748
519300cf 749 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
6c009ab8
LW
750 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
751
752 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 753 if (stat < 0) {
6c009ab8 754 mtd->ecc_stats.failed++;
3f91e94f 755 } else {
6c009ab8 756 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
757 max_bitflips = max_t(unsigned int, max_bitflips, stat);
758 }
6c009ab8
LW
759 }
760
3f91e94f 761 return max_bitflips;
6c009ab8
LW
762}
763
764/*
753e0139 765 * fsmc_bch8_correct_data
6c009ab8
LW
766 * @mtd: mtd info structure
767 * @dat: buffer of read data
768 * @read_ecc: ecc read from device spare area
769 * @calc_ecc: ecc calculated from read data
770 *
771 * calc_ecc is a 104 bit information containing maximum of 8 error
772 * offset informations of 13 bits each in 512 bytes of read data.
773 */
753e0139 774static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
6c009ab8
LW
775 uint8_t *read_ecc, uint8_t *calc_ecc)
776{
777 struct fsmc_nand_data *host = container_of(mtd,
778 struct fsmc_nand_data, mtd);
519300cf 779 struct nand_chip *chip = mtd->priv;
2a5dbead 780 void __iomem *regs = host->regs_va;
6c009ab8 781 unsigned int bank = host->bank;
a612c2ae 782 uint32_t err_idx[8];
6c009ab8 783 uint32_t num_err, i;
753e0139 784 uint32_t ecc1, ecc2, ecc3, ecc4;
6c009ab8 785
2a5dbead 786 num_err = (readl(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
519300cf
VK
787
788 /* no bit flipping */
789 if (likely(num_err == 0))
790 return 0;
791
792 /* too many errors */
793 if (unlikely(num_err > 8)) {
794 /*
795 * This is a temporary erase check. A newly erased page read
796 * would result in an ecc error because the oob data is also
797 * erased to FF and the calculated ecc for an FF data is not
798 * FF..FF.
799 * This is a workaround to skip performing correction in case
800 * data is FF..FF
801 *
802 * Logic:
803 * For every page, each bit written as 0 is counted until these
804 * number of bits are greater than 8 (the maximum correction
805 * capability of FSMC for each 512 + 13 bytes)
806 */
807
808 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
809 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
810
811 if ((bits_ecc + bits_data) <= 8) {
812 if (bits_data)
813 memset(dat, 0xff, chip->ecc.size);
814 return bits_data;
815 }
816
817 return -EBADMSG;
818 }
819
6c009ab8
LW
820 /*
821 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
822 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
823 *
824 * calc_ecc is a 104 bit information containing maximum of 8 error
825 * offset informations of 13 bits each. calc_ecc is copied into a
826 * uint64_t array and error offset indexes are populated in err_idx
827 * array
828 */
2a5dbead
VK
829 ecc1 = readl(FSMC_NAND_REG(regs, bank, ECC1));
830 ecc2 = readl(FSMC_NAND_REG(regs, bank, ECC2));
831 ecc3 = readl(FSMC_NAND_REG(regs, bank, ECC3));
832 ecc4 = readl(FSMC_NAND_REG(regs, bank, STS));
753e0139
AV
833
834 err_idx[0] = (ecc1 >> 0) & 0x1FFF;
835 err_idx[1] = (ecc1 >> 13) & 0x1FFF;
836 err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
837 err_idx[3] = (ecc2 >> 7) & 0x1FFF;
838 err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
839 err_idx[5] = (ecc3 >> 1) & 0x1FFF;
840 err_idx[6] = (ecc3 >> 14) & 0x1FFF;
841 err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
6c009ab8
LW
842
843 i = 0;
844 while (num_err--) {
845 change_bit(0, (unsigned long *)&err_idx[i]);
846 change_bit(1, (unsigned long *)&err_idx[i]);
847
b533f8d8 848 if (err_idx[i] < chip->ecc.size * 8) {
6c009ab8
LW
849 change_bit(err_idx[i], (unsigned long *)dat);
850 i++;
851 }
852 }
853 return i;
854}
855
4774fb0a
VK
856static bool filter(struct dma_chan *chan, void *slave)
857{
858 chan->private = slave;
859 return true;
860}
861
eea62819
SR
862#ifdef CONFIG_OF
863static int __devinit fsmc_nand_probe_config_dt(struct platform_device *pdev,
864 struct device_node *np)
865{
866 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
867 u32 val;
868
869 /* Set default NAND width to 8 bits */
870 pdata->width = 8;
871 if (!of_property_read_u32(np, "bank-width", &val)) {
872 if (val == 2) {
873 pdata->width = 16;
874 } else if (val != 1) {
875 dev_err(&pdev->dev, "invalid bank-width %u\n", val);
876 return -EINVAL;
877 }
878 }
879 of_property_read_u32(np, "st,ale-off", &pdata->ale_off);
880 of_property_read_u32(np, "st,cle-off", &pdata->cle_off);
881 if (of_get_property(np, "nand-skip-bbtscan", NULL))
882 pdata->options = NAND_SKIP_BBTSCAN;
883
884 return 0;
885}
886#else
887static int __devinit fsmc_nand_probe_config_dt(struct platform_device *pdev,
888 struct device_node *np)
889{
890 return -ENOSYS;
891}
892#endif
893
6c009ab8
LW
894/*
895 * fsmc_nand_probe - Probe function
896 * @pdev: platform device structure
897 */
898static int __init fsmc_nand_probe(struct platform_device *pdev)
899{
900 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
eea62819
SR
901 struct device_node __maybe_unused *np = pdev->dev.of_node;
902 struct mtd_part_parser_data ppdata = {};
6c009ab8
LW
903 struct fsmc_nand_data *host;
904 struct mtd_info *mtd;
905 struct nand_chip *nand;
6c009ab8 906 struct resource *res;
4774fb0a 907 dma_cap_mask_t mask;
4ad916bc 908 int ret = 0;
593cd871
LW
909 u32 pid;
910 int i;
6c009ab8 911
eea62819
SR
912 if (np) {
913 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
914 pdev->dev.platform_data = pdata;
915 ret = fsmc_nand_probe_config_dt(pdev, np);
916 if (ret) {
917 dev_err(&pdev->dev, "no platform data\n");
918 return -ENODEV;
919 }
920 }
921
6c009ab8
LW
922 if (!pdata) {
923 dev_err(&pdev->dev, "platform data is NULL\n");
924 return -EINVAL;
925 }
926
927 /* Allocate memory for the device structure (and zero it) */
82b9dbe2 928 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
6c009ab8
LW
929 if (!host) {
930 dev_err(&pdev->dev, "failed to allocate device structure\n");
931 return -ENOMEM;
932 }
933
934 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
82b9dbe2
VK
935 if (!res)
936 return -EINVAL;
6c009ab8 937
82b9dbe2
VK
938 if (!devm_request_mem_region(&pdev->dev, res->start, resource_size(res),
939 pdev->name)) {
940 dev_err(&pdev->dev, "Failed to get memory data resourse\n");
941 return -ENOENT;
6c009ab8
LW
942 }
943
4774fb0a 944 host->data_pa = (dma_addr_t)res->start;
82b9dbe2
VK
945 host->data_va = devm_ioremap(&pdev->dev, res->start,
946 resource_size(res));
6c009ab8 947 if (!host->data_va) {
82b9dbe2
VK
948 dev_err(&pdev->dev, "data ioremap failed\n");
949 return -ENOMEM;
6c009ab8
LW
950 }
951
82b9dbe2
VK
952 if (!devm_request_mem_region(&pdev->dev, res->start + pdata->ale_off,
953 resource_size(res), pdev->name)) {
954 dev_err(&pdev->dev, "Failed to get memory ale resourse\n");
955 return -ENOENT;
6c009ab8
LW
956 }
957
82b9dbe2 958 host->addr_va = devm_ioremap(&pdev->dev, res->start + pdata->ale_off,
b2acc92e 959 resource_size(res));
6c009ab8 960 if (!host->addr_va) {
82b9dbe2
VK
961 dev_err(&pdev->dev, "ale ioremap failed\n");
962 return -ENOMEM;
6c009ab8
LW
963 }
964
82b9dbe2
VK
965 if (!devm_request_mem_region(&pdev->dev, res->start + pdata->cle_off,
966 resource_size(res), pdev->name)) {
967 dev_err(&pdev->dev, "Failed to get memory cle resourse\n");
968 return -ENOENT;
6c009ab8
LW
969 }
970
82b9dbe2
VK
971 host->cmd_va = devm_ioremap(&pdev->dev, res->start + pdata->cle_off,
972 resource_size(res));
6c009ab8 973 if (!host->cmd_va) {
82b9dbe2
VK
974 dev_err(&pdev->dev, "ale ioremap failed\n");
975 return -ENOMEM;
6c009ab8
LW
976 }
977
978 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
82b9dbe2
VK
979 if (!res)
980 return -EINVAL;
6c009ab8 981
82b9dbe2
VK
982 if (!devm_request_mem_region(&pdev->dev, res->start, resource_size(res),
983 pdev->name)) {
984 dev_err(&pdev->dev, "Failed to get memory regs resourse\n");
985 return -ENOENT;
6c009ab8
LW
986 }
987
82b9dbe2
VK
988 host->regs_va = devm_ioremap(&pdev->dev, res->start,
989 resource_size(res));
6c009ab8 990 if (!host->regs_va) {
82b9dbe2
VK
991 dev_err(&pdev->dev, "regs ioremap failed\n");
992 return -ENOMEM;
6c009ab8
LW
993 }
994
995 host->clk = clk_get(&pdev->dev, NULL);
996 if (IS_ERR(host->clk)) {
997 dev_err(&pdev->dev, "failed to fetch block clock\n");
82b9dbe2 998 return PTR_ERR(host->clk);
6c009ab8
LW
999 }
1000
e25da1c0 1001 ret = clk_prepare_enable(host->clk);
6c009ab8 1002 if (ret)
e25da1c0 1003 goto err_clk_prepare_enable;
6c009ab8 1004
593cd871
LW
1005 /*
1006 * This device ID is actually a common AMBA ID as used on the
1007 * AMBA PrimeCell bus. However it is not a PrimeCell.
1008 */
1009 for (pid = 0, i = 0; i < 4; i++)
1010 pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
1011 host->pid = pid;
1012 dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
1013 "revision %02x, config %02x\n",
1014 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1015 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1016
6c009ab8
LW
1017 host->bank = pdata->bank;
1018 host->select_chip = pdata->select_bank;
71470324
VK
1019 host->partitions = pdata->partitions;
1020 host->nr_partitions = pdata->nr_partitions;
712c4add 1021 host->dev = &pdev->dev;
e2f6bce8 1022 host->dev_timings = pdata->nand_timings;
4774fb0a
VK
1023 host->mode = pdata->mode;
1024
1025 if (host->mode == USE_DMA_ACCESS)
1026 init_completion(&host->dma_access_complete);
1027
6c009ab8
LW
1028 /* Link all private pointers */
1029 mtd = &host->mtd;
1030 nand = &host->nand;
1031 mtd->priv = nand;
1032 nand->priv = host;
1033
1034 host->mtd.owner = THIS_MODULE;
1035 nand->IO_ADDR_R = host->data_va;
1036 nand->IO_ADDR_W = host->data_va;
1037 nand->cmd_ctrl = fsmc_cmd_ctrl;
1038 nand->chip_delay = 30;
1039
1040 nand->ecc.mode = NAND_ECC_HW;
1041 nand->ecc.hwctl = fsmc_enable_hwecc;
1042 nand->ecc.size = 512;
1043 nand->options = pdata->options;
1044 nand->select_chip = fsmc_select_chip;
467e6e7b 1045 nand->badblockbits = 7;
6c009ab8
LW
1046
1047 if (pdata->width == FSMC_NAND_BW16)
1048 nand->options |= NAND_BUSWIDTH_16;
1049
4774fb0a
VK
1050 switch (host->mode) {
1051 case USE_DMA_ACCESS:
1052 dma_cap_zero(mask);
1053 dma_cap_set(DMA_MEMCPY, mask);
1054 host->read_dma_chan = dma_request_channel(mask, filter,
1055 pdata->read_dma_priv);
1056 if (!host->read_dma_chan) {
1057 dev_err(&pdev->dev, "Unable to get read dma channel\n");
1058 goto err_req_read_chnl;
1059 }
1060 host->write_dma_chan = dma_request_channel(mask, filter,
1061 pdata->write_dma_priv);
1062 if (!host->write_dma_chan) {
1063 dev_err(&pdev->dev, "Unable to get write dma channel\n");
1064 goto err_req_write_chnl;
1065 }
1066 nand->read_buf = fsmc_read_buf_dma;
1067 nand->write_buf = fsmc_write_buf_dma;
1068 break;
1069
1070 default:
1071 case USE_WORD_ACCESS:
604e7544
VK
1072 nand->read_buf = fsmc_read_buf;
1073 nand->write_buf = fsmc_write_buf;
4774fb0a 1074 break;
604e7544
VK
1075 }
1076
2a5dbead
VK
1077 fsmc_nand_setup(host->regs_va, host->bank,
1078 nand->options & NAND_BUSWIDTH_16,
e2f6bce8 1079 host->dev_timings);
6c009ab8 1080
593cd871 1081 if (AMBA_REV_BITS(host->pid) >= 8) {
6c009ab8
LW
1082 nand->ecc.read_page = fsmc_read_page_hwecc;
1083 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
753e0139 1084 nand->ecc.correct = fsmc_bch8_correct_data;
6c009ab8 1085 nand->ecc.bytes = 13;
6a918bad 1086 nand->ecc.strength = 8;
6c009ab8
LW
1087 } else {
1088 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
1089 nand->ecc.correct = nand_correct_data;
1090 nand->ecc.bytes = 3;
6a918bad 1091 nand->ecc.strength = 1;
6c009ab8
LW
1092 }
1093
1094 /*
25985edc 1095 * Scan to find existence of the device
6c009ab8
LW
1096 */
1097 if (nand_scan_ident(&host->mtd, 1, NULL)) {
1098 ret = -ENXIO;
1099 dev_err(&pdev->dev, "No NAND Device found!\n");
82b9dbe2 1100 goto err_scan_ident;
6c009ab8
LW
1101 }
1102
593cd871 1103 if (AMBA_REV_BITS(host->pid) >= 8) {
e29ee57b
BY
1104 switch (host->mtd.oobsize) {
1105 case 16:
1106 nand->ecc.layout = &fsmc_ecc4_16_layout;
6c009ab8 1107 host->ecc_place = &fsmc_ecc4_sp_place;
e29ee57b
BY
1108 break;
1109 case 64:
1110 nand->ecc.layout = &fsmc_ecc4_64_layout;
1111 host->ecc_place = &fsmc_ecc4_lp_place;
1112 break;
1113 case 128:
1114 nand->ecc.layout = &fsmc_ecc4_128_layout;
1115 host->ecc_place = &fsmc_ecc4_lp_place;
1116 break;
0c78e93b
AV
1117 case 224:
1118 nand->ecc.layout = &fsmc_ecc4_224_layout;
1119 host->ecc_place = &fsmc_ecc4_lp_place;
1120 break;
e29ee57b
BY
1121 case 256:
1122 nand->ecc.layout = &fsmc_ecc4_256_layout;
6c009ab8 1123 host->ecc_place = &fsmc_ecc4_lp_place;
e29ee57b
BY
1124 break;
1125 default:
1126 printk(KERN_WARNING "No oob scheme defined for "
1127 "oobsize %d\n", mtd->oobsize);
1128 BUG();
6c009ab8
LW
1129 }
1130 } else {
e29ee57b
BY
1131 switch (host->mtd.oobsize) {
1132 case 16:
1133 nand->ecc.layout = &fsmc_ecc1_16_layout;
1134 break;
1135 case 64:
1136 nand->ecc.layout = &fsmc_ecc1_64_layout;
1137 break;
1138 case 128:
1139 nand->ecc.layout = &fsmc_ecc1_128_layout;
1140 break;
1141 default:
1142 printk(KERN_WARNING "No oob scheme defined for "
1143 "oobsize %d\n", mtd->oobsize);
1144 BUG();
1145 }
6c009ab8
LW
1146 }
1147
1148 /* Second stage of scan to fill MTD data-structures */
1149 if (nand_scan_tail(&host->mtd)) {
1150 ret = -ENXIO;
1151 goto err_probe;
1152 }
1153
1154 /*
1155 * The partition information can is accessed by (in the same precedence)
1156 *
1157 * command line through Bootloader,
1158 * platform data,
1159 * default partition information present in driver.
1160 */
6c009ab8 1161 /*
8d3f8bb8 1162 * Check for partition info passed
6c009ab8
LW
1163 */
1164 host->mtd.name = "nand";
eea62819
SR
1165 ppdata.of_node = np;
1166 ret = mtd_device_parse_register(&host->mtd, NULL, &ppdata,
71470324 1167 host->partitions, host->nr_partitions);
99335d00 1168 if (ret)
6c009ab8 1169 goto err_probe;
6c009ab8
LW
1170
1171 platform_set_drvdata(pdev, host);
1172 dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1173 return 0;
1174
1175err_probe:
82b9dbe2 1176err_scan_ident:
4774fb0a
VK
1177 if (host->mode == USE_DMA_ACCESS)
1178 dma_release_channel(host->write_dma_chan);
1179err_req_write_chnl:
1180 if (host->mode == USE_DMA_ACCESS)
1181 dma_release_channel(host->read_dma_chan);
1182err_req_read_chnl:
e25da1c0
VK
1183 clk_disable_unprepare(host->clk);
1184err_clk_prepare_enable:
82b9dbe2 1185 clk_put(host->clk);
6c009ab8
LW
1186 return ret;
1187}
1188
1189/*
1190 * Clean up routine
1191 */
1192static int fsmc_nand_remove(struct platform_device *pdev)
1193{
1194 struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1195
1196 platform_set_drvdata(pdev, NULL);
1197
1198 if (host) {
82e023ab 1199 nand_release(&host->mtd);
4774fb0a
VK
1200
1201 if (host->mode == USE_DMA_ACCESS) {
1202 dma_release_channel(host->write_dma_chan);
1203 dma_release_channel(host->read_dma_chan);
1204 }
e25da1c0 1205 clk_disable_unprepare(host->clk);
6c009ab8 1206 clk_put(host->clk);
6c009ab8 1207 }
82b9dbe2 1208
6c009ab8
LW
1209 return 0;
1210}
1211
1212#ifdef CONFIG_PM
1213static int fsmc_nand_suspend(struct device *dev)
1214{
1215 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1216 if (host)
e25da1c0 1217 clk_disable_unprepare(host->clk);
6c009ab8
LW
1218 return 0;
1219}
1220
1221static int fsmc_nand_resume(struct device *dev)
1222{
1223 struct fsmc_nand_data *host = dev_get_drvdata(dev);
f63acb75 1224 if (host) {
e25da1c0 1225 clk_prepare_enable(host->clk);
f63acb75 1226 fsmc_nand_setup(host->regs_va, host->bank,
e2f6bce8
VK
1227 host->nand.options & NAND_BUSWIDTH_16,
1228 host->dev_timings);
f63acb75 1229 }
6c009ab8
LW
1230 return 0;
1231}
1232
f63acb75 1233static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
6c009ab8
LW
1234#endif
1235
eea62819
SR
1236#ifdef CONFIG_OF
1237static const struct of_device_id fsmc_nand_id_table[] = {
1238 { .compatible = "st,spear600-fsmc-nand" },
1239 {}
1240};
1241MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1242#endif
1243
6c009ab8
LW
1244static struct platform_driver fsmc_nand_driver = {
1245 .remove = fsmc_nand_remove,
1246 .driver = {
1247 .owner = THIS_MODULE,
1248 .name = "fsmc-nand",
eea62819 1249 .of_match_table = of_match_ptr(fsmc_nand_id_table),
6c009ab8
LW
1250#ifdef CONFIG_PM
1251 .pm = &fsmc_nand_pm_ops,
1252#endif
1253 },
1254};
1255
1256static int __init fsmc_nand_init(void)
1257{
1258 return platform_driver_probe(&fsmc_nand_driver,
1259 fsmc_nand_probe);
1260}
1261module_init(fsmc_nand_init);
1262
1263static void __exit fsmc_nand_exit(void)
1264{
1265 platform_driver_unregister(&fsmc_nand_driver);
1266}
1267module_exit(fsmc_nand_exit);
1268
1269MODULE_LICENSE("GPL");
1270MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1271MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");