]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/mtd/nand/gpmi-nand/gpmi-nand.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / nand / gpmi-nand / gpmi-nand.c
CommitLineData
10a2bcae
HS
1/*
2 * Freescale GPMI NAND Flash Driver
3 *
026918e7 4 * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
10a2bcae
HS
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20 */
21#include <linux/clk.h>
22#include <linux/slab.h>
68db0cf1 23#include <linux/sched/task_stack.h>
10a2bcae 24#include <linux/interrupt.h>
df16c86a 25#include <linux/module.h>
10a2bcae 26#include <linux/mtd/partitions.h>
e10db1f0
HS
27#include <linux/of.h>
28#include <linux/of_device.h>
10a2bcae 29#include "gpmi-nand.h"
b8e2931d 30#include "bch-regs.h"
10a2bcae 31
5de0b52e
HS
32/* Resource names for the GPMI NAND driver. */
33#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
34#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
35#define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
5de0b52e 36
10a2bcae
HS
37/* add our owner bbt descriptor */
38static uint8_t scan_ff_pattern[] = { 0xff };
39static struct nand_bbt_descr gpmi_bbt_descr = {
40 .options = 0,
41 .offs = 0,
42 .len = 1,
43 .pattern = scan_ff_pattern
44};
45
7a2b89ac
HS
46/*
47 * We may change the layout if we can get the ECC info from the datasheet,
48 * else we will use all the (page + OOB).
49 */
3f158e47
BB
50static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
51 struct mtd_oob_region *oobregion)
52{
53 struct nand_chip *chip = mtd_to_nand(mtd);
54 struct gpmi_nand_data *this = nand_get_controller_data(chip);
55 struct bch_geometry *geo = &this->bch_geometry;
56
57 if (section)
58 return -ERANGE;
59
60 oobregion->offset = 0;
61 oobregion->length = geo->page_size - mtd->writesize;
62
63 return 0;
64}
65
66static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
67 struct mtd_oob_region *oobregion)
68{
69 struct nand_chip *chip = mtd_to_nand(mtd);
70 struct gpmi_nand_data *this = nand_get_controller_data(chip);
71 struct bch_geometry *geo = &this->bch_geometry;
72
73 if (section)
74 return -ERANGE;
75
76 /* The available oob size we have. */
77 if (geo->page_size < mtd->writesize + mtd->oobsize) {
78 oobregion->offset = geo->page_size - mtd->writesize;
79 oobregion->length = mtd->oobsize - oobregion->offset;
80 }
81
82 return 0;
83}
84
85static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
86 .ecc = gpmi_ooblayout_ecc,
87 .free = gpmi_ooblayout_free,
10a2bcae
HS
88};
89
6189cccb
HS
90static const struct gpmi_devdata gpmi_devdata_imx23 = {
91 .type = IS_MX23,
92 .bch_max_ecc_strength = 20,
93 .max_chain_delay = 16,
94};
95
96static const struct gpmi_devdata gpmi_devdata_imx28 = {
97 .type = IS_MX28,
98 .bch_max_ecc_strength = 20,
99 .max_chain_delay = 16,
100};
101
102static const struct gpmi_devdata gpmi_devdata_imx6q = {
103 .type = IS_MX6Q,
104 .bch_max_ecc_strength = 40,
105 .max_chain_delay = 12,
106};
107
91f5498e
HS
108static const struct gpmi_devdata gpmi_devdata_imx6sx = {
109 .type = IS_MX6SX,
110 .bch_max_ecc_strength = 62,
111 .max_chain_delay = 12,
112};
113
10a2bcae
HS
114static irqreturn_t bch_irq(int irq, void *cookie)
115{
116 struct gpmi_nand_data *this = cookie;
117
118 gpmi_clear_bch(this);
119 complete(&this->bch_done);
120 return IRQ_HANDLED;
121}
122
123/*
124 * Calculate the ECC strength by hand:
125 * E : The ECC strength.
126 * G : the length of Galois Field.
127 * N : The chunk count of per page.
128 * O : the oobsize of the NAND chip.
129 * M : the metasize of per page.
130 *
131 * The formula is :
132 * E * G * N
133 * ------------ <= (O - M)
134 * 8
135 *
136 * So, we get E by:
137 * (O - M) * 8
138 * E <= -------------
139 * G * N
140 */
141static inline int get_ecc_strength(struct gpmi_nand_data *this)
142{
143 struct bch_geometry *geo = &this->bch_geometry;
2a690b25 144 struct mtd_info *mtd = nand_to_mtd(&this->nand);
10a2bcae
HS
145 int ecc_strength;
146
147 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
148 / (geo->gf_len * geo->ecc_chunk_count);
149
150 /* We need the minor even number. */
151 return round_down(ecc_strength, 2);
152}
153
92d0e09a
HS
154static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
155{
156 struct bch_geometry *geo = &this->bch_geometry;
157
158 /* Do the sanity check. */
159 if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
160 /* The mx23/mx28 only support the GF13. */
161 if (geo->gf_len == 14)
162 return false;
92d0e09a 163 }
6189cccb 164 return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
92d0e09a
HS
165}
166
2febcdf8
HS
167/*
168 * If we can get the ECC information from the nand chip, we do not
169 * need to calculate them ourselves.
170 *
171 * We may have available oob space in this case.
172 */
b8b0e465 173static int set_geometry_by_ecc_info(struct gpmi_nand_data *this)
2febcdf8
HS
174{
175 struct bch_geometry *geo = &this->bch_geometry;
2a690b25
BB
176 struct nand_chip *chip = &this->nand;
177 struct mtd_info *mtd = nand_to_mtd(chip);
2febcdf8
HS
178 unsigned int block_mark_bit_offset;
179
180 if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
b8b0e465 181 return -EINVAL;
2febcdf8
HS
182
183 switch (chip->ecc_step_ds) {
184 case SZ_512:
185 geo->gf_len = 13;
186 break;
187 case SZ_1K:
188 geo->gf_len = 14;
189 break;
190 default:
191 dev_err(this->dev,
192 "unsupported nand chip. ecc bits : %d, ecc size : %d\n",
193 chip->ecc_strength_ds, chip->ecc_step_ds);
b8b0e465 194 return -EINVAL;
2febcdf8
HS
195 }
196 geo->ecc_chunk_size = chip->ecc_step_ds;
197 geo->ecc_strength = round_up(chip->ecc_strength_ds, 2);
198 if (!gpmi_check_ecc(this))
b8b0e465 199 return -EINVAL;
2febcdf8
HS
200
201 /* Keep the C >= O */
202 if (geo->ecc_chunk_size < mtd->oobsize) {
203 dev_err(this->dev,
204 "unsupported nand chip. ecc size: %d, oob size : %d\n",
205 chip->ecc_step_ds, mtd->oobsize);
b8b0e465 206 return -EINVAL;
2febcdf8
HS
207 }
208
209 /* The default value, see comment in the legacy_set_geometry(). */
210 geo->metadata_size = 10;
211
212 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
213
214 /*
215 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
216 *
217 * | P |
218 * |<----------------------------------------------------->|
219 * | |
220 * | (Block Mark) |
221 * | P' | | | |
222 * |<-------------------------------------------->| D | | O' |
223 * | |<---->| |<--->|
224 * V V V V V
225 * +---+----------+-+----------+-+----------+-+----------+-+-----+
226 * | M | data |E| data |E| data |E| data |E| |
227 * +---+----------+-+----------+-+----------+-+----------+-+-----+
228 * ^ ^
229 * | O |
230 * |<------------>|
231 * | |
232 *
233 * P : the page size for BCH module.
234 * E : The ECC strength.
235 * G : the length of Galois Field.
236 * N : The chunk count of per page.
237 * M : the metasize of per page.
238 * C : the ecc chunk size, aka the "data" above.
239 * P': the nand chip's page size.
240 * O : the nand chip's oob size.
241 * O': the free oob.
242 *
243 * The formula for P is :
244 *
245 * E * G * N
246 * P = ------------ + P' + M
247 * 8
248 *
249 * The position of block mark moves forward in the ECC-based view
250 * of page, and the delta is:
251 *
252 * E * G * (N - 1)
253 * D = (---------------- + M)
254 * 8
255 *
256 * Please see the comment in legacy_set_geometry().
257 * With the condition C >= O , we still can get same result.
258 * So the bit position of the physical block mark within the ECC-based
259 * view of the page is :
260 * (P' - D) * 8
261 */
262 geo->page_size = mtd->writesize + geo->metadata_size +
263 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
264
2febcdf8
HS
265 geo->payload_size = mtd->writesize;
266
267 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
268 geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
269 + ALIGN(geo->ecc_chunk_count, 4);
270
271 if (!this->swap_block_mark)
b8b0e465 272 return 0;
2febcdf8
HS
273
274 /* For bit swap. */
275 block_mark_bit_offset = mtd->writesize * 8 -
276 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
277 + geo->metadata_size * 8);
278
279 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
280 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
b8b0e465 281 return 0;
2febcdf8
HS
282}
283
284static int legacy_set_geometry(struct gpmi_nand_data *this)
10a2bcae
HS
285{
286 struct bch_geometry *geo = &this->bch_geometry;
2a690b25 287 struct mtd_info *mtd = nand_to_mtd(&this->nand);
10a2bcae
HS
288 unsigned int metadata_size;
289 unsigned int status_size;
290 unsigned int block_mark_bit_offset;
291
292 /*
293 * The size of the metadata can be changed, though we set it to 10
294 * bytes now. But it can't be too large, because we have to save
295 * enough space for BCH.
296 */
297 geo->metadata_size = 10;
298
299 /* The default for the length of Galois Field. */
300 geo->gf_len = 13;
301
9ff16f08 302 /* The default for chunk size. */
10a2bcae 303 geo->ecc_chunk_size = 512;
9ff16f08 304 while (geo->ecc_chunk_size < mtd->oobsize) {
10a2bcae 305 geo->ecc_chunk_size *= 2; /* keep C >= O */
9ff16f08
HS
306 geo->gf_len = 14;
307 }
10a2bcae
HS
308
309 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
310
311 /* We use the same ECC strength for all chunks. */
312 geo->ecc_strength = get_ecc_strength(this);
92d0e09a
HS
313 if (!gpmi_check_ecc(this)) {
314 dev_err(this->dev,
b8b0e465
HX
315 "ecc strength: %d cannot be supported by the controller (%d)\n"
316 "try to use minimum ecc strength that NAND chip required\n",
d8c0372b 317 geo->ecc_strength,
6189cccb 318 this->devdata->bch_max_ecc_strength);
10a2bcae
HS
319 return -EINVAL;
320 }
321
1848a057
HX
322 geo->page_size = mtd->writesize + geo->metadata_size +
323 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
10a2bcae
HS
324 geo->payload_size = mtd->writesize;
325
326 /*
327 * The auxiliary buffer contains the metadata and the ECC status. The
328 * metadata is padded to the nearest 32-bit boundary. The ECC status
329 * contains one byte for every ECC chunk, and is also padded to the
330 * nearest 32-bit boundary.
331 */
332 metadata_size = ALIGN(geo->metadata_size, 4);
333 status_size = ALIGN(geo->ecc_chunk_count, 4);
334
335 geo->auxiliary_size = metadata_size + status_size;
336 geo->auxiliary_status_offset = metadata_size;
337
338 if (!this->swap_block_mark)
339 return 0;
340
341 /*
342 * We need to compute the byte and bit offsets of
343 * the physical block mark within the ECC-based view of the page.
344 *
345 * NAND chip with 2K page shows below:
346 * (Block Mark)
347 * | |
348 * | D |
349 * |<---->|
350 * V V
351 * +---+----------+-+----------+-+----------+-+----------+-+
352 * | M | data |E| data |E| data |E| data |E|
353 * +---+----------+-+----------+-+----------+-+----------+-+
354 *
355 * The position of block mark moves forward in the ECC-based view
356 * of page, and the delta is:
357 *
358 * E * G * (N - 1)
359 * D = (---------------- + M)
360 * 8
361 *
362 * With the formula to compute the ECC strength, and the condition
363 * : C >= O (C is the ecc chunk size)
364 *
365 * It's easy to deduce to the following result:
366 *
367 * E * G (O - M) C - M C - M
368 * ----------- <= ------- <= -------- < ---------
369 * 8 N N (N - 1)
370 *
371 * So, we get:
372 *
373 * E * G * (N - 1)
374 * D = (---------------- + M) < C
375 * 8
376 *
377 * The above inequality means the position of block mark
378 * within the ECC-based view of the page is still in the data chunk,
379 * and it's NOT in the ECC bits of the chunk.
380 *
381 * Use the following to compute the bit position of the
382 * physical block mark within the ECC-based view of the page:
383 * (page_size - D) * 8
384 *
385 * --Huang Shijie
386 */
387 block_mark_bit_offset = mtd->writesize * 8 -
388 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
389 + geo->metadata_size * 8);
390
391 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
392 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
393 return 0;
394}
395
2febcdf8
HS
396int common_nfc_set_geometry(struct gpmi_nand_data *this)
397{
b8b0e465
HX
398 if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
399 || legacy_set_geometry(this))
400 return set_geometry_by_ecc_info(this);
401
402 return 0;
2febcdf8
HS
403}
404
10a2bcae
HS
405struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
406{
a7c12d01
HS
407 /* We use the DMA channel 0 to access all the nand chips. */
408 return this->dma_chans[0];
10a2bcae
HS
409}
410
411/* Can we use the upper's buffer directly for DMA? */
412void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
413{
414 struct scatterlist *sgl = &this->data_sgl;
415 int ret;
416
10a2bcae 417 /* first try to map the upper buffer directly */
0ff76a92
HS
418 if (virt_addr_valid(this->upper_buf) &&
419 !object_is_on_stack(this->upper_buf)) {
420 sg_init_one(sgl, this->upper_buf, this->upper_len);
10a2bcae
HS
421 ret = dma_map_sg(this->dev, sgl, 1, dr);
422 if (ret == 0)
0ff76a92 423 goto map_fail;
10a2bcae 424
0ff76a92
HS
425 this->direct_dma_map_ok = true;
426 return;
10a2bcae 427 }
0ff76a92
HS
428
429map_fail:
430 /* We have to use our own DMA buffer. */
431 sg_init_one(sgl, this->data_buffer_dma, this->upper_len);
432
433 if (dr == DMA_TO_DEVICE)
434 memcpy(this->data_buffer_dma, this->upper_buf, this->upper_len);
435
436 dma_map_sg(this->dev, sgl, 1, dr);
437
438 this->direct_dma_map_ok = false;
10a2bcae
HS
439}
440
441/* This will be called after the DMA operation is finished. */
442static void dma_irq_callback(void *param)
443{
444 struct gpmi_nand_data *this = param;
445 struct completion *dma_c = &this->dma_done;
446
10a2bcae
HS
447 switch (this->dma_type) {
448 case DMA_FOR_COMMAND:
449 dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
450 break;
451
452 case DMA_FOR_READ_DATA:
453 dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
454 if (this->direct_dma_map_ok == false)
455 memcpy(this->upper_buf, this->data_buffer_dma,
456 this->upper_len);
457 break;
458
459 case DMA_FOR_WRITE_DATA:
460 dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
461 break;
462
463 case DMA_FOR_READ_ECC_PAGE:
464 case DMA_FOR_WRITE_ECC_PAGE:
465 /* We have to wait the BCH interrupt to finish. */
466 break;
467
468 default:
da40c16a 469 dev_err(this->dev, "in wrong DMA operation.\n");
10a2bcae 470 }
7b3d2fb9
HS
471
472 complete(dma_c);
10a2bcae
HS
473}
474
475int start_dma_without_bch_irq(struct gpmi_nand_data *this,
476 struct dma_async_tx_descriptor *desc)
477{
478 struct completion *dma_c = &this->dma_done;
706d5b28 479 unsigned long timeout;
10a2bcae
HS
480
481 init_completion(dma_c);
482
483 desc->callback = dma_irq_callback;
484 desc->callback_param = this;
485 dmaengine_submit(desc);
d04525ed 486 dma_async_issue_pending(get_dma_chan(this));
10a2bcae
HS
487
488 /* Wait for the interrupt from the DMA block. */
706d5b28
NMG
489 timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
490 if (!timeout) {
da40c16a
HS
491 dev_err(this->dev, "DMA timeout, last DMA :%d\n",
492 this->last_dma_type);
10a2bcae
HS
493 gpmi_dump_info(this);
494 return -ETIMEDOUT;
495 }
496 return 0;
497}
498
499/*
500 * This function is used in BCH reading or BCH writing pages.
501 * It will wait for the BCH interrupt as long as ONE second.
502 * Actually, we must wait for two interrupts :
503 * [1] firstly the DMA interrupt and
504 * [2] secondly the BCH interrupt.
505 */
506int start_dma_with_bch_irq(struct gpmi_nand_data *this,
507 struct dma_async_tx_descriptor *desc)
508{
509 struct completion *bch_c = &this->bch_done;
706d5b28 510 unsigned long timeout;
10a2bcae
HS
511
512 /* Prepare to receive an interrupt from the BCH block. */
513 init_completion(bch_c);
514
515 /* start the DMA */
516 start_dma_without_bch_irq(this, desc);
517
518 /* Wait for the interrupt from the BCH block. */
706d5b28
NMG
519 timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
520 if (!timeout) {
da40c16a
HS
521 dev_err(this->dev, "BCH timeout, last DMA :%d\n",
522 this->last_dma_type);
10a2bcae
HS
523 gpmi_dump_info(this);
524 return -ETIMEDOUT;
525 }
526 return 0;
527}
528
d8929942
GKH
529static int acquire_register_block(struct gpmi_nand_data *this,
530 const char *res_name)
10a2bcae
HS
531{
532 struct platform_device *pdev = this->pdev;
533 struct resources *res = &this->resources;
534 struct resource *r;
513d57e1 535 void __iomem *p;
10a2bcae
HS
536
537 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
87a9d698
HS
538 p = devm_ioremap_resource(&pdev->dev, r);
539 if (IS_ERR(p))
540 return PTR_ERR(p);
10a2bcae
HS
541
542 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
543 res->gpmi_regs = p;
544 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
545 res->bch_regs = p;
546 else
da40c16a 547 dev_err(this->dev, "unknown resource name : %s\n", res_name);
10a2bcae
HS
548
549 return 0;
550}
551
d8929942 552static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
10a2bcae
HS
553{
554 struct platform_device *pdev = this->pdev;
10a2bcae
HS
555 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
556 struct resource *r;
557 int err;
558
559 r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
560 if (!r) {
da40c16a 561 dev_err(this->dev, "Can't get resource for %s\n", res_name);
52a073bd 562 return -ENODEV;
10a2bcae
HS
563 }
564
3cb2c1ed
HS
565 err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
566 if (err)
567 dev_err(this->dev, "error requesting BCH IRQ\n");
10a2bcae 568
3cb2c1ed 569 return err;
10a2bcae
HS
570}
571
10a2bcae
HS
572static void release_dma_channels(struct gpmi_nand_data *this)
573{
574 unsigned int i;
575 for (i = 0; i < DMA_CHANS; i++)
576 if (this->dma_chans[i]) {
577 dma_release_channel(this->dma_chans[i]);
578 this->dma_chans[i] = NULL;
579 }
580}
581
06f25510 582static int acquire_dma_channels(struct gpmi_nand_data *this)
10a2bcae
HS
583{
584 struct platform_device *pdev = this->pdev;
e10db1f0 585 struct dma_chan *dma_chan;
10a2bcae 586
e10db1f0 587 /* request dma channel */
5fac0e18 588 dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
e10db1f0 589 if (!dma_chan) {
da40c16a 590 dev_err(this->dev, "Failed to request DMA channel.\n");
e10db1f0 591 goto acquire_err;
10a2bcae
HS
592 }
593
e10db1f0 594 this->dma_chans[0] = dma_chan;
10a2bcae
HS
595 return 0;
596
597acquire_err:
10a2bcae
HS
598 release_dma_channels(this);
599 return -EINVAL;
600}
601
ff506172
HS
602static char *extra_clks_for_mx6q[GPMI_CLK_MAX] = {
603 "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
604};
605
06f25510 606static int gpmi_get_clks(struct gpmi_nand_data *this)
ff506172
HS
607{
608 struct resources *r = &this->resources;
609 char **extra_clks = NULL;
610 struct clk *clk;
d1cb556c 611 int err, i;
ff506172
HS
612
613 /* The main clock is stored in the first. */
554cbc50 614 r->clock[0] = devm_clk_get(this->dev, "gpmi_io");
d1cb556c
MM
615 if (IS_ERR(r->clock[0])) {
616 err = PTR_ERR(r->clock[0]);
ff506172 617 goto err_clock;
d1cb556c 618 }
ff506172
HS
619
620 /* Get extra clocks */
91f5498e 621 if (GPMI_IS_MX6(this))
ff506172
HS
622 extra_clks = extra_clks_for_mx6q;
623 if (!extra_clks)
624 return 0;
625
626 for (i = 1; i < GPMI_CLK_MAX; i++) {
627 if (extra_clks[i - 1] == NULL)
628 break;
629
554cbc50 630 clk = devm_clk_get(this->dev, extra_clks[i - 1]);
d1cb556c
MM
631 if (IS_ERR(clk)) {
632 err = PTR_ERR(clk);
ff506172 633 goto err_clock;
d1cb556c 634 }
ff506172
HS
635
636 r->clock[i] = clk;
637 }
638
91f5498e 639 if (GPMI_IS_MX6(this))
ff506172 640 /*
91f5498e 641 * Set the default value for the gpmi clock.
ff506172 642 *
e1ca95e3
HS
643 * If you want to use the ONFI nand which is in the
644 * Synchronous Mode, you should change the clock as you need.
ff506172
HS
645 */
646 clk_set_rate(r->clock[0], 22000000);
e1ca95e3 647
ff506172
HS
648 return 0;
649
650err_clock:
651 dev_dbg(this->dev, "failed in finding the clocks.\n");
d1cb556c 652 return err;
ff506172
HS
653}
654
06f25510 655static int acquire_resources(struct gpmi_nand_data *this)
10a2bcae 656{
10a2bcae
HS
657 int ret;
658
659 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
660 if (ret)
661 goto exit_regs;
662
663 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
664 if (ret)
665 goto exit_regs;
666
667 ret = acquire_bch_irq(this, bch_irq);
668 if (ret)
669 goto exit_regs;
670
671 ret = acquire_dma_channels(this);
672 if (ret)
3cb2c1ed 673 goto exit_regs;
10a2bcae 674
ff506172
HS
675 ret = gpmi_get_clks(this);
676 if (ret)
10a2bcae 677 goto exit_clock;
10a2bcae
HS
678 return 0;
679
680exit_clock:
681 release_dma_channels(this);
10a2bcae 682exit_regs:
10a2bcae
HS
683 return ret;
684}
685
686static void release_resources(struct gpmi_nand_data *this)
687{
10a2bcae
HS
688 release_dma_channels(this);
689}
690
06f25510 691static int init_hardware(struct gpmi_nand_data *this)
10a2bcae
HS
692{
693 int ret;
694
695 /*
696 * This structure contains the "safe" GPMI timing that should succeed
697 * with any NAND Flash device
698 * (although, with less-than-optimal performance).
699 */
700 struct nand_timing safe_timing = {
701 .data_setup_in_ns = 80,
702 .data_hold_in_ns = 60,
703 .address_setup_in_ns = 25,
704 .gpmi_sample_delay_in_ns = 6,
705 .tREA_in_ns = -1,
706 .tRLOH_in_ns = -1,
707 .tRHOH_in_ns = -1,
708 };
709
710 /* Initialize the hardwares. */
711 ret = gpmi_init(this);
712 if (ret)
713 return ret;
714
715 this->timing = safe_timing;
716 return 0;
717}
718
719static int read_page_prepare(struct gpmi_nand_data *this,
720 void *destination, unsigned length,
721 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
722 void **use_virt, dma_addr_t *use_phys)
723{
724 struct device *dev = this->dev;
725
726 if (virt_addr_valid(destination)) {
727 dma_addr_t dest_phys;
728
729 dest_phys = dma_map_single(dev, destination,
730 length, DMA_FROM_DEVICE);
731 if (dma_mapping_error(dev, dest_phys)) {
732 if (alt_size < length) {
da40c16a 733 dev_err(dev, "Alternate buffer is too small\n");
10a2bcae
HS
734 return -ENOMEM;
735 }
736 goto map_failed;
737 }
738 *use_virt = destination;
739 *use_phys = dest_phys;
740 this->direct_dma_map_ok = true;
741 return 0;
742 }
743
744map_failed:
745 *use_virt = alt_virt;
746 *use_phys = alt_phys;
747 this->direct_dma_map_ok = false;
748 return 0;
749}
750
751static inline void read_page_end(struct gpmi_nand_data *this,
752 void *destination, unsigned length,
753 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
754 void *used_virt, dma_addr_t used_phys)
755{
756 if (this->direct_dma_map_ok)
757 dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
758}
759
760static inline void read_page_swap_end(struct gpmi_nand_data *this,
761 void *destination, unsigned length,
762 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
763 void *used_virt, dma_addr_t used_phys)
764{
765 if (!this->direct_dma_map_ok)
766 memcpy(destination, alt_virt, length);
767}
768
769static int send_page_prepare(struct gpmi_nand_data *this,
770 const void *source, unsigned length,
771 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
772 const void **use_virt, dma_addr_t *use_phys)
773{
774 struct device *dev = this->dev;
775
776 if (virt_addr_valid(source)) {
777 dma_addr_t source_phys;
778
779 source_phys = dma_map_single(dev, (void *)source, length,
780 DMA_TO_DEVICE);
781 if (dma_mapping_error(dev, source_phys)) {
782 if (alt_size < length) {
da40c16a 783 dev_err(dev, "Alternate buffer is too small\n");
10a2bcae
HS
784 return -ENOMEM;
785 }
786 goto map_failed;
787 }
788 *use_virt = source;
789 *use_phys = source_phys;
790 return 0;
791 }
792map_failed:
793 /*
794 * Copy the content of the source buffer into the alternate
795 * buffer and set up the return values accordingly.
796 */
797 memcpy(alt_virt, source, length);
798
799 *use_virt = alt_virt;
800 *use_phys = alt_phys;
801 return 0;
802}
803
804static void send_page_end(struct gpmi_nand_data *this,
805 const void *source, unsigned length,
806 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
807 const void *used_virt, dma_addr_t used_phys)
808{
809 struct device *dev = this->dev;
810 if (used_virt == source)
811 dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
812}
813
814static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
815{
816 struct device *dev = this->dev;
817
818 if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
819 dma_free_coherent(dev, this->page_buffer_size,
820 this->page_buffer_virt,
821 this->page_buffer_phys);
822 kfree(this->cmd_buffer);
823 kfree(this->data_buffer_dma);
da3bc42c 824 kfree(this->raw_buffer);
10a2bcae
HS
825
826 this->cmd_buffer = NULL;
827 this->data_buffer_dma = NULL;
2cd395d1 828 this->raw_buffer = NULL;
10a2bcae
HS
829 this->page_buffer_virt = NULL;
830 this->page_buffer_size = 0;
831}
832
833/* Allocate the DMA buffers */
834static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
835{
836 struct bch_geometry *geo = &this->bch_geometry;
837 struct device *dev = this->dev;
2a690b25 838 struct mtd_info *mtd = nand_to_mtd(&this->nand);
10a2bcae
HS
839
840 /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
513d57e1 841 this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
10a2bcae
HS
842 if (this->cmd_buffer == NULL)
843 goto error_alloc;
844
06f216c8
HS
845 /*
846 * [2] Allocate a read/write data buffer.
847 * The gpmi_alloc_dma_buffer can be called twice.
848 * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
849 * is called before the nand_scan_ident; and we allocate a buffer
850 * of the real NAND page size when the gpmi_alloc_dma_buffer is
851 * called after the nand_scan_ident.
852 */
853 this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
854 GFP_DMA | GFP_KERNEL);
10a2bcae
HS
855 if (this->data_buffer_dma == NULL)
856 goto error_alloc;
857
858 /*
859 * [3] Allocate the page buffer.
860 *
861 * Both the payload buffer and the auxiliary buffer must appear on
862 * 32-bit boundaries. We presume the size of the payload buffer is a
863 * power of two and is much larger than four, which guarantees the
864 * auxiliary buffer will appear on a 32-bit boundary.
865 */
866 this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
867 this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
868 &this->page_buffer_phys, GFP_DMA);
869 if (!this->page_buffer_virt)
870 goto error_alloc;
871
da3bc42c
BB
872 this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
873 if (!this->raw_buffer)
874 goto error_alloc;
10a2bcae
HS
875
876 /* Slice up the page buffer. */
877 this->payload_virt = this->page_buffer_virt;
878 this->payload_phys = this->page_buffer_phys;
879 this->auxiliary_virt = this->payload_virt + geo->payload_size;
880 this->auxiliary_phys = this->payload_phys + geo->payload_size;
881 return 0;
882
883error_alloc:
884 gpmi_free_dma_buffer(this);
10a2bcae
HS
885 return -ENOMEM;
886}
887
888static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
889{
4bd4ebcc 890 struct nand_chip *chip = mtd_to_nand(mtd);
d699ed25 891 struct gpmi_nand_data *this = nand_get_controller_data(chip);
10a2bcae
HS
892 int ret;
893
894 /*
895 * Every operation begins with a command byte and a series of zero or
896 * more address bytes. These are distinguished by either the Address
897 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
898 * asserted. When MTD is ready to execute the command, it will deassert
899 * both latch enables.
900 *
901 * Rather than run a separate DMA operation for every single byte, we
902 * queue them up and run a single DMA operation for the entire series
903 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
904 */
905 if ((ctrl & (NAND_ALE | NAND_CLE))) {
906 if (data != NAND_CMD_NONE)
907 this->cmd_buffer[this->command_length++] = data;
908 return;
909 }
910
911 if (!this->command_length)
912 return;
913
914 ret = gpmi_send_command(this);
915 if (ret)
da40c16a
HS
916 dev_err(this->dev, "Chip: %u, Error %d\n",
917 this->current_chip, ret);
10a2bcae
HS
918
919 this->command_length = 0;
920}
921
922static int gpmi_dev_ready(struct mtd_info *mtd)
923{
4bd4ebcc 924 struct nand_chip *chip = mtd_to_nand(mtd);
d699ed25 925 struct gpmi_nand_data *this = nand_get_controller_data(chip);
10a2bcae
HS
926
927 return gpmi_is_ready(this, this->current_chip);
928}
929
930static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
931{
4bd4ebcc 932 struct nand_chip *chip = mtd_to_nand(mtd);
d699ed25 933 struct gpmi_nand_data *this = nand_get_controller_data(chip);
10a2bcae
HS
934
935 if ((this->current_chip < 0) && (chipnr >= 0))
936 gpmi_begin(this);
937 else if ((this->current_chip >= 0) && (chipnr < 0))
938 gpmi_end(this);
939
940 this->current_chip = chipnr;
941}
942
943static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
944{
4bd4ebcc 945 struct nand_chip *chip = mtd_to_nand(mtd);
d699ed25 946 struct gpmi_nand_data *this = nand_get_controller_data(chip);
10a2bcae 947
c2325962 948 dev_dbg(this->dev, "len is %d\n", len);
10a2bcae
HS
949 this->upper_buf = buf;
950 this->upper_len = len;
951
952 gpmi_read_data(this);
953}
954
955static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
956{
4bd4ebcc 957 struct nand_chip *chip = mtd_to_nand(mtd);
d699ed25 958 struct gpmi_nand_data *this = nand_get_controller_data(chip);
10a2bcae 959
c2325962 960 dev_dbg(this->dev, "len is %d\n", len);
10a2bcae
HS
961 this->upper_buf = (uint8_t *)buf;
962 this->upper_len = len;
963
964 gpmi_send_data(this);
965}
966
967static uint8_t gpmi_read_byte(struct mtd_info *mtd)
968{
4bd4ebcc 969 struct nand_chip *chip = mtd_to_nand(mtd);
d699ed25 970 struct gpmi_nand_data *this = nand_get_controller_data(chip);
10a2bcae
HS
971 uint8_t *buf = this->data_buffer_dma;
972
973 gpmi_read_buf(mtd, buf, 1);
974 return buf[0];
975}
976
977/*
978 * Handles block mark swapping.
979 * It can be called in swapping the block mark, or swapping it back,
980 * because the the operations are the same.
981 */
982static void block_mark_swapping(struct gpmi_nand_data *this,
983 void *payload, void *auxiliary)
984{
985 struct bch_geometry *nfc_geo = &this->bch_geometry;
986 unsigned char *p;
987 unsigned char *a;
988 unsigned int bit;
989 unsigned char mask;
990 unsigned char from_data;
991 unsigned char from_oob;
992
993 if (!this->swap_block_mark)
994 return;
995
996 /*
997 * If control arrives here, we're swapping. Make some convenience
998 * variables.
999 */
1000 bit = nfc_geo->block_mark_bit_offset;
1001 p = payload + nfc_geo->block_mark_byte_offset;
1002 a = auxiliary;
1003
1004 /*
1005 * Get the byte from the data area that overlays the block mark. Since
1006 * the ECC engine applies its own view to the bits in the page, the
1007 * physical block mark won't (in general) appear on a byte boundary in
1008 * the data.
1009 */
1010 from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1011
1012 /* Get the byte from the OOB. */
1013 from_oob = a[0];
1014
1015 /* Swap them. */
1016 a[0] = from_data;
1017
1018 mask = (0x1 << bit) - 1;
1019 p[0] = (p[0] & mask) | (from_oob << bit);
1020
1021 mask = ~0 << bit;
1022 p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1023}
1024
1025static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1026 uint8_t *buf, int oob_required, int page)
10a2bcae 1027{
d699ed25 1028 struct gpmi_nand_data *this = nand_get_controller_data(chip);
10a2bcae
HS
1029 struct bch_geometry *nfc_geo = &this->bch_geometry;
1030 void *payload_virt;
1031 dma_addr_t payload_phys;
1032 void *auxiliary_virt;
1033 dma_addr_t auxiliary_phys;
1034 unsigned int i;
1035 unsigned char *status;
b23b746c 1036 unsigned int max_bitflips = 0;
10a2bcae
HS
1037 int ret;
1038
c2325962 1039 dev_dbg(this->dev, "page number is : %d\n", page);
4a57d670 1040 ret = read_page_prepare(this, buf, nfc_geo->payload_size,
10a2bcae
HS
1041 this->payload_virt, this->payload_phys,
1042 nfc_geo->payload_size,
1043 &payload_virt, &payload_phys);
1044 if (ret) {
da40c16a 1045 dev_err(this->dev, "Inadequate DMA buffer\n");
10a2bcae
HS
1046 ret = -ENOMEM;
1047 return ret;
1048 }
1049 auxiliary_virt = this->auxiliary_virt;
1050 auxiliary_phys = this->auxiliary_phys;
1051
1052 /* go! */
1053 ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
4a57d670 1054 read_page_end(this, buf, nfc_geo->payload_size,
10a2bcae
HS
1055 this->payload_virt, this->payload_phys,
1056 nfc_geo->payload_size,
1057 payload_virt, payload_phys);
1058 if (ret) {
da40c16a 1059 dev_err(this->dev, "Error in ECC-based read: %d\n", ret);
b23b746c 1060 return ret;
10a2bcae
HS
1061 }
1062
1063 /* handle the block mark swapping */
1064 block_mark_swapping(this, payload_virt, auxiliary_virt);
1065
1066 /* Loop over status bytes, accumulating ECC status. */
b23b746c 1067 status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
10a2bcae 1068
bd2e778c
MP
1069 read_page_swap_end(this, buf, nfc_geo->payload_size,
1070 this->payload_virt, this->payload_phys,
1071 nfc_geo->payload_size,
1072 payload_virt, payload_phys);
1073
10a2bcae
HS
1074 for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
1075 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1076 continue;
1077
1078 if (*status == STATUS_UNCORRECTABLE) {
bd2e778c
MP
1079 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1080 u8 *eccbuf = this->raw_buffer;
1081 int offset, bitoffset;
1082 int eccbytes;
1083 int flips;
1084
1085 /* Read ECC bytes into our internal raw_buffer */
1086 offset = nfc_geo->metadata_size * 8;
1087 offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
1088 offset -= eccbits;
1089 bitoffset = offset % 8;
1090 eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1091 offset /= 8;
1092 eccbytes -= offset;
1093 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
1094 chip->read_buf(mtd, eccbuf, eccbytes);
1095
1096 /*
1097 * ECC data are not byte aligned and we may have
1098 * in-band data in the first and last byte of
1099 * eccbuf. Set non-eccbits to one so that
1100 * nand_check_erased_ecc_chunk() does not count them
1101 * as bitflips.
1102 */
1103 if (bitoffset)
1104 eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1105
1106 bitoffset = (bitoffset + eccbits) % 8;
1107 if (bitoffset)
1108 eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1109
1110 /*
1111 * The ECC hardware has an uncorrectable ECC status
1112 * code in case we have bitflips in an erased page. As
1113 * nothing was written into this subpage the ECC is
1114 * obviously wrong and we can not trust it. We assume
1115 * at this point that we are reading an erased page and
1116 * try to correct the bitflips in buffer up to
1117 * ecc_strength bitflips. If this is a page with random
1118 * data, we exceed this number of bitflips and have a
1119 * ECC failure. Otherwise we use the corrected buffer.
1120 */
1121 if (i == 0) {
1122 /* The first block includes metadata */
1123 flips = nand_check_erased_ecc_chunk(
1124 buf + i * nfc_geo->ecc_chunk_size,
1125 nfc_geo->ecc_chunk_size,
1126 eccbuf, eccbytes,
1127 auxiliary_virt,
1128 nfc_geo->metadata_size,
1129 nfc_geo->ecc_strength);
1130 } else {
1131 flips = nand_check_erased_ecc_chunk(
1132 buf + i * nfc_geo->ecc_chunk_size,
1133 nfc_geo->ecc_chunk_size,
1134 eccbuf, eccbytes,
1135 NULL, 0,
1136 nfc_geo->ecc_strength);
1137 }
1138
1139 if (flips > 0) {
1140 max_bitflips = max_t(unsigned int, max_bitflips,
1141 flips);
1142 mtd->ecc_stats.corrected += flips;
1143 continue;
1144 }
1145
b23b746c 1146 mtd->ecc_stats.failed++;
10a2bcae
HS
1147 continue;
1148 }
bd2e778c 1149
b23b746c
ZS
1150 mtd->ecc_stats.corrected += *status;
1151 max_bitflips = max_t(unsigned int, max_bitflips, *status);
10a2bcae
HS
1152 }
1153
7725cc85
BN
1154 if (oob_required) {
1155 /*
1156 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1157 * for details about our policy for delivering the OOB.
1158 *
1159 * We fill the caller's buffer with set bits, and then copy the
1160 * block mark to th caller's buffer. Note that, if block mark
1161 * swapping was necessary, it has already been done, so we can
1162 * rely on the first byte of the auxiliary buffer to contain
1163 * the block mark.
1164 */
1165 memset(chip->oob_poi, ~0, mtd->oobsize);
1166 chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
7725cc85 1167 }
6023813a 1168
b23b746c 1169 return max_bitflips;
10a2bcae
HS
1170}
1171
b8e2931d
HS
1172/* Fake a virtual small page for the subpage read */
1173static int gpmi_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1174 uint32_t offs, uint32_t len, uint8_t *buf, int page)
1175{
d699ed25 1176 struct gpmi_nand_data *this = nand_get_controller_data(chip);
b8e2931d
HS
1177 void __iomem *bch_regs = this->resources.bch_regs;
1178 struct bch_geometry old_geo = this->bch_geometry;
1179 struct bch_geometry *geo = &this->bch_geometry;
1180 int size = chip->ecc.size; /* ECC chunk size */
1181 int meta, n, page_size;
1182 u32 r1_old, r2_old, r1_new, r2_new;
1183 unsigned int max_bitflips;
1184 int first, last, marker_pos;
1185 int ecc_parity_size;
1186 int col = 0;
2a500afe 1187 int old_swap_block_mark = this->swap_block_mark;
b8e2931d
HS
1188
1189 /* The size of ECC parity */
1190 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1191
1192 /* Align it with the chunk size */
1193 first = offs / size;
1194 last = (offs + len - 1) / size;
1195
2a500afe
LW
1196 if (this->swap_block_mark) {
1197 /*
1198 * Find the chunk which contains the Block Marker.
1199 * If this chunk is in the range of [first, last],
1200 * we have to read out the whole page.
1201 * Why? since we had swapped the data at the position of Block
1202 * Marker to the metadata which is bound with the chunk 0.
1203 */
1204 marker_pos = geo->block_mark_byte_offset / size;
1205 if (last >= marker_pos && first <= marker_pos) {
1206 dev_dbg(this->dev,
1207 "page:%d, first:%d, last:%d, marker at:%d\n",
b8e2931d 1208 page, first, last, marker_pos);
2a500afe
LW
1209 return gpmi_ecc_read_page(mtd, chip, buf, 0, page);
1210 }
b8e2931d
HS
1211 }
1212
1213 meta = geo->metadata_size;
1214 if (first) {
1215 col = meta + (size + ecc_parity_size) * first;
1216 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, col, -1);
1217
1218 meta = 0;
1219 buf = buf + first * size;
1220 }
1221
1222 /* Save the old environment */
1223 r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0);
1224 r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1);
1225
1226 /* change the BCH registers and bch_geometry{} */
1227 n = last - first + 1;
1228 page_size = meta + (size + ecc_parity_size) * n;
1229
1230 r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS |
1231 BM_BCH_FLASH0LAYOUT0_META_SIZE);
1232 r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1)
1233 | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta);
1234 writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0);
1235
1236 r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE;
1237 r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size);
1238 writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1);
1239
1240 geo->ecc_chunk_count = n;
1241 geo->payload_size = n * size;
1242 geo->page_size = page_size;
1243 geo->auxiliary_status_offset = ALIGN(meta, 4);
1244
1245 dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1246 page, offs, len, col, first, n, page_size);
1247
1248 /* Read the subpage now */
1249 this->swap_block_mark = false;
1250 max_bitflips = gpmi_ecc_read_page(mtd, chip, buf, 0, page);
1251
1252 /* Restore */
1253 writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0);
1254 writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1);
1255 this->bch_geometry = old_geo;
2a500afe 1256 this->swap_block_mark = old_swap_block_mark;
b8e2931d
HS
1257
1258 return max_bitflips;
1259}
1260
fdbad98d 1261static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9 1262 const uint8_t *buf, int oob_required, int page)
10a2bcae 1263{
d699ed25 1264 struct gpmi_nand_data *this = nand_get_controller_data(chip);
10a2bcae
HS
1265 struct bch_geometry *nfc_geo = &this->bch_geometry;
1266 const void *payload_virt;
1267 dma_addr_t payload_phys;
1268 const void *auxiliary_virt;
1269 dma_addr_t auxiliary_phys;
1270 int ret;
1271
c2325962 1272 dev_dbg(this->dev, "ecc write page.\n");
10a2bcae
HS
1273 if (this->swap_block_mark) {
1274 /*
1275 * If control arrives here, we're doing block mark swapping.
1276 * Since we can't modify the caller's buffers, we must copy them
1277 * into our own.
1278 */
1279 memcpy(this->payload_virt, buf, mtd->writesize);
1280 payload_virt = this->payload_virt;
1281 payload_phys = this->payload_phys;
1282
1283 memcpy(this->auxiliary_virt, chip->oob_poi,
1284 nfc_geo->auxiliary_size);
1285 auxiliary_virt = this->auxiliary_virt;
1286 auxiliary_phys = this->auxiliary_phys;
1287
1288 /* Handle block mark swapping. */
1289 block_mark_swapping(this,
6a760966 1290 (void *)payload_virt, (void *)auxiliary_virt);
10a2bcae
HS
1291 } else {
1292 /*
1293 * If control arrives here, we're not doing block mark swapping,
1294 * so we can to try and use the caller's buffers.
1295 */
1296 ret = send_page_prepare(this,
1297 buf, mtd->writesize,
1298 this->payload_virt, this->payload_phys,
1299 nfc_geo->payload_size,
1300 &payload_virt, &payload_phys);
1301 if (ret) {
da40c16a 1302 dev_err(this->dev, "Inadequate payload DMA buffer\n");
fdbad98d 1303 return 0;
10a2bcae
HS
1304 }
1305
1306 ret = send_page_prepare(this,
1307 chip->oob_poi, mtd->oobsize,
1308 this->auxiliary_virt, this->auxiliary_phys,
1309 nfc_geo->auxiliary_size,
1310 &auxiliary_virt, &auxiliary_phys);
1311 if (ret) {
da40c16a 1312 dev_err(this->dev, "Inadequate auxiliary DMA buffer\n");
10a2bcae
HS
1313 goto exit_auxiliary;
1314 }
1315 }
1316
1317 /* Ask the NFC. */
1318 ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
1319 if (ret)
da40c16a 1320 dev_err(this->dev, "Error in ECC-based write: %d\n", ret);
10a2bcae
HS
1321
1322 if (!this->swap_block_mark) {
1323 send_page_end(this, chip->oob_poi, mtd->oobsize,
1324 this->auxiliary_virt, this->auxiliary_phys,
1325 nfc_geo->auxiliary_size,
1326 auxiliary_virt, auxiliary_phys);
1327exit_auxiliary:
1328 send_page_end(this, buf, mtd->writesize,
1329 this->payload_virt, this->payload_phys,
1330 nfc_geo->payload_size,
1331 payload_virt, payload_phys);
1332 }
fdbad98d
JW
1333
1334 return 0;
10a2bcae
HS
1335}
1336
1337/*
1338 * There are several places in this driver where we have to handle the OOB and
1339 * block marks. This is the function where things are the most complicated, so
1340 * this is where we try to explain it all. All the other places refer back to
1341 * here.
1342 *
1343 * These are the rules, in order of decreasing importance:
1344 *
1345 * 1) Nothing the caller does can be allowed to imperil the block mark.
1346 *
1347 * 2) In read operations, the first byte of the OOB we return must reflect the
1348 * true state of the block mark, no matter where that block mark appears in
1349 * the physical page.
1350 *
1351 * 3) ECC-based read operations return an OOB full of set bits (since we never
1352 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1353 * return).
1354 *
1355 * 4) "Raw" read operations return a direct view of the physical bytes in the
1356 * page, using the conventional definition of which bytes are data and which
1357 * are OOB. This gives the caller a way to see the actual, physical bytes
1358 * in the page, without the distortions applied by our ECC engine.
1359 *
1360 *
1361 * What we do for this specific read operation depends on two questions:
1362 *
1363 * 1) Are we doing a "raw" read, or an ECC-based read?
1364 *
1365 * 2) Are we using block mark swapping or transcription?
1366 *
1367 * There are four cases, illustrated by the following Karnaugh map:
1368 *
1369 * | Raw | ECC-based |
1370 * -------------+-------------------------+-------------------------+
1371 * | Read the conventional | |
1372 * | OOB at the end of the | |
1373 * Swapping | page and return it. It | |
1374 * | contains exactly what | |
1375 * | we want. | Read the block mark and |
1376 * -------------+-------------------------+ return it in a buffer |
1377 * | Read the conventional | full of set bits. |
1378 * | OOB at the end of the | |
1379 * | page and also the block | |
1380 * Transcribing | mark in the metadata. | |
1381 * | Copy the block mark | |
1382 * | into the first byte of | |
1383 * | the OOB. | |
1384 * -------------+-------------------------+-------------------------+
1385 *
1386 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1387 * giving an accurate view of the actual, physical bytes in the page (we're
1388 * overwriting the block mark). That's OK because it's more important to follow
1389 * rule #2.
1390 *
1391 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1392 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1393 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1394 * ECC-based or raw view of the page is implicit in which function it calls
1395 * (there is a similar pair of ECC-based/raw functions for writing).
10a2bcae
HS
1396 */
1397static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1398 int page)
10a2bcae 1399{
d699ed25 1400 struct gpmi_nand_data *this = nand_get_controller_data(chip);
10a2bcae 1401
c2325962 1402 dev_dbg(this->dev, "page number is %d\n", page);
10a2bcae
HS
1403 /* clear the OOB buffer */
1404 memset(chip->oob_poi, ~0, mtd->oobsize);
1405
1406 /* Read out the conventional OOB. */
1407 chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1408 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1409
1410 /*
1411 * Now, we want to make sure the block mark is correct. In the
2a500afe
LW
1412 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1413 * Otherwise, we need to explicitly read it.
10a2bcae 1414 */
2a500afe 1415 if (GPMI_IS_MX23(this)) {
10a2bcae
HS
1416 /* Read the block mark into the first byte of the OOB buffer. */
1417 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1418 chip->oob_poi[0] = chip->read_byte(mtd);
1419 }
1420
5c2ffb11 1421 return 0;
10a2bcae
HS
1422}
1423
1424static int
1425gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
1426{
191a8294 1427 struct mtd_oob_region of = { };
7a2b89ac
HS
1428 int status = 0;
1429
1430 /* Do we have available oob area? */
191a8294
BB
1431 mtd_ooblayout_free(mtd, 0, &of);
1432 if (!of.length)
7a2b89ac
HS
1433 return -EPERM;
1434
1435 if (!nand_is_slc(chip))
1436 return -EPERM;
1437
191a8294
BB
1438 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize + of.offset, page);
1439 chip->write_buf(mtd, chip->oob_poi + of.offset, of.length);
7a2b89ac
HS
1440 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1441
1442 status = chip->waitfunc(mtd, chip);
1443 return status & NAND_STATUS_FAIL ? -EIO : 0;
10a2bcae
HS
1444}
1445
da3bc42c
BB
1446/*
1447 * This function reads a NAND page without involving the ECC engine (no HW
1448 * ECC correction).
1449 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1450 * inline (interleaved with payload DATA), and do not align data chunk on
1451 * byte boundaries.
1452 * We thus need to take care moving the payload data and ECC bits stored in the
1453 * page into the provided buffers, which is why we're using gpmi_copy_bits.
1454 *
1455 * See set_geometry_by_ecc_info inline comments to have a full description
1456 * of the layout used by the GPMI controller.
1457 */
1458static int gpmi_ecc_read_page_raw(struct mtd_info *mtd,
1459 struct nand_chip *chip, uint8_t *buf,
1460 int oob_required, int page)
1461{
d699ed25 1462 struct gpmi_nand_data *this = nand_get_controller_data(chip);
da3bc42c
BB
1463 struct bch_geometry *nfc_geo = &this->bch_geometry;
1464 int eccsize = nfc_geo->ecc_chunk_size;
1465 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1466 u8 *tmp_buf = this->raw_buffer;
1467 size_t src_bit_off;
1468 size_t oob_bit_off;
1469 size_t oob_byte_off;
1470 uint8_t *oob = chip->oob_poi;
1471 int step;
1472
1473 chip->read_buf(mtd, tmp_buf,
1474 mtd->writesize + mtd->oobsize);
1475
1476 /*
1477 * If required, swap the bad block marker and the data stored in the
1478 * metadata section, so that we don't wrongly consider a block as bad.
1479 *
1480 * See the layout description for a detailed explanation on why this
1481 * is needed.
1482 */
1483 if (this->swap_block_mark) {
1484 u8 swap = tmp_buf[0];
1485
1486 tmp_buf[0] = tmp_buf[mtd->writesize];
1487 tmp_buf[mtd->writesize] = swap;
1488 }
1489
1490 /*
1491 * Copy the metadata section into the oob buffer (this section is
1492 * guaranteed to be aligned on a byte boundary).
1493 */
1494 if (oob_required)
1495 memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1496
1497 oob_bit_off = nfc_geo->metadata_size * 8;
1498 src_bit_off = oob_bit_off;
1499
1500 /* Extract interleaved payload data and ECC bits */
1501 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1502 if (buf)
1503 gpmi_copy_bits(buf, step * eccsize * 8,
1504 tmp_buf, src_bit_off,
1505 eccsize * 8);
1506 src_bit_off += eccsize * 8;
1507
1508 /* Align last ECC block to align a byte boundary */
1509 if (step == nfc_geo->ecc_chunk_count - 1 &&
1510 (oob_bit_off + eccbits) % 8)
1511 eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1512
1513 if (oob_required)
1514 gpmi_copy_bits(oob, oob_bit_off,
1515 tmp_buf, src_bit_off,
1516 eccbits);
1517
1518 src_bit_off += eccbits;
1519 oob_bit_off += eccbits;
1520 }
1521
1522 if (oob_required) {
1523 oob_byte_off = oob_bit_off / 8;
1524
1525 if (oob_byte_off < mtd->oobsize)
1526 memcpy(oob + oob_byte_off,
1527 tmp_buf + mtd->writesize + oob_byte_off,
1528 mtd->oobsize - oob_byte_off);
1529 }
1530
1531 return 0;
1532}
1533
1534/*
1535 * This function writes a NAND page without involving the ECC engine (no HW
1536 * ECC generation).
1537 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1538 * inline (interleaved with payload DATA), and do not align data chunk on
1539 * byte boundaries.
1540 * We thus need to take care moving the OOB area at the right place in the
1541 * final page, which is why we're using gpmi_copy_bits.
1542 *
1543 * See set_geometry_by_ecc_info inline comments to have a full description
1544 * of the layout used by the GPMI controller.
1545 */
1546static int gpmi_ecc_write_page_raw(struct mtd_info *mtd,
1547 struct nand_chip *chip,
1548 const uint8_t *buf,
45aaeff9 1549 int oob_required, int page)
da3bc42c 1550{
d699ed25 1551 struct gpmi_nand_data *this = nand_get_controller_data(chip);
da3bc42c
BB
1552 struct bch_geometry *nfc_geo = &this->bch_geometry;
1553 int eccsize = nfc_geo->ecc_chunk_size;
1554 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1555 u8 *tmp_buf = this->raw_buffer;
1556 uint8_t *oob = chip->oob_poi;
1557 size_t dst_bit_off;
1558 size_t oob_bit_off;
1559 size_t oob_byte_off;
1560 int step;
1561
1562 /*
1563 * Initialize all bits to 1 in case we don't have a buffer for the
1564 * payload or oob data in order to leave unspecified bits of data
1565 * to their initial state.
1566 */
1567 if (!buf || !oob_required)
1568 memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1569
1570 /*
1571 * First copy the metadata section (stored in oob buffer) at the
1572 * beginning of the page, as imposed by the GPMI layout.
1573 */
1574 memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1575 oob_bit_off = nfc_geo->metadata_size * 8;
1576 dst_bit_off = oob_bit_off;
1577
1578 /* Interleave payload data and ECC bits */
1579 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1580 if (buf)
1581 gpmi_copy_bits(tmp_buf, dst_bit_off,
1582 buf, step * eccsize * 8, eccsize * 8);
1583 dst_bit_off += eccsize * 8;
1584
1585 /* Align last ECC block to align a byte boundary */
1586 if (step == nfc_geo->ecc_chunk_count - 1 &&
1587 (oob_bit_off + eccbits) % 8)
1588 eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1589
1590 if (oob_required)
1591 gpmi_copy_bits(tmp_buf, dst_bit_off,
1592 oob, oob_bit_off, eccbits);
1593
1594 dst_bit_off += eccbits;
1595 oob_bit_off += eccbits;
1596 }
1597
1598 oob_byte_off = oob_bit_off / 8;
1599
1600 if (oob_required && oob_byte_off < mtd->oobsize)
1601 memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1602 oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1603
1604 /*
1605 * If required, swap the bad block marker and the first byte of the
1606 * metadata section, so that we don't modify the bad block marker.
1607 *
1608 * See the layout description for a detailed explanation on why this
1609 * is needed.
1610 */
1611 if (this->swap_block_mark) {
1612 u8 swap = tmp_buf[0];
1613
1614 tmp_buf[0] = tmp_buf[mtd->writesize];
1615 tmp_buf[mtd->writesize] = swap;
1616 }
1617
1618 chip->write_buf(mtd, tmp_buf, mtd->writesize + mtd->oobsize);
1619
1620 return 0;
1621}
1622
7ca94e07
BB
1623static int gpmi_ecc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1624 int page)
1625{
1626 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1627
1628 return gpmi_ecc_read_page_raw(mtd, chip, NULL, 1, page);
1629}
1630
1631static int gpmi_ecc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1632 int page)
1633{
1634 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0, page);
1635
45aaeff9 1636 return gpmi_ecc_write_page_raw(mtd, chip, NULL, 1, page);
7ca94e07
BB
1637}
1638
10a2bcae
HS
1639static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
1640{
4bd4ebcc 1641 struct nand_chip *chip = mtd_to_nand(mtd);
d699ed25 1642 struct gpmi_nand_data *this = nand_get_controller_data(chip);
5a0edb25 1643 int ret = 0;
10a2bcae
HS
1644 uint8_t *block_mark;
1645 int column, page, status, chipnr;
1646
5a0edb25
BN
1647 chipnr = (int)(ofs >> chip->chip_shift);
1648 chip->select_chip(mtd, chipnr);
10a2bcae 1649
2a500afe 1650 column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
10a2bcae 1651
5a0edb25
BN
1652 /* Write the block mark. */
1653 block_mark = this->data_buffer_dma;
1654 block_mark[0] = 0; /* bad block marker */
10a2bcae 1655
5a0edb25
BN
1656 /* Shift to get page */
1657 page = (int)(ofs >> chip->page_shift);
10a2bcae 1658
5a0edb25
BN
1659 chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
1660 chip->write_buf(mtd, block_mark, 1);
1661 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
10a2bcae 1662
5a0edb25
BN
1663 status = chip->waitfunc(mtd, chip);
1664 if (status & NAND_STATUS_FAIL)
1665 ret = -EIO;
10a2bcae 1666
5a0edb25 1667 chip->select_chip(mtd, -1);
10a2bcae
HS
1668
1669 return ret;
1670}
1671
a78da287 1672static int nand_boot_set_geometry(struct gpmi_nand_data *this)
10a2bcae
HS
1673{
1674 struct boot_rom_geometry *geometry = &this->rom_geometry;
1675
1676 /*
1677 * Set the boot block stride size.
1678 *
1679 * In principle, we should be reading this from the OTP bits, since
1680 * that's where the ROM is going to get it. In fact, we don't have any
1681 * way to read the OTP bits, so we go with the default and hope for the
1682 * best.
1683 */
1684 geometry->stride_size_in_pages = 64;
1685
1686 /*
1687 * Set the search area stride exponent.
1688 *
1689 * In principle, we should be reading this from the OTP bits, since
1690 * that's where the ROM is going to get it. In fact, we don't have any
1691 * way to read the OTP bits, so we go with the default and hope for the
1692 * best.
1693 */
1694 geometry->search_area_stride_exponent = 2;
1695 return 0;
1696}
1697
1698static const char *fingerprint = "STMP";
a78da287 1699static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
10a2bcae
HS
1700{
1701 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1702 struct device *dev = this->dev;
10a2bcae 1703 struct nand_chip *chip = &this->nand;
2a690b25 1704 struct mtd_info *mtd = nand_to_mtd(chip);
10a2bcae
HS
1705 unsigned int search_area_size_in_strides;
1706 unsigned int stride;
1707 unsigned int page;
10a2bcae
HS
1708 uint8_t *buffer = chip->buffers->databuf;
1709 int saved_chip_number;
1710 int found_an_ncb_fingerprint = false;
1711
1712 /* Compute the number of strides in a search area. */
1713 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1714
1715 saved_chip_number = this->current_chip;
1716 chip->select_chip(mtd, 0);
1717
1718 /*
1719 * Loop through the first search area, looking for the NCB fingerprint.
1720 */
1721 dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1722
1723 for (stride = 0; stride < search_area_size_in_strides; stride++) {
513d57e1 1724 /* Compute the page addresses. */
10a2bcae 1725 page = stride * rom_geo->stride_size_in_pages;
10a2bcae
HS
1726
1727 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1728
1729 /*
1730 * Read the NCB fingerprint. The fingerprint is four bytes long
1731 * and starts in the 12th byte of the page.
1732 */
1733 chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
1734 chip->read_buf(mtd, buffer, strlen(fingerprint));
1735
1736 /* Look for the fingerprint. */
1737 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1738 found_an_ncb_fingerprint = true;
1739 break;
1740 }
1741
1742 }
1743
1744 chip->select_chip(mtd, saved_chip_number);
1745
1746 if (found_an_ncb_fingerprint)
1747 dev_dbg(dev, "\tFound a fingerprint\n");
1748 else
1749 dev_dbg(dev, "\tNo fingerprint found\n");
1750 return found_an_ncb_fingerprint;
1751}
1752
1753/* Writes a transcription stamp. */
a78da287 1754static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
10a2bcae
HS
1755{
1756 struct device *dev = this->dev;
1757 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
10a2bcae 1758 struct nand_chip *chip = &this->nand;
2a690b25 1759 struct mtd_info *mtd = nand_to_mtd(chip);
10a2bcae
HS
1760 unsigned int block_size_in_pages;
1761 unsigned int search_area_size_in_strides;
1762 unsigned int search_area_size_in_pages;
1763 unsigned int search_area_size_in_blocks;
1764 unsigned int block;
1765 unsigned int stride;
1766 unsigned int page;
10a2bcae
HS
1767 uint8_t *buffer = chip->buffers->databuf;
1768 int saved_chip_number;
1769 int status;
1770
1771 /* Compute the search area geometry. */
1772 block_size_in_pages = mtd->erasesize / mtd->writesize;
1773 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1774 search_area_size_in_pages = search_area_size_in_strides *
1775 rom_geo->stride_size_in_pages;
1776 search_area_size_in_blocks =
1777 (search_area_size_in_pages + (block_size_in_pages - 1)) /
1778 block_size_in_pages;
1779
1780 dev_dbg(dev, "Search Area Geometry :\n");
1781 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1782 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1783 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
1784
1785 /* Select chip 0. */
1786 saved_chip_number = this->current_chip;
1787 chip->select_chip(mtd, 0);
1788
1789 /* Loop over blocks in the first search area, erasing them. */
1790 dev_dbg(dev, "Erasing the search area...\n");
1791
1792 for (block = 0; block < search_area_size_in_blocks; block++) {
1793 /* Compute the page address. */
1794 page = block * block_size_in_pages;
1795
1796 /* Erase this block. */
1797 dev_dbg(dev, "\tErasing block 0x%x\n", block);
1798 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1799 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1800
1801 /* Wait for the erase to finish. */
1802 status = chip->waitfunc(mtd, chip);
1803 if (status & NAND_STATUS_FAIL)
1804 dev_err(dev, "[%s] Erase failed.\n", __func__);
1805 }
1806
1807 /* Write the NCB fingerprint into the page buffer. */
1808 memset(buffer, ~0, mtd->writesize);
10a2bcae
HS
1809 memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1810
1811 /* Loop through the first search area, writing NCB fingerprints. */
1812 dev_dbg(dev, "Writing NCB fingerprints...\n");
1813 for (stride = 0; stride < search_area_size_in_strides; stride++) {
513d57e1 1814 /* Compute the page addresses. */
10a2bcae 1815 page = stride * rom_geo->stride_size_in_pages;
10a2bcae
HS
1816
1817 /* Write the first page of the current stride. */
1818 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1819 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
45aaeff9 1820 chip->ecc.write_page_raw(mtd, chip, buffer, 0, page);
10a2bcae
HS
1821 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1822
1823 /* Wait for the write to finish. */
1824 status = chip->waitfunc(mtd, chip);
1825 if (status & NAND_STATUS_FAIL)
1826 dev_err(dev, "[%s] Write failed.\n", __func__);
1827 }
1828
1829 /* Deselect chip 0. */
1830 chip->select_chip(mtd, saved_chip_number);
1831 return 0;
1832}
1833
a78da287 1834static int mx23_boot_init(struct gpmi_nand_data *this)
10a2bcae
HS
1835{
1836 struct device *dev = this->dev;
1837 struct nand_chip *chip = &this->nand;
2a690b25 1838 struct mtd_info *mtd = nand_to_mtd(chip);
10a2bcae
HS
1839 unsigned int block_count;
1840 unsigned int block;
1841 int chipnr;
1842 int page;
1843 loff_t byte;
1844 uint8_t block_mark;
1845 int ret = 0;
1846
1847 /*
1848 * If control arrives here, we can't use block mark swapping, which
1849 * means we're forced to use transcription. First, scan for the
1850 * transcription stamp. If we find it, then we don't have to do
1851 * anything -- the block marks are already transcribed.
1852 */
1853 if (mx23_check_transcription_stamp(this))
1854 return 0;
1855
1856 /*
1857 * If control arrives here, we couldn't find a transcription stamp, so
1858 * so we presume the block marks are in the conventional location.
1859 */
1860 dev_dbg(dev, "Transcribing bad block marks...\n");
1861
1862 /* Compute the number of blocks in the entire medium. */
1863 block_count = chip->chipsize >> chip->phys_erase_shift;
1864
1865 /*
1866 * Loop over all the blocks in the medium, transcribing block marks as
1867 * we go.
1868 */
1869 for (block = 0; block < block_count; block++) {
1870 /*
1871 * Compute the chip, page and byte addresses for this block's
1872 * conventional mark.
1873 */
1874 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1875 page = block << (chip->phys_erase_shift - chip->page_shift);
1876 byte = block << chip->phys_erase_shift;
1877
1878 /* Send the command to read the conventional block mark. */
1879 chip->select_chip(mtd, chipnr);
1880 chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1881 block_mark = chip->read_byte(mtd);
1882 chip->select_chip(mtd, -1);
1883
1884 /*
1885 * Check if the block is marked bad. If so, we need to mark it
1886 * again, but this time the result will be a mark in the
1887 * location where we transcribe block marks.
1888 */
1889 if (block_mark != 0xff) {
1890 dev_dbg(dev, "Transcribing mark in block %u\n", block);
1891 ret = chip->block_markbad(mtd, byte);
1892 if (ret)
d8c0372b
LW
1893 dev_err(dev,
1894 "Failed to mark block bad with ret %d\n",
1895 ret);
10a2bcae
HS
1896 }
1897 }
1898
1899 /* Write the stamp that indicates we've transcribed the block marks. */
1900 mx23_write_transcription_stamp(this);
1901 return 0;
1902}
1903
a78da287 1904static int nand_boot_init(struct gpmi_nand_data *this)
10a2bcae
HS
1905{
1906 nand_boot_set_geometry(this);
1907
1908 /* This is ROM arch-specific initilization before the BBT scanning. */
1909 if (GPMI_IS_MX23(this))
1910 return mx23_boot_init(this);
1911 return 0;
1912}
1913
a78da287 1914static int gpmi_set_geometry(struct gpmi_nand_data *this)
10a2bcae
HS
1915{
1916 int ret;
1917
1918 /* Free the temporary DMA memory for reading ID. */
1919 gpmi_free_dma_buffer(this);
1920
1921 /* Set up the NFC geometry which is used by BCH. */
1922 ret = bch_set_geometry(this);
1923 if (ret) {
da40c16a 1924 dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
10a2bcae
HS
1925 return ret;
1926 }
1927
1928 /* Alloc the new DMA buffers according to the pagesize and oobsize */
1929 return gpmi_alloc_dma_buffer(this);
1930}
1931
ccce4177 1932static void gpmi_nand_exit(struct gpmi_nand_data *this)
f720e7ce 1933{
2a690b25 1934 nand_release(nand_to_mtd(&this->nand));
f720e7ce
HS
1935 gpmi_free_dma_buffer(this);
1936}
1937
1938static int gpmi_init_last(struct gpmi_nand_data *this)
10a2bcae 1939{
2a690b25 1940 struct nand_chip *chip = &this->nand;
3f158e47 1941 struct mtd_info *mtd = nand_to_mtd(chip);
f720e7ce
HS
1942 struct nand_ecc_ctrl *ecc = &chip->ecc;
1943 struct bch_geometry *bch_geo = &this->bch_geometry;
10a2bcae
HS
1944 int ret;
1945
d7364a27
HS
1946 /* Set up the medium geometry */
1947 ret = gpmi_set_geometry(this);
10a2bcae
HS
1948 if (ret)
1949 return ret;
1950
f720e7ce
HS
1951 /* Init the nand_ecc_ctrl{} */
1952 ecc->read_page = gpmi_ecc_read_page;
1953 ecc->write_page = gpmi_ecc_write_page;
1954 ecc->read_oob = gpmi_ecc_read_oob;
1955 ecc->write_oob = gpmi_ecc_write_oob;
da3bc42c
BB
1956 ecc->read_page_raw = gpmi_ecc_read_page_raw;
1957 ecc->write_page_raw = gpmi_ecc_write_page_raw;
7ca94e07
BB
1958 ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
1959 ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
f720e7ce
HS
1960 ecc->mode = NAND_ECC_HW;
1961 ecc->size = bch_geo->ecc_chunk_size;
1962 ecc->strength = bch_geo->ecc_strength;
3f158e47 1963 mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
f720e7ce 1964
b8e2931d
HS
1965 /*
1966 * We only enable the subpage read when:
1967 * (1) the chip is imx6, and
1968 * (2) the size of the ECC parity is byte aligned.
1969 */
91f5498e 1970 if (GPMI_IS_MX6(this) &&
b8e2931d
HS
1971 ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
1972 ecc->read_subpage = gpmi_ecc_read_subpage;
1973 chip->options |= NAND_SUBPAGE_READ;
1974 }
1975
995fbbf5
HS
1976 /*
1977 * Can we enable the extra features? such as EDO or Sync mode.
1978 *
1979 * We do not check the return value now. That's means if we fail in
1980 * enable the extra features, we still can run in the normal way.
1981 */
1982 gpmi_extra_init(this);
1983
f720e7ce 1984 return 0;
10a2bcae
HS
1985}
1986
ccce4177 1987static int gpmi_nand_init(struct gpmi_nand_data *this)
10a2bcae 1988{
10a2bcae 1989 struct nand_chip *chip = &this->nand;
2a690b25 1990 struct mtd_info *mtd = nand_to_mtd(chip);
10a2bcae
HS
1991 int ret;
1992
1993 /* init current chip */
1994 this->current_chip = -1;
1995
1996 /* init the MTD data structures */
10a2bcae 1997 mtd->name = "gpmi-nand";
4dc67b1d 1998 mtd->dev.parent = this->dev;
10a2bcae
HS
1999
2000 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
d699ed25 2001 nand_set_controller_data(chip, this);
a61ae81a 2002 nand_set_flash_node(chip, this->pdev->dev.of_node);
10a2bcae
HS
2003 chip->select_chip = gpmi_select_chip;
2004 chip->cmd_ctrl = gpmi_cmd_ctrl;
2005 chip->dev_ready = gpmi_dev_ready;
2006 chip->read_byte = gpmi_read_byte;
2007 chip->read_buf = gpmi_read_buf;
2008 chip->write_buf = gpmi_write_buf;
10a2bcae
HS
2009 chip->badblock_pattern = &gpmi_bbt_descr;
2010 chip->block_markbad = gpmi_block_markbad;
2011 chip->options |= NAND_NO_SUBPAGE_WRITE;
2a500afe
LW
2012
2013 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
2014 this->swap_block_mark = !GPMI_IS_MX23(this);
2015
f720e7ce
HS
2016 /*
2017 * Allocate a temporary DMA buffer for reading ID in the
2018 * nand_scan_ident().
2019 */
10a2bcae
HS
2020 this->bch_geometry.payload_size = 1024;
2021 this->bch_geometry.auxiliary_size = 128;
2022 ret = gpmi_alloc_dma_buffer(this);
2023 if (ret)
2024 goto err_out;
2025
91f5498e 2026 ret = nand_scan_ident(mtd, GPMI_IS_MX6(this) ? 2 : 1, NULL);
f720e7ce
HS
2027 if (ret)
2028 goto err_out;
2029
f05f6a10
BB
2030 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2031 chip->bbt_options |= NAND_BBT_NO_OOB;
2032
2033 if (of_property_read_bool(this->dev->of_node,
2034 "fsl,no-blockmark-swap"))
2035 this->swap_block_mark = false;
2036 }
2037 dev_dbg(this->dev, "Blockmark swapping %sabled\n",
2038 this->swap_block_mark ? "en" : "dis");
2039
f720e7ce
HS
2040 ret = gpmi_init_last(this);
2041 if (ret)
2042 goto err_out;
2043
885d71e5 2044 chip->options |= NAND_SKIP_BBTSCAN;
f720e7ce
HS
2045 ret = nand_scan_tail(mtd);
2046 if (ret)
10a2bcae 2047 goto err_out;
10a2bcae 2048
885d71e5
HS
2049 ret = nand_boot_init(this);
2050 if (ret)
2051 goto err_out;
899b834a
FE
2052 ret = chip->scan_bbt(mtd);
2053 if (ret)
2054 goto err_out;
885d71e5 2055
a61ae81a 2056 ret = mtd_device_register(mtd, NULL, 0);
10a2bcae
HS
2057 if (ret)
2058 goto err_out;
2059 return 0;
2060
2061err_out:
ccce4177 2062 gpmi_nand_exit(this);
10a2bcae
HS
2063 return ret;
2064}
2065
e10db1f0
HS
2066static const struct of_device_id gpmi_nand_id_table[] = {
2067 {
2068 .compatible = "fsl,imx23-gpmi-nand",
6a760966 2069 .data = &gpmi_devdata_imx23,
e10db1f0
HS
2070 }, {
2071 .compatible = "fsl,imx28-gpmi-nand",
6a760966 2072 .data = &gpmi_devdata_imx28,
9013bb40
HS
2073 }, {
2074 .compatible = "fsl,imx6q-gpmi-nand",
6a760966 2075 .data = &gpmi_devdata_imx6q,
91f5498e
HS
2076 }, {
2077 .compatible = "fsl,imx6sx-gpmi-nand",
6a760966 2078 .data = &gpmi_devdata_imx6sx,
e10db1f0
HS
2079 }, {}
2080};
2081MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
2082
06f25510 2083static int gpmi_nand_probe(struct platform_device *pdev)
10a2bcae 2084{
10a2bcae 2085 struct gpmi_nand_data *this;
e10db1f0 2086 const struct of_device_id *of_id;
10a2bcae
HS
2087 int ret;
2088
6189cccb
HS
2089 this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
2090 if (!this)
2091 return -ENOMEM;
2092
e10db1f0
HS
2093 of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
2094 if (of_id) {
6189cccb 2095 this->devdata = of_id->data;
e10db1f0 2096 } else {
da40c16a 2097 dev_err(&pdev->dev, "Failed to find the right device id.\n");
52a073bd 2098 return -ENODEV;
e10db1f0
HS
2099 }
2100
10a2bcae
HS
2101 platform_set_drvdata(pdev, this);
2102 this->pdev = pdev;
2103 this->dev = &pdev->dev;
10a2bcae
HS
2104
2105 ret = acquire_resources(this);
2106 if (ret)
2107 goto exit_acquire_resources;
2108
2109 ret = init_hardware(this);
2110 if (ret)
2111 goto exit_nfc_init;
2112
ccce4177 2113 ret = gpmi_nand_init(this);
10a2bcae
HS
2114 if (ret)
2115 goto exit_nfc_init;
2116
490e280a
FE
2117 dev_info(this->dev, "driver registered.\n");
2118
10a2bcae
HS
2119 return 0;
2120
2121exit_nfc_init:
2122 release_resources(this);
10a2bcae 2123exit_acquire_resources:
490e280a 2124
10a2bcae
HS
2125 return ret;
2126}
2127
810b7e06 2128static int gpmi_nand_remove(struct platform_device *pdev)
10a2bcae
HS
2129{
2130 struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2131
ccce4177 2132 gpmi_nand_exit(this);
10a2bcae 2133 release_resources(this);
10a2bcae
HS
2134 return 0;
2135}
2136
026918e7
HS
2137#ifdef CONFIG_PM_SLEEP
2138static int gpmi_pm_suspend(struct device *dev)
2139{
2140 struct gpmi_nand_data *this = dev_get_drvdata(dev);
2141
2142 release_dma_channels(this);
2143 return 0;
2144}
2145
2146static int gpmi_pm_resume(struct device *dev)
2147{
2148 struct gpmi_nand_data *this = dev_get_drvdata(dev);
2149 int ret;
2150
2151 ret = acquire_dma_channels(this);
2152 if (ret < 0)
2153 return ret;
2154
2155 /* re-init the GPMI registers */
2156 this->flags &= ~GPMI_TIMING_INIT_OK;
2157 ret = gpmi_init(this);
2158 if (ret) {
2159 dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2160 return ret;
2161 }
2162
2163 /* re-init the BCH registers */
2164 ret = bch_set_geometry(this);
2165 if (ret) {
2166 dev_err(this->dev, "Error setting BCH : %d\n", ret);
2167 return ret;
2168 }
2169
2170 /* re-init others */
2171 gpmi_extra_init(this);
2172
2173 return 0;
2174}
2175#endif /* CONFIG_PM_SLEEP */
2176
2177static const struct dev_pm_ops gpmi_pm_ops = {
2178 SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2179};
2180
10a2bcae
HS
2181static struct platform_driver gpmi_nand_driver = {
2182 .driver = {
2183 .name = "gpmi-nand",
026918e7 2184 .pm = &gpmi_pm_ops,
e10db1f0 2185 .of_match_table = gpmi_nand_id_table,
10a2bcae
HS
2186 },
2187 .probe = gpmi_nand_probe,
5153b88c 2188 .remove = gpmi_nand_remove,
10a2bcae 2189};
490e280a 2190module_platform_driver(gpmi_nand_driver);
10a2bcae
HS
2191
2192MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2193MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2194MODULE_LICENSE("GPL");