]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/mtd/nand/nand_base.c
mtd: nand: erase block before marking bad
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
61b03bd7 8 *
1da177e4 9 * Additional technical information is available on
8b2b403c 10 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 11 *
1da177e4 12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 14 *
ace4dfee 15 * Credits:
61b03bd7
TG
16 * David Woodhouse for adding multichip support
17 *
1da177e4
LT
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
ace4dfee 21 * TODO:
1da177e4
LT
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 24 * if we have HW ECC support.
1da177e4
LT
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
c0b8ba7b 27 * BBT table is not serialized, has to be fixed
1da177e4 28 *
1da177e4
LT
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
32 *
33 */
34
552d9205 35#include <linux/module.h>
1da177e4
LT
36#include <linux/delay.h>
37#include <linux/errno.h>
7aa65bfd 38#include <linux/err.h>
1da177e4
LT
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <linux/mtd/mtd.h>
43#include <linux/mtd/nand.h>
44#include <linux/mtd/nand_ecc.h>
193bd400 45#include <linux/mtd/nand_bch.h>
1da177e4
LT
46#include <linux/interrupt.h>
47#include <linux/bitops.h>
8fe833c1 48#include <linux/leds.h>
7351d3a5 49#include <linux/io.h>
1da177e4 50#include <linux/mtd/partitions.h>
1da177e4
LT
51
52/* Define default oob placement schemes for large and small page devices */
5bd34c09 53static struct nand_ecclayout nand_oob_8 = {
1da177e4
LT
54 .eccbytes = 3,
55 .eccpos = {0, 1, 2},
5bd34c09
TG
56 .oobfree = {
57 {.offset = 3,
58 .length = 2},
59 {.offset = 6,
f8ac0414 60 .length = 2} }
1da177e4
LT
61};
62
5bd34c09 63static struct nand_ecclayout nand_oob_16 = {
1da177e4
LT
64 .eccbytes = 6,
65 .eccpos = {0, 1, 2, 3, 6, 7},
5bd34c09
TG
66 .oobfree = {
67 {.offset = 8,
f8ac0414 68 . length = 8} }
1da177e4
LT
69};
70
5bd34c09 71static struct nand_ecclayout nand_oob_64 = {
1da177e4
LT
72 .eccbytes = 24,
73 .eccpos = {
e0c7d767
DW
74 40, 41, 42, 43, 44, 45, 46, 47,
75 48, 49, 50, 51, 52, 53, 54, 55,
76 56, 57, 58, 59, 60, 61, 62, 63},
5bd34c09
TG
77 .oobfree = {
78 {.offset = 2,
f8ac0414 79 .length = 38} }
1da177e4
LT
80};
81
81ec5364
TG
82static struct nand_ecclayout nand_oob_128 = {
83 .eccbytes = 48,
84 .eccpos = {
85 80, 81, 82, 83, 84, 85, 86, 87,
86 88, 89, 90, 91, 92, 93, 94, 95,
87 96, 97, 98, 99, 100, 101, 102, 103,
88 104, 105, 106, 107, 108, 109, 110, 111,
89 112, 113, 114, 115, 116, 117, 118, 119,
90 120, 121, 122, 123, 124, 125, 126, 127},
91 .oobfree = {
92 {.offset = 2,
f8ac0414 93 .length = 78} }
81ec5364
TG
94};
95
ace4dfee 96static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
2c0a2bed 97 int new_state);
1da177e4 98
8593fbc6
TG
99static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
100 struct mtd_oob_ops *ops);
101
d470a97c 102/*
8e87d782 103 * For devices which display every fart in the system on a separate LED. Is
d470a97c
TG
104 * compiled away when LED support is disabled.
105 */
106DEFINE_LED_TRIGGER(nand_led_trigger);
107
6fe5a6ac
VS
108static int check_offs_len(struct mtd_info *mtd,
109 loff_t ofs, uint64_t len)
110{
111 struct nand_chip *chip = mtd->priv;
112 int ret = 0;
113
114 /* Start address must align on block boundary */
115 if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
289c0522 116 pr_debug("%s: unaligned address\n", __func__);
6fe5a6ac
VS
117 ret = -EINVAL;
118 }
119
120 /* Length must align on block boundary */
121 if (len & ((1 << chip->phys_erase_shift) - 1)) {
289c0522 122 pr_debug("%s: length not block aligned\n", __func__);
6fe5a6ac
VS
123 ret = -EINVAL;
124 }
125
126 /* Do not allow past end of device */
127 if (ofs + len > mtd->size) {
289c0522 128 pr_debug("%s: past end of device\n", __func__);
6fe5a6ac
VS
129 ret = -EINVAL;
130 }
131
132 return ret;
133}
134
1da177e4
LT
135/**
136 * nand_release_device - [GENERIC] release chip
8b6e50c9 137 * @mtd: MTD device structure
61b03bd7 138 *
8b6e50c9 139 * Deselect, release chip lock and wake up anyone waiting on the device.
1da177e4 140 */
e0c7d767 141static void nand_release_device(struct mtd_info *mtd)
1da177e4 142{
ace4dfee 143 struct nand_chip *chip = mtd->priv;
1da177e4
LT
144
145 /* De-select the NAND device */
ace4dfee 146 chip->select_chip(mtd, -1);
0dfc6246 147
a36ed299 148 /* Release the controller and the chip */
ace4dfee
TG
149 spin_lock(&chip->controller->lock);
150 chip->controller->active = NULL;
151 chip->state = FL_READY;
152 wake_up(&chip->controller->wq);
153 spin_unlock(&chip->controller->lock);
1da177e4
LT
154}
155
156/**
157 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 158 * @mtd: MTD device structure
1da177e4 159 *
7854d3f7 160 * Default read function for 8bit buswidth
1da177e4 161 */
58dd8f2b 162static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 163{
ace4dfee
TG
164 struct nand_chip *chip = mtd->priv;
165 return readb(chip->IO_ADDR_R);
1da177e4
LT
166}
167
1da177e4
LT
168/**
169 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
7854d3f7 170 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 171 * @mtd: MTD device structure
1da177e4 172 *
7854d3f7
BN
173 * Default read function for 16bit buswidth with endianness conversion.
174 *
1da177e4 175 */
58dd8f2b 176static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 177{
ace4dfee
TG
178 struct nand_chip *chip = mtd->priv;
179 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
180}
181
1da177e4
LT
182/**
183 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 184 * @mtd: MTD device structure
1da177e4 185 *
7854d3f7 186 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
187 */
188static u16 nand_read_word(struct mtd_info *mtd)
189{
ace4dfee
TG
190 struct nand_chip *chip = mtd->priv;
191 return readw(chip->IO_ADDR_R);
1da177e4
LT
192}
193
1da177e4
LT
194/**
195 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
196 * @mtd: MTD device structure
197 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
198 *
199 * Default select function for 1 chip devices.
200 */
ace4dfee 201static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 202{
ace4dfee
TG
203 struct nand_chip *chip = mtd->priv;
204
205 switch (chipnr) {
1da177e4 206 case -1:
ace4dfee 207 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
208 break;
209 case 0:
1da177e4
LT
210 break;
211
212 default:
213 BUG();
214 }
215}
216
217/**
218 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
219 * @mtd: MTD device structure
220 * @buf: data buffer
221 * @len: number of bytes to write
1da177e4 222 *
7854d3f7 223 * Default write function for 8bit buswidth.
1da177e4 224 */
58dd8f2b 225static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
226{
227 int i;
ace4dfee 228 struct nand_chip *chip = mtd->priv;
1da177e4 229
e0c7d767 230 for (i = 0; i < len; i++)
ace4dfee 231 writeb(buf[i], chip->IO_ADDR_W);
1da177e4
LT
232}
233
234/**
61b03bd7 235 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
236 * @mtd: MTD device structure
237 * @buf: buffer to store date
238 * @len: number of bytes to read
1da177e4 239 *
7854d3f7 240 * Default read function for 8bit buswidth.
1da177e4 241 */
58dd8f2b 242static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4
LT
243{
244 int i;
ace4dfee 245 struct nand_chip *chip = mtd->priv;
1da177e4 246
e0c7d767 247 for (i = 0; i < len; i++)
ace4dfee 248 buf[i] = readb(chip->IO_ADDR_R);
1da177e4
LT
249}
250
251/**
61b03bd7 252 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
8b6e50c9
BN
253 * @mtd: MTD device structure
254 * @buf: buffer containing the data to compare
255 * @len: number of bytes to compare
1da177e4 256 *
7854d3f7 257 * Default verify function for 8bit buswidth.
1da177e4 258 */
58dd8f2b 259static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
260{
261 int i;
ace4dfee 262 struct nand_chip *chip = mtd->priv;
1da177e4 263
e0c7d767 264 for (i = 0; i < len; i++)
ace4dfee 265 if (buf[i] != readb(chip->IO_ADDR_R))
1da177e4 266 return -EFAULT;
1da177e4
LT
267 return 0;
268}
269
270/**
271 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
272 * @mtd: MTD device structure
273 * @buf: data buffer
274 * @len: number of bytes to write
1da177e4 275 *
7854d3f7 276 * Default write function for 16bit buswidth.
1da177e4 277 */
58dd8f2b 278static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
279{
280 int i;
ace4dfee 281 struct nand_chip *chip = mtd->priv;
1da177e4
LT
282 u16 *p = (u16 *) buf;
283 len >>= 1;
61b03bd7 284
e0c7d767 285 for (i = 0; i < len; i++)
ace4dfee 286 writew(p[i], chip->IO_ADDR_W);
61b03bd7 287
1da177e4
LT
288}
289
290/**
61b03bd7 291 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
292 * @mtd: MTD device structure
293 * @buf: buffer to store date
294 * @len: number of bytes to read
1da177e4 295 *
7854d3f7 296 * Default read function for 16bit buswidth.
1da177e4 297 */
58dd8f2b 298static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4
LT
299{
300 int i;
ace4dfee 301 struct nand_chip *chip = mtd->priv;
1da177e4
LT
302 u16 *p = (u16 *) buf;
303 len >>= 1;
304
e0c7d767 305 for (i = 0; i < len; i++)
ace4dfee 306 p[i] = readw(chip->IO_ADDR_R);
1da177e4
LT
307}
308
309/**
61b03bd7 310 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
8b6e50c9
BN
311 * @mtd: MTD device structure
312 * @buf: buffer containing the data to compare
313 * @len: number of bytes to compare
1da177e4 314 *
7854d3f7 315 * Default verify function for 16bit buswidth.
1da177e4 316 */
58dd8f2b 317static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
318{
319 int i;
ace4dfee 320 struct nand_chip *chip = mtd->priv;
1da177e4
LT
321 u16 *p = (u16 *) buf;
322 len >>= 1;
323
e0c7d767 324 for (i = 0; i < len; i++)
ace4dfee 325 if (p[i] != readw(chip->IO_ADDR_R))
1da177e4
LT
326 return -EFAULT;
327
328 return 0;
329}
330
331/**
332 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
333 * @mtd: MTD device structure
334 * @ofs: offset from device start
335 * @getchip: 0, if the chip is already selected
1da177e4 336 *
61b03bd7 337 * Check, if the block is bad.
1da177e4
LT
338 */
339static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
340{
341 int page, chipnr, res = 0;
ace4dfee 342 struct nand_chip *chip = mtd->priv;
1da177e4
LT
343 u16 bad;
344
5fb1549d 345 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
346 ofs += mtd->erasesize - mtd->writesize;
347
1a12f46a
TK
348 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
349
1da177e4 350 if (getchip) {
ace4dfee 351 chipnr = (int)(ofs >> chip->chip_shift);
1da177e4 352
ace4dfee 353 nand_get_device(chip, mtd, FL_READING);
1da177e4
LT
354
355 /* Select the NAND device */
ace4dfee 356 chip->select_chip(mtd, chipnr);
1a12f46a 357 }
1da177e4 358
ace4dfee
TG
359 if (chip->options & NAND_BUSWIDTH_16) {
360 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
1a12f46a 361 page);
ace4dfee
TG
362 bad = cpu_to_le16(chip->read_word(mtd));
363 if (chip->badblockpos & 0x1)
49196f33 364 bad >>= 8;
e0b58d0a
ML
365 else
366 bad &= 0xFF;
1da177e4 367 } else {
1a12f46a 368 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
e0b58d0a 369 bad = chip->read_byte(mtd);
1da177e4 370 }
61b03bd7 371
e0b58d0a
ML
372 if (likely(chip->badblockbits == 8))
373 res = bad != 0xFF;
374 else
375 res = hweight8(bad) < chip->badblockbits;
376
ace4dfee 377 if (getchip)
1da177e4 378 nand_release_device(mtd);
61b03bd7 379
1da177e4
LT
380 return res;
381}
382
383/**
384 * nand_default_block_markbad - [DEFAULT] mark a block bad
8b6e50c9
BN
385 * @mtd: MTD device structure
386 * @ofs: offset from device start
1da177e4 387 *
8b6e50c9
BN
388 * This is the default implementation, which can be overridden by a hardware
389 * specific driver.
1da177e4
LT
390*/
391static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
392{
ace4dfee 393 struct nand_chip *chip = mtd->priv;
58dd8f2b 394 uint8_t buf[2] = { 0, 0 };
02ed70bb 395 int block, ret, i = 0;
61b03bd7 396
00918429
BN
397 if (!(chip->bbt_options & NAND_BBT_USE_FLASH)) {
398 struct erase_info einfo;
399
400 /* Attempt erase before marking OOB */
401 memset(&einfo, 0, sizeof(einfo));
402 einfo.mtd = mtd;
403 einfo.addr = ofs;
404 einfo.len = 1 << chip->phys_erase_shift;
405 nand_erase_nand(mtd, &einfo, 0);
406 }
407
5fb1549d 408 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
409 ofs += mtd->erasesize - mtd->writesize;
410
1da177e4 411 /* Get block number */
4226b510 412 block = (int)(ofs >> chip->bbt_erase_shift);
ace4dfee
TG
413 if (chip->bbt)
414 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1da177e4 415
8b6e50c9 416 /* Do we have a flash based bad block table? */
bb9ebd4e 417 if (chip->bbt_options & NAND_BBT_USE_FLASH)
f1a28c02
TG
418 ret = nand_update_bbt(mtd, ofs);
419 else {
4a89ff88
BN
420 struct mtd_oob_ops ops;
421
c0b8ba7b 422 nand_get_device(chip, mtd, FL_WRITING);
f1a28c02 423
a0dc5529
BN
424 /*
425 * Write to first two pages if necessary. If we write to more
426 * than one location, the first error encountered quits the
427 * procedure. We write two bytes per location, so we dont have
428 * to mess with 16 bit access.
02ed70bb 429 */
4a89ff88
BN
430 ops.len = ops.ooblen = 2;
431 ops.datbuf = NULL;
432 ops.oobbuf = buf;
433 ops.ooboffs = chip->badblockpos & ~0x01;
23b1a99b 434 ops.mode = MTD_OPS_PLACE_OOB;
02ed70bb 435 do {
4a89ff88 436 ret = nand_do_write_oob(mtd, ofs, &ops);
02ed70bb 437
02ed70bb
BN
438 i++;
439 ofs += mtd->writesize;
5fb1549d 440 } while (!ret && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE) &&
02ed70bb
BN
441 i < 2);
442
c0b8ba7b 443 nand_release_device(mtd);
f1a28c02
TG
444 }
445 if (!ret)
446 mtd->ecc_stats.badblocks++;
c0b8ba7b 447
f1a28c02 448 return ret;
1da177e4
LT
449}
450
61b03bd7 451/**
1da177e4 452 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 453 * @mtd: MTD device structure
1da177e4 454 *
8b6e50c9
BN
455 * Check, if the device is write protected. The function expects, that the
456 * device is already selected.
1da177e4 457 */
e0c7d767 458static int nand_check_wp(struct mtd_info *mtd)
1da177e4 459{
ace4dfee 460 struct nand_chip *chip = mtd->priv;
93edbad6 461
8b6e50c9 462 /* Broken xD cards report WP despite being writable */
93edbad6
ML
463 if (chip->options & NAND_BROKEN_XD)
464 return 0;
465
1da177e4 466 /* Check the WP bit */
ace4dfee
TG
467 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
468 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
469}
470
471/**
472 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
473 * @mtd: MTD device structure
474 * @ofs: offset from device start
475 * @getchip: 0, if the chip is already selected
476 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
477 *
478 * Check, if the block is bad. Either by reading the bad block table or
479 * calling of the scan function.
480 */
2c0a2bed
TG
481static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
482 int allowbbt)
1da177e4 483{
ace4dfee 484 struct nand_chip *chip = mtd->priv;
61b03bd7 485
ace4dfee
TG
486 if (!chip->bbt)
487 return chip->block_bad(mtd, ofs, getchip);
61b03bd7 488
1da177e4 489 /* Return info from the table */
e0c7d767 490 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
491}
492
2af7c653
SK
493/**
494 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
495 * @mtd: MTD device structure
496 * @timeo: Timeout
2af7c653
SK
497 *
498 * Helper function for nand_wait_ready used when needing to wait in interrupt
499 * context.
500 */
501static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
502{
503 struct nand_chip *chip = mtd->priv;
504 int i;
505
506 /* Wait for the device to get ready */
507 for (i = 0; i < timeo; i++) {
508 if (chip->dev_ready(mtd))
509 break;
510 touch_softlockup_watchdog();
511 mdelay(1);
512 }
513}
514
7854d3f7 515/* Wait for the ready pin, after a command. The timeout is caught later. */
4b648b02 516void nand_wait_ready(struct mtd_info *mtd)
3b88775c 517{
ace4dfee 518 struct nand_chip *chip = mtd->priv;
e0c7d767 519 unsigned long timeo = jiffies + 2;
3b88775c 520
2af7c653
SK
521 /* 400ms timeout */
522 if (in_interrupt() || oops_in_progress)
523 return panic_nand_wait_ready(mtd, 400);
524
8fe833c1 525 led_trigger_event(nand_led_trigger, LED_FULL);
7854d3f7 526 /* Wait until command is processed or timeout occurs */
3b88775c 527 do {
ace4dfee 528 if (chip->dev_ready(mtd))
8fe833c1 529 break;
8446f1d3 530 touch_softlockup_watchdog();
61b03bd7 531 } while (time_before(jiffies, timeo));
8fe833c1 532 led_trigger_event(nand_led_trigger, LED_OFF);
3b88775c 533}
4b648b02 534EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 535
1da177e4
LT
536/**
537 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
538 * @mtd: MTD device structure
539 * @command: the command to be sent
540 * @column: the column address for this command, -1 if none
541 * @page_addr: the page address for this command, -1 if none
1da177e4 542 *
8b6e50c9
BN
543 * Send command to NAND device. This function is used for small page devices
544 * (256/512 Bytes per page).
1da177e4 545 */
7abd3ef9
TG
546static void nand_command(struct mtd_info *mtd, unsigned int command,
547 int column, int page_addr)
1da177e4 548{
ace4dfee 549 register struct nand_chip *chip = mtd->priv;
7abd3ef9 550 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 551
8b6e50c9 552 /* Write out the command to the device */
1da177e4
LT
553 if (command == NAND_CMD_SEQIN) {
554 int readcmd;
555
28318776 556 if (column >= mtd->writesize) {
1da177e4 557 /* OOB area */
28318776 558 column -= mtd->writesize;
1da177e4
LT
559 readcmd = NAND_CMD_READOOB;
560 } else if (column < 256) {
561 /* First 256 bytes --> READ0 */
562 readcmd = NAND_CMD_READ0;
563 } else {
564 column -= 256;
565 readcmd = NAND_CMD_READ1;
566 }
ace4dfee 567 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 568 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 569 }
ace4dfee 570 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 571
8b6e50c9 572 /* Address cycle, when necessary */
7abd3ef9
TG
573 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
574 /* Serially input address */
575 if (column != -1) {
576 /* Adjust columns for 16 bit buswidth */
ace4dfee 577 if (chip->options & NAND_BUSWIDTH_16)
7abd3ef9 578 column >>= 1;
ace4dfee 579 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
580 ctrl &= ~NAND_CTRL_CHANGE;
581 }
582 if (page_addr != -1) {
ace4dfee 583 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 584 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 585 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 586 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
587 if (chip->chipsize > (32 << 20))
588 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 589 }
ace4dfee 590 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
591
592 /*
8b6e50c9
BN
593 * Program and erase have their own busy handlers status and sequential
594 * in needs no delay
e0c7d767 595 */
1da177e4 596 switch (command) {
61b03bd7 597
1da177e4
LT
598 case NAND_CMD_PAGEPROG:
599 case NAND_CMD_ERASE1:
600 case NAND_CMD_ERASE2:
601 case NAND_CMD_SEQIN:
602 case NAND_CMD_STATUS:
603 return;
604
605 case NAND_CMD_RESET:
ace4dfee 606 if (chip->dev_ready)
1da177e4 607 break;
ace4dfee
TG
608 udelay(chip->chip_delay);
609 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 610 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
611 chip->cmd_ctrl(mtd,
612 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
613 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
614 ;
1da177e4
LT
615 return;
616
e0c7d767 617 /* This applies to read commands */
1da177e4 618 default:
61b03bd7 619 /*
1da177e4
LT
620 * If we don't have access to the busy pin, we apply the given
621 * command delay
e0c7d767 622 */
ace4dfee
TG
623 if (!chip->dev_ready) {
624 udelay(chip->chip_delay);
1da177e4 625 return;
61b03bd7 626 }
1da177e4 627 }
8b6e50c9
BN
628 /*
629 * Apply this short delay always to ensure that we do wait tWB in
630 * any case on any machine.
631 */
e0c7d767 632 ndelay(100);
3b88775c
TG
633
634 nand_wait_ready(mtd);
1da177e4
LT
635}
636
637/**
638 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
639 * @mtd: MTD device structure
640 * @command: the command to be sent
641 * @column: the column address for this command, -1 if none
642 * @page_addr: the page address for this command, -1 if none
1da177e4 643 *
7abd3ef9 644 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
645 * devices. We don't have the separate regions as we have in the small page
646 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 647 */
7abd3ef9
TG
648static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
649 int column, int page_addr)
1da177e4 650{
ace4dfee 651 register struct nand_chip *chip = mtd->priv;
1da177e4
LT
652
653 /* Emulate NAND_CMD_READOOB */
654 if (command == NAND_CMD_READOOB) {
28318776 655 column += mtd->writesize;
1da177e4
LT
656 command = NAND_CMD_READ0;
657 }
61b03bd7 658
7abd3ef9 659 /* Command latch cycle */
ace4dfee 660 chip->cmd_ctrl(mtd, command & 0xff,
7abd3ef9 661 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
662
663 if (column != -1 || page_addr != -1) {
7abd3ef9 664 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
665
666 /* Serially input address */
667 if (column != -1) {
668 /* Adjust columns for 16 bit buswidth */
ace4dfee 669 if (chip->options & NAND_BUSWIDTH_16)
1da177e4 670 column >>= 1;
ace4dfee 671 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 672 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 673 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 674 }
1da177e4 675 if (page_addr != -1) {
ace4dfee
TG
676 chip->cmd_ctrl(mtd, page_addr, ctrl);
677 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 678 NAND_NCE | NAND_ALE);
1da177e4 679 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
680 if (chip->chipsize > (128 << 20))
681 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 682 NAND_NCE | NAND_ALE);
1da177e4 683 }
1da177e4 684 }
ace4dfee 685 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
686
687 /*
8b6e50c9
BN
688 * Program and erase have their own busy handlers status, sequential
689 * in, and deplete1 need no delay.
30f464b7 690 */
1da177e4 691 switch (command) {
61b03bd7 692
1da177e4
LT
693 case NAND_CMD_CACHEDPROG:
694 case NAND_CMD_PAGEPROG:
695 case NAND_CMD_ERASE1:
696 case NAND_CMD_ERASE2:
697 case NAND_CMD_SEQIN:
7bc3312b 698 case NAND_CMD_RNDIN:
1da177e4 699 case NAND_CMD_STATUS:
30f464b7 700 case NAND_CMD_DEPLETE1:
1da177e4
LT
701 return;
702
30f464b7
DM
703 case NAND_CMD_STATUS_ERROR:
704 case NAND_CMD_STATUS_ERROR0:
705 case NAND_CMD_STATUS_ERROR1:
706 case NAND_CMD_STATUS_ERROR2:
707 case NAND_CMD_STATUS_ERROR3:
8b6e50c9 708 /* Read error status commands require only a short delay */
ace4dfee 709 udelay(chip->chip_delay);
30f464b7 710 return;
1da177e4
LT
711
712 case NAND_CMD_RESET:
ace4dfee 713 if (chip->dev_ready)
1da177e4 714 break;
ace4dfee 715 udelay(chip->chip_delay);
12efdde3
TG
716 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
717 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
718 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
719 NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
720 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
721 ;
1da177e4
LT
722 return;
723
7bc3312b
TG
724 case NAND_CMD_RNDOUT:
725 /* No ready / busy check necessary */
726 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
727 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
728 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
729 NAND_NCE | NAND_CTRL_CHANGE);
730 return;
731
1da177e4 732 case NAND_CMD_READ0:
12efdde3
TG
733 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
734 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
735 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
736 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 737
e0c7d767 738 /* This applies to read commands */
1da177e4 739 default:
61b03bd7 740 /*
1da177e4 741 * If we don't have access to the busy pin, we apply the given
8b6e50c9 742 * command delay.
e0c7d767 743 */
ace4dfee
TG
744 if (!chip->dev_ready) {
745 udelay(chip->chip_delay);
1da177e4 746 return;
61b03bd7 747 }
1da177e4 748 }
3b88775c 749
8b6e50c9
BN
750 /*
751 * Apply this short delay always to ensure that we do wait tWB in
752 * any case on any machine.
753 */
e0c7d767 754 ndelay(100);
3b88775c
TG
755
756 nand_wait_ready(mtd);
1da177e4
LT
757}
758
2af7c653
SK
759/**
760 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
761 * @chip: the nand chip descriptor
762 * @mtd: MTD device structure
763 * @new_state: the state which is requested
2af7c653
SK
764 *
765 * Used when in panic, no locks are taken.
766 */
767static void panic_nand_get_device(struct nand_chip *chip,
768 struct mtd_info *mtd, int new_state)
769{
7854d3f7 770 /* Hardware controller shared among independent devices */
2af7c653
SK
771 chip->controller->active = chip;
772 chip->state = new_state;
773}
774
1da177e4
LT
775/**
776 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
777 * @chip: the nand chip descriptor
778 * @mtd: MTD device structure
779 * @new_state: the state which is requested
1da177e4
LT
780 *
781 * Get the device and lock it for exclusive access
782 */
2c0a2bed 783static int
ace4dfee 784nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
1da177e4 785{
ace4dfee
TG
786 spinlock_t *lock = &chip->controller->lock;
787 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 788 DECLARE_WAITQUEUE(wait, current);
7351d3a5 789retry:
0dfc6246
TG
790 spin_lock(lock);
791
b8b3ee9a 792 /* Hardware controller shared among independent devices */
ace4dfee
TG
793 if (!chip->controller->active)
794 chip->controller->active = chip;
a36ed299 795
ace4dfee
TG
796 if (chip->controller->active == chip && chip->state == FL_READY) {
797 chip->state = new_state;
0dfc6246 798 spin_unlock(lock);
962034f4
VW
799 return 0;
800 }
801 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
802 if (chip->controller->active->state == FL_PM_SUSPENDED) {
803 chip->state = FL_PM_SUSPENDED;
804 spin_unlock(lock);
805 return 0;
6b0d9a84 806 }
0dfc6246
TG
807 }
808 set_current_state(TASK_UNINTERRUPTIBLE);
809 add_wait_queue(wq, &wait);
810 spin_unlock(lock);
811 schedule();
812 remove_wait_queue(wq, &wait);
1da177e4
LT
813 goto retry;
814}
815
2af7c653 816/**
8b6e50c9
BN
817 * panic_nand_wait - [GENERIC] wait until the command is done
818 * @mtd: MTD device structure
819 * @chip: NAND chip structure
820 * @timeo: timeout
2af7c653
SK
821 *
822 * Wait for command done. This is a helper function for nand_wait used when
823 * we are in interrupt context. May happen when in panic and trying to write
b595076a 824 * an oops through mtdoops.
2af7c653
SK
825 */
826static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
827 unsigned long timeo)
828{
829 int i;
830 for (i = 0; i < timeo; i++) {
831 if (chip->dev_ready) {
832 if (chip->dev_ready(mtd))
833 break;
834 } else {
835 if (chip->read_byte(mtd) & NAND_STATUS_READY)
836 break;
837 }
838 mdelay(1);
f8ac0414 839 }
2af7c653
SK
840}
841
1da177e4 842/**
8b6e50c9
BN
843 * nand_wait - [DEFAULT] wait until the command is done
844 * @mtd: MTD device structure
845 * @chip: NAND chip structure
1da177e4 846 *
8b6e50c9
BN
847 * Wait for command done. This applies to erase and program only. Erase can
848 * take up to 400ms and program up to 20ms according to general NAND and
849 * SmartMedia specs.
844d3b42 850 */
7bc3312b 851static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
852{
853
e0c7d767 854 unsigned long timeo = jiffies;
7bc3312b 855 int status, state = chip->state;
61b03bd7 856
1da177e4 857 if (state == FL_ERASING)
e0c7d767 858 timeo += (HZ * 400) / 1000;
1da177e4 859 else
e0c7d767 860 timeo += (HZ * 20) / 1000;
1da177e4 861
8fe833c1
RP
862 led_trigger_event(nand_led_trigger, LED_FULL);
863
8b6e50c9
BN
864 /*
865 * Apply this short delay always to ensure that we do wait tWB in any
866 * case on any machine.
867 */
e0c7d767 868 ndelay(100);
1da177e4 869
ace4dfee
TG
870 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
871 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
61b03bd7 872 else
ace4dfee 873 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 874
2af7c653
SK
875 if (in_interrupt() || oops_in_progress)
876 panic_nand_wait(mtd, chip, timeo);
877 else {
878 while (time_before(jiffies, timeo)) {
879 if (chip->dev_ready) {
880 if (chip->dev_ready(mtd))
881 break;
882 } else {
883 if (chip->read_byte(mtd) & NAND_STATUS_READY)
884 break;
885 }
886 cond_resched();
1da177e4 887 }
1da177e4 888 }
8fe833c1
RP
889 led_trigger_event(nand_led_trigger, LED_OFF);
890
ace4dfee 891 status = (int)chip->read_byte(mtd);
1da177e4
LT
892 return status;
893}
894
7d70f334 895/**
b6d676db 896 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
897 * @mtd: mtd info
898 * @ofs: offset to start unlock from
899 * @len: length to unlock
8b6e50c9
BN
900 * @invert: when = 0, unlock the range of blocks within the lower and
901 * upper boundary address
902 * when = 1, unlock the range of blocks outside the boundaries
903 * of the lower and upper boundary address
7d70f334 904 *
8b6e50c9 905 * Returs unlock status.
7d70f334
VS
906 */
907static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
908 uint64_t len, int invert)
909{
910 int ret = 0;
911 int status, page;
912 struct nand_chip *chip = mtd->priv;
913
914 /* Submit address of first page to unlock */
915 page = ofs >> chip->page_shift;
916 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
917
918 /* Submit address of last page to unlock */
919 page = (ofs + len) >> chip->page_shift;
920 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
921 (page | invert) & chip->pagemask);
922
923 /* Call wait ready function */
924 status = chip->waitfunc(mtd, chip);
7d70f334
VS
925 /* See if device thinks it succeeded */
926 if (status & 0x01) {
289c0522 927 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
928 __func__, status);
929 ret = -EIO;
930 }
931
932 return ret;
933}
934
935/**
b6d676db 936 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
937 * @mtd: mtd info
938 * @ofs: offset to start unlock from
939 * @len: length to unlock
7d70f334 940 *
8b6e50c9 941 * Returns unlock status.
7d70f334
VS
942 */
943int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
944{
945 int ret = 0;
946 int chipnr;
947 struct nand_chip *chip = mtd->priv;
948
289c0522 949 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
950 __func__, (unsigned long long)ofs, len);
951
952 if (check_offs_len(mtd, ofs, len))
953 ret = -EINVAL;
954
955 /* Align to last block address if size addresses end of the device */
956 if (ofs + len == mtd->size)
957 len -= mtd->erasesize;
958
959 nand_get_device(chip, mtd, FL_UNLOCKING);
960
961 /* Shift to get chip number */
962 chipnr = ofs >> chip->chip_shift;
963
964 chip->select_chip(mtd, chipnr);
965
966 /* Check, if it is write protected */
967 if (nand_check_wp(mtd)) {
289c0522 968 pr_debug("%s: device is write protected!\n",
7d70f334
VS
969 __func__);
970 ret = -EIO;
971 goto out;
972 }
973
974 ret = __nand_unlock(mtd, ofs, len, 0);
975
976out:
7d70f334
VS
977 nand_release_device(mtd);
978
979 return ret;
980}
7351d3a5 981EXPORT_SYMBOL(nand_unlock);
7d70f334
VS
982
983/**
b6d676db 984 * nand_lock - [REPLACEABLE] locks all blocks present in the device
b6d676db
RD
985 * @mtd: mtd info
986 * @ofs: offset to start unlock from
987 * @len: length to unlock
7d70f334 988 *
8b6e50c9
BN
989 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
990 * have this feature, but it allows only to lock all blocks, not for specified
991 * range for block. Implementing 'lock' feature by making use of 'unlock', for
992 * now.
7d70f334 993 *
8b6e50c9 994 * Returns lock status.
7d70f334
VS
995 */
996int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
997{
998 int ret = 0;
999 int chipnr, status, page;
1000 struct nand_chip *chip = mtd->priv;
1001
289c0522 1002 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
1003 __func__, (unsigned long long)ofs, len);
1004
1005 if (check_offs_len(mtd, ofs, len))
1006 ret = -EINVAL;
1007
1008 nand_get_device(chip, mtd, FL_LOCKING);
1009
1010 /* Shift to get chip number */
1011 chipnr = ofs >> chip->chip_shift;
1012
1013 chip->select_chip(mtd, chipnr);
1014
1015 /* Check, if it is write protected */
1016 if (nand_check_wp(mtd)) {
289c0522 1017 pr_debug("%s: device is write protected!\n",
7d70f334
VS
1018 __func__);
1019 status = MTD_ERASE_FAILED;
1020 ret = -EIO;
1021 goto out;
1022 }
1023
1024 /* Submit address of first page to lock */
1025 page = ofs >> chip->page_shift;
1026 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1027
1028 /* Call wait ready function */
1029 status = chip->waitfunc(mtd, chip);
7d70f334
VS
1030 /* See if device thinks it succeeded */
1031 if (status & 0x01) {
289c0522 1032 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
1033 __func__, status);
1034 ret = -EIO;
1035 goto out;
1036 }
1037
1038 ret = __nand_unlock(mtd, ofs, len, 0x1);
1039
1040out:
7d70f334
VS
1041 nand_release_device(mtd);
1042
1043 return ret;
1044}
7351d3a5 1045EXPORT_SYMBOL(nand_lock);
7d70f334 1046
8593fbc6 1047/**
7854d3f7 1048 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
1049 * @mtd: mtd info structure
1050 * @chip: nand chip info structure
1051 * @buf: buffer to store read data
1052 * @page: page number to read
52ff49df 1053 *
7854d3f7 1054 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6
TG
1055 */
1056static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1057 uint8_t *buf, int page)
8593fbc6
TG
1058{
1059 chip->read_buf(mtd, buf, mtd->writesize);
1060 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1061 return 0;
1062}
1063
52ff49df 1064/**
7854d3f7 1065 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
1066 * @mtd: mtd info structure
1067 * @chip: nand chip info structure
1068 * @buf: buffer to store read data
1069 * @page: page number to read
52ff49df
DB
1070 *
1071 * We need a special oob layout and handling even when OOB isn't used.
1072 */
7351d3a5
FF
1073static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1074 struct nand_chip *chip,
1075 uint8_t *buf, int page)
52ff49df
DB
1076{
1077 int eccsize = chip->ecc.size;
1078 int eccbytes = chip->ecc.bytes;
1079 uint8_t *oob = chip->oob_poi;
1080 int steps, size;
1081
1082 for (steps = chip->ecc.steps; steps > 0; steps--) {
1083 chip->read_buf(mtd, buf, eccsize);
1084 buf += eccsize;
1085
1086 if (chip->ecc.prepad) {
1087 chip->read_buf(mtd, oob, chip->ecc.prepad);
1088 oob += chip->ecc.prepad;
1089 }
1090
1091 chip->read_buf(mtd, oob, eccbytes);
1092 oob += eccbytes;
1093
1094 if (chip->ecc.postpad) {
1095 chip->read_buf(mtd, oob, chip->ecc.postpad);
1096 oob += chip->ecc.postpad;
1097 }
1098 }
1099
1100 size = mtd->oobsize - (oob - chip->oob_poi);
1101 if (size)
1102 chip->read_buf(mtd, oob, size);
1103
1104 return 0;
1105}
1106
1da177e4 1107/**
7854d3f7 1108 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
1109 * @mtd: mtd info structure
1110 * @chip: nand chip info structure
1111 * @buf: buffer to store read data
1112 * @page: page number to read
068e3c0a 1113 */
f5bbdacc 1114static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1115 uint8_t *buf, int page)
1da177e4 1116{
f5bbdacc
TG
1117 int i, eccsize = chip->ecc.size;
1118 int eccbytes = chip->ecc.bytes;
1119 int eccsteps = chip->ecc.steps;
1120 uint8_t *p = buf;
4bf63fcb
DW
1121 uint8_t *ecc_calc = chip->buffers->ecccalc;
1122 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1123 uint32_t *eccpos = chip->ecc.layout->eccpos;
f5bbdacc 1124
46a8cf2d 1125 chip->ecc.read_page_raw(mtd, chip, buf, page);
f5bbdacc
TG
1126
1127 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1128 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1129
1130 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1131 ecc_code[i] = chip->oob_poi[eccpos[i]];
f5bbdacc
TG
1132
1133 eccsteps = chip->ecc.steps;
1134 p = buf;
1135
1136 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1137 int stat;
1138
1139 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
c32b8dcc 1140 if (stat < 0)
f5bbdacc
TG
1141 mtd->ecc_stats.failed++;
1142 else
1143 mtd->ecc_stats.corrected += stat;
1144 }
1145 return 0;
22c60f5f 1146}
1da177e4 1147
3d459559 1148/**
7854d3f7 1149 * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
8b6e50c9
BN
1150 * @mtd: mtd info structure
1151 * @chip: nand chip info structure
1152 * @data_offs: offset of requested data within the page
1153 * @readlen: data length
1154 * @bufpoi: buffer to store read data
3d459559 1155 */
7351d3a5
FF
1156static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1157 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
3d459559
AK
1158{
1159 int start_step, end_step, num_steps;
1160 uint32_t *eccpos = chip->ecc.layout->eccpos;
1161 uint8_t *p;
1162 int data_col_addr, i, gaps = 0;
1163 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1164 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
7351d3a5 1165 int index = 0;
3d459559 1166
7854d3f7 1167 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
1168 start_step = data_offs / chip->ecc.size;
1169 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1170 num_steps = end_step - start_step + 1;
1171
8b6e50c9 1172 /* Data size aligned to ECC ecc.size */
3d459559
AK
1173 datafrag_len = num_steps * chip->ecc.size;
1174 eccfrag_len = num_steps * chip->ecc.bytes;
1175
1176 data_col_addr = start_step * chip->ecc.size;
1177 /* If we read not a page aligned data */
1178 if (data_col_addr != 0)
1179 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1180
1181 p = bufpoi + data_col_addr;
1182 chip->read_buf(mtd, p, datafrag_len);
1183
8b6e50c9 1184 /* Calculate ECC */
3d459559
AK
1185 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1186 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1187
8b6e50c9
BN
1188 /*
1189 * The performance is faster if we position offsets according to
7854d3f7 1190 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 1191 */
3d459559
AK
1192 for (i = 0; i < eccfrag_len - 1; i++) {
1193 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1194 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1195 gaps = 1;
1196 break;
1197 }
1198 }
1199 if (gaps) {
1200 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1201 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1202 } else {
8b6e50c9 1203 /*
7854d3f7 1204 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
1205 * about buswidth alignment in read_buf.
1206 */
7351d3a5
FF
1207 index = start_step * chip->ecc.bytes;
1208
1209 aligned_pos = eccpos[index] & ~(busw - 1);
3d459559 1210 aligned_len = eccfrag_len;
7351d3a5 1211 if (eccpos[index] & (busw - 1))
3d459559 1212 aligned_len++;
7351d3a5 1213 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
3d459559
AK
1214 aligned_len++;
1215
7351d3a5
FF
1216 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1217 mtd->writesize + aligned_pos, -1);
3d459559
AK
1218 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1219 }
1220
1221 for (i = 0; i < eccfrag_len; i++)
7351d3a5 1222 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
3d459559
AK
1223
1224 p = bufpoi + data_col_addr;
1225 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1226 int stat;
1227
7351d3a5
FF
1228 stat = chip->ecc.correct(mtd, p,
1229 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
12c8eb98 1230 if (stat < 0)
3d459559
AK
1231 mtd->ecc_stats.failed++;
1232 else
1233 mtd->ecc_stats.corrected += stat;
1234 }
1235 return 0;
1236}
1237
068e3c0a 1238/**
7854d3f7 1239 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
1240 * @mtd: mtd info structure
1241 * @chip: nand chip info structure
1242 * @buf: buffer to store read data
1243 * @page: page number to read
068e3c0a 1244 *
7854d3f7 1245 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 1246 */
f5bbdacc 1247static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1248 uint8_t *buf, int page)
1da177e4 1249{
f5bbdacc
TG
1250 int i, eccsize = chip->ecc.size;
1251 int eccbytes = chip->ecc.bytes;
1252 int eccsteps = chip->ecc.steps;
1253 uint8_t *p = buf;
4bf63fcb
DW
1254 uint8_t *ecc_calc = chip->buffers->ecccalc;
1255 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1256 uint32_t *eccpos = chip->ecc.layout->eccpos;
f5bbdacc
TG
1257
1258 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1259 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1260 chip->read_buf(mtd, p, eccsize);
1261 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1262 }
f75e5097 1263 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1264
f5bbdacc 1265 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1266 ecc_code[i] = chip->oob_poi[eccpos[i]];
1da177e4 1267
f5bbdacc
TG
1268 eccsteps = chip->ecc.steps;
1269 p = buf;
61b03bd7 1270
f5bbdacc
TG
1271 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1272 int stat;
1da177e4 1273
f5bbdacc 1274 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
c32b8dcc 1275 if (stat < 0)
f5bbdacc
TG
1276 mtd->ecc_stats.failed++;
1277 else
1278 mtd->ecc_stats.corrected += stat;
1279 }
1280 return 0;
1281}
1da177e4 1282
6e0cb135 1283/**
7854d3f7 1284 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
1285 * @mtd: mtd info structure
1286 * @chip: nand chip info structure
1287 * @buf: buffer to store read data
1288 * @page: page number to read
6e0cb135 1289 *
8b6e50c9
BN
1290 * Hardware ECC for large page chips, require OOB to be read first. For this
1291 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1292 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1293 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1294 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
1295 */
1296static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1297 struct nand_chip *chip, uint8_t *buf, int page)
1298{
1299 int i, eccsize = chip->ecc.size;
1300 int eccbytes = chip->ecc.bytes;
1301 int eccsteps = chip->ecc.steps;
1302 uint8_t *p = buf;
1303 uint8_t *ecc_code = chip->buffers->ecccode;
1304 uint32_t *eccpos = chip->ecc.layout->eccpos;
1305 uint8_t *ecc_calc = chip->buffers->ecccalc;
1306
1307 /* Read the OOB area first */
1308 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1309 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1310 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1311
1312 for (i = 0; i < chip->ecc.total; i++)
1313 ecc_code[i] = chip->oob_poi[eccpos[i]];
1314
1315 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1316 int stat;
1317
1318 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1319 chip->read_buf(mtd, p, eccsize);
1320 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1321
1322 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1323 if (stat < 0)
1324 mtd->ecc_stats.failed++;
1325 else
1326 mtd->ecc_stats.corrected += stat;
1327 }
1328 return 0;
1329}
1330
f5bbdacc 1331/**
7854d3f7 1332 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
1333 * @mtd: mtd info structure
1334 * @chip: nand chip info structure
1335 * @buf: buffer to store read data
1336 * @page: page number to read
f5bbdacc 1337 *
8b6e50c9
BN
1338 * The hw generator calculates the error syndrome automatically. Therefore we
1339 * need a special oob layout and handling.
f5bbdacc
TG
1340 */
1341static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1342 uint8_t *buf, int page)
f5bbdacc
TG
1343{
1344 int i, eccsize = chip->ecc.size;
1345 int eccbytes = chip->ecc.bytes;
1346 int eccsteps = chip->ecc.steps;
1347 uint8_t *p = buf;
f75e5097 1348 uint8_t *oob = chip->oob_poi;
1da177e4 1349
f5bbdacc
TG
1350 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1351 int stat;
61b03bd7 1352
f5bbdacc
TG
1353 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1354 chip->read_buf(mtd, p, eccsize);
1da177e4 1355
f5bbdacc
TG
1356 if (chip->ecc.prepad) {
1357 chip->read_buf(mtd, oob, chip->ecc.prepad);
1358 oob += chip->ecc.prepad;
1359 }
1da177e4 1360
f5bbdacc
TG
1361 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1362 chip->read_buf(mtd, oob, eccbytes);
1363 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1364
c32b8dcc 1365 if (stat < 0)
f5bbdacc 1366 mtd->ecc_stats.failed++;
61b03bd7 1367 else
f5bbdacc 1368 mtd->ecc_stats.corrected += stat;
61b03bd7 1369
f5bbdacc 1370 oob += eccbytes;
1da177e4 1371
f5bbdacc
TG
1372 if (chip->ecc.postpad) {
1373 chip->read_buf(mtd, oob, chip->ecc.postpad);
1374 oob += chip->ecc.postpad;
61b03bd7 1375 }
f5bbdacc 1376 }
1da177e4 1377
f5bbdacc 1378 /* Calculate remaining oob bytes */
7e4178f9 1379 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1380 if (i)
1381 chip->read_buf(mtd, oob, i);
61b03bd7 1382
f5bbdacc
TG
1383 return 0;
1384}
1da177e4 1385
f5bbdacc 1386/**
7854d3f7 1387 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
8b6e50c9
BN
1388 * @chip: nand chip structure
1389 * @oob: oob destination address
1390 * @ops: oob ops structure
1391 * @len: size of oob to transfer
8593fbc6
TG
1392 */
1393static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
7014568b 1394 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1395{
f8ac0414 1396 switch (ops->mode) {
8593fbc6 1397
0612b9dd
BN
1398 case MTD_OPS_PLACE_OOB:
1399 case MTD_OPS_RAW:
8593fbc6
TG
1400 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1401 return oob + len;
1402
0612b9dd 1403 case MTD_OPS_AUTO_OOB: {
8593fbc6 1404 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
1405 uint32_t boffs = 0, roffs = ops->ooboffs;
1406 size_t bytes = 0;
8593fbc6 1407
f8ac0414 1408 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 1409 /* Read request not from offset 0? */
7bc3312b
TG
1410 if (unlikely(roffs)) {
1411 if (roffs >= free->length) {
1412 roffs -= free->length;
1413 continue;
1414 }
1415 boffs = free->offset + roffs;
1416 bytes = min_t(size_t, len,
1417 (free->length - roffs));
1418 roffs = 0;
1419 } else {
1420 bytes = min_t(size_t, len, free->length);
1421 boffs = free->offset;
1422 }
1423 memcpy(oob, chip->oob_poi + boffs, bytes);
8593fbc6
TG
1424 oob += bytes;
1425 }
1426 return oob;
1427 }
1428 default:
1429 BUG();
1430 }
1431 return NULL;
1432}
1433
1434/**
7854d3f7 1435 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
1436 * @mtd: MTD device structure
1437 * @from: offset to read from
1438 * @ops: oob ops structure
f5bbdacc
TG
1439 *
1440 * Internal function. Called with chip held.
1441 */
8593fbc6
TG
1442static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1443 struct mtd_oob_ops *ops)
f5bbdacc
TG
1444{
1445 int chipnr, page, realpage, col, bytes, aligned;
1446 struct nand_chip *chip = mtd->priv;
1447 struct mtd_ecc_stats stats;
1448 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1449 int sndcmd = 1;
1450 int ret = 0;
8593fbc6 1451 uint32_t readlen = ops->len;
7014568b 1452 uint32_t oobreadlen = ops->ooblen;
0612b9dd 1453 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
9aca334e
ML
1454 mtd->oobavail : mtd->oobsize;
1455
8593fbc6 1456 uint8_t *bufpoi, *oob, *buf;
1da177e4 1457
f5bbdacc 1458 stats = mtd->ecc_stats;
1da177e4 1459
f5bbdacc
TG
1460 chipnr = (int)(from >> chip->chip_shift);
1461 chip->select_chip(mtd, chipnr);
61b03bd7 1462
f5bbdacc
TG
1463 realpage = (int)(from >> chip->page_shift);
1464 page = realpage & chip->pagemask;
1da177e4 1465
f5bbdacc 1466 col = (int)(from & (mtd->writesize - 1));
61b03bd7 1467
8593fbc6
TG
1468 buf = ops->datbuf;
1469 oob = ops->oobbuf;
1470
f8ac0414 1471 while (1) {
f5bbdacc
TG
1472 bytes = min(mtd->writesize - col, readlen);
1473 aligned = (bytes == mtd->writesize);
61b03bd7 1474
8b6e50c9 1475 /* Is the current page in the buffer? */
8593fbc6 1476 if (realpage != chip->pagebuf || oob) {
4bf63fcb 1477 bufpoi = aligned ? buf : chip->buffers->databuf;
61b03bd7 1478
f5bbdacc
TG
1479 if (likely(sndcmd)) {
1480 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1481 sndcmd = 0;
1da177e4 1482 }
1da177e4 1483
f5bbdacc 1484 /* Now read the page into the buffer */
0612b9dd 1485 if (unlikely(ops->mode == MTD_OPS_RAW))
46a8cf2d
SN
1486 ret = chip->ecc.read_page_raw(mtd, chip,
1487 bufpoi, page);
3d459559 1488 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
7351d3a5
FF
1489 ret = chip->ecc.read_subpage(mtd, chip,
1490 col, bytes, bufpoi);
956e944c 1491 else
46a8cf2d
SN
1492 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1493 page);
6d77b9d0
BN
1494 if (ret < 0) {
1495 if (!aligned)
1496 /* Invalidate page cache */
1497 chip->pagebuf = -1;
1da177e4 1498 break;
6d77b9d0 1499 }
f5bbdacc
TG
1500
1501 /* Transfer not aligned data */
1502 if (!aligned) {
c1194c79 1503 if (!NAND_SUBPAGE_READ(chip) && !oob &&
6d77b9d0
BN
1504 !(mtd->ecc_stats.failed - stats.failed) &&
1505 (ops->mode != MTD_OPS_RAW))
3d459559 1506 chip->pagebuf = realpage;
6d77b9d0
BN
1507 else
1508 /* Invalidate page cache */
1509 chip->pagebuf = -1;
4bf63fcb 1510 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
1511 }
1512
8593fbc6
TG
1513 buf += bytes;
1514
1515 if (unlikely(oob)) {
9aca334e 1516
b64d39d8
ML
1517 int toread = min(oobreadlen, max_oobsize);
1518
1519 if (toread) {
1520 oob = nand_transfer_oob(chip,
1521 oob, ops, toread);
1522 oobreadlen -= toread;
1523 }
8593fbc6
TG
1524 }
1525
f5bbdacc
TG
1526 if (!(chip->options & NAND_NO_READRDY)) {
1527 /*
1528 * Apply delay or wait for ready/busy pin. Do
1529 * this before the AUTOINCR check, so no
1530 * problems arise if a chip which does auto
1531 * increment is marked as NOAUTOINCR by the
1532 * board driver.
1533 */
1534 if (!chip->dev_ready)
1535 udelay(chip->chip_delay);
1536 else
1537 nand_wait_ready(mtd);
1da177e4 1538 }
8593fbc6 1539 } else {
4bf63fcb 1540 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6
TG
1541 buf += bytes;
1542 }
1da177e4 1543
f5bbdacc 1544 readlen -= bytes;
61b03bd7 1545
f5bbdacc 1546 if (!readlen)
61b03bd7 1547 break;
1da177e4 1548
8b6e50c9 1549 /* For subsequent reads align to page boundary */
1da177e4
LT
1550 col = 0;
1551 /* Increment page address */
1552 realpage++;
1553
ace4dfee 1554 page = realpage & chip->pagemask;
1da177e4
LT
1555 /* Check, if we cross a chip boundary */
1556 if (!page) {
1557 chipnr++;
ace4dfee
TG
1558 chip->select_chip(mtd, -1);
1559 chip->select_chip(mtd, chipnr);
1da177e4 1560 }
f5bbdacc 1561
8b6e50c9
BN
1562 /*
1563 * Check, if the chip supports auto page increment or if we
1564 * have hit a block boundary.
e0c7d767 1565 */
f5bbdacc 1566 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
61b03bd7 1567 sndcmd = 1;
1da177e4
LT
1568 }
1569
8593fbc6 1570 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
1571 if (oob)
1572 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 1573
f5bbdacc
TG
1574 if (ret)
1575 return ret;
1576
9a1fcdfd
TG
1577 if (mtd->ecc_stats.failed - stats.failed)
1578 return -EBADMSG;
1579
1580 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
f5bbdacc
TG
1581}
1582
1583/**
25985edc 1584 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
8b6e50c9
BN
1585 * @mtd: MTD device structure
1586 * @from: offset to read from
1587 * @len: number of bytes to read
1588 * @retlen: pointer to variable to store the number of read bytes
1589 * @buf: the databuffer to put data
f5bbdacc 1590 *
8b6e50c9 1591 * Get hold of the chip and call nand_do_read.
f5bbdacc
TG
1592 */
1593static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1594 size_t *retlen, uint8_t *buf)
1595{
8593fbc6 1596 struct nand_chip *chip = mtd->priv;
4a89ff88 1597 struct mtd_oob_ops ops;
f5bbdacc
TG
1598 int ret;
1599
f5bbdacc
TG
1600 /* Do not allow reads past end of device */
1601 if ((from + len) > mtd->size)
1602 return -EINVAL;
1603 if (!len)
1604 return 0;
1605
8593fbc6 1606 nand_get_device(chip, mtd, FL_READING);
f5bbdacc 1607
4a89ff88
BN
1608 ops.len = len;
1609 ops.datbuf = buf;
1610 ops.oobbuf = NULL;
23b1a99b 1611 ops.mode = 0;
8593fbc6 1612
4a89ff88 1613 ret = nand_do_read_ops(mtd, from, &ops);
f5bbdacc 1614
4a89ff88 1615 *retlen = ops.retlen;
7fd5aecc 1616
f5bbdacc
TG
1617 nand_release_device(mtd);
1618
1619 return ret;
1da177e4
LT
1620}
1621
7bc3312b 1622/**
7854d3f7 1623 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
1624 * @mtd: mtd info structure
1625 * @chip: nand chip info structure
1626 * @page: page number to read
1627 * @sndcmd: flag whether to issue read command or not
7bc3312b
TG
1628 */
1629static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1630 int page, int sndcmd)
1631{
1632 if (sndcmd) {
1633 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1634 sndcmd = 0;
1635 }
1636 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1637 return sndcmd;
1638}
1639
1640/**
7854d3f7 1641 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 1642 * with syndromes
8b6e50c9
BN
1643 * @mtd: mtd info structure
1644 * @chip: nand chip info structure
1645 * @page: page number to read
1646 * @sndcmd: flag whether to issue read command or not
7bc3312b
TG
1647 */
1648static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1649 int page, int sndcmd)
1650{
1651 uint8_t *buf = chip->oob_poi;
1652 int length = mtd->oobsize;
1653 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1654 int eccsize = chip->ecc.size;
1655 uint8_t *bufpoi = buf;
1656 int i, toread, sndrnd = 0, pos;
1657
1658 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1659 for (i = 0; i < chip->ecc.steps; i++) {
1660 if (sndrnd) {
1661 pos = eccsize + i * (eccsize + chunk);
1662 if (mtd->writesize > 512)
1663 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1664 else
1665 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1666 } else
1667 sndrnd = 1;
1668 toread = min_t(int, length, chunk);
1669 chip->read_buf(mtd, bufpoi, toread);
1670 bufpoi += toread;
1671 length -= toread;
1672 }
1673 if (length > 0)
1674 chip->read_buf(mtd, bufpoi, length);
1675
1676 return 1;
1677}
1678
1679/**
7854d3f7 1680 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
1681 * @mtd: mtd info structure
1682 * @chip: nand chip info structure
1683 * @page: page number to write
7bc3312b
TG
1684 */
1685static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1686 int page)
1687{
1688 int status = 0;
1689 const uint8_t *buf = chip->oob_poi;
1690 int length = mtd->oobsize;
1691
1692 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1693 chip->write_buf(mtd, buf, length);
1694 /* Send command to program the OOB data */
1695 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1696
1697 status = chip->waitfunc(mtd, chip);
1698
0d420f9d 1699 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b
TG
1700}
1701
1702/**
7854d3f7 1703 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
1704 * with syndrome - only for large page flash
1705 * @mtd: mtd info structure
1706 * @chip: nand chip info structure
1707 * @page: page number to write
7bc3312b
TG
1708 */
1709static int nand_write_oob_syndrome(struct mtd_info *mtd,
1710 struct nand_chip *chip, int page)
1711{
1712 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1713 int eccsize = chip->ecc.size, length = mtd->oobsize;
1714 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1715 const uint8_t *bufpoi = chip->oob_poi;
1716
1717 /*
1718 * data-ecc-data-ecc ... ecc-oob
1719 * or
1720 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1721 */
1722 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1723 pos = steps * (eccsize + chunk);
1724 steps = 0;
1725 } else
8b0036ee 1726 pos = eccsize;
7bc3312b
TG
1727
1728 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1729 for (i = 0; i < steps; i++) {
1730 if (sndcmd) {
1731 if (mtd->writesize <= 512) {
1732 uint32_t fill = 0xFFFFFFFF;
1733
1734 len = eccsize;
1735 while (len > 0) {
1736 int num = min_t(int, len, 4);
1737 chip->write_buf(mtd, (uint8_t *)&fill,
1738 num);
1739 len -= num;
1740 }
1741 } else {
1742 pos = eccsize + i * (eccsize + chunk);
1743 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1744 }
1745 } else
1746 sndcmd = 1;
1747 len = min_t(int, length, chunk);
1748 chip->write_buf(mtd, bufpoi, len);
1749 bufpoi += len;
1750 length -= len;
1751 }
1752 if (length > 0)
1753 chip->write_buf(mtd, bufpoi, length);
1754
1755 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1756 status = chip->waitfunc(mtd, chip);
1757
1758 return status & NAND_STATUS_FAIL ? -EIO : 0;
1759}
1760
1da177e4 1761/**
7854d3f7 1762 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
1763 * @mtd: MTD device structure
1764 * @from: offset to read from
1765 * @ops: oob operations description structure
1da177e4 1766 *
8b6e50c9 1767 * NAND read out-of-band data from the spare area.
1da177e4 1768 */
8593fbc6
TG
1769static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1770 struct mtd_oob_ops *ops)
1da177e4 1771{
7bc3312b 1772 int page, realpage, chipnr, sndcmd = 1;
ace4dfee 1773 struct nand_chip *chip = mtd->priv;
041e4575 1774 struct mtd_ecc_stats stats;
7314e9e7 1775 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
7014568b
VW
1776 int readlen = ops->ooblen;
1777 int len;
7bc3312b 1778 uint8_t *buf = ops->oobbuf;
61b03bd7 1779
289c0522 1780 pr_debug("%s: from = 0x%08Lx, len = %i\n",
20d8e248 1781 __func__, (unsigned long long)from, readlen);
1da177e4 1782
041e4575
BN
1783 stats = mtd->ecc_stats;
1784
0612b9dd 1785 if (ops->mode == MTD_OPS_AUTO_OOB)
7014568b 1786 len = chip->ecc.layout->oobavail;
03736155
AH
1787 else
1788 len = mtd->oobsize;
1789
1790 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
1791 pr_debug("%s: attempt to start read outside oob\n",
1792 __func__);
03736155
AH
1793 return -EINVAL;
1794 }
1795
1796 /* Do not allow reads past end of device */
1797 if (unlikely(from >= mtd->size ||
1798 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1799 (from >> chip->page_shift)) * len)) {
289c0522
BN
1800 pr_debug("%s: attempt to read beyond end of device\n",
1801 __func__);
03736155
AH
1802 return -EINVAL;
1803 }
7014568b 1804
7314e9e7 1805 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 1806 chip->select_chip(mtd, chipnr);
1da177e4 1807
7314e9e7
TG
1808 /* Shift to get page */
1809 realpage = (int)(from >> chip->page_shift);
1810 page = realpage & chip->pagemask;
1da177e4 1811
f8ac0414 1812 while (1) {
0612b9dd 1813 if (ops->mode == MTD_OPS_RAW)
c46f6483
BN
1814 sndcmd = chip->ecc.read_oob_raw(mtd, chip, page, sndcmd);
1815 else
1816 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
7014568b
VW
1817
1818 len = min(len, readlen);
1819 buf = nand_transfer_oob(chip, buf, ops, len);
8593fbc6 1820
7314e9e7
TG
1821 if (!(chip->options & NAND_NO_READRDY)) {
1822 /*
1823 * Apply delay or wait for ready/busy pin. Do this
1824 * before the AUTOINCR check, so no problems arise if a
1825 * chip which does auto increment is marked as
1826 * NOAUTOINCR by the board driver.
19870da7 1827 */
ace4dfee
TG
1828 if (!chip->dev_ready)
1829 udelay(chip->chip_delay);
19870da7
TG
1830 else
1831 nand_wait_ready(mtd);
7314e9e7 1832 }
19870da7 1833
7014568b 1834 readlen -= len;
0d420f9d
SZ
1835 if (!readlen)
1836 break;
1837
7314e9e7
TG
1838 /* Increment page address */
1839 realpage++;
1840
1841 page = realpage & chip->pagemask;
1842 /* Check, if we cross a chip boundary */
1843 if (!page) {
1844 chipnr++;
1845 chip->select_chip(mtd, -1);
1846 chip->select_chip(mtd, chipnr);
1da177e4 1847 }
7314e9e7 1848
8b6e50c9
BN
1849 /*
1850 * Check, if the chip supports auto page increment or if we
1851 * have hit a block boundary.
7314e9e7
TG
1852 */
1853 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1854 sndcmd = 1;
1da177e4
LT
1855 }
1856
7014568b 1857 ops->oobretlen = ops->ooblen;
041e4575
BN
1858
1859 if (mtd->ecc_stats.failed - stats.failed)
1860 return -EBADMSG;
1861
1862 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1da177e4
LT
1863}
1864
1865/**
8593fbc6 1866 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
1867 * @mtd: MTD device structure
1868 * @from: offset to read from
1869 * @ops: oob operation description structure
1da177e4 1870 *
8b6e50c9 1871 * NAND read data and/or out-of-band data.
1da177e4 1872 */
8593fbc6
TG
1873static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1874 struct mtd_oob_ops *ops)
1da177e4 1875{
ace4dfee 1876 struct nand_chip *chip = mtd->priv;
8593fbc6
TG
1877 int ret = -ENOTSUPP;
1878
1879 ops->retlen = 0;
1da177e4
LT
1880
1881 /* Do not allow reads past end of device */
7014568b 1882 if (ops->datbuf && (from + ops->len) > mtd->size) {
289c0522
BN
1883 pr_debug("%s: attempt to read beyond end of device\n",
1884 __func__);
1da177e4
LT
1885 return -EINVAL;
1886 }
1887
ace4dfee 1888 nand_get_device(chip, mtd, FL_READING);
1da177e4 1889
f8ac0414 1890 switch (ops->mode) {
0612b9dd
BN
1891 case MTD_OPS_PLACE_OOB:
1892 case MTD_OPS_AUTO_OOB:
1893 case MTD_OPS_RAW:
8593fbc6 1894 break;
1da177e4 1895
8593fbc6
TG
1896 default:
1897 goto out;
1898 }
1da177e4 1899
8593fbc6
TG
1900 if (!ops->datbuf)
1901 ret = nand_do_read_oob(mtd, from, ops);
1902 else
1903 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 1904
7351d3a5 1905out:
8593fbc6
TG
1906 nand_release_device(mtd);
1907 return ret;
1908}
61b03bd7 1909
1da177e4 1910
8593fbc6 1911/**
7854d3f7 1912 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
1913 * @mtd: mtd info structure
1914 * @chip: nand chip info structure
1915 * @buf: data buffer
52ff49df 1916 *
7854d3f7 1917 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6
TG
1918 */
1919static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1920 const uint8_t *buf)
1921{
1922 chip->write_buf(mtd, buf, mtd->writesize);
1923 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4
LT
1924}
1925
52ff49df 1926/**
7854d3f7 1927 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
1928 * @mtd: mtd info structure
1929 * @chip: nand chip info structure
1930 * @buf: data buffer
52ff49df
DB
1931 *
1932 * We need a special oob layout and handling even when ECC isn't checked.
1933 */
7351d3a5
FF
1934static void nand_write_page_raw_syndrome(struct mtd_info *mtd,
1935 struct nand_chip *chip,
1936 const uint8_t *buf)
52ff49df
DB
1937{
1938 int eccsize = chip->ecc.size;
1939 int eccbytes = chip->ecc.bytes;
1940 uint8_t *oob = chip->oob_poi;
1941 int steps, size;
1942
1943 for (steps = chip->ecc.steps; steps > 0; steps--) {
1944 chip->write_buf(mtd, buf, eccsize);
1945 buf += eccsize;
1946
1947 if (chip->ecc.prepad) {
1948 chip->write_buf(mtd, oob, chip->ecc.prepad);
1949 oob += chip->ecc.prepad;
1950 }
1951
1952 chip->read_buf(mtd, oob, eccbytes);
1953 oob += eccbytes;
1954
1955 if (chip->ecc.postpad) {
1956 chip->write_buf(mtd, oob, chip->ecc.postpad);
1957 oob += chip->ecc.postpad;
1958 }
1959 }
1960
1961 size = mtd->oobsize - (oob - chip->oob_poi);
1962 if (size)
1963 chip->write_buf(mtd, oob, size);
1964}
9223a456 1965/**
7854d3f7 1966 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
1967 * @mtd: mtd info structure
1968 * @chip: nand chip info structure
1969 * @buf: data buffer
9223a456 1970 */
f75e5097
TG
1971static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1972 const uint8_t *buf)
9223a456 1973{
f75e5097
TG
1974 int i, eccsize = chip->ecc.size;
1975 int eccbytes = chip->ecc.bytes;
1976 int eccsteps = chip->ecc.steps;
4bf63fcb 1977 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 1978 const uint8_t *p = buf;
8b099a39 1979 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 1980
7854d3f7 1981 /* Software ECC calculation */
8593fbc6
TG
1982 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1983 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 1984
8593fbc6
TG
1985 for (i = 0; i < chip->ecc.total; i++)
1986 chip->oob_poi[eccpos[i]] = ecc_calc[i];
9223a456 1987
90424de8 1988 chip->ecc.write_page_raw(mtd, chip, buf);
f75e5097 1989}
9223a456 1990
f75e5097 1991/**
7854d3f7 1992 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
1993 * @mtd: mtd info structure
1994 * @chip: nand chip info structure
1995 * @buf: data buffer
f75e5097
TG
1996 */
1997static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1998 const uint8_t *buf)
1999{
2000 int i, eccsize = chip->ecc.size;
2001 int eccbytes = chip->ecc.bytes;
2002 int eccsteps = chip->ecc.steps;
4bf63fcb 2003 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2004 const uint8_t *p = buf;
8b099a39 2005 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 2006
f75e5097
TG
2007 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2008 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 2009 chip->write_buf(mtd, p, eccsize);
f75e5097 2010 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
2011 }
2012
f75e5097
TG
2013 for (i = 0; i < chip->ecc.total; i++)
2014 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2015
2016 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
9223a456
TG
2017}
2018
61b03bd7 2019/**
7854d3f7 2020 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
2021 * @mtd: mtd info structure
2022 * @chip: nand chip info structure
2023 * @buf: data buffer
1da177e4 2024 *
8b6e50c9
BN
2025 * The hw generator calculates the error syndrome automatically. Therefore we
2026 * need a special oob layout and handling.
f75e5097
TG
2027 */
2028static void nand_write_page_syndrome(struct mtd_info *mtd,
2029 struct nand_chip *chip, const uint8_t *buf)
1da177e4 2030{
f75e5097
TG
2031 int i, eccsize = chip->ecc.size;
2032 int eccbytes = chip->ecc.bytes;
2033 int eccsteps = chip->ecc.steps;
2034 const uint8_t *p = buf;
2035 uint8_t *oob = chip->oob_poi;
1da177e4 2036
f75e5097 2037 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2038
f75e5097
TG
2039 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2040 chip->write_buf(mtd, p, eccsize);
61b03bd7 2041
f75e5097
TG
2042 if (chip->ecc.prepad) {
2043 chip->write_buf(mtd, oob, chip->ecc.prepad);
2044 oob += chip->ecc.prepad;
2045 }
2046
2047 chip->ecc.calculate(mtd, p, oob);
2048 chip->write_buf(mtd, oob, eccbytes);
2049 oob += eccbytes;
2050
2051 if (chip->ecc.postpad) {
2052 chip->write_buf(mtd, oob, chip->ecc.postpad);
2053 oob += chip->ecc.postpad;
1da177e4 2054 }
1da177e4 2055 }
f75e5097
TG
2056
2057 /* Calculate remaining oob bytes */
7e4178f9 2058 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2059 if (i)
2060 chip->write_buf(mtd, oob, i);
2061}
2062
2063/**
956e944c 2064 * nand_write_page - [REPLACEABLE] write one page
8b6e50c9
BN
2065 * @mtd: MTD device structure
2066 * @chip: NAND chip descriptor
2067 * @buf: the data to write
2068 * @page: page number to write
2069 * @cached: cached programming
2070 * @raw: use _raw version of write_page
f75e5097
TG
2071 */
2072static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
956e944c 2073 const uint8_t *buf, int page, int cached, int raw)
f75e5097
TG
2074{
2075 int status;
2076
2077 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2078
956e944c
DW
2079 if (unlikely(raw))
2080 chip->ecc.write_page_raw(mtd, chip, buf);
2081 else
2082 chip->ecc.write_page(mtd, chip, buf);
f75e5097
TG
2083
2084 /*
7854d3f7 2085 * Cached progamming disabled for now. Not sure if it's worth the
8b6e50c9 2086 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
f75e5097
TG
2087 */
2088 cached = 0;
2089
2090 if (!cached || !(chip->options & NAND_CACHEPRG)) {
2091
2092 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2093 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2094 /*
2095 * See if operation failed and additional status checks are
8b6e50c9 2096 * available.
f75e5097
TG
2097 */
2098 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2099 status = chip->errstat(mtd, chip, FL_WRITING, status,
2100 page);
2101
2102 if (status & NAND_STATUS_FAIL)
2103 return -EIO;
2104 } else {
2105 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2106 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2107 }
2108
2109#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2110 /* Send command to read back the data */
2111 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2112
2113 if (chip->verify_buf(mtd, buf, mtd->writesize))
2114 return -EIO;
2115#endif
2116 return 0;
1da177e4
LT
2117}
2118
8593fbc6 2119/**
7854d3f7 2120 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 2121 * @mtd: MTD device structure
8b6e50c9
BN
2122 * @oob: oob data buffer
2123 * @len: oob data write length
2124 * @ops: oob ops structure
8593fbc6 2125 */
f722013e
TAA
2126static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2127 struct mtd_oob_ops *ops)
8593fbc6 2128{
f722013e
TAA
2129 struct nand_chip *chip = mtd->priv;
2130
2131 /*
2132 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2133 * data from a previous OOB read.
2134 */
2135 memset(chip->oob_poi, 0xff, mtd->oobsize);
2136
f8ac0414 2137 switch (ops->mode) {
8593fbc6 2138
0612b9dd
BN
2139 case MTD_OPS_PLACE_OOB:
2140 case MTD_OPS_RAW:
8593fbc6
TG
2141 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2142 return oob + len;
2143
0612b9dd 2144 case MTD_OPS_AUTO_OOB: {
8593fbc6 2145 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
2146 uint32_t boffs = 0, woffs = ops->ooboffs;
2147 size_t bytes = 0;
8593fbc6 2148
f8ac0414 2149 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 2150 /* Write request not from offset 0? */
7bc3312b
TG
2151 if (unlikely(woffs)) {
2152 if (woffs >= free->length) {
2153 woffs -= free->length;
2154 continue;
2155 }
2156 boffs = free->offset + woffs;
2157 bytes = min_t(size_t, len,
2158 (free->length - woffs));
2159 woffs = 0;
2160 } else {
2161 bytes = min_t(size_t, len, free->length);
2162 boffs = free->offset;
2163 }
8b0036ee 2164 memcpy(chip->oob_poi + boffs, oob, bytes);
8593fbc6
TG
2165 oob += bytes;
2166 }
2167 return oob;
2168 }
2169 default:
2170 BUG();
2171 }
2172 return NULL;
2173}
2174
f8ac0414 2175#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
2176
2177/**
7854d3f7 2178 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
2179 * @mtd: MTD device structure
2180 * @to: offset to write to
2181 * @ops: oob operations description structure
1da177e4 2182 *
8b6e50c9 2183 * NAND write with ECC.
1da177e4 2184 */
8593fbc6
TG
2185static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2186 struct mtd_oob_ops *ops)
1da177e4 2187{
29072b96 2188 int chipnr, realpage, page, blockmask, column;
ace4dfee 2189 struct nand_chip *chip = mtd->priv;
8593fbc6 2190 uint32_t writelen = ops->len;
782ce79a
ML
2191
2192 uint32_t oobwritelen = ops->ooblen;
0612b9dd 2193 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
782ce79a
ML
2194 mtd->oobavail : mtd->oobsize;
2195
8593fbc6
TG
2196 uint8_t *oob = ops->oobbuf;
2197 uint8_t *buf = ops->datbuf;
29072b96 2198 int ret, subpage;
1da177e4 2199
8593fbc6 2200 ops->retlen = 0;
29072b96
TG
2201 if (!writelen)
2202 return 0;
1da177e4 2203
8b6e50c9 2204 /* Reject writes, which are not page aligned */
8593fbc6 2205 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
2206 pr_notice("%s: attempt to write non page aligned data\n",
2207 __func__);
1da177e4
LT
2208 return -EINVAL;
2209 }
2210
29072b96
TG
2211 column = to & (mtd->writesize - 1);
2212 subpage = column || (writelen & (mtd->writesize - 1));
2213
2214 if (subpage && oob)
2215 return -EINVAL;
1da177e4 2216
6a930961
TG
2217 chipnr = (int)(to >> chip->chip_shift);
2218 chip->select_chip(mtd, chipnr);
2219
1da177e4
LT
2220 /* Check, if it is write protected */
2221 if (nand_check_wp(mtd))
8593fbc6 2222 return -EIO;
1da177e4 2223
f75e5097
TG
2224 realpage = (int)(to >> chip->page_shift);
2225 page = realpage & chip->pagemask;
2226 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2227
2228 /* Invalidate the page cache, when we write to the cached page */
2229 if (to <= (chip->pagebuf << chip->page_shift) &&
8593fbc6 2230 (chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2231 chip->pagebuf = -1;
61b03bd7 2232
782ce79a 2233 /* Don't allow multipage oob writes with offset */
cdcf12b2 2234 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
782ce79a
ML
2235 return -EINVAL;
2236
f8ac0414 2237 while (1) {
29072b96 2238 int bytes = mtd->writesize;
f75e5097 2239 int cached = writelen > bytes && page != blockmask;
29072b96
TG
2240 uint8_t *wbuf = buf;
2241
8b6e50c9 2242 /* Partial page write? */
29072b96
TG
2243 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2244 cached = 0;
2245 bytes = min_t(int, bytes - column, (int) writelen);
2246 chip->pagebuf = -1;
2247 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2248 memcpy(&chip->buffers->databuf[column], buf, bytes);
2249 wbuf = chip->buffers->databuf;
2250 }
1da177e4 2251
782ce79a
ML
2252 if (unlikely(oob)) {
2253 size_t len = min(oobwritelen, oobmaxlen);
f722013e 2254 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 2255 oobwritelen -= len;
f722013e
TAA
2256 } else {
2257 /* We still need to erase leftover OOB data */
2258 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2259 }
8593fbc6 2260
29072b96 2261 ret = chip->write_page(mtd, chip, wbuf, page, cached,
0612b9dd 2262 (ops->mode == MTD_OPS_RAW));
f75e5097
TG
2263 if (ret)
2264 break;
2265
2266 writelen -= bytes;
2267 if (!writelen)
2268 break;
2269
29072b96 2270 column = 0;
f75e5097
TG
2271 buf += bytes;
2272 realpage++;
2273
2274 page = realpage & chip->pagemask;
2275 /* Check, if we cross a chip boundary */
2276 if (!page) {
2277 chipnr++;
2278 chip->select_chip(mtd, -1);
2279 chip->select_chip(mtd, chipnr);
1da177e4
LT
2280 }
2281 }
8593fbc6 2282
8593fbc6 2283 ops->retlen = ops->len - writelen;
7014568b
VW
2284 if (unlikely(oob))
2285 ops->oobretlen = ops->ooblen;
1da177e4
LT
2286 return ret;
2287}
2288
2af7c653
SK
2289/**
2290 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2291 * @mtd: MTD device structure
2292 * @to: offset to write to
2293 * @len: number of bytes to write
2294 * @retlen: pointer to variable to store the number of written bytes
2295 * @buf: the data to write
2af7c653
SK
2296 *
2297 * NAND write with ECC. Used when performing writes in interrupt context, this
2298 * may for example be called by mtdoops when writing an oops while in panic.
2299 */
2300static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2301 size_t *retlen, const uint8_t *buf)
2302{
2303 struct nand_chip *chip = mtd->priv;
4a89ff88 2304 struct mtd_oob_ops ops;
2af7c653
SK
2305 int ret;
2306
2307 /* Do not allow reads past end of device */
2308 if ((to + len) > mtd->size)
2309 return -EINVAL;
2310 if (!len)
2311 return 0;
2312
8b6e50c9 2313 /* Wait for the device to get ready */
2af7c653
SK
2314 panic_nand_wait(mtd, chip, 400);
2315
8b6e50c9 2316 /* Grab the device */
2af7c653
SK
2317 panic_nand_get_device(chip, mtd, FL_WRITING);
2318
4a89ff88
BN
2319 ops.len = len;
2320 ops.datbuf = (uint8_t *)buf;
2321 ops.oobbuf = NULL;
23b1a99b 2322 ops.mode = 0;
2af7c653 2323
4a89ff88 2324 ret = nand_do_write_ops(mtd, to, &ops);
2af7c653 2325
4a89ff88 2326 *retlen = ops.retlen;
2af7c653
SK
2327 return ret;
2328}
2329
f75e5097 2330/**
8593fbc6 2331 * nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2332 * @mtd: MTD device structure
2333 * @to: offset to write to
2334 * @len: number of bytes to write
2335 * @retlen: pointer to variable to store the number of written bytes
2336 * @buf: the data to write
f75e5097 2337 *
8b6e50c9 2338 * NAND write with ECC.
f75e5097 2339 */
8593fbc6
TG
2340static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2341 size_t *retlen, const uint8_t *buf)
f75e5097
TG
2342{
2343 struct nand_chip *chip = mtd->priv;
4a89ff88 2344 struct mtd_oob_ops ops;
f75e5097
TG
2345 int ret;
2346
8593fbc6
TG
2347 /* Do not allow reads past end of device */
2348 if ((to + len) > mtd->size)
f75e5097 2349 return -EINVAL;
8593fbc6
TG
2350 if (!len)
2351 return 0;
f75e5097 2352
7bc3312b 2353 nand_get_device(chip, mtd, FL_WRITING);
f75e5097 2354
4a89ff88
BN
2355 ops.len = len;
2356 ops.datbuf = (uint8_t *)buf;
2357 ops.oobbuf = NULL;
23b1a99b 2358 ops.mode = 0;
f75e5097 2359
4a89ff88 2360 ret = nand_do_write_ops(mtd, to, &ops);
f75e5097 2361
4a89ff88 2362 *retlen = ops.retlen;
7fd5aecc 2363
f75e5097 2364 nand_release_device(mtd);
8593fbc6 2365
8593fbc6 2366 return ret;
f75e5097 2367}
7314e9e7 2368
1da177e4 2369/**
8593fbc6 2370 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
2371 * @mtd: MTD device structure
2372 * @to: offset to write to
2373 * @ops: oob operation description structure
1da177e4 2374 *
8b6e50c9 2375 * NAND write out-of-band.
1da177e4 2376 */
8593fbc6
TG
2377static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2378 struct mtd_oob_ops *ops)
1da177e4 2379{
03736155 2380 int chipnr, page, status, len;
ace4dfee 2381 struct nand_chip *chip = mtd->priv;
1da177e4 2382
289c0522 2383 pr_debug("%s: to = 0x%08x, len = %i\n",
20d8e248 2384 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 2385
0612b9dd 2386 if (ops->mode == MTD_OPS_AUTO_OOB)
03736155
AH
2387 len = chip->ecc.layout->oobavail;
2388 else
2389 len = mtd->oobsize;
2390
1da177e4 2391 /* Do not allow write past end of page */
03736155 2392 if ((ops->ooboffs + ops->ooblen) > len) {
289c0522
BN
2393 pr_debug("%s: attempt to write past end of page\n",
2394 __func__);
1da177e4
LT
2395 return -EINVAL;
2396 }
2397
03736155 2398 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2399 pr_debug("%s: attempt to start write outside oob\n",
2400 __func__);
03736155
AH
2401 return -EINVAL;
2402 }
2403
775adc3d 2404 /* Do not allow write past end of device */
03736155
AH
2405 if (unlikely(to >= mtd->size ||
2406 ops->ooboffs + ops->ooblen >
2407 ((mtd->size >> chip->page_shift) -
2408 (to >> chip->page_shift)) * len)) {
289c0522
BN
2409 pr_debug("%s: attempt to write beyond end of device\n",
2410 __func__);
03736155
AH
2411 return -EINVAL;
2412 }
2413
7314e9e7 2414 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 2415 chip->select_chip(mtd, chipnr);
1da177e4 2416
7314e9e7
TG
2417 /* Shift to get page */
2418 page = (int)(to >> chip->page_shift);
2419
2420 /*
2421 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2422 * of my DiskOnChip 2000 test units) will clear the whole data page too
2423 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2424 * it in the doc2000 driver in August 1999. dwmw2.
2425 */
ace4dfee 2426 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
2427
2428 /* Check, if it is write protected */
2429 if (nand_check_wp(mtd))
8593fbc6 2430 return -EROFS;
61b03bd7 2431
1da177e4 2432 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
2433 if (page == chip->pagebuf)
2434 chip->pagebuf = -1;
1da177e4 2435
f722013e 2436 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
9ce244b3 2437
0612b9dd 2438 if (ops->mode == MTD_OPS_RAW)
9ce244b3
BN
2439 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2440 else
2441 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 2442
7bc3312b
TG
2443 if (status)
2444 return status;
1da177e4 2445
7014568b 2446 ops->oobretlen = ops->ooblen;
1da177e4 2447
7bc3312b 2448 return 0;
8593fbc6
TG
2449}
2450
2451/**
2452 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
2453 * @mtd: MTD device structure
2454 * @to: offset to write to
2455 * @ops: oob operation description structure
8593fbc6
TG
2456 */
2457static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2458 struct mtd_oob_ops *ops)
2459{
8593fbc6
TG
2460 struct nand_chip *chip = mtd->priv;
2461 int ret = -ENOTSUPP;
2462
2463 ops->retlen = 0;
2464
2465 /* Do not allow writes past end of device */
7014568b 2466 if (ops->datbuf && (to + ops->len) > mtd->size) {
289c0522
BN
2467 pr_debug("%s: attempt to write beyond end of device\n",
2468 __func__);
8593fbc6
TG
2469 return -EINVAL;
2470 }
2471
7bc3312b 2472 nand_get_device(chip, mtd, FL_WRITING);
8593fbc6 2473
f8ac0414 2474 switch (ops->mode) {
0612b9dd
BN
2475 case MTD_OPS_PLACE_OOB:
2476 case MTD_OPS_AUTO_OOB:
2477 case MTD_OPS_RAW:
8593fbc6
TG
2478 break;
2479
2480 default:
2481 goto out;
2482 }
2483
2484 if (!ops->datbuf)
2485 ret = nand_do_write_oob(mtd, to, ops);
2486 else
2487 ret = nand_do_write_ops(mtd, to, ops);
2488
7351d3a5 2489out:
1da177e4 2490 nand_release_device(mtd);
1da177e4
LT
2491 return ret;
2492}
2493
1da177e4 2494/**
7854d3f7 2495 * single_erase_cmd - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
2496 * @mtd: MTD device structure
2497 * @page: the page address of the block which will be erased
1da177e4 2498 *
8b6e50c9 2499 * Standard erase command for NAND chips.
1da177e4 2500 */
e0c7d767 2501static void single_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2502{
ace4dfee 2503 struct nand_chip *chip = mtd->priv;
1da177e4 2504 /* Send commands to erase a block */
ace4dfee
TG
2505 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2506 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2507}
2508
2509/**
7854d3f7 2510 * multi_erase_cmd - [GENERIC] AND specific block erase command function
8b6e50c9
BN
2511 * @mtd: MTD device structure
2512 * @page: the page address of the block which will be erased
1da177e4 2513 *
8b6e50c9 2514 * AND multi block erase command function. Erase 4 consecutive blocks.
1da177e4 2515 */
e0c7d767 2516static void multi_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2517{
ace4dfee 2518 struct nand_chip *chip = mtd->priv;
1da177e4 2519 /* Send commands to erase a block */
ace4dfee
TG
2520 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2521 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2522 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2523 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2524 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2525}
2526
2527/**
2528 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
2529 * @mtd: MTD device structure
2530 * @instr: erase instruction
1da177e4 2531 *
8b6e50c9 2532 * Erase one ore more blocks.
1da177e4 2533 */
e0c7d767 2534static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2535{
e0c7d767 2536 return nand_erase_nand(mtd, instr, 0);
1da177e4 2537}
61b03bd7 2538
30f464b7 2539#define BBT_PAGE_MASK 0xffffff3f
1da177e4 2540/**
7854d3f7 2541 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
2542 * @mtd: MTD device structure
2543 * @instr: erase instruction
2544 * @allowbbt: allow erasing the bbt area
1da177e4 2545 *
8b6e50c9 2546 * Erase one ore more blocks.
1da177e4 2547 */
ace4dfee
TG
2548int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2549 int allowbbt)
1da177e4 2550{
69423d99 2551 int page, status, pages_per_block, ret, chipnr;
ace4dfee 2552 struct nand_chip *chip = mtd->priv;
f8ac0414 2553 loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
ace4dfee 2554 unsigned int bbt_masked_page = 0xffffffff;
69423d99 2555 loff_t len;
1da177e4 2556
289c0522
BN
2557 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2558 __func__, (unsigned long long)instr->addr,
2559 (unsigned long long)instr->len);
1da177e4 2560
6fe5a6ac 2561 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 2562 return -EINVAL;
1da177e4 2563
bb0eb217 2564 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1da177e4
LT
2565
2566 /* Grab the lock and see if the device is available */
ace4dfee 2567 nand_get_device(chip, mtd, FL_ERASING);
1da177e4
LT
2568
2569 /* Shift to get first page */
ace4dfee
TG
2570 page = (int)(instr->addr >> chip->page_shift);
2571 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
2572
2573 /* Calculate pages in each block */
ace4dfee 2574 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
2575
2576 /* Select the NAND device */
ace4dfee 2577 chip->select_chip(mtd, chipnr);
1da177e4 2578
1da177e4
LT
2579 /* Check, if it is write protected */
2580 if (nand_check_wp(mtd)) {
289c0522
BN
2581 pr_debug("%s: device is write protected!\n",
2582 __func__);
1da177e4
LT
2583 instr->state = MTD_ERASE_FAILED;
2584 goto erase_exit;
2585 }
2586
ace4dfee
TG
2587 /*
2588 * If BBT requires refresh, set the BBT page mask to see if the BBT
2589 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2590 * can not be matched. This is also done when the bbt is actually
7854d3f7 2591 * erased to avoid recursive updates.
ace4dfee
TG
2592 */
2593 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2594 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
30f464b7 2595
1da177e4
LT
2596 /* Loop through the pages */
2597 len = instr->len;
2598
2599 instr->state = MTD_ERASING;
2600
2601 while (len) {
12183a20 2602 /* Check if we have a bad block, we do not erase bad blocks! */
ace4dfee
TG
2603 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2604 chip->page_shift, 0, allowbbt)) {
d0370219
BN
2605 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2606 __func__, page);
1da177e4
LT
2607 instr->state = MTD_ERASE_FAILED;
2608 goto erase_exit;
2609 }
61b03bd7 2610
ace4dfee
TG
2611 /*
2612 * Invalidate the page cache, if we erase the block which
8b6e50c9 2613 * contains the current cached page.
ace4dfee
TG
2614 */
2615 if (page <= chip->pagebuf && chip->pagebuf <
2616 (page + pages_per_block))
2617 chip->pagebuf = -1;
1da177e4 2618
ace4dfee 2619 chip->erase_cmd(mtd, page & chip->pagemask);
61b03bd7 2620
7bc3312b 2621 status = chip->waitfunc(mtd, chip);
1da177e4 2622
ace4dfee
TG
2623 /*
2624 * See if operation failed and additional status checks are
2625 * available
2626 */
2627 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2628 status = chip->errstat(mtd, chip, FL_ERASING,
2629 status, page);
068e3c0a 2630
1da177e4 2631 /* See if block erase succeeded */
a4ab4c5d 2632 if (status & NAND_STATUS_FAIL) {
289c0522
BN
2633 pr_debug("%s: failed erase, page 0x%08x\n",
2634 __func__, page);
1da177e4 2635 instr->state = MTD_ERASE_FAILED;
69423d99
AH
2636 instr->fail_addr =
2637 ((loff_t)page << chip->page_shift);
1da177e4
LT
2638 goto erase_exit;
2639 }
30f464b7 2640
ace4dfee
TG
2641 /*
2642 * If BBT requires refresh, set the BBT rewrite flag to the
8b6e50c9 2643 * page being erased.
ace4dfee
TG
2644 */
2645 if (bbt_masked_page != 0xffffffff &&
2646 (page & BBT_PAGE_MASK) == bbt_masked_page)
69423d99
AH
2647 rewrite_bbt[chipnr] =
2648 ((loff_t)page << chip->page_shift);
61b03bd7 2649
1da177e4 2650 /* Increment page address and decrement length */
ace4dfee 2651 len -= (1 << chip->phys_erase_shift);
1da177e4
LT
2652 page += pages_per_block;
2653
2654 /* Check, if we cross a chip boundary */
ace4dfee 2655 if (len && !(page & chip->pagemask)) {
1da177e4 2656 chipnr++;
ace4dfee
TG
2657 chip->select_chip(mtd, -1);
2658 chip->select_chip(mtd, chipnr);
30f464b7 2659
ace4dfee
TG
2660 /*
2661 * If BBT requires refresh and BBT-PERCHIP, set the BBT
8b6e50c9 2662 * page mask to see if this BBT should be rewritten.
ace4dfee
TG
2663 */
2664 if (bbt_masked_page != 0xffffffff &&
2665 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2666 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2667 BBT_PAGE_MASK;
1da177e4
LT
2668 }
2669 }
2670 instr->state = MTD_ERASE_DONE;
2671
7351d3a5 2672erase_exit:
1da177e4
LT
2673
2674 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
2675
2676 /* Deselect and wake up anyone waiting on the device */
2677 nand_release_device(mtd);
2678
49defc01
DW
2679 /* Do call back function */
2680 if (!ret)
2681 mtd_erase_callback(instr);
2682
ace4dfee
TG
2683 /*
2684 * If BBT requires refresh and erase was successful, rewrite any
8b6e50c9 2685 * selected bad block tables.
ace4dfee
TG
2686 */
2687 if (bbt_masked_page == 0xffffffff || ret)
2688 return ret;
2689
2690 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2691 if (!rewrite_bbt[chipnr])
2692 continue;
8b6e50c9 2693 /* Update the BBT for chip */
289c0522
BN
2694 pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
2695 __func__, chipnr, rewrite_bbt[chipnr],
2696 chip->bbt_td->pages[chipnr]);
ace4dfee 2697 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
30f464b7
DM
2698 }
2699
1da177e4
LT
2700 /* Return more or less happy */
2701 return ret;
2702}
2703
2704/**
2705 * nand_sync - [MTD Interface] sync
8b6e50c9 2706 * @mtd: MTD device structure
1da177e4 2707 *
8b6e50c9 2708 * Sync is actually a wait for chip ready function.
1da177e4 2709 */
e0c7d767 2710static void nand_sync(struct mtd_info *mtd)
1da177e4 2711{
ace4dfee 2712 struct nand_chip *chip = mtd->priv;
1da177e4 2713
289c0522 2714 pr_debug("%s: called\n", __func__);
1da177e4
LT
2715
2716 /* Grab the lock and see if the device is available */
ace4dfee 2717 nand_get_device(chip, mtd, FL_SYNCING);
1da177e4 2718 /* Release it and go back */
e0c7d767 2719 nand_release_device(mtd);
1da177e4
LT
2720}
2721
1da177e4 2722/**
ace4dfee 2723 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
2724 * @mtd: MTD device structure
2725 * @offs: offset relative to mtd start
1da177e4 2726 */
ace4dfee 2727static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4
LT
2728{
2729 /* Check for invalid offset */
ace4dfee 2730 if (offs > mtd->size)
1da177e4 2731 return -EINVAL;
61b03bd7 2732
ace4dfee 2733 return nand_block_checkbad(mtd, offs, 1, 0);
1da177e4
LT
2734}
2735
2736/**
ace4dfee 2737 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
2738 * @mtd: MTD device structure
2739 * @ofs: offset relative to mtd start
1da177e4 2740 */
e0c7d767 2741static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 2742{
ace4dfee 2743 struct nand_chip *chip = mtd->priv;
1da177e4
LT
2744 int ret;
2745
f8ac0414
FF
2746 ret = nand_block_isbad(mtd, ofs);
2747 if (ret) {
8b6e50c9 2748 /* If it was bad already, return success and do nothing */
1da177e4
LT
2749 if (ret > 0)
2750 return 0;
e0c7d767
DW
2751 return ret;
2752 }
1da177e4 2753
ace4dfee 2754 return chip->block_markbad(mtd, ofs);
1da177e4
LT
2755}
2756
962034f4
VW
2757/**
2758 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 2759 * @mtd: MTD device structure
962034f4
VW
2760 */
2761static int nand_suspend(struct mtd_info *mtd)
2762{
ace4dfee 2763 struct nand_chip *chip = mtd->priv;
962034f4 2764
ace4dfee 2765 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
962034f4
VW
2766}
2767
2768/**
2769 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 2770 * @mtd: MTD device structure
962034f4
VW
2771 */
2772static void nand_resume(struct mtd_info *mtd)
2773{
ace4dfee 2774 struct nand_chip *chip = mtd->priv;
962034f4 2775
ace4dfee 2776 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
2777 nand_release_device(mtd);
2778 else
d0370219
BN
2779 pr_err("%s called for a chip which is not in suspended state\n",
2780 __func__);
962034f4
VW
2781}
2782
8b6e50c9 2783/* Set default functions */
ace4dfee 2784static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 2785{
1da177e4 2786 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
2787 if (!chip->chip_delay)
2788 chip->chip_delay = 20;
1da177e4
LT
2789
2790 /* check, if a user supplied command function given */
ace4dfee
TG
2791 if (chip->cmdfunc == NULL)
2792 chip->cmdfunc = nand_command;
1da177e4
LT
2793
2794 /* check, if a user supplied wait function given */
ace4dfee
TG
2795 if (chip->waitfunc == NULL)
2796 chip->waitfunc = nand_wait;
2797
2798 if (!chip->select_chip)
2799 chip->select_chip = nand_select_chip;
2800 if (!chip->read_byte)
2801 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2802 if (!chip->read_word)
2803 chip->read_word = nand_read_word;
2804 if (!chip->block_bad)
2805 chip->block_bad = nand_block_bad;
2806 if (!chip->block_markbad)
2807 chip->block_markbad = nand_default_block_markbad;
2808 if (!chip->write_buf)
2809 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2810 if (!chip->read_buf)
2811 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2812 if (!chip->verify_buf)
2813 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2814 if (!chip->scan_bbt)
2815 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
2816
2817 if (!chip->controller) {
2818 chip->controller = &chip->hwcontrol;
2819 spin_lock_init(&chip->controller->lock);
2820 init_waitqueue_head(&chip->controller->wq);
2821 }
2822
7aa65bfd
TG
2823}
2824
8b6e50c9 2825/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
2826static void sanitize_string(uint8_t *s, size_t len)
2827{
2828 ssize_t i;
2829
8b6e50c9 2830 /* Null terminate */
d1e1f4e4
FF
2831 s[len - 1] = 0;
2832
8b6e50c9 2833 /* Remove non printable chars */
d1e1f4e4
FF
2834 for (i = 0; i < len - 1; i++) {
2835 if (s[i] < ' ' || s[i] > 127)
2836 s[i] = '?';
2837 }
2838
8b6e50c9 2839 /* Remove trailing spaces */
d1e1f4e4
FF
2840 strim(s);
2841}
2842
2843static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2844{
2845 int i;
2846 while (len--) {
2847 crc ^= *p++ << 8;
2848 for (i = 0; i < 8; i++)
2849 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2850 }
2851
2852 return crc;
2853}
2854
6fb277ba 2855/*
8b6e50c9 2856 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba
FF
2857 */
2858static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
08c248fb 2859 int *busw)
6fb277ba
FF
2860{
2861 struct nand_onfi_params *p = &chip->onfi_params;
2862 int i;
2863 int val;
2864
7854d3f7 2865 /* Try ONFI for unknown chip or LP */
6fb277ba
FF
2866 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2867 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2868 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2869 return 0;
2870
9a4d4d69 2871 pr_info("ONFI flash detected\n");
6fb277ba
FF
2872 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2873 for (i = 0; i < 3; i++) {
2874 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2875 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2876 le16_to_cpu(p->crc)) {
9a4d4d69 2877 pr_info("ONFI param page %d valid\n", i);
6fb277ba
FF
2878 break;
2879 }
2880 }
2881
2882 if (i == 3)
2883 return 0;
2884
8b6e50c9 2885 /* Check version */
6fb277ba 2886 val = le16_to_cpu(p->revision);
b7b1a29d
BN
2887 if (val & (1 << 5))
2888 chip->onfi_version = 23;
2889 else if (val & (1 << 4))
6fb277ba
FF
2890 chip->onfi_version = 22;
2891 else if (val & (1 << 3))
2892 chip->onfi_version = 21;
2893 else if (val & (1 << 2))
2894 chip->onfi_version = 20;
b7b1a29d 2895 else if (val & (1 << 1))
6fb277ba 2896 chip->onfi_version = 10;
b7b1a29d
BN
2897 else
2898 chip->onfi_version = 0;
2899
2900 if (!chip->onfi_version) {
d0370219 2901 pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
b7b1a29d
BN
2902 return 0;
2903 }
6fb277ba
FF
2904
2905 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2906 sanitize_string(p->model, sizeof(p->model));
2907 if (!mtd->name)
2908 mtd->name = p->model;
2909 mtd->writesize = le32_to_cpu(p->byte_per_page);
2910 mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2911 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4ccb3b44 2912 chip->chipsize = (uint64_t)le32_to_cpu(p->blocks_per_lun) * mtd->erasesize;
08c248fb 2913 *busw = 0;
6fb277ba 2914 if (le16_to_cpu(p->features) & 1)
08c248fb 2915 *busw = NAND_BUSWIDTH_16;
6fb277ba
FF
2916
2917 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2918 chip->options |= (NAND_NO_READRDY |
2919 NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK;
2920
2921 return 1;
2922}
2923
7aa65bfd 2924/*
8b6e50c9 2925 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd
TG
2926 */
2927static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 2928 struct nand_chip *chip,
7351d3a5
FF
2929 int busw,
2930 int *maf_id, int *dev_id,
5e81e88a 2931 struct nand_flash_dev *type)
7aa65bfd 2932{
d1e1f4e4 2933 int i, maf_idx;
426c457a 2934 u8 id_data[8];
6fb277ba 2935 int ret;
1da177e4
LT
2936
2937 /* Select the device */
ace4dfee 2938 chip->select_chip(mtd, 0);
1da177e4 2939
ef89a880
KB
2940 /*
2941 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 2942 * after power-up.
ef89a880
KB
2943 */
2944 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2945
1da177e4 2946 /* Send the command for reading device ID */
ace4dfee 2947 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
2948
2949 /* Read manufacturer and device IDs */
ace4dfee 2950 *maf_id = chip->read_byte(mtd);
d1e1f4e4 2951 *dev_id = chip->read_byte(mtd);
1da177e4 2952
8b6e50c9
BN
2953 /*
2954 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
2955 * interface concerns can cause random data which looks like a
2956 * possibly credible NAND flash to appear. If the two results do
2957 * not match, ignore the device completely.
2958 */
2959
2960 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2961
d1e1f4e4 2962 for (i = 0; i < 2; i++)
426c457a 2963 id_data[i] = chip->read_byte(mtd);
ed8165c7 2964
d1e1f4e4 2965 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
9a4d4d69 2966 pr_info("%s: second ID read did not match "
d0370219
BN
2967 "%02x,%02x against %02x,%02x\n", __func__,
2968 *maf_id, *dev_id, id_data[0], id_data[1]);
ed8165c7
BD
2969 return ERR_PTR(-ENODEV);
2970 }
2971
7aa65bfd 2972 if (!type)
5e81e88a
DW
2973 type = nand_flash_ids;
2974
2975 for (; type->name != NULL; type++)
d1e1f4e4 2976 if (*dev_id == type->id)
f8ac0414 2977 break;
5e81e88a 2978
d1e1f4e4
FF
2979 chip->onfi_version = 0;
2980 if (!type->name || !type->pagesize) {
6fb277ba 2981 /* Check is chip is ONFI compliant */
08c248fb 2982 ret = nand_flash_detect_onfi(mtd, chip, &busw);
6fb277ba
FF
2983 if (ret)
2984 goto ident_done;
d1e1f4e4
FF
2985 }
2986
2987 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2988
2989 /* Read entire ID string */
2990
2991 for (i = 0; i < 8; i++)
2992 id_data[i] = chip->read_byte(mtd);
2993
5e81e88a 2994 if (!type->name)
7aa65bfd
TG
2995 return ERR_PTR(-ENODEV);
2996
ba0251fe
TG
2997 if (!mtd->name)
2998 mtd->name = type->name;
2999
69423d99 3000 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 3001
12a40a57 3002 if (!type->pagesize && chip->init_size) {
8b6e50c9 3003 /* Set the pagesize, oobsize, erasesize by the driver */
12a40a57
HS
3004 busw = chip->init_size(mtd, chip, id_data);
3005 } else if (!type->pagesize) {
7aa65bfd 3006 int extid;
29072b96 3007 /* The 3rd id byte holds MLC / multichip data */
426c457a 3008 chip->cellinfo = id_data[2];
7aa65bfd 3009 /* The 4th id byte is the important one */
426c457a 3010 extid = id_data[3];
61b03bd7 3011
426c457a
KC
3012 /*
3013 * Field definitions are in the following datasheets:
3014 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
34c5bf6c 3015 * New style (6 byte ID): Samsung K9GBG08U0M (p.40)
426c457a
KC
3016 *
3017 * Check for wraparound + Samsung ID + nonzero 6th byte
3018 * to decide what to do.
3019 */
3020 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
3021 id_data[0] == NAND_MFR_SAMSUNG &&
cfe3fdad 3022 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
426c457a
KC
3023 id_data[5] != 0x00) {
3024 /* Calc pagesize */
3025 mtd->writesize = 2048 << (extid & 0x03);
3026 extid >>= 2;
3027 /* Calc oobsize */
34c5bf6c
BN
3028 switch (extid & 0x03) {
3029 case 1:
3030 mtd->oobsize = 128;
3031 break;
3032 case 2:
3033 mtd->oobsize = 218;
3034 break;
3035 case 3:
3036 mtd->oobsize = 400;
3037 break;
3038 default:
3039 mtd->oobsize = 436;
3040 break;
3041 }
426c457a
KC
3042 extid >>= 2;
3043 /* Calc blocksize */
3044 mtd->erasesize = (128 * 1024) <<
3045 (((extid >> 1) & 0x04) | (extid & 0x03));
3046 busw = 0;
3047 } else {
3048 /* Calc pagesize */
3049 mtd->writesize = 1024 << (extid & 0x03);
3050 extid >>= 2;
3051 /* Calc oobsize */
3052 mtd->oobsize = (8 << (extid & 0x01)) *
3053 (mtd->writesize >> 9);
3054 extid >>= 2;
3055 /* Calc blocksize. Blocksize is multiples of 64KiB */
3056 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3057 extid >>= 2;
3058 /* Get buswidth information */
3059 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3060 }
7aa65bfd
TG
3061 } else {
3062 /*
8b6e50c9 3063 * Old devices have chip data hardcoded in the device id table.
7aa65bfd 3064 */
ba0251fe
TG
3065 mtd->erasesize = type->erasesize;
3066 mtd->writesize = type->pagesize;
4cbb9b80 3067 mtd->oobsize = mtd->writesize / 32;
ba0251fe 3068 busw = type->options & NAND_BUSWIDTH_16;
2173bae8
BN
3069
3070 /*
3071 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3072 * some Spansion chips have erasesize that conflicts with size
8b6e50c9 3073 * listed in nand_ids table.
2173bae8
BN
3074 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3075 */
3076 if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3077 id_data[5] == 0x00 && id_data[6] == 0x00 &&
3078 id_data[7] == 0x00 && mtd->writesize == 512) {
3079 mtd->erasesize = 128 * 1024;
3080 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3081 }
7aa65bfd 3082 }
d1e1f4e4
FF
3083 /* Get chip options, preserve non chip based options */
3084 chip->options &= ~NAND_CHIPOPTIONS_MSK;
3085 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
3086
8b6e50c9
BN
3087 /*
3088 * Check if chip is not a Samsung device. Do not clear the
3089 * options for chips which do not have an extended id.
d1e1f4e4
FF
3090 */
3091 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3092 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3093ident_done:
3094
3095 /*
8b6e50c9 3096 * Set chip as a default. Board drivers can override it, if necessary.
d1e1f4e4
FF
3097 */
3098 chip->options |= NAND_NO_AUTOINCR;
1da177e4 3099
7aa65bfd 3100 /* Try to identify manufacturer */
9a909867 3101 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
7aa65bfd
TG
3102 if (nand_manuf_ids[maf_idx].id == *maf_id)
3103 break;
3104 }
0ea4a755 3105
7aa65bfd
TG
3106 /*
3107 * Check, if buswidth is correct. Hardware drivers should set
8b6e50c9 3108 * chip correct!
7aa65bfd 3109 */
ace4dfee 3110 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
9a4d4d69 3111 pr_info("NAND device: Manufacturer ID:"
d0370219
BN
3112 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3113 *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
9a4d4d69 3114 pr_warn("NAND bus width %d instead %d bit\n",
d0370219
BN
3115 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3116 busw ? 16 : 8);
7aa65bfd
TG
3117 return ERR_PTR(-EINVAL);
3118 }
61b03bd7 3119
7aa65bfd 3120 /* Calculate the address shift from the page size */
ace4dfee 3121 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 3122 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 3123 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 3124
ace4dfee 3125 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 3126 ffs(mtd->erasesize) - 1;
69423d99
AH
3127 if (chip->chipsize & 0xffffffff)
3128 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
3129 else {
3130 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3131 chip->chip_shift += 32 - 1;
3132 }
1da177e4 3133
26d9be11
AB
3134 chip->badblockbits = 8;
3135
7aa65bfd 3136 /* Set the bad block position */
065a1ed8 3137 if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
c7b28e25 3138 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
065a1ed8
BN
3139 else
3140 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
61b03bd7 3141
b60b08b0
KC
3142 /*
3143 * Bad block marker is stored in the last page of each block
c7b28e25
BN
3144 * on Samsung and Hynix MLC devices; stored in first two pages
3145 * of each block on Micron devices with 2KiB pages and on
8c342335
BN
3146 * SLC Samsung, Hynix, Toshiba, AMD/Spansion, and Macronix.
3147 * All others scan only the first page.
b60b08b0
KC
3148 */
3149 if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3150 (*maf_id == NAND_MFR_SAMSUNG ||
3151 *maf_id == NAND_MFR_HYNIX))
5fb1549d 3152 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
c7b28e25
BN
3153 else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3154 (*maf_id == NAND_MFR_SAMSUNG ||
3155 *maf_id == NAND_MFR_HYNIX ||
13ed7aed 3156 *maf_id == NAND_MFR_TOSHIBA ||
8c342335
BN
3157 *maf_id == NAND_MFR_AMD ||
3158 *maf_id == NAND_MFR_MACRONIX)) ||
c7b28e25
BN
3159 (mtd->writesize == 2048 &&
3160 *maf_id == NAND_MFR_MICRON))
5fb1549d 3161 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
c7b28e25 3162
7aa65bfd 3163 /* Check for AND chips with 4 page planes */
ace4dfee
TG
3164 if (chip->options & NAND_4PAGE_ARRAY)
3165 chip->erase_cmd = multi_erase_cmd;
7aa65bfd 3166 else
ace4dfee 3167 chip->erase_cmd = single_erase_cmd;
7aa65bfd 3168
8b6e50c9 3169 /* Do not replace user supplied command function! */
ace4dfee
TG
3170 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3171 chip->cmdfunc = nand_command_lp;
7aa65bfd 3172
9a4d4d69 3173 pr_info("NAND device: Manufacturer ID:"
d1e1f4e4
FF
3174 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id,
3175 nand_manuf_ids[maf_idx].name,
0b524fb9 3176 chip->onfi_version ? chip->onfi_params.model : type->name);
7aa65bfd
TG
3177
3178 return type;
3179}
3180
7aa65bfd 3181/**
3b85c321 3182 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3183 * @mtd: MTD device structure
3184 * @maxchips: number of chips to scan for
3185 * @table: alternative NAND ID table
7aa65bfd 3186 *
8b6e50c9
BN
3187 * This is the first phase of the normal nand_scan() function. It reads the
3188 * flash ID and sets up MTD fields accordingly.
7aa65bfd 3189 *
3b85c321 3190 * The mtd->owner field must be set to the module of the caller.
7aa65bfd 3191 */
5e81e88a
DW
3192int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3193 struct nand_flash_dev *table)
7aa65bfd 3194{
d1e1f4e4 3195 int i, busw, nand_maf_id, nand_dev_id;
ace4dfee 3196 struct nand_chip *chip = mtd->priv;
7aa65bfd
TG
3197 struct nand_flash_dev *type;
3198
7aa65bfd 3199 /* Get buswidth to select the correct functions */
ace4dfee 3200 busw = chip->options & NAND_BUSWIDTH_16;
7aa65bfd 3201 /* Set the default functions */
ace4dfee 3202 nand_set_defaults(chip, busw);
7aa65bfd
TG
3203
3204 /* Read the flash type */
7351d3a5
FF
3205 type = nand_get_flash_type(mtd, chip, busw,
3206 &nand_maf_id, &nand_dev_id, table);
7aa65bfd
TG
3207
3208 if (IS_ERR(type)) {
b1c6e6db 3209 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 3210 pr_warn("No NAND device found\n");
ace4dfee 3211 chip->select_chip(mtd, -1);
7aa65bfd 3212 return PTR_ERR(type);
1da177e4
LT
3213 }
3214
7aa65bfd 3215 /* Check for a chip array */
e0c7d767 3216 for (i = 1; i < maxchips; i++) {
ace4dfee 3217 chip->select_chip(mtd, i);
ef89a880
KB
3218 /* See comment in nand_get_flash_type for reset */
3219 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4 3220 /* Send the command for reading device ID */
ace4dfee 3221 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 3222 /* Read manufacturer and device IDs */
ace4dfee 3223 if (nand_maf_id != chip->read_byte(mtd) ||
d1e1f4e4 3224 nand_dev_id != chip->read_byte(mtd))
1da177e4
LT
3225 break;
3226 }
3227 if (i > 1)
9a4d4d69 3228 pr_info("%d NAND chips detected\n", i);
61b03bd7 3229
1da177e4 3230 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
3231 chip->numchips = i;
3232 mtd->size = i * chip->chipsize;
7aa65bfd 3233
3b85c321
DW
3234 return 0;
3235}
7351d3a5 3236EXPORT_SYMBOL(nand_scan_ident);
3b85c321
DW
3237
3238
3239/**
3240 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 3241 * @mtd: MTD device structure
3b85c321 3242 *
8b6e50c9
BN
3243 * This is the second phase of the normal nand_scan() function. It fills out
3244 * all the uninitialized function pointers with the defaults and scans for a
3245 * bad block table if appropriate.
3b85c321
DW
3246 */
3247int nand_scan_tail(struct mtd_info *mtd)
3248{
3249 int i;
3250 struct nand_chip *chip = mtd->priv;
3251
4bf63fcb
DW
3252 if (!(chip->options & NAND_OWN_BUFFERS))
3253 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3254 if (!chip->buffers)
3255 return -ENOMEM;
3256
7dcdcbef 3257 /* Set the internal oob buffer location, just after the page data */
784f4d5e 3258 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 3259
7aa65bfd 3260 /*
8b6e50c9 3261 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 3262 */
193bd400 3263 if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
61b03bd7 3264 switch (mtd->oobsize) {
1da177e4 3265 case 8:
5bd34c09 3266 chip->ecc.layout = &nand_oob_8;
1da177e4
LT
3267 break;
3268 case 16:
5bd34c09 3269 chip->ecc.layout = &nand_oob_16;
1da177e4
LT
3270 break;
3271 case 64:
5bd34c09 3272 chip->ecc.layout = &nand_oob_64;
1da177e4 3273 break;
81ec5364
TG
3274 case 128:
3275 chip->ecc.layout = &nand_oob_128;
3276 break;
1da177e4 3277 default:
d0370219
BN
3278 pr_warn("No oob scheme defined for oobsize %d\n",
3279 mtd->oobsize);
1da177e4
LT
3280 BUG();
3281 }
3282 }
61b03bd7 3283
956e944c
DW
3284 if (!chip->write_page)
3285 chip->write_page = nand_write_page;
3286
61b03bd7 3287 /*
8b6e50c9 3288 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 3289 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 3290 */
956e944c 3291
ace4dfee 3292 switch (chip->ecc.mode) {
6e0cb135
SN
3293 case NAND_ECC_HW_OOB_FIRST:
3294 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3295 if (!chip->ecc.calculate || !chip->ecc.correct ||
3296 !chip->ecc.hwctl) {
9a4d4d69 3297 pr_warn("No ECC functions supplied; "
d0370219 3298 "hardware ECC not possible\n");
6e0cb135
SN
3299 BUG();
3300 }
3301 if (!chip->ecc.read_page)
3302 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3303
6dfc6d25 3304 case NAND_ECC_HW:
8b6e50c9 3305 /* Use standard hwecc read page function? */
f5bbdacc
TG
3306 if (!chip->ecc.read_page)
3307 chip->ecc.read_page = nand_read_page_hwecc;
f75e5097
TG
3308 if (!chip->ecc.write_page)
3309 chip->ecc.write_page = nand_write_page_hwecc;
52ff49df
DB
3310 if (!chip->ecc.read_page_raw)
3311 chip->ecc.read_page_raw = nand_read_page_raw;
3312 if (!chip->ecc.write_page_raw)
3313 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b
TG
3314 if (!chip->ecc.read_oob)
3315 chip->ecc.read_oob = nand_read_oob_std;
3316 if (!chip->ecc.write_oob)
3317 chip->ecc.write_oob = nand_write_oob_std;
f5bbdacc 3318
6dfc6d25 3319 case NAND_ECC_HW_SYNDROME:
78b65179
SW
3320 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3321 !chip->ecc.hwctl) &&
3322 (!chip->ecc.read_page ||
1c45f604 3323 chip->ecc.read_page == nand_read_page_hwecc ||
78b65179 3324 !chip->ecc.write_page ||
1c45f604 3325 chip->ecc.write_page == nand_write_page_hwecc)) {
9a4d4d69 3326 pr_warn("No ECC functions supplied; "
d0370219 3327 "hardware ECC not possible\n");
6dfc6d25
TG
3328 BUG();
3329 }
8b6e50c9 3330 /* Use standard syndrome read/write page function? */
f5bbdacc
TG
3331 if (!chip->ecc.read_page)
3332 chip->ecc.read_page = nand_read_page_syndrome;
f75e5097
TG
3333 if (!chip->ecc.write_page)
3334 chip->ecc.write_page = nand_write_page_syndrome;
52ff49df
DB
3335 if (!chip->ecc.read_page_raw)
3336 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3337 if (!chip->ecc.write_page_raw)
3338 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
7bc3312b
TG
3339 if (!chip->ecc.read_oob)
3340 chip->ecc.read_oob = nand_read_oob_syndrome;
3341 if (!chip->ecc.write_oob)
3342 chip->ecc.write_oob = nand_write_oob_syndrome;
f5bbdacc 3343
ace4dfee 3344 if (mtd->writesize >= chip->ecc.size)
6dfc6d25 3345 break;
9a4d4d69 3346 pr_warn("%d byte HW ECC not possible on "
d0370219
BN
3347 "%d byte page size, fallback to SW ECC\n",
3348 chip->ecc.size, mtd->writesize);
ace4dfee 3349 chip->ecc.mode = NAND_ECC_SOFT;
61b03bd7 3350
6dfc6d25 3351 case NAND_ECC_SOFT:
ace4dfee
TG
3352 chip->ecc.calculate = nand_calculate_ecc;
3353 chip->ecc.correct = nand_correct_data;
f5bbdacc 3354 chip->ecc.read_page = nand_read_page_swecc;
3d459559 3355 chip->ecc.read_subpage = nand_read_subpage;
f75e5097 3356 chip->ecc.write_page = nand_write_page_swecc;
52ff49df
DB
3357 chip->ecc.read_page_raw = nand_read_page_raw;
3358 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b
TG
3359 chip->ecc.read_oob = nand_read_oob_std;
3360 chip->ecc.write_oob = nand_write_oob_std;
9a73290d
SV
3361 if (!chip->ecc.size)
3362 chip->ecc.size = 256;
ace4dfee 3363 chip->ecc.bytes = 3;
1da177e4 3364 break;
61b03bd7 3365
193bd400
ID
3366 case NAND_ECC_SOFT_BCH:
3367 if (!mtd_nand_has_bch()) {
9a4d4d69 3368 pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
193bd400
ID
3369 BUG();
3370 }
3371 chip->ecc.calculate = nand_bch_calculate_ecc;
3372 chip->ecc.correct = nand_bch_correct_data;
3373 chip->ecc.read_page = nand_read_page_swecc;
3374 chip->ecc.read_subpage = nand_read_subpage;
3375 chip->ecc.write_page = nand_write_page_swecc;
3376 chip->ecc.read_page_raw = nand_read_page_raw;
3377 chip->ecc.write_page_raw = nand_write_page_raw;
3378 chip->ecc.read_oob = nand_read_oob_std;
3379 chip->ecc.write_oob = nand_write_oob_std;
3380 /*
3381 * Board driver should supply ecc.size and ecc.bytes values to
3382 * select how many bits are correctable; see nand_bch_init()
8b6e50c9
BN
3383 * for details. Otherwise, default to 4 bits for large page
3384 * devices.
193bd400
ID
3385 */
3386 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3387 chip->ecc.size = 512;
3388 chip->ecc.bytes = 7;
3389 }
3390 chip->ecc.priv = nand_bch_init(mtd,
3391 chip->ecc.size,
3392 chip->ecc.bytes,
3393 &chip->ecc.layout);
3394 if (!chip->ecc.priv) {
9a4d4d69 3395 pr_warn("BCH ECC initialization failed!\n");
193bd400
ID
3396 BUG();
3397 }
3398 break;
3399
61b03bd7 3400 case NAND_ECC_NONE:
9a4d4d69 3401 pr_warn("NAND_ECC_NONE selected by board driver. "
d0370219 3402 "This is not recommended!\n");
8593fbc6
TG
3403 chip->ecc.read_page = nand_read_page_raw;
3404 chip->ecc.write_page = nand_write_page_raw;
7bc3312b 3405 chip->ecc.read_oob = nand_read_oob_std;
52ff49df
DB
3406 chip->ecc.read_page_raw = nand_read_page_raw;
3407 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b 3408 chip->ecc.write_oob = nand_write_oob_std;
ace4dfee
TG
3409 chip->ecc.size = mtd->writesize;
3410 chip->ecc.bytes = 0;
1da177e4 3411 break;
956e944c 3412
1da177e4 3413 default:
d0370219 3414 pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
61b03bd7 3415 BUG();
1da177e4 3416 }
61b03bd7 3417
9ce244b3 3418 /* For many systems, the standard OOB write also works for raw */
c46f6483
BN
3419 if (!chip->ecc.read_oob_raw)
3420 chip->ecc.read_oob_raw = chip->ecc.read_oob;
9ce244b3
BN
3421 if (!chip->ecc.write_oob_raw)
3422 chip->ecc.write_oob_raw = chip->ecc.write_oob;
3423
5bd34c09
TG
3424 /*
3425 * The number of bytes available for a client to place data into
8b6e50c9 3426 * the out of band area.
5bd34c09
TG
3427 */
3428 chip->ecc.layout->oobavail = 0;
81d19b04
DB
3429 for (i = 0; chip->ecc.layout->oobfree[i].length
3430 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
5bd34c09
TG
3431 chip->ecc.layout->oobavail +=
3432 chip->ecc.layout->oobfree[i].length;
1f92267c 3433 mtd->oobavail = chip->ecc.layout->oobavail;
5bd34c09 3434
7aa65bfd
TG
3435 /*
3436 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 3437 * mode.
7aa65bfd 3438 */
ace4dfee 3439 chip->ecc.steps = mtd->writesize / chip->ecc.size;
f8ac0414 3440 if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
9a4d4d69 3441 pr_warn("Invalid ECC parameters\n");
6dfc6d25 3442 BUG();
1da177e4 3443 }
f5bbdacc 3444 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
61b03bd7 3445
8b6e50c9 3446 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
29072b96
TG
3447 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3448 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
f8ac0414 3449 switch (chip->ecc.steps) {
29072b96
TG
3450 case 2:
3451 mtd->subpage_sft = 1;
3452 break;
3453 case 4:
3454 case 8:
81ec5364 3455 case 16:
29072b96
TG
3456 mtd->subpage_sft = 2;
3457 break;
3458 }
3459 }
3460 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3461
04bbd0ea 3462 /* Initialize state */
ace4dfee 3463 chip->state = FL_READY;
1da177e4
LT
3464
3465 /* De-select the device */
ace4dfee 3466 chip->select_chip(mtd, -1);
1da177e4
LT
3467
3468 /* Invalidate the pagebuffer reference */
ace4dfee 3469 chip->pagebuf = -1;
1da177e4
LT
3470
3471 /* Fill in remaining MTD driver data */
3472 mtd->type = MTD_NANDFLASH;
93edbad6
ML
3473 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3474 MTD_CAP_NANDFLASH;
1da177e4
LT
3475 mtd->erase = nand_erase;
3476 mtd->point = NULL;
3477 mtd->unpoint = NULL;
3478 mtd->read = nand_read;
3479 mtd->write = nand_write;
2af7c653 3480 mtd->panic_write = panic_nand_write;
1da177e4
LT
3481 mtd->read_oob = nand_read_oob;
3482 mtd->write_oob = nand_write_oob;
1da177e4
LT
3483 mtd->sync = nand_sync;
3484 mtd->lock = NULL;
3485 mtd->unlock = NULL;
962034f4
VW
3486 mtd->suspend = nand_suspend;
3487 mtd->resume = nand_resume;
1da177e4
LT
3488 mtd->block_isbad = nand_block_isbad;
3489 mtd->block_markbad = nand_block_markbad;
cbcab65a 3490 mtd->writebufsize = mtd->writesize;
1da177e4 3491
5bd34c09
TG
3492 /* propagate ecc.layout to mtd_info */
3493 mtd->ecclayout = chip->ecc.layout;
1da177e4 3494
0040bf38 3495 /* Check, if we should skip the bad block table scan */
ace4dfee 3496 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 3497 return 0;
1da177e4
LT
3498
3499 /* Build bad block table */
ace4dfee 3500 return chip->scan_bbt(mtd);
1da177e4 3501}
7351d3a5 3502EXPORT_SYMBOL(nand_scan_tail);
1da177e4 3503
8b6e50c9
BN
3504/*
3505 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 3506 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
3507 * to call us from in-kernel code if the core NAND support is modular.
3508 */
3b85c321
DW
3509#ifdef MODULE
3510#define caller_is_module() (1)
3511#else
3512#define caller_is_module() \
a6e6abd5 3513 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
3514#endif
3515
3516/**
3517 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3518 * @mtd: MTD device structure
3519 * @maxchips: number of chips to scan for
3b85c321 3520 *
8b6e50c9
BN
3521 * This fills out all the uninitialized function pointers with the defaults.
3522 * The flash ID is read and the mtd/chip structures are filled with the
3523 * appropriate values. The mtd->owner field must be set to the module of the
3524 * caller.
3b85c321
DW
3525 */
3526int nand_scan(struct mtd_info *mtd, int maxchips)
3527{
3528 int ret;
3529
3530 /* Many callers got this wrong, so check for it for a while... */
3531 if (!mtd->owner && caller_is_module()) {
d0370219 3532 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3b85c321
DW
3533 BUG();
3534 }
3535
5e81e88a 3536 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
3537 if (!ret)
3538 ret = nand_scan_tail(mtd);
3539 return ret;
3540}
7351d3a5 3541EXPORT_SYMBOL(nand_scan);
3b85c321 3542
1da177e4 3543/**
61b03bd7 3544 * nand_release - [NAND Interface] Free resources held by the NAND device
8b6e50c9
BN
3545 * @mtd: MTD device structure
3546 */
e0c7d767 3547void nand_release(struct mtd_info *mtd)
1da177e4 3548{
ace4dfee 3549 struct nand_chip *chip = mtd->priv;
1da177e4 3550
193bd400
ID
3551 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3552 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3553
5ffcaf3d 3554 mtd_device_unregister(mtd);
1da177e4 3555
fa671646 3556 /* Free bad block table memory */
ace4dfee 3557 kfree(chip->bbt);
4bf63fcb
DW
3558 if (!(chip->options & NAND_OWN_BUFFERS))
3559 kfree(chip->buffers);
58373ff0
BN
3560
3561 /* Free bad block descriptor memory */
3562 if (chip->badblock_pattern && chip->badblock_pattern->options
3563 & NAND_BBT_DYNAMICSTRUCT)
3564 kfree(chip->badblock_pattern);
1da177e4 3565}
e0c7d767 3566EXPORT_SYMBOL_GPL(nand_release);
8fe833c1
RP
3567
3568static int __init nand_base_init(void)
3569{
3570 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3571 return 0;
3572}
3573
3574static void __exit nand_base_exit(void)
3575{
3576 led_trigger_unregister_simple(nand_led_trigger);
3577}
3578
3579module_init(nand_base_init);
3580module_exit(nand_base_exit);
3581
e0c7d767 3582MODULE_LICENSE("GPL");
7351d3a5
FF
3583MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3584MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 3585MODULE_DESCRIPTION("Generic NAND flash driver code");