]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/mtd/nand/nand_base.c
mtd: nand: print flash size during detection
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
61b03bd7 8 *
1da177e4 9 * Additional technical information is available on
8b2b403c 10 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 11 *
1da177e4 12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 14 *
ace4dfee 15 * Credits:
61b03bd7
TG
16 * David Woodhouse for adding multichip support
17 *
1da177e4
LT
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
ace4dfee 21 * TODO:
1da177e4
LT
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 24 * if we have HW ECC support.
1da177e4
LT
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
c0b8ba7b 27 * BBT table is not serialized, has to be fixed
1da177e4 28 *
1da177e4
LT
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
32 *
33 */
34
552d9205 35#include <linux/module.h>
1da177e4
LT
36#include <linux/delay.h>
37#include <linux/errno.h>
7aa65bfd 38#include <linux/err.h>
1da177e4
LT
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <linux/mtd/mtd.h>
43#include <linux/mtd/nand.h>
44#include <linux/mtd/nand_ecc.h>
193bd400 45#include <linux/mtd/nand_bch.h>
1da177e4
LT
46#include <linux/interrupt.h>
47#include <linux/bitops.h>
8fe833c1 48#include <linux/leds.h>
7351d3a5 49#include <linux/io.h>
1da177e4 50#include <linux/mtd/partitions.h>
1da177e4
LT
51
52/* Define default oob placement schemes for large and small page devices */
5bd34c09 53static struct nand_ecclayout nand_oob_8 = {
1da177e4
LT
54 .eccbytes = 3,
55 .eccpos = {0, 1, 2},
5bd34c09
TG
56 .oobfree = {
57 {.offset = 3,
58 .length = 2},
59 {.offset = 6,
f8ac0414 60 .length = 2} }
1da177e4
LT
61};
62
5bd34c09 63static struct nand_ecclayout nand_oob_16 = {
1da177e4
LT
64 .eccbytes = 6,
65 .eccpos = {0, 1, 2, 3, 6, 7},
5bd34c09
TG
66 .oobfree = {
67 {.offset = 8,
f8ac0414 68 . length = 8} }
1da177e4
LT
69};
70
5bd34c09 71static struct nand_ecclayout nand_oob_64 = {
1da177e4
LT
72 .eccbytes = 24,
73 .eccpos = {
e0c7d767
DW
74 40, 41, 42, 43, 44, 45, 46, 47,
75 48, 49, 50, 51, 52, 53, 54, 55,
76 56, 57, 58, 59, 60, 61, 62, 63},
5bd34c09
TG
77 .oobfree = {
78 {.offset = 2,
f8ac0414 79 .length = 38} }
1da177e4
LT
80};
81
81ec5364
TG
82static struct nand_ecclayout nand_oob_128 = {
83 .eccbytes = 48,
84 .eccpos = {
85 80, 81, 82, 83, 84, 85, 86, 87,
86 88, 89, 90, 91, 92, 93, 94, 95,
87 96, 97, 98, 99, 100, 101, 102, 103,
88 104, 105, 106, 107, 108, 109, 110, 111,
89 112, 113, 114, 115, 116, 117, 118, 119,
90 120, 121, 122, 123, 124, 125, 126, 127},
91 .oobfree = {
92 {.offset = 2,
f8ac0414 93 .length = 78} }
81ec5364
TG
94};
95
6a8214aa 96static int nand_get_device(struct mtd_info *mtd, int new_state);
1da177e4 97
8593fbc6
TG
98static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
99 struct mtd_oob_ops *ops);
100
d470a97c 101/*
8e87d782 102 * For devices which display every fart in the system on a separate LED. Is
d470a97c
TG
103 * compiled away when LED support is disabled.
104 */
105DEFINE_LED_TRIGGER(nand_led_trigger);
106
6fe5a6ac
VS
107static int check_offs_len(struct mtd_info *mtd,
108 loff_t ofs, uint64_t len)
109{
110 struct nand_chip *chip = mtd->priv;
111 int ret = 0;
112
113 /* Start address must align on block boundary */
114 if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
289c0522 115 pr_debug("%s: unaligned address\n", __func__);
6fe5a6ac
VS
116 ret = -EINVAL;
117 }
118
119 /* Length must align on block boundary */
120 if (len & ((1 << chip->phys_erase_shift) - 1)) {
289c0522 121 pr_debug("%s: length not block aligned\n", __func__);
6fe5a6ac
VS
122 ret = -EINVAL;
123 }
124
6fe5a6ac
VS
125 return ret;
126}
127
1da177e4
LT
128/**
129 * nand_release_device - [GENERIC] release chip
8b6e50c9 130 * @mtd: MTD device structure
61b03bd7 131 *
b0bb6903 132 * Release chip lock and wake up anyone waiting on the device.
1da177e4 133 */
e0c7d767 134static void nand_release_device(struct mtd_info *mtd)
1da177e4 135{
ace4dfee 136 struct nand_chip *chip = mtd->priv;
1da177e4 137
a36ed299 138 /* Release the controller and the chip */
ace4dfee
TG
139 spin_lock(&chip->controller->lock);
140 chip->controller->active = NULL;
141 chip->state = FL_READY;
142 wake_up(&chip->controller->wq);
143 spin_unlock(&chip->controller->lock);
1da177e4
LT
144}
145
146/**
147 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 148 * @mtd: MTD device structure
1da177e4 149 *
7854d3f7 150 * Default read function for 8bit buswidth
1da177e4 151 */
58dd8f2b 152static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 153{
ace4dfee
TG
154 struct nand_chip *chip = mtd->priv;
155 return readb(chip->IO_ADDR_R);
1da177e4
LT
156}
157
1da177e4 158/**
064a7694 159 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
7854d3f7 160 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 161 * @mtd: MTD device structure
1da177e4 162 *
7854d3f7
BN
163 * Default read function for 16bit buswidth with endianness conversion.
164 *
1da177e4 165 */
58dd8f2b 166static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 167{
ace4dfee
TG
168 struct nand_chip *chip = mtd->priv;
169 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
170}
171
1da177e4
LT
172/**
173 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 174 * @mtd: MTD device structure
1da177e4 175 *
7854d3f7 176 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
177 */
178static u16 nand_read_word(struct mtd_info *mtd)
179{
ace4dfee
TG
180 struct nand_chip *chip = mtd->priv;
181 return readw(chip->IO_ADDR_R);
1da177e4
LT
182}
183
1da177e4
LT
184/**
185 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
186 * @mtd: MTD device structure
187 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
188 *
189 * Default select function for 1 chip devices.
190 */
ace4dfee 191static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 192{
ace4dfee
TG
193 struct nand_chip *chip = mtd->priv;
194
195 switch (chipnr) {
1da177e4 196 case -1:
ace4dfee 197 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
198 break;
199 case 0:
1da177e4
LT
200 break;
201
202 default:
203 BUG();
204 }
205}
206
207/**
208 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
209 * @mtd: MTD device structure
210 * @buf: data buffer
211 * @len: number of bytes to write
1da177e4 212 *
7854d3f7 213 * Default write function for 8bit buswidth.
1da177e4 214 */
58dd8f2b 215static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
216{
217 int i;
ace4dfee 218 struct nand_chip *chip = mtd->priv;
1da177e4 219
e0c7d767 220 for (i = 0; i < len; i++)
ace4dfee 221 writeb(buf[i], chip->IO_ADDR_W);
1da177e4
LT
222}
223
224/**
61b03bd7 225 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
226 * @mtd: MTD device structure
227 * @buf: buffer to store date
228 * @len: number of bytes to read
1da177e4 229 *
7854d3f7 230 * Default read function for 8bit buswidth.
1da177e4 231 */
58dd8f2b 232static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4
LT
233{
234 int i;
ace4dfee 235 struct nand_chip *chip = mtd->priv;
1da177e4 236
e0c7d767 237 for (i = 0; i < len; i++)
ace4dfee 238 buf[i] = readb(chip->IO_ADDR_R);
1da177e4
LT
239}
240
1da177e4
LT
241/**
242 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
243 * @mtd: MTD device structure
244 * @buf: data buffer
245 * @len: number of bytes to write
1da177e4 246 *
7854d3f7 247 * Default write function for 16bit buswidth.
1da177e4 248 */
58dd8f2b 249static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
250{
251 int i;
ace4dfee 252 struct nand_chip *chip = mtd->priv;
1da177e4
LT
253 u16 *p = (u16 *) buf;
254 len >>= 1;
61b03bd7 255
e0c7d767 256 for (i = 0; i < len; i++)
ace4dfee 257 writew(p[i], chip->IO_ADDR_W);
61b03bd7 258
1da177e4
LT
259}
260
261/**
61b03bd7 262 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
263 * @mtd: MTD device structure
264 * @buf: buffer to store date
265 * @len: number of bytes to read
1da177e4 266 *
7854d3f7 267 * Default read function for 16bit buswidth.
1da177e4 268 */
58dd8f2b 269static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4
LT
270{
271 int i;
ace4dfee 272 struct nand_chip *chip = mtd->priv;
1da177e4
LT
273 u16 *p = (u16 *) buf;
274 len >>= 1;
275
e0c7d767 276 for (i = 0; i < len; i++)
ace4dfee 277 p[i] = readw(chip->IO_ADDR_R);
1da177e4
LT
278}
279
1da177e4
LT
280/**
281 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
282 * @mtd: MTD device structure
283 * @ofs: offset from device start
284 * @getchip: 0, if the chip is already selected
1da177e4 285 *
61b03bd7 286 * Check, if the block is bad.
1da177e4
LT
287 */
288static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
289{
cdbec050 290 int page, chipnr, res = 0, i = 0;
ace4dfee 291 struct nand_chip *chip = mtd->priv;
1da177e4
LT
292 u16 bad;
293
5fb1549d 294 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
295 ofs += mtd->erasesize - mtd->writesize;
296
1a12f46a
TK
297 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
298
1da177e4 299 if (getchip) {
ace4dfee 300 chipnr = (int)(ofs >> chip->chip_shift);
1da177e4 301
6a8214aa 302 nand_get_device(mtd, FL_READING);
1da177e4
LT
303
304 /* Select the NAND device */
ace4dfee 305 chip->select_chip(mtd, chipnr);
1a12f46a 306 }
1da177e4 307
cdbec050
BN
308 do {
309 if (chip->options & NAND_BUSWIDTH_16) {
310 chip->cmdfunc(mtd, NAND_CMD_READOOB,
311 chip->badblockpos & 0xFE, page);
312 bad = cpu_to_le16(chip->read_word(mtd));
313 if (chip->badblockpos & 0x1)
314 bad >>= 8;
315 else
316 bad &= 0xFF;
317 } else {
318 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
319 page);
320 bad = chip->read_byte(mtd);
321 }
322
323 if (likely(chip->badblockbits == 8))
324 res = bad != 0xFF;
e0b58d0a 325 else
cdbec050
BN
326 res = hweight8(bad) < chip->badblockbits;
327 ofs += mtd->writesize;
328 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
329 i++;
330 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
e0b58d0a 331
b0bb6903
HS
332 if (getchip) {
333 chip->select_chip(mtd, -1);
1da177e4 334 nand_release_device(mtd);
b0bb6903 335 }
61b03bd7 336
1da177e4
LT
337 return res;
338}
339
340/**
341 * nand_default_block_markbad - [DEFAULT] mark a block bad
8b6e50c9
BN
342 * @mtd: MTD device structure
343 * @ofs: offset from device start
1da177e4 344 *
8b6e50c9 345 * This is the default implementation, which can be overridden by a hardware
e2414f4c
BN
346 * specific driver. We try operations in the following order, according to our
347 * bbt_options (NAND_BBT_NO_OOB_BBM and NAND_BBT_USE_FLASH):
348 * (1) erase the affected block, to allow OOB marker to be written cleanly
349 * (2) update in-memory BBT
350 * (3) write bad block marker to OOB area of affected block
351 * (4) update flash-based BBT
352 * Note that we retain the first error encountered in (3) or (4), finish the
353 * procedures, and dump the error in the end.
1da177e4
LT
354*/
355static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
356{
ace4dfee 357 struct nand_chip *chip = mtd->priv;
58dd8f2b 358 uint8_t buf[2] = { 0, 0 };
e2414f4c
BN
359 int block, res, ret = 0, i = 0;
360 int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM);
61b03bd7 361
e2414f4c 362 if (write_oob) {
00918429
BN
363 struct erase_info einfo;
364
365 /* Attempt erase before marking OOB */
366 memset(&einfo, 0, sizeof(einfo));
367 einfo.mtd = mtd;
368 einfo.addr = ofs;
369 einfo.len = 1 << chip->phys_erase_shift;
370 nand_erase_nand(mtd, &einfo, 0);
371 }
372
1da177e4 373 /* Get block number */
4226b510 374 block = (int)(ofs >> chip->bbt_erase_shift);
e2414f4c 375 /* Mark block bad in memory-based BBT */
ace4dfee
TG
376 if (chip->bbt)
377 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1da177e4 378
e2414f4c
BN
379 /* Write bad block marker to OOB */
380 if (write_oob) {
4a89ff88 381 struct mtd_oob_ops ops;
df698621 382 loff_t wr_ofs = ofs;
4a89ff88 383
6a8214aa 384 nand_get_device(mtd, FL_WRITING);
f1a28c02 385
4a89ff88
BN
386 ops.datbuf = NULL;
387 ops.oobbuf = buf;
85443319
BN
388 ops.ooboffs = chip->badblockpos;
389 if (chip->options & NAND_BUSWIDTH_16) {
390 ops.ooboffs &= ~0x01;
391 ops.len = ops.ooblen = 2;
392 } else {
393 ops.len = ops.ooblen = 1;
394 }
23b1a99b 395 ops.mode = MTD_OPS_PLACE_OOB;
df698621 396
e2414f4c 397 /* Write to first/last page(s) if necessary */
df698621
BN
398 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
399 wr_ofs += mtd->erasesize - mtd->writesize;
02ed70bb 400 do {
e2414f4c
BN
401 res = nand_do_write_oob(mtd, wr_ofs, &ops);
402 if (!ret)
403 ret = res;
02ed70bb 404
02ed70bb 405 i++;
df698621 406 wr_ofs += mtd->writesize;
e2414f4c 407 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
02ed70bb 408
c0b8ba7b 409 nand_release_device(mtd);
f1a28c02 410 }
e2414f4c
BN
411
412 /* Update flash-based bad block table */
413 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
414 res = nand_update_bbt(mtd, ofs);
415 if (!ret)
416 ret = res;
417 }
418
f1a28c02
TG
419 if (!ret)
420 mtd->ecc_stats.badblocks++;
c0b8ba7b 421
f1a28c02 422 return ret;
1da177e4
LT
423}
424
61b03bd7 425/**
1da177e4 426 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 427 * @mtd: MTD device structure
1da177e4 428 *
8b6e50c9
BN
429 * Check, if the device is write protected. The function expects, that the
430 * device is already selected.
1da177e4 431 */
e0c7d767 432static int nand_check_wp(struct mtd_info *mtd)
1da177e4 433{
ace4dfee 434 struct nand_chip *chip = mtd->priv;
93edbad6 435
8b6e50c9 436 /* Broken xD cards report WP despite being writable */
93edbad6
ML
437 if (chip->options & NAND_BROKEN_XD)
438 return 0;
439
1da177e4 440 /* Check the WP bit */
ace4dfee
TG
441 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
442 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
443}
444
445/**
446 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
447 * @mtd: MTD device structure
448 * @ofs: offset from device start
449 * @getchip: 0, if the chip is already selected
450 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
451 *
452 * Check, if the block is bad. Either by reading the bad block table or
453 * calling of the scan function.
454 */
2c0a2bed
TG
455static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
456 int allowbbt)
1da177e4 457{
ace4dfee 458 struct nand_chip *chip = mtd->priv;
61b03bd7 459
ace4dfee
TG
460 if (!chip->bbt)
461 return chip->block_bad(mtd, ofs, getchip);
61b03bd7 462
1da177e4 463 /* Return info from the table */
e0c7d767 464 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
465}
466
2af7c653
SK
467/**
468 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
469 * @mtd: MTD device structure
470 * @timeo: Timeout
2af7c653
SK
471 *
472 * Helper function for nand_wait_ready used when needing to wait in interrupt
473 * context.
474 */
475static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
476{
477 struct nand_chip *chip = mtd->priv;
478 int i;
479
480 /* Wait for the device to get ready */
481 for (i = 0; i < timeo; i++) {
482 if (chip->dev_ready(mtd))
483 break;
484 touch_softlockup_watchdog();
485 mdelay(1);
486 }
487}
488
7854d3f7 489/* Wait for the ready pin, after a command. The timeout is caught later. */
4b648b02 490void nand_wait_ready(struct mtd_info *mtd)
3b88775c 491{
ace4dfee 492 struct nand_chip *chip = mtd->priv;
ca6a2489 493 unsigned long timeo = jiffies + msecs_to_jiffies(20);
3b88775c 494
2af7c653
SK
495 /* 400ms timeout */
496 if (in_interrupt() || oops_in_progress)
497 return panic_nand_wait_ready(mtd, 400);
498
8fe833c1 499 led_trigger_event(nand_led_trigger, LED_FULL);
7854d3f7 500 /* Wait until command is processed or timeout occurs */
3b88775c 501 do {
ace4dfee 502 if (chip->dev_ready(mtd))
8fe833c1 503 break;
8446f1d3 504 touch_softlockup_watchdog();
61b03bd7 505 } while (time_before(jiffies, timeo));
8fe833c1 506 led_trigger_event(nand_led_trigger, LED_OFF);
3b88775c 507}
4b648b02 508EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 509
1da177e4
LT
510/**
511 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
512 * @mtd: MTD device structure
513 * @command: the command to be sent
514 * @column: the column address for this command, -1 if none
515 * @page_addr: the page address for this command, -1 if none
1da177e4 516 *
8b6e50c9
BN
517 * Send command to NAND device. This function is used for small page devices
518 * (256/512 Bytes per page).
1da177e4 519 */
7abd3ef9
TG
520static void nand_command(struct mtd_info *mtd, unsigned int command,
521 int column, int page_addr)
1da177e4 522{
ace4dfee 523 register struct nand_chip *chip = mtd->priv;
7abd3ef9 524 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 525
8b6e50c9 526 /* Write out the command to the device */
1da177e4
LT
527 if (command == NAND_CMD_SEQIN) {
528 int readcmd;
529
28318776 530 if (column >= mtd->writesize) {
1da177e4 531 /* OOB area */
28318776 532 column -= mtd->writesize;
1da177e4
LT
533 readcmd = NAND_CMD_READOOB;
534 } else if (column < 256) {
535 /* First 256 bytes --> READ0 */
536 readcmd = NAND_CMD_READ0;
537 } else {
538 column -= 256;
539 readcmd = NAND_CMD_READ1;
540 }
ace4dfee 541 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 542 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 543 }
ace4dfee 544 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 545
8b6e50c9 546 /* Address cycle, when necessary */
7abd3ef9
TG
547 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
548 /* Serially input address */
549 if (column != -1) {
550 /* Adjust columns for 16 bit buswidth */
ace4dfee 551 if (chip->options & NAND_BUSWIDTH_16)
7abd3ef9 552 column >>= 1;
ace4dfee 553 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
554 ctrl &= ~NAND_CTRL_CHANGE;
555 }
556 if (page_addr != -1) {
ace4dfee 557 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 558 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 559 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 560 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
561 if (chip->chipsize > (32 << 20))
562 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 563 }
ace4dfee 564 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
565
566 /*
8b6e50c9
BN
567 * Program and erase have their own busy handlers status and sequential
568 * in needs no delay
e0c7d767 569 */
1da177e4 570 switch (command) {
61b03bd7 571
1da177e4
LT
572 case NAND_CMD_PAGEPROG:
573 case NAND_CMD_ERASE1:
574 case NAND_CMD_ERASE2:
575 case NAND_CMD_SEQIN:
576 case NAND_CMD_STATUS:
577 return;
578
579 case NAND_CMD_RESET:
ace4dfee 580 if (chip->dev_ready)
1da177e4 581 break;
ace4dfee
TG
582 udelay(chip->chip_delay);
583 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 584 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
585 chip->cmd_ctrl(mtd,
586 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
587 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
588 ;
1da177e4
LT
589 return;
590
e0c7d767 591 /* This applies to read commands */
1da177e4 592 default:
61b03bd7 593 /*
1da177e4
LT
594 * If we don't have access to the busy pin, we apply the given
595 * command delay
e0c7d767 596 */
ace4dfee
TG
597 if (!chip->dev_ready) {
598 udelay(chip->chip_delay);
1da177e4 599 return;
61b03bd7 600 }
1da177e4 601 }
8b6e50c9
BN
602 /*
603 * Apply this short delay always to ensure that we do wait tWB in
604 * any case on any machine.
605 */
e0c7d767 606 ndelay(100);
3b88775c
TG
607
608 nand_wait_ready(mtd);
1da177e4
LT
609}
610
611/**
612 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
613 * @mtd: MTD device structure
614 * @command: the command to be sent
615 * @column: the column address for this command, -1 if none
616 * @page_addr: the page address for this command, -1 if none
1da177e4 617 *
7abd3ef9 618 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
619 * devices. We don't have the separate regions as we have in the small page
620 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 621 */
7abd3ef9
TG
622static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
623 int column, int page_addr)
1da177e4 624{
ace4dfee 625 register struct nand_chip *chip = mtd->priv;
1da177e4
LT
626
627 /* Emulate NAND_CMD_READOOB */
628 if (command == NAND_CMD_READOOB) {
28318776 629 column += mtd->writesize;
1da177e4
LT
630 command = NAND_CMD_READ0;
631 }
61b03bd7 632
7abd3ef9 633 /* Command latch cycle */
ace4dfee 634 chip->cmd_ctrl(mtd, command & 0xff,
7abd3ef9 635 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
636
637 if (column != -1 || page_addr != -1) {
7abd3ef9 638 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
639
640 /* Serially input address */
641 if (column != -1) {
642 /* Adjust columns for 16 bit buswidth */
ace4dfee 643 if (chip->options & NAND_BUSWIDTH_16)
1da177e4 644 column >>= 1;
ace4dfee 645 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 646 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 647 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 648 }
1da177e4 649 if (page_addr != -1) {
ace4dfee
TG
650 chip->cmd_ctrl(mtd, page_addr, ctrl);
651 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 652 NAND_NCE | NAND_ALE);
1da177e4 653 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
654 if (chip->chipsize > (128 << 20))
655 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 656 NAND_NCE | NAND_ALE);
1da177e4 657 }
1da177e4 658 }
ace4dfee 659 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
660
661 /*
8b6e50c9
BN
662 * Program and erase have their own busy handlers status, sequential
663 * in, and deplete1 need no delay.
30f464b7 664 */
1da177e4 665 switch (command) {
61b03bd7 666
1da177e4
LT
667 case NAND_CMD_CACHEDPROG:
668 case NAND_CMD_PAGEPROG:
669 case NAND_CMD_ERASE1:
670 case NAND_CMD_ERASE2:
671 case NAND_CMD_SEQIN:
7bc3312b 672 case NAND_CMD_RNDIN:
1da177e4 673 case NAND_CMD_STATUS:
30f464b7 674 case NAND_CMD_DEPLETE1:
1da177e4
LT
675 return;
676
30f464b7
DM
677 case NAND_CMD_STATUS_ERROR:
678 case NAND_CMD_STATUS_ERROR0:
679 case NAND_CMD_STATUS_ERROR1:
680 case NAND_CMD_STATUS_ERROR2:
681 case NAND_CMD_STATUS_ERROR3:
8b6e50c9 682 /* Read error status commands require only a short delay */
ace4dfee 683 udelay(chip->chip_delay);
30f464b7 684 return;
1da177e4
LT
685
686 case NAND_CMD_RESET:
ace4dfee 687 if (chip->dev_ready)
1da177e4 688 break;
ace4dfee 689 udelay(chip->chip_delay);
12efdde3
TG
690 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
691 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
692 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
693 NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
694 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
695 ;
1da177e4
LT
696 return;
697
7bc3312b
TG
698 case NAND_CMD_RNDOUT:
699 /* No ready / busy check necessary */
700 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
701 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
702 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
703 NAND_NCE | NAND_CTRL_CHANGE);
704 return;
705
1da177e4 706 case NAND_CMD_READ0:
12efdde3
TG
707 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
708 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
709 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
710 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 711
e0c7d767 712 /* This applies to read commands */
1da177e4 713 default:
61b03bd7 714 /*
1da177e4 715 * If we don't have access to the busy pin, we apply the given
8b6e50c9 716 * command delay.
e0c7d767 717 */
ace4dfee
TG
718 if (!chip->dev_ready) {
719 udelay(chip->chip_delay);
1da177e4 720 return;
61b03bd7 721 }
1da177e4 722 }
3b88775c 723
8b6e50c9
BN
724 /*
725 * Apply this short delay always to ensure that we do wait tWB in
726 * any case on any machine.
727 */
e0c7d767 728 ndelay(100);
3b88775c
TG
729
730 nand_wait_ready(mtd);
1da177e4
LT
731}
732
2af7c653
SK
733/**
734 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
735 * @chip: the nand chip descriptor
736 * @mtd: MTD device structure
737 * @new_state: the state which is requested
2af7c653
SK
738 *
739 * Used when in panic, no locks are taken.
740 */
741static void panic_nand_get_device(struct nand_chip *chip,
742 struct mtd_info *mtd, int new_state)
743{
7854d3f7 744 /* Hardware controller shared among independent devices */
2af7c653
SK
745 chip->controller->active = chip;
746 chip->state = new_state;
747}
748
1da177e4
LT
749/**
750 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
751 * @mtd: MTD device structure
752 * @new_state: the state which is requested
1da177e4
LT
753 *
754 * Get the device and lock it for exclusive access
755 */
2c0a2bed 756static int
6a8214aa 757nand_get_device(struct mtd_info *mtd, int new_state)
1da177e4 758{
6a8214aa 759 struct nand_chip *chip = mtd->priv;
ace4dfee
TG
760 spinlock_t *lock = &chip->controller->lock;
761 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 762 DECLARE_WAITQUEUE(wait, current);
7351d3a5 763retry:
0dfc6246
TG
764 spin_lock(lock);
765
b8b3ee9a 766 /* Hardware controller shared among independent devices */
ace4dfee
TG
767 if (!chip->controller->active)
768 chip->controller->active = chip;
a36ed299 769
ace4dfee
TG
770 if (chip->controller->active == chip && chip->state == FL_READY) {
771 chip->state = new_state;
0dfc6246 772 spin_unlock(lock);
962034f4
VW
773 return 0;
774 }
775 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
776 if (chip->controller->active->state == FL_PM_SUSPENDED) {
777 chip->state = FL_PM_SUSPENDED;
778 spin_unlock(lock);
779 return 0;
6b0d9a84 780 }
0dfc6246
TG
781 }
782 set_current_state(TASK_UNINTERRUPTIBLE);
783 add_wait_queue(wq, &wait);
784 spin_unlock(lock);
785 schedule();
786 remove_wait_queue(wq, &wait);
1da177e4
LT
787 goto retry;
788}
789
2af7c653 790/**
8b6e50c9
BN
791 * panic_nand_wait - [GENERIC] wait until the command is done
792 * @mtd: MTD device structure
793 * @chip: NAND chip structure
794 * @timeo: timeout
2af7c653
SK
795 *
796 * Wait for command done. This is a helper function for nand_wait used when
797 * we are in interrupt context. May happen when in panic and trying to write
b595076a 798 * an oops through mtdoops.
2af7c653
SK
799 */
800static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
801 unsigned long timeo)
802{
803 int i;
804 for (i = 0; i < timeo; i++) {
805 if (chip->dev_ready) {
806 if (chip->dev_ready(mtd))
807 break;
808 } else {
809 if (chip->read_byte(mtd) & NAND_STATUS_READY)
810 break;
811 }
812 mdelay(1);
f8ac0414 813 }
2af7c653
SK
814}
815
1da177e4 816/**
8b6e50c9
BN
817 * nand_wait - [DEFAULT] wait until the command is done
818 * @mtd: MTD device structure
819 * @chip: NAND chip structure
1da177e4 820 *
8b6e50c9
BN
821 * Wait for command done. This applies to erase and program only. Erase can
822 * take up to 400ms and program up to 20ms according to general NAND and
823 * SmartMedia specs.
844d3b42 824 */
7bc3312b 825static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
826{
827
e0c7d767 828 unsigned long timeo = jiffies;
7bc3312b 829 int status, state = chip->state;
61b03bd7 830
1da177e4 831 if (state == FL_ERASING)
e0c7d767 832 timeo += (HZ * 400) / 1000;
1da177e4 833 else
e0c7d767 834 timeo += (HZ * 20) / 1000;
1da177e4 835
8fe833c1
RP
836 led_trigger_event(nand_led_trigger, LED_FULL);
837
8b6e50c9
BN
838 /*
839 * Apply this short delay always to ensure that we do wait tWB in any
840 * case on any machine.
841 */
e0c7d767 842 ndelay(100);
1da177e4 843
ace4dfee
TG
844 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
845 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
61b03bd7 846 else
ace4dfee 847 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 848
2af7c653
SK
849 if (in_interrupt() || oops_in_progress)
850 panic_nand_wait(mtd, chip, timeo);
851 else {
852 while (time_before(jiffies, timeo)) {
853 if (chip->dev_ready) {
854 if (chip->dev_ready(mtd))
855 break;
856 } else {
857 if (chip->read_byte(mtd) & NAND_STATUS_READY)
858 break;
859 }
860 cond_resched();
1da177e4 861 }
1da177e4 862 }
8fe833c1
RP
863 led_trigger_event(nand_led_trigger, LED_OFF);
864
ace4dfee 865 status = (int)chip->read_byte(mtd);
f251b8df
MC
866 /* This can happen if in case of timeout or buggy dev_ready */
867 WARN_ON(!(status & NAND_STATUS_READY));
1da177e4
LT
868 return status;
869}
870
7d70f334 871/**
b6d676db 872 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
873 * @mtd: mtd info
874 * @ofs: offset to start unlock from
875 * @len: length to unlock
8b6e50c9
BN
876 * @invert: when = 0, unlock the range of blocks within the lower and
877 * upper boundary address
878 * when = 1, unlock the range of blocks outside the boundaries
879 * of the lower and upper boundary address
7d70f334 880 *
8b6e50c9 881 * Returs unlock status.
7d70f334
VS
882 */
883static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
884 uint64_t len, int invert)
885{
886 int ret = 0;
887 int status, page;
888 struct nand_chip *chip = mtd->priv;
889
890 /* Submit address of first page to unlock */
891 page = ofs >> chip->page_shift;
892 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
893
894 /* Submit address of last page to unlock */
895 page = (ofs + len) >> chip->page_shift;
896 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
897 (page | invert) & chip->pagemask);
898
899 /* Call wait ready function */
900 status = chip->waitfunc(mtd, chip);
7d70f334 901 /* See if device thinks it succeeded */
74830966 902 if (status & NAND_STATUS_FAIL) {
289c0522 903 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
904 __func__, status);
905 ret = -EIO;
906 }
907
908 return ret;
909}
910
911/**
b6d676db 912 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
913 * @mtd: mtd info
914 * @ofs: offset to start unlock from
915 * @len: length to unlock
7d70f334 916 *
8b6e50c9 917 * Returns unlock status.
7d70f334
VS
918 */
919int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
920{
921 int ret = 0;
922 int chipnr;
923 struct nand_chip *chip = mtd->priv;
924
289c0522 925 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
926 __func__, (unsigned long long)ofs, len);
927
928 if (check_offs_len(mtd, ofs, len))
929 ret = -EINVAL;
930
931 /* Align to last block address if size addresses end of the device */
932 if (ofs + len == mtd->size)
933 len -= mtd->erasesize;
934
6a8214aa 935 nand_get_device(mtd, FL_UNLOCKING);
7d70f334
VS
936
937 /* Shift to get chip number */
938 chipnr = ofs >> chip->chip_shift;
939
940 chip->select_chip(mtd, chipnr);
941
942 /* Check, if it is write protected */
943 if (nand_check_wp(mtd)) {
289c0522 944 pr_debug("%s: device is write protected!\n",
7d70f334
VS
945 __func__);
946 ret = -EIO;
947 goto out;
948 }
949
950 ret = __nand_unlock(mtd, ofs, len, 0);
951
952out:
b0bb6903 953 chip->select_chip(mtd, -1);
7d70f334
VS
954 nand_release_device(mtd);
955
956 return ret;
957}
7351d3a5 958EXPORT_SYMBOL(nand_unlock);
7d70f334
VS
959
960/**
b6d676db 961 * nand_lock - [REPLACEABLE] locks all blocks present in the device
b6d676db
RD
962 * @mtd: mtd info
963 * @ofs: offset to start unlock from
964 * @len: length to unlock
7d70f334 965 *
8b6e50c9
BN
966 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
967 * have this feature, but it allows only to lock all blocks, not for specified
968 * range for block. Implementing 'lock' feature by making use of 'unlock', for
969 * now.
7d70f334 970 *
8b6e50c9 971 * Returns lock status.
7d70f334
VS
972 */
973int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
974{
975 int ret = 0;
976 int chipnr, status, page;
977 struct nand_chip *chip = mtd->priv;
978
289c0522 979 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
980 __func__, (unsigned long long)ofs, len);
981
982 if (check_offs_len(mtd, ofs, len))
983 ret = -EINVAL;
984
6a8214aa 985 nand_get_device(mtd, FL_LOCKING);
7d70f334
VS
986
987 /* Shift to get chip number */
988 chipnr = ofs >> chip->chip_shift;
989
990 chip->select_chip(mtd, chipnr);
991
992 /* Check, if it is write protected */
993 if (nand_check_wp(mtd)) {
289c0522 994 pr_debug("%s: device is write protected!\n",
7d70f334
VS
995 __func__);
996 status = MTD_ERASE_FAILED;
997 ret = -EIO;
998 goto out;
999 }
1000
1001 /* Submit address of first page to lock */
1002 page = ofs >> chip->page_shift;
1003 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1004
1005 /* Call wait ready function */
1006 status = chip->waitfunc(mtd, chip);
7d70f334 1007 /* See if device thinks it succeeded */
74830966 1008 if (status & NAND_STATUS_FAIL) {
289c0522 1009 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
1010 __func__, status);
1011 ret = -EIO;
1012 goto out;
1013 }
1014
1015 ret = __nand_unlock(mtd, ofs, len, 0x1);
1016
1017out:
b0bb6903 1018 chip->select_chip(mtd, -1);
7d70f334
VS
1019 nand_release_device(mtd);
1020
1021 return ret;
1022}
7351d3a5 1023EXPORT_SYMBOL(nand_lock);
7d70f334 1024
8593fbc6 1025/**
7854d3f7 1026 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
1027 * @mtd: mtd info structure
1028 * @chip: nand chip info structure
1029 * @buf: buffer to store read data
1fbb938d 1030 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1031 * @page: page number to read
52ff49df 1032 *
7854d3f7 1033 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6
TG
1034 */
1035static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1036 uint8_t *buf, int oob_required, int page)
8593fbc6
TG
1037{
1038 chip->read_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1039 if (oob_required)
1040 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
8593fbc6
TG
1041 return 0;
1042}
1043
52ff49df 1044/**
7854d3f7 1045 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
1046 * @mtd: mtd info structure
1047 * @chip: nand chip info structure
1048 * @buf: buffer to store read data
1fbb938d 1049 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1050 * @page: page number to read
52ff49df
DB
1051 *
1052 * We need a special oob layout and handling even when OOB isn't used.
1053 */
7351d3a5 1054static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1fbb938d
BN
1055 struct nand_chip *chip, uint8_t *buf,
1056 int oob_required, int page)
52ff49df
DB
1057{
1058 int eccsize = chip->ecc.size;
1059 int eccbytes = chip->ecc.bytes;
1060 uint8_t *oob = chip->oob_poi;
1061 int steps, size;
1062
1063 for (steps = chip->ecc.steps; steps > 0; steps--) {
1064 chip->read_buf(mtd, buf, eccsize);
1065 buf += eccsize;
1066
1067 if (chip->ecc.prepad) {
1068 chip->read_buf(mtd, oob, chip->ecc.prepad);
1069 oob += chip->ecc.prepad;
1070 }
1071
1072 chip->read_buf(mtd, oob, eccbytes);
1073 oob += eccbytes;
1074
1075 if (chip->ecc.postpad) {
1076 chip->read_buf(mtd, oob, chip->ecc.postpad);
1077 oob += chip->ecc.postpad;
1078 }
1079 }
1080
1081 size = mtd->oobsize - (oob - chip->oob_poi);
1082 if (size)
1083 chip->read_buf(mtd, oob, size);
1084
1085 return 0;
1086}
1087
1da177e4 1088/**
7854d3f7 1089 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
1090 * @mtd: mtd info structure
1091 * @chip: nand chip info structure
1092 * @buf: buffer to store read data
1fbb938d 1093 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1094 * @page: page number to read
068e3c0a 1095 */
f5bbdacc 1096static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1097 uint8_t *buf, int oob_required, int page)
1da177e4 1098{
f5bbdacc
TG
1099 int i, eccsize = chip->ecc.size;
1100 int eccbytes = chip->ecc.bytes;
1101 int eccsteps = chip->ecc.steps;
1102 uint8_t *p = buf;
4bf63fcb
DW
1103 uint8_t *ecc_calc = chip->buffers->ecccalc;
1104 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1105 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1106 unsigned int max_bitflips = 0;
f5bbdacc 1107
1fbb938d 1108 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
f5bbdacc
TG
1109
1110 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1111 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1112
1113 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1114 ecc_code[i] = chip->oob_poi[eccpos[i]];
f5bbdacc
TG
1115
1116 eccsteps = chip->ecc.steps;
1117 p = buf;
1118
1119 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1120 int stat;
1121
1122 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1123 if (stat < 0) {
f5bbdacc 1124 mtd->ecc_stats.failed++;
3f91e94f 1125 } else {
f5bbdacc 1126 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1127 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1128 }
f5bbdacc 1129 }
3f91e94f 1130 return max_bitflips;
22c60f5f 1131}
1da177e4 1132
3d459559 1133/**
7854d3f7 1134 * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
8b6e50c9
BN
1135 * @mtd: mtd info structure
1136 * @chip: nand chip info structure
1137 * @data_offs: offset of requested data within the page
1138 * @readlen: data length
1139 * @bufpoi: buffer to store read data
3d459559 1140 */
7351d3a5
FF
1141static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1142 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
3d459559
AK
1143{
1144 int start_step, end_step, num_steps;
1145 uint32_t *eccpos = chip->ecc.layout->eccpos;
1146 uint8_t *p;
1147 int data_col_addr, i, gaps = 0;
1148 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1149 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
7351d3a5 1150 int index = 0;
3f91e94f 1151 unsigned int max_bitflips = 0;
3d459559 1152
7854d3f7 1153 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
1154 start_step = data_offs / chip->ecc.size;
1155 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1156 num_steps = end_step - start_step + 1;
1157
8b6e50c9 1158 /* Data size aligned to ECC ecc.size */
3d459559
AK
1159 datafrag_len = num_steps * chip->ecc.size;
1160 eccfrag_len = num_steps * chip->ecc.bytes;
1161
1162 data_col_addr = start_step * chip->ecc.size;
1163 /* If we read not a page aligned data */
1164 if (data_col_addr != 0)
1165 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1166
1167 p = bufpoi + data_col_addr;
1168 chip->read_buf(mtd, p, datafrag_len);
1169
8b6e50c9 1170 /* Calculate ECC */
3d459559
AK
1171 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1172 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1173
8b6e50c9
BN
1174 /*
1175 * The performance is faster if we position offsets according to
7854d3f7 1176 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 1177 */
3d459559
AK
1178 for (i = 0; i < eccfrag_len - 1; i++) {
1179 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1180 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1181 gaps = 1;
1182 break;
1183 }
1184 }
1185 if (gaps) {
1186 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1187 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1188 } else {
8b6e50c9 1189 /*
7854d3f7 1190 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
1191 * about buswidth alignment in read_buf.
1192 */
7351d3a5
FF
1193 index = start_step * chip->ecc.bytes;
1194
1195 aligned_pos = eccpos[index] & ~(busw - 1);
3d459559 1196 aligned_len = eccfrag_len;
7351d3a5 1197 if (eccpos[index] & (busw - 1))
3d459559 1198 aligned_len++;
7351d3a5 1199 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
3d459559
AK
1200 aligned_len++;
1201
7351d3a5
FF
1202 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1203 mtd->writesize + aligned_pos, -1);
3d459559
AK
1204 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1205 }
1206
1207 for (i = 0; i < eccfrag_len; i++)
7351d3a5 1208 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
3d459559
AK
1209
1210 p = bufpoi + data_col_addr;
1211 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1212 int stat;
1213
7351d3a5
FF
1214 stat = chip->ecc.correct(mtd, p,
1215 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
3f91e94f 1216 if (stat < 0) {
3d459559 1217 mtd->ecc_stats.failed++;
3f91e94f 1218 } else {
3d459559 1219 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1220 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1221 }
3d459559 1222 }
3f91e94f 1223 return max_bitflips;
3d459559
AK
1224}
1225
068e3c0a 1226/**
7854d3f7 1227 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
1228 * @mtd: mtd info structure
1229 * @chip: nand chip info structure
1230 * @buf: buffer to store read data
1fbb938d 1231 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1232 * @page: page number to read
068e3c0a 1233 *
7854d3f7 1234 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 1235 */
f5bbdacc 1236static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1237 uint8_t *buf, int oob_required, int page)
1da177e4 1238{
f5bbdacc
TG
1239 int i, eccsize = chip->ecc.size;
1240 int eccbytes = chip->ecc.bytes;
1241 int eccsteps = chip->ecc.steps;
1242 uint8_t *p = buf;
4bf63fcb
DW
1243 uint8_t *ecc_calc = chip->buffers->ecccalc;
1244 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1245 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1246 unsigned int max_bitflips = 0;
f5bbdacc
TG
1247
1248 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1249 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1250 chip->read_buf(mtd, p, eccsize);
1251 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1252 }
f75e5097 1253 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1254
f5bbdacc 1255 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1256 ecc_code[i] = chip->oob_poi[eccpos[i]];
1da177e4 1257
f5bbdacc
TG
1258 eccsteps = chip->ecc.steps;
1259 p = buf;
61b03bd7 1260
f5bbdacc
TG
1261 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1262 int stat;
1da177e4 1263
f5bbdacc 1264 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1265 if (stat < 0) {
f5bbdacc 1266 mtd->ecc_stats.failed++;
3f91e94f 1267 } else {
f5bbdacc 1268 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1269 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1270 }
f5bbdacc 1271 }
3f91e94f 1272 return max_bitflips;
f5bbdacc 1273}
1da177e4 1274
6e0cb135 1275/**
7854d3f7 1276 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
1277 * @mtd: mtd info structure
1278 * @chip: nand chip info structure
1279 * @buf: buffer to store read data
1fbb938d 1280 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1281 * @page: page number to read
6e0cb135 1282 *
8b6e50c9
BN
1283 * Hardware ECC for large page chips, require OOB to be read first. For this
1284 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1285 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1286 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1287 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
1288 */
1289static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1fbb938d 1290 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
6e0cb135
SN
1291{
1292 int i, eccsize = chip->ecc.size;
1293 int eccbytes = chip->ecc.bytes;
1294 int eccsteps = chip->ecc.steps;
1295 uint8_t *p = buf;
1296 uint8_t *ecc_code = chip->buffers->ecccode;
1297 uint32_t *eccpos = chip->ecc.layout->eccpos;
1298 uint8_t *ecc_calc = chip->buffers->ecccalc;
3f91e94f 1299 unsigned int max_bitflips = 0;
6e0cb135
SN
1300
1301 /* Read the OOB area first */
1302 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1303 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1304 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1305
1306 for (i = 0; i < chip->ecc.total; i++)
1307 ecc_code[i] = chip->oob_poi[eccpos[i]];
1308
1309 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1310 int stat;
1311
1312 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1313 chip->read_buf(mtd, p, eccsize);
1314 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1315
1316 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
3f91e94f 1317 if (stat < 0) {
6e0cb135 1318 mtd->ecc_stats.failed++;
3f91e94f 1319 } else {
6e0cb135 1320 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1321 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1322 }
6e0cb135 1323 }
3f91e94f 1324 return max_bitflips;
6e0cb135
SN
1325}
1326
f5bbdacc 1327/**
7854d3f7 1328 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
1329 * @mtd: mtd info structure
1330 * @chip: nand chip info structure
1331 * @buf: buffer to store read data
1fbb938d 1332 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1333 * @page: page number to read
f5bbdacc 1334 *
8b6e50c9
BN
1335 * The hw generator calculates the error syndrome automatically. Therefore we
1336 * need a special oob layout and handling.
f5bbdacc
TG
1337 */
1338static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1339 uint8_t *buf, int oob_required, int page)
f5bbdacc
TG
1340{
1341 int i, eccsize = chip->ecc.size;
1342 int eccbytes = chip->ecc.bytes;
1343 int eccsteps = chip->ecc.steps;
1344 uint8_t *p = buf;
f75e5097 1345 uint8_t *oob = chip->oob_poi;
3f91e94f 1346 unsigned int max_bitflips = 0;
1da177e4 1347
f5bbdacc
TG
1348 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1349 int stat;
61b03bd7 1350
f5bbdacc
TG
1351 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1352 chip->read_buf(mtd, p, eccsize);
1da177e4 1353
f5bbdacc
TG
1354 if (chip->ecc.prepad) {
1355 chip->read_buf(mtd, oob, chip->ecc.prepad);
1356 oob += chip->ecc.prepad;
1357 }
1da177e4 1358
f5bbdacc
TG
1359 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1360 chip->read_buf(mtd, oob, eccbytes);
1361 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1362
3f91e94f 1363 if (stat < 0) {
f5bbdacc 1364 mtd->ecc_stats.failed++;
3f91e94f 1365 } else {
f5bbdacc 1366 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1367 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1368 }
61b03bd7 1369
f5bbdacc 1370 oob += eccbytes;
1da177e4 1371
f5bbdacc
TG
1372 if (chip->ecc.postpad) {
1373 chip->read_buf(mtd, oob, chip->ecc.postpad);
1374 oob += chip->ecc.postpad;
61b03bd7 1375 }
f5bbdacc 1376 }
1da177e4 1377
f5bbdacc 1378 /* Calculate remaining oob bytes */
7e4178f9 1379 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1380 if (i)
1381 chip->read_buf(mtd, oob, i);
61b03bd7 1382
3f91e94f 1383 return max_bitflips;
f5bbdacc 1384}
1da177e4 1385
f5bbdacc 1386/**
7854d3f7 1387 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
8b6e50c9
BN
1388 * @chip: nand chip structure
1389 * @oob: oob destination address
1390 * @ops: oob ops structure
1391 * @len: size of oob to transfer
8593fbc6
TG
1392 */
1393static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
7014568b 1394 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1395{
f8ac0414 1396 switch (ops->mode) {
8593fbc6 1397
0612b9dd
BN
1398 case MTD_OPS_PLACE_OOB:
1399 case MTD_OPS_RAW:
8593fbc6
TG
1400 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1401 return oob + len;
1402
0612b9dd 1403 case MTD_OPS_AUTO_OOB: {
8593fbc6 1404 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
1405 uint32_t boffs = 0, roffs = ops->ooboffs;
1406 size_t bytes = 0;
8593fbc6 1407
f8ac0414 1408 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 1409 /* Read request not from offset 0? */
7bc3312b
TG
1410 if (unlikely(roffs)) {
1411 if (roffs >= free->length) {
1412 roffs -= free->length;
1413 continue;
1414 }
1415 boffs = free->offset + roffs;
1416 bytes = min_t(size_t, len,
1417 (free->length - roffs));
1418 roffs = 0;
1419 } else {
1420 bytes = min_t(size_t, len, free->length);
1421 boffs = free->offset;
1422 }
1423 memcpy(oob, chip->oob_poi + boffs, bytes);
8593fbc6
TG
1424 oob += bytes;
1425 }
1426 return oob;
1427 }
1428 default:
1429 BUG();
1430 }
1431 return NULL;
1432}
1433
1434/**
7854d3f7 1435 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
1436 * @mtd: MTD device structure
1437 * @from: offset to read from
1438 * @ops: oob ops structure
f5bbdacc
TG
1439 *
1440 * Internal function. Called with chip held.
1441 */
8593fbc6
TG
1442static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1443 struct mtd_oob_ops *ops)
f5bbdacc 1444{
e47f3db4 1445 int chipnr, page, realpage, col, bytes, aligned, oob_required;
f5bbdacc
TG
1446 struct nand_chip *chip = mtd->priv;
1447 struct mtd_ecc_stats stats;
f5bbdacc 1448 int ret = 0;
8593fbc6 1449 uint32_t readlen = ops->len;
7014568b 1450 uint32_t oobreadlen = ops->ooblen;
0612b9dd 1451 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
9aca334e
ML
1452 mtd->oobavail : mtd->oobsize;
1453
8593fbc6 1454 uint8_t *bufpoi, *oob, *buf;
edbc4540 1455 unsigned int max_bitflips = 0;
1da177e4 1456
f5bbdacc 1457 stats = mtd->ecc_stats;
1da177e4 1458
f5bbdacc
TG
1459 chipnr = (int)(from >> chip->chip_shift);
1460 chip->select_chip(mtd, chipnr);
61b03bd7 1461
f5bbdacc
TG
1462 realpage = (int)(from >> chip->page_shift);
1463 page = realpage & chip->pagemask;
1da177e4 1464
f5bbdacc 1465 col = (int)(from & (mtd->writesize - 1));
61b03bd7 1466
8593fbc6
TG
1467 buf = ops->datbuf;
1468 oob = ops->oobbuf;
e47f3db4 1469 oob_required = oob ? 1 : 0;
8593fbc6 1470
f8ac0414 1471 while (1) {
f5bbdacc
TG
1472 bytes = min(mtd->writesize - col, readlen);
1473 aligned = (bytes == mtd->writesize);
61b03bd7 1474
8b6e50c9 1475 /* Is the current page in the buffer? */
8593fbc6 1476 if (realpage != chip->pagebuf || oob) {
4bf63fcb 1477 bufpoi = aligned ? buf : chip->buffers->databuf;
61b03bd7 1478
c00a0991 1479 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1da177e4 1480
edbc4540
MD
1481 /*
1482 * Now read the page into the buffer. Absent an error,
1483 * the read methods return max bitflips per ecc step.
1484 */
0612b9dd 1485 if (unlikely(ops->mode == MTD_OPS_RAW))
1fbb938d 1486 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
e47f3db4
BN
1487 oob_required,
1488 page);
a5ff4f10
JW
1489 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1490 !oob)
7351d3a5
FF
1491 ret = chip->ecc.read_subpage(mtd, chip,
1492 col, bytes, bufpoi);
956e944c 1493 else
46a8cf2d 1494 ret = chip->ecc.read_page(mtd, chip, bufpoi,
e47f3db4 1495 oob_required, page);
6d77b9d0
BN
1496 if (ret < 0) {
1497 if (!aligned)
1498 /* Invalidate page cache */
1499 chip->pagebuf = -1;
1da177e4 1500 break;
6d77b9d0 1501 }
f5bbdacc 1502
edbc4540
MD
1503 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1504
f5bbdacc
TG
1505 /* Transfer not aligned data */
1506 if (!aligned) {
a5ff4f10 1507 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
6d77b9d0 1508 !(mtd->ecc_stats.failed - stats.failed) &&
edbc4540 1509 (ops->mode != MTD_OPS_RAW)) {
3d459559 1510 chip->pagebuf = realpage;
edbc4540
MD
1511 chip->pagebuf_bitflips = ret;
1512 } else {
6d77b9d0
BN
1513 /* Invalidate page cache */
1514 chip->pagebuf = -1;
edbc4540 1515 }
4bf63fcb 1516 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
1517 }
1518
8593fbc6
TG
1519 buf += bytes;
1520
1521 if (unlikely(oob)) {
b64d39d8
ML
1522 int toread = min(oobreadlen, max_oobsize);
1523
1524 if (toread) {
1525 oob = nand_transfer_oob(chip,
1526 oob, ops, toread);
1527 oobreadlen -= toread;
1528 }
8593fbc6 1529 }
8593fbc6 1530 } else {
4bf63fcb 1531 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6 1532 buf += bytes;
edbc4540
MD
1533 max_bitflips = max_t(unsigned int, max_bitflips,
1534 chip->pagebuf_bitflips);
8593fbc6 1535 }
1da177e4 1536
f5bbdacc 1537 readlen -= bytes;
61b03bd7 1538
f5bbdacc 1539 if (!readlen)
61b03bd7 1540 break;
1da177e4 1541
8b6e50c9 1542 /* For subsequent reads align to page boundary */
1da177e4
LT
1543 col = 0;
1544 /* Increment page address */
1545 realpage++;
1546
ace4dfee 1547 page = realpage & chip->pagemask;
1da177e4
LT
1548 /* Check, if we cross a chip boundary */
1549 if (!page) {
1550 chipnr++;
ace4dfee
TG
1551 chip->select_chip(mtd, -1);
1552 chip->select_chip(mtd, chipnr);
1da177e4 1553 }
1da177e4 1554 }
b0bb6903 1555 chip->select_chip(mtd, -1);
1da177e4 1556
8593fbc6 1557 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
1558 if (oob)
1559 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 1560
3f91e94f 1561 if (ret < 0)
f5bbdacc
TG
1562 return ret;
1563
9a1fcdfd
TG
1564 if (mtd->ecc_stats.failed - stats.failed)
1565 return -EBADMSG;
1566
edbc4540 1567 return max_bitflips;
f5bbdacc
TG
1568}
1569
1570/**
25985edc 1571 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
8b6e50c9
BN
1572 * @mtd: MTD device structure
1573 * @from: offset to read from
1574 * @len: number of bytes to read
1575 * @retlen: pointer to variable to store the number of read bytes
1576 * @buf: the databuffer to put data
f5bbdacc 1577 *
8b6e50c9 1578 * Get hold of the chip and call nand_do_read.
f5bbdacc
TG
1579 */
1580static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1581 size_t *retlen, uint8_t *buf)
1582{
4a89ff88 1583 struct mtd_oob_ops ops;
f5bbdacc
TG
1584 int ret;
1585
6a8214aa 1586 nand_get_device(mtd, FL_READING);
4a89ff88
BN
1587 ops.len = len;
1588 ops.datbuf = buf;
1589 ops.oobbuf = NULL;
11041ae6 1590 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 1591 ret = nand_do_read_ops(mtd, from, &ops);
4a89ff88 1592 *retlen = ops.retlen;
f5bbdacc 1593 nand_release_device(mtd);
f5bbdacc 1594 return ret;
1da177e4
LT
1595}
1596
7bc3312b 1597/**
7854d3f7 1598 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
1599 * @mtd: mtd info structure
1600 * @chip: nand chip info structure
1601 * @page: page number to read
7bc3312b
TG
1602 */
1603static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1604 int page)
7bc3312b 1605{
5c2ffb11 1606 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
7bc3312b 1607 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
5c2ffb11 1608 return 0;
7bc3312b
TG
1609}
1610
1611/**
7854d3f7 1612 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 1613 * with syndromes
8b6e50c9
BN
1614 * @mtd: mtd info structure
1615 * @chip: nand chip info structure
1616 * @page: page number to read
7bc3312b
TG
1617 */
1618static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1619 int page)
7bc3312b
TG
1620{
1621 uint8_t *buf = chip->oob_poi;
1622 int length = mtd->oobsize;
1623 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1624 int eccsize = chip->ecc.size;
1625 uint8_t *bufpoi = buf;
1626 int i, toread, sndrnd = 0, pos;
1627
1628 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1629 for (i = 0; i < chip->ecc.steps; i++) {
1630 if (sndrnd) {
1631 pos = eccsize + i * (eccsize + chunk);
1632 if (mtd->writesize > 512)
1633 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1634 else
1635 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1636 } else
1637 sndrnd = 1;
1638 toread = min_t(int, length, chunk);
1639 chip->read_buf(mtd, bufpoi, toread);
1640 bufpoi += toread;
1641 length -= toread;
1642 }
1643 if (length > 0)
1644 chip->read_buf(mtd, bufpoi, length);
1645
5c2ffb11 1646 return 0;
7bc3312b
TG
1647}
1648
1649/**
7854d3f7 1650 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
1651 * @mtd: mtd info structure
1652 * @chip: nand chip info structure
1653 * @page: page number to write
7bc3312b
TG
1654 */
1655static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1656 int page)
1657{
1658 int status = 0;
1659 const uint8_t *buf = chip->oob_poi;
1660 int length = mtd->oobsize;
1661
1662 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1663 chip->write_buf(mtd, buf, length);
1664 /* Send command to program the OOB data */
1665 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1666
1667 status = chip->waitfunc(mtd, chip);
1668
0d420f9d 1669 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b
TG
1670}
1671
1672/**
7854d3f7 1673 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
1674 * with syndrome - only for large page flash
1675 * @mtd: mtd info structure
1676 * @chip: nand chip info structure
1677 * @page: page number to write
7bc3312b
TG
1678 */
1679static int nand_write_oob_syndrome(struct mtd_info *mtd,
1680 struct nand_chip *chip, int page)
1681{
1682 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1683 int eccsize = chip->ecc.size, length = mtd->oobsize;
1684 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1685 const uint8_t *bufpoi = chip->oob_poi;
1686
1687 /*
1688 * data-ecc-data-ecc ... ecc-oob
1689 * or
1690 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1691 */
1692 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1693 pos = steps * (eccsize + chunk);
1694 steps = 0;
1695 } else
8b0036ee 1696 pos = eccsize;
7bc3312b
TG
1697
1698 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1699 for (i = 0; i < steps; i++) {
1700 if (sndcmd) {
1701 if (mtd->writesize <= 512) {
1702 uint32_t fill = 0xFFFFFFFF;
1703
1704 len = eccsize;
1705 while (len > 0) {
1706 int num = min_t(int, len, 4);
1707 chip->write_buf(mtd, (uint8_t *)&fill,
1708 num);
1709 len -= num;
1710 }
1711 } else {
1712 pos = eccsize + i * (eccsize + chunk);
1713 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1714 }
1715 } else
1716 sndcmd = 1;
1717 len = min_t(int, length, chunk);
1718 chip->write_buf(mtd, bufpoi, len);
1719 bufpoi += len;
1720 length -= len;
1721 }
1722 if (length > 0)
1723 chip->write_buf(mtd, bufpoi, length);
1724
1725 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1726 status = chip->waitfunc(mtd, chip);
1727
1728 return status & NAND_STATUS_FAIL ? -EIO : 0;
1729}
1730
1da177e4 1731/**
7854d3f7 1732 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
1733 * @mtd: MTD device structure
1734 * @from: offset to read from
1735 * @ops: oob operations description structure
1da177e4 1736 *
8b6e50c9 1737 * NAND read out-of-band data from the spare area.
1da177e4 1738 */
8593fbc6
TG
1739static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1740 struct mtd_oob_ops *ops)
1da177e4 1741{
c00a0991 1742 int page, realpage, chipnr;
ace4dfee 1743 struct nand_chip *chip = mtd->priv;
041e4575 1744 struct mtd_ecc_stats stats;
7014568b
VW
1745 int readlen = ops->ooblen;
1746 int len;
7bc3312b 1747 uint8_t *buf = ops->oobbuf;
1951f2f7 1748 int ret = 0;
61b03bd7 1749
289c0522 1750 pr_debug("%s: from = 0x%08Lx, len = %i\n",
20d8e248 1751 __func__, (unsigned long long)from, readlen);
1da177e4 1752
041e4575
BN
1753 stats = mtd->ecc_stats;
1754
0612b9dd 1755 if (ops->mode == MTD_OPS_AUTO_OOB)
7014568b 1756 len = chip->ecc.layout->oobavail;
03736155
AH
1757 else
1758 len = mtd->oobsize;
1759
1760 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
1761 pr_debug("%s: attempt to start read outside oob\n",
1762 __func__);
03736155
AH
1763 return -EINVAL;
1764 }
1765
1766 /* Do not allow reads past end of device */
1767 if (unlikely(from >= mtd->size ||
1768 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1769 (from >> chip->page_shift)) * len)) {
289c0522
BN
1770 pr_debug("%s: attempt to read beyond end of device\n",
1771 __func__);
03736155
AH
1772 return -EINVAL;
1773 }
7014568b 1774
7314e9e7 1775 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 1776 chip->select_chip(mtd, chipnr);
1da177e4 1777
7314e9e7
TG
1778 /* Shift to get page */
1779 realpage = (int)(from >> chip->page_shift);
1780 page = realpage & chip->pagemask;
1da177e4 1781
f8ac0414 1782 while (1) {
0612b9dd 1783 if (ops->mode == MTD_OPS_RAW)
1951f2f7 1784 ret = chip->ecc.read_oob_raw(mtd, chip, page);
c46f6483 1785 else
1951f2f7
SL
1786 ret = chip->ecc.read_oob(mtd, chip, page);
1787
1788 if (ret < 0)
1789 break;
7014568b
VW
1790
1791 len = min(len, readlen);
1792 buf = nand_transfer_oob(chip, buf, ops, len);
8593fbc6 1793
7014568b 1794 readlen -= len;
0d420f9d
SZ
1795 if (!readlen)
1796 break;
1797
7314e9e7
TG
1798 /* Increment page address */
1799 realpage++;
1800
1801 page = realpage & chip->pagemask;
1802 /* Check, if we cross a chip boundary */
1803 if (!page) {
1804 chipnr++;
1805 chip->select_chip(mtd, -1);
1806 chip->select_chip(mtd, chipnr);
1da177e4
LT
1807 }
1808 }
b0bb6903 1809 chip->select_chip(mtd, -1);
1da177e4 1810
1951f2f7
SL
1811 ops->oobretlen = ops->ooblen - readlen;
1812
1813 if (ret < 0)
1814 return ret;
041e4575
BN
1815
1816 if (mtd->ecc_stats.failed - stats.failed)
1817 return -EBADMSG;
1818
1819 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1da177e4
LT
1820}
1821
1822/**
8593fbc6 1823 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
1824 * @mtd: MTD device structure
1825 * @from: offset to read from
1826 * @ops: oob operation description structure
1da177e4 1827 *
8b6e50c9 1828 * NAND read data and/or out-of-band data.
1da177e4 1829 */
8593fbc6
TG
1830static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1831 struct mtd_oob_ops *ops)
1da177e4 1832{
8593fbc6
TG
1833 int ret = -ENOTSUPP;
1834
1835 ops->retlen = 0;
1da177e4
LT
1836
1837 /* Do not allow reads past end of device */
7014568b 1838 if (ops->datbuf && (from + ops->len) > mtd->size) {
289c0522
BN
1839 pr_debug("%s: attempt to read beyond end of device\n",
1840 __func__);
1da177e4
LT
1841 return -EINVAL;
1842 }
1843
6a8214aa 1844 nand_get_device(mtd, FL_READING);
1da177e4 1845
f8ac0414 1846 switch (ops->mode) {
0612b9dd
BN
1847 case MTD_OPS_PLACE_OOB:
1848 case MTD_OPS_AUTO_OOB:
1849 case MTD_OPS_RAW:
8593fbc6 1850 break;
1da177e4 1851
8593fbc6
TG
1852 default:
1853 goto out;
1854 }
1da177e4 1855
8593fbc6
TG
1856 if (!ops->datbuf)
1857 ret = nand_do_read_oob(mtd, from, ops);
1858 else
1859 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 1860
7351d3a5 1861out:
8593fbc6
TG
1862 nand_release_device(mtd);
1863 return ret;
1864}
61b03bd7 1865
1da177e4 1866
8593fbc6 1867/**
7854d3f7 1868 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
1869 * @mtd: mtd info structure
1870 * @chip: nand chip info structure
1871 * @buf: data buffer
1fbb938d 1872 * @oob_required: must write chip->oob_poi to OOB
52ff49df 1873 *
7854d3f7 1874 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 1875 */
fdbad98d 1876static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1877 const uint8_t *buf, int oob_required)
8593fbc6
TG
1878{
1879 chip->write_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1880 if (oob_required)
1881 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
1882
1883 return 0;
1da177e4
LT
1884}
1885
52ff49df 1886/**
7854d3f7 1887 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
1888 * @mtd: mtd info structure
1889 * @chip: nand chip info structure
1890 * @buf: data buffer
1fbb938d 1891 * @oob_required: must write chip->oob_poi to OOB
52ff49df
DB
1892 *
1893 * We need a special oob layout and handling even when ECC isn't checked.
1894 */
fdbad98d 1895static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
7351d3a5 1896 struct nand_chip *chip,
1fbb938d 1897 const uint8_t *buf, int oob_required)
52ff49df
DB
1898{
1899 int eccsize = chip->ecc.size;
1900 int eccbytes = chip->ecc.bytes;
1901 uint8_t *oob = chip->oob_poi;
1902 int steps, size;
1903
1904 for (steps = chip->ecc.steps; steps > 0; steps--) {
1905 chip->write_buf(mtd, buf, eccsize);
1906 buf += eccsize;
1907
1908 if (chip->ecc.prepad) {
1909 chip->write_buf(mtd, oob, chip->ecc.prepad);
1910 oob += chip->ecc.prepad;
1911 }
1912
1913 chip->read_buf(mtd, oob, eccbytes);
1914 oob += eccbytes;
1915
1916 if (chip->ecc.postpad) {
1917 chip->write_buf(mtd, oob, chip->ecc.postpad);
1918 oob += chip->ecc.postpad;
1919 }
1920 }
1921
1922 size = mtd->oobsize - (oob - chip->oob_poi);
1923 if (size)
1924 chip->write_buf(mtd, oob, size);
fdbad98d
JW
1925
1926 return 0;
52ff49df 1927}
9223a456 1928/**
7854d3f7 1929 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
1930 * @mtd: mtd info structure
1931 * @chip: nand chip info structure
1932 * @buf: data buffer
1fbb938d 1933 * @oob_required: must write chip->oob_poi to OOB
9223a456 1934 */
fdbad98d 1935static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1936 const uint8_t *buf, int oob_required)
9223a456 1937{
f75e5097
TG
1938 int i, eccsize = chip->ecc.size;
1939 int eccbytes = chip->ecc.bytes;
1940 int eccsteps = chip->ecc.steps;
4bf63fcb 1941 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 1942 const uint8_t *p = buf;
8b099a39 1943 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 1944
7854d3f7 1945 /* Software ECC calculation */
8593fbc6
TG
1946 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1947 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 1948
8593fbc6
TG
1949 for (i = 0; i < chip->ecc.total; i++)
1950 chip->oob_poi[eccpos[i]] = ecc_calc[i];
9223a456 1951
fdbad98d 1952 return chip->ecc.write_page_raw(mtd, chip, buf, 1);
f75e5097 1953}
9223a456 1954
f75e5097 1955/**
7854d3f7 1956 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
1957 * @mtd: mtd info structure
1958 * @chip: nand chip info structure
1959 * @buf: data buffer
1fbb938d 1960 * @oob_required: must write chip->oob_poi to OOB
f75e5097 1961 */
fdbad98d 1962static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1963 const uint8_t *buf, int oob_required)
f75e5097
TG
1964{
1965 int i, eccsize = chip->ecc.size;
1966 int eccbytes = chip->ecc.bytes;
1967 int eccsteps = chip->ecc.steps;
4bf63fcb 1968 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 1969 const uint8_t *p = buf;
8b099a39 1970 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 1971
f75e5097
TG
1972 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1973 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 1974 chip->write_buf(mtd, p, eccsize);
f75e5097 1975 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
1976 }
1977
f75e5097
TG
1978 for (i = 0; i < chip->ecc.total; i++)
1979 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1980
1981 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
1982
1983 return 0;
9223a456
TG
1984}
1985
61b03bd7 1986/**
7854d3f7 1987 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
1988 * @mtd: mtd info structure
1989 * @chip: nand chip info structure
1990 * @buf: data buffer
1fbb938d 1991 * @oob_required: must write chip->oob_poi to OOB
1da177e4 1992 *
8b6e50c9
BN
1993 * The hw generator calculates the error syndrome automatically. Therefore we
1994 * need a special oob layout and handling.
f75e5097 1995 */
fdbad98d 1996static int nand_write_page_syndrome(struct mtd_info *mtd,
1fbb938d
BN
1997 struct nand_chip *chip,
1998 const uint8_t *buf, int oob_required)
1da177e4 1999{
f75e5097
TG
2000 int i, eccsize = chip->ecc.size;
2001 int eccbytes = chip->ecc.bytes;
2002 int eccsteps = chip->ecc.steps;
2003 const uint8_t *p = buf;
2004 uint8_t *oob = chip->oob_poi;
1da177e4 2005
f75e5097 2006 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2007
f75e5097
TG
2008 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2009 chip->write_buf(mtd, p, eccsize);
61b03bd7 2010
f75e5097
TG
2011 if (chip->ecc.prepad) {
2012 chip->write_buf(mtd, oob, chip->ecc.prepad);
2013 oob += chip->ecc.prepad;
2014 }
2015
2016 chip->ecc.calculate(mtd, p, oob);
2017 chip->write_buf(mtd, oob, eccbytes);
2018 oob += eccbytes;
2019
2020 if (chip->ecc.postpad) {
2021 chip->write_buf(mtd, oob, chip->ecc.postpad);
2022 oob += chip->ecc.postpad;
1da177e4 2023 }
1da177e4 2024 }
f75e5097
TG
2025
2026 /* Calculate remaining oob bytes */
7e4178f9 2027 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2028 if (i)
2029 chip->write_buf(mtd, oob, i);
fdbad98d
JW
2030
2031 return 0;
f75e5097
TG
2032}
2033
2034/**
956e944c 2035 * nand_write_page - [REPLACEABLE] write one page
8b6e50c9
BN
2036 * @mtd: MTD device structure
2037 * @chip: NAND chip descriptor
2038 * @buf: the data to write
1fbb938d 2039 * @oob_required: must write chip->oob_poi to OOB
8b6e50c9
BN
2040 * @page: page number to write
2041 * @cached: cached programming
2042 * @raw: use _raw version of write_page
f75e5097
TG
2043 */
2044static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d
BN
2045 const uint8_t *buf, int oob_required, int page,
2046 int cached, int raw)
f75e5097
TG
2047{
2048 int status;
2049
2050 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2051
956e944c 2052 if (unlikely(raw))
fdbad98d 2053 status = chip->ecc.write_page_raw(mtd, chip, buf, oob_required);
956e944c 2054 else
fdbad98d
JW
2055 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2056
2057 if (status < 0)
2058 return status;
f75e5097
TG
2059
2060 /*
7854d3f7 2061 * Cached progamming disabled for now. Not sure if it's worth the
8b6e50c9 2062 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
f75e5097
TG
2063 */
2064 cached = 0;
2065
2066 if (!cached || !(chip->options & NAND_CACHEPRG)) {
2067
2068 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2069 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2070 /*
2071 * See if operation failed and additional status checks are
8b6e50c9 2072 * available.
f75e5097
TG
2073 */
2074 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2075 status = chip->errstat(mtd, chip, FL_WRITING, status,
2076 page);
2077
2078 if (status & NAND_STATUS_FAIL)
2079 return -EIO;
2080 } else {
2081 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2082 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2083 }
2084
f75e5097 2085 return 0;
1da177e4
LT
2086}
2087
8593fbc6 2088/**
7854d3f7 2089 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 2090 * @mtd: MTD device structure
8b6e50c9
BN
2091 * @oob: oob data buffer
2092 * @len: oob data write length
2093 * @ops: oob ops structure
8593fbc6 2094 */
f722013e
TAA
2095static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2096 struct mtd_oob_ops *ops)
8593fbc6 2097{
f722013e
TAA
2098 struct nand_chip *chip = mtd->priv;
2099
2100 /*
2101 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2102 * data from a previous OOB read.
2103 */
2104 memset(chip->oob_poi, 0xff, mtd->oobsize);
2105
f8ac0414 2106 switch (ops->mode) {
8593fbc6 2107
0612b9dd
BN
2108 case MTD_OPS_PLACE_OOB:
2109 case MTD_OPS_RAW:
8593fbc6
TG
2110 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2111 return oob + len;
2112
0612b9dd 2113 case MTD_OPS_AUTO_OOB: {
8593fbc6 2114 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
2115 uint32_t boffs = 0, woffs = ops->ooboffs;
2116 size_t bytes = 0;
8593fbc6 2117
f8ac0414 2118 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 2119 /* Write request not from offset 0? */
7bc3312b
TG
2120 if (unlikely(woffs)) {
2121 if (woffs >= free->length) {
2122 woffs -= free->length;
2123 continue;
2124 }
2125 boffs = free->offset + woffs;
2126 bytes = min_t(size_t, len,
2127 (free->length - woffs));
2128 woffs = 0;
2129 } else {
2130 bytes = min_t(size_t, len, free->length);
2131 boffs = free->offset;
2132 }
8b0036ee 2133 memcpy(chip->oob_poi + boffs, oob, bytes);
8593fbc6
TG
2134 oob += bytes;
2135 }
2136 return oob;
2137 }
2138 default:
2139 BUG();
2140 }
2141 return NULL;
2142}
2143
f8ac0414 2144#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
2145
2146/**
7854d3f7 2147 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
2148 * @mtd: MTD device structure
2149 * @to: offset to write to
2150 * @ops: oob operations description structure
1da177e4 2151 *
8b6e50c9 2152 * NAND write with ECC.
1da177e4 2153 */
8593fbc6
TG
2154static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2155 struct mtd_oob_ops *ops)
1da177e4 2156{
29072b96 2157 int chipnr, realpage, page, blockmask, column;
ace4dfee 2158 struct nand_chip *chip = mtd->priv;
8593fbc6 2159 uint32_t writelen = ops->len;
782ce79a
ML
2160
2161 uint32_t oobwritelen = ops->ooblen;
0612b9dd 2162 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
782ce79a
ML
2163 mtd->oobavail : mtd->oobsize;
2164
8593fbc6
TG
2165 uint8_t *oob = ops->oobbuf;
2166 uint8_t *buf = ops->datbuf;
29072b96 2167 int ret, subpage;
e47f3db4 2168 int oob_required = oob ? 1 : 0;
1da177e4 2169
8593fbc6 2170 ops->retlen = 0;
29072b96
TG
2171 if (!writelen)
2172 return 0;
1da177e4 2173
8b6e50c9 2174 /* Reject writes, which are not page aligned */
8593fbc6 2175 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
2176 pr_notice("%s: attempt to write non page aligned data\n",
2177 __func__);
1da177e4
LT
2178 return -EINVAL;
2179 }
2180
29072b96
TG
2181 column = to & (mtd->writesize - 1);
2182 subpage = column || (writelen & (mtd->writesize - 1));
2183
2184 if (subpage && oob)
2185 return -EINVAL;
1da177e4 2186
6a930961
TG
2187 chipnr = (int)(to >> chip->chip_shift);
2188 chip->select_chip(mtd, chipnr);
2189
1da177e4 2190 /* Check, if it is write protected */
b0bb6903
HS
2191 if (nand_check_wp(mtd)) {
2192 ret = -EIO;
2193 goto err_out;
2194 }
1da177e4 2195
f75e5097
TG
2196 realpage = (int)(to >> chip->page_shift);
2197 page = realpage & chip->pagemask;
2198 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2199
2200 /* Invalidate the page cache, when we write to the cached page */
2201 if (to <= (chip->pagebuf << chip->page_shift) &&
8593fbc6 2202 (chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2203 chip->pagebuf = -1;
61b03bd7 2204
782ce79a 2205 /* Don't allow multipage oob writes with offset */
b0bb6903
HS
2206 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2207 ret = -EINVAL;
2208 goto err_out;
2209 }
782ce79a 2210
f8ac0414 2211 while (1) {
29072b96 2212 int bytes = mtd->writesize;
f75e5097 2213 int cached = writelen > bytes && page != blockmask;
29072b96
TG
2214 uint8_t *wbuf = buf;
2215
8b6e50c9 2216 /* Partial page write? */
29072b96
TG
2217 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2218 cached = 0;
2219 bytes = min_t(int, bytes - column, (int) writelen);
2220 chip->pagebuf = -1;
2221 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2222 memcpy(&chip->buffers->databuf[column], buf, bytes);
2223 wbuf = chip->buffers->databuf;
2224 }
1da177e4 2225
782ce79a
ML
2226 if (unlikely(oob)) {
2227 size_t len = min(oobwritelen, oobmaxlen);
f722013e 2228 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 2229 oobwritelen -= len;
f722013e
TAA
2230 } else {
2231 /* We still need to erase leftover OOB data */
2232 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2233 }
8593fbc6 2234
e47f3db4
BN
2235 ret = chip->write_page(mtd, chip, wbuf, oob_required, page,
2236 cached, (ops->mode == MTD_OPS_RAW));
f75e5097
TG
2237 if (ret)
2238 break;
2239
2240 writelen -= bytes;
2241 if (!writelen)
2242 break;
2243
29072b96 2244 column = 0;
f75e5097
TG
2245 buf += bytes;
2246 realpage++;
2247
2248 page = realpage & chip->pagemask;
2249 /* Check, if we cross a chip boundary */
2250 if (!page) {
2251 chipnr++;
2252 chip->select_chip(mtd, -1);
2253 chip->select_chip(mtd, chipnr);
1da177e4
LT
2254 }
2255 }
8593fbc6 2256
8593fbc6 2257 ops->retlen = ops->len - writelen;
7014568b
VW
2258 if (unlikely(oob))
2259 ops->oobretlen = ops->ooblen;
b0bb6903
HS
2260
2261err_out:
2262 chip->select_chip(mtd, -1);
1da177e4
LT
2263 return ret;
2264}
2265
2af7c653
SK
2266/**
2267 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2268 * @mtd: MTD device structure
2269 * @to: offset to write to
2270 * @len: number of bytes to write
2271 * @retlen: pointer to variable to store the number of written bytes
2272 * @buf: the data to write
2af7c653
SK
2273 *
2274 * NAND write with ECC. Used when performing writes in interrupt context, this
2275 * may for example be called by mtdoops when writing an oops while in panic.
2276 */
2277static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2278 size_t *retlen, const uint8_t *buf)
2279{
2280 struct nand_chip *chip = mtd->priv;
4a89ff88 2281 struct mtd_oob_ops ops;
2af7c653
SK
2282 int ret;
2283
8b6e50c9 2284 /* Wait for the device to get ready */
2af7c653
SK
2285 panic_nand_wait(mtd, chip, 400);
2286
8b6e50c9 2287 /* Grab the device */
2af7c653
SK
2288 panic_nand_get_device(chip, mtd, FL_WRITING);
2289
4a89ff88
BN
2290 ops.len = len;
2291 ops.datbuf = (uint8_t *)buf;
2292 ops.oobbuf = NULL;
11041ae6 2293 ops.mode = MTD_OPS_PLACE_OOB;
2af7c653 2294
4a89ff88 2295 ret = nand_do_write_ops(mtd, to, &ops);
2af7c653 2296
4a89ff88 2297 *retlen = ops.retlen;
2af7c653
SK
2298 return ret;
2299}
2300
f75e5097 2301/**
8593fbc6 2302 * nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2303 * @mtd: MTD device structure
2304 * @to: offset to write to
2305 * @len: number of bytes to write
2306 * @retlen: pointer to variable to store the number of written bytes
2307 * @buf: the data to write
f75e5097 2308 *
8b6e50c9 2309 * NAND write with ECC.
f75e5097 2310 */
8593fbc6
TG
2311static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2312 size_t *retlen, const uint8_t *buf)
f75e5097 2313{
4a89ff88 2314 struct mtd_oob_ops ops;
f75e5097
TG
2315 int ret;
2316
6a8214aa 2317 nand_get_device(mtd, FL_WRITING);
4a89ff88
BN
2318 ops.len = len;
2319 ops.datbuf = (uint8_t *)buf;
2320 ops.oobbuf = NULL;
11041ae6 2321 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 2322 ret = nand_do_write_ops(mtd, to, &ops);
4a89ff88 2323 *retlen = ops.retlen;
f75e5097 2324 nand_release_device(mtd);
8593fbc6 2325 return ret;
f75e5097 2326}
7314e9e7 2327
1da177e4 2328/**
8593fbc6 2329 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
2330 * @mtd: MTD device structure
2331 * @to: offset to write to
2332 * @ops: oob operation description structure
1da177e4 2333 *
8b6e50c9 2334 * NAND write out-of-band.
1da177e4 2335 */
8593fbc6
TG
2336static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2337 struct mtd_oob_ops *ops)
1da177e4 2338{
03736155 2339 int chipnr, page, status, len;
ace4dfee 2340 struct nand_chip *chip = mtd->priv;
1da177e4 2341
289c0522 2342 pr_debug("%s: to = 0x%08x, len = %i\n",
20d8e248 2343 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 2344
0612b9dd 2345 if (ops->mode == MTD_OPS_AUTO_OOB)
03736155
AH
2346 len = chip->ecc.layout->oobavail;
2347 else
2348 len = mtd->oobsize;
2349
1da177e4 2350 /* Do not allow write past end of page */
03736155 2351 if ((ops->ooboffs + ops->ooblen) > len) {
289c0522
BN
2352 pr_debug("%s: attempt to write past end of page\n",
2353 __func__);
1da177e4
LT
2354 return -EINVAL;
2355 }
2356
03736155 2357 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2358 pr_debug("%s: attempt to start write outside oob\n",
2359 __func__);
03736155
AH
2360 return -EINVAL;
2361 }
2362
775adc3d 2363 /* Do not allow write past end of device */
03736155
AH
2364 if (unlikely(to >= mtd->size ||
2365 ops->ooboffs + ops->ooblen >
2366 ((mtd->size >> chip->page_shift) -
2367 (to >> chip->page_shift)) * len)) {
289c0522
BN
2368 pr_debug("%s: attempt to write beyond end of device\n",
2369 __func__);
03736155
AH
2370 return -EINVAL;
2371 }
2372
7314e9e7 2373 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 2374 chip->select_chip(mtd, chipnr);
1da177e4 2375
7314e9e7
TG
2376 /* Shift to get page */
2377 page = (int)(to >> chip->page_shift);
2378
2379 /*
2380 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2381 * of my DiskOnChip 2000 test units) will clear the whole data page too
2382 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2383 * it in the doc2000 driver in August 1999. dwmw2.
2384 */
ace4dfee 2385 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
2386
2387 /* Check, if it is write protected */
b0bb6903
HS
2388 if (nand_check_wp(mtd)) {
2389 chip->select_chip(mtd, -1);
8593fbc6 2390 return -EROFS;
b0bb6903 2391 }
61b03bd7 2392
1da177e4 2393 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
2394 if (page == chip->pagebuf)
2395 chip->pagebuf = -1;
1da177e4 2396
f722013e 2397 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
9ce244b3 2398
0612b9dd 2399 if (ops->mode == MTD_OPS_RAW)
9ce244b3
BN
2400 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2401 else
2402 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 2403
b0bb6903
HS
2404 chip->select_chip(mtd, -1);
2405
7bc3312b
TG
2406 if (status)
2407 return status;
1da177e4 2408
7014568b 2409 ops->oobretlen = ops->ooblen;
1da177e4 2410
7bc3312b 2411 return 0;
8593fbc6
TG
2412}
2413
2414/**
2415 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
2416 * @mtd: MTD device structure
2417 * @to: offset to write to
2418 * @ops: oob operation description structure
8593fbc6
TG
2419 */
2420static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2421 struct mtd_oob_ops *ops)
2422{
8593fbc6
TG
2423 int ret = -ENOTSUPP;
2424
2425 ops->retlen = 0;
2426
2427 /* Do not allow writes past end of device */
7014568b 2428 if (ops->datbuf && (to + ops->len) > mtd->size) {
289c0522
BN
2429 pr_debug("%s: attempt to write beyond end of device\n",
2430 __func__);
8593fbc6
TG
2431 return -EINVAL;
2432 }
2433
6a8214aa 2434 nand_get_device(mtd, FL_WRITING);
8593fbc6 2435
f8ac0414 2436 switch (ops->mode) {
0612b9dd
BN
2437 case MTD_OPS_PLACE_OOB:
2438 case MTD_OPS_AUTO_OOB:
2439 case MTD_OPS_RAW:
8593fbc6
TG
2440 break;
2441
2442 default:
2443 goto out;
2444 }
2445
2446 if (!ops->datbuf)
2447 ret = nand_do_write_oob(mtd, to, ops);
2448 else
2449 ret = nand_do_write_ops(mtd, to, ops);
2450
7351d3a5 2451out:
1da177e4 2452 nand_release_device(mtd);
1da177e4
LT
2453 return ret;
2454}
2455
1da177e4 2456/**
7854d3f7 2457 * single_erase_cmd - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
2458 * @mtd: MTD device structure
2459 * @page: the page address of the block which will be erased
1da177e4 2460 *
8b6e50c9 2461 * Standard erase command for NAND chips.
1da177e4 2462 */
e0c7d767 2463static void single_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2464{
ace4dfee 2465 struct nand_chip *chip = mtd->priv;
1da177e4 2466 /* Send commands to erase a block */
ace4dfee
TG
2467 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2468 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2469}
2470
2471/**
7854d3f7 2472 * multi_erase_cmd - [GENERIC] AND specific block erase command function
8b6e50c9
BN
2473 * @mtd: MTD device structure
2474 * @page: the page address of the block which will be erased
1da177e4 2475 *
8b6e50c9 2476 * AND multi block erase command function. Erase 4 consecutive blocks.
1da177e4 2477 */
e0c7d767 2478static void multi_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2479{
ace4dfee 2480 struct nand_chip *chip = mtd->priv;
1da177e4 2481 /* Send commands to erase a block */
ace4dfee
TG
2482 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2483 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2484 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2485 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2486 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2487}
2488
2489/**
2490 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
2491 * @mtd: MTD device structure
2492 * @instr: erase instruction
1da177e4 2493 *
8b6e50c9 2494 * Erase one ore more blocks.
1da177e4 2495 */
e0c7d767 2496static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2497{
e0c7d767 2498 return nand_erase_nand(mtd, instr, 0);
1da177e4 2499}
61b03bd7 2500
30f464b7 2501#define BBT_PAGE_MASK 0xffffff3f
1da177e4 2502/**
7854d3f7 2503 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
2504 * @mtd: MTD device structure
2505 * @instr: erase instruction
2506 * @allowbbt: allow erasing the bbt area
1da177e4 2507 *
8b6e50c9 2508 * Erase one ore more blocks.
1da177e4 2509 */
ace4dfee
TG
2510int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2511 int allowbbt)
1da177e4 2512{
69423d99 2513 int page, status, pages_per_block, ret, chipnr;
ace4dfee 2514 struct nand_chip *chip = mtd->priv;
f8ac0414 2515 loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
ace4dfee 2516 unsigned int bbt_masked_page = 0xffffffff;
69423d99 2517 loff_t len;
1da177e4 2518
289c0522
BN
2519 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2520 __func__, (unsigned long long)instr->addr,
2521 (unsigned long long)instr->len);
1da177e4 2522
6fe5a6ac 2523 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 2524 return -EINVAL;
1da177e4 2525
1da177e4 2526 /* Grab the lock and see if the device is available */
6a8214aa 2527 nand_get_device(mtd, FL_ERASING);
1da177e4
LT
2528
2529 /* Shift to get first page */
ace4dfee
TG
2530 page = (int)(instr->addr >> chip->page_shift);
2531 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
2532
2533 /* Calculate pages in each block */
ace4dfee 2534 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
2535
2536 /* Select the NAND device */
ace4dfee 2537 chip->select_chip(mtd, chipnr);
1da177e4 2538
1da177e4
LT
2539 /* Check, if it is write protected */
2540 if (nand_check_wp(mtd)) {
289c0522
BN
2541 pr_debug("%s: device is write protected!\n",
2542 __func__);
1da177e4
LT
2543 instr->state = MTD_ERASE_FAILED;
2544 goto erase_exit;
2545 }
2546
ace4dfee
TG
2547 /*
2548 * If BBT requires refresh, set the BBT page mask to see if the BBT
2549 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2550 * can not be matched. This is also done when the bbt is actually
7854d3f7 2551 * erased to avoid recursive updates.
ace4dfee
TG
2552 */
2553 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2554 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
30f464b7 2555
1da177e4
LT
2556 /* Loop through the pages */
2557 len = instr->len;
2558
2559 instr->state = MTD_ERASING;
2560
2561 while (len) {
12183a20 2562 /* Check if we have a bad block, we do not erase bad blocks! */
ace4dfee
TG
2563 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2564 chip->page_shift, 0, allowbbt)) {
d0370219
BN
2565 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2566 __func__, page);
1da177e4
LT
2567 instr->state = MTD_ERASE_FAILED;
2568 goto erase_exit;
2569 }
61b03bd7 2570
ace4dfee
TG
2571 /*
2572 * Invalidate the page cache, if we erase the block which
8b6e50c9 2573 * contains the current cached page.
ace4dfee
TG
2574 */
2575 if (page <= chip->pagebuf && chip->pagebuf <
2576 (page + pages_per_block))
2577 chip->pagebuf = -1;
1da177e4 2578
ace4dfee 2579 chip->erase_cmd(mtd, page & chip->pagemask);
61b03bd7 2580
7bc3312b 2581 status = chip->waitfunc(mtd, chip);
1da177e4 2582
ace4dfee
TG
2583 /*
2584 * See if operation failed and additional status checks are
2585 * available
2586 */
2587 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2588 status = chip->errstat(mtd, chip, FL_ERASING,
2589 status, page);
068e3c0a 2590
1da177e4 2591 /* See if block erase succeeded */
a4ab4c5d 2592 if (status & NAND_STATUS_FAIL) {
289c0522
BN
2593 pr_debug("%s: failed erase, page 0x%08x\n",
2594 __func__, page);
1da177e4 2595 instr->state = MTD_ERASE_FAILED;
69423d99
AH
2596 instr->fail_addr =
2597 ((loff_t)page << chip->page_shift);
1da177e4
LT
2598 goto erase_exit;
2599 }
30f464b7 2600
ace4dfee
TG
2601 /*
2602 * If BBT requires refresh, set the BBT rewrite flag to the
8b6e50c9 2603 * page being erased.
ace4dfee
TG
2604 */
2605 if (bbt_masked_page != 0xffffffff &&
2606 (page & BBT_PAGE_MASK) == bbt_masked_page)
69423d99
AH
2607 rewrite_bbt[chipnr] =
2608 ((loff_t)page << chip->page_shift);
61b03bd7 2609
1da177e4 2610 /* Increment page address and decrement length */
ace4dfee 2611 len -= (1 << chip->phys_erase_shift);
1da177e4
LT
2612 page += pages_per_block;
2613
2614 /* Check, if we cross a chip boundary */
ace4dfee 2615 if (len && !(page & chip->pagemask)) {
1da177e4 2616 chipnr++;
ace4dfee
TG
2617 chip->select_chip(mtd, -1);
2618 chip->select_chip(mtd, chipnr);
30f464b7 2619
ace4dfee
TG
2620 /*
2621 * If BBT requires refresh and BBT-PERCHIP, set the BBT
8b6e50c9 2622 * page mask to see if this BBT should be rewritten.
ace4dfee
TG
2623 */
2624 if (bbt_masked_page != 0xffffffff &&
2625 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2626 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2627 BBT_PAGE_MASK;
1da177e4
LT
2628 }
2629 }
2630 instr->state = MTD_ERASE_DONE;
2631
7351d3a5 2632erase_exit:
1da177e4
LT
2633
2634 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
2635
2636 /* Deselect and wake up anyone waiting on the device */
b0bb6903 2637 chip->select_chip(mtd, -1);
1da177e4
LT
2638 nand_release_device(mtd);
2639
49defc01
DW
2640 /* Do call back function */
2641 if (!ret)
2642 mtd_erase_callback(instr);
2643
ace4dfee
TG
2644 /*
2645 * If BBT requires refresh and erase was successful, rewrite any
8b6e50c9 2646 * selected bad block tables.
ace4dfee
TG
2647 */
2648 if (bbt_masked_page == 0xffffffff || ret)
2649 return ret;
2650
2651 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2652 if (!rewrite_bbt[chipnr])
2653 continue;
8b6e50c9 2654 /* Update the BBT for chip */
289c0522
BN
2655 pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
2656 __func__, chipnr, rewrite_bbt[chipnr],
2657 chip->bbt_td->pages[chipnr]);
ace4dfee 2658 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
30f464b7
DM
2659 }
2660
1da177e4
LT
2661 /* Return more or less happy */
2662 return ret;
2663}
2664
2665/**
2666 * nand_sync - [MTD Interface] sync
8b6e50c9 2667 * @mtd: MTD device structure
1da177e4 2668 *
8b6e50c9 2669 * Sync is actually a wait for chip ready function.
1da177e4 2670 */
e0c7d767 2671static void nand_sync(struct mtd_info *mtd)
1da177e4 2672{
289c0522 2673 pr_debug("%s: called\n", __func__);
1da177e4
LT
2674
2675 /* Grab the lock and see if the device is available */
6a8214aa 2676 nand_get_device(mtd, FL_SYNCING);
1da177e4 2677 /* Release it and go back */
e0c7d767 2678 nand_release_device(mtd);
1da177e4
LT
2679}
2680
1da177e4 2681/**
ace4dfee 2682 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
2683 * @mtd: MTD device structure
2684 * @offs: offset relative to mtd start
1da177e4 2685 */
ace4dfee 2686static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4 2687{
ace4dfee 2688 return nand_block_checkbad(mtd, offs, 1, 0);
1da177e4
LT
2689}
2690
2691/**
ace4dfee 2692 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
2693 * @mtd: MTD device structure
2694 * @ofs: offset relative to mtd start
1da177e4 2695 */
e0c7d767 2696static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 2697{
ace4dfee 2698 struct nand_chip *chip = mtd->priv;
1da177e4
LT
2699 int ret;
2700
f8ac0414
FF
2701 ret = nand_block_isbad(mtd, ofs);
2702 if (ret) {
8b6e50c9 2703 /* If it was bad already, return success and do nothing */
1da177e4
LT
2704 if (ret > 0)
2705 return 0;
e0c7d767
DW
2706 return ret;
2707 }
1da177e4 2708
ace4dfee 2709 return chip->block_markbad(mtd, ofs);
1da177e4
LT
2710}
2711
7db03ecc
HS
2712/**
2713 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2714 * @mtd: MTD device structure
2715 * @chip: nand chip info structure
2716 * @addr: feature address.
2717 * @subfeature_param: the subfeature parameters, a four bytes array.
2718 */
2719static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2720 int addr, uint8_t *subfeature_param)
2721{
2722 int status;
2723
2724 if (!chip->onfi_version)
2725 return -EINVAL;
2726
2727 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2728 chip->write_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2729 status = chip->waitfunc(mtd, chip);
2730 if (status & NAND_STATUS_FAIL)
2731 return -EIO;
2732 return 0;
2733}
2734
2735/**
2736 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2737 * @mtd: MTD device structure
2738 * @chip: nand chip info structure
2739 * @addr: feature address.
2740 * @subfeature_param: the subfeature parameters, a four bytes array.
2741 */
2742static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2743 int addr, uint8_t *subfeature_param)
2744{
2745 if (!chip->onfi_version)
2746 return -EINVAL;
2747
2748 /* clear the sub feature parameters */
2749 memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2750
2751 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2752 chip->read_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2753 return 0;
2754}
2755
962034f4
VW
2756/**
2757 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 2758 * @mtd: MTD device structure
962034f4
VW
2759 */
2760static int nand_suspend(struct mtd_info *mtd)
2761{
6a8214aa 2762 return nand_get_device(mtd, FL_PM_SUSPENDED);
962034f4
VW
2763}
2764
2765/**
2766 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 2767 * @mtd: MTD device structure
962034f4
VW
2768 */
2769static void nand_resume(struct mtd_info *mtd)
2770{
ace4dfee 2771 struct nand_chip *chip = mtd->priv;
962034f4 2772
ace4dfee 2773 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
2774 nand_release_device(mtd);
2775 else
d0370219
BN
2776 pr_err("%s called for a chip which is not in suspended state\n",
2777 __func__);
962034f4
VW
2778}
2779
8b6e50c9 2780/* Set default functions */
ace4dfee 2781static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 2782{
1da177e4 2783 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
2784 if (!chip->chip_delay)
2785 chip->chip_delay = 20;
1da177e4
LT
2786
2787 /* check, if a user supplied command function given */
ace4dfee
TG
2788 if (chip->cmdfunc == NULL)
2789 chip->cmdfunc = nand_command;
1da177e4
LT
2790
2791 /* check, if a user supplied wait function given */
ace4dfee
TG
2792 if (chip->waitfunc == NULL)
2793 chip->waitfunc = nand_wait;
2794
2795 if (!chip->select_chip)
2796 chip->select_chip = nand_select_chip;
2797 if (!chip->read_byte)
2798 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2799 if (!chip->read_word)
2800 chip->read_word = nand_read_word;
2801 if (!chip->block_bad)
2802 chip->block_bad = nand_block_bad;
2803 if (!chip->block_markbad)
2804 chip->block_markbad = nand_default_block_markbad;
2805 if (!chip->write_buf)
2806 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2807 if (!chip->read_buf)
2808 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
ace4dfee
TG
2809 if (!chip->scan_bbt)
2810 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
2811
2812 if (!chip->controller) {
2813 chip->controller = &chip->hwcontrol;
2814 spin_lock_init(&chip->controller->lock);
2815 init_waitqueue_head(&chip->controller->wq);
2816 }
2817
7aa65bfd
TG
2818}
2819
8b6e50c9 2820/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
2821static void sanitize_string(uint8_t *s, size_t len)
2822{
2823 ssize_t i;
2824
8b6e50c9 2825 /* Null terminate */
d1e1f4e4
FF
2826 s[len - 1] = 0;
2827
8b6e50c9 2828 /* Remove non printable chars */
d1e1f4e4
FF
2829 for (i = 0; i < len - 1; i++) {
2830 if (s[i] < ' ' || s[i] > 127)
2831 s[i] = '?';
2832 }
2833
8b6e50c9 2834 /* Remove trailing spaces */
d1e1f4e4
FF
2835 strim(s);
2836}
2837
2838static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2839{
2840 int i;
2841 while (len--) {
2842 crc ^= *p++ << 8;
2843 for (i = 0; i < 8; i++)
2844 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2845 }
2846
2847 return crc;
2848}
2849
6fb277ba 2850/*
8b6e50c9 2851 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba
FF
2852 */
2853static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
08c248fb 2854 int *busw)
6fb277ba
FF
2855{
2856 struct nand_onfi_params *p = &chip->onfi_params;
2857 int i;
2858 int val;
2859
7854d3f7 2860 /* Try ONFI for unknown chip or LP */
6fb277ba
FF
2861 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2862 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2863 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2864 return 0;
2865
6fb277ba
FF
2866 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2867 for (i = 0; i < 3; i++) {
2868 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2869 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2870 le16_to_cpu(p->crc)) {
9a4d4d69 2871 pr_info("ONFI param page %d valid\n", i);
6fb277ba
FF
2872 break;
2873 }
2874 }
2875
2876 if (i == 3)
2877 return 0;
2878
8b6e50c9 2879 /* Check version */
6fb277ba 2880 val = le16_to_cpu(p->revision);
b7b1a29d
BN
2881 if (val & (1 << 5))
2882 chip->onfi_version = 23;
2883 else if (val & (1 << 4))
6fb277ba
FF
2884 chip->onfi_version = 22;
2885 else if (val & (1 << 3))
2886 chip->onfi_version = 21;
2887 else if (val & (1 << 2))
2888 chip->onfi_version = 20;
b7b1a29d 2889 else if (val & (1 << 1))
6fb277ba 2890 chip->onfi_version = 10;
b7b1a29d
BN
2891 else
2892 chip->onfi_version = 0;
2893
2894 if (!chip->onfi_version) {
d0370219 2895 pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
b7b1a29d
BN
2896 return 0;
2897 }
6fb277ba
FF
2898
2899 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2900 sanitize_string(p->model, sizeof(p->model));
2901 if (!mtd->name)
2902 mtd->name = p->model;
2903 mtd->writesize = le32_to_cpu(p->byte_per_page);
2904 mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2905 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
63795755
MC
2906 chip->chipsize = le32_to_cpu(p->blocks_per_lun);
2907 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
08c248fb 2908 *busw = 0;
6fb277ba 2909 if (le16_to_cpu(p->features) & 1)
08c248fb 2910 *busw = NAND_BUSWIDTH_16;
6fb277ba 2911
d42b5de3 2912 pr_info("ONFI flash detected\n");
6fb277ba
FF
2913 return 1;
2914}
2915
e3b88bd6
BN
2916/*
2917 * nand_id_has_period - Check if an ID string has a given wraparound period
2918 * @id_data: the ID string
2919 * @arrlen: the length of the @id_data array
2920 * @period: the period of repitition
2921 *
2922 * Check if an ID string is repeated within a given sequence of bytes at
2923 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
2924 * period of 2). This is a helper function for nand_id_len(). Returns non-zero
2925 * if the repetition has a period of @period; otherwise, returns zero.
2926 */
2927static int nand_id_has_period(u8 *id_data, int arrlen, int period)
2928{
2929 int i, j;
2930 for (i = 0; i < period; i++)
2931 for (j = i + period; j < arrlen; j += period)
2932 if (id_data[i] != id_data[j])
2933 return 0;
2934 return 1;
2935}
2936
2937/*
2938 * nand_id_len - Get the length of an ID string returned by CMD_READID
2939 * @id_data: the ID string
2940 * @arrlen: the length of the @id_data array
2941
2942 * Returns the length of the ID string, according to known wraparound/trailing
2943 * zero patterns. If no pattern exists, returns the length of the array.
2944 */
2945static int nand_id_len(u8 *id_data, int arrlen)
2946{
2947 int last_nonzero, period;
2948
2949 /* Find last non-zero byte */
2950 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
2951 if (id_data[last_nonzero])
2952 break;
2953
2954 /* All zeros */
2955 if (last_nonzero < 0)
2956 return 0;
2957
2958 /* Calculate wraparound period */
2959 for (period = 1; period < arrlen; period++)
2960 if (nand_id_has_period(id_data, arrlen, period))
2961 break;
2962
2963 /* There's a repeated pattern */
2964 if (period < arrlen)
2965 return period;
2966
2967 /* There are trailing zeros */
2968 if (last_nonzero < arrlen - 1)
2969 return last_nonzero + 1;
2970
2971 /* No pattern detected */
2972 return arrlen;
2973}
2974
fc09bbc0
BN
2975/*
2976 * Many new NAND share similar device ID codes, which represent the size of the
2977 * chip. The rest of the parameters must be decoded according to generic or
2978 * manufacturer-specific "extended ID" decoding patterns.
2979 */
2980static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
2981 u8 id_data[8], int *busw)
2982{
e3b88bd6 2983 int extid, id_len;
fc09bbc0
BN
2984 /* The 3rd id byte holds MLC / multichip data */
2985 chip->cellinfo = id_data[2];
2986 /* The 4th id byte is the important one */
2987 extid = id_data[3];
2988
e3b88bd6
BN
2989 id_len = nand_id_len(id_data, 8);
2990
fc09bbc0
BN
2991 /*
2992 * Field definitions are in the following datasheets:
2993 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
af451af4 2994 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
73ca392f 2995 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
fc09bbc0 2996 *
af451af4
BN
2997 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
2998 * ID to decide what to do.
fc09bbc0 2999 */
af451af4 3000 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
6924d99f 3001 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
af451af4 3002 id_data[5] != 0x00) {
fc09bbc0
BN
3003 /* Calc pagesize */
3004 mtd->writesize = 2048 << (extid & 0x03);
3005 extid >>= 2;
3006 /* Calc oobsize */
e2d3a35e 3007 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
fc09bbc0
BN
3008 case 1:
3009 mtd->oobsize = 128;
3010 break;
3011 case 2:
3012 mtd->oobsize = 218;
3013 break;
3014 case 3:
3015 mtd->oobsize = 400;
3016 break;
e2d3a35e 3017 case 4:
fc09bbc0
BN
3018 mtd->oobsize = 436;
3019 break;
e2d3a35e
BN
3020 case 5:
3021 mtd->oobsize = 512;
3022 break;
3023 case 6:
3024 default: /* Other cases are "reserved" (unknown) */
3025 mtd->oobsize = 640;
3026 break;
fc09bbc0
BN
3027 }
3028 extid >>= 2;
3029 /* Calc blocksize */
3030 mtd->erasesize = (128 * 1024) <<
3031 (((extid >> 1) & 0x04) | (extid & 0x03));
3032 *busw = 0;
73ca392f
BN
3033 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3034 (chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3035 unsigned int tmp;
3036
3037 /* Calc pagesize */
3038 mtd->writesize = 2048 << (extid & 0x03);
3039 extid >>= 2;
3040 /* Calc oobsize */
3041 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3042 case 0:
3043 mtd->oobsize = 128;
3044 break;
3045 case 1:
3046 mtd->oobsize = 224;
3047 break;
3048 case 2:
3049 mtd->oobsize = 448;
3050 break;
3051 case 3:
3052 mtd->oobsize = 64;
3053 break;
3054 case 4:
3055 mtd->oobsize = 32;
3056 break;
3057 case 5:
3058 mtd->oobsize = 16;
3059 break;
3060 default:
3061 mtd->oobsize = 640;
3062 break;
3063 }
3064 extid >>= 2;
3065 /* Calc blocksize */
3066 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3067 if (tmp < 0x03)
3068 mtd->erasesize = (128 * 1024) << tmp;
3069 else if (tmp == 0x03)
3070 mtd->erasesize = 768 * 1024;
3071 else
3072 mtd->erasesize = (64 * 1024) << tmp;
3073 *busw = 0;
fc09bbc0
BN
3074 } else {
3075 /* Calc pagesize */
3076 mtd->writesize = 1024 << (extid & 0x03);
3077 extid >>= 2;
3078 /* Calc oobsize */
3079 mtd->oobsize = (8 << (extid & 0x01)) *
3080 (mtd->writesize >> 9);
3081 extid >>= 2;
3082 /* Calc blocksize. Blocksize is multiples of 64KiB */
3083 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3084 extid >>= 2;
3085 /* Get buswidth information */
3086 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3087 }
3088}
3089
f23a481c
BN
3090/*
3091 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3092 * decodes a matching ID table entry and assigns the MTD size parameters for
3093 * the chip.
3094 */
3095static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3096 struct nand_flash_dev *type, u8 id_data[8],
3097 int *busw)
3098{
3099 int maf_id = id_data[0];
3100
3101 mtd->erasesize = type->erasesize;
3102 mtd->writesize = type->pagesize;
3103 mtd->oobsize = mtd->writesize / 32;
3104 *busw = type->options & NAND_BUSWIDTH_16;
3105
3106 /*
3107 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3108 * some Spansion chips have erasesize that conflicts with size
3109 * listed in nand_ids table.
3110 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3111 */
3112 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3113 && id_data[6] == 0x00 && id_data[7] == 0x00
3114 && mtd->writesize == 512) {
3115 mtd->erasesize = 128 * 1024;
3116 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3117 }
3118}
3119
7e74c2d7
BN
3120/*
3121 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3122 * heuristic patterns using various detected parameters (e.g., manufacturer,
3123 * page size, cell-type information).
3124 */
3125static void nand_decode_bbm_options(struct mtd_info *mtd,
3126 struct nand_chip *chip, u8 id_data[8])
3127{
3128 int maf_id = id_data[0];
3129
3130 /* Set the bad block position */
3131 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3132 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3133 else
3134 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3135
3136 /*
3137 * Bad block marker is stored in the last page of each block on Samsung
3138 * and Hynix MLC devices; stored in first two pages of each block on
3139 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3140 * AMD/Spansion, and Macronix. All others scan only the first page.
3141 */
3142 if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3143 (maf_id == NAND_MFR_SAMSUNG ||
3144 maf_id == NAND_MFR_HYNIX))
3145 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3146 else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3147 (maf_id == NAND_MFR_SAMSUNG ||
3148 maf_id == NAND_MFR_HYNIX ||
3149 maf_id == NAND_MFR_TOSHIBA ||
3150 maf_id == NAND_MFR_AMD ||
3151 maf_id == NAND_MFR_MACRONIX)) ||
3152 (mtd->writesize == 2048 &&
3153 maf_id == NAND_MFR_MICRON))
3154 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3155}
3156
7aa65bfd 3157/*
8b6e50c9 3158 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd
TG
3159 */
3160static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 3161 struct nand_chip *chip,
7351d3a5
FF
3162 int busw,
3163 int *maf_id, int *dev_id,
5e81e88a 3164 struct nand_flash_dev *type)
7aa65bfd 3165{
d1e1f4e4 3166 int i, maf_idx;
426c457a 3167 u8 id_data[8];
1da177e4
LT
3168
3169 /* Select the device */
ace4dfee 3170 chip->select_chip(mtd, 0);
1da177e4 3171
ef89a880
KB
3172 /*
3173 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 3174 * after power-up.
ef89a880
KB
3175 */
3176 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3177
1da177e4 3178 /* Send the command for reading device ID */
ace4dfee 3179 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
3180
3181 /* Read manufacturer and device IDs */
ace4dfee 3182 *maf_id = chip->read_byte(mtd);
d1e1f4e4 3183 *dev_id = chip->read_byte(mtd);
1da177e4 3184
8b6e50c9
BN
3185 /*
3186 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
3187 * interface concerns can cause random data which looks like a
3188 * possibly credible NAND flash to appear. If the two results do
3189 * not match, ignore the device completely.
3190 */
3191
3192 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3193
4aef9b78
BN
3194 /* Read entire ID string */
3195 for (i = 0; i < 8; i++)
426c457a 3196 id_data[i] = chip->read_byte(mtd);
ed8165c7 3197
d1e1f4e4 3198 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
9a4d4d69 3199 pr_info("%s: second ID read did not match "
d0370219
BN
3200 "%02x,%02x against %02x,%02x\n", __func__,
3201 *maf_id, *dev_id, id_data[0], id_data[1]);
ed8165c7
BD
3202 return ERR_PTR(-ENODEV);
3203 }
3204
7aa65bfd 3205 if (!type)
5e81e88a
DW
3206 type = nand_flash_ids;
3207
3208 for (; type->name != NULL; type++)
d1e1f4e4 3209 if (*dev_id == type->id)
f8ac0414 3210 break;
5e81e88a 3211
d1e1f4e4
FF
3212 chip->onfi_version = 0;
3213 if (!type->name || !type->pagesize) {
6fb277ba 3214 /* Check is chip is ONFI compliant */
47450b35 3215 if (nand_flash_detect_onfi(mtd, chip, &busw))
6fb277ba 3216 goto ident_done;
d1e1f4e4
FF
3217 }
3218
5e81e88a 3219 if (!type->name)
7aa65bfd
TG
3220 return ERR_PTR(-ENODEV);
3221
ba0251fe
TG
3222 if (!mtd->name)
3223 mtd->name = type->name;
3224
69423d99 3225 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 3226
12a40a57 3227 if (!type->pagesize && chip->init_size) {
8b6e50c9 3228 /* Set the pagesize, oobsize, erasesize by the driver */
12a40a57
HS
3229 busw = chip->init_size(mtd, chip, id_data);
3230 } else if (!type->pagesize) {
fc09bbc0
BN
3231 /* Decode parameters from extended ID */
3232 nand_decode_ext_id(mtd, chip, id_data, &busw);
7aa65bfd 3233 } else {
f23a481c 3234 nand_decode_id(mtd, chip, type, id_data, &busw);
7aa65bfd 3235 }
bf7a01bf
BN
3236 /* Get chip options */
3237 chip->options |= type->options;
d1e1f4e4 3238
8b6e50c9
BN
3239 /*
3240 * Check if chip is not a Samsung device. Do not clear the
3241 * options for chips which do not have an extended id.
d1e1f4e4
FF
3242 */
3243 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3244 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3245ident_done:
3246
7aa65bfd 3247 /* Try to identify manufacturer */
9a909867 3248 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
7aa65bfd
TG
3249 if (nand_manuf_ids[maf_idx].id == *maf_id)
3250 break;
3251 }
0ea4a755 3252
7aa65bfd
TG
3253 /*
3254 * Check, if buswidth is correct. Hardware drivers should set
8b6e50c9 3255 * chip correct!
7aa65bfd 3256 */
ace4dfee 3257 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
9a4d4d69 3258 pr_info("NAND device: Manufacturer ID:"
d0370219
BN
3259 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3260 *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
9a4d4d69 3261 pr_warn("NAND bus width %d instead %d bit\n",
d0370219
BN
3262 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3263 busw ? 16 : 8);
7aa65bfd
TG
3264 return ERR_PTR(-EINVAL);
3265 }
61b03bd7 3266
7e74c2d7
BN
3267 nand_decode_bbm_options(mtd, chip, id_data);
3268
7aa65bfd 3269 /* Calculate the address shift from the page size */
ace4dfee 3270 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 3271 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 3272 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 3273
ace4dfee 3274 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 3275 ffs(mtd->erasesize) - 1;
69423d99
AH
3276 if (chip->chipsize & 0xffffffff)
3277 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
3278 else {
3279 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3280 chip->chip_shift += 32 - 1;
3281 }
1da177e4 3282
26d9be11
AB
3283 chip->badblockbits = 8;
3284
7aa65bfd 3285 /* Check for AND chips with 4 page planes */
ace4dfee
TG
3286 if (chip->options & NAND_4PAGE_ARRAY)
3287 chip->erase_cmd = multi_erase_cmd;
7aa65bfd 3288 else
ace4dfee 3289 chip->erase_cmd = single_erase_cmd;
7aa65bfd 3290
8b6e50c9 3291 /* Do not replace user supplied command function! */
ace4dfee
TG
3292 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3293 chip->cmdfunc = nand_command_lp;
7aa65bfd 3294
886bd33d 3295 pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s),"
2fd71a29 3296 " %dMiB, page size: %d, OOB size: %d\n",
886bd33d
HS
3297 *maf_id, *dev_id, nand_manuf_ids[maf_idx].name,
3298 chip->onfi_version ? chip->onfi_params.model : type->name,
2fd71a29 3299 (int)(chip->chipsize >> 20), mtd->writesize, mtd->oobsize);
7aa65bfd
TG
3300
3301 return type;
3302}
3303
7aa65bfd 3304/**
3b85c321 3305 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3306 * @mtd: MTD device structure
3307 * @maxchips: number of chips to scan for
3308 * @table: alternative NAND ID table
7aa65bfd 3309 *
8b6e50c9
BN
3310 * This is the first phase of the normal nand_scan() function. It reads the
3311 * flash ID and sets up MTD fields accordingly.
7aa65bfd 3312 *
3b85c321 3313 * The mtd->owner field must be set to the module of the caller.
7aa65bfd 3314 */
5e81e88a
DW
3315int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3316 struct nand_flash_dev *table)
7aa65bfd 3317{
d1e1f4e4 3318 int i, busw, nand_maf_id, nand_dev_id;
ace4dfee 3319 struct nand_chip *chip = mtd->priv;
7aa65bfd
TG
3320 struct nand_flash_dev *type;
3321
7aa65bfd 3322 /* Get buswidth to select the correct functions */
ace4dfee 3323 busw = chip->options & NAND_BUSWIDTH_16;
7aa65bfd 3324 /* Set the default functions */
ace4dfee 3325 nand_set_defaults(chip, busw);
7aa65bfd
TG
3326
3327 /* Read the flash type */
7351d3a5
FF
3328 type = nand_get_flash_type(mtd, chip, busw,
3329 &nand_maf_id, &nand_dev_id, table);
7aa65bfd
TG
3330
3331 if (IS_ERR(type)) {
b1c6e6db 3332 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 3333 pr_warn("No NAND device found\n");
ace4dfee 3334 chip->select_chip(mtd, -1);
7aa65bfd 3335 return PTR_ERR(type);
1da177e4
LT
3336 }
3337
07300164
HS
3338 chip->select_chip(mtd, -1);
3339
7aa65bfd 3340 /* Check for a chip array */
e0c7d767 3341 for (i = 1; i < maxchips; i++) {
ace4dfee 3342 chip->select_chip(mtd, i);
ef89a880
KB
3343 /* See comment in nand_get_flash_type for reset */
3344 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4 3345 /* Send the command for reading device ID */
ace4dfee 3346 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 3347 /* Read manufacturer and device IDs */
ace4dfee 3348 if (nand_maf_id != chip->read_byte(mtd) ||
07300164
HS
3349 nand_dev_id != chip->read_byte(mtd)) {
3350 chip->select_chip(mtd, -1);
1da177e4 3351 break;
07300164
HS
3352 }
3353 chip->select_chip(mtd, -1);
1da177e4
LT
3354 }
3355 if (i > 1)
9a4d4d69 3356 pr_info("%d NAND chips detected\n", i);
61b03bd7 3357
1da177e4 3358 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
3359 chip->numchips = i;
3360 mtd->size = i * chip->chipsize;
7aa65bfd 3361
3b85c321
DW
3362 return 0;
3363}
7351d3a5 3364EXPORT_SYMBOL(nand_scan_ident);
3b85c321
DW
3365
3366
3367/**
3368 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 3369 * @mtd: MTD device structure
3b85c321 3370 *
8b6e50c9
BN
3371 * This is the second phase of the normal nand_scan() function. It fills out
3372 * all the uninitialized function pointers with the defaults and scans for a
3373 * bad block table if appropriate.
3b85c321
DW
3374 */
3375int nand_scan_tail(struct mtd_info *mtd)
3376{
3377 int i;
3378 struct nand_chip *chip = mtd->priv;
3379
e2414f4c
BN
3380 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3381 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3382 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3383
4bf63fcb
DW
3384 if (!(chip->options & NAND_OWN_BUFFERS))
3385 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3386 if (!chip->buffers)
3387 return -ENOMEM;
3388
7dcdcbef 3389 /* Set the internal oob buffer location, just after the page data */
784f4d5e 3390 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 3391
7aa65bfd 3392 /*
8b6e50c9 3393 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 3394 */
193bd400 3395 if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
61b03bd7 3396 switch (mtd->oobsize) {
1da177e4 3397 case 8:
5bd34c09 3398 chip->ecc.layout = &nand_oob_8;
1da177e4
LT
3399 break;
3400 case 16:
5bd34c09 3401 chip->ecc.layout = &nand_oob_16;
1da177e4
LT
3402 break;
3403 case 64:
5bd34c09 3404 chip->ecc.layout = &nand_oob_64;
1da177e4 3405 break;
81ec5364
TG
3406 case 128:
3407 chip->ecc.layout = &nand_oob_128;
3408 break;
1da177e4 3409 default:
d0370219
BN
3410 pr_warn("No oob scheme defined for oobsize %d\n",
3411 mtd->oobsize);
1da177e4
LT
3412 BUG();
3413 }
3414 }
61b03bd7 3415
956e944c
DW
3416 if (!chip->write_page)
3417 chip->write_page = nand_write_page;
3418
7db03ecc
HS
3419 /* set for ONFI nand */
3420 if (!chip->onfi_set_features)
3421 chip->onfi_set_features = nand_onfi_set_features;
3422 if (!chip->onfi_get_features)
3423 chip->onfi_get_features = nand_onfi_get_features;
3424
61b03bd7 3425 /*
8b6e50c9 3426 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 3427 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 3428 */
956e944c 3429
ace4dfee 3430 switch (chip->ecc.mode) {
6e0cb135
SN
3431 case NAND_ECC_HW_OOB_FIRST:
3432 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3433 if (!chip->ecc.calculate || !chip->ecc.correct ||
3434 !chip->ecc.hwctl) {
9a4d4d69 3435 pr_warn("No ECC functions supplied; "
d0370219 3436 "hardware ECC not possible\n");
6e0cb135
SN
3437 BUG();
3438 }
3439 if (!chip->ecc.read_page)
3440 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3441
6dfc6d25 3442 case NAND_ECC_HW:
8b6e50c9 3443 /* Use standard hwecc read page function? */
f5bbdacc
TG
3444 if (!chip->ecc.read_page)
3445 chip->ecc.read_page = nand_read_page_hwecc;
f75e5097
TG
3446 if (!chip->ecc.write_page)
3447 chip->ecc.write_page = nand_write_page_hwecc;
52ff49df
DB
3448 if (!chip->ecc.read_page_raw)
3449 chip->ecc.read_page_raw = nand_read_page_raw;
3450 if (!chip->ecc.write_page_raw)
3451 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b
TG
3452 if (!chip->ecc.read_oob)
3453 chip->ecc.read_oob = nand_read_oob_std;
3454 if (!chip->ecc.write_oob)
3455 chip->ecc.write_oob = nand_write_oob_std;
f5bbdacc 3456
6dfc6d25 3457 case NAND_ECC_HW_SYNDROME:
78b65179
SW
3458 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3459 !chip->ecc.hwctl) &&
3460 (!chip->ecc.read_page ||
1c45f604 3461 chip->ecc.read_page == nand_read_page_hwecc ||
78b65179 3462 !chip->ecc.write_page ||
1c45f604 3463 chip->ecc.write_page == nand_write_page_hwecc)) {
9a4d4d69 3464 pr_warn("No ECC functions supplied; "
d0370219 3465 "hardware ECC not possible\n");
6dfc6d25
TG
3466 BUG();
3467 }
8b6e50c9 3468 /* Use standard syndrome read/write page function? */
f5bbdacc
TG
3469 if (!chip->ecc.read_page)
3470 chip->ecc.read_page = nand_read_page_syndrome;
f75e5097
TG
3471 if (!chip->ecc.write_page)
3472 chip->ecc.write_page = nand_write_page_syndrome;
52ff49df
DB
3473 if (!chip->ecc.read_page_raw)
3474 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3475 if (!chip->ecc.write_page_raw)
3476 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
7bc3312b
TG
3477 if (!chip->ecc.read_oob)
3478 chip->ecc.read_oob = nand_read_oob_syndrome;
3479 if (!chip->ecc.write_oob)
3480 chip->ecc.write_oob = nand_write_oob_syndrome;
f5bbdacc 3481
e2788c98
MD
3482 if (mtd->writesize >= chip->ecc.size) {
3483 if (!chip->ecc.strength) {
3484 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3485 BUG();
3486 }
6dfc6d25 3487 break;
e2788c98 3488 }
9a4d4d69 3489 pr_warn("%d byte HW ECC not possible on "
d0370219
BN
3490 "%d byte page size, fallback to SW ECC\n",
3491 chip->ecc.size, mtd->writesize);
ace4dfee 3492 chip->ecc.mode = NAND_ECC_SOFT;
61b03bd7 3493
6dfc6d25 3494 case NAND_ECC_SOFT:
ace4dfee
TG
3495 chip->ecc.calculate = nand_calculate_ecc;
3496 chip->ecc.correct = nand_correct_data;
f5bbdacc 3497 chip->ecc.read_page = nand_read_page_swecc;
3d459559 3498 chip->ecc.read_subpage = nand_read_subpage;
f75e5097 3499 chip->ecc.write_page = nand_write_page_swecc;
52ff49df
DB
3500 chip->ecc.read_page_raw = nand_read_page_raw;
3501 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b
TG
3502 chip->ecc.read_oob = nand_read_oob_std;
3503 chip->ecc.write_oob = nand_write_oob_std;
9a73290d
SV
3504 if (!chip->ecc.size)
3505 chip->ecc.size = 256;
ace4dfee 3506 chip->ecc.bytes = 3;
6a918bad 3507 chip->ecc.strength = 1;
1da177e4 3508 break;
61b03bd7 3509
193bd400
ID
3510 case NAND_ECC_SOFT_BCH:
3511 if (!mtd_nand_has_bch()) {
9a4d4d69 3512 pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
193bd400
ID
3513 BUG();
3514 }
3515 chip->ecc.calculate = nand_bch_calculate_ecc;
3516 chip->ecc.correct = nand_bch_correct_data;
3517 chip->ecc.read_page = nand_read_page_swecc;
3518 chip->ecc.read_subpage = nand_read_subpage;
3519 chip->ecc.write_page = nand_write_page_swecc;
3520 chip->ecc.read_page_raw = nand_read_page_raw;
3521 chip->ecc.write_page_raw = nand_write_page_raw;
3522 chip->ecc.read_oob = nand_read_oob_std;
3523 chip->ecc.write_oob = nand_write_oob_std;
3524 /*
3525 * Board driver should supply ecc.size and ecc.bytes values to
3526 * select how many bits are correctable; see nand_bch_init()
8b6e50c9
BN
3527 * for details. Otherwise, default to 4 bits for large page
3528 * devices.
193bd400
ID
3529 */
3530 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3531 chip->ecc.size = 512;
3532 chip->ecc.bytes = 7;
3533 }
3534 chip->ecc.priv = nand_bch_init(mtd,
3535 chip->ecc.size,
3536 chip->ecc.bytes,
3537 &chip->ecc.layout);
3538 if (!chip->ecc.priv) {
9a4d4d69 3539 pr_warn("BCH ECC initialization failed!\n");
193bd400
ID
3540 BUG();
3541 }
6a918bad 3542 chip->ecc.strength =
e2788c98 3543 chip->ecc.bytes * 8 / fls(8 * chip->ecc.size);
193bd400
ID
3544 break;
3545
61b03bd7 3546 case NAND_ECC_NONE:
9a4d4d69 3547 pr_warn("NAND_ECC_NONE selected by board driver. "
d0370219 3548 "This is not recommended!\n");
8593fbc6
TG
3549 chip->ecc.read_page = nand_read_page_raw;
3550 chip->ecc.write_page = nand_write_page_raw;
7bc3312b 3551 chip->ecc.read_oob = nand_read_oob_std;
52ff49df
DB
3552 chip->ecc.read_page_raw = nand_read_page_raw;
3553 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b 3554 chip->ecc.write_oob = nand_write_oob_std;
ace4dfee
TG
3555 chip->ecc.size = mtd->writesize;
3556 chip->ecc.bytes = 0;
6a918bad 3557 chip->ecc.strength = 0;
1da177e4 3558 break;
956e944c 3559
1da177e4 3560 default:
d0370219 3561 pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
61b03bd7 3562 BUG();
1da177e4 3563 }
61b03bd7 3564
9ce244b3 3565 /* For many systems, the standard OOB write also works for raw */
c46f6483
BN
3566 if (!chip->ecc.read_oob_raw)
3567 chip->ecc.read_oob_raw = chip->ecc.read_oob;
9ce244b3
BN
3568 if (!chip->ecc.write_oob_raw)
3569 chip->ecc.write_oob_raw = chip->ecc.write_oob;
3570
5bd34c09
TG
3571 /*
3572 * The number of bytes available for a client to place data into
8b6e50c9 3573 * the out of band area.
5bd34c09
TG
3574 */
3575 chip->ecc.layout->oobavail = 0;
81d19b04
DB
3576 for (i = 0; chip->ecc.layout->oobfree[i].length
3577 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
5bd34c09
TG
3578 chip->ecc.layout->oobavail +=
3579 chip->ecc.layout->oobfree[i].length;
1f92267c 3580 mtd->oobavail = chip->ecc.layout->oobavail;
5bd34c09 3581
7aa65bfd
TG
3582 /*
3583 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 3584 * mode.
7aa65bfd 3585 */
ace4dfee 3586 chip->ecc.steps = mtd->writesize / chip->ecc.size;
f8ac0414 3587 if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
9a4d4d69 3588 pr_warn("Invalid ECC parameters\n");
6dfc6d25 3589 BUG();
1da177e4 3590 }
f5bbdacc 3591 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
61b03bd7 3592
8b6e50c9 3593 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
29072b96
TG
3594 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3595 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
f8ac0414 3596 switch (chip->ecc.steps) {
29072b96
TG
3597 case 2:
3598 mtd->subpage_sft = 1;
3599 break;
3600 case 4:
3601 case 8:
81ec5364 3602 case 16:
29072b96
TG
3603 mtd->subpage_sft = 2;
3604 break;
3605 }
3606 }
3607 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3608
04bbd0ea 3609 /* Initialize state */
ace4dfee 3610 chip->state = FL_READY;
1da177e4 3611
1da177e4 3612 /* Invalidate the pagebuffer reference */
ace4dfee 3613 chip->pagebuf = -1;
1da177e4 3614
a5ff4f10
JW
3615 /* Large page NAND with SOFT_ECC should support subpage reads */
3616 if ((chip->ecc.mode == NAND_ECC_SOFT) && (chip->page_shift > 9))
3617 chip->options |= NAND_SUBPAGE_READ;
3618
1da177e4
LT
3619 /* Fill in remaining MTD driver data */
3620 mtd->type = MTD_NANDFLASH;
93edbad6
ML
3621 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3622 MTD_CAP_NANDFLASH;
3c3c10bb
AB
3623 mtd->_erase = nand_erase;
3624 mtd->_point = NULL;
3625 mtd->_unpoint = NULL;
3626 mtd->_read = nand_read;
3627 mtd->_write = nand_write;
3628 mtd->_panic_write = panic_nand_write;
3629 mtd->_read_oob = nand_read_oob;
3630 mtd->_write_oob = nand_write_oob;
3631 mtd->_sync = nand_sync;
3632 mtd->_lock = NULL;
3633 mtd->_unlock = NULL;
3634 mtd->_suspend = nand_suspend;
3635 mtd->_resume = nand_resume;
3636 mtd->_block_isbad = nand_block_isbad;
3637 mtd->_block_markbad = nand_block_markbad;
cbcab65a 3638 mtd->writebufsize = mtd->writesize;
1da177e4 3639
6a918bad 3640 /* propagate ecc info to mtd_info */
5bd34c09 3641 mtd->ecclayout = chip->ecc.layout;
86c2072b 3642 mtd->ecc_strength = chip->ecc.strength;
ea3b2ea2
SL
3643 /*
3644 * Initialize bitflip_threshold to its default prior scan_bbt() call.
3645 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3646 * properly set.
3647 */
3648 if (!mtd->bitflip_threshold)
3649 mtd->bitflip_threshold = mtd->ecc_strength;
1da177e4 3650
0040bf38 3651 /* Check, if we should skip the bad block table scan */
ace4dfee 3652 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 3653 return 0;
1da177e4
LT
3654
3655 /* Build bad block table */
ace4dfee 3656 return chip->scan_bbt(mtd);
1da177e4 3657}
7351d3a5 3658EXPORT_SYMBOL(nand_scan_tail);
1da177e4 3659
8b6e50c9
BN
3660/*
3661 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 3662 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
3663 * to call us from in-kernel code if the core NAND support is modular.
3664 */
3b85c321
DW
3665#ifdef MODULE
3666#define caller_is_module() (1)
3667#else
3668#define caller_is_module() \
a6e6abd5 3669 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
3670#endif
3671
3672/**
3673 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3674 * @mtd: MTD device structure
3675 * @maxchips: number of chips to scan for
3b85c321 3676 *
8b6e50c9
BN
3677 * This fills out all the uninitialized function pointers with the defaults.
3678 * The flash ID is read and the mtd/chip structures are filled with the
3679 * appropriate values. The mtd->owner field must be set to the module of the
3680 * caller.
3b85c321
DW
3681 */
3682int nand_scan(struct mtd_info *mtd, int maxchips)
3683{
3684 int ret;
3685
3686 /* Many callers got this wrong, so check for it for a while... */
3687 if (!mtd->owner && caller_is_module()) {
d0370219 3688 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3b85c321
DW
3689 BUG();
3690 }
3691
5e81e88a 3692 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
3693 if (!ret)
3694 ret = nand_scan_tail(mtd);
3695 return ret;
3696}
7351d3a5 3697EXPORT_SYMBOL(nand_scan);
3b85c321 3698
1da177e4 3699/**
61b03bd7 3700 * nand_release - [NAND Interface] Free resources held by the NAND device
8b6e50c9
BN
3701 * @mtd: MTD device structure
3702 */
e0c7d767 3703void nand_release(struct mtd_info *mtd)
1da177e4 3704{
ace4dfee 3705 struct nand_chip *chip = mtd->priv;
1da177e4 3706
193bd400
ID
3707 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3708 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3709
5ffcaf3d 3710 mtd_device_unregister(mtd);
1da177e4 3711
fa671646 3712 /* Free bad block table memory */
ace4dfee 3713 kfree(chip->bbt);
4bf63fcb
DW
3714 if (!(chip->options & NAND_OWN_BUFFERS))
3715 kfree(chip->buffers);
58373ff0
BN
3716
3717 /* Free bad block descriptor memory */
3718 if (chip->badblock_pattern && chip->badblock_pattern->options
3719 & NAND_BBT_DYNAMICSTRUCT)
3720 kfree(chip->badblock_pattern);
1da177e4 3721}
e0c7d767 3722EXPORT_SYMBOL_GPL(nand_release);
8fe833c1
RP
3723
3724static int __init nand_base_init(void)
3725{
3726 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3727 return 0;
3728}
3729
3730static void __exit nand_base_exit(void)
3731{
3732 led_trigger_unregister_simple(nand_led_trigger);
3733}
3734
3735module_init(nand_base_init);
3736module_exit(nand_base_exit);
3737
e0c7d767 3738MODULE_LICENSE("GPL");
7351d3a5
FF
3739MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3740MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 3741MODULE_DESCRIPTION("Generic NAND flash driver code");