]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/mtd/nand/nand_base.c
mtd: orion_nand: remove <mach/hardware.h> include
[mirror_ubuntu-hirsute-kernel.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
61b03bd7 8 *
1da177e4 9 * Additional technical information is available on
8b2b403c 10 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 11 *
1da177e4 12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 14 *
ace4dfee 15 * Credits:
61b03bd7
TG
16 * David Woodhouse for adding multichip support
17 *
1da177e4
LT
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
ace4dfee 21 * TODO:
1da177e4
LT
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 24 * if we have HW ECC support.
1da177e4
LT
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
c0b8ba7b 27 * BBT table is not serialized, has to be fixed
1da177e4 28 *
1da177e4
LT
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
32 *
33 */
34
552d9205 35#include <linux/module.h>
1da177e4
LT
36#include <linux/delay.h>
37#include <linux/errno.h>
7aa65bfd 38#include <linux/err.h>
1da177e4
LT
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <linux/mtd/mtd.h>
43#include <linux/mtd/nand.h>
44#include <linux/mtd/nand_ecc.h>
193bd400 45#include <linux/mtd/nand_bch.h>
1da177e4
LT
46#include <linux/interrupt.h>
47#include <linux/bitops.h>
8fe833c1 48#include <linux/leds.h>
7351d3a5 49#include <linux/io.h>
1da177e4 50#include <linux/mtd/partitions.h>
1da177e4
LT
51
52/* Define default oob placement schemes for large and small page devices */
5bd34c09 53static struct nand_ecclayout nand_oob_8 = {
1da177e4
LT
54 .eccbytes = 3,
55 .eccpos = {0, 1, 2},
5bd34c09
TG
56 .oobfree = {
57 {.offset = 3,
58 .length = 2},
59 {.offset = 6,
f8ac0414 60 .length = 2} }
1da177e4
LT
61};
62
5bd34c09 63static struct nand_ecclayout nand_oob_16 = {
1da177e4
LT
64 .eccbytes = 6,
65 .eccpos = {0, 1, 2, 3, 6, 7},
5bd34c09
TG
66 .oobfree = {
67 {.offset = 8,
f8ac0414 68 . length = 8} }
1da177e4
LT
69};
70
5bd34c09 71static struct nand_ecclayout nand_oob_64 = {
1da177e4
LT
72 .eccbytes = 24,
73 .eccpos = {
e0c7d767
DW
74 40, 41, 42, 43, 44, 45, 46, 47,
75 48, 49, 50, 51, 52, 53, 54, 55,
76 56, 57, 58, 59, 60, 61, 62, 63},
5bd34c09
TG
77 .oobfree = {
78 {.offset = 2,
f8ac0414 79 .length = 38} }
1da177e4
LT
80};
81
81ec5364
TG
82static struct nand_ecclayout nand_oob_128 = {
83 .eccbytes = 48,
84 .eccpos = {
85 80, 81, 82, 83, 84, 85, 86, 87,
86 88, 89, 90, 91, 92, 93, 94, 95,
87 96, 97, 98, 99, 100, 101, 102, 103,
88 104, 105, 106, 107, 108, 109, 110, 111,
89 112, 113, 114, 115, 116, 117, 118, 119,
90 120, 121, 122, 123, 124, 125, 126, 127},
91 .oobfree = {
92 {.offset = 2,
f8ac0414 93 .length = 78} }
81ec5364
TG
94};
95
ace4dfee 96static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
2c0a2bed 97 int new_state);
1da177e4 98
8593fbc6
TG
99static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
100 struct mtd_oob_ops *ops);
101
d470a97c 102/*
8e87d782 103 * For devices which display every fart in the system on a separate LED. Is
d470a97c
TG
104 * compiled away when LED support is disabled.
105 */
106DEFINE_LED_TRIGGER(nand_led_trigger);
107
6fe5a6ac
VS
108static int check_offs_len(struct mtd_info *mtd,
109 loff_t ofs, uint64_t len)
110{
111 struct nand_chip *chip = mtd->priv;
112 int ret = 0;
113
114 /* Start address must align on block boundary */
115 if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
289c0522 116 pr_debug("%s: unaligned address\n", __func__);
6fe5a6ac
VS
117 ret = -EINVAL;
118 }
119
120 /* Length must align on block boundary */
121 if (len & ((1 << chip->phys_erase_shift) - 1)) {
289c0522 122 pr_debug("%s: length not block aligned\n", __func__);
6fe5a6ac
VS
123 ret = -EINVAL;
124 }
125
6fe5a6ac
VS
126 return ret;
127}
128
1da177e4
LT
129/**
130 * nand_release_device - [GENERIC] release chip
8b6e50c9 131 * @mtd: MTD device structure
61b03bd7 132 *
8b6e50c9 133 * Deselect, release chip lock and wake up anyone waiting on the device.
1da177e4 134 */
e0c7d767 135static void nand_release_device(struct mtd_info *mtd)
1da177e4 136{
ace4dfee 137 struct nand_chip *chip = mtd->priv;
1da177e4
LT
138
139 /* De-select the NAND device */
ace4dfee 140 chip->select_chip(mtd, -1);
0dfc6246 141
a36ed299 142 /* Release the controller and the chip */
ace4dfee
TG
143 spin_lock(&chip->controller->lock);
144 chip->controller->active = NULL;
145 chip->state = FL_READY;
146 wake_up(&chip->controller->wq);
147 spin_unlock(&chip->controller->lock);
1da177e4
LT
148}
149
150/**
151 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 152 * @mtd: MTD device structure
1da177e4 153 *
7854d3f7 154 * Default read function for 8bit buswidth
1da177e4 155 */
58dd8f2b 156static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 157{
ace4dfee
TG
158 struct nand_chip *chip = mtd->priv;
159 return readb(chip->IO_ADDR_R);
1da177e4
LT
160}
161
1da177e4
LT
162/**
163 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
7854d3f7 164 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 165 * @mtd: MTD device structure
1da177e4 166 *
7854d3f7
BN
167 * Default read function for 16bit buswidth with endianness conversion.
168 *
1da177e4 169 */
58dd8f2b 170static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 171{
ace4dfee
TG
172 struct nand_chip *chip = mtd->priv;
173 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
174}
175
1da177e4
LT
176/**
177 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 178 * @mtd: MTD device structure
1da177e4 179 *
7854d3f7 180 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
181 */
182static u16 nand_read_word(struct mtd_info *mtd)
183{
ace4dfee
TG
184 struct nand_chip *chip = mtd->priv;
185 return readw(chip->IO_ADDR_R);
1da177e4
LT
186}
187
1da177e4
LT
188/**
189 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
190 * @mtd: MTD device structure
191 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
192 *
193 * Default select function for 1 chip devices.
194 */
ace4dfee 195static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 196{
ace4dfee
TG
197 struct nand_chip *chip = mtd->priv;
198
199 switch (chipnr) {
1da177e4 200 case -1:
ace4dfee 201 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
202 break;
203 case 0:
1da177e4
LT
204 break;
205
206 default:
207 BUG();
208 }
209}
210
211/**
212 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
213 * @mtd: MTD device structure
214 * @buf: data buffer
215 * @len: number of bytes to write
1da177e4 216 *
7854d3f7 217 * Default write function for 8bit buswidth.
1da177e4 218 */
58dd8f2b 219static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
220{
221 int i;
ace4dfee 222 struct nand_chip *chip = mtd->priv;
1da177e4 223
e0c7d767 224 for (i = 0; i < len; i++)
ace4dfee 225 writeb(buf[i], chip->IO_ADDR_W);
1da177e4
LT
226}
227
228/**
61b03bd7 229 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
230 * @mtd: MTD device structure
231 * @buf: buffer to store date
232 * @len: number of bytes to read
1da177e4 233 *
7854d3f7 234 * Default read function for 8bit buswidth.
1da177e4 235 */
58dd8f2b 236static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4
LT
237{
238 int i;
ace4dfee 239 struct nand_chip *chip = mtd->priv;
1da177e4 240
e0c7d767 241 for (i = 0; i < len; i++)
ace4dfee 242 buf[i] = readb(chip->IO_ADDR_R);
1da177e4
LT
243}
244
1da177e4
LT
245/**
246 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
247 * @mtd: MTD device structure
248 * @buf: data buffer
249 * @len: number of bytes to write
1da177e4 250 *
7854d3f7 251 * Default write function for 16bit buswidth.
1da177e4 252 */
58dd8f2b 253static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
254{
255 int i;
ace4dfee 256 struct nand_chip *chip = mtd->priv;
1da177e4
LT
257 u16 *p = (u16 *) buf;
258 len >>= 1;
61b03bd7 259
e0c7d767 260 for (i = 0; i < len; i++)
ace4dfee 261 writew(p[i], chip->IO_ADDR_W);
61b03bd7 262
1da177e4
LT
263}
264
265/**
61b03bd7 266 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
267 * @mtd: MTD device structure
268 * @buf: buffer to store date
269 * @len: number of bytes to read
1da177e4 270 *
7854d3f7 271 * Default read function for 16bit buswidth.
1da177e4 272 */
58dd8f2b 273static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4
LT
274{
275 int i;
ace4dfee 276 struct nand_chip *chip = mtd->priv;
1da177e4
LT
277 u16 *p = (u16 *) buf;
278 len >>= 1;
279
e0c7d767 280 for (i = 0; i < len; i++)
ace4dfee 281 p[i] = readw(chip->IO_ADDR_R);
1da177e4
LT
282}
283
1da177e4
LT
284/**
285 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
286 * @mtd: MTD device structure
287 * @ofs: offset from device start
288 * @getchip: 0, if the chip is already selected
1da177e4 289 *
61b03bd7 290 * Check, if the block is bad.
1da177e4
LT
291 */
292static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
293{
cdbec050 294 int page, chipnr, res = 0, i = 0;
ace4dfee 295 struct nand_chip *chip = mtd->priv;
1da177e4
LT
296 u16 bad;
297
5fb1549d 298 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
299 ofs += mtd->erasesize - mtd->writesize;
300
1a12f46a
TK
301 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
302
1da177e4 303 if (getchip) {
ace4dfee 304 chipnr = (int)(ofs >> chip->chip_shift);
1da177e4 305
ace4dfee 306 nand_get_device(chip, mtd, FL_READING);
1da177e4
LT
307
308 /* Select the NAND device */
ace4dfee 309 chip->select_chip(mtd, chipnr);
1a12f46a 310 }
1da177e4 311
cdbec050
BN
312 do {
313 if (chip->options & NAND_BUSWIDTH_16) {
314 chip->cmdfunc(mtd, NAND_CMD_READOOB,
315 chip->badblockpos & 0xFE, page);
316 bad = cpu_to_le16(chip->read_word(mtd));
317 if (chip->badblockpos & 0x1)
318 bad >>= 8;
319 else
320 bad &= 0xFF;
321 } else {
322 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
323 page);
324 bad = chip->read_byte(mtd);
325 }
326
327 if (likely(chip->badblockbits == 8))
328 res = bad != 0xFF;
e0b58d0a 329 else
cdbec050
BN
330 res = hweight8(bad) < chip->badblockbits;
331 ofs += mtd->writesize;
332 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
333 i++;
334 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
e0b58d0a 335
ace4dfee 336 if (getchip)
1da177e4 337 nand_release_device(mtd);
61b03bd7 338
1da177e4
LT
339 return res;
340}
341
342/**
343 * nand_default_block_markbad - [DEFAULT] mark a block bad
8b6e50c9
BN
344 * @mtd: MTD device structure
345 * @ofs: offset from device start
1da177e4 346 *
8b6e50c9 347 * This is the default implementation, which can be overridden by a hardware
e2414f4c
BN
348 * specific driver. We try operations in the following order, according to our
349 * bbt_options (NAND_BBT_NO_OOB_BBM and NAND_BBT_USE_FLASH):
350 * (1) erase the affected block, to allow OOB marker to be written cleanly
351 * (2) update in-memory BBT
352 * (3) write bad block marker to OOB area of affected block
353 * (4) update flash-based BBT
354 * Note that we retain the first error encountered in (3) or (4), finish the
355 * procedures, and dump the error in the end.
1da177e4
LT
356*/
357static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
358{
ace4dfee 359 struct nand_chip *chip = mtd->priv;
58dd8f2b 360 uint8_t buf[2] = { 0, 0 };
e2414f4c
BN
361 int block, res, ret = 0, i = 0;
362 int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM);
61b03bd7 363
e2414f4c 364 if (write_oob) {
00918429
BN
365 struct erase_info einfo;
366
367 /* Attempt erase before marking OOB */
368 memset(&einfo, 0, sizeof(einfo));
369 einfo.mtd = mtd;
370 einfo.addr = ofs;
371 einfo.len = 1 << chip->phys_erase_shift;
372 nand_erase_nand(mtd, &einfo, 0);
373 }
374
1da177e4 375 /* Get block number */
4226b510 376 block = (int)(ofs >> chip->bbt_erase_shift);
e2414f4c 377 /* Mark block bad in memory-based BBT */
ace4dfee
TG
378 if (chip->bbt)
379 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1da177e4 380
e2414f4c
BN
381 /* Write bad block marker to OOB */
382 if (write_oob) {
4a89ff88 383 struct mtd_oob_ops ops;
df698621 384 loff_t wr_ofs = ofs;
4a89ff88 385
c0b8ba7b 386 nand_get_device(chip, mtd, FL_WRITING);
f1a28c02 387
4a89ff88
BN
388 ops.datbuf = NULL;
389 ops.oobbuf = buf;
85443319
BN
390 ops.ooboffs = chip->badblockpos;
391 if (chip->options & NAND_BUSWIDTH_16) {
392 ops.ooboffs &= ~0x01;
393 ops.len = ops.ooblen = 2;
394 } else {
395 ops.len = ops.ooblen = 1;
396 }
23b1a99b 397 ops.mode = MTD_OPS_PLACE_OOB;
df698621 398
e2414f4c 399 /* Write to first/last page(s) if necessary */
df698621
BN
400 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
401 wr_ofs += mtd->erasesize - mtd->writesize;
02ed70bb 402 do {
e2414f4c
BN
403 res = nand_do_write_oob(mtd, wr_ofs, &ops);
404 if (!ret)
405 ret = res;
02ed70bb 406
02ed70bb 407 i++;
df698621 408 wr_ofs += mtd->writesize;
e2414f4c 409 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
02ed70bb 410
c0b8ba7b 411 nand_release_device(mtd);
f1a28c02 412 }
e2414f4c
BN
413
414 /* Update flash-based bad block table */
415 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
416 res = nand_update_bbt(mtd, ofs);
417 if (!ret)
418 ret = res;
419 }
420
f1a28c02
TG
421 if (!ret)
422 mtd->ecc_stats.badblocks++;
c0b8ba7b 423
f1a28c02 424 return ret;
1da177e4
LT
425}
426
61b03bd7 427/**
1da177e4 428 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 429 * @mtd: MTD device structure
1da177e4 430 *
8b6e50c9
BN
431 * Check, if the device is write protected. The function expects, that the
432 * device is already selected.
1da177e4 433 */
e0c7d767 434static int nand_check_wp(struct mtd_info *mtd)
1da177e4 435{
ace4dfee 436 struct nand_chip *chip = mtd->priv;
93edbad6 437
8b6e50c9 438 /* Broken xD cards report WP despite being writable */
93edbad6
ML
439 if (chip->options & NAND_BROKEN_XD)
440 return 0;
441
1da177e4 442 /* Check the WP bit */
ace4dfee
TG
443 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
444 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
445}
446
447/**
448 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
449 * @mtd: MTD device structure
450 * @ofs: offset from device start
451 * @getchip: 0, if the chip is already selected
452 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
453 *
454 * Check, if the block is bad. Either by reading the bad block table or
455 * calling of the scan function.
456 */
2c0a2bed
TG
457static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
458 int allowbbt)
1da177e4 459{
ace4dfee 460 struct nand_chip *chip = mtd->priv;
61b03bd7 461
ace4dfee
TG
462 if (!chip->bbt)
463 return chip->block_bad(mtd, ofs, getchip);
61b03bd7 464
1da177e4 465 /* Return info from the table */
e0c7d767 466 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
467}
468
2af7c653
SK
469/**
470 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
471 * @mtd: MTD device structure
472 * @timeo: Timeout
2af7c653
SK
473 *
474 * Helper function for nand_wait_ready used when needing to wait in interrupt
475 * context.
476 */
477static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
478{
479 struct nand_chip *chip = mtd->priv;
480 int i;
481
482 /* Wait for the device to get ready */
483 for (i = 0; i < timeo; i++) {
484 if (chip->dev_ready(mtd))
485 break;
486 touch_softlockup_watchdog();
487 mdelay(1);
488 }
489}
490
7854d3f7 491/* Wait for the ready pin, after a command. The timeout is caught later. */
4b648b02 492void nand_wait_ready(struct mtd_info *mtd)
3b88775c 493{
ace4dfee 494 struct nand_chip *chip = mtd->priv;
e0c7d767 495 unsigned long timeo = jiffies + 2;
3b88775c 496
2af7c653
SK
497 /* 400ms timeout */
498 if (in_interrupt() || oops_in_progress)
499 return panic_nand_wait_ready(mtd, 400);
500
8fe833c1 501 led_trigger_event(nand_led_trigger, LED_FULL);
7854d3f7 502 /* Wait until command is processed or timeout occurs */
3b88775c 503 do {
ace4dfee 504 if (chip->dev_ready(mtd))
8fe833c1 505 break;
8446f1d3 506 touch_softlockup_watchdog();
61b03bd7 507 } while (time_before(jiffies, timeo));
8fe833c1 508 led_trigger_event(nand_led_trigger, LED_OFF);
3b88775c 509}
4b648b02 510EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 511
1da177e4
LT
512/**
513 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
514 * @mtd: MTD device structure
515 * @command: the command to be sent
516 * @column: the column address for this command, -1 if none
517 * @page_addr: the page address for this command, -1 if none
1da177e4 518 *
8b6e50c9
BN
519 * Send command to NAND device. This function is used for small page devices
520 * (256/512 Bytes per page).
1da177e4 521 */
7abd3ef9
TG
522static void nand_command(struct mtd_info *mtd, unsigned int command,
523 int column, int page_addr)
1da177e4 524{
ace4dfee 525 register struct nand_chip *chip = mtd->priv;
7abd3ef9 526 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 527
8b6e50c9 528 /* Write out the command to the device */
1da177e4
LT
529 if (command == NAND_CMD_SEQIN) {
530 int readcmd;
531
28318776 532 if (column >= mtd->writesize) {
1da177e4 533 /* OOB area */
28318776 534 column -= mtd->writesize;
1da177e4
LT
535 readcmd = NAND_CMD_READOOB;
536 } else if (column < 256) {
537 /* First 256 bytes --> READ0 */
538 readcmd = NAND_CMD_READ0;
539 } else {
540 column -= 256;
541 readcmd = NAND_CMD_READ1;
542 }
ace4dfee 543 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 544 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 545 }
ace4dfee 546 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 547
8b6e50c9 548 /* Address cycle, when necessary */
7abd3ef9
TG
549 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
550 /* Serially input address */
551 if (column != -1) {
552 /* Adjust columns for 16 bit buswidth */
ace4dfee 553 if (chip->options & NAND_BUSWIDTH_16)
7abd3ef9 554 column >>= 1;
ace4dfee 555 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
556 ctrl &= ~NAND_CTRL_CHANGE;
557 }
558 if (page_addr != -1) {
ace4dfee 559 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 560 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 561 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 562 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
563 if (chip->chipsize > (32 << 20))
564 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 565 }
ace4dfee 566 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
567
568 /*
8b6e50c9
BN
569 * Program and erase have their own busy handlers status and sequential
570 * in needs no delay
e0c7d767 571 */
1da177e4 572 switch (command) {
61b03bd7 573
1da177e4
LT
574 case NAND_CMD_PAGEPROG:
575 case NAND_CMD_ERASE1:
576 case NAND_CMD_ERASE2:
577 case NAND_CMD_SEQIN:
578 case NAND_CMD_STATUS:
579 return;
580
581 case NAND_CMD_RESET:
ace4dfee 582 if (chip->dev_ready)
1da177e4 583 break;
ace4dfee
TG
584 udelay(chip->chip_delay);
585 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 586 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
587 chip->cmd_ctrl(mtd,
588 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
589 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
590 ;
1da177e4
LT
591 return;
592
e0c7d767 593 /* This applies to read commands */
1da177e4 594 default:
61b03bd7 595 /*
1da177e4
LT
596 * If we don't have access to the busy pin, we apply the given
597 * command delay
e0c7d767 598 */
ace4dfee
TG
599 if (!chip->dev_ready) {
600 udelay(chip->chip_delay);
1da177e4 601 return;
61b03bd7 602 }
1da177e4 603 }
8b6e50c9
BN
604 /*
605 * Apply this short delay always to ensure that we do wait tWB in
606 * any case on any machine.
607 */
e0c7d767 608 ndelay(100);
3b88775c
TG
609
610 nand_wait_ready(mtd);
1da177e4
LT
611}
612
613/**
614 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
615 * @mtd: MTD device structure
616 * @command: the command to be sent
617 * @column: the column address for this command, -1 if none
618 * @page_addr: the page address for this command, -1 if none
1da177e4 619 *
7abd3ef9 620 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
621 * devices. We don't have the separate regions as we have in the small page
622 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 623 */
7abd3ef9
TG
624static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
625 int column, int page_addr)
1da177e4 626{
ace4dfee 627 register struct nand_chip *chip = mtd->priv;
1da177e4
LT
628
629 /* Emulate NAND_CMD_READOOB */
630 if (command == NAND_CMD_READOOB) {
28318776 631 column += mtd->writesize;
1da177e4
LT
632 command = NAND_CMD_READ0;
633 }
61b03bd7 634
7abd3ef9 635 /* Command latch cycle */
ace4dfee 636 chip->cmd_ctrl(mtd, command & 0xff,
7abd3ef9 637 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
638
639 if (column != -1 || page_addr != -1) {
7abd3ef9 640 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
641
642 /* Serially input address */
643 if (column != -1) {
644 /* Adjust columns for 16 bit buswidth */
ace4dfee 645 if (chip->options & NAND_BUSWIDTH_16)
1da177e4 646 column >>= 1;
ace4dfee 647 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 648 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 649 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 650 }
1da177e4 651 if (page_addr != -1) {
ace4dfee
TG
652 chip->cmd_ctrl(mtd, page_addr, ctrl);
653 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 654 NAND_NCE | NAND_ALE);
1da177e4 655 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
656 if (chip->chipsize > (128 << 20))
657 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 658 NAND_NCE | NAND_ALE);
1da177e4 659 }
1da177e4 660 }
ace4dfee 661 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
662
663 /*
8b6e50c9
BN
664 * Program and erase have their own busy handlers status, sequential
665 * in, and deplete1 need no delay.
30f464b7 666 */
1da177e4 667 switch (command) {
61b03bd7 668
1da177e4
LT
669 case NAND_CMD_CACHEDPROG:
670 case NAND_CMD_PAGEPROG:
671 case NAND_CMD_ERASE1:
672 case NAND_CMD_ERASE2:
673 case NAND_CMD_SEQIN:
7bc3312b 674 case NAND_CMD_RNDIN:
1da177e4 675 case NAND_CMD_STATUS:
30f464b7 676 case NAND_CMD_DEPLETE1:
1da177e4
LT
677 return;
678
30f464b7
DM
679 case NAND_CMD_STATUS_ERROR:
680 case NAND_CMD_STATUS_ERROR0:
681 case NAND_CMD_STATUS_ERROR1:
682 case NAND_CMD_STATUS_ERROR2:
683 case NAND_CMD_STATUS_ERROR3:
8b6e50c9 684 /* Read error status commands require only a short delay */
ace4dfee 685 udelay(chip->chip_delay);
30f464b7 686 return;
1da177e4
LT
687
688 case NAND_CMD_RESET:
ace4dfee 689 if (chip->dev_ready)
1da177e4 690 break;
ace4dfee 691 udelay(chip->chip_delay);
12efdde3
TG
692 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
693 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
694 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
695 NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
696 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
697 ;
1da177e4
LT
698 return;
699
7bc3312b
TG
700 case NAND_CMD_RNDOUT:
701 /* No ready / busy check necessary */
702 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
703 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
704 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
705 NAND_NCE | NAND_CTRL_CHANGE);
706 return;
707
1da177e4 708 case NAND_CMD_READ0:
12efdde3
TG
709 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
710 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
711 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
712 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 713
e0c7d767 714 /* This applies to read commands */
1da177e4 715 default:
61b03bd7 716 /*
1da177e4 717 * If we don't have access to the busy pin, we apply the given
8b6e50c9 718 * command delay.
e0c7d767 719 */
ace4dfee
TG
720 if (!chip->dev_ready) {
721 udelay(chip->chip_delay);
1da177e4 722 return;
61b03bd7 723 }
1da177e4 724 }
3b88775c 725
8b6e50c9
BN
726 /*
727 * Apply this short delay always to ensure that we do wait tWB in
728 * any case on any machine.
729 */
e0c7d767 730 ndelay(100);
3b88775c
TG
731
732 nand_wait_ready(mtd);
1da177e4
LT
733}
734
2af7c653
SK
735/**
736 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
737 * @chip: the nand chip descriptor
738 * @mtd: MTD device structure
739 * @new_state: the state which is requested
2af7c653
SK
740 *
741 * Used when in panic, no locks are taken.
742 */
743static void panic_nand_get_device(struct nand_chip *chip,
744 struct mtd_info *mtd, int new_state)
745{
7854d3f7 746 /* Hardware controller shared among independent devices */
2af7c653
SK
747 chip->controller->active = chip;
748 chip->state = new_state;
749}
750
1da177e4
LT
751/**
752 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
753 * @chip: the nand chip descriptor
754 * @mtd: MTD device structure
755 * @new_state: the state which is requested
1da177e4
LT
756 *
757 * Get the device and lock it for exclusive access
758 */
2c0a2bed 759static int
ace4dfee 760nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
1da177e4 761{
ace4dfee
TG
762 spinlock_t *lock = &chip->controller->lock;
763 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 764 DECLARE_WAITQUEUE(wait, current);
7351d3a5 765retry:
0dfc6246
TG
766 spin_lock(lock);
767
b8b3ee9a 768 /* Hardware controller shared among independent devices */
ace4dfee
TG
769 if (!chip->controller->active)
770 chip->controller->active = chip;
a36ed299 771
ace4dfee
TG
772 if (chip->controller->active == chip && chip->state == FL_READY) {
773 chip->state = new_state;
0dfc6246 774 spin_unlock(lock);
962034f4
VW
775 return 0;
776 }
777 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
778 if (chip->controller->active->state == FL_PM_SUSPENDED) {
779 chip->state = FL_PM_SUSPENDED;
780 spin_unlock(lock);
781 return 0;
6b0d9a84 782 }
0dfc6246
TG
783 }
784 set_current_state(TASK_UNINTERRUPTIBLE);
785 add_wait_queue(wq, &wait);
786 spin_unlock(lock);
787 schedule();
788 remove_wait_queue(wq, &wait);
1da177e4
LT
789 goto retry;
790}
791
2af7c653 792/**
8b6e50c9
BN
793 * panic_nand_wait - [GENERIC] wait until the command is done
794 * @mtd: MTD device structure
795 * @chip: NAND chip structure
796 * @timeo: timeout
2af7c653
SK
797 *
798 * Wait for command done. This is a helper function for nand_wait used when
799 * we are in interrupt context. May happen when in panic and trying to write
b595076a 800 * an oops through mtdoops.
2af7c653
SK
801 */
802static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
803 unsigned long timeo)
804{
805 int i;
806 for (i = 0; i < timeo; i++) {
807 if (chip->dev_ready) {
808 if (chip->dev_ready(mtd))
809 break;
810 } else {
811 if (chip->read_byte(mtd) & NAND_STATUS_READY)
812 break;
813 }
814 mdelay(1);
f8ac0414 815 }
2af7c653
SK
816}
817
1da177e4 818/**
8b6e50c9
BN
819 * nand_wait - [DEFAULT] wait until the command is done
820 * @mtd: MTD device structure
821 * @chip: NAND chip structure
1da177e4 822 *
8b6e50c9
BN
823 * Wait for command done. This applies to erase and program only. Erase can
824 * take up to 400ms and program up to 20ms according to general NAND and
825 * SmartMedia specs.
844d3b42 826 */
7bc3312b 827static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
828{
829
e0c7d767 830 unsigned long timeo = jiffies;
7bc3312b 831 int status, state = chip->state;
61b03bd7 832
1da177e4 833 if (state == FL_ERASING)
e0c7d767 834 timeo += (HZ * 400) / 1000;
1da177e4 835 else
e0c7d767 836 timeo += (HZ * 20) / 1000;
1da177e4 837
8fe833c1
RP
838 led_trigger_event(nand_led_trigger, LED_FULL);
839
8b6e50c9
BN
840 /*
841 * Apply this short delay always to ensure that we do wait tWB in any
842 * case on any machine.
843 */
e0c7d767 844 ndelay(100);
1da177e4 845
ace4dfee
TG
846 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
847 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
61b03bd7 848 else
ace4dfee 849 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 850
2af7c653
SK
851 if (in_interrupt() || oops_in_progress)
852 panic_nand_wait(mtd, chip, timeo);
853 else {
854 while (time_before(jiffies, timeo)) {
855 if (chip->dev_ready) {
856 if (chip->dev_ready(mtd))
857 break;
858 } else {
859 if (chip->read_byte(mtd) & NAND_STATUS_READY)
860 break;
861 }
862 cond_resched();
1da177e4 863 }
1da177e4 864 }
8fe833c1
RP
865 led_trigger_event(nand_led_trigger, LED_OFF);
866
ace4dfee 867 status = (int)chip->read_byte(mtd);
1da177e4
LT
868 return status;
869}
870
7d70f334 871/**
b6d676db 872 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
873 * @mtd: mtd info
874 * @ofs: offset to start unlock from
875 * @len: length to unlock
8b6e50c9
BN
876 * @invert: when = 0, unlock the range of blocks within the lower and
877 * upper boundary address
878 * when = 1, unlock the range of blocks outside the boundaries
879 * of the lower and upper boundary address
7d70f334 880 *
8b6e50c9 881 * Returs unlock status.
7d70f334
VS
882 */
883static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
884 uint64_t len, int invert)
885{
886 int ret = 0;
887 int status, page;
888 struct nand_chip *chip = mtd->priv;
889
890 /* Submit address of first page to unlock */
891 page = ofs >> chip->page_shift;
892 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
893
894 /* Submit address of last page to unlock */
895 page = (ofs + len) >> chip->page_shift;
896 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
897 (page | invert) & chip->pagemask);
898
899 /* Call wait ready function */
900 status = chip->waitfunc(mtd, chip);
7d70f334
VS
901 /* See if device thinks it succeeded */
902 if (status & 0x01) {
289c0522 903 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
904 __func__, status);
905 ret = -EIO;
906 }
907
908 return ret;
909}
910
911/**
b6d676db 912 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
913 * @mtd: mtd info
914 * @ofs: offset to start unlock from
915 * @len: length to unlock
7d70f334 916 *
8b6e50c9 917 * Returns unlock status.
7d70f334
VS
918 */
919int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
920{
921 int ret = 0;
922 int chipnr;
923 struct nand_chip *chip = mtd->priv;
924
289c0522 925 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
926 __func__, (unsigned long long)ofs, len);
927
928 if (check_offs_len(mtd, ofs, len))
929 ret = -EINVAL;
930
931 /* Align to last block address if size addresses end of the device */
932 if (ofs + len == mtd->size)
933 len -= mtd->erasesize;
934
935 nand_get_device(chip, mtd, FL_UNLOCKING);
936
937 /* Shift to get chip number */
938 chipnr = ofs >> chip->chip_shift;
939
940 chip->select_chip(mtd, chipnr);
941
942 /* Check, if it is write protected */
943 if (nand_check_wp(mtd)) {
289c0522 944 pr_debug("%s: device is write protected!\n",
7d70f334
VS
945 __func__);
946 ret = -EIO;
947 goto out;
948 }
949
950 ret = __nand_unlock(mtd, ofs, len, 0);
951
952out:
7d70f334
VS
953 nand_release_device(mtd);
954
955 return ret;
956}
7351d3a5 957EXPORT_SYMBOL(nand_unlock);
7d70f334
VS
958
959/**
b6d676db 960 * nand_lock - [REPLACEABLE] locks all blocks present in the device
b6d676db
RD
961 * @mtd: mtd info
962 * @ofs: offset to start unlock from
963 * @len: length to unlock
7d70f334 964 *
8b6e50c9
BN
965 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
966 * have this feature, but it allows only to lock all blocks, not for specified
967 * range for block. Implementing 'lock' feature by making use of 'unlock', for
968 * now.
7d70f334 969 *
8b6e50c9 970 * Returns lock status.
7d70f334
VS
971 */
972int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
973{
974 int ret = 0;
975 int chipnr, status, page;
976 struct nand_chip *chip = mtd->priv;
977
289c0522 978 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
979 __func__, (unsigned long long)ofs, len);
980
981 if (check_offs_len(mtd, ofs, len))
982 ret = -EINVAL;
983
984 nand_get_device(chip, mtd, FL_LOCKING);
985
986 /* Shift to get chip number */
987 chipnr = ofs >> chip->chip_shift;
988
989 chip->select_chip(mtd, chipnr);
990
991 /* Check, if it is write protected */
992 if (nand_check_wp(mtd)) {
289c0522 993 pr_debug("%s: device is write protected!\n",
7d70f334
VS
994 __func__);
995 status = MTD_ERASE_FAILED;
996 ret = -EIO;
997 goto out;
998 }
999
1000 /* Submit address of first page to lock */
1001 page = ofs >> chip->page_shift;
1002 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1003
1004 /* Call wait ready function */
1005 status = chip->waitfunc(mtd, chip);
7d70f334
VS
1006 /* See if device thinks it succeeded */
1007 if (status & 0x01) {
289c0522 1008 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
1009 __func__, status);
1010 ret = -EIO;
1011 goto out;
1012 }
1013
1014 ret = __nand_unlock(mtd, ofs, len, 0x1);
1015
1016out:
7d70f334
VS
1017 nand_release_device(mtd);
1018
1019 return ret;
1020}
7351d3a5 1021EXPORT_SYMBOL(nand_lock);
7d70f334 1022
8593fbc6 1023/**
7854d3f7 1024 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
1025 * @mtd: mtd info structure
1026 * @chip: nand chip info structure
1027 * @buf: buffer to store read data
1fbb938d 1028 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1029 * @page: page number to read
52ff49df 1030 *
7854d3f7 1031 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6
TG
1032 */
1033static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1034 uint8_t *buf, int oob_required, int page)
8593fbc6
TG
1035{
1036 chip->read_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1037 if (oob_required)
1038 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
8593fbc6
TG
1039 return 0;
1040}
1041
52ff49df 1042/**
7854d3f7 1043 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
1044 * @mtd: mtd info structure
1045 * @chip: nand chip info structure
1046 * @buf: buffer to store read data
1fbb938d 1047 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1048 * @page: page number to read
52ff49df
DB
1049 *
1050 * We need a special oob layout and handling even when OOB isn't used.
1051 */
7351d3a5 1052static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1fbb938d
BN
1053 struct nand_chip *chip, uint8_t *buf,
1054 int oob_required, int page)
52ff49df
DB
1055{
1056 int eccsize = chip->ecc.size;
1057 int eccbytes = chip->ecc.bytes;
1058 uint8_t *oob = chip->oob_poi;
1059 int steps, size;
1060
1061 for (steps = chip->ecc.steps; steps > 0; steps--) {
1062 chip->read_buf(mtd, buf, eccsize);
1063 buf += eccsize;
1064
1065 if (chip->ecc.prepad) {
1066 chip->read_buf(mtd, oob, chip->ecc.prepad);
1067 oob += chip->ecc.prepad;
1068 }
1069
1070 chip->read_buf(mtd, oob, eccbytes);
1071 oob += eccbytes;
1072
1073 if (chip->ecc.postpad) {
1074 chip->read_buf(mtd, oob, chip->ecc.postpad);
1075 oob += chip->ecc.postpad;
1076 }
1077 }
1078
1079 size = mtd->oobsize - (oob - chip->oob_poi);
1080 if (size)
1081 chip->read_buf(mtd, oob, size);
1082
1083 return 0;
1084}
1085
1da177e4 1086/**
7854d3f7 1087 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
1088 * @mtd: mtd info structure
1089 * @chip: nand chip info structure
1090 * @buf: buffer to store read data
1fbb938d 1091 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1092 * @page: page number to read
068e3c0a 1093 */
f5bbdacc 1094static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1095 uint8_t *buf, int oob_required, int page)
1da177e4 1096{
f5bbdacc
TG
1097 int i, eccsize = chip->ecc.size;
1098 int eccbytes = chip->ecc.bytes;
1099 int eccsteps = chip->ecc.steps;
1100 uint8_t *p = buf;
4bf63fcb
DW
1101 uint8_t *ecc_calc = chip->buffers->ecccalc;
1102 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1103 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1104 unsigned int max_bitflips = 0;
f5bbdacc 1105
1fbb938d 1106 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
f5bbdacc
TG
1107
1108 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1109 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1110
1111 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1112 ecc_code[i] = chip->oob_poi[eccpos[i]];
f5bbdacc
TG
1113
1114 eccsteps = chip->ecc.steps;
1115 p = buf;
1116
1117 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1118 int stat;
1119
1120 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1121 if (stat < 0) {
f5bbdacc 1122 mtd->ecc_stats.failed++;
3f91e94f 1123 } else {
f5bbdacc 1124 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1125 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1126 }
f5bbdacc 1127 }
3f91e94f 1128 return max_bitflips;
22c60f5f 1129}
1da177e4 1130
3d459559 1131/**
7854d3f7 1132 * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
8b6e50c9
BN
1133 * @mtd: mtd info structure
1134 * @chip: nand chip info structure
1135 * @data_offs: offset of requested data within the page
1136 * @readlen: data length
1137 * @bufpoi: buffer to store read data
3d459559 1138 */
7351d3a5
FF
1139static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1140 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
3d459559
AK
1141{
1142 int start_step, end_step, num_steps;
1143 uint32_t *eccpos = chip->ecc.layout->eccpos;
1144 uint8_t *p;
1145 int data_col_addr, i, gaps = 0;
1146 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1147 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
7351d3a5 1148 int index = 0;
3f91e94f 1149 unsigned int max_bitflips = 0;
3d459559 1150
7854d3f7 1151 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
1152 start_step = data_offs / chip->ecc.size;
1153 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1154 num_steps = end_step - start_step + 1;
1155
8b6e50c9 1156 /* Data size aligned to ECC ecc.size */
3d459559
AK
1157 datafrag_len = num_steps * chip->ecc.size;
1158 eccfrag_len = num_steps * chip->ecc.bytes;
1159
1160 data_col_addr = start_step * chip->ecc.size;
1161 /* If we read not a page aligned data */
1162 if (data_col_addr != 0)
1163 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1164
1165 p = bufpoi + data_col_addr;
1166 chip->read_buf(mtd, p, datafrag_len);
1167
8b6e50c9 1168 /* Calculate ECC */
3d459559
AK
1169 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1170 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1171
8b6e50c9
BN
1172 /*
1173 * The performance is faster if we position offsets according to
7854d3f7 1174 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 1175 */
3d459559
AK
1176 for (i = 0; i < eccfrag_len - 1; i++) {
1177 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1178 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1179 gaps = 1;
1180 break;
1181 }
1182 }
1183 if (gaps) {
1184 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1185 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1186 } else {
8b6e50c9 1187 /*
7854d3f7 1188 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
1189 * about buswidth alignment in read_buf.
1190 */
7351d3a5
FF
1191 index = start_step * chip->ecc.bytes;
1192
1193 aligned_pos = eccpos[index] & ~(busw - 1);
3d459559 1194 aligned_len = eccfrag_len;
7351d3a5 1195 if (eccpos[index] & (busw - 1))
3d459559 1196 aligned_len++;
7351d3a5 1197 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
3d459559
AK
1198 aligned_len++;
1199
7351d3a5
FF
1200 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1201 mtd->writesize + aligned_pos, -1);
3d459559
AK
1202 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1203 }
1204
1205 for (i = 0; i < eccfrag_len; i++)
7351d3a5 1206 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
3d459559
AK
1207
1208 p = bufpoi + data_col_addr;
1209 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1210 int stat;
1211
7351d3a5
FF
1212 stat = chip->ecc.correct(mtd, p,
1213 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
3f91e94f 1214 if (stat < 0) {
3d459559 1215 mtd->ecc_stats.failed++;
3f91e94f 1216 } else {
3d459559 1217 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1218 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1219 }
3d459559 1220 }
3f91e94f 1221 return max_bitflips;
3d459559
AK
1222}
1223
068e3c0a 1224/**
7854d3f7 1225 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
1226 * @mtd: mtd info structure
1227 * @chip: nand chip info structure
1228 * @buf: buffer to store read data
1fbb938d 1229 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1230 * @page: page number to read
068e3c0a 1231 *
7854d3f7 1232 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 1233 */
f5bbdacc 1234static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1235 uint8_t *buf, int oob_required, int page)
1da177e4 1236{
f5bbdacc
TG
1237 int i, eccsize = chip->ecc.size;
1238 int eccbytes = chip->ecc.bytes;
1239 int eccsteps = chip->ecc.steps;
1240 uint8_t *p = buf;
4bf63fcb
DW
1241 uint8_t *ecc_calc = chip->buffers->ecccalc;
1242 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1243 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1244 unsigned int max_bitflips = 0;
f5bbdacc
TG
1245
1246 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1247 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1248 chip->read_buf(mtd, p, eccsize);
1249 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1250 }
f75e5097 1251 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1252
f5bbdacc 1253 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1254 ecc_code[i] = chip->oob_poi[eccpos[i]];
1da177e4 1255
f5bbdacc
TG
1256 eccsteps = chip->ecc.steps;
1257 p = buf;
61b03bd7 1258
f5bbdacc
TG
1259 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1260 int stat;
1da177e4 1261
f5bbdacc 1262 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1263 if (stat < 0) {
f5bbdacc 1264 mtd->ecc_stats.failed++;
3f91e94f 1265 } else {
f5bbdacc 1266 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1267 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1268 }
f5bbdacc 1269 }
3f91e94f 1270 return max_bitflips;
f5bbdacc 1271}
1da177e4 1272
6e0cb135 1273/**
7854d3f7 1274 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
1275 * @mtd: mtd info structure
1276 * @chip: nand chip info structure
1277 * @buf: buffer to store read data
1fbb938d 1278 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1279 * @page: page number to read
6e0cb135 1280 *
8b6e50c9
BN
1281 * Hardware ECC for large page chips, require OOB to be read first. For this
1282 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1283 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1284 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1285 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
1286 */
1287static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1fbb938d 1288 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
6e0cb135
SN
1289{
1290 int i, eccsize = chip->ecc.size;
1291 int eccbytes = chip->ecc.bytes;
1292 int eccsteps = chip->ecc.steps;
1293 uint8_t *p = buf;
1294 uint8_t *ecc_code = chip->buffers->ecccode;
1295 uint32_t *eccpos = chip->ecc.layout->eccpos;
1296 uint8_t *ecc_calc = chip->buffers->ecccalc;
3f91e94f 1297 unsigned int max_bitflips = 0;
6e0cb135
SN
1298
1299 /* Read the OOB area first */
1300 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1301 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1302 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1303
1304 for (i = 0; i < chip->ecc.total; i++)
1305 ecc_code[i] = chip->oob_poi[eccpos[i]];
1306
1307 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1308 int stat;
1309
1310 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1311 chip->read_buf(mtd, p, eccsize);
1312 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1313
1314 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
3f91e94f 1315 if (stat < 0) {
6e0cb135 1316 mtd->ecc_stats.failed++;
3f91e94f 1317 } else {
6e0cb135 1318 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1319 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1320 }
6e0cb135 1321 }
3f91e94f 1322 return max_bitflips;
6e0cb135
SN
1323}
1324
f5bbdacc 1325/**
7854d3f7 1326 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
1327 * @mtd: mtd info structure
1328 * @chip: nand chip info structure
1329 * @buf: buffer to store read data
1fbb938d 1330 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1331 * @page: page number to read
f5bbdacc 1332 *
8b6e50c9
BN
1333 * The hw generator calculates the error syndrome automatically. Therefore we
1334 * need a special oob layout and handling.
f5bbdacc
TG
1335 */
1336static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1337 uint8_t *buf, int oob_required, int page)
f5bbdacc
TG
1338{
1339 int i, eccsize = chip->ecc.size;
1340 int eccbytes = chip->ecc.bytes;
1341 int eccsteps = chip->ecc.steps;
1342 uint8_t *p = buf;
f75e5097 1343 uint8_t *oob = chip->oob_poi;
3f91e94f 1344 unsigned int max_bitflips = 0;
1da177e4 1345
f5bbdacc
TG
1346 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1347 int stat;
61b03bd7 1348
f5bbdacc
TG
1349 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1350 chip->read_buf(mtd, p, eccsize);
1da177e4 1351
f5bbdacc
TG
1352 if (chip->ecc.prepad) {
1353 chip->read_buf(mtd, oob, chip->ecc.prepad);
1354 oob += chip->ecc.prepad;
1355 }
1da177e4 1356
f5bbdacc
TG
1357 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1358 chip->read_buf(mtd, oob, eccbytes);
1359 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1360
3f91e94f 1361 if (stat < 0) {
f5bbdacc 1362 mtd->ecc_stats.failed++;
3f91e94f 1363 } else {
f5bbdacc 1364 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1365 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1366 }
61b03bd7 1367
f5bbdacc 1368 oob += eccbytes;
1da177e4 1369
f5bbdacc
TG
1370 if (chip->ecc.postpad) {
1371 chip->read_buf(mtd, oob, chip->ecc.postpad);
1372 oob += chip->ecc.postpad;
61b03bd7 1373 }
f5bbdacc 1374 }
1da177e4 1375
f5bbdacc 1376 /* Calculate remaining oob bytes */
7e4178f9 1377 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1378 if (i)
1379 chip->read_buf(mtd, oob, i);
61b03bd7 1380
3f91e94f 1381 return max_bitflips;
f5bbdacc 1382}
1da177e4 1383
f5bbdacc 1384/**
7854d3f7 1385 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
8b6e50c9
BN
1386 * @chip: nand chip structure
1387 * @oob: oob destination address
1388 * @ops: oob ops structure
1389 * @len: size of oob to transfer
8593fbc6
TG
1390 */
1391static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
7014568b 1392 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1393{
f8ac0414 1394 switch (ops->mode) {
8593fbc6 1395
0612b9dd
BN
1396 case MTD_OPS_PLACE_OOB:
1397 case MTD_OPS_RAW:
8593fbc6
TG
1398 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1399 return oob + len;
1400
0612b9dd 1401 case MTD_OPS_AUTO_OOB: {
8593fbc6 1402 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
1403 uint32_t boffs = 0, roffs = ops->ooboffs;
1404 size_t bytes = 0;
8593fbc6 1405
f8ac0414 1406 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 1407 /* Read request not from offset 0? */
7bc3312b
TG
1408 if (unlikely(roffs)) {
1409 if (roffs >= free->length) {
1410 roffs -= free->length;
1411 continue;
1412 }
1413 boffs = free->offset + roffs;
1414 bytes = min_t(size_t, len,
1415 (free->length - roffs));
1416 roffs = 0;
1417 } else {
1418 bytes = min_t(size_t, len, free->length);
1419 boffs = free->offset;
1420 }
1421 memcpy(oob, chip->oob_poi + boffs, bytes);
8593fbc6
TG
1422 oob += bytes;
1423 }
1424 return oob;
1425 }
1426 default:
1427 BUG();
1428 }
1429 return NULL;
1430}
1431
1432/**
7854d3f7 1433 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
1434 * @mtd: MTD device structure
1435 * @from: offset to read from
1436 * @ops: oob ops structure
f5bbdacc
TG
1437 *
1438 * Internal function. Called with chip held.
1439 */
8593fbc6
TG
1440static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1441 struct mtd_oob_ops *ops)
f5bbdacc 1442{
e47f3db4 1443 int chipnr, page, realpage, col, bytes, aligned, oob_required;
f5bbdacc
TG
1444 struct nand_chip *chip = mtd->priv;
1445 struct mtd_ecc_stats stats;
f5bbdacc 1446 int ret = 0;
8593fbc6 1447 uint32_t readlen = ops->len;
7014568b 1448 uint32_t oobreadlen = ops->ooblen;
0612b9dd 1449 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
9aca334e
ML
1450 mtd->oobavail : mtd->oobsize;
1451
8593fbc6 1452 uint8_t *bufpoi, *oob, *buf;
edbc4540 1453 unsigned int max_bitflips = 0;
1da177e4 1454
f5bbdacc 1455 stats = mtd->ecc_stats;
1da177e4 1456
f5bbdacc
TG
1457 chipnr = (int)(from >> chip->chip_shift);
1458 chip->select_chip(mtd, chipnr);
61b03bd7 1459
f5bbdacc
TG
1460 realpage = (int)(from >> chip->page_shift);
1461 page = realpage & chip->pagemask;
1da177e4 1462
f5bbdacc 1463 col = (int)(from & (mtd->writesize - 1));
61b03bd7 1464
8593fbc6
TG
1465 buf = ops->datbuf;
1466 oob = ops->oobbuf;
e47f3db4 1467 oob_required = oob ? 1 : 0;
8593fbc6 1468
f8ac0414 1469 while (1) {
f5bbdacc
TG
1470 bytes = min(mtd->writesize - col, readlen);
1471 aligned = (bytes == mtd->writesize);
61b03bd7 1472
8b6e50c9 1473 /* Is the current page in the buffer? */
8593fbc6 1474 if (realpage != chip->pagebuf || oob) {
4bf63fcb 1475 bufpoi = aligned ? buf : chip->buffers->databuf;
61b03bd7 1476
c00a0991 1477 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1da177e4 1478
edbc4540
MD
1479 /*
1480 * Now read the page into the buffer. Absent an error,
1481 * the read methods return max bitflips per ecc step.
1482 */
0612b9dd 1483 if (unlikely(ops->mode == MTD_OPS_RAW))
1fbb938d 1484 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
e47f3db4
BN
1485 oob_required,
1486 page);
3d459559 1487 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
7351d3a5
FF
1488 ret = chip->ecc.read_subpage(mtd, chip,
1489 col, bytes, bufpoi);
956e944c 1490 else
46a8cf2d 1491 ret = chip->ecc.read_page(mtd, chip, bufpoi,
e47f3db4 1492 oob_required, page);
6d77b9d0
BN
1493 if (ret < 0) {
1494 if (!aligned)
1495 /* Invalidate page cache */
1496 chip->pagebuf = -1;
1da177e4 1497 break;
6d77b9d0 1498 }
f5bbdacc 1499
edbc4540
MD
1500 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1501
f5bbdacc
TG
1502 /* Transfer not aligned data */
1503 if (!aligned) {
c1194c79 1504 if (!NAND_SUBPAGE_READ(chip) && !oob &&
6d77b9d0 1505 !(mtd->ecc_stats.failed - stats.failed) &&
edbc4540 1506 (ops->mode != MTD_OPS_RAW)) {
3d459559 1507 chip->pagebuf = realpage;
edbc4540
MD
1508 chip->pagebuf_bitflips = ret;
1509 } else {
6d77b9d0
BN
1510 /* Invalidate page cache */
1511 chip->pagebuf = -1;
edbc4540 1512 }
4bf63fcb 1513 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
1514 }
1515
8593fbc6
TG
1516 buf += bytes;
1517
1518 if (unlikely(oob)) {
b64d39d8
ML
1519 int toread = min(oobreadlen, max_oobsize);
1520
1521 if (toread) {
1522 oob = nand_transfer_oob(chip,
1523 oob, ops, toread);
1524 oobreadlen -= toread;
1525 }
8593fbc6 1526 }
8593fbc6 1527 } else {
4bf63fcb 1528 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6 1529 buf += bytes;
edbc4540
MD
1530 max_bitflips = max_t(unsigned int, max_bitflips,
1531 chip->pagebuf_bitflips);
8593fbc6 1532 }
1da177e4 1533
f5bbdacc 1534 readlen -= bytes;
61b03bd7 1535
f5bbdacc 1536 if (!readlen)
61b03bd7 1537 break;
1da177e4 1538
8b6e50c9 1539 /* For subsequent reads align to page boundary */
1da177e4
LT
1540 col = 0;
1541 /* Increment page address */
1542 realpage++;
1543
ace4dfee 1544 page = realpage & chip->pagemask;
1da177e4
LT
1545 /* Check, if we cross a chip boundary */
1546 if (!page) {
1547 chipnr++;
ace4dfee
TG
1548 chip->select_chip(mtd, -1);
1549 chip->select_chip(mtd, chipnr);
1da177e4 1550 }
1da177e4
LT
1551 }
1552
8593fbc6 1553 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
1554 if (oob)
1555 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 1556
3f91e94f 1557 if (ret < 0)
f5bbdacc
TG
1558 return ret;
1559
9a1fcdfd
TG
1560 if (mtd->ecc_stats.failed - stats.failed)
1561 return -EBADMSG;
1562
edbc4540 1563 return max_bitflips;
f5bbdacc
TG
1564}
1565
1566/**
25985edc 1567 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
8b6e50c9
BN
1568 * @mtd: MTD device structure
1569 * @from: offset to read from
1570 * @len: number of bytes to read
1571 * @retlen: pointer to variable to store the number of read bytes
1572 * @buf: the databuffer to put data
f5bbdacc 1573 *
8b6e50c9 1574 * Get hold of the chip and call nand_do_read.
f5bbdacc
TG
1575 */
1576static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1577 size_t *retlen, uint8_t *buf)
1578{
8593fbc6 1579 struct nand_chip *chip = mtd->priv;
4a89ff88 1580 struct mtd_oob_ops ops;
f5bbdacc
TG
1581 int ret;
1582
8593fbc6 1583 nand_get_device(chip, mtd, FL_READING);
4a89ff88
BN
1584 ops.len = len;
1585 ops.datbuf = buf;
1586 ops.oobbuf = NULL;
11041ae6 1587 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 1588 ret = nand_do_read_ops(mtd, from, &ops);
4a89ff88 1589 *retlen = ops.retlen;
f5bbdacc 1590 nand_release_device(mtd);
f5bbdacc 1591 return ret;
1da177e4
LT
1592}
1593
7bc3312b 1594/**
7854d3f7 1595 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
1596 * @mtd: mtd info structure
1597 * @chip: nand chip info structure
1598 * @page: page number to read
7bc3312b
TG
1599 */
1600static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1601 int page)
7bc3312b 1602{
5c2ffb11 1603 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
7bc3312b 1604 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
5c2ffb11 1605 return 0;
7bc3312b
TG
1606}
1607
1608/**
7854d3f7 1609 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 1610 * with syndromes
8b6e50c9
BN
1611 * @mtd: mtd info structure
1612 * @chip: nand chip info structure
1613 * @page: page number to read
7bc3312b
TG
1614 */
1615static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1616 int page)
7bc3312b
TG
1617{
1618 uint8_t *buf = chip->oob_poi;
1619 int length = mtd->oobsize;
1620 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1621 int eccsize = chip->ecc.size;
1622 uint8_t *bufpoi = buf;
1623 int i, toread, sndrnd = 0, pos;
1624
1625 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1626 for (i = 0; i < chip->ecc.steps; i++) {
1627 if (sndrnd) {
1628 pos = eccsize + i * (eccsize + chunk);
1629 if (mtd->writesize > 512)
1630 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1631 else
1632 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1633 } else
1634 sndrnd = 1;
1635 toread = min_t(int, length, chunk);
1636 chip->read_buf(mtd, bufpoi, toread);
1637 bufpoi += toread;
1638 length -= toread;
1639 }
1640 if (length > 0)
1641 chip->read_buf(mtd, bufpoi, length);
1642
5c2ffb11 1643 return 0;
7bc3312b
TG
1644}
1645
1646/**
7854d3f7 1647 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
1648 * @mtd: mtd info structure
1649 * @chip: nand chip info structure
1650 * @page: page number to write
7bc3312b
TG
1651 */
1652static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1653 int page)
1654{
1655 int status = 0;
1656 const uint8_t *buf = chip->oob_poi;
1657 int length = mtd->oobsize;
1658
1659 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1660 chip->write_buf(mtd, buf, length);
1661 /* Send command to program the OOB data */
1662 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1663
1664 status = chip->waitfunc(mtd, chip);
1665
0d420f9d 1666 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b
TG
1667}
1668
1669/**
7854d3f7 1670 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
1671 * with syndrome - only for large page flash
1672 * @mtd: mtd info structure
1673 * @chip: nand chip info structure
1674 * @page: page number to write
7bc3312b
TG
1675 */
1676static int nand_write_oob_syndrome(struct mtd_info *mtd,
1677 struct nand_chip *chip, int page)
1678{
1679 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1680 int eccsize = chip->ecc.size, length = mtd->oobsize;
1681 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1682 const uint8_t *bufpoi = chip->oob_poi;
1683
1684 /*
1685 * data-ecc-data-ecc ... ecc-oob
1686 * or
1687 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1688 */
1689 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1690 pos = steps * (eccsize + chunk);
1691 steps = 0;
1692 } else
8b0036ee 1693 pos = eccsize;
7bc3312b
TG
1694
1695 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1696 for (i = 0; i < steps; i++) {
1697 if (sndcmd) {
1698 if (mtd->writesize <= 512) {
1699 uint32_t fill = 0xFFFFFFFF;
1700
1701 len = eccsize;
1702 while (len > 0) {
1703 int num = min_t(int, len, 4);
1704 chip->write_buf(mtd, (uint8_t *)&fill,
1705 num);
1706 len -= num;
1707 }
1708 } else {
1709 pos = eccsize + i * (eccsize + chunk);
1710 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1711 }
1712 } else
1713 sndcmd = 1;
1714 len = min_t(int, length, chunk);
1715 chip->write_buf(mtd, bufpoi, len);
1716 bufpoi += len;
1717 length -= len;
1718 }
1719 if (length > 0)
1720 chip->write_buf(mtd, bufpoi, length);
1721
1722 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1723 status = chip->waitfunc(mtd, chip);
1724
1725 return status & NAND_STATUS_FAIL ? -EIO : 0;
1726}
1727
1da177e4 1728/**
7854d3f7 1729 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
1730 * @mtd: MTD device structure
1731 * @from: offset to read from
1732 * @ops: oob operations description structure
1da177e4 1733 *
8b6e50c9 1734 * NAND read out-of-band data from the spare area.
1da177e4 1735 */
8593fbc6
TG
1736static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1737 struct mtd_oob_ops *ops)
1da177e4 1738{
c00a0991 1739 int page, realpage, chipnr;
ace4dfee 1740 struct nand_chip *chip = mtd->priv;
041e4575 1741 struct mtd_ecc_stats stats;
7014568b
VW
1742 int readlen = ops->ooblen;
1743 int len;
7bc3312b 1744 uint8_t *buf = ops->oobbuf;
1951f2f7 1745 int ret = 0;
61b03bd7 1746
289c0522 1747 pr_debug("%s: from = 0x%08Lx, len = %i\n",
20d8e248 1748 __func__, (unsigned long long)from, readlen);
1da177e4 1749
041e4575
BN
1750 stats = mtd->ecc_stats;
1751
0612b9dd 1752 if (ops->mode == MTD_OPS_AUTO_OOB)
7014568b 1753 len = chip->ecc.layout->oobavail;
03736155
AH
1754 else
1755 len = mtd->oobsize;
1756
1757 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
1758 pr_debug("%s: attempt to start read outside oob\n",
1759 __func__);
03736155
AH
1760 return -EINVAL;
1761 }
1762
1763 /* Do not allow reads past end of device */
1764 if (unlikely(from >= mtd->size ||
1765 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1766 (from >> chip->page_shift)) * len)) {
289c0522
BN
1767 pr_debug("%s: attempt to read beyond end of device\n",
1768 __func__);
03736155
AH
1769 return -EINVAL;
1770 }
7014568b 1771
7314e9e7 1772 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 1773 chip->select_chip(mtd, chipnr);
1da177e4 1774
7314e9e7
TG
1775 /* Shift to get page */
1776 realpage = (int)(from >> chip->page_shift);
1777 page = realpage & chip->pagemask;
1da177e4 1778
f8ac0414 1779 while (1) {
0612b9dd 1780 if (ops->mode == MTD_OPS_RAW)
1951f2f7 1781 ret = chip->ecc.read_oob_raw(mtd, chip, page);
c46f6483 1782 else
1951f2f7
SL
1783 ret = chip->ecc.read_oob(mtd, chip, page);
1784
1785 if (ret < 0)
1786 break;
7014568b
VW
1787
1788 len = min(len, readlen);
1789 buf = nand_transfer_oob(chip, buf, ops, len);
8593fbc6 1790
7014568b 1791 readlen -= len;
0d420f9d
SZ
1792 if (!readlen)
1793 break;
1794
7314e9e7
TG
1795 /* Increment page address */
1796 realpage++;
1797
1798 page = realpage & chip->pagemask;
1799 /* Check, if we cross a chip boundary */
1800 if (!page) {
1801 chipnr++;
1802 chip->select_chip(mtd, -1);
1803 chip->select_chip(mtd, chipnr);
1da177e4
LT
1804 }
1805 }
1806
1951f2f7
SL
1807 ops->oobretlen = ops->ooblen - readlen;
1808
1809 if (ret < 0)
1810 return ret;
041e4575
BN
1811
1812 if (mtd->ecc_stats.failed - stats.failed)
1813 return -EBADMSG;
1814
1815 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1da177e4
LT
1816}
1817
1818/**
8593fbc6 1819 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
1820 * @mtd: MTD device structure
1821 * @from: offset to read from
1822 * @ops: oob operation description structure
1da177e4 1823 *
8b6e50c9 1824 * NAND read data and/or out-of-band data.
1da177e4 1825 */
8593fbc6
TG
1826static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1827 struct mtd_oob_ops *ops)
1da177e4 1828{
ace4dfee 1829 struct nand_chip *chip = mtd->priv;
8593fbc6
TG
1830 int ret = -ENOTSUPP;
1831
1832 ops->retlen = 0;
1da177e4
LT
1833
1834 /* Do not allow reads past end of device */
7014568b 1835 if (ops->datbuf && (from + ops->len) > mtd->size) {
289c0522
BN
1836 pr_debug("%s: attempt to read beyond end of device\n",
1837 __func__);
1da177e4
LT
1838 return -EINVAL;
1839 }
1840
ace4dfee 1841 nand_get_device(chip, mtd, FL_READING);
1da177e4 1842
f8ac0414 1843 switch (ops->mode) {
0612b9dd
BN
1844 case MTD_OPS_PLACE_OOB:
1845 case MTD_OPS_AUTO_OOB:
1846 case MTD_OPS_RAW:
8593fbc6 1847 break;
1da177e4 1848
8593fbc6
TG
1849 default:
1850 goto out;
1851 }
1da177e4 1852
8593fbc6
TG
1853 if (!ops->datbuf)
1854 ret = nand_do_read_oob(mtd, from, ops);
1855 else
1856 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 1857
7351d3a5 1858out:
8593fbc6
TG
1859 nand_release_device(mtd);
1860 return ret;
1861}
61b03bd7 1862
1da177e4 1863
8593fbc6 1864/**
7854d3f7 1865 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
1866 * @mtd: mtd info structure
1867 * @chip: nand chip info structure
1868 * @buf: data buffer
1fbb938d 1869 * @oob_required: must write chip->oob_poi to OOB
52ff49df 1870 *
7854d3f7 1871 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 1872 */
fdbad98d 1873static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1874 const uint8_t *buf, int oob_required)
8593fbc6
TG
1875{
1876 chip->write_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1877 if (oob_required)
1878 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
1879
1880 return 0;
1da177e4
LT
1881}
1882
52ff49df 1883/**
7854d3f7 1884 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
1885 * @mtd: mtd info structure
1886 * @chip: nand chip info structure
1887 * @buf: data buffer
1fbb938d 1888 * @oob_required: must write chip->oob_poi to OOB
52ff49df
DB
1889 *
1890 * We need a special oob layout and handling even when ECC isn't checked.
1891 */
fdbad98d 1892static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
7351d3a5 1893 struct nand_chip *chip,
1fbb938d 1894 const uint8_t *buf, int oob_required)
52ff49df
DB
1895{
1896 int eccsize = chip->ecc.size;
1897 int eccbytes = chip->ecc.bytes;
1898 uint8_t *oob = chip->oob_poi;
1899 int steps, size;
1900
1901 for (steps = chip->ecc.steps; steps > 0; steps--) {
1902 chip->write_buf(mtd, buf, eccsize);
1903 buf += eccsize;
1904
1905 if (chip->ecc.prepad) {
1906 chip->write_buf(mtd, oob, chip->ecc.prepad);
1907 oob += chip->ecc.prepad;
1908 }
1909
1910 chip->read_buf(mtd, oob, eccbytes);
1911 oob += eccbytes;
1912
1913 if (chip->ecc.postpad) {
1914 chip->write_buf(mtd, oob, chip->ecc.postpad);
1915 oob += chip->ecc.postpad;
1916 }
1917 }
1918
1919 size = mtd->oobsize - (oob - chip->oob_poi);
1920 if (size)
1921 chip->write_buf(mtd, oob, size);
fdbad98d
JW
1922
1923 return 0;
52ff49df 1924}
9223a456 1925/**
7854d3f7 1926 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
1927 * @mtd: mtd info structure
1928 * @chip: nand chip info structure
1929 * @buf: data buffer
1fbb938d 1930 * @oob_required: must write chip->oob_poi to OOB
9223a456 1931 */
fdbad98d 1932static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1933 const uint8_t *buf, int oob_required)
9223a456 1934{
f75e5097
TG
1935 int i, eccsize = chip->ecc.size;
1936 int eccbytes = chip->ecc.bytes;
1937 int eccsteps = chip->ecc.steps;
4bf63fcb 1938 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 1939 const uint8_t *p = buf;
8b099a39 1940 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 1941
7854d3f7 1942 /* Software ECC calculation */
8593fbc6
TG
1943 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1944 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 1945
8593fbc6
TG
1946 for (i = 0; i < chip->ecc.total; i++)
1947 chip->oob_poi[eccpos[i]] = ecc_calc[i];
9223a456 1948
fdbad98d 1949 return chip->ecc.write_page_raw(mtd, chip, buf, 1);
f75e5097 1950}
9223a456 1951
f75e5097 1952/**
7854d3f7 1953 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
1954 * @mtd: mtd info structure
1955 * @chip: nand chip info structure
1956 * @buf: data buffer
1fbb938d 1957 * @oob_required: must write chip->oob_poi to OOB
f75e5097 1958 */
fdbad98d 1959static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1960 const uint8_t *buf, int oob_required)
f75e5097
TG
1961{
1962 int i, eccsize = chip->ecc.size;
1963 int eccbytes = chip->ecc.bytes;
1964 int eccsteps = chip->ecc.steps;
4bf63fcb 1965 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 1966 const uint8_t *p = buf;
8b099a39 1967 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 1968
f75e5097
TG
1969 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1970 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 1971 chip->write_buf(mtd, p, eccsize);
f75e5097 1972 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
1973 }
1974
f75e5097
TG
1975 for (i = 0; i < chip->ecc.total; i++)
1976 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1977
1978 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
1979
1980 return 0;
9223a456
TG
1981}
1982
61b03bd7 1983/**
7854d3f7 1984 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
1985 * @mtd: mtd info structure
1986 * @chip: nand chip info structure
1987 * @buf: data buffer
1fbb938d 1988 * @oob_required: must write chip->oob_poi to OOB
1da177e4 1989 *
8b6e50c9
BN
1990 * The hw generator calculates the error syndrome automatically. Therefore we
1991 * need a special oob layout and handling.
f75e5097 1992 */
fdbad98d 1993static int nand_write_page_syndrome(struct mtd_info *mtd,
1fbb938d
BN
1994 struct nand_chip *chip,
1995 const uint8_t *buf, int oob_required)
1da177e4 1996{
f75e5097
TG
1997 int i, eccsize = chip->ecc.size;
1998 int eccbytes = chip->ecc.bytes;
1999 int eccsteps = chip->ecc.steps;
2000 const uint8_t *p = buf;
2001 uint8_t *oob = chip->oob_poi;
1da177e4 2002
f75e5097 2003 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2004
f75e5097
TG
2005 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2006 chip->write_buf(mtd, p, eccsize);
61b03bd7 2007
f75e5097
TG
2008 if (chip->ecc.prepad) {
2009 chip->write_buf(mtd, oob, chip->ecc.prepad);
2010 oob += chip->ecc.prepad;
2011 }
2012
2013 chip->ecc.calculate(mtd, p, oob);
2014 chip->write_buf(mtd, oob, eccbytes);
2015 oob += eccbytes;
2016
2017 if (chip->ecc.postpad) {
2018 chip->write_buf(mtd, oob, chip->ecc.postpad);
2019 oob += chip->ecc.postpad;
1da177e4 2020 }
1da177e4 2021 }
f75e5097
TG
2022
2023 /* Calculate remaining oob bytes */
7e4178f9 2024 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2025 if (i)
2026 chip->write_buf(mtd, oob, i);
fdbad98d
JW
2027
2028 return 0;
f75e5097
TG
2029}
2030
2031/**
956e944c 2032 * nand_write_page - [REPLACEABLE] write one page
8b6e50c9
BN
2033 * @mtd: MTD device structure
2034 * @chip: NAND chip descriptor
2035 * @buf: the data to write
1fbb938d 2036 * @oob_required: must write chip->oob_poi to OOB
8b6e50c9
BN
2037 * @page: page number to write
2038 * @cached: cached programming
2039 * @raw: use _raw version of write_page
f75e5097
TG
2040 */
2041static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d
BN
2042 const uint8_t *buf, int oob_required, int page,
2043 int cached, int raw)
f75e5097
TG
2044{
2045 int status;
2046
2047 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2048
956e944c 2049 if (unlikely(raw))
fdbad98d 2050 status = chip->ecc.write_page_raw(mtd, chip, buf, oob_required);
956e944c 2051 else
fdbad98d
JW
2052 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2053
2054 if (status < 0)
2055 return status;
f75e5097
TG
2056
2057 /*
7854d3f7 2058 * Cached progamming disabled for now. Not sure if it's worth the
8b6e50c9 2059 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
f75e5097
TG
2060 */
2061 cached = 0;
2062
2063 if (!cached || !(chip->options & NAND_CACHEPRG)) {
2064
2065 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2066 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2067 /*
2068 * See if operation failed and additional status checks are
8b6e50c9 2069 * available.
f75e5097
TG
2070 */
2071 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2072 status = chip->errstat(mtd, chip, FL_WRITING, status,
2073 page);
2074
2075 if (status & NAND_STATUS_FAIL)
2076 return -EIO;
2077 } else {
2078 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2079 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2080 }
2081
f75e5097 2082 return 0;
1da177e4
LT
2083}
2084
8593fbc6 2085/**
7854d3f7 2086 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 2087 * @mtd: MTD device structure
8b6e50c9
BN
2088 * @oob: oob data buffer
2089 * @len: oob data write length
2090 * @ops: oob ops structure
8593fbc6 2091 */
f722013e
TAA
2092static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2093 struct mtd_oob_ops *ops)
8593fbc6 2094{
f722013e
TAA
2095 struct nand_chip *chip = mtd->priv;
2096
2097 /*
2098 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2099 * data from a previous OOB read.
2100 */
2101 memset(chip->oob_poi, 0xff, mtd->oobsize);
2102
f8ac0414 2103 switch (ops->mode) {
8593fbc6 2104
0612b9dd
BN
2105 case MTD_OPS_PLACE_OOB:
2106 case MTD_OPS_RAW:
8593fbc6
TG
2107 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2108 return oob + len;
2109
0612b9dd 2110 case MTD_OPS_AUTO_OOB: {
8593fbc6 2111 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
2112 uint32_t boffs = 0, woffs = ops->ooboffs;
2113 size_t bytes = 0;
8593fbc6 2114
f8ac0414 2115 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 2116 /* Write request not from offset 0? */
7bc3312b
TG
2117 if (unlikely(woffs)) {
2118 if (woffs >= free->length) {
2119 woffs -= free->length;
2120 continue;
2121 }
2122 boffs = free->offset + woffs;
2123 bytes = min_t(size_t, len,
2124 (free->length - woffs));
2125 woffs = 0;
2126 } else {
2127 bytes = min_t(size_t, len, free->length);
2128 boffs = free->offset;
2129 }
8b0036ee 2130 memcpy(chip->oob_poi + boffs, oob, bytes);
8593fbc6
TG
2131 oob += bytes;
2132 }
2133 return oob;
2134 }
2135 default:
2136 BUG();
2137 }
2138 return NULL;
2139}
2140
f8ac0414 2141#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
2142
2143/**
7854d3f7 2144 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
2145 * @mtd: MTD device structure
2146 * @to: offset to write to
2147 * @ops: oob operations description structure
1da177e4 2148 *
8b6e50c9 2149 * NAND write with ECC.
1da177e4 2150 */
8593fbc6
TG
2151static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2152 struct mtd_oob_ops *ops)
1da177e4 2153{
29072b96 2154 int chipnr, realpage, page, blockmask, column;
ace4dfee 2155 struct nand_chip *chip = mtd->priv;
8593fbc6 2156 uint32_t writelen = ops->len;
782ce79a
ML
2157
2158 uint32_t oobwritelen = ops->ooblen;
0612b9dd 2159 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
782ce79a
ML
2160 mtd->oobavail : mtd->oobsize;
2161
8593fbc6
TG
2162 uint8_t *oob = ops->oobbuf;
2163 uint8_t *buf = ops->datbuf;
29072b96 2164 int ret, subpage;
e47f3db4 2165 int oob_required = oob ? 1 : 0;
1da177e4 2166
8593fbc6 2167 ops->retlen = 0;
29072b96
TG
2168 if (!writelen)
2169 return 0;
1da177e4 2170
8b6e50c9 2171 /* Reject writes, which are not page aligned */
8593fbc6 2172 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
2173 pr_notice("%s: attempt to write non page aligned data\n",
2174 __func__);
1da177e4
LT
2175 return -EINVAL;
2176 }
2177
29072b96
TG
2178 column = to & (mtd->writesize - 1);
2179 subpage = column || (writelen & (mtd->writesize - 1));
2180
2181 if (subpage && oob)
2182 return -EINVAL;
1da177e4 2183
6a930961
TG
2184 chipnr = (int)(to >> chip->chip_shift);
2185 chip->select_chip(mtd, chipnr);
2186
1da177e4
LT
2187 /* Check, if it is write protected */
2188 if (nand_check_wp(mtd))
8593fbc6 2189 return -EIO;
1da177e4 2190
f75e5097
TG
2191 realpage = (int)(to >> chip->page_shift);
2192 page = realpage & chip->pagemask;
2193 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2194
2195 /* Invalidate the page cache, when we write to the cached page */
2196 if (to <= (chip->pagebuf << chip->page_shift) &&
8593fbc6 2197 (chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2198 chip->pagebuf = -1;
61b03bd7 2199
782ce79a 2200 /* Don't allow multipage oob writes with offset */
cdcf12b2 2201 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
782ce79a
ML
2202 return -EINVAL;
2203
f8ac0414 2204 while (1) {
29072b96 2205 int bytes = mtd->writesize;
f75e5097 2206 int cached = writelen > bytes && page != blockmask;
29072b96
TG
2207 uint8_t *wbuf = buf;
2208
8b6e50c9 2209 /* Partial page write? */
29072b96
TG
2210 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2211 cached = 0;
2212 bytes = min_t(int, bytes - column, (int) writelen);
2213 chip->pagebuf = -1;
2214 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2215 memcpy(&chip->buffers->databuf[column], buf, bytes);
2216 wbuf = chip->buffers->databuf;
2217 }
1da177e4 2218
782ce79a
ML
2219 if (unlikely(oob)) {
2220 size_t len = min(oobwritelen, oobmaxlen);
f722013e 2221 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 2222 oobwritelen -= len;
f722013e
TAA
2223 } else {
2224 /* We still need to erase leftover OOB data */
2225 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2226 }
8593fbc6 2227
e47f3db4
BN
2228 ret = chip->write_page(mtd, chip, wbuf, oob_required, page,
2229 cached, (ops->mode == MTD_OPS_RAW));
f75e5097
TG
2230 if (ret)
2231 break;
2232
2233 writelen -= bytes;
2234 if (!writelen)
2235 break;
2236
29072b96 2237 column = 0;
f75e5097
TG
2238 buf += bytes;
2239 realpage++;
2240
2241 page = realpage & chip->pagemask;
2242 /* Check, if we cross a chip boundary */
2243 if (!page) {
2244 chipnr++;
2245 chip->select_chip(mtd, -1);
2246 chip->select_chip(mtd, chipnr);
1da177e4
LT
2247 }
2248 }
8593fbc6 2249
8593fbc6 2250 ops->retlen = ops->len - writelen;
7014568b
VW
2251 if (unlikely(oob))
2252 ops->oobretlen = ops->ooblen;
1da177e4
LT
2253 return ret;
2254}
2255
2af7c653
SK
2256/**
2257 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2258 * @mtd: MTD device structure
2259 * @to: offset to write to
2260 * @len: number of bytes to write
2261 * @retlen: pointer to variable to store the number of written bytes
2262 * @buf: the data to write
2af7c653
SK
2263 *
2264 * NAND write with ECC. Used when performing writes in interrupt context, this
2265 * may for example be called by mtdoops when writing an oops while in panic.
2266 */
2267static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2268 size_t *retlen, const uint8_t *buf)
2269{
2270 struct nand_chip *chip = mtd->priv;
4a89ff88 2271 struct mtd_oob_ops ops;
2af7c653
SK
2272 int ret;
2273
8b6e50c9 2274 /* Wait for the device to get ready */
2af7c653
SK
2275 panic_nand_wait(mtd, chip, 400);
2276
8b6e50c9 2277 /* Grab the device */
2af7c653
SK
2278 panic_nand_get_device(chip, mtd, FL_WRITING);
2279
4a89ff88
BN
2280 ops.len = len;
2281 ops.datbuf = (uint8_t *)buf;
2282 ops.oobbuf = NULL;
11041ae6 2283 ops.mode = MTD_OPS_PLACE_OOB;
2af7c653 2284
4a89ff88 2285 ret = nand_do_write_ops(mtd, to, &ops);
2af7c653 2286
4a89ff88 2287 *retlen = ops.retlen;
2af7c653
SK
2288 return ret;
2289}
2290
f75e5097 2291/**
8593fbc6 2292 * nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2293 * @mtd: MTD device structure
2294 * @to: offset to write to
2295 * @len: number of bytes to write
2296 * @retlen: pointer to variable to store the number of written bytes
2297 * @buf: the data to write
f75e5097 2298 *
8b6e50c9 2299 * NAND write with ECC.
f75e5097 2300 */
8593fbc6
TG
2301static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2302 size_t *retlen, const uint8_t *buf)
f75e5097
TG
2303{
2304 struct nand_chip *chip = mtd->priv;
4a89ff88 2305 struct mtd_oob_ops ops;
f75e5097
TG
2306 int ret;
2307
7bc3312b 2308 nand_get_device(chip, mtd, FL_WRITING);
4a89ff88
BN
2309 ops.len = len;
2310 ops.datbuf = (uint8_t *)buf;
2311 ops.oobbuf = NULL;
11041ae6 2312 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 2313 ret = nand_do_write_ops(mtd, to, &ops);
4a89ff88 2314 *retlen = ops.retlen;
f75e5097 2315 nand_release_device(mtd);
8593fbc6 2316 return ret;
f75e5097 2317}
7314e9e7 2318
1da177e4 2319/**
8593fbc6 2320 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
2321 * @mtd: MTD device structure
2322 * @to: offset to write to
2323 * @ops: oob operation description structure
1da177e4 2324 *
8b6e50c9 2325 * NAND write out-of-band.
1da177e4 2326 */
8593fbc6
TG
2327static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2328 struct mtd_oob_ops *ops)
1da177e4 2329{
03736155 2330 int chipnr, page, status, len;
ace4dfee 2331 struct nand_chip *chip = mtd->priv;
1da177e4 2332
289c0522 2333 pr_debug("%s: to = 0x%08x, len = %i\n",
20d8e248 2334 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 2335
0612b9dd 2336 if (ops->mode == MTD_OPS_AUTO_OOB)
03736155
AH
2337 len = chip->ecc.layout->oobavail;
2338 else
2339 len = mtd->oobsize;
2340
1da177e4 2341 /* Do not allow write past end of page */
03736155 2342 if ((ops->ooboffs + ops->ooblen) > len) {
289c0522
BN
2343 pr_debug("%s: attempt to write past end of page\n",
2344 __func__);
1da177e4
LT
2345 return -EINVAL;
2346 }
2347
03736155 2348 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2349 pr_debug("%s: attempt to start write outside oob\n",
2350 __func__);
03736155
AH
2351 return -EINVAL;
2352 }
2353
775adc3d 2354 /* Do not allow write past end of device */
03736155
AH
2355 if (unlikely(to >= mtd->size ||
2356 ops->ooboffs + ops->ooblen >
2357 ((mtd->size >> chip->page_shift) -
2358 (to >> chip->page_shift)) * len)) {
289c0522
BN
2359 pr_debug("%s: attempt to write beyond end of device\n",
2360 __func__);
03736155
AH
2361 return -EINVAL;
2362 }
2363
7314e9e7 2364 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 2365 chip->select_chip(mtd, chipnr);
1da177e4 2366
7314e9e7
TG
2367 /* Shift to get page */
2368 page = (int)(to >> chip->page_shift);
2369
2370 /*
2371 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2372 * of my DiskOnChip 2000 test units) will clear the whole data page too
2373 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2374 * it in the doc2000 driver in August 1999. dwmw2.
2375 */
ace4dfee 2376 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
2377
2378 /* Check, if it is write protected */
2379 if (nand_check_wp(mtd))
8593fbc6 2380 return -EROFS;
61b03bd7 2381
1da177e4 2382 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
2383 if (page == chip->pagebuf)
2384 chip->pagebuf = -1;
1da177e4 2385
f722013e 2386 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
9ce244b3 2387
0612b9dd 2388 if (ops->mode == MTD_OPS_RAW)
9ce244b3
BN
2389 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2390 else
2391 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 2392
7bc3312b
TG
2393 if (status)
2394 return status;
1da177e4 2395
7014568b 2396 ops->oobretlen = ops->ooblen;
1da177e4 2397
7bc3312b 2398 return 0;
8593fbc6
TG
2399}
2400
2401/**
2402 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
2403 * @mtd: MTD device structure
2404 * @to: offset to write to
2405 * @ops: oob operation description structure
8593fbc6
TG
2406 */
2407static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2408 struct mtd_oob_ops *ops)
2409{
8593fbc6
TG
2410 struct nand_chip *chip = mtd->priv;
2411 int ret = -ENOTSUPP;
2412
2413 ops->retlen = 0;
2414
2415 /* Do not allow writes past end of device */
7014568b 2416 if (ops->datbuf && (to + ops->len) > mtd->size) {
289c0522
BN
2417 pr_debug("%s: attempt to write beyond end of device\n",
2418 __func__);
8593fbc6
TG
2419 return -EINVAL;
2420 }
2421
7bc3312b 2422 nand_get_device(chip, mtd, FL_WRITING);
8593fbc6 2423
f8ac0414 2424 switch (ops->mode) {
0612b9dd
BN
2425 case MTD_OPS_PLACE_OOB:
2426 case MTD_OPS_AUTO_OOB:
2427 case MTD_OPS_RAW:
8593fbc6
TG
2428 break;
2429
2430 default:
2431 goto out;
2432 }
2433
2434 if (!ops->datbuf)
2435 ret = nand_do_write_oob(mtd, to, ops);
2436 else
2437 ret = nand_do_write_ops(mtd, to, ops);
2438
7351d3a5 2439out:
1da177e4 2440 nand_release_device(mtd);
1da177e4
LT
2441 return ret;
2442}
2443
1da177e4 2444/**
7854d3f7 2445 * single_erase_cmd - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
2446 * @mtd: MTD device structure
2447 * @page: the page address of the block which will be erased
1da177e4 2448 *
8b6e50c9 2449 * Standard erase command for NAND chips.
1da177e4 2450 */
e0c7d767 2451static void single_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2452{
ace4dfee 2453 struct nand_chip *chip = mtd->priv;
1da177e4 2454 /* Send commands to erase a block */
ace4dfee
TG
2455 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2456 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2457}
2458
2459/**
7854d3f7 2460 * multi_erase_cmd - [GENERIC] AND specific block erase command function
8b6e50c9
BN
2461 * @mtd: MTD device structure
2462 * @page: the page address of the block which will be erased
1da177e4 2463 *
8b6e50c9 2464 * AND multi block erase command function. Erase 4 consecutive blocks.
1da177e4 2465 */
e0c7d767 2466static void multi_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2467{
ace4dfee 2468 struct nand_chip *chip = mtd->priv;
1da177e4 2469 /* Send commands to erase a block */
ace4dfee
TG
2470 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2471 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2472 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2473 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2474 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2475}
2476
2477/**
2478 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
2479 * @mtd: MTD device structure
2480 * @instr: erase instruction
1da177e4 2481 *
8b6e50c9 2482 * Erase one ore more blocks.
1da177e4 2483 */
e0c7d767 2484static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2485{
e0c7d767 2486 return nand_erase_nand(mtd, instr, 0);
1da177e4 2487}
61b03bd7 2488
30f464b7 2489#define BBT_PAGE_MASK 0xffffff3f
1da177e4 2490/**
7854d3f7 2491 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
2492 * @mtd: MTD device structure
2493 * @instr: erase instruction
2494 * @allowbbt: allow erasing the bbt area
1da177e4 2495 *
8b6e50c9 2496 * Erase one ore more blocks.
1da177e4 2497 */
ace4dfee
TG
2498int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2499 int allowbbt)
1da177e4 2500{
69423d99 2501 int page, status, pages_per_block, ret, chipnr;
ace4dfee 2502 struct nand_chip *chip = mtd->priv;
f8ac0414 2503 loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
ace4dfee 2504 unsigned int bbt_masked_page = 0xffffffff;
69423d99 2505 loff_t len;
1da177e4 2506
289c0522
BN
2507 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2508 __func__, (unsigned long long)instr->addr,
2509 (unsigned long long)instr->len);
1da177e4 2510
6fe5a6ac 2511 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 2512 return -EINVAL;
1da177e4 2513
1da177e4 2514 /* Grab the lock and see if the device is available */
ace4dfee 2515 nand_get_device(chip, mtd, FL_ERASING);
1da177e4
LT
2516
2517 /* Shift to get first page */
ace4dfee
TG
2518 page = (int)(instr->addr >> chip->page_shift);
2519 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
2520
2521 /* Calculate pages in each block */
ace4dfee 2522 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
2523
2524 /* Select the NAND device */
ace4dfee 2525 chip->select_chip(mtd, chipnr);
1da177e4 2526
1da177e4
LT
2527 /* Check, if it is write protected */
2528 if (nand_check_wp(mtd)) {
289c0522
BN
2529 pr_debug("%s: device is write protected!\n",
2530 __func__);
1da177e4
LT
2531 instr->state = MTD_ERASE_FAILED;
2532 goto erase_exit;
2533 }
2534
ace4dfee
TG
2535 /*
2536 * If BBT requires refresh, set the BBT page mask to see if the BBT
2537 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2538 * can not be matched. This is also done when the bbt is actually
7854d3f7 2539 * erased to avoid recursive updates.
ace4dfee
TG
2540 */
2541 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2542 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
30f464b7 2543
1da177e4
LT
2544 /* Loop through the pages */
2545 len = instr->len;
2546
2547 instr->state = MTD_ERASING;
2548
2549 while (len) {
12183a20 2550 /* Check if we have a bad block, we do not erase bad blocks! */
ace4dfee
TG
2551 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2552 chip->page_shift, 0, allowbbt)) {
d0370219
BN
2553 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2554 __func__, page);
1da177e4
LT
2555 instr->state = MTD_ERASE_FAILED;
2556 goto erase_exit;
2557 }
61b03bd7 2558
ace4dfee
TG
2559 /*
2560 * Invalidate the page cache, if we erase the block which
8b6e50c9 2561 * contains the current cached page.
ace4dfee
TG
2562 */
2563 if (page <= chip->pagebuf && chip->pagebuf <
2564 (page + pages_per_block))
2565 chip->pagebuf = -1;
1da177e4 2566
ace4dfee 2567 chip->erase_cmd(mtd, page & chip->pagemask);
61b03bd7 2568
7bc3312b 2569 status = chip->waitfunc(mtd, chip);
1da177e4 2570
ace4dfee
TG
2571 /*
2572 * See if operation failed and additional status checks are
2573 * available
2574 */
2575 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2576 status = chip->errstat(mtd, chip, FL_ERASING,
2577 status, page);
068e3c0a 2578
1da177e4 2579 /* See if block erase succeeded */
a4ab4c5d 2580 if (status & NAND_STATUS_FAIL) {
289c0522
BN
2581 pr_debug("%s: failed erase, page 0x%08x\n",
2582 __func__, page);
1da177e4 2583 instr->state = MTD_ERASE_FAILED;
69423d99
AH
2584 instr->fail_addr =
2585 ((loff_t)page << chip->page_shift);
1da177e4
LT
2586 goto erase_exit;
2587 }
30f464b7 2588
ace4dfee
TG
2589 /*
2590 * If BBT requires refresh, set the BBT rewrite flag to the
8b6e50c9 2591 * page being erased.
ace4dfee
TG
2592 */
2593 if (bbt_masked_page != 0xffffffff &&
2594 (page & BBT_PAGE_MASK) == bbt_masked_page)
69423d99
AH
2595 rewrite_bbt[chipnr] =
2596 ((loff_t)page << chip->page_shift);
61b03bd7 2597
1da177e4 2598 /* Increment page address and decrement length */
ace4dfee 2599 len -= (1 << chip->phys_erase_shift);
1da177e4
LT
2600 page += pages_per_block;
2601
2602 /* Check, if we cross a chip boundary */
ace4dfee 2603 if (len && !(page & chip->pagemask)) {
1da177e4 2604 chipnr++;
ace4dfee
TG
2605 chip->select_chip(mtd, -1);
2606 chip->select_chip(mtd, chipnr);
30f464b7 2607
ace4dfee
TG
2608 /*
2609 * If BBT requires refresh and BBT-PERCHIP, set the BBT
8b6e50c9 2610 * page mask to see if this BBT should be rewritten.
ace4dfee
TG
2611 */
2612 if (bbt_masked_page != 0xffffffff &&
2613 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2614 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2615 BBT_PAGE_MASK;
1da177e4
LT
2616 }
2617 }
2618 instr->state = MTD_ERASE_DONE;
2619
7351d3a5 2620erase_exit:
1da177e4
LT
2621
2622 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
2623
2624 /* Deselect and wake up anyone waiting on the device */
2625 nand_release_device(mtd);
2626
49defc01
DW
2627 /* Do call back function */
2628 if (!ret)
2629 mtd_erase_callback(instr);
2630
ace4dfee
TG
2631 /*
2632 * If BBT requires refresh and erase was successful, rewrite any
8b6e50c9 2633 * selected bad block tables.
ace4dfee
TG
2634 */
2635 if (bbt_masked_page == 0xffffffff || ret)
2636 return ret;
2637
2638 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2639 if (!rewrite_bbt[chipnr])
2640 continue;
8b6e50c9 2641 /* Update the BBT for chip */
289c0522
BN
2642 pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
2643 __func__, chipnr, rewrite_bbt[chipnr],
2644 chip->bbt_td->pages[chipnr]);
ace4dfee 2645 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
30f464b7
DM
2646 }
2647
1da177e4
LT
2648 /* Return more or less happy */
2649 return ret;
2650}
2651
2652/**
2653 * nand_sync - [MTD Interface] sync
8b6e50c9 2654 * @mtd: MTD device structure
1da177e4 2655 *
8b6e50c9 2656 * Sync is actually a wait for chip ready function.
1da177e4 2657 */
e0c7d767 2658static void nand_sync(struct mtd_info *mtd)
1da177e4 2659{
ace4dfee 2660 struct nand_chip *chip = mtd->priv;
1da177e4 2661
289c0522 2662 pr_debug("%s: called\n", __func__);
1da177e4
LT
2663
2664 /* Grab the lock and see if the device is available */
ace4dfee 2665 nand_get_device(chip, mtd, FL_SYNCING);
1da177e4 2666 /* Release it and go back */
e0c7d767 2667 nand_release_device(mtd);
1da177e4
LT
2668}
2669
1da177e4 2670/**
ace4dfee 2671 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
2672 * @mtd: MTD device structure
2673 * @offs: offset relative to mtd start
1da177e4 2674 */
ace4dfee 2675static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4 2676{
ace4dfee 2677 return nand_block_checkbad(mtd, offs, 1, 0);
1da177e4
LT
2678}
2679
2680/**
ace4dfee 2681 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
2682 * @mtd: MTD device structure
2683 * @ofs: offset relative to mtd start
1da177e4 2684 */
e0c7d767 2685static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 2686{
ace4dfee 2687 struct nand_chip *chip = mtd->priv;
1da177e4
LT
2688 int ret;
2689
f8ac0414
FF
2690 ret = nand_block_isbad(mtd, ofs);
2691 if (ret) {
8b6e50c9 2692 /* If it was bad already, return success and do nothing */
1da177e4
LT
2693 if (ret > 0)
2694 return 0;
e0c7d767
DW
2695 return ret;
2696 }
1da177e4 2697
ace4dfee 2698 return chip->block_markbad(mtd, ofs);
1da177e4
LT
2699}
2700
962034f4
VW
2701/**
2702 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 2703 * @mtd: MTD device structure
962034f4
VW
2704 */
2705static int nand_suspend(struct mtd_info *mtd)
2706{
ace4dfee 2707 struct nand_chip *chip = mtd->priv;
962034f4 2708
ace4dfee 2709 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
962034f4
VW
2710}
2711
2712/**
2713 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 2714 * @mtd: MTD device structure
962034f4
VW
2715 */
2716static void nand_resume(struct mtd_info *mtd)
2717{
ace4dfee 2718 struct nand_chip *chip = mtd->priv;
962034f4 2719
ace4dfee 2720 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
2721 nand_release_device(mtd);
2722 else
d0370219
BN
2723 pr_err("%s called for a chip which is not in suspended state\n",
2724 __func__);
962034f4
VW
2725}
2726
8b6e50c9 2727/* Set default functions */
ace4dfee 2728static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 2729{
1da177e4 2730 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
2731 if (!chip->chip_delay)
2732 chip->chip_delay = 20;
1da177e4
LT
2733
2734 /* check, if a user supplied command function given */
ace4dfee
TG
2735 if (chip->cmdfunc == NULL)
2736 chip->cmdfunc = nand_command;
1da177e4
LT
2737
2738 /* check, if a user supplied wait function given */
ace4dfee
TG
2739 if (chip->waitfunc == NULL)
2740 chip->waitfunc = nand_wait;
2741
2742 if (!chip->select_chip)
2743 chip->select_chip = nand_select_chip;
2744 if (!chip->read_byte)
2745 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2746 if (!chip->read_word)
2747 chip->read_word = nand_read_word;
2748 if (!chip->block_bad)
2749 chip->block_bad = nand_block_bad;
2750 if (!chip->block_markbad)
2751 chip->block_markbad = nand_default_block_markbad;
2752 if (!chip->write_buf)
2753 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2754 if (!chip->read_buf)
2755 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
ace4dfee
TG
2756 if (!chip->scan_bbt)
2757 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
2758
2759 if (!chip->controller) {
2760 chip->controller = &chip->hwcontrol;
2761 spin_lock_init(&chip->controller->lock);
2762 init_waitqueue_head(&chip->controller->wq);
2763 }
2764
7aa65bfd
TG
2765}
2766
8b6e50c9 2767/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
2768static void sanitize_string(uint8_t *s, size_t len)
2769{
2770 ssize_t i;
2771
8b6e50c9 2772 /* Null terminate */
d1e1f4e4
FF
2773 s[len - 1] = 0;
2774
8b6e50c9 2775 /* Remove non printable chars */
d1e1f4e4
FF
2776 for (i = 0; i < len - 1; i++) {
2777 if (s[i] < ' ' || s[i] > 127)
2778 s[i] = '?';
2779 }
2780
8b6e50c9 2781 /* Remove trailing spaces */
d1e1f4e4
FF
2782 strim(s);
2783}
2784
2785static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2786{
2787 int i;
2788 while (len--) {
2789 crc ^= *p++ << 8;
2790 for (i = 0; i < 8; i++)
2791 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2792 }
2793
2794 return crc;
2795}
2796
6fb277ba 2797/*
8b6e50c9 2798 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba
FF
2799 */
2800static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
08c248fb 2801 int *busw)
6fb277ba
FF
2802{
2803 struct nand_onfi_params *p = &chip->onfi_params;
2804 int i;
2805 int val;
2806
7854d3f7 2807 /* Try ONFI for unknown chip or LP */
6fb277ba
FF
2808 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2809 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2810 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2811 return 0;
2812
6fb277ba
FF
2813 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2814 for (i = 0; i < 3; i++) {
2815 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2816 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2817 le16_to_cpu(p->crc)) {
9a4d4d69 2818 pr_info("ONFI param page %d valid\n", i);
6fb277ba
FF
2819 break;
2820 }
2821 }
2822
2823 if (i == 3)
2824 return 0;
2825
8b6e50c9 2826 /* Check version */
6fb277ba 2827 val = le16_to_cpu(p->revision);
b7b1a29d
BN
2828 if (val & (1 << 5))
2829 chip->onfi_version = 23;
2830 else if (val & (1 << 4))
6fb277ba
FF
2831 chip->onfi_version = 22;
2832 else if (val & (1 << 3))
2833 chip->onfi_version = 21;
2834 else if (val & (1 << 2))
2835 chip->onfi_version = 20;
b7b1a29d 2836 else if (val & (1 << 1))
6fb277ba 2837 chip->onfi_version = 10;
b7b1a29d
BN
2838 else
2839 chip->onfi_version = 0;
2840
2841 if (!chip->onfi_version) {
d0370219 2842 pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
b7b1a29d
BN
2843 return 0;
2844 }
6fb277ba
FF
2845
2846 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2847 sanitize_string(p->model, sizeof(p->model));
2848 if (!mtd->name)
2849 mtd->name = p->model;
2850 mtd->writesize = le32_to_cpu(p->byte_per_page);
2851 mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2852 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
63795755
MC
2853 chip->chipsize = le32_to_cpu(p->blocks_per_lun);
2854 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
08c248fb 2855 *busw = 0;
6fb277ba 2856 if (le16_to_cpu(p->features) & 1)
08c248fb 2857 *busw = NAND_BUSWIDTH_16;
6fb277ba 2858
d42b5de3 2859 pr_info("ONFI flash detected\n");
6fb277ba
FF
2860 return 1;
2861}
2862
7aa65bfd 2863/*
8b6e50c9 2864 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd
TG
2865 */
2866static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 2867 struct nand_chip *chip,
7351d3a5
FF
2868 int busw,
2869 int *maf_id, int *dev_id,
5e81e88a 2870 struct nand_flash_dev *type)
7aa65bfd 2871{
d1e1f4e4 2872 int i, maf_idx;
426c457a 2873 u8 id_data[8];
6fb277ba 2874 int ret;
1da177e4
LT
2875
2876 /* Select the device */
ace4dfee 2877 chip->select_chip(mtd, 0);
1da177e4 2878
ef89a880
KB
2879 /*
2880 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 2881 * after power-up.
ef89a880
KB
2882 */
2883 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2884
1da177e4 2885 /* Send the command for reading device ID */
ace4dfee 2886 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
2887
2888 /* Read manufacturer and device IDs */
ace4dfee 2889 *maf_id = chip->read_byte(mtd);
d1e1f4e4 2890 *dev_id = chip->read_byte(mtd);
1da177e4 2891
8b6e50c9
BN
2892 /*
2893 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
2894 * interface concerns can cause random data which looks like a
2895 * possibly credible NAND flash to appear. If the two results do
2896 * not match, ignore the device completely.
2897 */
2898
2899 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2900
d1e1f4e4 2901 for (i = 0; i < 2; i++)
426c457a 2902 id_data[i] = chip->read_byte(mtd);
ed8165c7 2903
d1e1f4e4 2904 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
9a4d4d69 2905 pr_info("%s: second ID read did not match "
d0370219
BN
2906 "%02x,%02x against %02x,%02x\n", __func__,
2907 *maf_id, *dev_id, id_data[0], id_data[1]);
ed8165c7
BD
2908 return ERR_PTR(-ENODEV);
2909 }
2910
7aa65bfd 2911 if (!type)
5e81e88a
DW
2912 type = nand_flash_ids;
2913
2914 for (; type->name != NULL; type++)
d1e1f4e4 2915 if (*dev_id == type->id)
f8ac0414 2916 break;
5e81e88a 2917
d1e1f4e4
FF
2918 chip->onfi_version = 0;
2919 if (!type->name || !type->pagesize) {
6fb277ba 2920 /* Check is chip is ONFI compliant */
08c248fb 2921 ret = nand_flash_detect_onfi(mtd, chip, &busw);
6fb277ba
FF
2922 if (ret)
2923 goto ident_done;
d1e1f4e4
FF
2924 }
2925
2926 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2927
2928 /* Read entire ID string */
2929
2930 for (i = 0; i < 8; i++)
2931 id_data[i] = chip->read_byte(mtd);
2932
5e81e88a 2933 if (!type->name)
7aa65bfd
TG
2934 return ERR_PTR(-ENODEV);
2935
ba0251fe
TG
2936 if (!mtd->name)
2937 mtd->name = type->name;
2938
69423d99 2939 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 2940
12a40a57 2941 if (!type->pagesize && chip->init_size) {
8b6e50c9 2942 /* Set the pagesize, oobsize, erasesize by the driver */
12a40a57
HS
2943 busw = chip->init_size(mtd, chip, id_data);
2944 } else if (!type->pagesize) {
7aa65bfd 2945 int extid;
29072b96 2946 /* The 3rd id byte holds MLC / multichip data */
426c457a 2947 chip->cellinfo = id_data[2];
7aa65bfd 2948 /* The 4th id byte is the important one */
426c457a 2949 extid = id_data[3];
61b03bd7 2950
426c457a
KC
2951 /*
2952 * Field definitions are in the following datasheets:
2953 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
34c5bf6c 2954 * New style (6 byte ID): Samsung K9GBG08U0M (p.40)
426c457a
KC
2955 *
2956 * Check for wraparound + Samsung ID + nonzero 6th byte
2957 * to decide what to do.
2958 */
2959 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
2960 id_data[0] == NAND_MFR_SAMSUNG &&
cfe3fdad 2961 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
426c457a
KC
2962 id_data[5] != 0x00) {
2963 /* Calc pagesize */
2964 mtd->writesize = 2048 << (extid & 0x03);
2965 extid >>= 2;
2966 /* Calc oobsize */
34c5bf6c
BN
2967 switch (extid & 0x03) {
2968 case 1:
2969 mtd->oobsize = 128;
2970 break;
2971 case 2:
2972 mtd->oobsize = 218;
2973 break;
2974 case 3:
2975 mtd->oobsize = 400;
2976 break;
2977 default:
2978 mtd->oobsize = 436;
2979 break;
2980 }
426c457a
KC
2981 extid >>= 2;
2982 /* Calc blocksize */
2983 mtd->erasesize = (128 * 1024) <<
2984 (((extid >> 1) & 0x04) | (extid & 0x03));
2985 busw = 0;
2986 } else {
2987 /* Calc pagesize */
2988 mtd->writesize = 1024 << (extid & 0x03);
2989 extid >>= 2;
2990 /* Calc oobsize */
2991 mtd->oobsize = (8 << (extid & 0x01)) *
2992 (mtd->writesize >> 9);
2993 extid >>= 2;
2994 /* Calc blocksize. Blocksize is multiples of 64KiB */
2995 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2996 extid >>= 2;
2997 /* Get buswidth information */
2998 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2999 }
7aa65bfd
TG
3000 } else {
3001 /*
8b6e50c9 3002 * Old devices have chip data hardcoded in the device id table.
7aa65bfd 3003 */
ba0251fe
TG
3004 mtd->erasesize = type->erasesize;
3005 mtd->writesize = type->pagesize;
4cbb9b80 3006 mtd->oobsize = mtd->writesize / 32;
ba0251fe 3007 busw = type->options & NAND_BUSWIDTH_16;
2173bae8
BN
3008
3009 /*
3010 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3011 * some Spansion chips have erasesize that conflicts with size
8b6e50c9 3012 * listed in nand_ids table.
2173bae8
BN
3013 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3014 */
3015 if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3016 id_data[5] == 0x00 && id_data[6] == 0x00 &&
3017 id_data[7] == 0x00 && mtd->writesize == 512) {
3018 mtd->erasesize = 128 * 1024;
3019 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3020 }
7aa65bfd 3021 }
bf7a01bf
BN
3022 /* Get chip options */
3023 chip->options |= type->options;
d1e1f4e4 3024
8b6e50c9
BN
3025 /*
3026 * Check if chip is not a Samsung device. Do not clear the
3027 * options for chips which do not have an extended id.
d1e1f4e4
FF
3028 */
3029 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3030 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3031ident_done:
3032
7aa65bfd 3033 /* Try to identify manufacturer */
9a909867 3034 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
7aa65bfd
TG
3035 if (nand_manuf_ids[maf_idx].id == *maf_id)
3036 break;
3037 }
0ea4a755 3038
7aa65bfd
TG
3039 /*
3040 * Check, if buswidth is correct. Hardware drivers should set
8b6e50c9 3041 * chip correct!
7aa65bfd 3042 */
ace4dfee 3043 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
9a4d4d69 3044 pr_info("NAND device: Manufacturer ID:"
d0370219
BN
3045 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3046 *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
9a4d4d69 3047 pr_warn("NAND bus width %d instead %d bit\n",
d0370219
BN
3048 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3049 busw ? 16 : 8);
7aa65bfd
TG
3050 return ERR_PTR(-EINVAL);
3051 }
61b03bd7 3052
7aa65bfd 3053 /* Calculate the address shift from the page size */
ace4dfee 3054 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 3055 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 3056 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 3057
ace4dfee 3058 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 3059 ffs(mtd->erasesize) - 1;
69423d99
AH
3060 if (chip->chipsize & 0xffffffff)
3061 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
3062 else {
3063 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3064 chip->chip_shift += 32 - 1;
3065 }
1da177e4 3066
26d9be11
AB
3067 chip->badblockbits = 8;
3068
7aa65bfd 3069 /* Set the bad block position */
065a1ed8 3070 if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
c7b28e25 3071 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
065a1ed8
BN
3072 else
3073 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
61b03bd7 3074
b60b08b0
KC
3075 /*
3076 * Bad block marker is stored in the last page of each block
c7b28e25
BN
3077 * on Samsung and Hynix MLC devices; stored in first two pages
3078 * of each block on Micron devices with 2KiB pages and on
8c342335
BN
3079 * SLC Samsung, Hynix, Toshiba, AMD/Spansion, and Macronix.
3080 * All others scan only the first page.
b60b08b0
KC
3081 */
3082 if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3083 (*maf_id == NAND_MFR_SAMSUNG ||
3084 *maf_id == NAND_MFR_HYNIX))
5fb1549d 3085 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
c7b28e25
BN
3086 else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3087 (*maf_id == NAND_MFR_SAMSUNG ||
3088 *maf_id == NAND_MFR_HYNIX ||
13ed7aed 3089 *maf_id == NAND_MFR_TOSHIBA ||
8c342335
BN
3090 *maf_id == NAND_MFR_AMD ||
3091 *maf_id == NAND_MFR_MACRONIX)) ||
c7b28e25
BN
3092 (mtd->writesize == 2048 &&
3093 *maf_id == NAND_MFR_MICRON))
5fb1549d 3094 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
c7b28e25 3095
7aa65bfd 3096 /* Check for AND chips with 4 page planes */
ace4dfee
TG
3097 if (chip->options & NAND_4PAGE_ARRAY)
3098 chip->erase_cmd = multi_erase_cmd;
7aa65bfd 3099 else
ace4dfee 3100 chip->erase_cmd = single_erase_cmd;
7aa65bfd 3101
8b6e50c9 3102 /* Do not replace user supplied command function! */
ace4dfee
TG
3103 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3104 chip->cmdfunc = nand_command_lp;
7aa65bfd 3105
886bd33d
HS
3106 pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s),"
3107 " page size: %d, OOB size: %d\n",
3108 *maf_id, *dev_id, nand_manuf_ids[maf_idx].name,
3109 chip->onfi_version ? chip->onfi_params.model : type->name,
3110 mtd->writesize, mtd->oobsize);
7aa65bfd
TG
3111
3112 return type;
3113}
3114
7aa65bfd 3115/**
3b85c321 3116 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3117 * @mtd: MTD device structure
3118 * @maxchips: number of chips to scan for
3119 * @table: alternative NAND ID table
7aa65bfd 3120 *
8b6e50c9
BN
3121 * This is the first phase of the normal nand_scan() function. It reads the
3122 * flash ID and sets up MTD fields accordingly.
7aa65bfd 3123 *
3b85c321 3124 * The mtd->owner field must be set to the module of the caller.
7aa65bfd 3125 */
5e81e88a
DW
3126int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3127 struct nand_flash_dev *table)
7aa65bfd 3128{
d1e1f4e4 3129 int i, busw, nand_maf_id, nand_dev_id;
ace4dfee 3130 struct nand_chip *chip = mtd->priv;
7aa65bfd
TG
3131 struct nand_flash_dev *type;
3132
7aa65bfd 3133 /* Get buswidth to select the correct functions */
ace4dfee 3134 busw = chip->options & NAND_BUSWIDTH_16;
7aa65bfd 3135 /* Set the default functions */
ace4dfee 3136 nand_set_defaults(chip, busw);
7aa65bfd
TG
3137
3138 /* Read the flash type */
7351d3a5
FF
3139 type = nand_get_flash_type(mtd, chip, busw,
3140 &nand_maf_id, &nand_dev_id, table);
7aa65bfd
TG
3141
3142 if (IS_ERR(type)) {
b1c6e6db 3143 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 3144 pr_warn("No NAND device found\n");
ace4dfee 3145 chip->select_chip(mtd, -1);
7aa65bfd 3146 return PTR_ERR(type);
1da177e4
LT
3147 }
3148
7aa65bfd 3149 /* Check for a chip array */
e0c7d767 3150 for (i = 1; i < maxchips; i++) {
ace4dfee 3151 chip->select_chip(mtd, i);
ef89a880
KB
3152 /* See comment in nand_get_flash_type for reset */
3153 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4 3154 /* Send the command for reading device ID */
ace4dfee 3155 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 3156 /* Read manufacturer and device IDs */
ace4dfee 3157 if (nand_maf_id != chip->read_byte(mtd) ||
d1e1f4e4 3158 nand_dev_id != chip->read_byte(mtd))
1da177e4
LT
3159 break;
3160 }
3161 if (i > 1)
9a4d4d69 3162 pr_info("%d NAND chips detected\n", i);
61b03bd7 3163
1da177e4 3164 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
3165 chip->numchips = i;
3166 mtd->size = i * chip->chipsize;
7aa65bfd 3167
3b85c321
DW
3168 return 0;
3169}
7351d3a5 3170EXPORT_SYMBOL(nand_scan_ident);
3b85c321
DW
3171
3172
3173/**
3174 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 3175 * @mtd: MTD device structure
3b85c321 3176 *
8b6e50c9
BN
3177 * This is the second phase of the normal nand_scan() function. It fills out
3178 * all the uninitialized function pointers with the defaults and scans for a
3179 * bad block table if appropriate.
3b85c321
DW
3180 */
3181int nand_scan_tail(struct mtd_info *mtd)
3182{
3183 int i;
3184 struct nand_chip *chip = mtd->priv;
3185
e2414f4c
BN
3186 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3187 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3188 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3189
4bf63fcb
DW
3190 if (!(chip->options & NAND_OWN_BUFFERS))
3191 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3192 if (!chip->buffers)
3193 return -ENOMEM;
3194
7dcdcbef 3195 /* Set the internal oob buffer location, just after the page data */
784f4d5e 3196 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 3197
7aa65bfd 3198 /*
8b6e50c9 3199 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 3200 */
193bd400 3201 if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
61b03bd7 3202 switch (mtd->oobsize) {
1da177e4 3203 case 8:
5bd34c09 3204 chip->ecc.layout = &nand_oob_8;
1da177e4
LT
3205 break;
3206 case 16:
5bd34c09 3207 chip->ecc.layout = &nand_oob_16;
1da177e4
LT
3208 break;
3209 case 64:
5bd34c09 3210 chip->ecc.layout = &nand_oob_64;
1da177e4 3211 break;
81ec5364
TG
3212 case 128:
3213 chip->ecc.layout = &nand_oob_128;
3214 break;
1da177e4 3215 default:
d0370219
BN
3216 pr_warn("No oob scheme defined for oobsize %d\n",
3217 mtd->oobsize);
1da177e4
LT
3218 BUG();
3219 }
3220 }
61b03bd7 3221
956e944c
DW
3222 if (!chip->write_page)
3223 chip->write_page = nand_write_page;
3224
61b03bd7 3225 /*
8b6e50c9 3226 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 3227 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 3228 */
956e944c 3229
ace4dfee 3230 switch (chip->ecc.mode) {
6e0cb135
SN
3231 case NAND_ECC_HW_OOB_FIRST:
3232 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3233 if (!chip->ecc.calculate || !chip->ecc.correct ||
3234 !chip->ecc.hwctl) {
9a4d4d69 3235 pr_warn("No ECC functions supplied; "
d0370219 3236 "hardware ECC not possible\n");
6e0cb135
SN
3237 BUG();
3238 }
3239 if (!chip->ecc.read_page)
3240 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3241
6dfc6d25 3242 case NAND_ECC_HW:
8b6e50c9 3243 /* Use standard hwecc read page function? */
f5bbdacc
TG
3244 if (!chip->ecc.read_page)
3245 chip->ecc.read_page = nand_read_page_hwecc;
f75e5097
TG
3246 if (!chip->ecc.write_page)
3247 chip->ecc.write_page = nand_write_page_hwecc;
52ff49df
DB
3248 if (!chip->ecc.read_page_raw)
3249 chip->ecc.read_page_raw = nand_read_page_raw;
3250 if (!chip->ecc.write_page_raw)
3251 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b
TG
3252 if (!chip->ecc.read_oob)
3253 chip->ecc.read_oob = nand_read_oob_std;
3254 if (!chip->ecc.write_oob)
3255 chip->ecc.write_oob = nand_write_oob_std;
f5bbdacc 3256
6dfc6d25 3257 case NAND_ECC_HW_SYNDROME:
78b65179
SW
3258 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3259 !chip->ecc.hwctl) &&
3260 (!chip->ecc.read_page ||
1c45f604 3261 chip->ecc.read_page == nand_read_page_hwecc ||
78b65179 3262 !chip->ecc.write_page ||
1c45f604 3263 chip->ecc.write_page == nand_write_page_hwecc)) {
9a4d4d69 3264 pr_warn("No ECC functions supplied; "
d0370219 3265 "hardware ECC not possible\n");
6dfc6d25
TG
3266 BUG();
3267 }
8b6e50c9 3268 /* Use standard syndrome read/write page function? */
f5bbdacc
TG
3269 if (!chip->ecc.read_page)
3270 chip->ecc.read_page = nand_read_page_syndrome;
f75e5097
TG
3271 if (!chip->ecc.write_page)
3272 chip->ecc.write_page = nand_write_page_syndrome;
52ff49df
DB
3273 if (!chip->ecc.read_page_raw)
3274 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3275 if (!chip->ecc.write_page_raw)
3276 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
7bc3312b
TG
3277 if (!chip->ecc.read_oob)
3278 chip->ecc.read_oob = nand_read_oob_syndrome;
3279 if (!chip->ecc.write_oob)
3280 chip->ecc.write_oob = nand_write_oob_syndrome;
f5bbdacc 3281
e2788c98
MD
3282 if (mtd->writesize >= chip->ecc.size) {
3283 if (!chip->ecc.strength) {
3284 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3285 BUG();
3286 }
6dfc6d25 3287 break;
e2788c98 3288 }
9a4d4d69 3289 pr_warn("%d byte HW ECC not possible on "
d0370219
BN
3290 "%d byte page size, fallback to SW ECC\n",
3291 chip->ecc.size, mtd->writesize);
ace4dfee 3292 chip->ecc.mode = NAND_ECC_SOFT;
61b03bd7 3293
6dfc6d25 3294 case NAND_ECC_SOFT:
ace4dfee
TG
3295 chip->ecc.calculate = nand_calculate_ecc;
3296 chip->ecc.correct = nand_correct_data;
f5bbdacc 3297 chip->ecc.read_page = nand_read_page_swecc;
3d459559 3298 chip->ecc.read_subpage = nand_read_subpage;
f75e5097 3299 chip->ecc.write_page = nand_write_page_swecc;
52ff49df
DB
3300 chip->ecc.read_page_raw = nand_read_page_raw;
3301 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b
TG
3302 chip->ecc.read_oob = nand_read_oob_std;
3303 chip->ecc.write_oob = nand_write_oob_std;
9a73290d
SV
3304 if (!chip->ecc.size)
3305 chip->ecc.size = 256;
ace4dfee 3306 chip->ecc.bytes = 3;
6a918bad 3307 chip->ecc.strength = 1;
1da177e4 3308 break;
61b03bd7 3309
193bd400
ID
3310 case NAND_ECC_SOFT_BCH:
3311 if (!mtd_nand_has_bch()) {
9a4d4d69 3312 pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
193bd400
ID
3313 BUG();
3314 }
3315 chip->ecc.calculate = nand_bch_calculate_ecc;
3316 chip->ecc.correct = nand_bch_correct_data;
3317 chip->ecc.read_page = nand_read_page_swecc;
3318 chip->ecc.read_subpage = nand_read_subpage;
3319 chip->ecc.write_page = nand_write_page_swecc;
3320 chip->ecc.read_page_raw = nand_read_page_raw;
3321 chip->ecc.write_page_raw = nand_write_page_raw;
3322 chip->ecc.read_oob = nand_read_oob_std;
3323 chip->ecc.write_oob = nand_write_oob_std;
3324 /*
3325 * Board driver should supply ecc.size and ecc.bytes values to
3326 * select how many bits are correctable; see nand_bch_init()
8b6e50c9
BN
3327 * for details. Otherwise, default to 4 bits for large page
3328 * devices.
193bd400
ID
3329 */
3330 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3331 chip->ecc.size = 512;
3332 chip->ecc.bytes = 7;
3333 }
3334 chip->ecc.priv = nand_bch_init(mtd,
3335 chip->ecc.size,
3336 chip->ecc.bytes,
3337 &chip->ecc.layout);
3338 if (!chip->ecc.priv) {
9a4d4d69 3339 pr_warn("BCH ECC initialization failed!\n");
193bd400
ID
3340 BUG();
3341 }
6a918bad 3342 chip->ecc.strength =
e2788c98 3343 chip->ecc.bytes * 8 / fls(8 * chip->ecc.size);
193bd400
ID
3344 break;
3345
61b03bd7 3346 case NAND_ECC_NONE:
9a4d4d69 3347 pr_warn("NAND_ECC_NONE selected by board driver. "
d0370219 3348 "This is not recommended!\n");
8593fbc6
TG
3349 chip->ecc.read_page = nand_read_page_raw;
3350 chip->ecc.write_page = nand_write_page_raw;
7bc3312b 3351 chip->ecc.read_oob = nand_read_oob_std;
52ff49df
DB
3352 chip->ecc.read_page_raw = nand_read_page_raw;
3353 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b 3354 chip->ecc.write_oob = nand_write_oob_std;
ace4dfee
TG
3355 chip->ecc.size = mtd->writesize;
3356 chip->ecc.bytes = 0;
6a918bad 3357 chip->ecc.strength = 0;
1da177e4 3358 break;
956e944c 3359
1da177e4 3360 default:
d0370219 3361 pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
61b03bd7 3362 BUG();
1da177e4 3363 }
61b03bd7 3364
9ce244b3 3365 /* For many systems, the standard OOB write also works for raw */
c46f6483
BN
3366 if (!chip->ecc.read_oob_raw)
3367 chip->ecc.read_oob_raw = chip->ecc.read_oob;
9ce244b3
BN
3368 if (!chip->ecc.write_oob_raw)
3369 chip->ecc.write_oob_raw = chip->ecc.write_oob;
3370
5bd34c09
TG
3371 /*
3372 * The number of bytes available for a client to place data into
8b6e50c9 3373 * the out of band area.
5bd34c09
TG
3374 */
3375 chip->ecc.layout->oobavail = 0;
81d19b04
DB
3376 for (i = 0; chip->ecc.layout->oobfree[i].length
3377 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
5bd34c09
TG
3378 chip->ecc.layout->oobavail +=
3379 chip->ecc.layout->oobfree[i].length;
1f92267c 3380 mtd->oobavail = chip->ecc.layout->oobavail;
5bd34c09 3381
7aa65bfd
TG
3382 /*
3383 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 3384 * mode.
7aa65bfd 3385 */
ace4dfee 3386 chip->ecc.steps = mtd->writesize / chip->ecc.size;
f8ac0414 3387 if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
9a4d4d69 3388 pr_warn("Invalid ECC parameters\n");
6dfc6d25 3389 BUG();
1da177e4 3390 }
f5bbdacc 3391 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
61b03bd7 3392
8b6e50c9 3393 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
29072b96
TG
3394 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3395 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
f8ac0414 3396 switch (chip->ecc.steps) {
29072b96
TG
3397 case 2:
3398 mtd->subpage_sft = 1;
3399 break;
3400 case 4:
3401 case 8:
81ec5364 3402 case 16:
29072b96
TG
3403 mtd->subpage_sft = 2;
3404 break;
3405 }
3406 }
3407 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3408
04bbd0ea 3409 /* Initialize state */
ace4dfee 3410 chip->state = FL_READY;
1da177e4
LT
3411
3412 /* De-select the device */
ace4dfee 3413 chip->select_chip(mtd, -1);
1da177e4
LT
3414
3415 /* Invalidate the pagebuffer reference */
ace4dfee 3416 chip->pagebuf = -1;
1da177e4
LT
3417
3418 /* Fill in remaining MTD driver data */
3419 mtd->type = MTD_NANDFLASH;
93edbad6
ML
3420 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3421 MTD_CAP_NANDFLASH;
3c3c10bb
AB
3422 mtd->_erase = nand_erase;
3423 mtd->_point = NULL;
3424 mtd->_unpoint = NULL;
3425 mtd->_read = nand_read;
3426 mtd->_write = nand_write;
3427 mtd->_panic_write = panic_nand_write;
3428 mtd->_read_oob = nand_read_oob;
3429 mtd->_write_oob = nand_write_oob;
3430 mtd->_sync = nand_sync;
3431 mtd->_lock = NULL;
3432 mtd->_unlock = NULL;
3433 mtd->_suspend = nand_suspend;
3434 mtd->_resume = nand_resume;
3435 mtd->_block_isbad = nand_block_isbad;
3436 mtd->_block_markbad = nand_block_markbad;
cbcab65a 3437 mtd->writebufsize = mtd->writesize;
1da177e4 3438
6a918bad 3439 /* propagate ecc info to mtd_info */
5bd34c09 3440 mtd->ecclayout = chip->ecc.layout;
86c2072b 3441 mtd->ecc_strength = chip->ecc.strength;
ea3b2ea2
SL
3442 /*
3443 * Initialize bitflip_threshold to its default prior scan_bbt() call.
3444 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3445 * properly set.
3446 */
3447 if (!mtd->bitflip_threshold)
3448 mtd->bitflip_threshold = mtd->ecc_strength;
1da177e4 3449
0040bf38 3450 /* Check, if we should skip the bad block table scan */
ace4dfee 3451 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 3452 return 0;
1da177e4
LT
3453
3454 /* Build bad block table */
ace4dfee 3455 return chip->scan_bbt(mtd);
1da177e4 3456}
7351d3a5 3457EXPORT_SYMBOL(nand_scan_tail);
1da177e4 3458
8b6e50c9
BN
3459/*
3460 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 3461 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
3462 * to call us from in-kernel code if the core NAND support is modular.
3463 */
3b85c321
DW
3464#ifdef MODULE
3465#define caller_is_module() (1)
3466#else
3467#define caller_is_module() \
a6e6abd5 3468 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
3469#endif
3470
3471/**
3472 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3473 * @mtd: MTD device structure
3474 * @maxchips: number of chips to scan for
3b85c321 3475 *
8b6e50c9
BN
3476 * This fills out all the uninitialized function pointers with the defaults.
3477 * The flash ID is read and the mtd/chip structures are filled with the
3478 * appropriate values. The mtd->owner field must be set to the module of the
3479 * caller.
3b85c321
DW
3480 */
3481int nand_scan(struct mtd_info *mtd, int maxchips)
3482{
3483 int ret;
3484
3485 /* Many callers got this wrong, so check for it for a while... */
3486 if (!mtd->owner && caller_is_module()) {
d0370219 3487 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3b85c321
DW
3488 BUG();
3489 }
3490
5e81e88a 3491 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
3492 if (!ret)
3493 ret = nand_scan_tail(mtd);
3494 return ret;
3495}
7351d3a5 3496EXPORT_SYMBOL(nand_scan);
3b85c321 3497
1da177e4 3498/**
61b03bd7 3499 * nand_release - [NAND Interface] Free resources held by the NAND device
8b6e50c9
BN
3500 * @mtd: MTD device structure
3501 */
e0c7d767 3502void nand_release(struct mtd_info *mtd)
1da177e4 3503{
ace4dfee 3504 struct nand_chip *chip = mtd->priv;
1da177e4 3505
193bd400
ID
3506 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3507 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3508
5ffcaf3d 3509 mtd_device_unregister(mtd);
1da177e4 3510
fa671646 3511 /* Free bad block table memory */
ace4dfee 3512 kfree(chip->bbt);
4bf63fcb
DW
3513 if (!(chip->options & NAND_OWN_BUFFERS))
3514 kfree(chip->buffers);
58373ff0
BN
3515
3516 /* Free bad block descriptor memory */
3517 if (chip->badblock_pattern && chip->badblock_pattern->options
3518 & NAND_BBT_DYNAMICSTRUCT)
3519 kfree(chip->badblock_pattern);
1da177e4 3520}
e0c7d767 3521EXPORT_SYMBOL_GPL(nand_release);
8fe833c1
RP
3522
3523static int __init nand_base_init(void)
3524{
3525 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3526 return 0;
3527}
3528
3529static void __exit nand_base_exit(void)
3530{
3531 led_trigger_unregister_simple(nand_led_trigger);
3532}
3533
3534module_init(nand_base_init);
3535module_exit(nand_base_exit);
3536
e0c7d767 3537MODULE_LICENSE("GPL");
7351d3a5
FF
3538MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3539MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 3540MODULE_DESCRIPTION("Generic NAND flash driver code");